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Abstract

Quantum Information Theory studies how information can be processed
and transmitted when encoded on quantum states. New information appli-
cations become possible when resorting to intrinsically quantum properties.
Here we focus on the relations among some of these quantum properties.
More precisely, we establish connections between entanglement distillation
and secret-key extraction, quantum privacy and non-locality and, finally,
between non-locality and certified quantum randomness.

The connection between information-theoretic key agreement and quan-
tum entanglement purification has led to several analogies between the two
scenarios. The most intriguing open question is the conjectured existence
of bound information, a classical analog of bound entanglement. It refers to
classical correlations that, despite containing some intrinsic secrecy, do not
allow its extraction by means of any protocol based on local operations and
public communication between two honest parties. Despite some evidence
of its existence in the bipartite scenario, a proof is still missing. By exploit-
ing the analogies between the quantum and classical scenario, we provide
two probability distributions that are not key-distillable by two-way com-
munication protocols and therefore may have bound information. Then,
we show that the combination of these two distributions leads to a positive
secret-key rate. This result thus supports the idea that the secret-key rate,
a fully classical information concept, may be a non-additive quantity.

Moving to the multipartite scenario, the freedom offered by consider dif-
ferent bipartitions of the honest parties considerably simplifies the problem
and allows showing that bound information indeed exists. We have shown
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that several properties of bound entanglement, such as superactivation or
unlockability, can be translated to bound information. We also provide an-
other common feature of both resources. Although non-distillable, they can
help to distribute pure state entanglement and multipartite secret correla-
tions, respectively, when a new party is added to the considered scenario.

We move later to deepen the connection between privacy and non-
locality. With this aim, we consider the private states, that is, those quan-
tum states from which two or more honest parties can extract a secret key.
We show that all private states are non local, in the sense that they al-
ways violate the CHSH inequality. The proof is completely general since it
applies for any dimension and any number of parties.

Finally, we study the relation between non-locality and randomness cer-
tification. It is well known that non-local correlations must have random
outcomes to be compatible with the no-signalling principle. Thus, within a
no-signalling theory, the violation of a Bell’s inequality can be considered
a certificate of randomness. Still, it is not known under which circum-
stances one can certify maximal randomness. We show that the symmetry
of a Bell’s inequality plus the uniqueness of the probability distribution
maximally violating it can be used to certify maximal randomness. The
advantage of our method relies on the fact that simple analytical consider-
ations can bring insightful results on randomness certification via quantum
non-locality without the need of any heavy numerical computation.

The dissertation ends up with an overview of the obtained results and
possible follow-up research directions.
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Chapter 1

Introduction

This chapter presents the context and main results obtained during the PhD
Thesis. While the formal treatment will be given in the next chapters, we
give here the questions and the motivations that have led to the work that
we report in this thesis. Finally, a graphical scheme is sketched representing
the connections analysed in this dissertation.

1.1 Introduction

Quantum Information Theory (QIT) can be understood as the effort to gen-
eralise Classical Information Theory to the quantum world. The fact that
very-small scale Physics differs considerably from that of macroscopic ob-
jects implies a richer structure of the new theory. Although its formulation
lacks the intuition common to the old theories of Nature, the accurate pre-
dictions of quantum phenomena do of Quantum Mechanics a fundamental
tool of investigation.

Among others, phenomena as entanglement and the existence of non-
local correlations make this theory very special, since these effects are not
possible for classical systems. Although intrinsically non-intuitive, these
strange effects have been shown to lead to intriguing applications with no
classical analogue. In particular, the comparison of the same task based
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on classical and quantum technology has almost always seen a significant
advantage of the latter over the former. To cite only few, the possibility
of sharing a secret key [BB84, Eke91], to teleport the unknown state of a
quantum particle [BBC*93] and to factorise huge numbers in a polynomial
time [Sho94] is something possible at a quantum level. But this is just a
small sample of the new range of possibilities offered by the introduction of
Quantum Physics in the Information world.

Despite the vast amount of successes achieved by QIT in these years,
many interesting fundamental questions are left unanswered. Being a field
under current development, many powerful resources appear whose rela-
tions are still not completely understood. At a more foundational level,
and despite the great effort by the scientific community, simple questions
remain unanswered, leaving the feeling that very novel ideas are required.

1.2 Motivations and Results

Quantum Information Theory, like Classical Information Theory, is mostly
a theory about resources: quantum effects are seen as resources for informa-
tion processing. But the new theory is richer than its classical counterpart
and new resources appear in the formalism, such as quantum bits, entangled
qubits, private quantum bits, non-local correlations or intrinsic randomness.
The main scope of this thesis is to establish qualitative and quantitative
connections among these different quantum information resources. In what
follows, we introduce the questions addressed in this work.

Q1. Is the secret key rate an additive quantity?

Among the many weird effects that quantum systems present, the non-
additivity concept plays an important role. In the quantum realm, the joint
processing of two quantum resources is often better than the sum of the two
resources. Activation is the strongest manifestation of non-additivity. Such
a process can be understood as the capability of two objects to achieve a
given task that is impossible for each of them when considered individually.

16
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[ Randomness
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Figure 1.1: Scheme of the thesis. The drawing above shows the connections analysed in
this dissertation. In chapters 3 and 4 the likely correspondence between entanglement and
secret-key agreement is discussed providing some evidence among bound entanglement
and bound information (R1, R2). In chapters 5 a general proof is given that states which
provide secret correlations are non-local (R3). Finally in chapter 6, the non-locality of
quantum distribution is used to certify the presence of genuine randomness (R4).
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Many examples are known nowadays of activation of quantum resources:
the entanglement of formation, the distillable entanglement and the classi-
cal and private capacities of a quantum channel can be activated. From a
classical point of view, while additivity is known to hold for the capacity of
classical channels, it is unknown whether there may be classical informa-
tion resources that can be activated. Here we study whether the classical
secret-key rate can be activated. That is, is it possible to combine classical
resources obtaining a positive secret-key rate, despite no secrecy can be
extracted from them individually?

R1

We provide two probability distributions conjectured to have bound in-
formation, hence from which it is conjectured that no secret key can be
extracted (even by two-way communication protocols), when taken individ-
ually, but that lead to a positive secret-key rate when combined. In order to
prove this result we exploit the close connection between the information-
theoretic key agreement and the quantum entanglement scenario.

Q2. Can bound information be super-activated and unlocked?

Entanglement is one of the key resources that distinguishes Quantum Infor-
mation Theory from its classical counterpart. The impossibility for remote
parties to create an entangled state between particles that never inter-
acted in the past, makes this feature really unique for communication pur-
poses. The presence of pure entanglement constitutes the main ingredient
for devising protocols that allow distant users to share secrecy. In the key-
agreement scenario, several parties, including a possible adversary, share
partially correlated classical information. The goal of the honest parties is
to share secret correlations from the given initial ones, in such a way that
no information is known to the malicious party. The two scenarios share
thereby many interesting similarities. Despite the natural expectation that
all noisy entangled states can be brought to a pure form, the existence of
non-distillable (bound) entangled states was shown. From the analogy be-
tween the entanglement and key-agreement scenario, Gisin and Wolf gave
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CHAPTER 1. INTRODUCTION

evidence for the existence of a classical analog of bound entanglement, the
so-called bound information. Bound information refers to classical corre-
lations that do contain some intrinsic secrecy but that cannot be distilled
into a pure secret key by means of any protocol. It is known that bound
entanglement can be super-activated and unlocked. Given the existing con-
nections between the two scenarios, do the same properties also hold for
bound information?

R2

We present the analogs of finite copy super activation and unlockability
of bound entanglement for classical secret correlations. In order to do so,
we provide examples of multipartite classical probability distributions with
bound information and prove that they can be super-activated and un-
locked. Additionally, we provide a new property that is shared by bound
entanglement and information. Bound entanglement (information) can be
used for distributing pure state entanglement (secret correlations) by Lo-
cal Operation and Classical Communication (LOCC) (Local Operation and
Public Communication, LOPC). More precisely, in the quantum scenario,
we show that the a tripartite entangled pure state can be extended by
LOCC to a four partite entangled state with the help of a bound entan-
gled state shared among all the parties. The classical analog follows: when
bound information is shared by four parties a secret bit of three parties can
be distributed among the four using LOPC protocols.

Q3. What is the relation between privacy and non-locality?

A common future to every successful theory concerns the possibility of inter-
conversion between apparently different kind of resources. Two key topics in
Quantum Information Science are Quantum Key Distribution (QKD) and
Non-Locality. Both rely on the existence of shared entanglement between
two or more separated parties. Private states are those entangled states
from which a perfectly secure cryptographic key can be extracted. An ex-
ample of such a state is a maximally entangled state, but there are other
private states that are not maximally entangled. Actually, while a maxi-
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mally entangled state violates a Bell’s inequality, this is not known a priori
for the whole set of private states. Understanding their non local properties
would thus bring to a better comprehension of the relation between secret-
key extraction and violation of Bell’s inequalities in the quantum regime.
Thus, are all private states non-local? If so, what kind of non-locality do
they show?

R3

We show that all states belonging to the class of private states violate the
CHSH-Bell inequality. This result is general, as our proof works for any di-
mension and any number of parties. Private states, then, not only represent
the unit of quantum privacy, but also allow two distant parties to establish
a different quantum resource, namely non-local correlations. These states
contain the strongest form of entanglement as they can give raise to cor-
relations with no classical analogue. More in general, our findings point
out an intriguing connection between two of the most intrinsic quantum
properties: privacy and non-locality.

Q4. How can we certify genuine randomness?

Non-locality and genuine intrinsic randomness have been the subject of ac-
tive interest since the early days of quantum physics. Initially, this interest
was mainly derived from their foundational and fundamental implications
but recently it also has acquired a practical aspect. Recent developments in
device independent applications have heightened the need to quantify both
the randomness and non-locality inherent in quantum systems. A key point
is the guarantee that randomness does not originate from a mere lack of
knowledge of the observed system. This allows one to certify that the quan-
tified randomness holds for all observers irrespective of their knowledge of
the system. To do it more concrete, classical systems can exhibit at most
pseudo randomness since they can always, in principle, be simulated by a
mixture of deterministic systems. This result is no longer valid for systems
whose correlations violate a Bell inequality. Non-locality is a necessary
condition, then, for certifying the presence of true intrinsic randomness.
However, which Bell tests are necessary to certify maximal randomness?
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CHAPTER 1. INTRODUCTION

R4

We provide a simple recipe to detect Bell tests that allow the certification
of maximal randomness. These arguments exploit the symmetries of Bell
inequalities and assume the uniqueness of the quantum probability distribu-
tion maximally violating it. We show how these arguments can be applied
to intuit the randomness intrinsic in a probability distribution without re-
sorting to numerical calculations. In particular, we use these arguments
to provide Bell tests based on two-outcome measurements that allow the
certification of two random bits, the highest randomness attainable in this
scenario.

1.2.1 Outline of the Thesis

The thesis in exam is organized as follows. Chapter 2 introduces the ba-
sic concepts to understand the results presented in the following chapters.
Quantum entanglement, secret correlations, non-local correlations and ran-
domness are briefly explained focusing especially on those features that
are relevant to our findings. In chapter 3 we provide an evidence for the
activation of the secret-key rate in the bipartite scenario. In chapter 4
the one-to-one correspondence between bound entanglement and bound in-
formation is presented. We show that superactivation, unlockability and
purification assistance of the Smolin state do have a classical analog. In
chapter 5 we show the general proof of the non-locality of private states.
In chapter 6 we move to the certification of maximal quantum randomness
in Bell tests. Chapter 7 concludes the thesis reviewing briefly our findings
and presenting future perspective. Lastly, several appendices are provided
to explain technical issues in more detail.
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Chapter 2

Background

The aim of this section is to present four strictly related concepts that
will be used in the next chapters, namely, quantum entanglement, secret
correlations, non-local correlations and random bits. As already stated, the
main goal of this thesis is to establish connections among them helping to
better understand their role for information purposes.

In this chapter after a brief historical review, we give the necessary
background for discussing the technical results shown in this dissertation.
We will present the definitions, notations and techniques that will be used
in later chapters, as well as several clarifying examples.

2.1 Historical remarks

The first decades of the twentieth century saw an emerging contrast be-
tween the experimental results shown by the atomic world and the predic-
tions inferred from the existing framework of classical theory of Science.
What many brilliant physicists understood very soon was that a change
of paradigm was needed to explain those astonishing facts. What perhaps
they did not know was that the required change was so radical.

A counter intuitive concept as that of wave-particle duality was shown
to be an intrinsic feature of matter and radiation. As a consequence the su-
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2.1. HISTORICAL REMARKS

perposition principle was straightforwardly extended to what was defined
as the wave function (or state) of a quantum system. But this was not
all. A distinct feature was still missing: in 1927 W. Heisenberg provided an
heuristic argument showing a fundamental limit on the precision with which
certain pairs of physical properties of a particle (such as position and mo-
mentum) could be simultaneously known. The uncertainty relations marked
another fundamental difference between classical and quantum mechanics:
the one-to-one correspondence between the physical properties of the con-
sidered object (and thus the entities of the physical world) and their formal
and mathematical representation in the theory came to a sudden end.

The main pillar of the novel view, known as Copenaghen interpretation,
was constituted by the fact that a quantum system could not be thought of
as possessing individual properties independently of the experimental ar-
rangements. In a nutshell, Bohr and coworkers were destroying the intuitive
and consolidate concept of reality, deeply rooted in the minds of scientists
and layman alike. This was enough to stimulate an immediate reply to the
unacceptable conception that the new Physics seemed to require.

In 1935, A. Einstein, B. Podolsky and N. Rosen (EPR) published a
seminal paper [EPR35] whose main claim was to show the incompleteness
of the quantum theory. In the same year, Schrédinger coined the term "ver-
schrinckter Zustand” (entangled state), to refer to the highly singular state
used by EPR. He immediately emphasized its non-classical implications:

When two systems, of which we know the states by their respec-
tive representatives, enters into a temporary physical interaction
due to known forces between them, and when after a time of mu-
tual influence the system separate again, then they can no longer
be described in the same way as before, viz. by endowing each
of them with a representative of its own. I would not call that
one but rather the characteristic trait of quantum mechanics,
the one that enforces its entire departure from classical lines of
thought.

On the other hand the answer of Bohr to EPR did not take much to arrive.
It was the beginning of a long and enlightening debate between two of the
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CHAPTER 2. BACKGROUND

greatest scientists of the 20th century.

In the meanwhile, in Computer Science, another revolution was tak-
ing place. In the the ’40s, Claude Shannon published seminal remarkable
papers laying the foundations for the modern theory of information and
communication. The key step taken by Shannon was to mathematically
define the concept of information. Two main questions were predominant:
first, what kind of resources is required to send information over a commu-
nication channel? Second, could information be transmitted reliably when
sent over a noisy channel?

The answer to the first question was provided in his noiseless channel
coding theorem, which quantifies the amount of physical resource needed
to store the output from an information source. The second answer, the
noisy channel coding theorem, instead, identifies the maximal noise that an
error correcting code can afford in order to protect and then conserve the
original sent information. Many devices we use daily strongly rely on the
achievements of the classical theory of information.

If the long debate between Bohr and Einstein brought many insight-
ful results, the key question of EPR remained unanswered. The break-
through came only in 1964, when John Bell, formulating the EPR dilemma
in form of assumptions, showed that measurements on an entangled state
led manifestly to a contradiction of the assumptions. With Werner’s words
[WWO01b], the Bell’s theorem was so crucial that:

It is hardly possible to underrate the importance of this discov-
ery, which made it possible to rule out not just a particular
scientific theory, but the very way scientific theories had been
formulated for centuries.

Despite its importance, it took almost thirty years for the scientific com-
munity to really exploit the importance of Bell’s theorem: a practical ap-
plication was needed to attract a widespread attention.

Almost in the same period moved by a better understanding of how
physics constrains our ability to use and manipulate information, Landau-
rer came to the conclusion that Information is physical [Lan61l, Lan92].
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2.1. HISTORICAL REMARKS

The main argument discussed, was that information is not a disembodied
abstract entity, but it is always tied to a physical representation. In other
words, the mathematical terms in which a given theory is expressed are
subject to the limitations (and benefits) of our physical world.

Quantum mechanics had a chance.

Unlike classical physics, the act of acquiring information about a quan-
tum system inevitably disturbs the state of the system. The first conse-
quence (the cons) of this fact is that a reliable cloning of quantum infor-
mation is impossible [WZ82]. The second (the pro) is that the security of a
key-distribution protocol could be guaranteed by it. An eavesdropper could
be intercepted by the honest parties due to his/her inevitable introduction
of errors in the channel [BB84]. Another remarkable consequence of no-
cloning was represented by the impossibility of sending information faster
than the speed of light (signalling) between remote parties.

Einstein’s relativity was safe.

Since the ’80s many of the central results of classical information theory
were shown to have more powerful quantum analogs [CT91, NC00]. Quan-
tum Information Theory has since then emerged as a vigorous research field
combining concepts and tools from Physics, Computer Science, Mathemat-
ics and Engineering. New quantum algorithms [Sho94] have been found
providing an efficient solution to problems (integer factorization and dis-
crete logarithm) for which there is no known efficient classical algorithm.
These algorithms take classical inputs (such as the number to be factored)
and yield classical outputs (the factors), but obtain their speedup by using
quantum interference among computation paths during the intermediate
steps . In quantum communication, entanglement has been shown funda-
mental for the teleportation of quantum states [BBC193] and for super-
dense coding [BW92]. Moreover, entanglement is a key ingredient for the
achievement of security in cryptographic scenarios and necessary for the
violation of Bell’s inequalities.

In fact, the connection between cryptography and non-locality was very
smartly addressed by Ekert in 1991 [Eke91]. He showed that the security
of the protocol could be guaranteed by the violation of a Bell’s inequality.
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CHAPTER 2. BACKGROUND

This result was the missing application which made clear the importance of
the Bell’s theorem and from which many interesting ideas and applications
born under the label Device Independent.

Device-Independent Quantum Information Processing can be consid-
ered nowadays as a new paradigm for quantum information processing.
The goal is to design protocols for solving relevant information tasks with-
out relying on any assumption on the devices used in the protocol. For
instance, device-independent key distribution can certify shared secrecy be-
tween two honest users independently of the devices that have been used in
the distribution (DIQKD). Another successful application allowed by this
approach is the generation of genuine randomness (DIRNG). While it is
well known that no real randomness can be generated through determinis-
tic procedures, the correlations exhibited performing certain measurements
on entangled states, necessarily certify the randomness of the obtained out-
comes. The certificate in this case is again provided by the violation of a
Bell’s inequality.

2.2 Quantum Entanglement

The deep way that quantum information differs from classical information
involve the properties, implications and uses of quantum entanglement. The
vast majority of quantum information applications are mainly based on the
creation and manipulation of entangled states shared by remote parties.
This section presents the main features of entangled states, including the
basic tools and problems behind their definition.

2.2.1 Bipartite Scenario

A composite pure system |¥) , 5, belonging to two distant parties A and B
(also called Alice and Bob in the sequel) is said to be entangled whenever
it cannot be written in a factorized (or product) form, that is

W) aB # |¥) 4 ® [¥) B, (2.1)
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2.2. QUANTUM ENTANGLEMENT

where [¢) 4 and |¢) p represent states in A and B locations.

Being the pure state description limited by the presence in Nature of
decoherence processes, the density matrix formalism is used to fully charac-
terize any quantum (mixed) state. In contrast to a pure state |¥) 45, which
is represented as a vector in a Hilbert space H = H4 ® Hp, a mixed state
is described by a density matrix, i.e. a hermitian, positive-definite linear
operator of trace one, acting on the same Hilbert space. In this case a
quantum state is said entangled whenever it cannot be written as a convex
combination of projectors on product states [Wer89]:

k
paB = Y pilthi) (Wil 4 ® |¥i) (il 5. (2.2)
i=1
Beyond this mathematical definition, an entangled state has a clear oper-
ational meaning. While two distant observers can prepare a global state
(2.2) by performing Local Operations (LO) on their subsystems and ex-
changing Classical Comunications (CC) among them, an entangled state
requires a joint preparation. In other words, LOCC protocols cannot create
(or increase) entanglement.

A maximally entangled state (or Bell pair) of two qubits represents the
most representative example of a bipartite entangled state and is an essen-
tial ingredient in many applications of quantum information theory [Ben95].
Various equivalences are known: one shared Bell pair plus two bits of clas-
sical communication can be used to teleport one qubit [BBC*93] and, con-
versely, one shared Bell pair plus a qubit can be used to send two bits
of classical communication via superdense coding [BW92]. It is formally
defined (in the computational basis {|0),|1)}) as:

1
+y
67) 7
and its relevance for communication purposes is due essentially to two main
facts: first, for each projective measurement by one of the observers, there
exists another measurement by the other observer giving perfectly corre-
lated results. Second, being a pure state, no third party can be corre-
lated with it. State (2.3) represents the basic unit of entanglement and is

(100) +[11)) 4 (2.3)
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also known as ebit, for entangled bit. This is because an asymptotically
large number of copies of an arbitrary pure entangled state can be con-
verted into another asymptotically large number of ebits in a reversible
way [BBPS96, LP99]. For example, suppose that Alice and Bob have a
large number N of pairs of particles, each pair in some pure non-maximally
entangled state, 1)) = /p|00) + /T — p|11), where 0 < p < 1/2. By acting
locally and communicating on a classical channel, they can end up with a
smaller number of pairs each in the maximally entangled state (2.3). This
number correspond to NE(v¢), where E(1)) is the entropy of entanglement
of state 1):

E(¢) = —trpalog pa = —trpplog pp (2.4)
where pa, pp are the reduced density matrix of the state ¢ for A and B

respectively:
P 0
pa (pB) = < 0 1_p>

This process is known in literature as concentration of entanglement. The
inverse process, of transforming N E (1) ebits in N pairs of 1) is also possible
and known as dilution. Remarkably, the entropy of entanglement provide
an exact quantification of the pure state entanglement, and moreover as
clear from the previous example, this quantity is conserved in the processes
of concentration and dilution. In the mixed state scenario other measures of
entanglement have been proposed. To better clarify this point, the following
section lists some well known quantifiers and problems of the theory of
entanglement.

2.2.2 Quantifying and Distilling Entanglement

As soon as one consider the more realistic scenario of converting pairs of
mixed states into pure maximally entangled states, the answer becomes
harder.

A generalization of the dilution process can be stated as follows. Let us
consider the case in which two (or more) separated parties aim at preparing
m copies of a state p by LOCC. The answer to the question of how many
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ebits they need in order to obtain m copies of the state p is provided by the
entanglement cost. In particular, the entanglement cost [HHTO01], denoted
by E., quantifies the number of ebits per copy asymptotically needed for
the formation of the given quantum state by LOCC. For pure states E.
coincides with the entropy of entanglement previously defined.

The inverse problem is known as distillability problem and is a gen-
eralization of the concentration process. A composite mixed state papis
distillable whenever Alice and Bob can transform k copies of it into a state
arbitrarily close to the maximally entangled state (2.3) by LOCC. Thereby,
the entanglement of distillation [BDSW96], denoted by Ep, quantifies the
amount of ebits per copy (of the given state) that can be obtained from it
by LOCC.

For a state pap, E.(pap) > 0 implies that the state is entangled, while
Ep(pap) > 0 indicates that some pure entanglement can be extracted from
it. Clearly, it holds that E. > Ep, as one cannot extract from a state more
entanglement than needed for its preparation. Note that in the pure state
case, B, = E = FEp, due to the reversibility of the concentration and
dilution processes.

Interestingly, there are states that display an intriguing form of irre-
versibility: despite having a positive entanglement cost (E. > 0), they are
non-distillable (Ep = 0). These states are called bound entangled [HHH98].
Consequently, the whole set of entangled states is composed of distillable,
or free entangled states, and bound entangled states.

As said, detecting whether a given state is non-distillable is in principle a
very hard question, as one has to prove that no LOCC protocol acting on an
arbitrary number of copies of the state is able to extract any pure entangle-
ment. However, a very useful result derived in [HHH98] shows that a quan-
tum state that remains Positive under Partial Transposition [Per96] (PPT)
is non-distillable. Whether Non-Positivity of the Partial Transposition, or
Negative Partial Transposition (NPT), is sufficient for entanglement distill-
ability is probably the main open question at the moment in Entanglement
Theory. Evidence [DCLB00, DSS*00] has been given for the existence of
NPT states that are bound entangled (see however [Wat04]). Note that the
existence of these states would imply that the set of non-distillable states
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is not convex and that entanglement of distillation is non-additive [SSTO01].
A necessary and sufficient condition for the distillability of a quantum state
is provided by the following

Theorem 1. A state p acting on H = Ha ® Hp is distillable if and only

if there exist a finite integer number n > 1 and two dimensional projectors
P: 'H%” — C? and Q : H%” — C? such that the state

p=(P2Q)Y“™(PQ) (2.5)
s entangled.

Actually, since the resulting state acts on C? ® C?, this is equivalent to
demand that p’ is NPT, as this condition is necessary and sufficient for
entanglement in the two-qubit case [HHH96]. Furthermore, it is worth
mentioning here that, if such a projector exists for some number k of copies,
the state is said to be k — distillable.

2.2.3 Multipartite Scenario

Characterizing the entanglement in a multipartite scenario, in which more
parties are provided with some arbitrary quantum state p, is quite more
complex than in the previous case. This difficulty is connected with the
fact that, in the multipartite scenario, one can have many partitions of the
remote parties, so the quantum state can be entangled with respect to some
of them, while separable in the remaining ones. As before, a straightforward
definition of full separability is easily generalized. A quantum state p of N
particles which can be factorized into local states:

p= pipt ®ph...® ply (2.6)
1=1

is called completely separable. As announced, for a complete characteriza-
tion of multipartite entanglement is necessary to consider all possible group-
ings of particles of the total system and study the entanglement among such
groups. Consider an N-partite quantum state p and a possible partition
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P={p1,p2,...,pr} of the same, where k < N. The state p is said k-separable
in the P partition if it can be written as:

p=> pip' ®p ... (2.7)
=1

where @Z represent the quantum state of the jth group of particles in the
P partition. If the N-partite quantum state does not admit any sort of
decomposition (2.7), this means that all particles are entangled with each
other, so the state is said genuine multipartite entangled.

Another difficulty in the multipartite scenario comes from the fact that
it is not known whether it is possible to define a unit of multipartite entan-
glement [LPSWO05]. The question of which is the minimal set of states that
N parties should share in order to generate any N-partite pure state by
using LOCC in the asymptotic scenario in a reversible manner is still open.
This set it has been termed MREGS from minimal reversible entanglement
generating set. In the (asymptotic) tripartite scenario, for example, the set

G3 = {|GHZ>ABC7 ‘EPR>AB7 |EPR>AC7 |EPR>BC}

where [EPR),; is the ebit (2.3) between party i and j and |[GHZ) is the
state: 1

V2

shared by ABC' in the computational basis, was conjectured to be a good
candidate for generating all tripartite pure states. Unfortunately, in Ref.
[AVCO03] a counterexample was provided falsifying this conjecture. Actually,
it is even known whether an MREGS consisting of a finite number of states
exists.

IGHZ) = — (|000) + |111)) (2.8)

2.3 Secret Correlations

The main scope of this section is to introduce the secret-key agreement sce-
nario together with the natural concept of secret correlations. This scenario
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consists of two honest parties, again Alice and Bob, who have access to cor-
related information, described by two random variables X and Y. These
variables are also correlated to a third random variable Z that belongs to
an adversarial party, the eavesdropper Eve, denoted by E. All the correla-
tions among the three parties are described by the probability distribution
P(XY Z). The aim of the honest parties is to map their initial correlations
into a secret key by Local Operations and Public Communications(LOPC),
which is the natural set of operations at their disposal.

They will share a perfect secret bit whenever P(XY Z) is such that the
eavesdropper is factored out, P(XY) x P(Z), and their variables (X,Y =
0,1), are perfectly correlated and random, P(X =Y =0) = P(X =Y =
1) = 1/2. This scenario is defined as the classical analogue of the entangle-
ment scenario. Here, a secret bit represents the equivalent of a maximally
entangled state. This analogy is mainly based on the fact that secret cor-
relations cannot be created by LOPC protocols, in the same fashion as
entanglement cannot be created by LOCC protocols.

Additionally, other reasonable analogies have been shown in [CP02]. As
in the quantum scenario, if the parties share N copies of a classical resource
distributed according to:

they can transform it reversibly in a new distribution Q(X =14,Y = j, Z =
k) = 0;;iQ(Z = k). This is the classical equivalent of the concentration
or dilution process. This follows from the fact that (2.9) can be obtained
by measuring a pure quantum bipartite in its Schmidt basis. Since the
entanglement concentration process is performed in the Schmidt bases, the
quantum protocol directly translates into a classical protocol for distribu-
tions (2.9). As for the quantum case, the entropy of secrecy, quantifies the
amount of sbit, ¢; = 1/2, that can be produced per copy of the original
distribution p; as follows:

K
N *Zpilogﬂ?i
i
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The picture becomes harder when considering correlations P(X = i, Y =
J,Z = k) in which the eavesdropper is not factored out. This case is
analogous to the mixedness of a pure state under the decoherence effects of
the environment (see eq. (2.1)). Similarly as above, the goal in this case is
to quantify its secrecy content.

The classical analogue of E. is the information of formation, denoted
by Iy [RWO03]. It is said that the probability distribution P(XY Z) contains
secret correlations (or secret bits) whenever I;(P(XY Z)) > 0. For distil-
lation, the natural classical analog is the secret-key rate [MW99], denoted
by S(X : Y| Z), which quantifies the number of secret bits that can be
distilled from given correlations by LOPC. Thus, given the three random
variables (X,Y, Z), if Bob’s random variable Y provides more information
about Alice’s X than Eve’s Z does (or vice versa), then this advantage can
be exploited for generating a secret key. This can be expressed as:

SX:Y||Z)>max{I[(X:Y)-I(X:2),[(Y:X)-IY:2)} (2.10)

where I(P : Q) is the mutual information among two random variables P
and Q:
I(P: Q) = H(P)+ H(Q) — H(PQ) (2.11)

and H(S) is the Shannon Entropy of the random variable S. Although
in Ref. [CKT8|, the positivity of the relation (2.10) was shown to be a
sufficient condition for one-way communication secret-key agreement, new
protocols were later devised able to give a positive secret key rate even for
those cases in which the left hand side of (2.10) is negative.

In [Mau93], Maurer introduced the advantage distillation (AD) proto-
col, which allows two honest parties to extract a secret key even in cases
in which Bob has less information than Eve about Alice’s symbols. Crucial
to achieve this task is feedback, that is, two way communication between
the honest parties. The general structure of an AD protocol is as follows
[AGS03] (without loss of generality we assume that Alice’s and Bob’s vari-
ables have the same size d): Alice first generates randomly a value (. She
chooses a vector of N symbols from her string of data, a = (a1,...,an),
and publicly announces their positions to Bob. Later she sends him the
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N-dimensional vector a whose components a; are such that a @ ap = ¢
holds Vk. Here, @ is the sum modulo d. Bob sums a to his correspond-
ing symbols. If he obtains always the same value x, then he accepts (this
means that with very high probability x = {) otherwise both discard the
N symbols.

Although its yield is very low with increasing N, AD protocols allow the
honest parties to distill a key even in a priori disadvantageous situations
in which Eve has more information than Bob on Alice’s symbols. Such
protocols are used in what follows to estimate the distillability properties
of the given correlations. Obviously, the fact that one is unable to map
some correlations into a secret key by AD protocols does not mean that
these correlations are non-distillable. At best, it can be interpreted as
some evidence of non-distillability.

The protocols introduced so far give us a lover bound on the secret-key
rate in the one and two-way communication scenario, respectively. We now
move to describe known upper bounds on the secret-key rate. Intuitively,
the fact that no secret key can be derived by the honest parties whenever
Bob’s information is independent from Alice’s random variable, given Eve’s
information is captured by the inequality:

S(X:Y||Z2) <I(X :Y|Z).

If Alice’s and Bob’s symbols are uncorrelated I(X : Y|Z) = 0, hence
S(X :Y||Z) = 0. However, it was realized that this bound is not tight.
The possibility for an adversary to process her variable Z, i.e., to send Z
over some channel characterized by P 7z, can lead to situations in which
I(X :Y|Z) < I(X :Y|Z). To take this in account, the intrinsic informa-
tion [MW99] must be used. It is defined as the minimal mutual informa-
tion between X and Y conditioned on Z, where Z is the best (from the
eavesdropper’s point of view) mapping of the random variable Z that the
eavesdropper can perform, i.e. Z — Z:

I(X;Y | Z):=min [I(X;Y|2): Pxyz =Y Pxvz- Py, (2.12)
z

Z\zZ
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In Ref [CRWO03] it was shown that there is no loss of generality in consider-
ing the output alphabet Z of the same size of the input alphabet Z. This
measure plays a relevant role in key-agreement scenarios since it allows to
bound the two main quantifiers previously defined:

S(X;Y|2) S 1(X;Y | 2) < I5(X;Y]2) (2.13)

Along the connection with entanglement theory, a main open question
was risen in Ref. [GWO00]: is it possible to characterize classical correlations
which cannot be distilled but which are shown to contain strictly positive
information of formation, or simply I(X;Y | Z) > 0?7 A distribution
P(XYZ) is said to contain bound information if the following relations
hold:

S(X:Y||Z)=0 I(X;Y |Z)>0. (2.14)

In a nutshell, although these correlations cannot be distributed by LOPC
they would not allow the honest parties to distill secrecy by LOPC, even
when sharing an infinite number of instances of P(XY 7).

If shown, these correlations would constitute a classical cryptographic
analog of bound entanglement [GW00]. Compared to the entanglement
scenario, identifying a single example of non-distillable correlations is much
harder, due to the lack of a simple mathematical criterion, as the Partial
Transposition [Per96], to detect it. In a multipartite scenario, say of three
honest parties plus an eavesdropper, the possibility of splitting the honest
parties into different bipartitions hugely simplifies the problem and, indeed,
there are examples of correlations that require secret bits for the preparation
and from which no secret bits can be extracted [ACMO04]. The problem
remains open for two honest parties, although evidence has been provided
for the existence of bound information [GW00].

Finally, another concept that we will use in the sequel is that of bina-
ryzation, which can be understood as the classical analog of the quantum
projection onto 2-qubit subspaces used in Theorem 1. As in the quantum
case, Alice and Bob agree on two possible values, not necessarily the same,
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and discard all instances in which their random variables take different val-
ues. Then, they project their initial distribution onto a smaller (and usually
simpler) two-bit distribution.

2.3.1 Link between entanglement and secret key-agreement

It is clear from the previous discussion that the entanglement and secret-
key agreement scenarios have a similar formulation. One can go further
and establish connections between the entanglement of bipartite quantum
states and the tripartite probability distributions that can be derived from
them [GWO00]. Not surprisingly, the transition from quantum states to
classical probabilities is through measurements (on the quantum states).
Note also that, while in the quantum case the state between Alice and
Bob also specifies the correlations with the environment, possibly under
control of the eavesdropper, in the classical cryptographic scenario it is
essential to define the correlations with the eavesdropper for the problem
to be meaningful.

As mentioned, if Alice and Bob share a state pap, the natural way of
including Eve is to assume that she owns a purification of it. In this way
the global state of the three parties is a pure tripartite [¢papg) such that
paB = trg (|Yape)(Yapr|). After this purification, measurements by the
three parties, Mx, My and Mz, respectively, map the state into a tripartite
probability distribution:

P(X,Y,Z) =tr (Mx ® My ® Mz [Yapg){({apE|) (2.15)

It has been shown that: i) if the initial quantum state is separable, there
exists a measurement by the eavesdropper such that the probability distri-
bution (2.15) has zero intrinsic information for all measurements by Alice
and Bob [GWO00, CLL04] and also zero information of formation [AGO05]
and 4i) if the initial state is entangled, there exist measurements by Alice
and Bob such that the probability distributions (2.15) has strictly positive
intrinsic information for all measurements by Eve [AGO05].
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2.4 Non-Local Correlations

While the question of EPR [EPR35] led immediately Shrodinger [Sch35] to
recognize the intrinsic novelty of the entanglement, it took almost thirty
years to rule out, at least theoretically, the basic hypothesis of a theory a
la EPR.

In 1964 J. S. Bell [Bel64] provided a mathematical argument demon-
strating that the probabilities of the outcomes obtained when applying
suitable measurements on some entangled states could not be explained by
a local realistic model as the one suggested by EPR.

2.4.1 Bipartite scenario

To illustrate the elegant theorem provided by Bell, it is sufficient to con-
sider two distant observers (A and B) able to perform m possible local
measurements (x,y = 1...m) of r possible results, (a,b = 1...7), on the
part of a shared physical system p which they can access to. As in a black
box approach, it is enough to say that for each run of the experiment, Alice
and Bob can freely choose between a finite number m of settings « and v,
obtaining always one outcome each, a and b, among d possible results.

After a sufficient large number of runs, they can thus estimate their
conditional probability distribution P(ab|zy),. Moreover, two additional
requirements are needed: (i) each local measurement defines space-like sep-
arated events, and (ii) the choice of the measurement setting at each side
is made at the moment of measuring. The observed correlations P(ab|zy),
are compatible with a local realistic theory [Bel64] when they can be de-
rived by averaging over some hidden (classical) variable A the product of
the two local distributions P4 (alz, ), PB(bly, \):

Py (ablzy), = /PA(a]a:,/\)PB(b]y,/\)a()\)d)\, (2.16)

where o(\) refers to the probability measure according to which A is dis-
tributed. The locality condition imposes that the local distributions P4 (a|z, \),
PB(bly,\) can only depend on the chosen setting and on the hidden-
variable A, on which no restrictions are generally imposed. Model (2.16) was
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shown to be equivalent to the existence of a joint probability distribution
P(a(l), coam o p® o ,b(m)) involving all local measurements (from 1 to
m), such that the marginal probabilities reproduce the observed measured
outcomes of the given experiment [Fin82].
The distribution P(ablxzy), (obtained by measurements on some physi-
cal system p) is said non-local, if it does not admit a local description (2.16).
If p is a quantum state shared by two distant observers, the distribution
P(ablzy), reads:
Po(ablzy), = tr(pMajy @ M), (2.17)

where the positive operators M, and My, satisfy the completeness rela-
tion, >, My, =1, for k = a,b.

Bell showed that the correlations arising when certain measurements are
made on a composite system of two spins-1/2 particles in a singlet statel:

1
V2

with |0) and |1) representing the state up and down of the spin of a par-
ticle, could not be expressed as (2.16). This was the evidence, at least
theoretically, that quantum mechanics cannot be a local realistic theory.
But another step was still missing. Bell’s theorem in his original formu-
lation was not directly testable in a lab, so in 1969, Clauser, Horne, Shimony
and Holt addressed this problem, deriving an inequality, nowadays known
as the CHSH [CHSHG69] inequality, that could confirm experimentally the
theoretical result of Bell. Consider an experiment where two separated par-
ties measure one of two possible observables, {A1, A2} and {B1, Bo} with
outcomes +1. For any local theory (2.16), the following inequality:

[¥7) = —= (101) = [10)) 4 (2.18)

’<AlBl> -+ <Ale> + <A2.Bl> — <A2B2>‘ <2 (2.19)

is bounded by 2. A violation of the CHSH inequality thus is sufficient for
certifying the presence of nonlocal correlations.

!Note that this state is unitarily equivalent to the state (2.3). Together with the two
states |[¢T) = % (]01) 4 |10)) and |¢~) = % (|00y — [11)) they form an orthonormal

basis on C? ® C? known as Bell basis (or Bell states).
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The state (2.18), with opportune measurements can violate the CHSH
inequality, up to 2v/2, showing then the non local character of quantum
mechanics. In particular, in the ’80s, it was shown by Tsirelson [Tsi80] that
this is the maximal bound achievable by quantum mechanics. It is somhow
surprising that considering states on Hilbert spaces of higher dimension
does not lead to any improvement on this bound.

2.4.2 Multipartite scenario

The extension of a local model as (2.16) to the multipartite case, is rather
straightforward:

Prlay...aylz1...xy) = /PAl(a1|x1,)\)...PAN(aN|xN,>\)o—()\)d)\

(2.20)
But, as already observed for multipartite entanglement, the presence of
more parties implies a richer structure for the arising correlations. As a
consequence of that, it is not enough to talk only of local or non-local
correlations, but the class of partially (non-)local correlations has to be
taken in account. Partially local correlations are those that can be obtained
from an N-partite system in which subsets of the N parties form extended
systems, which however behave local with respect to each other. Assuming

that parties 1,...,k form such a subset and the remaining parties k +

1,..., N form the other, the partially local correlations can be written as:
Pyp(ar...anlzy...aon) =

/P coeaglry o xp, N P(aggr - an|Tpsr - en, A)o(A)dX (2.21)

A model is said to have partially local correlations when the correlations
are of the form (2.21) or when they can be written as a convex combination
of the r.h.s. of (2.21) for different possible partitions of the N parties into
two subsets. To make this more clear, we report in the following the early
model considered by Svetlichny [Sve87]. For N = 3, only three different
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partitions are possible. Model (2.21) is thus extended to the form:

Pyr(aiazas|xizoxs) = /dA(P(al\l‘l,)\)P(a27a3|962,»’637/\)P101(>\)

+ P(az|z2, \)P(a1, as|z1, 23, \)p2o2(N)
+ P(ag|xs, \)P(a1,az|x1, x2, \)p3os(A)) (2.22)

where P(a1,as|z1,22,\) and the other two joint probability terms can be
any probability distributions 2. Models whose correlations cannot be writ-
ten in this form are said to contain genuine tripartite non-locality. The
generalization to more than three parties is straightforward.

2.4.3 Link between entanglement and non-locality

Given a separable state (2.6) it is always possible to construct a model which
reproduces correlations compatible with eq. (2.20). Let us show this for
the bipartite case. The N-partite generalization follows straighforwardly
from the bipartite proof. Consider the separable state (see eq. (2.2)):

k
PAB = Zpipfax ® p'g, (2.23)

=1

on which two parties, A and B, can perform local measurements M,,,
My,. As already said the conditional probability distribution that A gets
outcome a when measuring z and B gets outcome b when measuring y
reads:

pq(ablzy), = tr(papMae @ Myy). (2.24)

2Recently it has been shown that even though these terms can be signalling, they need
to respect a time order sequence [GWAN11].
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By substituting eq.(2.23) into eq.(2.24) the following expression is given:

k
polablzy), = 3 pitr(piy My, ) tx (s M)
=1
k
= 3" piPAale,i) PP (Bly,i)  (2.25)
i=1

where P4(a|z,4) is the probability to find outcome a when measuring z on
the state p; and analogous for P2 (b|y, i). It is thus evident that expression
(2.25) is just a particular case of model (2.16). Here, the hidden variable
(shared randomness) is represented by the index i and distributed according
to Di-

The generality of this argument thus implies that entanglement is nec-
essary to violate any local-realistic model. In the '90s Gisin [Gis91] showed
that in the bipartite case any pure entangled state does violate the CHSH
inequality. In later years, Popescu and Rorlich [PR92] extended his proof
to the multipartite scenario (we derive a simple argument inspired by their
proof in Appendix C).

It was then believed that if any entangled state violates a Bell inequal-
ity. However, Werner [Wer89] showed that bipartite entangled states exist
whose correlations admit a local description for an arbitrary number of
(projective) measurements. Later, Barrett [Bar02] generalized the model
to general measurements (POVM). Another local model was even provided
for the tripartite case [TA06] for a genuine tripartite entangled state. So,
as for any entanglement problem the picture was subtler than initially ex-
pected.

2.5 Randomness

Although the concept of randomness was already known to ancient societies,
it was only with the advent of computers that programmers understood the
need of introducing randomness into computer programs. Nowadays many
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applications strongly rely on the generation of numbers chosen at random,
such as generating data encryption keys, simulating and modelling com-
plex phenomena and for selecting random samples from larger data sets.
As known, they are also very used for games and gambling. Generally, there
are two main approaches for generating random numbers using a computer:
Pseudo-Random Number Generators (PRNGs) and True Random Number
Generators (TRNGs). Essentially, PRNGs are algorithms that use math-
ematical formulae or simply pre-calculated tables to produce sequences of
numbers that appear random. A good example of a PRNG is the lin-
ear congruential method. The second ones, TRNGs extract randomness
from physical phenomena as atmospheric noise, resistance noise generators,
noise-diode circuits combined with scrambled rap music, etc...

Very recently the intrinsic randomness inherent in quantum mechanical
systems has inspired numerous experimental realizations of quantum ran-
dom generators. These implementations are sometimes based on the time
at which radioactive nuclei decay or on the path a photon chooses when
impacts with a 50:50 beamsplitter. Devices of this kind are already avail-
able in the market. Still, some pitfalls can be identified in these kind of
approaches: if from one side, processing analog signals it is known to be a
difficult task, from the other, a possible malfunctioning is hardly detectable.

To overcome this difficulties a new approach based on entanglement
and non-locality has been recently suggested [Col09, PAM™10]. The idea
behind it is that the correlations shown when measuring certain entangled
states can violate a Bell’s inequality, and this fact is used to certify the
presence of randomness in the obtained outcomes (we will explain this in
detail in chapter 6).

When discussing single numbers, a random number is a ill-defined con-
cept. In order for it to be meaningful, one has to analyze very long sequences
of numbers and carefully check that each value in the sequence is equally
probable, i.e. uniformly distributed. In a nutshell a sequence of random
numbers is a sequence in which each number is statistically independent
from the others. This argument lead naturally to interpret randomness as
lack of predictability: numbers that are statistically independent are com-
pletely unpredictable. In order to quantify the randomness inherent in a
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given process the concept of predictability hence turns out to be useful.

2.5.1 Definitions

Let us consider a tester who is paid to establish if a given box can be
used as a random number generator. The box he/she receives consists
of two buttons (1 and 2) and two lights (Green and Red). Every time
he/she presses one button, one of the two lights immediately flashes. After
many days pressing buttons and writing down which lights flashes, given
the chosen input, the tester introduces the obtained string of outputs in a
program to test if the box under examination gives random outputs. Let
us suppose that he/she can estimate that:

P(G|1) = P(R|1) =

P(G|2) = P(R|2) = (2.26)

N =N

and that moreover the string of obtained outcomes passes the test checked
by the program. Does this means that the outcomes are really random? If
so, can the box be used as a random generator for a virtual casino?

First, if the answer to first question was yes, nobody (apart from the
provider) could know if the string was already stored in the box (thus
perfectly known by the provider) and just revealed by the tester in every
trial.

Second, even without any internal memory the provider could prepare a
box which is remotely controlled. What the provider does is just to prepare
with probability 1/2 two possible behaviours for the box:

(GG|12) or (RR|12) (2.27)

where the list (Ly, Lo|z1,22) means that the tester who receives this (be-
haviour) box will get outcome L pressing button z; and outcome Lo press-
ing button xo. Thus, from the previous arguments it sounds reasonable that
just one tester is not sufficient to answer to the previous questions about
the certification of true randomness.
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The simplest extension of this scenario is then given by the CHSH test
that we explained in the previous section. Two parties A and B that can
freely choose to perform one of two dichotomic measurements Mg,, My,
(with = 1,2 and @ = £1 and analogously for B) on their part of the
system p4p, can (after many trials) estimate the probability distribution:

plablzy), (2.28)

Note that conciseness we are using a different notation now. Inputs x, y refer
to which button is chosen by the parties and a,b = +1 refer to the lights
which flash, Red or Green. Conceptually, apart from having introduced a
second user, there is no difference with the previous single party scenario.
If we restrict p to be a quantum system, then:

p(ab’xy)p = tr(pABMahv ® Mb\y)v (229)

Additionally, in the case of two-outcomes measurements we are considering
the following identity holds:

plabley), = 3 (1+alMe) +b(M,) +ab(McM,)). (2:30)

where Mx = M+1|z - M—l\:ca and My = M+1|y — M_1|y.

In the described a scenario, a possible way to quantify the randomness
of the pair (a,b) resulting from the measurement of observables x, y when
p is a pure state, p = |[1)(¢| is through the guessing probability] AMP12]:

G(¢, z,y) = maxp(ablzy)y. (2.31)

This quantity corresponds to the probability of the best guess for outcome
(a,b) (since this is the one that occurs with higher probability). A more
intuitive way to express (2.31) is through the amount of obtainable bits
calculated by the min-entropy, Hoo (¥, x,y) = —logy G(¢, x,y). If a given
pair of outcomes (a,b) is certain to occur, then the guessing probability
takes its maximal value 1 which corresponds to 0 bits of min-entropy. If all
four possible pairs of outcomes are equally probable, it takes its minimal
value 1/4 corresponding to 2 bits of min-entropy.
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If system pap is in a mixed state, the maximization runs over all the
pure-state decompositions as follows:

Gp,z,y) = max > @G (Pm, 2, y) (2.32)

where p =3 m[¥m) (¢¥m|-

The definitions given so far are both state dependent and as we will see
can lead to an unwanted incongruence. To overcome that a more general
definition can be given which is independent from its quantum realization:

G(P,z,y) = max G(p,rz, 2.33
(P,z,y) o (p,z,y) (2.33)

where {p, M} is any quantum realization that is P-compatible, namely
P =tr(pM) and M = M, ® My,. Similarly, a realization-independent
guessing probability can be defined for the single party G (P, z) whose min-
entropy can vary between 0 and 1. Note that in the previous definitions
no assumption is made about the dimension of the Hilbert space on which
p and M are defined. This approach is the key idea behind the device
independent scenario paradigm.

2.5.2 Link between Randomness and Non-locality

A probability distribution is said local deterministic if every outcome ob-
tained locally by the parties is generated deterministically by the value of
the chosen input. If a measurement v (w) is made by party A (B) then
a= f(v) (b =g(y)), where f(g) is a deterministic function of the input v
(w). Note that due to the no-signalling condition the output of the parties
can just depend on the local choice of their input. It is thus clear that the
guessing probability is equal to 1 in this case. Interestingly this is true for
any local distribution.

As proven by Fine [Fin82], every local distribution can be written as a
convex combination of local deterministic distributions (see Appendix D).
It is a trivial exercise to find a pure-state (and measurement) representation
that give deterministic outcomes. Thus, each term G (¢, z,y) appearing
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in eq. (2.32) is equal to 1 and together with ) ¢, = 1 this implies that
the guessing probability G(P, z,y) is equal to 1 for any local distribution.
Analogously in order for the min-entropy Hoo (P, z,y) to be different from
0 the probability distribution in exam has to violate a Bell’s inequality
(see Appendix D). Thus, a violation of a Bell’s inequality is a necessary
condition for Hy (P, z,y) > 0.

In the following we provide some example to clarify the definitions given
above. Consider the following probability distribution:

1
p(ab|zy) = 1 Va,b. (2.34)

In what follows, we study different quantum realizations of it. A first way
to fulfil (2.34) is by measuring the maximally entangled state, ¥ = (]00) +
|11))/v/2 choosing Az = 0, and By = 0. Since 1 is a pure state definition
(2.31) can be used, which gives H (), Zy) = 2 bits. An alternative way to
fulfil (2.34) is by measuring the state p = (|00)(00| 4 |11)(11]|)/2) with the
same observables Az, By defined above. Since the state is mixed, definition
(2.32) must be used. A straightforward calculation shows that under the
previous decomposition of p the value Ho(p,Zy) = 1 bit is obtained. Note
that one could in principle look for better decompositions of p which could
give Hoo(p, 2y) < 1.

Let us consider a new example. Let p(ab|zy) be the distribution arising
by measuring the maximally entangled state, ¢ = (|00) + |11))/+/2 with
A1 = By = 0, and Ay = By = 0,. The choice of settings (1,2) could in
principle contain some randomness since the distribution p(ab|12) is equal to
1/4 for each a, b. But, it is immediately observed that the whole probability
distribution derived in this way does not violate the CHSH inequality (2.19).
In fact, there must exist a separable state and some measurements repro-
ducing the whole distribution. The guessing probability for this quantum
realization is equal to 1 even for the input’s choice (1,2) ( Heo(P,12) = 0).
In fact, the separable state and measurements which accomplish that are

the following:
1
pap =7 > ([ii){ijla @ |if)(ijl 5) (2.35)

4 -
17=0
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Ai1=B1=0,1, Ay =By, =1®0,. (236)

All these examples show how, given a probability distribution p(ablzy),
different quantum realizations lead to different values of the guessing prob-
ability. The realization-independent definition (2.33) avoids all these incon-
sistencies.

48



Chapter 3

Can bipartite classical
information resources be
activated?

Non-additivity is one of the distinctive traits of Quantum Information The-
ory: the combined use of quantum objects may be more advantageous than
the sum of their individual uses. Non-additivity effects have been proven,
for example, for quantum channel capacities, entanglement distillation or
state estimation. In this chapter we consider whether non-additivity ef-
fects can also be found in Classical Information Theory. We work in the
secret-key agreement scenario in which two honest parties, having access
to correlated classical data that are also correlated to an eavesdropper,
aim at distilling a secret key. Exploiting the analogies between the entan-
glement and the secret-key agreement scenario, we show that correlations
with (conjectured) bound information become secret-key distillable when
combined.
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Introduction

Classical communication systems are governed by classical information the-
ory, a vast discipline whose birth coincides with a seminal paper of Claude
Shannon [Sha48]. Among his contributions, Shannon introduced the con-
cept of channel capacity, which quantifies the maximum communication
rate that can be achieved over a classical channel. One key feature of the
channel capacity is its additivity: the total capacity of several channels used
in parallel is simply given by the sum of their individual capacities. This
fact implies thus that the channel capacity completely specifies channel’s
ability to convey classical information.

Moving to the quantum domain, the quantum channel capacity captures
the ability of a quantum channel to transmit quantum information. Smith
and Yard [SYO08] proved recently that the quantum capacity is not additive.
In particular, they provide examples of two channels with zero quantum ca-
pacity that define a channel with strictly positive quantum capacity when
combined. This intriguing quantum effect is known as activation and can
generally be understood as follows: the combined use of quantum objects
can be more advantageous than the sum of their individual uses. In the
last years, an intense effort has been devoted to the study of non-additivity
effects in Quantum Information Theory. Classical and private communica-
tion capacity of quantum channels were later shown not to be additive in
Refs [Has09, LWZGO09]. Nowadays, non-additivity is considered to be one
of the distinctive traits of Quantum Information Theory.

Before the results by Smith and Yard, however, non-additivity effects
had also been observed in Entanglement Theory in the context of entan-
glement distillation. There, one is interested in the problem of whether
pure-state entanglement —pure entanglement in what follows— can be ex-
tracted from a given state shared by several observers using local operations
and classical communication (LOCC). In Ref. [SST03], the authors provide
examples of multipartite states that (i) are non-distillable (bound) when
considered separately but (ii) define a distillable state when taken together.
Moving to the case of two parties, and leaving aside activation-like results
as those of [HHH99], it remains unproven whether entangled states can

50



CHAPTER 3. CAN BIPARTITE CLASSICAL INFORMATION
RESOURCES BE ACTIVATED?

be activated. There is however some evidence of the existence of pairs of
bound (non-distillable) entangled states that give a distillable state when
combined [SST01, VWO02].

In this chapter we are interested in the question of whether non-additivity
effects can be observed in Classical Information Theory. As mentioned,
classical channel capacities are known to be additive. Therefore, we move
our considerations to distillation scenarios. In particular, we focus on the
classical secret-key agreement scenario in which two honest parties, having
access to correlated random variables, also correlated with an adversary,
aim at establishing a secret key by local operations and public communi-
cation (LOPC). While the activation of classical resources has been shown
in a multipartite key-agreement scenario in [ACMO04, PB11], here we con-
sider the more natural case of two honest parties. In our study, we exploit
the analogies between the secret-key agreement and entanglement scenario
noted in [GRWO02]. Based on the results of [VWO02], we provide evidence
that activation effects may be possible in the completely classical bipartite
key-agrement scenario. Our findings, therefore, suggest that the classical
secret-key rate is non-additive.

This chapter is structured as follows. Section 3.1 introduces the quan-
tum scenario, namely the quantum states and the protocol of activation.
In section 3.2 we derive their classical analog. Section 3.3 concludes with a
discussion on how our findings are related to other results and conjectures
in the field.

3.1 Quantum Activation

As mentioned, we start by presenting the example of activation of distillable
entanglement given in Ref. [VWO02]. After introducing the states involved
in this example, we review their distillability properties and the quantum
protocol that attains the activation.
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3.1.1 Quantum States

States that are invariant under a group of symmetries play a relevant role in
the study of entanglement. The two classes of symmetric states considered
here are Werner states [Wer89] and the symmetric states of Ref. [VWO0I,
VWO02], named in what follows symmetric states for the sake of brevity.

Werner States

Acting on an Hilbert space H = H4 ® Hp with dimensions dim(H4) =
dim(Hp) = d, and commuting with all unitaries U @ U, Werner states can
be expressed as:

pw(p) =p trﬁd) +(1-p) trfgd) (3.1)

where Ay = (1 —1I1;)/2, Sq = (1 + 1I4)/2 are the projector operators
onto the antisymmetric and symmetric subspaces, II; is the flip operator
and tr(Ag) =d(d—1)/2, tr(Sq) = d(d+1)/2. It is known that states (3.1)
are entangled and NPT iff p > p, = 1/2. Moreover they are distillable,
actually 1 — distillable, if p > p1g = 37/(1+ 37), where 7 = tr(Ag)/tr(Sq).
The states are conjectured to be bound entangled for ps < p < p14.

Symmetric States

Acting on an Hilbert space H = Ha1 ® Hao ® Hp1 ® Hpo, the symmetric
states under consideration commute with all unitaries of the form W =
(U®V)a® (U ®V*)p (where V* is the complex conjugate of V). These
states can be represented in a compact form as [VWO1]:

4
o= \Pi/tr[P]
=1

where P = AV @ PP P, = SV @ PP, Py = AV @ (1 -Py)@, P, =
Sél) ®(1 - IPd)(Q). P4 and 1—IP, represent the projector onto the maximally
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entangled state [¢}) = 1/V/d Z?Zl liz), and its orthogonal complement,
respectively. In Ref. [VWO02] the authors identify a region in the space
of parameters \; so that the state o (i) is bound entangled but (ii) gives
a distillable state when combined with a Werner state in the conjectured
region of bound entanglement. Among all the states with these properties,
we focus here on:

Sd (1 —-"Ty)

Aqg @
tT(Sd) t?’(]l - IPd)

o(q) = (A

RPg+ (1 —q) (32)

where ¢ = 1/(d +2). This state is a universal activator, in the sense that it
defines a distillable state when combined with any entangled Werner state.
It is also relevant for what follows to study the distillability properties of
states (3.2) for any value of ¢ and d = 3. These states are NPT and 1-
distillable for ¢ > 1/5. The latter follows from the fact that in this region,
there exist local projections on two-qubit subspaces mapping states (3.2)
onto an entangled two-qubit state. The qubit subspaces are spanned by
|00), |01) on Alice’s side and |10), |11) on Bob’s. Figure 3.1 summarizes the
main entanglement properties of these states.

3.1.2 Protocol for Quantum Activation

As already announced, any entangled Werner state, and in particular any
conjectured bound entangled Werner state, gives a distillable state when
combined with the universal activator o(q) with ¢ = 1/(d + 2), simply
denoted as . If initially the two parties are sharing a Werner state p acting
on Ho = Ha, ®Hp, and a symmetric state o acting on Hi2 = Ha, @Ha, ®
Hp, ® Hp,, each party applies a projection onto a maximally entangled
states on Ha, ® Ha, and Hp, ® Hp, respectively. The resulting state is
an isotropic state p;so, acting on H a4, ® Hp,. Recall that isotropic state are
U ® U* invariant and defined by the convex combination of a maximally
entangled state and white noise, I /d?>. One can see that the resulting
isotropic state has an overlap with a maximally entangled state, tr(p;solPq),
larger than 1/d for any entangled Werner state. As shown in [HH99], this
condition is sufficient for distillability.
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Separable ggan 1-Distillable
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Figure 3.1: Entanglement properties of Werner, pw, and symmetric state, o(q), for the
qutrit case (d = 3). In the region between separability and 1-distillability, pw is NPPT
and conjectured bound. The point ¢ = 0.2 represents the extremal value for which states
o(q) are PPT, thus not distillable. For larger values of ¢ the states are distillable (in
particular, 1-distillable).

3.2 Classical Activation

This section presents our main results. Exploiting the analogies between
the entanglement and secret-key agreement scenarios, we study whether
it is possible to derive a cryptographic classical analog of the activation
of distillable entanglement between bipartite quantum states given above
Ref. [VWO02]. We map the involved quantum states onto probability distri-
butions and study their secrecy properties. After applying classical distil-
lation protocols, we show how the honest parties are able to distill a secret
key from each of the distributions for the same range of parameters as in
the quantum regime (Ep > 0). Finally, we introduce a distillation protocol
analogue to the one used for the quantum activation. We prove that this
protocol activates probability distributions containing conjectured bound
information, although we cannot completely recover the quantum region.

We first associate probability distributions to all the previous quan-
tum states. In order to do so, we purify the initial bipartite noisy quan-
tum states pap by including an environment, and then map the tripar-
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tite quantum states |1)apg) onto probability distributions by performing
some local measurements, see (2.15). The procedure to choose these mea-
surements is always the same: computational bases for the honest parties,
and general measurements for Eve. More precisely, denoting by X and Y
the result obtained by Alice and Bob, this effectively projects Eve’s sys-
tem onto the pure state |exy) = (XY |Yapg) with probability P(XY) =
(XY|pap|XY). Given that, the measurement that Eve applies is the one
that minimizes her error probability when distinguishing the states in the
ensemble {|exy), P(XY)}. Note that this choice of measurement may not
necessarily be optimal from Eve’s point of view in terms of the secret corre-
lations between Alice and Bob, but it seems a natural choice. This proce-
dure is applied to the two family of states, namely Werner and symmetric.
Because of the symmetries of these states, the measurements minimizing
Eve’s error probability can be analytically determined using the results of
Refs [Hel76, EFO01].

In order to characterize the secrecy properties of the obtained proba-
bility distributions, we compute the intrinsic information when numerically
possible and use AD protocols for distillability. We stress that the con-
sidered protocols distill a secret key in the same region of parameters in
which entanglement distillation was possible for the initial quantum states.
Finally, we introduce a quantum-like activation protocol that maps the two
probability distributions into a new distribution in which Alice and Bob
each have a bit. We then prove that an AD protocol allows distilling a
secret key for some value of the parameters in which the initial quantum
states were non-distillable. However, we are unable to close all the gap
between entanglement and 1-distillability for the Werner state.

3.2.1 Probability Distributions

We map now quantum states to probability distributions through measure-
ments on them (as discussed in section 2.3).
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Werner states distribution

We start by mapping the Werner states of two qutrits onto a probability
distribution Pxy 7 following the recipe explained in the previous section. In
this way, we get a one-parameter family of probability distributions Pxy z,
(see Table 3.1 for details), which depends just on the same parameter p
defining the initial Werner state (3.1). The resulting distributions are given
in Table 3.1. The indices for Eve’s symbols specify her guess on Alice’s and
Bob’s symbols or, in other words, if Eve outcome is Z = z;;, the most
probable outcomes for Alice and Bob are X =4 and Y = j.

H 0 | ! | 2
0 Mo (o) | g {52 (20| g {62 =
1-— 52 (201) 1-— 5Z (202)
1 || 2 {52 (201) M (o) VSV {52 (221)
1—-49z (z10) 1-6z (z12)
2 A1+A2 {62 (202) )\1;)\2 {5Z (’212) )\1 (222)
1-— 5Z (220) 1-— (SZ (2’21)

Table 3.1: Tripartite probability distributions derived from Werner states (3.1). The
parameters in the table are as follows: A1 = (1 — p)/6, A2 = p/3 and dz = (V1 —
V22)2/(2(M1 + X2)). Rows (columns) represent Alice’s (Bob’s) symbols. Eve’s symbols
are shown in parenthesis. For example, the cell (X = 0,Y = 1) shows that whenever Alice
and Bob get (0,1) (which happen with probability (A1 + A2)/2), Eve correctly guesses the
symbol zp1 with probability 1 — 4§z, and makes an error (symbol z19) with probability dz.

As domne for entanglement, we now characterize these distributions in
terms of their secret correlations. Recall that for the quantum case and
qutrits, the state was entangled for p > ps = 1/2 and conjectured non-
distillable for p < p14 = 3/5. As we show next, the same values appear for
the analogous classical distributions. Concerning the point ps, we compute
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the intrinsic information of the distributions in Table 3.1 by numerical opti-
mization over all possible channels by Eve. Of course, one can never exclude
the existence of local minima and, therefore, that the intrinsic information is
strictly smaller than what numerically obtained. One may wonder why this
computation is necessary. For instance, at the point p = ps the quantum
state is separable and, then, it is known that there exists a measurement
by Eve such that the intrinsic information between Alice and Bob is zero
for all measurements. Note however that in terms of intrinsic information,
the optimal measurement by Eve is the one that prepares on Alice and
Bob the ensemble of product states compatible with the separable state
Alice and Bob share. This measurement is not necessarily the same as the
one minimizing Eve’s error probability when Alice and Bob measure in the
computational bases. The same applies to the entanglement region. While
there are measurements such that Alice and Bob share secret correlations
no matter which measurement Eve performs, these measurements are not
on the computational bases.

Using the numerical insight, we find a conjectured optimal channel that
reproduces the numerical results. The optimal channel gives zero intrinsic
information exactly at the point p = p,. It maps Eve’s symbols z;; onto z;;
with i # j with equal probability (i,j = 0, 1,2). Its easy form leads to the
following analytical expression for I(X;Y | Z):

l14+2x /7—2x
I(X;Y | Z) = —1log(1l — %) — z1
(XY 2) og(1 —27%) x0g<1—x T—|—21‘)

T 2 yg2 T _
410g(7’ 4x)+<1 2>log(2 7)

where 7 = 1+ p, © = /2p(1 — p). Figure 3.2 shows the behavior of this
quantity in the region of interest.

Moving to the distillability properties, we study AD protocols and iden-
tify a value of p for which positive secret-key rate can be obtained by the
two honest parties through these protocols. The considered protocol is the
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Figure 3.2: Behaviour of the intrinsic information for the Pxyz relative to the Werner
state. Note that: 1) I(X;Y | Z) is equal to 0 at point p = 0.5 which corresponds to the
last point of separability for the Werner state; ii) I(X;Y | Z) is strictly positive at point
p = 0.6 which corresponds to the extreme value of p for which it is 1-copy distillable.

quantum analogue of the quantum one and uses a binaryzation. Alice and
Bob first discard one (but the same) of their symbols. Then, one of the
parties, say Bob, applies a local permutation to his symbols. For example,
if they agreed on discarding symbol 2, then Bob applies 0 < 1. Alice and
Bob now apply AD to the resulting two-bit distribution. This distribution
is shown in Table 3.2.

From the obtained table, it is possible to estimate the dependence of
Bob’s and Eve’s errors on the size of the blocks used for AD, denoted by N.
Recall that in the case of bits the protocols works as follows: Alice generates
a random bit ¢ and chooses N symbols a from her list of data. She then
sends to Bob the information about these symbols and the vector a such
that a; ® a; = (,Vi. Bob takes the symbols in his list corresponding to
those chosen by Alice, b, and accepts only when x = b; @ a;, Vi. Bob’s error
probability Gy is now easy to compute. Denote by 3 the error probability
in the initial two-bit probability distribution, 5 = P(X #Y) = 2\ /(3A\1 +
A2). Bob accepts a bit whenever either all his N symbols are identical to
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those of Alice, which happens with probability (1 — 3)Y, or all his symbols
are different, whose probability is V. Thus, the probability of accepting a
wrong bit conditioned on acceptance is given by:

_ BN g \"
== < (i5) - &

The upper bound becomes tight in the limit N — oo.

| 0 | ! |
0| Mg {fz_ 5 Z;; A1 (201)
T e,
1-— 6Z (2’11)

Table 3.2: Two-bit distribution resulting from projecting the initial distribution of Ta-
ble 3.1 on the space X,Y = 0,1 and after Bob permutes his symbol. For the sake
of clarity, we apply a permutation also on the second index of Eve’s symbols, that is
zij — zi1—j;. All the terms in the table should be normalized by a factor 3\; + As.

We now move to the estimation of Eve’s error en. As her information
is probabilistic, there is always a non-zero probability that she makes a
mistake. For the estimation we compute a lower bound on the error given
by all the cases in which the N symbols observed by Eve do not provide
her any information about the value of the bit generated by Alice. In the
computation, it is simpler to use Eve’s probabilities conditioned on the fact
that Alice and Bob have made no mistake after AD (which means that no
mistake has occurred for any of the N symbols). Or in other words, we only
consider the terms in the diagonal of Table 3.2. This does not make any
difference for what follows as in the limit N — oo the probability of Bob
accepting a wrong symbol goes to zero. After Bob’s acceptance, Eve knows
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that the actual string a used by Alice is either equal to a (the one sent on
the public channel) when ¢ = 0, or @ (the permuted one, that is, a, = 1—a;)
when ¢ = 1. Clearly, all the events in which the N symbols observed by
Eve, Z(), are such that P(Z(1).. ZMja =a) = P(ZzW.. ZWja = @’) do
not give her any information about (. In these cases, Eve has to randomly
guess Alice’s symbol and makes an error with probability 1/2. Due to the
symmetry in the diagonal of Table 3.2, that is, P(Z = zp0|X =0) = P(Z =
z11 =1|X =1) and P(Z = z11|X = 0) = P(Z = 2z¢9| X = 1), all the events
where Eve has exactly N/2 of her symbols equal to zpp and N/2 equal to z11
satisfy the previous condition and, thus, contribute to her error. Counting
all the possible ways of distributing these cases leads to the following lower
bound on Eve’s error probability [GW99]:

i N N/2 N/2
6N>2<N/2)5Z (1—10z) (3.4)

where 0z is the probability for Eve to guess wrongly conditioned on those
cases in which Alice and Bob’s symbols coincide (this value is made ex-
plicit in the caption of Figure 3.1). The asymptotic behavior of (3.4), after
applying the Stirling’s approximation (n!)? ~ (2n)!/22" and expanding the
binomial coefficient can be expressed as:

0z(1—62)", (3.5)

with ¢ being a positive constant.
By comparing Egs. (3.3) and (3.5) one concludes that whenever

2 <2 (1-6) (3.6)

key distillation is possible. This follows from the fact that, if this condition
holds, Bob’s error is exponentially smaller than Eve’s with N. This in turn
implies that it is possible to choose a value of N such that Alice-Bob mutual
information is larger than Alice-Eve and one-way distillation techniques can
distill a secret key (we show this in appendix A ). From (3.5) one gets that
AD works whenever p > 3/5, as for 1-distillability in the quantum case.
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Before concluding this part, we would like to mention that the same range
of parameters for distillation is obtained if one applies the generalized AD
protocol of Ref. [AGS03].

Symmetric states distribution

We apply the same machinery to the symmetric states o(q). Again, the
symmetries of the states allow the explicit computation of the measurement
by Eve minimizing her error probability for any value of q. The obtained
distributions, denoted by @ v y1 x9y9 5 is significantly more complex and
shown in Appendix A. It consists of two trits for Alice, (X1, X3) and two
trits for Bob, (X3, Y3), while Eve’s variable can take 63 possible values. It is
now much harder to estimate the secrecy properties of the distribution. For
instance, we did not make any attempt to compute the intrinsic information.
However, we are able to show that Alice and Bob can distill a secret key
whenever ¢ > 1/5 as in the quantum regime.

To simplify our task, we exploit again the concept of binaryzation. In-
spired by the quantum projections used for the distillation of o(g), Alice
and Bob select two outcomes on each side, namely 00, 01 for Alice and 10, 11
for Bob. The obtained two-bit distribution is shown in Table 3.3.

They apply the standard bit AD protocol to this distribution. As before,
Bob’s error can be easily computed, getting the same as in Eq. (3.3), but
now with 3 equal to 3(1—¢q)/(5+11¢q). The estimation of Eve’s error is much
more cumbersome. As above, the main idea is to derive a lower bound on
it based on those instances in which Eve’s symbols do not provide her any
information about the symbol ¢ Alice used for AD. Again, one can restrict
the analysis to the terms in the diagonal of Table 3.3. The main difference
in comparison with the simple case discussed above is the larger number of
symbols for Eve. However, given the symmetry of the distribution 3.3 it is
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| 0[10] | 1[11] |
P (Zo100)
P (Zoin)
0 [00] 51++171qq b (%0122) 2:(355171[{31) /2 (%0101)
P (Z1000) 1/2 (Z1001)
Py (Z1011)
| Pr (Z1022)
(PL (Z0100)
Pe  (Zo111)
1[01] % 1/2 (’;‘30110) 51%171(1(] P (%0122)
1/2° (Z1010) Py (Z1000)
Pp (Zi011)
| Pr (Z1022)

Table 3.3: Two-bit distribution obtained as a result of the binaryzation applied to
Qx1.v1,x2,v2,z Note that we have relabeled the old symbols (shown in square brakets)
by 0 and 1, in the following we use X,Y to refer to them. The parameters in the table

are as follows: a = /8¢/(1+7q) and v = /(1 —q)/(2(1 + 7q)), Pc = (a + 27)?/6,
Pp = (—a+27)*/6, P = (a = )*/6, Pu = (a +7)*/6.
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enough to consider Eve’s symbols pair-wise:

P(Z = Znoo| XY = 00) = P(Z = Z| XY = 11) = §,
P(Z = Z0100| XY = 11) = P(Z = Z0111| XY = 00) = 7,
P(Z — Z1000| XY = 00) = P(Z = Z1on| XY = 11) = 6,
P(Z = Z1000| XY = 11) = P(Z = Z1011|XY = 00) = 7

where we have used X,Y to denote the re-labeling of Alice and Bob’s
symbols. Note that the last two subindexes of Eve’s symbols are those
that give her information about Alice’s (and Bob’s) symbol. Symbols Z,.22
give her no information about Alice’s symbols, so we sum them, their total
probability being d3. Given the public string ap, one can see that all those
cases for which Eve has the same number ny of Zy199 and Zp111 and the same
number ng of Z1g00 and Z1911, with N = 2n1 + 2ns + 2ng and where 2ng is
the total number of symbols Z,.090, contribute to her error. Thus, counting
all these cases leads to the following lower bound on Eve’s error:

1 NI 2n1 2ng on

NZ5 D G (2v/m) ™ (2v/8m) ™ (3)
ni,n2,n3

(3.7)

where §; and 7; are the probabilities shown above but normalized (since

as already stated we are considering the asymptotic case). After Stirling’s

approximation and summing eq. (3.7) the following compact form is ob-

tained:
N
c (2\/(51771 4+ 2+/62m2 + (53)

with ¢ being a positive constant. Comparing the scaling of the errors, one
has that AD works whenever

1fﬂ < 2/5mn + 2y/5 + b (3.8)
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where the right hand side is equal to (a +v)?/3 (the values of a and v are
reported in the caption of Table 3.3). Simple algebra shows that eq. (3.8)
is satisfied whenever ¢ > ¢ = 0.2, as announced.

3.2.2 Protocol for Classsical Activation

Inspired by the quantum activation example of Ref. [VWO02], we consider
the following classical protocol. Alice and Bob have access to the trits
X and Y, whose correlations are described by Pxyz, and the two trits
(X1, X2) and (Y1,Y2) correlated according to Q vy x9y4 5. Alice (Bob)
keeps Xo (Y2), and only Xs (Y2), whenever X = X; (Y = Y7); otherwise
they discard all the symbols. This filtering projects the initial probability
into a slightly simpler two-trit distribution. The new probability distribu-
tion Q*(X2, Y, E) reads:

2
Q*(X27Y27E) = Z P(X = .’L‘,Y =Y, Z)Q(Xl == .T7}/1 == y7X27Y27Z)
z,y=0
(3.9)
where E = [Z, Z] is the collection of Eve’s ymbols. Finally Alice and Bob
binaryze their symbols by discarding one of the three values (the same for
both), say 2. The resulting distribution is shown in Table 3.4.

As above, we use AD protocols to estimate the value of p for which
Alice and Bob can extract a positive secret key rate if they are sharing
pairs of bits distributed according to Table 3.4. We are able to prove that
whenever p > p. ~ 0.513 an AD protocol allows distilling a secret key from
the distribution in Table 3.4 and, thus, a form of activation is possible.
Unfortunately, we are unable to reach the point p = 0.5, as in the quantum
scenario. However, our analysis suggests that the secret key rate is non-
additive for some values of p. In the following we summarize the key steps
leading to this result.

As mentioned, the values of interest for Pxyz and QXl,Yl,X27Y2,Z are,
0.5 < p < 0.6 and ¢ = 0.2, respectively. The distribution Q*(X2,Ys, F)
resulting from the local filtering by the honest parties depends on the pa-
rameter p. In order to estimate Eve’s error we follow a similar argument
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Figure 3.3: The CAD protocol certifies that if the Werner state distribution (Table 3.1)
is taken with p > 0.513 positive secrecy can be extracted by the honest parties. Unfor-
tunately, we cannot completely close the gap up to p = 0.5. This would have shown a
direct correspondence between the quantum and the classical scenario.
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I 0 | !
2/3 (244, Zis00) 1 (200, Zoo01)
)\17(210;(]) 1/6 (zii, Zii11) /\il(81c1_VQ) 1 (211, Z1101)
1/6 (21, Zii22) 1 (222, Z2201)
(62Pa+ (1= 62)Pg (216, Zot00) 1/2 (201, Zo101)
0zPL + (1 —62)Pu (#ts, Zst11) 1/2 (201, Z1001)
62PL + (1= 62)Py (21s, Zt22) 1/2 (210, Z0101)
0 67P5 + (1= 62)Pa (245, Zes00) 1/2 (210, Z1001)
62Pu + (1= 62)PL (2ts, Z1s11) 1/2 (202, Zo201)
Asn 0zPu + (1 = 62)Pr (2ts, Zts22) Ag(éw) 1/2 (202, Z2001)
62Pp + (1 — 02)Pa (2st, Zs100) No1)2 (220, Z0201)
0zPu + (1 — 62)Pr (2st, Zst11) 1/2 (220, Z2001)
0zPr + (1 — 62)Pr (2st, Zst22) 1/2 (12, Z1201)
0zPc + (1 —02)PB (#st, Zts00) 1/2 (212, Z2101)
0zPr + (1 —9z)Pu (2st, Zes11) 1/2 (221, Z1201)
62P1 + (1 — 62) Py (2st, Z1s22) [1/2 (221, Z2101)
1 (200, Z0010) 1/6 (244, Ziioo)
%C]_Vq) (211, 21110) %c]—vq) 2/3 (i, Ziin1)
1 (222, Z2210) 1/6 (zii, Zii22)
( 1/2 (201, Zo110) (52PL + (1= 02)Pu (2ts, Zst00)
1/2 (#01, Z1010) 0zPa + (1 —02)PB (2ts, Zst11)
1/2 (210, Z0110) 67PL 4+ (1= 02)Pu (215, Zst22)
1 1/2 (210, Z1010) 0zPu + (1 —02)Pr (2ts, Zts00)
1/2 (202, Zo210) 5zPp + (1 — 62)Pa (2ts, Zts11)
A(l—q) ) 1/2 (202, Z2010) Asy 6zPu + (1 = 62) P (2ts, Zts22)
96cn 1/2 (220, Z0210) 0z P + (1 —d2)Pr (2st, Zst00)
1/2 (220, Z2010) 87zPs + (1 —62)Pa (2st, Zst11)
1/2 (212, Z1210) 0zPu + (1 — 62)Pr (2st, Zst22)
1/2 (212, Z2110) 6zPL 4 (1= 02)Pr (2st, Zts00)
1/2 (221, Z1210) 0zPc + (1 —02)Pp (2st, Zes11)
1/2 (221, Z2110) 82Pr 4 (1 — 02)Pr (2st, Zrs22)

Table 3.4: The initial probability distributions Pxyz and QX1,Y1,X2,Y2,Z are mapped
through the classical protocol to the new probability distribution Q* (X2, Y2, E) shown
above. From it we derive the minimum value of p for which positive secret key can be
extracted by A and B. The parameters appearing above are expressed as a function of p
and q: A = (A\i4+X2)/2, en = (M +X2)(5+11q)/48+5X1(1—q) /24, sny = (1+7q)/(144cn),
i,8,t =0,1,2 with s # ¢t and s < ¢. The optimal ¢ corresponds to 1/5.
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as for QXl,Yl,XZ,YZ,Z’ now adapted to this slightly more complex case. De-
spite the big amount of symbols on Eve’s side (see Table 3.4), the symmetry
in the distribution leads to six main classes that are relevant for the AD
analysis (appendix A further clarifies this point). These arguments lead to
the following bound on Eve’s error:

1 N! 2n1 2ns
N5 D Gl @ (6vorm )™ (6vo ) ag
ni,ne...ng

(3.10)

where Z?:l 2n; = N. Note that as before the terms ¢;n; with ¢ = 1...5
take into account those cases in which Eve has n; symbols that coincide
with the public string sent by Alice and n; symbols that are opposite to
those appearing in the public string. The last term, dg, as before, refers to
the sum of probabilities for which Eve has no information at all (see details
in appendix A). In the asymptotic case we are treating here, Eq. (3.10)

converges to a multinomial distribution, namely:

eN>c(6( 31 m +...\/W)+56)N (3.11)

with ¢ being a positive constant. Bob’s error is much easier to compute,
getting 5 = (3\1 + A2)(1 — q)/(16¢cy). Putting these two terms together,
we have that the AD protocols works whenever:

1_%<6< 01 M1 —|—...\/55T]5>—|—56 (3.12)
Figure 3.3 shows the ratio between the left hand side and the right hand
side, Rg., as a function of the parameter p. As above, whenever Rg. < 1,
the AD protocol succeeds. The point at which Rge = 1 corresponds to

p = 0.513, as already announced.

3.3 Conclusions

Non-additivity is an ubiquitous phenomenon in Quantum Information The-
ory due to the presence of entanglement. In this work, we provide some
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evidence for the existence of similar effects for secret classical correlations.
Exploiting the analogies between the entanglement and secret-key agree-
ment scenario, we have shown that two classical distributions from which
no secrecy can be extracted by AD protocols can lead to a positive secret
key rate when combined.

The evidence we provide is somehow similar to the conjectured example
of activation for bipartite entangled states. Note however that, in the quan-
tum case, one of the two states is provably bound. As mentioned several
times, it could well happen that one, or even the two probability distri-
butions considered here are key-distillable. Indeed, there exist examples of
bound entangled states from which one can obtain probability distributions
with positive secret-key rate [HHHOO05]. Note however that all the known
examples of bound entangled states with non-zero privacy are based on
the existence of ancillary systems on the honest parties, known as shields,
that prevent Eve from having the purification of the systems Alice and Bob
measure to construct the key. If any of the probability distributions con-
structed here were key distillable, they would constitute a novel example
of secret correlations from a bound entangled state that does not fit in the
construction of [HHHOO05].
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Chapter 4

Superactivation,
unlockability, and secrecy
distribution of bound
information

Bound information, a cryptographic classical analogue of bound entangle-
ment, is defined as secret classical correlations that despite containing se-
crecy, do not allow separate parties to extract it. The existence of this kind
of correlations was conjectured in the bipartite case and later shown in the
multipartite case. In this chapter, we provide a new example of bound
information in the four-partite scenario. Later, we prove that this bound
information shares the same properties as the original quantum state from
which it is derived, namely, superactivation in a finite-copy scenario and
unlockability. We also show that the bound entangled state in exam, and
also the derived bound information, can be used to distribute multipartite
pure-state entanglement and secret correlations, respectively.
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4.1 Introduction

Following the analogy between entanglement and secret-key agreement,
Gisin and Wolf conjectured and gave evidence for the existence, in the bi-
partite scenario, of a classical analog of bound entanglement, the so-called
bound information. Despite firstly defined as a bipartite concept, the bound
information can unambiguously generalised to more honest parties plus an
eavesdropper. In the four partite case, for example, P(A, B,C,D,€) it is
said to contain bound information if i) no pair of honest parties, even with
the help of the other ones, can generate a secret key from any instances of
P(A,B,C,D,¢€), ii)) P(ABCDE) cannot be distributed by LOPC opera-
tions.

Remarkably, while only conjectured in the bipartite case, a proof of
bound information was provided in the three-partite case. This result was
possible due to the possibility to consider different bipartitions for which the
intrinsic information is zero (see below). The probability distribution was
derived directly by measuring a bound entangled state in the computational
basis of the separated parties and then shown to be bound by means of
classical tools. Additionally it was proved that such a bound information
could be activated in the asymptotic case of many copies, analogously to
the entanglement scenario.

In this chapter we provide a novel example of multipartite bound infor-
mation, which in contrast with the previous example, can be activated in
the finite copy scenario. As a consequence of that, no advantage distillation
protocols are needed to show the positivity of the key rate of the combined
distributiions. Additionally, we show that as for the quantum case, the
obtained bound information is shown to be unlockable. All these findings
are based on the interesting properties of the Smolin state introduced in
Ref. [Smo01] that we could translate to the classical scenario.

Finally, we provide another useful feature of the correlations in exam to
distribute pure-state entanglement and multipartite sbits. In the quantum
scenario, we show that the tripartite GHZ state can be extended to the four-
partite GHZ state using LOCC, given that a four-partite bound entangled
state is shared among parties. As expected, we show this to be true for the
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classical analogue too: when bound information is shared by four parties,
an sbit of three parties can be distributed over the four parties using LOPC.

This chapter is organized as follows. Sec. 4.2, briefly defines and reviews
the properties of the Smolin states. In Sec. 4.3, the existence of bound
information is shown and the properties of unlockability and superactivation
are translated from the quantum to the classical case. In Sec. 4.4, it
is shown that bound entangled state (bound information) together with
LOCC (LOPC) can be used to extend GHZ states (sbits) from three to
four parties.

4.2 The Smolin State

Let us first briefly review the properties of the Smolin state presented in
Ref. [Smo01]. The Smolin state is a four-partite bound entangled state,
shared by, say Alice, Bob, Clare and David:

PABCD = iz Vi) ap (Wi| @ |¥i)op (il (4.1)

where [¢1) = (100) + [11))/V2, [u) = (100) — [11))/v2, ) = (J01) +
110))/v/2, and |i4) = (|01) — [10))/v/2. This state has been exploited
to derive intriguing effects of bound entanglement such as the unlockability
and the superactivation in a finite-copy scenario [Smo01]. Let us summarize
the properties in the following.

i) Invariance under permutations. The state is symmetric under any
exchange of parties, i.e. paApcp = PABDC = PADBC-

it) Undistillability. Looking at the bipartite splitting AB : C'D in the
state in Eq. (4.1), it is clear that the state is separable across the cut.
Then, from the property i), it follows that the state is separable in
all bipartitions across two parties versus the others, such as AC : BD
and AD : BC. This already shows that no pair of parties can distill
entanglement, and therefore the state is undistillable.
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i11) Unlockability. An important property of the state is the unlockability
of entanglement. This can be seen when two parties among the four
join together and apply collective operations to discriminate among
the four Bell states. Announcing the measurement outcome, the two
joined parties can allow the other two parties to know which Bell state
they share. Consequently, applying local unitaries depending on the
announced outcome, they can finally distill the Bell state |¢1). This
shows that the Smolin state is entangled, and also bound entangled
together with the property ii).

4.2.1 Quantum superactivation with finite copies

As said, one of the intriguing effects shown in entanglement theory is that
of activation of bound entangled states. It is based on the fact that the
combination of two (or more) bound entangled states, thus per se non-
distillable, can be brought to a state which is indeed distillable. The Smolin
state was in particular exploited to show a stronger version of such an effect.
Termed superactivation, it refers to the superadditivity of the distillable
entanglement: given two mixed states p1, p2, Ep(p1 ® p2) > 0 despite the
fact that Ep(p1) = Ep(p2) = 0. This was shown in Ref. [SST03] without
the restrictions of the earlier types of activation of bound entanglement
[DCO0]. The quantum activation protocol works as follows. Suppose that,
now including a fifth party, Elena, two copies of the Smolin state are shared
by the five parties in the following way,

PA,C1B1D ® PA3B2CoE (42)

where the first and the second copies are labeled. Then, David and Elena
distill an ebit, applying the following protocol, see also Fig. 4.1. First, Alice
teleports her qubit state of As to Clare sacrificing the unknown Bell state
shared between A; and Cq. Clare is then with two qubits C’i and Cy where
C’i is in the teleported state from As. Next, Bob teleports his qubit state
of By to D using the unknown Bell state shared between By and D. Then,
David is now with D’ in the teleported state from Bs. Finally, due to the
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Figure 4.1: The activation protocol for both the quantum and classical scenarios is shown.
For the quantum scenario, two Smolin states pa,c,B,p and pa,B,c,r are drawn with
the dashed and solid lines, respectively. For the classical scenario, the Smolin states are
simply replaced with the bound information in (4.5). In both cases, the first step in the
protocol (shown in I—II) is that Alice teleports her state in the system Az to C1 using the
correlation between A;1Cy. In the second step (shown in II—III), Bob teleports the state
of his system B to D sacrificing the correlation existing in B1D. Then, the resulting
distribution over the remaining three parties, Clare holding two systems, David, and
Elena is in fact the Smolin state if the scenario is with quantum systems, or the bound
information in (4.5) if it is with classical systems. Finally (shown in III—-IV ), Clare
measures her systems and announces the outcomes, so that David and Elena distill an
ebit or an sbit.
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structure of the Smolin state, the state C’iC’gD/E shared by Clare, David,
and Elena results in the Smolin state. Since Clare holds two qubits C and
(5, she can discriminate among Bell states and announces the result, by
which David and Elena can distill an ebit.

A possible extension of the previous ideas is obtained by symmetrizing
the state in Eq. (4.2) with more copies as follows,

PABCD & PABCE © PABDE ® PACDE & PBCDE- (4.3)

Any two parties among the five can in this fashion distill ebits among each
other. When ebits are shared by every two parties, it follows that mul-
tipartite pure entangled states can be distilled. This finally shows that
multipartite bound entangled states can be superactivated. It is worth not-
ing that in this activation scenario, the distillable entanglement defined in
the asymptotic limit becomes immediately positive with a finite number of
copies.

4.3 Bound information

Even though originally defined for the bipartite case, the concept of bound
information can be unambiguously defined also for the multipartite case.
Given a probability distribution P(A, B,C, D,€), in which we have now
included an eavesdropper which holds the random variable £ (see chapter
2), P(A,B,C,D,¢&) it is said to contain bound information if i) no pair
of honest parties, even with the help of the other ones!, can generate a
secret key from any instances of P(A, B,C, D, &)? ii) P(ABCDE) cannot
be distributed by LOPC operations. More precisely, a large number of
realizations of the random variable A, B, C and D distributed according to
P(A, B,C, D), the reduced probability distribution, cannot be distributed

Tt is worth specifying, the meaning of this statement. The others parties can provide
help to say pair A, B communicating publicly the outcome they obtained, etc... but it is
important that this help is provided through the public channel.

*Note that when we refer to number of copies (or instances) of a given P(A4, B, ...) we
mean the number of samples which are distributed according to P(A, B, ...).
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among the honest parties if the broadcasted messages can contain at most
the information of the £ variable.

As mentioned in chapter 2, a useful tool to show that the secret-key rate
is zero (for example in the bipartition AB : C'D), is given by the intrinsic
information:

S(AB;CD|&) <I(AB;CD | £) =0 (4.4)

In the following sections, using these arguments, we show that measure-
ments on the Smolin states in the computational basis in fact give bound
information. We then show that bound information can be superactivated
in a finite-copy scenario, analogously to the quantum case.

4.3.1 Bound information and the unlockability

The existing link between entanglement and secret-key agreement scenario
has been already discussed in section 2.3. Accordingly, the entanglement
properties can be related to the cryptographic properties of the proba-
bility distributions that are obtained by measuring given quantum states.
Without loss of generality, one assume that Eve has access to the rest of
legitimate parties, and this is expressed by the fact that Eve holds the pu-
rification. When the Smolin state papcp is shared, one can find a state
W))ABCDS such that papcop = trg|1/)) <¢|ABCD5- In this way, Eve is natu-
rally included and her correlations with the legitimate parties are readily
shown. Denoted by positive operator M, of party «, the probability distri-
bution Psapcpe of the five parties reads,

P(ABCDE) = tr[Ms ® Mp ® Mc ® Mp ® Mg|v) (Y] apopel-

In the hypothesis in which the measurements applied by the honest parties
are in the computational basis. The probability distribution is explicitly
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given by,

A C B D & Pacppe

0 0 0 0 ¢ 1I/8

0 0 1 1 e 1/8

1 10 0 e 1/8

1 1 1 1 ¢ 1/8 . (4.5)
0 1 0 1 e 1/8

0 1 1 0 e 1/8

1 0 0 1 e 1/8

1 0 1 0 e 1/8

In what follows, we show that the distribution (4.5) contains bound
information which is also unlockable. These features are thereby shown to
be in a one-to-one correspondence with those shown by the quantum state

4.1.

i’)

ii’)

iii’)

Invariance under permutations. The distribution (4.5) is invariant
under permutations of parties, i.e. Pacpps = Papcps = Pappce.

Undistillability. The distribution P(A,C, B, D,£) is undistillable in
every bipartition across two parties versus the others. That is, for
instance in the bipartition between AC' and BD, it holds that

I(AC:BD | £) =0, (4.6)

where Eve’s local mapping is given by, €2 — €1 and €3 — ¢4. From
the relation in 4.4, it follows that S(AC : BD||£) = 0. Then, the
permutational invariance in (i’) implies S(AB : CD|€) = S(AD :
BC||€) = 0, and therefore none of two parties can distill an sbit.

Unlockability. The secret correlations existing in (4.5) are unlockable.
Suppose two parties, for instance B and D, join together and post-
select either case in which they got the same outcome or those in
which they got the opposite one. Let us now restrict to the case that
B and D accept when they share the same bit values. Then, the
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distribution is given by

A C B D & Pacppe

0 0 0 0 ¢ 1/4

00 1 1 e 1/4 . (4.7)
1 1 0 0 ¢ 1/4

11 1 1 ¢ 1/4

This means that an sbit is distilled between A and C, since it is
clear in the distribution (4.7) that i) Pac(0,0) = Pac(1,1) = 1/2
and ii) Pace(a,c,e) = Pac(a,c)Pg(e). For the other case that B
and D accept whenever they share different bit values, applying the
bit-flip operation either A and C', Alice and Clare can distill an sbit.
From the symmetry property in (i’), it immediately follows that any
two parties who join and collaborate to identify the shared state can
allow the other two parties to distill an sbit. As an sbit is distilled, this
also means that the probability distribution in (4.5) consists of secret
correlations. Together with the undistillability in (ii’), it is shown
that the distribution in (4.5) indeed contains bound information.

4.3.2 Classical superactivation with finite copies

In this subsection, we show that bound information can be superactivated
in a finite-copy scenario. We first show that an sbit can be distilled by two
parties when two instances of bound information (4.5) are shared between
five parties as done in the quantum protocol.

Let us consider the following probability distribution:

Piapcpe = PayciBiD PasBycsoEs (4.8)

where each four-partite distribution is shown in Eq. (4.5) and the first and
the second copies are labeled. Note that the distribution in Eq. (4.8) can
also be obtained by directly measuring the tensored state in (4.2) in the
computational basis. Expressing Eq. (4.5) in the simpler form, shown in
the appendix B.1, the distribution in Eq. (4.8) is reported in table 4.3.2.
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The classical analogue of the quantum teleportation, which is to be used
in our activation protocol, is the one-time pad. This procedure allows to
transmit safely a classical bit on a public channel by means of an sbit. It
works as follows. Assume that an sbit s, is shared by two honest parties.
The sender encodes a message x and publicly announces the addition (z+s),
so that the receiver can decode the message by adding the shared sbit,
(x+s)+s. Since the value of the sbit s is not known to anyone else, one can
only guess a random bit from the public communication. For convenience
in the sequel we refer to it as teleportation of classical bits.

A, A, B, By, C C» D E & &
g i J i J i J a h
i i j i 41l i 41 e f
i i G+l j i i+l oa fs
i i j+1 i j+1 i e fa
i G i+l i i i+l e fi
i i1l i G+l i+l j+1 e fo
i i+l j+1 ioi+l j41 e fs
i i+l 4+l i G+l i+l e fu
i ioi+1l  j i+l j e h
i i+l 41 i+l 41 e fo
i j i j+1 i+l G i+l j+1 e fs
i 7 i j+1 i4+1 j+1 i+1  § e fu
i 7 i+l i+l i i e f
i 7 i+l i+l 41 i j+1 e fo
i i+l j+1 i+l i+l e fs
i i+l j+1 i+1 j+1 i i e fa

Table 4.1: The probability distribution Papcpre of five honest parties plus the eaves-
dropper is shown. Symbols 4, j can take values 0,1 and represent the classical bits hold
by the parties. Note moreover that the eavesdropper hold two symbols, one for each
original probability distribution.
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SECRECY DISTRIBUTION OF BOUND INFORMATION

The activation protocol is obtained by translating the quantum one,
and works as follows, see also Fig. 4.1. First, Alice teleports her bit in As
to Clare, using the sbit A;C. The new value in the register of Clare is thus
updated to Ci = Cy + A1 + Ay, and the probability distribution is mapped

to:

By

By

(e

&

&

i

t+1
t+1

J
J
j+1
j+1
J
J
j+1
j+1
J
J
j+1
Jj+1
J
J

NN R N I S S

Jj+1
Jj+1
J+1
Jj+1
J+1
Jj+1

i+1 j+1 j+1
i+1 j+1 j+1 j+1

j+1
J

i
v+ 1
1+1
v+ 1
141
1+ 1
t+1
1+ 1
t+1

7

1
7
7

Jj+1
J+1

J

€1
€1
€1
€1
€2
€2
€2
€2
€3
€3
€3
€3
€4
€4
€4
€4

fi
fo
I3
Ja
fi
p)
/3

fa -

fi
f2
/3
fa
fi
f2
f3
fa

(4.9)

Next, Bob teleports his value in Bs to David sacrificing the sbit B1D. David
holds a new value D’ = D + By + Bs, for which the probability distribution
of the four parties is now given by

7

7

c, ¢, D E & &
J J J J  em N
g+l j g+l em fo
J J o J+tl j+1 em f3
J g+l 41 §  em [

(4.10)

where m = 1,2,3,4. The explicit form of the distribution of Eq. (4.10) is
shown in the appendix B.2. Now, the distribution in Eq. (4.10) is identical
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to the bound information in Eq. (4.5). Remind that the secret correlations
in (4.5) are unlockable, as shown in section 4.3.1. The nice things now is
that the bits C’i and Cy are known to the same party, Clare. She thus can
announces if her two values are the same or not. Conditioned on that, by
applying local operations David and Elena can share a secret bit. If it is
announced that C; and Cy are equal they have it already. In the case in
which Ci # (Y, either David or Elena applies the bit-flip operation. This
shows that an sbit can be distilled between D and E.

Analogously to what discussed for the quantum case, by symmetrizing
the distribution in Eq. (4.8) as follows:

Papcpe, PapcEe, PaBpDES; PacDEE, PBCDEESS, (4.11)

any two parties among the five can distill sbits against an eavesdropper who
holds the five random variables £1&2E3E4E5. This fact is enough to allow
them to share multipartite secrecy.

4.4 Distribution of entanglement and secrecy

In this section, we show a usefulness of undistillable correlations for dis-
tributing multipartite distillable correlations in the quantum and classical
scenario,respectively. In the quantum scenario, we consider distribution of
multi-partite GHZ state,

o) = (100 + [1)%%)/V2.

We show that tripartite GHZ state can be deterministically extended into
four parties using LOCC when the Smolin state is shared by the four parties.

We also derive a classical analogue of the quantum state distribution.
Multipartite sbits of N parties, say A1, -+ , Ay, is a classical analogue of the
N-partite GHZ state, being defined as the following probability distribution

PA1,"' VAN (alv T ’aN) = 6a1,a25a2,a3 T 5aN—1aaN/27
Py, ay(ar, -+ an)Pe(e).

PAh"'yAN,S(al’ T ,6)
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We then show that the tripartite sbit can be extended into four parties
using LOPC when the bound information in Eq. (4.5) is shared by the four
parties. Note that in both quantum and classical scenarios the distribution
scheme works deterministically.

4.4.1 Quantum scenario

Suppose that Alice, Bob, Clare, and David share the Smolin state, and
that only three of them, say Alice, Bob, and Clare, additionally share a
tripartite GHZ state as follows

ptaBep = |n){nlaBcp ® paBcp (4.12)

where 1) apcp = |¢3)apc @ [+)p and [+)p = (|0) + [1))/v2. Let A,
for « = A, B,C, D denote the local operation performed by the party a.
The goal is now to show that the state papcop can be transformed to |¢4)
using some local operations A,. To this end, the local operation, A, : C?®
C? — C?, mapping from two-qubit to a single qubit states, can be explicitly
constructed in terms of the Kraus operators, K§ = [0)(00] + |1)(11| and
K§ =|0)(01] + |1)(10] as follows

Aa() =Y KX (4.13)
i=0,1
Now, if the four parties apply the local operation (4.13) to the state in
(4.12) the probability of getting measurement outcomes (ia,jpB, kp,lp) is
given by:
A B C D
trlpapep K K © KTKP @ K TKE @ KDVKD),

In this case the state post-projection is
¢") =14 ®@1p @ 1c @ (0])"|da), (4.14)

where v = i4 + jp + kp + Ip and o}, denotes the Pauli matrix o, in the
David’s side. By means of classical communication the four parties can
compute v = i4 + jB + ko + Ip. If v is an even number, this means that
the four-partite GHZ state is already shared. Otherwise, David applies the
o, operation to his qubit, and the four-partite GHZ state is obtained.
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Alice Bob Clare David

IOy

Figure 4.2: Distribution of multipartite pure entanglement and secret key: Four parties
share the Smolin states (dashed line) and are allowed to apply LOCC. Then, the tripartite
GHZ state (solid line) can be distributed over the four parties using LOCC. The classical
analogue also follows: the tripartite sbit can be distributed over the four using LOPC
when the four-partite bound information in Eq. (4.5) is shared.
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4.4.2 Classical scenario

On the classical side, suppose now that the four parties share the bound
information distributed according to (4.5) and that only three of them, say
Alice, Bob, and Clare, share an sbit in the unknown value s, s € {0,1}. Let
i, denote the bit value of the k-th party, k = A, B,C, D . The goal here
is to extend the sbit from three to four parties by only using LOPC. As a
result of that, David will be sharing a secret bit with the rest of the honest
parties, A, B, C.

The distribution protocol works as follows, see also Fig. 4.2. Each of
the three parties sharing the sbit s, individually and locally computes the
parity of the two bits in their posses, the sbit s and the other from the
bound information iy for k = A, B,C. The distribution (4.5), written in
the compact form (B.1), is hence modified as follows

A C B D & Pupcpe
s+1 s+1 s+1 i €1 1/8
s+i  s+i  s+i+l i+1 e  1/8 . (4.15)

s+1 s+i+1  s+i  i+1 e 1/8
s+i s+i+1 s+i+1 1 €4 1/8

Afterwards, each of them publicly announces the parity bit s + i, so that
David can compute the sum vp = >, 4 p (s +ix). He thus can add vp
to his bit ip,

A C B D E Papcpe
s+1 s+1 s+1 i+ vp €1 1/8
s+1 s+1 s+1+1 t+1+vp e 1/8
s+i s+i+1 s+i  i+1+wvp €3 1/8
s+i1 s+i+1 s+i+1 i+vp & 1/8

(4.16)

From the relation holding for the distribution (4.5), > ;_4 g o.pir =0,
it is immediate to check that
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ip+t Y s+ip=s. (4.17)
k=A,B,C

for each ip. This shows that a multipartite sbit can be distributed
securely via bound information together with LOPC.

4.5 Conclusions

We have shown a case of four-partite bound information and its properties,
unlockability and superactivation. All these are obtained by deriving classi-
cal analogues of the Smolin state and its quantum effects, super-activation
and unlockability in bound entangled states. It would be interesting to
investigate which properties of quantum correlations can or cannot have
their classical counterparts. For instance, existence of bipartite bound in-
formation remains open and is a challenging issue. Finally, we have shown
a usefulness of undistillable correlations: bound entanglement and bound
information can be used to distribute a multipartite GHZ state and multi-
partite sbits in quantum and classical scenarios, respectively.
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Chapter 5

All private state are
non-local

Private states are those quantum states from which a perfectly secure cryp-
tographic key can be extracted. They represent the basic unit of quantum
privacy. In this chapter we show that all states belonging to this class vio-
late a Bell inequality. This result establishes a connection between perfect
privacy and nonlocality in the quantum domain.

Introduction

A key step when comparing and quantifying resources consists of the iden-
tification of the basic unit for each of them. It is well established that a Bell
state, that is, a two-qubit maximally entangled state, represents the basic
unit of entanglement, known as e-bit (see section 2.2 [BBPS96]) . Moving
to secret correlations, Horodecki et al. showed that private states are the
basic unit of privacy in the quantum domain [HHHOO05, HHHOO09]. Clearly,
all these states are entangled, as entanglement is a necessary condition for
secure key distribution [CLL04, AGO05]. However, a Bell state is just the
simplest state belonging to the larger class of private states. This implies
that the distillation of privacy from quantum states is not equivalent to
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entanglement distillation, as it was commonly believed. Indeed, key (en-
tanglement) distillation from a quantum state p can be understood as the
process of extracting copies of private (Bell) states out of many copies of
p. This nonequivalence is behind the existence of bound entangled states
that, though not allowing for distillation of the Bell states [HHH98], are a
resource for secure key distillation [HHHO05, HHHOO09].

Beyond these results, however, the principles allowing for secure key
distillation from quantum resources, a crucial question in QIT, are hardly
understood. In order to achieve this, it is essential to identify the quantum
properties common to all private states. It is well known that Bell states
are nonlocal since they violate the Clauser-Horne-Shimony-Holt (CHSH)
Bell inequality [CHSH69]. Moved by this fact, one could ask whether all
private states violate a Bell inequality. This is a prior: unclear, as private
states may exhibit radically different entanglement properties [HHHO09].

In this chapter we address the above question and show that all private
states are indeed nonlocal. This result is general, as our proof works for
any dimension and any number of parties. Private states, then, not only
represent the unit of quantum privacy, but also allow two distant parties to
establish a different quantum resource, namely, nonlocal correlations. These
states contain the strongest form of entanglement as they can give rise to
correlations with no classical analogue. More generally, our findings point
out an intriguing connection between two of the most intrinsic quantum
properties: privacy and nonlocality.

5.1 Private states

Before proceeding with the proof of our results, we recall in what follows
the notions of private states [HHHO05, HHHO09, HA06, AH09a).
In general, these are N—partite states that can be written as

@ _ 1
1_‘AA’ -

ul

d—1
S (GNEY © UipaUl, (5.1)
i,j=0
where ppas is some density matrix, {U;} a set of unitary operations, and A =

86



CHAPTER 5. ALL PRIVATE STATE ARE NON-LOCAL

Aj... Ay and A" = A} ... A/ are multi-indices referring to subsystems.
The subsystem marked with the subscript A consists of N qudits and is
called the key part. The remaining subsystem is the shield part and is
defined on some arbitrary finite-dimensional product Hilbert space H' =
H) @ ...® Hy. Party i holds one particle from the key part A; and one
from the shield part A]. The key point behind the private states is that
logy d bits of perfectly secure bits of cryptographic key can be extracted

from T'), [HHHOO05, HPHHOS].

5.1.1 Cryptographically secure states

In order to clarify the relevance which private states have in the crypto-
graphic scenario it is worth recalling here some useful definitions.

Definition: A state papa g on a Hilbert space HAQH 4 QHpRH g is called
secure with respect to a basis B = {‘ei>A‘fj>B}gj=1 if the state obtained via
measurement on AB subsystem of its purification in the B basis followed
by tracing out A’B’ subsystem is product with Eve’s subsystem:

d—1
Z pijleifi){eifilap | ® PE (5.2)

4,j=0

Moreover if the distribution is such that p;; = 1/d J;; the state papa/p is
said to have a B-key:

a1,
(Z dleifi><eifi|AB> ® pE (5.3)

=0

The states previously introduced are often referred as ccq state to indicate
the fact that parties A and B did a measurement so obtaining a classical
outcome while on the eavesdropper’s side the state is still at a quantum
level, namely no measurement has been still performed. Additionally, it is
possible to express the state (5.1) in the easier form (where we consider just
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two parties for sake of clarity):
PABA'B! = UP:{B®O'A/B/UT (5.4)

where PXB is the projector on a d-dimensional maximally entangled state,

S 1/Vd|eif;) and U is the twisting unitary defined in [HHHOO09):

d—1

U= Z ’ekfl><€kfl‘AB 0y U,’ZI/B/ (5.5)
k,l=0

Now, from Theorem 1 in [HHHOO09] it is known that two states which
are related by a twisting operation U, i.e. paparn = UéapapUT, have
the same ccq state, namely papr = dapgr. Thereby, taking aparp =
PXB ® oa/p it is clear, that the obtained ccq state is a B-key as shown
in (5.3), so it is paparp. From this, it directly follows that logy d bits of
perfectly secure bits of cryptographic key can be extracted.

Regard the non-locality feature shown by some given correlations we
remind to section 2.4 for a brief overview.

5.2 All private states are nonlocal

We are in position to prove our main result. We divide the proof into
two parts. First, following the ideas of Ref. [HA06], we show that using
local quantum operations (represented by appropriately chosen quantum
channels) without any use of classical communication, the key part of any
private state (subsystem A), can be brought to the form

[y

A =57 ap(EXINEY (5.6)
k,l=0

IS

with agr = 1/d and at least one off-diagonal element nonzero; i.e., there
exists a pair of indices k < [ such that ag; # 0. Note that the shield part
is discarded during this process. Second, we show that any state of the
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form (5.6) with ag; # 0 is nonlocal. Finally, the fact that local operations
without classical communication cannot produce a nonlocal state from a
local one implies that all private states are nonlocal.

Let us now proceed with the first part of the proof. For this aim we
assume that the ith party performs, on its subsystems A; and A}, the
quantum operation represented by the following quantum channel

A = vOOVOT L@ WO, (5.7)
where the Kraus operators V(@ and W) are given by

VO =S Rk, 0 O, WO =3 k], @ WL,
L k

The operators ffk(l) and W,ﬁz) act on the shield part belonging to the ith party
the A’ subsystem) and are chosen so that they define a proper quantum
(2

measurement. Precisely, given ‘716(1) we define the second Kraus operator to

be W,EZ) = (I —17,€(i)T‘~/k(i))1/2, with T being the identity matrix acting on the

(d)

AN/ results in the

Al subsystem. Application of all the channels AD to T
following state

N d—1 oN

i d 1 n n
QAL = 5 > WU @ 3 X Uhon Ul X",
i=1 k,1=0 n=1

where matrices X ’gn) are defined as members of the 2V —element set {V(i), Wki) 1N,
Explicitly, one has X,El) = ‘7151) ®...0 VIC(N),XIEQ) = ‘7151) ®...0 ‘7]§N_1) ®
,WV/,EN), and so on. Tracing now the shield part we get the promised state

(5.6) with ay; given by

N
Qg = tr [@ (VO + WOWE) Ugeu | (5.8)

=1

One also finds that, since by construction V,f”f/,j“ + V[N/]Eiﬁwlii) = I for any
i, the diagonal elements ayy of this state are equal to 1/d.
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Now we need to show that at least one of the above coefficients is
nonzero. In other words, for some fixed pair of k and [ (k < [) we need to
choose the operators 17,51) and 171(1) in such a way that ay; is nonzero. To this
aim we simplify a little our considerations by assuming that the operators
‘N/k(z) and 17l(l) corresponding to ¢th party are positive and diagonal in the
same basis. Thus, we can write these particular operators in the form

V=3 ulleenl, VO = Sl
m m

where we assume that the eigenvalues satisfy vr(,? , 6%) € [0, 1] and the eigen-

vectors |e,(fz)> are orthonormal, i.e., (eq(f@)\eg” = Omn (note that the fixed

indices k,l we are interested in are omitted in the right—hand side of the

previous expression). This, in turn means that the operators Wk(f) and fI/I\?l(i)

are also diagonal in the basis {]eﬁ,?)}, and have eigenvalues (1 — 111(7?2)1/ 2

and (1 — E%)Q)l/ 2 respectively. As a consequence the operator appearing
in parenthesis in Eq. (5.8) simplifies to

TOO L T = 3 40[elDyeld|, 59
where its eigenvalues are given by B( = vﬁn)v%) +(1— vy(,?2)1/2(1 —U%p)l/Q

and obviously satisfy 0 < ﬁﬁ,? < 1. Now, putting Eq. (5.9) to Eq. (5.8), we
get

ow = 3 AN
miy..,mMN
x(efml] - (ean [UxpUf letnl) - letnn)- (5.10)

Finally, to prove that aj; # 0 it suffices to notice that for any nonzero
matrix X (and in particular UkpUlT) there always exists at least one N
partite product vector |1)) = |11)...|¢n) such that (| X|¢) is nonzero.
Otherwise, if for all such vectors (¢)|X|i)) = 0, the matrix X has to be the
zero matrix (see Lemma 2 of Ref. [idZHSL9S]).
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As just discussed, there exists a product vector |¢) such that (¢|UkpUlT|w> #*

0 for a pair of indices k < [. Therefore we can always chose 17,51) and 171@
for each party in such way that |¢) is one of the product vectors appearing

in Eq. (5.10) (more precisely, |1;) can be set as one of eigenvectors of 17,51)

and ‘71(1‘)). Now, we can use the freedom in the numbers ,8,(7? in such a way

that ay # 0, which is exactly what we wanted to prove. Actually, we can

always choose Vk((zl)) so that at least one of the coefficients a’s in each row
(d)

and column of g’ is nonzero.

Let us move to the second part of the proof. In what follows we show
that any state of the form (5.6) is nonlocal. First we will consider the
bipartite case and then we will move to the multipartite scenario.

5.2.1 Bipartite case (d = 2)

A generic form of the simplest example of bipartite private states (two—
qubit key part) reads (zeros denote null matrices of adequate dimension)

UopA/US 0 0 UppalU]
@ 1 0O 00 0

UlpA/U(J)r 0 0 UlpArUl]L

After applying the previous local quantum operations to this state the par-
ties are left with a two-qubit state:

1/2 0 0 Q01
2 _ 0 0 0 O
05 = 0 00 O (5.12)
ay, 0 0 1/2

Since we already know that ag; # 0, it follows from the criterion pro-
posed in Ref. [HHH95] that the above state violates the CHSH-Bell inequal-
ity [CHSHG69] (here written in the equivalent Clauser-Horne form [CH74])

P(AlBl) + P(AQBl) + P(AlBQ) — P(AQBQ)
— P(A)) - P(B)) <0. (5.13)
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Here P(A;B;) denotes the probability that Alice and Bob obtain the first
result upon the measurement of observables A; and B; (i,j = 1,2). Recall
that the CHSH test involves the measurement of two dichotomic observables
per site.

5.2.2 Bipartite case (d > 2)

For higher dimensional bipartite private states we use the fact that the
inequality (5.13) only involves one measurement outcome for each of the
observables. For this purpose, let us first assume that some «4,; is nonzero
and rewrite Q(Qd) (cf. Eq. (5.6)) as

1/d - an
08" = SR . (5.14)
af, - 1/d

The marked 2x 2 submatrix can be seen, up to a normalization factor 2/d, as
a two-qubit state like the one given in Eq. (5.12). As we have just shown,
any such two-qubit state with nonzero off-diagonal element is nonlocal.
Therefore, to prove nonlocality of di) we can design the observables A; and
B; (i = 1,2) so that their first outcomes correspond to one-qubit projectors

(embedded in C%) leading to the violation of (5.13) by the corresponding
two-qubit state. Precisely, we take the projectors PX) = |¢;)}(1i| and Pg) =
li)wi| (i = 1,2), where the pure states |;) and |¢;) are of the general
one-qubit form alk) + b|l). The remaining outcomes (which are irrelevant
from the point of view of the inequality (5.13)) of the involved observables
A;(B;) can just correspond to projectors I —PS()B) (1=1,2).

Now, by using these settings in the CHSH test (5.13), one sees that the
state (5.14) leads to almost the same violation as for the two-qubit state
in Eq. (5.12) with the only difference being the normalization factor 2/d.
Clearly, this does not cause any problem since the same factor appears in
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all the terms of the inequality. Therefore it does not change the sign of the
CHSH parameter (5.13). As a conclusion the CHSH-Bell inequality for any

bipartite state di) is also violated.

5.2.3 Multipartite case

We now move to the multipartite case. In order to prove the nonlocality
of the states (5.6) for an arbitrary number of parties we exploit the fact
that, given a generic N-partite state, py, if local projections of N — m
particles onto a product state leave the remaining m particles in a nonlocal
state, pm, necessarily the initial state py has to be nonlocal. This follows
from the fact that one cannot produce a nonlocal state from a local one
in this way. This reasoning was firstly used in Ref. [PR92] in the context
of proving the nonlocality of general multipartite pure entangled states (in
the appendix C we give a simple argument that allows to prove the non
locality of a multipartite state).

Indeed, denote by A; (i =m +1,...,N) the local measurements (with
outcomes a;) by the previous N — m parties such that for one of the out-
comes, say 0, the state p,, shared by the remaining m parties is nonlo-
cal. For the sake of simplicity we assume that the nonlocality of this
m-partite state can be proven with only two measurements per site, A;
and A} with outcomes a; and a; (i = 1,...,m) (our reasoning can be
trivially adapted to Bell tests involving more measurements). According
to Fine’s result (see section 2.4), there cannot exist a joint probability
distribution P(ai,d},...,am,a,lam+1 = 0,...,ay = 0) reproducing the
observed outcomes for the m parties conditioned on the fact that the mea-
surement result for the remaining N — m parties was equal to 0. Now,
consider a Bell test for the initial N-partite state py where the parties
apply all the previously introduced measurements. Assume that the ob-
tained statistics can be described by a local model. Then, there exists a

joint probability distribution P(a1,af,...,am,al,, Gm41,-..,a)y). But this
would immediately imply the existence of the joint probability distribution
P(ai,ad},...,am,al,|ams1 = 0,...,any = 0), which is in contradiction with

the fact that o,, is nonlocal. Thus, the initial state py has to be nonlocal.
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Using this argument, in order to prove the nonlocality of multipartite
states QS\CP it is enough to build local projections mapping these states into a
nonlocal state of a fewer number of particles. Consider the local projections
P, onto |¢) = (1/v/d)(|0) + ...+ |d — 1)). Projecting an arbitrary subset
of N — m particles of g%) onto P, the remaining m parties are left with
following m—partite state

d—1
o =" ag(|kXI)E™. (5.15)
k,1=0

Thus, if N—2 parties apply the projector Py to the state (5.6), the remaining

two parties are left with a bipartite private state di). However, we have

just shown that this state is nonlocal. Thus, Qg\C]l) must also be nonlocal.

5.3 Conclusion

Private states play a relevant role in QIT because they represent perfectly
secure bits of cryptographic key [HHHOO05, HHHO09, AH09a]. Knowing
their entanglement properties is crucial to understand the mechanism al-
lowing for secure key distribution from quantum states. In general, private
states are thought to have a weaker form of entanglement than Bell states.
However, we have shown here that all private states are nonlocal. They
have, then, the strongest form of quantum correlations, since the results
of local measurements on these states cannot be reproduced by classical
means.

Finally, it would be interesting to study how our findings can be re-
lated to the Peres conjecture [Per99], a long-standing open question in
quantum information theory. This conjecture states that bound entan-
gled states do not violate any Bell inequality. The intuition is that these
states have a very weak form of quantum correlations. Then, all the cor-
relations obtained from these states should have a classical description.
Note, however, that there exist bound entangled states with positive par-
tial transposition which are arbitrarily close (in the trace norm) to private
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states [HHHO05, HHHO09, HPHHO08, AH09a, AH09b|. This is indeed the
reason why these examples of bound entangled states have nonzero distil-
lable cryptographic key. But, as shown here, all private states are nonlo-
cal. One would then be tempted to conclude that these bound entangled
states are also nonlocal. Interestingly, the situation is subtler than ini-
tially thought. In fact, recall that the nonlocality of private states has been
proven here by showing the violation of the CHSH-Bell inequality. Unfor-
tunately, this inequality cannot be violated by bound entangled states with
positive partial transposition [WWO00]. This implies that the violation of
this inequality by private states arbitrarily close to bound entangled states
has to be very small. In view of all these findings it appears interesting
to analyze the nonlocal properties of bound entangled states with positive
distillable secret key.
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Chapter 6

Maximal randomness from
Bell tests

Among the remarkable features of quantum mechanics, its non-local char-
acter and its intrinsic randomness play a crucial role. The non-local corre-
lations exhibited when measuring entangled particles can be used to certify
the presence of genuine randomness in Bell’s test experiments. However, it
has recently been shown that, while non-locality is necessary for random-
ness certification, it is unclear when and why non-locality certifies maximal
randomness. We provide here a simple argument to certify the presence of
maximal genuine randomness based on symmetries of a Bell’s inequality and
the existence of a unique quantum probability distribution that maximally
violates it. Using our findings, we show that maximal randomness can be
certified through Mermin type inequalities and from certain bipartite Bell
tests.

6.1 Introduction

Non-locality and intrinsic randomness inherent in quantum correlations go
to the very heart of quantum weirdness. They have been the subject of
keen interest since the early days of quantum physics. This interest, which

97



6.1. INTRODUCTION

was initially derived from its foundational implications has recently also
acquired a practical aspect due to the rapid developments of the device
independent paradigm. In the past few years, developments in device inde-
pendent quantum key distribution and randomness generation have height-
ened the need to quantify both non-locality and randomness inherent in
quantum systems.

The existence of genuine randomness is intimately related to the notion
of non-locality, the exact relationship between the two quantities has not
yet been characterized. Recently, it was shown how the CHSH inequality
could be used to bound the randomness shown by probability distributions
arising from measurements on quantum entangled states [PAM™*10].

These results were moreover extended to non-tight Bell inequalities in
[AMP12]. There, the authors proved that the probability distribution max-
imally violating the CHSH inequality (see section 2.4) contains locally the
maximum possible one bit of randomness irrespective for every party and
every measurement setting. However, there is strictly less than 2 random
bits globally (1,23 bits). Furthermore, they proved that the quantum dis-
tribution saturating the non-tight inequality I, = a(A41B1) + a(A1Bs) +
(A2B1) — (A3Bsg) also contain a maximum local randomness of 1 bit for
party A, but remarkably, it is possible to obtain asymptotically close to 2
random bits, by measuring state arbitrarily close to product states. This
is reminiscent of the behaviour of other quantities of interest such as the
detection efficiency [Ebe93]. Still, it is difficult to develop an intuitive grasp
of the probability distributions from which one may expect the highest ran-
domness. A priori it is thus unclear when and why maximal randomness
is certified by a given Bell inequality. Our present work is an attempt to
further understanding this subtle relation.

We approach this question from an operational point of view so our re-
sults can be relevant under a cryptographic perspective. As such, not only
is quantification important, but also the certification. We require that the
randomness is guaranteed not to originate from a mere lack of knowledge
about the system. We make this more concrete with the observation that,
strictly speaking, classical systems can exhibit at most pseudo randomness
since they can always, in principle, be simulated by a mixture of determin-
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istic systems. Those systems whose correlations cannot be so simulated, do
violate a Bell inequality [Bel64] hence are guaranteed to contain genuine
intrinsic randomness. As well known, the correlations shown by certain
measurements on entangled quantum states violate a Bell inequality, hence
ensuring the randomness of the produced outcomes.

Despite some works [PAM™10, Col09, AMP12] investigated the existing
relation between non-locality and randomness, it is still unclear when non-
locality certifies mazimal randomness. In this chapter we demonstrate that
in several important cases, simple arguments combining the symmetry of a
Bell inequality and the uniqueness of the quantum probability distribution
that mazimally violates it can give interesting insights in that direction.

These arguments are extremely useful to intuit the intrinsic randomness
that can be obtained in a given scenario. Once the probability distribution
is known, no numerical calculations are generally required. This makes
them powerful tools to study randomness, always under the assumption of
uniqueness mentioned above.

After presenting the basic background and a simple explanation of our
method for the CHSH case, we tackle more complex scenarios, showing the
validity of our approach. In the last section we discuss the assumption
of uniqueness and the possible limitations for no-signalling post-quantum
theories.

6.2 Preliminaries

This section briefly introduces the main definitions and techniques used in
the rest of the chapter. For a more exhaustive explanation see section 2.5.

6.2.1 Bell tests and quantum distributions

A general Bell test (N, M, d) consists of N separated parties owing part of
a system on which they can freely make one of M possible measurements.
Each measurement has d possible outcomes. Along this device independent
approach, the relevant quantities are thus the conditional probabilities of
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outcomes given a chosen measurement string (without reference to the un-
derlying states and dimension): P(aq,...,an|z1,...,2N) where a; is the
outcome of a measurement x; by party 1 < i < N. We consider only quan-
tum distributions unless specified otherwise. In other words, P has at least
one quantum representation comprising a quantum state p in an arbitrary
dimensional Hilbert space H1 ® He ® - -- ® Hy and a set of measurement
operators M (a;|x;) summing to unity on H; for i € {1, N} such that,

.M,

G«N@N]

P(ay,...,an|z1,...,xN) = tr[pM, (6.1)

NETRE

6.2.2 Randomness

We aim at certifying randomness in a joint probability distribution indepen-
dent of its quantum realization (see Sec. 2.5 for more details). To this end,
we adopt an operational approach where randomness is related to guess-
ing correctly the outcome of some joint measurement, ¥ = (x1,x2,...,TN).
Since the best one can do is to simply output the most probable outcome
string, we quantify randomness with the guessing probability,

G(P; %) = max P(d|%) (6.2)

a

where @ = (a1,as,...,an). The guessing probability can be expressed in
bits with the min-entropy defined as

Hoo(P;7) = —logy G(P; T) (6.3)

The min-entropy can be analogously defined for any subset of parties.

If d = 2, i.e. dichotomic measurements, then each party locally can
have at most 1 bit of randomness and globally there can be at most N bits
of randomness. The larger the value G(P;Z), the lower the randomness
since a higher probability of guessing the outcomes intuitively corresponds
to lower randomness. In Ref. [AMP12] it was made clear that random-
ness and non-locality are intimately related although inequivalent physical
quantities. As pointed out in the same reference, the violation of some
Bell inequality is a necessary and sufficient condition for G(P, %) < 1 or
equivalently Ho (P, %) > 0 (see Sec. 2.5).
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For (N,M,d) = (2,2,2), the largest possible amount of randomness
corresponds to 2 bits, which is obtained when G(P;xg,y9) = 1/4 for an
input pair (zg,y0). From the existing relation:

P(a,blz,y) = i(l + a(Ag) + b(By) + ab(A;By))

this implies that for the input pair (zo,v0), (Az,) = (By,) = (AzBy,) = 0.

6.3 Symmetries, uniqueness and randomness

In this section we demonstrate explicitly that, for (2,2, 2) the symmetry of
the CHSH inequality:

I = <A1.Bl> + <A]_B2> + <A2.Bl> — <AQBQ> <2

and the uniqueness of the quantum distribution maximally violating it, cer-
tify genuine randomness. We achieve this in two steps.

First, let P* be a distribution that saturates the maximum quantum vio-
lation of the CHSH, I(P*) = 2v/2. Applying the symmetry transformation
Ts, a12 — —a12 and by o — —byo (where a;,b; € [—1,1]), a new distri-
bution P** = 74(P*) is obtained which also maximally violates the same
CHSH and differs from P* only in the marginals, namely (A4;)** = —(4;)",
(Bj)*™ = —(Bj)*. Note that under the transformation 7 the coefficients
appearing in the CHSH inequality are left unchanged.

Second, we invoke the uniqueness of the distribution saturating CHSH
[AMP12], implying that P* = P**. Consequently all marginals are zero
implying G(P;x) = G(P;y) = 1/2 which, from (6.3), certifies that every
party obtains 1 bit of local randomness.

In what follows, we systematically apply this procedure. Firstly, we look
for transformations that do not change the given Bell’s inequality. Later,
we apply this transformations to the distribution that maximally violates
the inequality. By imposing the uniqueness of this distribution, we infer
the existence of maximal randomness.
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Figure 6.1: A slice of the local and quantum set, L and @, are shown for the (2,2,2)
Bell scenario. The point P* represents the maximal quantum violation of the CHSH
inequality, known as the Tsirelson bound. There is a unique quantum realization for
these correlations (see Sec. 2.4 and the Appendix D for more details.)

6.3.1 Chained inequalities

In the following, we demonstrate that this simple idea can be extended
to more complex scenarios. The chained Bell inequalities, which is an ex-
tension of the CHSH inequality to more settings per party [BC56], can be
compactly represented as:

M
CY" = {[Ai = Bila) + ([Bi — Aia]a) > d — 1 (6.4)
i=1
where A; and B; are measurement choices for Alice and Bob and by defini-
tion Apr41 = Ay + 1. The square brakets denote sum modulo d. Next, we
show that all measurement outcomes are maximally random at the point
of maximal quantum violation.

As first step, we consider the transformation: a; — a;+1 and b; — b;+1
for every i.

Second, for a distribution P maximally violating C?!, such a transfor-
mation will map say P(0|A) — P(1|A),P(1|A) — P(2|A)... P(d—1]|A) —
P(0|A) and the same on Bob’s side.
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Third, assuming that the two distributions must coincide since P is
unique, lead to P(0|A) = P(1|A) = --- = P(d—1]A) = 1/d. In other words,
Alice and Bob locally have a uniform outcome distribution corresponding
to the 1-dit of local randomness.

6.3.2 Two bits of randomness for (2, M, 2) for odd M

From now on, even though we are going to consider more complex scenarios,
the number of outcomes for each setting will be restricted to d = 2. As
already anticipated, in this case the probability distributions can be fully
parametrized in terms of correlators:

N
_— 1
P(CL|:E) = 2W(1 + Z CLZ<A,L> + Z a;a; <AZAJ> + Z aiajak<AiAjAk>—|—
i1 i<y i<j<k

+---+aiag... CLN<A1A2 ‘e AN>) (65)

where all the correlators have values in the interval [—1, 1].

In order to certify maximal randomness for a given input & = z(, one
needs to show that the distribution P(d|2() is uniform. It is straightforward
to see that this condition is satisfied when all the correlators in (6.5) are
identically equal to zero. Using that, we will show that for certain input
pairs (specified below), the maximum of 2 bits can be certified by the maxi-
mal violation of the chained inequality. Expression (6.4), for M dichotomic
measurements (with a;,b; € [—1,1]) can be rewritten as follows:

M —1
Cy' = > (AiBi) + Z Ai1B;) — (A1 Byy) (6.6)
=1 =1

Our arguments apply to the case of odd number of measurements M (M =
2k + 1 with k£ € N). In this case, symmetry arguments and the assumption
of a unique distribution maximizing (6.6) lead to 2 bits of certified random-
ness.
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Consider the distribution P that maximally violates (6.6). Once again,
we would like to identify a transformation that leaves the coefficients of
CM invariant and such that allows us to put at least one full correlator say
(ArB;) equal to zero (together with (Ay), (B;)). Here, we give the proof for
(A1By) with n = k + 1. Generally, for a odd number M of measurements,
this can be shown for all the correlators of the form (A;B; ) for all ¢,
i< M.

The following transformation satisfy the conditions specified above:

1. a1 — —a1 and no change in b,,.
2. By < By

3. Ay — Ay

4. By < Bpr_q

and so on up to Agy1 < Agso. Here the symbol < is used to indicate
a change of labelling for the input of the new distribution. The assump-
tion that the distribution that maximally violates (6.6) is unique leads
to (A1B,) = —(A1By), ergo (A1B;) = 0. This, combined with the re-
sults obtained in the previous section, (A1) = 0 = (B,), implies that,
P(a,blz = 1,y = 1) = 1(1 + a(41) + b(B,) + ab(A,B,)) = 1/4 and from
(6.3), Hoo(P(a,blz = 1,y = 1)) = 2. So that 2 bits of randomness are
certified.

6.3.3 Mermin inequalities
Mermin inequalities [Mer90] of N parties are defined recursively as,
1 / 1 !/ /
My = §MN—1(AN + An) + §MN—1(AN — Ay) (6.7)
where M, is the CHSH inequality and M}, , is obtained from My_; by
exchanging all A; and A;-. These inequalities have been studied extensively

and are very relevant candidate inequalities to study certified randomness.
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We are able to show up to the maximum possible randomness of N bits
for these inequalities. However, before providing the general proof it will
be useful to restrict it to the tripartite case. Expression (6.7) in this case
reads:

Analoguous to the chained inequalities, one can show full global random-
ness for those measurement combinations not appearing in Ms. For in-
stance, let us consider (A; A A3) (as well as all marginals) in the probabil-
ity distribution P that maximally violates M3. Under the transformation:
a; — —ai, ah — —ah, af — —af, Ms remains unchanged while (A;)p —
—(A1)p, (A1A2)p — —(A1A2)p, (A1A3)p — —(A1A3)p and (A1 AA3)p —
—(A1A2As)p. Hence, the existence of uniqueness implies all these correla-
tors in P to be equal to zero. A similar reasoning (az — —ag, a} — —a}
and a4 +— —ab and then ag — —as, a}) — —a] and a} — —ab) can
be used to show that (A2)p = (As)p = (A2A3)p = 0 as required for
G(P; Ay, Ay, A3) = 1/8 or Hy, = 3. This shows that violating maximally
the Mermin inequality M3, 3 bits of full global randomness can be certi-
fied. In the following we generalize this proof to the case of arbitrary odd N.

6.3.4 Full randomness of N-bits from Mermin inequalities
of odd N

Let My denote a Mermin inequality of N = 2J + 1 sites. There is a choice
between two dichotomic measurements A; and A, at site i. We fix the
convention that A; corresponds to the setting of even parity and A} to odd
parity '. Let P be the quantum distribution saturating the inequality, i.e.
My (P) = 2N¥=1, The property of interest to us is that a Mermin inequality
of odd sites contains only correlators having the same parity. In particular
if My is of odd parity then every correlator appearing in it consists of an
odd number of primed observables (see Eq. (6.8) for instance).

!Note that in this notation, the unprimed term corresponds to 0 (mod 2) and primed
term to 1 (mod 2)
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As before, one can see that every correlator of P not appearing in the
My (those of even parity) is identically zero.

To see this, let us assume that My contains all the odd parity full cor-
relator terms and consider an even parity full-correlator, (X;Xs... Xn)p
where X; = A; or A,. We would like to show that every correlator and
marginal consisting of a subset of K = { X1, Xo,..., Xy} is zero. To do this,
we need to consider a transformation that flips their sign while keeping My
fixed. Let us denote the outcome of X; by x; and denote by Corr(X;,)p the
set of every marginal and full-correlator containing X;, € K. Notice that
Si : {zj, — —xi,;zjunchanged V1 < j # ig < N} is a transformation un-
der which Corr(X;,)p — —Corr(X;,)p. We show below that My remains
unchanged if we complement S; with S, : {a:; — —x;-VI <j#ip <N}
with the definition (a')’ = a. Since X} ¢ Corr(Xj,), this set is unmodified
under S». Moreover, every term of My is unchanged under Sy o S.

For the original even parity term we started with, S;0S81 ((X1 X5 ... Xn)) =
—(X1X2...Xn). Every odd parity full-correlator can be obtained from
(X1X2...Xn) by swapping inputs at an odd number of places. However,
the transformation Sy 0 Sy is such at every site, either the outcome of A; or
A’ flips sign but not both. Hence, every local swap at any location intro-
duces an additional factor of —1. All the desired correlators can be shown
to be zero by running the argument for 1 < iy < N.

6.3.5 N —1 bits of randomness from a Mermin inequality of
even N

By the recursion relation defined in Eq.(6.7), a Mermin inequality of even
parties IV, can be expressed in terms of Mermin inequalities of odd N — 1
parties. Assuming My _; contains only the odd parity terms and M},_, the
even parity terms, let Pn_1 be the unique distribution satisfying My _1(Py_1) =
Qmaz- From the previous section, every full even parity correlator in Py_1
vanishes. Let one of them be (X1X5...Xy_1) € Py_1. If we take Py to
denote the unique distribution satisfying My (Py) = Qmaz and consider the
same correlator (X1Xo...Xy_1) € Py, we can use symmetry arguments
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to show that this must be identically zero as well.

(X1X2...Xn_1) € M),_,. From the previous section, any symmetry
transformation S leading to x1xs...zx_1 — —Z1Z5...2XN_1 can be com-
plemented by another symmetry transformation &7 involving only the first
N — 1 parties under which M]/\L1 — — ]/\ffl and My_q — Mpy—_1. Using
the recursion relation (6.7) and making the transformation Sj oS, we obtain

By — BN—I(AN + A/N) — B§v_1(AN — A/N) (6.9)

The further transformation Ay < Ay gives the rest.

Bell’s Inequalities LocalQuangr(I)lbal Uniqueness
CHSH (2,2,2) 1-bit - anl
CGLMP (2,M ,d) 1-dit - num
Chain (2,M,2) 1-bit 2-bits num
Mermin (Nygq4,2,2) 1-bit N-bits anl
Mermin (Neyen,2,2) | 1-bit (N — 1)bits anl

6.3.6 Maximum global randomness cannot be certified for
non-signalling distributions

We briefly touch on non-signalling (NS) correlations in this section. As
discussed in the Appendix D, the NS set of correlations comprise a larger
set than the quantum one. We show by construction that certification of
full global randomness for NS distributions is impossible, as a principle, in
certain cases. For any general full correlator inequality, let us construct a
probability distribution with marginal correlators zero. In this case, pos-
itivity is always respected no matter what value is assigned to the full
correlators including, in particular, those points that maximally violate
the chosen Bell inequality. Since certification requires the full correlators
to vanish, this simple observation precludes certifying full ramdomness in
these cases.
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In order to do this more concrete let us consider the simplest case once
again, the (2,2,2). In general, the requirement of positivity of the proba-
bilities constrains the feasible non-signalling points to a strict subset of the
8-dimensional hypercube parametrized by 4 correlators and 4 marginals
each with values lying in [—1,41] where

P(a,blz,y) = 3(1+a(Az) + B(By) + ab(A.B,)) > 0
P(a|z) = %(1 +a(Az)) >0
POly) = ;0 +B(B)) >0 (6.10)

Now with reference to the CHSH inequality, we can easily construct a distri-
bution with all marginals zero which maximally violates it. In this case, Eq
(6.10) is trivially satisfied for any value of the correlator (A,B,), including
the extremal ones of +1. Since global randomness requires certifying that
(AzBy) = 0 for some = = g,y = yo, no such certificate is possible either
by symmetry arguments or otherwise.

Indeed, the extremal points of the NS set for (2, M, 2) and (2,2,d) and
(3,2,2) are characterized [JM05, BLM*05, PBS11] and one sees explicitly
that in no case full global randomness can be certified.

6.4 Uniqueness

In the previous sections we assumed the uniqueness of the probability dis-
tribution maximally violating a Bell inequality. In this, we will show that
this is true in several cases and that such an assumption can be justified in
others.

(2,2,2): It is known that all extremal correlations of (2,2,2) have a
unique quantum representation [Tsi87, FFW11]. Moreover, for any Bell
experiment of at most 2 dichotomic measurements per party, it has been
shown that every probability distribution in the quantum set @ allows
a representation in terms of qubits and projective measurements [Mas06,
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AMP12]. In particular the Bell states under given measurements are known
to maximally violate the CHSH inequality.

(N,2,2): It has been shown that the P maximally violating a B-K
(in particular, Mermin) inequality is extremal and has a unique quantum
representation [FFW11, WWO01la]. The GHZ state of N qubits is known to
be the unique state which maximally violate it [Che04, GBP98, SGO1].

(2, M,2): For M = 3, all extremal correlations are guaranteed to have
a unique quantum representation [Tsi87, FFW11]. We also have numerical
evidence that the distribution saturating the Chained inequality is unique.
Unfortunately, for M > 3, we do not have any direct evidence of uniqueness.

6.5 Conclusions

We have demonstrated that simple arguments of symmetry can be used to
reach significant conclusions regarding the randomness encoded in quantum
probability distributions in a device independent manner. In particular, we
can show full global randomness in the experimentally feasible scenario of
the Mermin inequalities. The only ingredients used are the symmetry, the
chosen Bell inequality and the uniqueness of the distribution saturating it.
In several important cases, we point out that uniqueness is already known
to exist or state the case for it.

However, in some cases uniqueness does not exist. One example are the
so-called lifted Bell inequalities. A tight Bell inequality of a smaller space
can be lifted in a sense made precise in [Pir05] to a tight Bell inequality in a
higher space, either with more parties, measurements or outcomes. For ex-
ample, (CHSH —2) 4p®C1 < 01is a tight Bell inequality of (3, 2, 2) in which
on one setting of party C appears. In this case, a family of distributions
P(Cy) saturate this inequality for any value of Cs.
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Chapter 7

Overview and future
perspective

The results reported in this dissertation contribute to a better identifica-
tion and characterisation of several resources appearing in the quantum
framework. In particular, we tried to go a step forward in the clarification
of the existing connections among secrecy, entanglement, non-locality and
randomness.

We first asked if non-additivity effects, typical from the quantum sce-
nario, could exist even in the classical framework. We provided some ev-
idence for the existence of similar effects for secret classical correlations.
Exploiting the analogies between the entanglement and secret-key agree-
ment scenario, we have shown that two classical distributions from which
no secrecy can be extracted by AD protocols can lead to a positive secret
key rate when combined. The evidence we gave is somehow similar to the
conjectured example of activation for bipartite entangled states. The dif-
ference being here that we cannot ensure that any of the two distributions
is really bound. Of course, it still remains open a proof of the existence of
bipartite bound information, which is connected to the search for criteria
able to detect the non-distillability of classical tripartite correlations.

Additionally, we have shown a case of four-partite bound information
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and its properties, unlockability and superactivation. In this more general
case, a proof of the existence of bound information was possible due to the
freedom one has to consider different set of bipartitions. All the properties
are obtained by deriving classical analogues of the Smolin state and its
quantum effects as super-activation and unlockability. We have also shown
a usefulness of undistillable correlations: bound entanglement and bound
information can be used to distribute pure multipartite state (GHZ) and
multipartite sbits in quantum and classical scenarios, respectively. As an
open question, it would be interesting to investigate which properties of
quantum correlations can or cannot have their classical counterparts.

Later, we asked about the non-local features of those states (private
states) which represent perfectly secure bits of cryptographic key. We have
shown that all private states are nonlocal. In particular, that they violate
the CHSH-Bell inequality. It would be interesting to further study this
question in the multipartite scenario and understand whether all multipar-
tite private states contain genuine multipartite non-locality.

Finally, we have demonstrated that simple arguments of symmetry can
be used to reach significant conclusions regarding the randomness encoded
in quantum probability distributions in a device independent manner. In
particular, we have shown that full global randomness can be certified in the
experimentally feasible scenario of the Mermin inequalities. The only ingre-
dients used are the symmetry of a given Bell inequality and the assumption
on the uniqueness of the quantum distribution maximally violating it. It
would be interesting to study how these findings generalize to general non-
signalling correlations and whether maximal randomness certification is also
possible in this scenario.
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Appendix A

Bipartite Bound Information

After the advantage distillation (AD) has been performed by the honest
parties, they are left with one bit for which the probability of error can be
written as:

€8 S ABUY (A1)

where Ap is a positive constant and up is the initial error which scales with
N, with N the length of the block used in the AD protocol.
On Eve’s side, her error can be also expressed compactly as:

B 2 ABlE (A.2)

where we recall that it has been estimated (in particular, lower bounded)
counting those cases in which she has to guess with probability one half the
symbol which Alice and Bob are sharing.
With this in mind, we want to show that if up < pug then exists an N
for which the bound
I(A:B)—I(A:E) (A.3)

becomes positive. This condition is sufficient to let the honest parties ex-
changing a secret key by one-way protocol. As expressed in the main text,
this bound represent the mutual information between Alice-Bob and Alice-
Eve, respectively. The first element is easily calculated and corresponds
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to:
I(A:B)=1-h(ep) (A.4)

where h(ep) is the binary entropy, h(eg) = —eplogep—(1—ep)log(l—ep).
The second element is given by:

I(A:E)=H(A) — A\E_l—ZP H(AE=¢) (A.5)

where H(A) is the Shannon entropy of the random variable A and the sum
runs over all possible symbols (e = ij...iy) Eve can obtain, conditioned
to those composing the block of N. Additionally, the term H(A|E) can be
decomposed as follows:

H(A|E) = ZP H(AIE=e)+ Y P(E=e)H(AE =¢,)
Er
(A.6)
where ey, refers to all those sequences for which Eve has no information

(Pg%éi s = 1/2) and e, refers to the remaining sequences. If we conservatively

assume that in the remaining ones she has full information, the previous
expression reduces to:

H(A|E) = ZP =) (A7)

since the elements H(A|E = e,) = 1 and H(A|E = e,) = 0 (because
P(A=0|F =¢,) = P(A=1E =¢) =1/2 and P(A =0|E =¢,) =
P(A = 1|E = e;) = 1 ). Generally, the previous expression represents a
lover bound on H(A|E), so that:

H(AIE) > Y P(E = o) (A8)

furthermore, from what already said:

7ZP ) > gy (A.9)
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since in our estimation of the lover bound of Eve’s error we tried to take in
account those cases for which Pg%éis =1/2.

By using the previous relations, eq.(A.3) hence reads:
I(A:B)—I(A: E) > —ep|logep| + (1 —ep)log(1l —ep) + 2Apul (A.10)

What we are interested in now is to show that exists some N big enough
such that the Lh.s. of eq. (A.10) becomes positive. Firstly, for N large
since ep goes to zero, (1 —ep)log(1l — ep) goes also to zero. Given that, by
eq. A.1) we can write the L.h.s. of (A.10) as:

N
o (1 - Appg (N|log pp| + |log Ap|) (A1)
HE 2)\E,Ug

It is thus evident that, from the fact that up < pg and for large N the last
expression tends to 2)\E,ug which is indeed a positive number. This ends
the proof.
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A.1. SCHEMATIC REPRESENTATION OF THE PROBABILITY
DISTRIBUTION @

A.1 Schematic representation of the probability
distribution (@

This appendix shows the probability distribution obtained by Alice, Bob
and Eve after measuring the symmetric state (3.2). Being the table very big
we try to give here a schematic representation of it which can be equivalently
useful to the reader to follow our arguments. It reads:

00 || (1,) | + + || (20) ] = || (2w) | * *
01 + | (lu) | + x| (20) ] * x| (20) | *
02 || + + | (1) * x| (24) * x| (2w)
10 ] (24) | = * (L) | + + | (20) | = *
I o+ | (2u) | * + (L) | + * | (20) | *
12| = x| (24) || + + | (1y) * x| (2y)
20 || (24) | = x| (2) | * x| (Ly) | + +
21 % | (2u) | = x| (20) | x + ()| +
22 * x| (20) || = x | (20) || + + | (1w)

Table A.1: Schematic view of the distribution Qx; y1 x2,y2 z- Due to the lack of space,
cells have been grouped in terms of probability distributions and number of elements
(symbols) as explained below.

The joint probabilities P(X; = ¢,Y7 = k, X2 = j,Ys = [) between the
honest parties are distributed as follows:

- cells of type (1;), with ¢ = u, v, w are equal to %

- cells of type (2;), with i = u, v, w, are equal to %;

1—q.
- cells of type * , are equal to —5';
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1—q.
- cells of type + , are equal to —5¢';

Concerning Eve’s side (see caption of Table 3.1 for more details about how
to read the tables):

- cells of type (1;), with @ = wu,v,w contain three elements. The
terms that play a role in her discrimination are indicated by the
same number and subindex letter. For example, consider the cell
X1 =0T = 0,Xo = 0,Y, = 0. The label 1, is used for this
cell (the same one indicates X; = 0,Y; = 0,Xe = 1,Y> = 1 and
X1 =07 =0,X2 = 2,Y, = 2). The three elements here are the
three probability distributions:

P(0,0,0,0,Z00,00), P(0,0,0,0,Z00,11), F(0,0,0,0,Z0,22)-

P(0,0,0,0, Z00,00) refers to the probability that Eve guesses correctly,
the remaining two P(0,0,0,0, Zp0,11), P(0,0,0,0, Zoo,22) refers to the
probability she guesses wrongly.

- cells of type (2;), with ¢ = u, v, w, contain six elements;

- cells of type * , contain two elements distributed with probability one
half (in this cases, she knows nothing about A and B symbols) ;

- cells of type + , contains only one term since in this case Eve’s symbol
is perfectly correlated with those of A and B;

A.2 Advantage distillation details

In this second appendix, we clarify why it is enough to consider six classes
of distributions in the AD analysis of section 3.2.2. From Table 3.4 the

117



A.2. ADVANTAGE DISTILLATION DETAILS

following relations hold:

P(E = [2ii, Ziioo]| X2Ya = 00) = P(E = [z, Zi11]| X2 Ya = 11) = 6,

P(E = [zij, Ziin]| X2Y2 = 00) = P(E = [z, Ziioo)| X2Ya = 11) =1

P(E = 25, Zst00]| X2Y2 = 00) = P(E = [z, 2s111]| X2Y2 = 11) = 5o
P(E = [z, Zst11]| X2Y2 = 00) = P(E = (245, Zst00)| X2Y2 = 11) = 72
P(E = [2ts, Zts00]| X2Y2 = 00) = P(E = [z, Zts11)| X2 Y2 = 11) = &3
P(E = (215, Zts11]| X2Ya = 00) = P(E = [24s, Zts00] | X2Y2 = 11) = 73
P(E = |24, Zst00]| X2Ya = 00) = P(E = [z, Zst11]| X2 Yo = 11) = 04
P(E = [zst, Zst11]| X2Y2 = 00) = P(E = (24, Zst00) | X2Ye = 11) = 74
P(E = [z, Zts00]| X2Y2 = 00) = P(E = [2st, Zs11]| X2Y2 = 11) = 65
P(E = [z, Zt511)| X2Y2 = 00) = P(E = [z, Zts00)| X2Y2 = 11) = 75

and &g is the sum of all the P(E
in the caption of Table 3.4, i,s,t =

= [Zux, Zex22]| X2 = Y2). As already stated
0,1,2 with s # ¢t and s < t. In the

computation, it is simpler to use Eve’s probabilities conditioned on the fact
that Alice and Bob have made no mistake after AD, so this means that we
only need to consider the terms in the diagonal of Table 3.4. For this reason

the §;,n; appearing in eq.

(3.10) are the previous ones but normalized.

The complete expression is then derived according to the argument already

presented at page 63.
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Appendix B

Multipartite Bound
Information

B.1 Derivation of (4.3.2)

By individual measurement to each copy of two Smolin states in (4.2), the
five parties share measurement data such that Alice, Bob, and Clare possess
two values labeled 1 and 2 and David and Elena keep single values. Both
the first and the second distributions in the form in (4.5) can be written in
a simpler form as follows. For the first copy,

Ay Ci Bi D1 & Paoipe
i 5 T 1/8
i i i+l i+l e 1/8 (B.1)
7
7

i+1 i i+1 e 1/8
t+1 1+1 7 €4 1/8
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where i = 0, 1, and for the second copy of As, By, Cy and E, assuming Eve

holding the second parameter fi, k = 1,2, 3,4,

Ay B Co E & Pa,p,cope
J J J J h 1/8
J g Jt+1l jg+1 fo 1/8
J oJ+l 3 g+l f3 1/8
J J+1 441 5 fa 1/8

(B.2)

for j = 1,2. The full probability obtained by measuring the state in (4.2)

is then shown in (4.3.2).

B.2 The full distribution of (4.10)

The full distribution of (4.10) is explicitly shown as follows, for different

values of &1,

7

G

Co

7

D

E

&1

&

Jg+1
J+1
Jj+1
J+1
Jj+1
Jj+1
Jj+1
J+1

J
j+1
J
J+1
J
j+1
J
j+1
J
j+1
J
j+1
J
j+1
J
j+1

J
J
j+1
J+1

Jj+1
Jj+1
Jj+1
Jj+1

Jj+1
Jj+1

J
j+1
j+1

Jj+1
Jj+1

Jj+1
J+1

Jj+1
Jj+1

€1
€1
€1
€1
€2
€2
€2
€2
€3
€3
€3
€3
€4
€4
€4
€4

fi
fa
I3
fa
fi
f2
f3

fa .

i
f2
I3
fa
fi
fa
f3
Ja

120

(B.3)



APPENDIX B. MULTIPARTITE BOUND INFORMATION

For cases when Eve is with e3 or e4, the distribution in (4.10) can be
obtained by replacing j with j + 1 in (B.3).
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Appendix C

Bell’s inequalities for
multipartite states

It is straightforward to construct a multipartite Bell’s inequality that is
violated by any pure multipartite entangled state. In the simplest case of
three parties sharing a state W 4pc, a measurement on, say, C' projects the
resulting bipartite state on W 4p with probability P(¢|Z). Thus, if the mea-
surement on C is chosen such that the projected state on AB is entangled,
the generalized Bell’s inequality:

Z CabayP(ablzy,cz) < L (C.1)
abxy

is violated by W 2o because of Gisin’s theorem.
Using the following identity:

P(abc|zyz) = P(ablzy, cz)P(clzryz) = P(ablzy, cz)P(c|z) (C.2)

where the last term is obtained by imposing no-signalling between any
party, the tripartite inequality is easily obtained multiplying both sides in
(C.1) by P(¢|2):

> CabeyP(abllayz) < LP(e|z) = L (C.3)

abxy
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Note that, party C is just measuring one observable, namely M3z, and that
a violation of the obtained inequality does not provide information about
the "type” of non locality in the state U 4p¢.
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Appendix D

NS, Quantum and Local sets
of correlations

The formulation adopted by Bell to show his famous theorem definitely
inspired a new approach to discriminate between different kinds of possible
correlations. A scenario constituted by two parties (A and B) which repeat
a huge number of times the experiment of freely choose to "push a button”
(z and y) between m possible ones' and which in every instance get an
outcome (a and b) between d likely straightforwardly defines a probability
distribution P(ab|zy). In order for it to be a well defined probability dis-
tribution two conditions have to be satisfied:

Normalization
ZP(ab|xy) =1 Vz,y (D.1)
ab

Positivity
P(ablzy) >0 Va,b,x,y (D.2)

Note that, we are assuming here that the parties, have the same number m of settings,
and the same number d of outcomes for each setting. The more general (asymmetrical)
case can be tackled in the same way.
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D.1. NO-SIGNALING SET

The set obtained in this way has an interesting structure. First, it is
convex set: convex combinations of correlations are still legitimate corre-
lations. Second, there are only a finite number of extremal correlations.
Consequently, any correlation can be decomposed into a (not necessarily
unique) convex combination of such extremal correlations.

For the case in exam, a total of D = m?2d? different probability distri-
butions exists,which are labeled by the different [abzy]. When this proba-
bility distributions are considered as points in a D—dimensional real space,
this set forms a convex polytope with a finite number of extremal ver-
tices. This polytope is the convex hull of the extreme points. From the
constraints (D.1) (D.2) imposed above the more general set of correlation
is given, which comprise the set of probability distributions which allow
instant communication (signalling) between the parties. More interesting
from a physical point of view is the set of probability distributions which
fulfil the no-signalling principle.

D.1 No-Signaling Set

The set of no-signaling distributions, is a subset of the previous one and
consist of those probability distributions which do not allow instant com-
munication between the parties. A compact way to define this constraint
is through the following equation:

No-Signaling B — A

P(alry) = P(abley) = ) P(ab|ay') = P(aley’) = Plalz) Va,z,y,y’
b b’

(D.3)
which imposes that a different input choice on Bob’s side does not influence
the local probability distribution on Alice’s side. A similar condition holds
for the opposite case:
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CORRELATIONS

No-Signaling A — B

P(blzy) = P(abley) = > P(a'bla’y) = P(bla'y) = P(bly) Vb, z,2',y

(D.4)
This conditions thus identify the no-signaling polytope to which we refer
as Pyg(ablzy).

D.2 Quantum Set

Probability distributions which are obtained by general measurements on
quantum states can be written, accordingly to Born’s rule as follows:

PQ(CLb’SCy)p = tr(pABMaM ® Mb\y)' (D.5)

Here p is a quantum state (i.e. a unit trace semidefinite positive operator)
on a Hilbert space H = H 4 ® Hp where H 4 and Hp are the state space of
the system held by A and B respectively. The sets { M,,, andMy, } define
what is called a positive operator valued measure (POVM), i.e. a set of
positive operators satisfying ), M, = I (32, My, = I). POVM operator
measurements include as a special case the ordinary Von Neumann mea-
surements that use so-called projection valued measures (PVM) where all
positive operators are orthogonal projection operators?. Quantum correla-
tions are no-signaling thereby they are a subset of the no-signaling polytope
before introduced. But in contrast while, the quantum set is still convex it
is not a polytope since the number of extremal points is not finite.

2Note that in order to describe the full measurements process it is necessary to spec-
ify the set of so-called Kraus operators {K,|,} that correspond to the POVM element
{Mg|s}, where My, = a|m(Ka|x)T. The reason for including the Kraus formalism, is
due to the fact that the POVM description alone does not provide any answer about the
state of the system after the measurement is performed.
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D.3 Local Set

Finally, the set of local (classical) correlations consists of those probability
distributions which are described by a model & la EPR:

Pr(ablzy), = /PA(a|$,)\)PB(b|y,)\)J()\)d)\, (D.6)

where () refers to the probability measure according to which A is dis-
tributed. The locality condition imposes that the local distributions P4 (a|z, \),
PB(bly, ) can only depend on the chosen setting and on the hidden-variable

A, on which no restrictions are generally imposed. Furthermore, it is worth
mentioning that the distribution o does not depend neither on the outcomes
nor on the settings of the remote parties. This is sometimes called the ”
free-will assumption”, and in some way stress that the variable A contains
information about correlations between the two subsystem established in
the past. Let us review what is known about the set of local correlations.

It is also a polytope whose vertices correspond to local deterministic
distributions [WWO01a], i.e. P(ablzy) = 04, f(2)0b,4(y) Where the function
f(x) (g9(y)) determines the outcome a (b) given the setting = (y). Thus
for each set of settings (x,y) there is a unique set of outcomes a = f(z),
b = g(y) for which P(ablxy) = 1.

The local polytope is known to be constrained by two types of facets.
The first are trivial facets and derive from the positivity condition (D.2).
The second kind of facets are non trivial and separate correlations explain-
able by model (D.6) from those which cannot. Quantum correlations and
more general no-signaling correlations fall on the other side of this facets,
known as tight Bell’s inequalities, thereby are termed non-local.

D.4 Bell’s inequalities

As already said, in order to distinguish among the different kinds of cor-
relations previously introduced, Bell’s inequalities are shown to be a very
powerful tool. From the previous geometrical explanation of the sets of
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correlations it is straightforward to understand the role of a Bell’s inequal-
ity. It is an hyperplane in the space of probabilities, which divides the
no-signalling polytope in halves. If the inequality is a tight one then it di-
vides local correlations from non-local ones. If it is not then it divides some
non-local correlations from the rest. Any Bell’s inequality in the bipartite
scenario can be written as:

S Casay Plabley) < 3 (D7)
abxy

where the coefficients cqpyy are reals and 3 represents the maximal bound
achievable by the kind of correlations in exam. It is in principle possible
to distinguish a different bound [ for each of the different sets aforemen-
tioned. Sometimes, instead of dealing directly with probabilities, product
expectation values are used which simplify the investigation considerably.
These are defined in the usual way as the weighted sum of the products of
the outcomes:

(AeBy) =) abP(ablzy). (D.8)

ab

While projection (D.8) is a one-to-one mapping in the case of two outcomes
per setting, it is not in general. This implies that even though it is easier to
work with expectation values, some information about the structure of the
correlations is unequivocally lost, when the scenario consist of more then
two outcomes per setting..

It is worth mentioning that, as soon as the number of parties, settings
and outcomes increase, determining whether a point lies within the local
polytope, i.e. whether it does not violate a Bell’s inequality is in general
very hard to test. In ’89 Pitowsky showed that this problem is related with
another known problem in computational complexity which it is known to
be NP-complete.

Local Correlations. One of the best known case so far is the simplest
non trivial scenario of two parties with two dichotomic observables (2.19).

As said, in an experiment where two separated parties measure one of
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two possible observables, {A1, A2} and {Bj, By} with outcomes +1, the
following inequality:

[(A1B1) + (A1Ba) + (A2B1) — (A2Bs)| (D.9)

is bounded by 2 if their system is compatible with the predictions of a local
realistic theory. The product expectation values are easily obtained, e.g.
(A1B1) = P(+1+1]11)+P(—=1—1]11) = (P(+1—1]11)+ P(—1+1|11)), etc...

The local polytope is the convex hull in R* of the 8 extreme points of the
form:

(17 17 17 1)7 (_17 _17 _17 _1)7 (1> 1> _13 _1)7 (_17 _17 17 1)>
(1a _17 1a _1)a (_1a 1a _17 1)a (17 _]-7 _1a 1)7 (_17 17 ]—7 _1) (D]-O)

This polytope is enclosed between 16 facets, 8 of which are trivial ones:

—1 < (A1B1)
1)

1 - 1< (A1By)
-1 < (A2B
and 8 which are all equivalent to the CHSH inequality (D.9):

. (D.11)
—1 < (ABy)

<1,
<1, (D.12)

<1
<1,

[(~1) (A1 B} + (=178 (A, Bo)+
(1) (AaBy) + (—1)HH (A, By) <2 (D.13)

where a, 3,7 € {0,1} Thereby correlations which satisfy the previous in-
equalities can be described by model (D.6).

Quantum Correlations. Given the previous inequalities, Tsirelson
showed that for quantum mechanical systems the maximal achievable bound
(Tsirelson bound) for (D.13) is equivalent to 2v/2. Interestingly, he proved
that this bound is already reached by Pauli measurements on a singlet state
so there is no advantage in considering quantum states on higher dimen-
sional Hilbert spaces. As already shown by Bell, Tsirelson confirmed that
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the space of local correlations is strictly contained in that of quantum cor-
relations.

NS Correlations. In '94 Popescu and Rorlich [PR94] assuming rela-
tivistic causality and non-locality, in the sense of Bell’s theorem, fund that
quantum mechanics is not the more non-local theory (compatible with the
no-signaling principle). No-signaling correlations can violate the Tsirelson
bound and saturate the CHSH inequality up to its algebraic maximum,
|CHSH| = 4. The probability distribution that achieves this reads:

1 1
P(ablx =1,y =1) = =d4p, Plablz =1,y =1)= =044,

2 2
1 1 1
P(ablx =2,y =1) = ida’b’ P(ablx =2,y =2) = 5 iéa’b' (D.14)

where d, = 1 if @ = b and 0 otherwise. Distribution (D.14) , is termed PR
box and is an extremal point of the no-signaling polytope for the case of
two dichotomic observables per party. An interesting fact is given by the
existence of a one-to-one correspondence between the non-local extreme
points and the facets of the local polytope given by the CHSH inequalities

(D.13). In terms of products expectations values these 8 boxes are given
by:

(-1,1,1,1),(1,-1,-1,-1),(1,-1,1,1),(-1,1,-1,-1),
(1,1,-1,1),(-1,-1,1,-1),(1,1,1,-1), (-1, —-1,—-1,1). (D.15)
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