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“Mi dolgunk a világon? küzdeni

Erőnk szerint a legnemesbekért.

Előttünk egy nemzetnek sorsa áll.

Ha azt kiv́ıttuk a mély sülyedésből

S a szellemharcok tiszta sugaránál

Olyan magasra tettük, mint lehet,

Mondhatjuk, térvén őseink porához:

Kösznjük élet! áldomásidat,

Ez jó mulatság, férfi munka volt!”

“What, in this world, is our task? To struggle,

according to our strength, for noble goals.

Before us stands the fate of a nation -

when we, from the irrevocable fall

have preserved it and restored it to its heights,

fighting under the clear beam of the spirit,

we can say, returning to our ancestors

in the dust:Thank you, life, for thy blessings -

this has been great joy, yea, the Work of Men!”

Vörösmarty Mihály (Translated by Hart, H.H. )
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Abstract

Saving water is an economic and ecological need. One way to save water is

to reduce losses in irrigation networks by canal automation. The goal of canal

automation is to make the right amount of water to arrive in the right time.

In order to achieve this goal, one of the ways is controlling the gates in the

irrigation network by some control algorithm. In this work the control of a

specific type of canal pools is studied: short and flat pools that are prone to

resonance.

The downstream water level control of this type of canals is investigated using

the example of the 3-reach laboratory canal of the Technical University of

Catalonia. Numerical and experimental studies are carried out to investigate

the following: the choice of models for predictive control, the possibility to

achieve offset-free control while using gravity offtakes and the best choice of

control action variables.

The objective of this work is to develop a well performing centralized model

predictive controller (MPC) for the laboratory canal that is able to handle

known and unknown setpoint changes and disturbances, and also to draw

further conclusions about controller design for this type of canals.

A recently developed model for resonant canals, the Integrator Resonance, is

implemented and successfully tested experimentally for the first time. A new

method to achieve offset free control for model predictive control is developed

and tested numerically and experimentally. A choice of control variables are

tested: As opposed to the discharge which is generally used as the control

action variable, a state space model is formulated by using the gate opening

as control variable without the need of water level measurement downstream

of the gates. The results are summarized and conclusions are presented for

control of short and flat canals that are prone to resonance.
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Preface

Water is essential for life. The need for freshwater is increasing and its

distribution is uneven in space and in time. One of the biggest and most

important water users is agriculture, which is highly inefficient. Irrigated crop

yields are about 2.7 times those of rain-fed farming. Automatic control is one

of the ways of improving the efficiency of irrigation.

Automatic control of irrigation canals is a research line in the research group

FLUMEN in cooperation with CoDaLab group from the beginning of the 90s

when the first articles were published [Rodellar et al., 1989], [Rodellar et al.,

1993] about using predictive control for irrigation canals with the help of

simplified models. The research continued in the direction of predictive

[Cardona et al., 1997], [Gómez et al., 2002] and also feedforward control [Soler

et al., 2008].

To follow this line of investigation, a simulation tool was developed [Mantecón

et al., 2002] and in 2005 the laboratory canal of the Technical University of

Catalonia was built. The instrumentation and building of the SCADA system

is described in the first doctoral thesis made using this canal [Sepúlveda, 2008].

This work continues this research line by investigating the properties of the

laboratory canal, its modelling and control. The canal can be classified as

short and flat canals (that is a common canal type in real canal operation).

The control of these type of canals is challenging due to the resonance

phenomena they show. Therefore this work investigates the modelling and

control of this type of canals in general, using the laboratory canal as an

example. Different models and control architectures are tested using the

framework of model predictive control.
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Chapter 1

Introduction and objectives

1.1 Irrigation canals

Agriculture is the biggest water consumer in the world; it is responsible for

70% of freshwater withdrawals from rivers, lakes and aquifers – up to more

than 90% in some developing countries. On average only an estimated 37% of

the water withdrawn for agriculture is effectively consumed by plants while the

remaining portion is lost due to evaporation, ineffective structures, leakage and

insufficient management [World Water Assessment Programme and Unesco,

2009]. The Food and Agriculture Organization of the United Nations (FAO)

estimates an 11% increase in irrigation water consumption from 2008 to 2050

[World Water Assessment Programme and Unesco, 2012].

1.1.1 Canal operation types

Irrigation is the artificial application of water to the soil for assisting in growing

crops. It is performed in large scale by irrigation canals. These canals are

distributing the water to each farmer and need to be controlled in order to

ensure the supply for all users. There are different types of existing control

techniques. This introduction of control is based on the information about

control from CANARI, the web Database on Irrigation Canals [Malaterre, 2011]

and [Malaterre, 1998a].

1
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Chapter 1. Introduction and objectives 2

Manual canal operation

Irrigation canals are traditionally operated manually. In most of the cases

operators handle gates based on prescribed orders, local information and

working experience. In the modern manual operation, the canal is equipped

with sensors and the operators receive the signals and act locally. However,

the manual operation has several disadvantages. It is a rigid system hence it

cannot react against unforeseen changes (one farmer starting to take water,

rain). In order to fulfill the demand, the supply is provided in excess:

increasing the discharge or providing water after the irrigation time.

Therefore an optimal balance between the water supply and demand is not

achieved. The water conveyance is not controlled, the delay of the supply and

the demand is not calculated, nor the effect of the hydraulic structures.

Canal automation

Canal automation offers a more likely alternative. With the real time

operation of gates, using the feedback information of the demand and the real

time sensors, a better supply-demand balance and more efficient of water

management can be achieved. The efficiency is the ratio of volume of water

used by crops to volume of water extracted from the available source. The

goal of canal automation is to manipulate gate openings in real time, by using

feedback of the measured state of the canal and information on known

demand schedules, in order to achieve a desired performance in the water

supply. There are several advantages of canal automation. The water

conveyance efficiency can be improved considerably (estimated 30% to 60%)

and it also provides more flexibility to users. In case of on demand operation

it is possible to convey only the amount of water that is demanded at the

time. It leads to better use of the canal dynamics and the storage capacity of

the canal can be used without the need for constructing new reservoirs. The

adaptation to smaller and bigger discharges is easier, without bank overflows.

With the automatic control, less but more skilled people are needed. The

state of art in canal automation is summarized in several works [Rogers and

Goussard, 1998], [Malaterre, 1998a], [Mareels et al., 2005], [Lopez-Antens

et al., 2007] and [Bastin et al., 2009].
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1.1.2 Open channel flow

Irrigation canals are mainly open channels, their behaviour is governed by the

non-linear hyperbolic partial differential Saint-Venant equations. This set of

equations contains a mass and momentum conservation equation and they have

no analytical solutions for all cases.

Figure 1.1: A scheme of an open channel showing the variables for the
Saint-Venant equations

The continuity equation is

∂Q

∂x
+
∂Acr
∂t

= qL (1.1)

where Acr(x, t) is the wetted cross sectional area (m2), Q(x, t) is the discharge

(m3/s) at cross a cross-section Acr and qL is the lateral inflow or outflow (m2/s).

The momentum equation is

∂Q(x, t)

∂t
+

∂

∂x

(
Q2(x, t)

Acr(x, t)

)
+ gAcr(x, t)

(
∂H(x, t)

∂x
− Sb(x)− Sf (x, t)

)
= 0

(1.2)

where H(x, t) is the water depth (m), Sf (x,t) is the friction slope (m/m), Sb(x)

is the bed slope (m/m), and g the gravitational acceleration (m/s2). The first

term of the equation is the local and the second term is the convective inertia.

The third term accounts for the hydrostatic pressure effect. The last two terms

account for the gravity and the friction.
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Chapter 1. Introduction and objectives 4

The friction slope can be calculated using Equation 1.4:

Sf =
Q2n2

A2
crR

4/3
h

(1.3)

where n the Manning’s roughness coefficient (sm−1/3) and Rh the hydraulic

radius (m) defined by

Rh = Acr/Pw (1.4)

where Pw is the wetted perimeter (m).

Generally they are solved by different numerical methods, like the method of

characteristics, finite volumes or finite differences. In this work a 1D

hydrodynamic software is used based on the Preissmann Scheme [Cunge

et al., 1980] that belongs to the category of implicit finite differences.

1.1.3 Analysis of the waves in open channels

The behaviour of the linearized Saint-Venant equations is analyzed in

[Schuurmans et al., 1995] and [Schuurmans, 1997]. By assuming flow

boundary conditions, Figure 1.2 summarizes the main processes.

Figure 1.2: Block diagram of open channel flow, from [Schuurmans et al.,
1995]
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At the boundaries the relation between the flow rate and the water level is

described with the terms −α1/T0/s and −α2/T0/s, where s is the Laplace

variable, T0 is the top width of the channel and α1 and α2 are parameters

obtained through the linearization of the Saint-Venat equations. They are the

eigenvalues of the ordinary differential equations that are the Laplace

transformed forms of the linearized Saint-Venant equations. The terms

−α1/α2 and the reciprocal of this term −α2/α1 describe the reflection of the

waves that depend on the structures on each side of the canal pool. The

water level is the multiple of the discharge and the corresponding terms

−α1/T0/s or −α2/T0/s, in other words the change water level is the integral

value of the flow change. eα1(s)x and eα2(s)x describe the wave attenuation in

the downstream and upstream direction. It was shown that by substituting

s=0 to both expressions, a wave travelling downstream always arrives to the

downstream end, while a wave travelling upstream dampens exponentially. It

is also shown that a wave head travels with a velocity C0 + V0 downstream

and C0 − V0 upstream, assuming subcritical conditions, where C0 is the

steady state celerity and V0 is the steady state velocity.

After a perturbation upstream, a wave is created that travels with the dynamic

wave speed downstream C0 + V0, where V0 is the initial velocity and C0 is the

initial celerity of the gravity wave. However, this wave is too fast for the inflow

to create a new steady state. The bulk of the wave arrives with another celerity,

called kinematic wave speed CKW , to transform the system to a new steady

state [Clemmens et al., 2012]. The kinematic wave theory assumes a unique

relationship between the discharge and the water level, that is, a disturbance

that travels with no attenuation. The minimum travel time can be estimated

by the dynamic wave delay with the following equation:

∆τDW =
X

CDW0
=

X

V0 + C0
(1.5)

where zero denotes the conditions at the beginning of the transient.

The denominator CDW0 gives the initial speed, therefore ∆τDW estimates the

minimum travel time (Equation 1.5). The kinematic wave delay is

∆τKW =
X

CKW0
=

X
dQ
dAcr

(1.6)
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where X is the length of the reach. In contrast, CKW estimates the ultimate

speed attained by the bulk of wave so that ∆τKW estimates the maximum

travel time (Equation 1.6) [Bautista and Clemmens, 2005]. The actual wave

celerity is between the two. In case of control, the goal is that neither the

leading edge nor the bulk of the flow to arrive but the substantial fraction.

Therefore a delay value that minimizes the water level deviations should be

within the range ∆τDW < ∆τ < ∆τKW .

An analysis of the shape and propagation about kinematic, gravity and dynamic

waves can be found in [Chung and Kang, 2006]. The effects of the upstream

perturbations in a pool entirely under backwater are shown in Figure 1.3.

Figure 1.3: Step response of the laboratory canal with resonance waves

There is an initial fast increase due to the arrival of the dynamic wave, and it

is followed by oscillations and a rise with a constant rate, that is the equivalent

to the kinematic wave. In other words first the wavefront travels with dynamic

wave speed, it reaches the backwater part. This acts as water level boundary

and it makes the wavefront travel fast downstream. Then the uniform depth

stays more or less constant acting as a flow boundary (slow increase). The slope
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of this rise is the flow divided by the surface area (see Equation 1.6). In case of

trapezoidal cross sections as the depth increases the surface also increases just

as the slope of the step. After the fast increase in each oscillation, the slope of

the wave is decreasing finally approaching the the straight (dashed) line with

the constant slope (Figure 1.3).

In reaches that are completely affected by backwater (short reaches), the wave

hardly deforms, and it is reflected and travels several times back and forth,

producing high water levels locally and risk of overflow. This can be considered

as resonance. The categorization of canals with respect to resonance can be

found in [van Overloop, 2006b].

The control of these kind of canal pools is very challenging since due to the

presence of the resonance wave the downstream end of the canal is in counter-

phase with the upstream end. For example if the downstream water level is

under setpoint, the controller tries to open the upstream gate more. However,

the upstream water level is just in the other (high) phase and opening the gate

will increase this level and excites the resonance phenomenon. This behaviour

leads to oscillations and eventual overflow and should be avoided. There are

several on-going studies about resonance in irrigation canals.

The problem of resonance is explained in [Schuurmans, 1997] and studied

qualitatively in [Litrico and Fromion, 2004a], [van Overloop, 2006b] and

quantitatively in [Miltenburg, 2008], [Clemmens et al., 2012] and [van

Overloop and Bombois, 2012]. The detection of unwanted oscialltions is

described in [Ooi and Weyer, 2011] and a model for this kind of canal pools

developed in [van Overloop et al., 2010b].

The problem with the resonance can be observed using numerical simulation

on the laboratory canal of the Technical University of Catalonia. In Figure 1.4

control techniques are used without taking the resonance into account and it

can be seen that it lead to oscillations in the gate movements.

In Figure 1.5 a controller is developed for the canal taking into account the

resonance during the controller development. There water level is controlled

without problems. The control techniques and the controller development will

be detailed later in this document.
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Figure 1.4: Numerical result of the laboratory canal controlled by a
predictive controller without considering the resonance

Figure 1.5: Numerical result of a predictive controller based on a model
especially developed for resonant canals

1.1.4 Automatic control of irrigation canals

• Types of canal control

There are two main control types: feedforward (open loop) and feedback

(closed loop).
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– Feedforward control

In the open-loop, the control action variable (input) is calculated

from the dynamics of the system, the targeted output and the

estimation of perturbations (Figure 1.6a). The open-loop can

compensate time delays, but the system needs information that

has to be approximated from climatic, agronomic, sociological

data and past water consumption. An open-loop is insufficient due

to the model errors, unknown perturbations. It can be applied to

all types of variables.

– Feedback control

In case of closed-loop control (Figure 1.6b) the control action

variable is calculated from the error measured between the real

controlled variable and the corresponding target. Perturbations

are taken indirectly, since they affect the output of the system.

Closed loops can be applied to all controlled variables. There are

two types of closed-loops in water level control depending on the

relative location of the control action and controlled variable:

water level can be controlled by modification of the upstream

discharge (Feedback downstream control, FBdn) or the

modification of the downstream water level (Feedback upstream

control, FBup). The feedback control directly relies on

measurements. It can be improved by introducing feed forward

control or constructing storage volumes. However, it is a costly

solution. A single closed-loop can only function correctly if

storage volumes are available. Since both open-loop and

closed-loop control have its limitations often the combination of

the two is used. For a multivariable system with several variables,

the different control actions can be combined (Figure 1.6c).

Usually the discharge is controlled by open-loop and the water

level is controlled by closed-loop, since open-loop does not need

measurements just estimates and the water level is easier to

measure. This work focuses on the closed-loop (feedback) control.
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(a) FF control (b) FB control

(c) Combined FB and FF control

Figure 1.6: Directions of control (from [Malaterre, 1998a])

• Direction of the control

– Downstream control

In case of downstream control the controlled variables are located

downstream of the control action variables: for example the

upstream the water level in a canal pool is controlled by a sluice

gate at the upstream end of the pool. The check structure

adjustments are based on information from downstream

(Figure 1.7a). Downstream control generates indirectly discharge

closed-loop control, since it is obtained from modification of

upstream discharge. There is no need of supplementary discharge

control loop.

– Distant Downstream control

In case of distant downstream control, the controlled variables are

located downstream of the control action variables and the

measured water depth is at the downstream end of the pool. In

this case the time delay between the change in the control action

variable and its effect on the target water level should be taken
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into account. This type of control is very common, and it will be

used in this work.

– Upstream control

In case of upstream control, the controlled variables are located

upstream of the control action variables (Figure 1.7a), therefore

the check structure adjustments are based on information from

upstream. This control has to be completed by an explicit

discharge control loop, since it does not generate any discharge

control, it is appropriate for supply oriented systems. Without

this, in case of on-demand operation it can leave the canal

completely dry.

(a) Downstream control logic (b) Upstream control logic

Figure 1.7: Directions of the control

• Design techniques

Several design techniques are listed and briefly described, and examples

from control of water systems are given.

– Heuristic control methods. These methods do not base on

physical laws, the system is for them a black box. Examples for

heuristic control are the following:

∗ Control based on rules-of-thumb

These methods are control rules derived from traditional

operation. They can even be used if there is not much data

available.

∗ Neural network

This control method can be used when large amount of

measurements is available and the system is too complex to

model: [Durdu, 2004] and [Damas et al., 2000].
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∗ Fuzzy logic

This control method can be used when multiple operators are

working on the same control task: [Stringam, 1998], [Begovich

et al., 2005] and [Begovich et al., 2007b].

∗ Genetic algorithm

These algorithms are faster to find optimal solutions, however,

optimality is not guaranteed in case of large systems: [Nixon

et al., 2001] and [Ines et al., 2006].

– Proportional Integral Derivative (PID) control is one of the

most common control methods, it is based on the use of the

proportional/derivative/integral of the measured error to correct

the control action in a feedback loop: [Ratinho et al., 2002], [Rijo,

2003] and [Montazar et al., 2005].

– Control by model inversion includes control schemes that are

based on the inversion of the equations describing the movement of

the water. This inversion can also be dynamic: [Benayache et al.,

2008].

– Predictive control is based on the optimization of a given

criterion for the present and a given length of future. This

optimization is repeated at every time step and the data is

updated by measurements: [Rodellar et al., 1989], [Lemos et al.,

2009], [Malaterre and Rodellar, 1997] and [van Overloop et al.,

2010a].

– Optimal control is based on finding a control law to a system in

order to achieve to optimality of a given criterion (e.g. minimum of

the error): [Sawadogo et al., 1995] and [Malaterre, 1998b].

– Linear Parameter Varying Control (LPV) consideres

controlling a linear system whose parameters can change in time.

In case of canals this parameter is often the time delay: [Bolea

et al., 2009] and [Duviella et al., 2010].

– H∞ is an optimization technique that is able to achieve optimal

control, considering robustness, dealing with model uncertainity

by minimizing the H∞ norm: [Li et al., 2004] and [Litrico and

Fromion, 2006a].
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• Structure of the control

– Centralized control

Centralized control strategy takes into account all the objectives

that have to be fulfilled at different control sections and a unique

controller is designed using global information of canal state. The

best control performance can be obtained with this strategy,

however, in order to implement centralized control it is necessary

to build communication links between the control structures and a

central control unit: [Montazar et al., 2005] and [van Overloop

et al., 2010a].

– Decentralized control

The decentralized control strategy is normally based on simpler

control methods. There are separate controllers designed for each

pool, taking into consideration the interaction between the pools.

In some cases a higher level controller supervises the independent

controllers. With this strategy, suboptimal control is achievable:

[Sawadogo et al., 2000] and [Gómez et al., 2002].

– Distributed control

Distributed control is defined by [Maestre Torreblanca, 2010] as

each controller of the subsystems communicate an order to find a

cooperative solution for the overall control problem. An example

for its implementation for irrigation canals is in [Negenborn et al.,

2009c].

• Canal modelling

Some control techniques can use lumped, distributed, high order or

non-linear models to describe the canal dynamics. However most

methods require simple linear models. Most of the control methods are

formulated based on internal models describing the system dynamics.

There are three main categories of internal models: black box and white

box models and in between these two categories the grey box models,

having characteristics of both of the previously mentioned groups

(Figure 1.8).
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Figure 1.8: The three type of models

– Black box models

In the case of black box models, measured data are used and a

model of any structure is fit to the measured data. The advantage

of this method is its simplicity: only experimental data is taken

and a model can be fit without any knowledge of the dynamics of

the system. The disadvantage of this method is that sometimes the

model structure does not take into account the whole real dynamics.

It can be very different from the real process, especially in operation

points further from the point where the data for the identification

was collected, or even in some cases it may not be possible to collect

data or the process could be very expensive.

This methodology is often used in control problems. In

[Sepúlveda, 2008] ARX (AutoRegresive model with eXternal

input) models were identified with orders between 5 and 10.

Second and third order models were identified for a laboratory

irrigation canal at the Mexican Institute of Water Technology

[Begovich et al., 2007c]. Linear parameter varying first order

models were applied for the Lunax dam-gallery at Gascogne by

[Puig et al., 2005]. In [van Overloop and Bombois, 2012] the

authors identify 9th order model from experimental data using an

existing canal at the Central Arizona Irrigation and Drainage

District.

– White box models

The white box models are based on the mathematical description

(conservation laws) of the system. The model is calculated from
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known/measured parameters and the measured data might be used

only for verification [Malaterre, 1998b], [Gómez et al., 2002], [van

Overloop et al., 2008] and [Xu et al., 2010b]. The advantages of

this approach are that the model contains the real dynamics of the

system, it might have a wider range of validity and it does not

require measurements. However, these models may not be simple

to establish, and the dynamics of the complete system may not be

known in all the cases. Or even sometimes the whole system is so

complicated that there is a need for simplification of the original

model.

There are several works considering the whole linearized set of

Saint-Venant equations. There are methods to simplify the

computational burden in order to make the real time

implementation possible [Xu et al., 2010b].

Simplified versions of these equations have been proposed, for

example the diffusive wave equations, which with the help of the

moment matching method can be approximated as second order

model with delay [Malaterre, 1994] and [Litrico and Georges,

1999].

Simplified hydraulic models like the Muskingum model have been

used by some authors: [Rodellar et al., 1989], [Gómez et al., 1998]

and [Alvarez Brotons, 2004]. Another simplified hydraulic model,

the Hayami model is also used for control purposes by [Chentouf,

2001] and [Charbonnaud et al., 2011].

The most common simplified model used in practice is the

Integrator Delay model: [van Overloop et al., 2005], [Wahlin and

Clemmens, 2006], [van Overloop et al., 2010a] and [Zafra-Cabeza

et al., 2011].

– Grey box models

Between the two previous approaches there is the gray box model

concept. In this case the model dynamics is a priori given, but

the parameters are identified using experiments and . There are

examples of models of different structures: in [Weyer, 2001] a third

order, in [Aguilar et al., 2009] a first order with delay and in [Aguilar
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et al., 2011] and [Aguilar et al., 2012] an Integrator Delay Zero

model is identified.

• Control action variables

The most common choice for control action variable is discharge or gate

opening.

– Discharge

If discharge is used as control action variable there is a need for a

method to calculate the gate openings. This method can either be

an equation (for example the inversed gate equation) or an inner

control cycle with a higher sampling time that controls the position

of the gate in order to achieve the required discharge.

– Gate opening

If gate openings are used as control action variable the values can be

directly sent to the structure. The advantage is that the controller

directly gives a value for a physical variable, there is no need for

further conversion. It is also possible to include constraints on the

gate opening directly in the controller. However, for decentralized

control the coupling effects should be taken into account, decouplers

should be used.

• Controlled variables

Controlled variables can be discharges, water levels or water volumes.

– Discharges

The needs of the irrigation canals are usually defined as

discharges, therefore it is a natural choice to use discharges as

controlled variables. To maintain sufficient discharge is necessary

to fulfill the demand of the different needs:

∗ agricultural: irrigation flow, supply to secondary canal

∗ urban: flows to treatment plants or residential areas,

maximum flows in storm water conditions

∗ industrial: flows to facilities

∗ environmental: ecological flows.
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If natural or artificial reservoirs are available, the demand can be

defined as volume distributed over a time, and the controlled

variable is no longer the discharge but the volume. However,

construction of reservoirs is costly.

– Water levels

The main advantage of using water level as controlled variable is

that it is easy to measure. Moreover, several demands are expressed

in terms of water levels:

∗ constraints of feeding gravity turnouts

∗ stability of canal banks

∗ efforts to reduce weed growth

∗ constitution of intermediate water storage volumes

∗ risks of overflow.

Controlled water levels can be upstream, downstream or

intermediate inside the pool as seen in Figure 1.9.

(a) Control of upstream water level
(b) Control of downstream water

level

(c) Intermediate water level

Figure 1.9: Location of controlled water levels within a canal pool

Controlled water level is upstream of the pool

The controller maintains at setpoint the water level upstream in

the pool (Figure 1.9a). Storage volume is available between the
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null discharge volume and the maximum discharge volume. It

allows rapid response to the unforeseen demands of turnouts, and

it can store water. However, the canal banks have to be

horizontal, which is expensive. Also an upstream control can lead

to scarcity in downstream pools, since it retains water in order to

ensure the upstream water level.

Controlled water level is downstream of the pool

In case of downstream control the controller maintains at setpoint

the water level downstream in the pool (Figure 1.9b). The canal

banks can follow the field natural slope, which reduces

construction costs. However, no storage volumes are available

therefore the system cannot respond quickly to unforeseen

downstream demands. This logic of control is appropriate for

demand-oriented systems. The storage wedge responds to the

outflows variations rapidly and efficiently [Buyalski et al., 1991]

and [Goussard, 1993]. However, the canal bench has to be

horizontal to accommodate the null flow surface profile, and canal

building becomes much more expensive and difficult.

Controlled water level in the middle of the pool

In case of intermediate water level control, the controlled water level

is close to the middle of the pool, hence it controls the volume stored

in the pool (Figure 1.9c). It is a compromise between upstream and

downstream control, considering construction costs and availability

of storage volume. However, one or several distant water levels have

to be measured which implies the installation of a measurement

network. Controlling the intermediate water level is not so common,

one example can be the BIVAL controller [Chevereau and Schwartz-

Benezeth, 1987].

– Volumes

Controlled variables can be also be water volumes, that is the

integral of flows. It is applicable to canals with large storage

volumes equipped with lateral offtakes whose discharges do not

depend on the canal level, such as pumps. These controllers are

less sensitive to perturbations, but have longer response times.
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1.2 Model predictive control on water systems

Model predictive control (MPC) is one of the most commonly used advanced

control method in industry. Its development started in the 1970s

[Mart́ın Sánchez, 1974] and since then several applications are implemented in

industry. Predictive control refers to a group of controllers that have the

following main characteristics in common:

• explicit use of a model to predict the process output at future time

instants

• minimizing an objective function by calculating a control sequence

• receding strategy: at each instant only the first calculated control action

is applied, and the ones for the future instants are updated at every

control step.

The definition of the predictive control is outlined as follows: using a simple

model of a system to be controlled, the predictive control makes the calculated

(predicted) output of the process equal to the desired one, while giving the

input conditions for this calculated output. Figure 1.10 from [Mart́ın Sánchez,

1974] illustrates the main blocks defining the predictive control. Predictive

control is based on a linearised model (predictive model) that can approximate

the output of the system. Using this model and approximating the output in

every time step, the desired result can be given, and from this the desired input

can be calculated in a reverse way. This time length, the prediction horizon

can be chosen according to the constraints of the process. A key advantage of

MPC is that it can accommodate hard constraints on the inputs, states and

output of the controlled system.

Figure 1.10: Model predictive control from [Mart́ın Sánchez, 1974]
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The application of predictive control for water systems has been investigated

for a long time. It was applied as decentralized [Sawadogo et al., 1998] and

centralized [Akouz et al., 1998] control of irrigation canals. Different types of

predictive control have been implemented to water systems: predictive

functional control was also tested for canal operation by Pages [Pages et al.,

1998].

Adaptive predictive control has been applied to canals [Cardona et al., 1997],

rivers [Foss et al., 1989], and laboratory experiments have been published with

this type of control, too [Lemos et al., 2007]. Optimal predictive control is

implemented on a 100 km long canal in order to maintain the ecological flow

[Puig et al., 2009].

Nonlinear predictive control can also be applied to water systems: [Georges,

2009], [Igreja and Lemos, 2009] and [Schwanenberg et al., 2010].

For control of water systems, often the input variables are uncertain, and there

are different points of operation depending on the weather conditions. The

solution of using multiple models is developed in [van Overloop et al., 2005] and

incorporate the stochastic behaviour of the variables to the predictive controller

[Raso et al., 2012].

Model predictive control is used to control water levels [Wahlin, 2004] or

discharges [Rodellar et al., 1989] or even to control water quality [Xu et al.,

2010a], or for risk mitigation [Zafra-Cabeza et al., 2011].

There are several decentralized and centralized operation examples, and

recently there has been a great interest for distributed model predictive

control on irrigation canals [Negenborn et al., 2009b]. There are many ways

to implement the communication between agents: non-iterative [Negenborn

et al., 2009a], or iterative approaches [Doan et al., 2009]. For the latter a

good example is when the negotiation between agents is based on game

theory [Maestre Torreblanca, 2010].

Model predictive control due to its flexible nature and possible application of

constraints can be used to achieve special goals in canal control, for example

store water in certain canal pools [Hashemy Shahdany et al., 2012]. MPC can

be applied to irrigation canals [Puig et al., 2009], rivers [Compas et al., 1997],
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hydropower plants [Setz et al., 2008] or to drainage canals [van Overloop, 2006a]

and [van Overloop et al., 2008].

Apart from the investigations, predictive control proved to be applicable and

has been implemented and tested on real cases. One of the milestones of

model predictive control practical implementations is its application on the

West-Maricopa canal, that is considered to be a benchmark for numerical

tests [Clemmens et al., 1998]. First a numerical test for two reaches [Akouz

et al., 1998] and later for the whole canal has been published [Ruiz and

Ramirez, 1998]. The first actual demonstration was in 2010 by van Overloop

[van Overloop et al., 2010a]. It is shown that the water is efficiently delivered

to the users and the water level deviations are small.

Several applications of controllers on real systems are now implemented. In

Spain adaptive-predictive expert control is tested on the Canal Imperial de

Aragón by [Aguilar et al., 2012]. A general predictive control is implemented

on 12 basins for the Rhone river [Compas et al., 1997]. Also adaptive predictive

control is implemented on a river with hydroelectric power plants, Ulla-Forre

power production system on the South-west coast of Norway by Foss [Foss

et al., 1989]. Also there are several practical applications of MPC can be found

in the Netherlands for drainage purposes: [van Overloop, 2006b], [van Overloop

et al., 2008] and [van Overloop et al., 2010c].

1.3 Problem statement and objectives of the

thesis

1.3.1 Problem statement

To develop and test experimentally well-performing water level controllers for

canals affected by resonance.
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1.3.2 Main objective

The main objective of this thesis is the development of a centralized predictive

controller in order to control resonant canals. The study includes different

options for canal modelling, including the choice of the control variables.

All controllers are to be implemented numerically and experimentally on the

laboratory canal of the Technical University of Catalonia. In order to achieve

this objective the followings are proposed.

1.3.3 Detailed objectives

• Calibration of the hydraulic structures used for discharge and level

measurement in the laboratory canal.

• Analysis of the hydraulic behaviour of the laboratory canal, and finding

a model for control purposes in order to develop MPC for the laboratory

canal.

• Tackling the problem of modelling and controlling the gravity offtakes

that produce and unknown disturbance for the controller.

• Analyzing the choice of control variables, using the example of the

laboratory canal.

• Implementing a centralized model predictive controller, testing it

numerically and experimentally.

1.3.4 Contributions

• A deep analysis of model predictive control techniques for irrigation

canals in presence of resonance.

• Application of offset free model predictive control.

• Experimental verification of all the results.
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1.4 Thesis outline

This thesis is a description of a process of finding well performing controllers to

the UPC-PAC. Each chapter is analyzing one aspect of the controller building.

The process is summarized in Figure 1.11. There are three mains parts are

summarized: first obtaining the model for the canal. This consists of the

choice of the model then the identification. Secondly, having the model chosen

control algorithms are developed. Finally the chosen control algorithms are

tested numerically and experimentally.

• The work starts with a brief introduction in Chapter 1.

• In Chapter 2 the laboratory canal is described in detail, with focus on

the flow measurement techniques and their calibration.

• In Chapter 3 identification procedures are used to obtain a model for

control purposes, while Chapter 4 is analyzing the performance of white

box models. In the same chapter all models are compared and tested,

and the final model is chosen.

• In Chapter 5 the offset free MPC is discussed, and a new methodology

is suggested to achieve offset free control.

• In Chapter 6 the choice of control variables is analyzed.

• By arriving to Chapter 7 an offset free MPC have been developed for the

laboratory canal, based on a model, and chosen the best control variables.

In this last chapter the whole work is concluded.
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Figure 1.11: The controller development through this work
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Chapter 2

The laboratory canal

UPC-PAC

2.1 Introduction

In this chapter the laboratory canal of the Technical University of Catalonia is

introduced. After the physical description of canal, some ways to obtain flow

measurements are discussed. On one hand it is not closely related to automatic

control, on the other hand the correct measurement of discharge is crucial for

control of irrigation canals. In the laboratory canal the flow measurement is

carried out by means of hydraulic structures, like in most of the real canals.

They are very often used in practice and their accuracy and calibration is an

important issue in case of real canals just like in the laboratory. Therefore some

general and specific aspects of their calibration are discussed. For the gates a

short description is presented, since a calibration study about this canal was

already published [Sepúlveda et al., 2009]. For the weirs, the calibration and

the flow measurement are discussed more in detail.

25
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2.2 Laboratory canals

A short revision is given about similar installations in the world and their

developments. There are few hydraulic laboratories that have a scale model of

an irrigation canal with control facilities. These are located in Évora

(Portugal), Mexico city (Mexico), Denver (USA) and in Barcelona, at the

Technical University of Catalonia (Spain).

2.2.1 The Hydraulics and Canal Control Centre

(NuHCC)

The Hydraulics and Canal Control Centre belongs to the University of Évora

(Portugal). The experimental canal has U-shape with a length of 141 m,

containing 4 pools, each of them is approximately 40 m long. The cross

section is trapezoidal and the maximum flow is 0.09 m3/s, the uniform water

depth is 0.7 m. The channel is equipped with 3 motorized sluice gates, while

in the downstream end there is an overshot gate. The offtakes are orifice

types, the flow is controlled by servo motorized valves [Ratinho et al., 2002].

Several control strategies have been implemented and tested, starting from

the simple ones until the most sophisticated ones. Local PI control was

developed in [Ratinho et al., 2002] and [Rijo, 2003], and adaptive and

non-adaptive predictive control in [Lemos et al., 2007] and [Lemos et al.,

2009]. Model predictive control based on the whole set of linearized

Saint-Venant equations was implemented in [Silva et al., 2007]. Distributed

model predictive control is implemented numerically in [Igreja et al., 2011]

and later experimentally in [Lemos et al., 2012b]. Distributed

linear-quadratic-Gaussian (LQG) control [Lemos et al., 2012a] was the latest

development.

2.2.2 Laboratory canal of the Mexican Institute of Water

Technology (IMTA)

In Mexico, the experimental canal is situated at the Mexican Institute of Water

Technology (IMTA). The laboratory canal has four pools (13 m, 12 m, 12 m



i
i

“main” — 2013/4/8 — 12:44 — page 27 — #55 i
i

i
i

i
i

Chapter 2. The laboratory canal UPC-PAC 27

and 13 m), the whole canal is 50 m long, 0.6 m wide and 1 m deep. The

nominal inflow is 80 l/s. The controlled variables are the downstream water

levels of the first three pools and the control variables are the openings of the

sluice gates. There are no lateral outlets [Begovich et al., 2007c].

Different control strategies have been implemented: predictive control

[Begovich et al., 2007c], decentralized LQG (Linear-quadratic-Gaussian)

control [Begovich et al., 2007a] and also fuzzy gain scheduling control

[Begovich et al., 2005].

2.2.3 Laboratory canal of the Bureau of Reclamation,

Denver

A model canal facility is located in Reclamation’s Hydraulics Laboratory. It

is 91 m long and it is made from clear acrylic and aluminum. It has five

motorized control gates, four turnouts, a long-throated flow measurement flume

and an inverted siphon. It is fully instrumented to remotely monitor and

control water levels, gate positions, and flows with both manual and automatic

control features. The canal was designed for demonstration and education

purposes, and has many of the modern control features used on actual canals

[U.S. Department of the Interior, Bureau of Reclamation, 2013].

2.3 Laboratory canal of the Technical

University of Catalonia

2.3.1 History

The construction of the laboratory canal of the Technical University of

Catalonia started in 2003 and was finished in 2005. The design and

instrumentation of the canal was under the responsibility of Carlos

Sepúlveda, whose doctoral thesis is the result of this work [Sepúlveda, 2008].

Also the first control operation tests can be found in this document. He

carried out the first calibration of the sluice gates for flow measurement

[Sepúlveda et al., 2009].
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2.3.2 Physical description

The UPC-PAC canal (Canal de Prueba de Algoritmos de Control – Universitat

Politècnica de Catalunya) is specially designed to develop basic and applied

research in the irrigation canals control area. The canal is designed with a

serpentine shape in order to achieve the greatest length using small surface

area. The geometrical data of the canal is the following: it is 220 m long, 0.44

m wide and 1 m deep. The canal has zero slope in order to achieve the largest

possible time delay. The geometrical data is summarized in Table 2.1, where

n is the Manning’s roughness coefficient, B is the channel width (m), Sb is

the bottom slope (m/m) and X is the length (m) of the canal pool. In the

upstream end there is a constant level reservoir, that is connected with a sluice

gate to the canal. Photographs of the UPC-PAC are shown in Figure 2.1.

(a) Top view (b) Reservoir

(c) Weirs (d) Sluice gates

Figure 2.1: Pictures of the UPC-PAC
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n (-) B (m) Sb (m/m) X (m)

0.016 0.44 0 220

Table 2.1: The geometric parameters of the UPC-PAC

The canal contains 3 operative motorized sluice gates, therefore it is possible

to divide it into 3 reaches. At the downstream end there is a sharp crested weir

with variable height. The same structures are found at the downstream end of

every reach to model the gravity offtakes for irrigation (with minimum height of

34.3 cm). The maximum discharge that can circulate is 150 l/s. The schematics

of the canal is shown in Figure 2.2. The UPC-PAC can be configured from 1

to 3 pools. It is possible to simulate water level or discharge control, and to

produce known or unknown disturbances.

2.3.3 Instrumentation

The water levels are measured by 9 pressure sensors, and the data from the

water level and gate opening measurement is connected to a supervisory

control and data acquisition system (SCADA). The canal can be configured

from one pool up to three pools, hence both SISO (Single Input/Single

Output) or MIMO (Multiple Input/Multiple Output) controllers can be

tested. The SCADA system was developed in Matlab/Simulink environment,

which makes straightforward the test of any control algorithm developed in

Embedded Matlab language [Mathworks, 2008].

The water levels are measured by sensors, and the measured signals, after an

analog-digital conversion, arrive to the data acquisition card of the central

computer. The controller programmed in Embedded Matlab calculates the

control action, and the signal after digital-analog conversion is sent to the

actuators (the motors of the gates).
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Figure 2.2: Schematic layout of the UPC laboratory canal, from
[Sepúlveda, 2008]
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Figure 2.3: Schematics of the instrumentation of the UPC laboratory
canal

2.3.4 The numerical model of the UPC-PAC

The SIC software (Simulation of Irrigation Canals) is a hydraulic simulation

software adapted to the calculation of flows in irrigation canals developed by

IRSTEA [Malaterre and Baume, 1997]. The Saint-Venant equations are

solved numerically using Preissmann Scheme, an implicit finite difference

scheme. The development of SIC started in the early 1970s and it is still going

on. The software was especially developed for simulation of automatic control

of irrigation canals, and there are several possibilities to model different

hydraulic structures. Some of the most common control algorithms (e.g. PID,

BIVAL) are already incorporated and it is possible to evaluate any algorithm

written using the computational software Matlab [Mathworks, 2008].

The UPC-PAC is modelled using 6 nodes and 4 reaches (a reach is a part of

the canal bounded by nodes). This configuration is shown in Figure 2.4. The
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reaches are separated by the inner nodes, which are the places of the offtakes

(Weir 1, Weir 2 and Weir 3). The last node is in the place of Weir 4. The

gates are placed downstream to weir 1 (node 3) and weir 3 (node 5). Weir 4 is

included as boundary condition. All reaches belong to one branch.

Figure 2.4: Model of the UPC-PAC in SIC

The schematic view of the head reservoir can be seen in (Figure 2.5). The

height of the overflow weir is 1.28 m. The surface area of the reservoir is 3.08

m2. The overflow of the reservoir was implemented as a weir type offtake, as

open flume with the following data. The reservoir is modelled by using the first

and part of the second reach. The first reach is 0.2 m long, and an offtake is

inserted (at the first node). At that location the width of the flume was given

to be 4.44 m. Gate 1 is placed 0.1 m downstream.

Figure 2.5: The upstream reservoir of the UPC-PAC
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The sections are rectangular are 0.44 m wide. The canal has zero slope. Every

reach has one cross section at the beginning and one cross section at the end.

The reaches containing gates (reach 2 and 4) have altogether 4 cross sections,

with two additional ones. The first one is a “singular” cross section: it is a

cross section that shows the location of the gate and the second one directly

downstream of the singular cross section.

Validation of the SIC model

The numerical model was validated by using measurement data. The

calibration parameters were the gate discharge coefficients and the Manning’s

roughness coefficient. The value of the roughness coefficient is 0.016 and the

resulting values of the gate discharge coefficients are shown in Table 2.2. The

same roughness coefficient was assumed for the whole canal.

Gate

discharge

coefficient (-)

Gate 1 0.67

Gate 3 0.64

Gate 5 0.69

Table 2.2: Calibrated discharge coefficients for the Kindsvater-Carter
equation and measured error

The measured gate openings of a real experiment were fed to SIC and the

resulting water levels were compared in Figure 2.6. A change of water level in

the first canal pool is simulated: at 30 min the water level was reduced and at

60 min the water level setpoint was changed back to 85 cm. The differences

between the numerical simulation and the experiment are due to the physical

constraints of the installation. Similar constraints are present in case of real

irrigation canals. They are the followings:

• Minimal gate movement: 8 mm

• Measurement errors

– Gate position measurement error: 2 mm

– Water level measurement error: 8 mm
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•• Modelling of the hydraulic structures

There was a study carried out about modelling the hydraulic structures,

whose behaviour still cannot be exactly described by the equations.

• Unmodelled processes

– Small flows on the side of the gates

– Local energy losses and 2D effects due to the curvature of the canal

– The unmodelled dynamics of the gates, transitional flows between

submerged and free flow

Figure 2.6: Comparison of the measured (blue, green and red) and the
simulated (dashed black lines) water levels
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2.4 The calibration of the gates of the

UPC-PAC

2.4.1 General description of sluice gates

The canal check gate structure has become the dominant tool for implementing

canal system operations [Buyalski et al., 1991]. The sluice gate can be defined

as a wooden or metal plate, vertical or curve, which slides in grooves in the

sides of the canal [Sepúlveda, 2008]. It is often used as a control structure in

canals.

2.4.1.1 Flow types of the sluice gate

Free flow

If the flow is free flow through the opening gap, the flow smoothly accelerates

from subcritical (upstream) to critical (near the gap) to supercritical

(downstream) [White, 1999]. For the sudden obstruction, as the jet is coming

from the gate, the flow is contracted to a minimum height, called the vena

contracta (H2). See Figure 2.7.

Figure 2.7: Sluice gate - free flow

In case of a sluice gate the flow upstream the gate is subcritical, downstream

the gate is supercritical. In this way the downstream water level is determined

by the gate. In order to have subcritical flow condition further downstream

hydraulic jump develops to perform the transition in energy [Henderson, 1966].
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The shape of the hydraulic jump depends on the relationship between the

downstream water depth and the conjugate water depth H ′3.

If the downstream water depth is equal to the conjugate water depth, the

hydraulic jump occurs exactly downstream the gate (H3 = H ′3). See Figure 2.8.

Figure 2.8: Sluice gate - hydraulic jump

If the downstream water depth is smaller than the conjugate water depth the

hydraulic jump is located downstream the gate, until it can satisfy the energy

equation (conjugate depths) (H3 < H ′3). See Figure 2.9.

Figure 2.9: Sluice gate - hydraulic jump further downstream

Submerged flow

If the downstream water depth is higher than the conjugate water depth (high

tailwater) the hydraulic jump is forced to move upstream and may eventually

drown in the source and become a submerged hydraulic jump (H3>H3’). The

sluice gate is said to be drowned or partially drowned. See Figure 2.10. The
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energy will dissipate in the exit flow in the form of a drowned hydraulic jump,

and the downstream flow will return to subcritical. Most of the gates working

as discharge control structures are under submerged flow condition. Therefore

it is crucial to ensure that the gates in the canal are operating submerged.

It is also important for the flow calculations: different relationships apply to

submerged and to free flow [White, 1999].

The canal system should be designed either for submerged or for free flow. The

sudden changes in flow conditions can cause operational problems [Buyalski

et al., 1991]. In case the sluice gates have discharge control function it is

crucial that the gates operate in a submerged condition. In the UPC-PAC

canal the upstream gate always operates with small gate openings, therefore

the flow is always submerged.

Figure 2.10: Sluice gate - submerged hydraulic jump

The limit between free and submerged flow

According to the manual of the HEC-RAS hydrodynamic model [Brunner,

1995] submergence occurs when tailwater depth/headwater energy is bigger

than 0.67. It completely changes when the ratio increases to 0.8.

The condition from [Swamee, 1992] is used to make a difference between free

and submerged flow: where H1 upstream depth, H3 downstream depth and L

is the gate opening. If Equation 2.1 holds, it is free flow condition, while if

Equation 2.2 holds the flow is submerged:

H1 ≥ 0.81H3

(
H3

L

)0.72

, (2.1)
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H3 < H1 < 0.81H3

(
H3

L

)0.72

. (2.2)

2.4.2 Flow measurement with sluice gate

From the energy equation the flow under a sluice gate in free flow conditions is

Q = CdfBL

√
2g

(
H1 + α

V 2
1

2g

)
(2.3)

where Cdf is the discharge coefficient for free flow, B is the width of the gate,

L is the opening, H1 is the upstream water depth, αV 2
1 /(2g) is the velocity

head of the approaching flow. For submerged flow, the effective height should

be used in addition to the upstream water level or the difference between the

upstream and the downstream water level. For the experiments, the velocity

head can be included in the discharge coefficient [Chow, 1959]

Q = CdfBL
√

2gH1 (2.4)

and for submerged flow:

Q = CdLB
√

2g (H1 −H3). (2.5)

The discharge coefficient is different for submerged Cd and for free flow Cdf

conditions. In case of submerged flow it depends on the contraction coefficient,

the gate width, the upstream water level, and the downstream water level.

The contraction coefficient shows the proportion of the water depth at the

vena contracta and the gate opening: H2/L (see Figure 2.8). The contraction

coefficient depends on the amount of gate opening, shape of the gate lip,

upstream water depth and the gate type [Lin et al., 2002]. The analysis of Lin

shows that contraction coefficient affects not only the discharges for both free

flow and submerged flow, but also the distinguishing condition.

The gates often serve not only as control structures but also as discharge

measurement tools. Clemmens [Clemmens, 2003] claimed only 5% error of

discharge measurement in submerged state for radial gates. Using the Ferro

method [Ferro, 2000] for the laboratory canal the Mean Absolute Percentage
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Error (MAPE) was reported to be of MAPE<3% and for the constant

coefficient 0.611 MAPE<6% in [Sepúlveda, 2008].

The equations are compared in the article of Sepúlveda [Sepúlveda et al., 2009].

The Ferro equations were chosen after sufficient calibration. The parameters

to calibrate were the discharge coefficient including the effects of the velocity

head in the approach canal, the viscous effects, turbulence, and nonuniform

velocity distribution [Ferro, 2000].

Lozano [Lozano, 2009] calibrated sluice gates in irrigation canals. In case of

small gate openings and greater water level difference the main contributor is

the discharge coefficient. In case of very small gate openings this value has a

crucial role. They obtained the best results when the discharge coefficient is

a parabolic function of the gate opening. They also reported changes in the

discharge coefficient by time due to the physical defections of the gates from

the use.

2.4.3 Flow measurement with the gates in UPC-PAC

Figure 2.11: Sluice gate in the UPC-PAC

Due to the zero slope canal, the gates work most of the time in submerged flow

conditions. Gate 1 separates the upstream reservoir and the canal. The the

upstream water level can be considered constant. Gate 1 is 44.3 cm wide and

it is made of methacrylate reinforced with a metal skeleton. It is moved by a

constant speed servomotor of about 0.3 cm/s speed.
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Numerous measuring campaigns have been made on the UPC-PAC canal in

order to calibrate the gates. Several methods have been considered, and finally

the classical gate equation showed good results. The measured dataset was

divided into two parts: half of it was used for calibration and the other half

was used for verification. The following calibration curves have been obtained

(Figures 2.13, 2.14 and 2.15).

The three-pool configuration is shown in Figure 2.12. The naming of the gates

corresponds to the names shown in the schematic view (Figure 2.2): they are

not consecutive numbers, because at the time of this work was carried out only

these gates were operative from the 5 possible gates.

Taking into account the errors in the devices and the measurement error

propagation, the current accuracy of the discharge measurement is about

2 l/s. The resulting calibrated constant discharge coefficients are summarized

in Table 2.3 that are used with Equation 2.5.

Figure 2.12: The three-pool configuration of the UPC-PAC

Gate
Discharge

coefficient (-)

Gate1 0.628

Gate3 0.645

Gate5 0.686

Table 2.3: The discharge coefficients of the gates of the UPC-PAC
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Figure 2.13: Calibration of Gate 1

Figure 2.14: Calibration of Gate 3
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Figure 2.15: Calibration of Gate 5

2.5 Flow measurement with the weirs

2.5.1 Introduction

Weirs are used in irrigation canals as control structures. They can be placed

at turnouts when the discharge in the lateral canal depends on the water level

in the main canal or used as side-channel spillways. Weirs are also simple

and reliable flow measurement tools consisting of an overflow crest or notch

[Buyalski et al., 1991].

A measuring weir is defined as an overflow structure built perpendicular to

an open channel axis to measure the flow rate of water [Kulin and Compton,

1975]. The flow measurement with weirs is one of the oldest flow measurement

methods. Its accuracy can be ±3% [Sepúlveda, 2008].

2.5.2 Nomenclature of weirs

Weirs can be categorized according to their shape, width and position (e.g.

lateral weirs). A weir in the form of a relatively long raised channel control

crest section is a broad-crested weir (Figure 2.16). If the water springs clear
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downstream, does not cling to the downstream face of the weir plate it is called

sharp-crested weir or thin plate weir (Figure 2.17).

Figure 2.16: Broad crested weir

(a) Weir in the laboratory (b) Sharp crested weir

Figure 2.17: Photo and schematics of a sharp crested weir

Weirs are commonly named by the shape of their blade overflow opening shape

for sharp-crested weirs or the flow control section shape for broad-crested weirs.

Therefore, weirs can be classified as rectangular, trapezoidal and triangular.

The cut into the section of the thin plate of the weir is called the notch. Weirs

with a triangular shape cutting are called V-notch weirs and are often used for

the measurement of low flows (Figure 2.18).

When the width of the notch is equal to the width of the canal there is no

contraction, it is called suppressed weir.
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Figure 2.18: V-notch weir

In case the opening is smaller than the width of the weir, the water flows with

small velocity and then when it reaches the plate it turns to the opening. This

turn cannot be instantaneous - it continues downstream the opening - and

therefore the width of the flume is smaller than the opening. This process is

called side contraction. It is fully contracted if the distance between the

opening and the canal side is at least equal to two heads. Otherwise the weir

is partially contracted.

The falling sheet of water is called the nappe.

The water surface starts to drop more or less two heads distance upstream

from the weir - this is called drawdown. This is also the location of the head

measurement. This results from the acceleration as the water approaches the

weir, the hydrostatic head is converted into velocity head.

The term vertical contraction includes both crest contraction and drawdown

at the weir plate. When there are full contractions at the ends and at the

bottom, the weir is called contracted weir.

For good measurements it is required to have full air ventilation under the

nappe and the proper crest elevation. Free flow occurs when the air can go

freely under the falling jet sheet or nappe.

If the downstream water rises above the crest elevation the weir is called

submerged. For this case formulas are developed in [Villemonte, 1947] for

discharge measurement, however, only for rectangular canals.
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In the following section the focus is on sharp crested weirs, and the notation

is introduced: B as width of the weir (also the canal width), Bw as opening of

the weir, He as head over the weir and W as weir height.

2.5.3 The general sharp crested weir equation

The calculation of discharge over a weir can be deduced from the Bernoulli

equation [Sánchez-Juny et al., 2005]. The velocity head at any point 2 above

the weir crest is assumed to equal the total head upstream.

Figure 2.19: Flow over the weir

The energy balance on the streamline between point 1 and 2:

H1 +
V 2
1

2g
= Y2 +

V 2
2

2g
(2.6)

where V1 is the velocity at point 1, V2 is the velocity at point 2 and the other

notation are shown in Figure 2.19. Equation 2.6 can be generalized to any

point of the streamline:

He +
V 2
1

2g
= y +

V 2
2

2g
(2.7)
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The higher the weir the more negligible is the V 2
1 /2g and can be approximated

by He. Hence the velocity at any two points over the weir crest is

V =
√

2g(He − y). (2.8)

The flow is expressed as:

Q = V A. (2.9)

A small increase in the flow is the following:

dQ = V dA = V 2xdy. (2.10)

Equation 2.8 and Equation 2.10 can be combined and for the effect of the

contraction of the flow the weir discharge coefficient Cdw is introduced:

dQ = Cdw2x
√

2g
√
He − ydy (2.11)

where Cdw accounts for the effect of contraction of the water layer over the

weir, and it is called the discharge coefficient. Data about the value of Cdw

can be found in literature, it can be calculated from the weir crest height and

the head, or also it can be calibrated. Experiments show that if the flume

leaving the weir is on atmospheric pressure (aired) the coefficient Cdw can be

considered constant for sharp crested weirs [Chow, 1959].

Integrating Equation 2.11 in the vertical direction the following expression can

be obtained:

Q = 2
√

2gCdw

∫ h

0

x
√
He − ydy. (2.12)

In case of no lateral contraction the horizontal distance along the x axis can

be expressed as the half of the width of the cross section

x =
B

2
. (2.13)

Therefore Equation 2.12 together with Equation 2.13 can be written as

Q = 2
√

2gCdw

∫ h

0

B

2

√
He − ydy. (2.14)
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Carrying out the integration the following expression is obtained:

Q = −2

3

√
2gCdwB[

√
He − y(He − y)]He

0 . (2.15)

The final equation for the discharge over a sharp crested weir is:

Q =
2

3

√
2gCdwBH

3/2
e . (2.16)

There are different methods of approximating the discharge coefficient. In some

books, a general discharge coefficient is defined by collecting some terms in the

weir discharge equation (Equation 2.16), Cw is the following:

Cw = Cdw
2

3

√
2g (2.17)

and the discharge is calculated as

Q = CwBH
3/2
e . (2.18)

2.5.4 Constant discharge coefficient

There are different authors using constant approximation for the discharge

coefficient. In [White, 1999] 0.81 is used as a coefficient and the author indicates

that is should be decreased. In SIC 0.6 is suggested [Malaterre, 2012]. In the

manual of Hec-Ras hydrodynamic model [Brunner, 1995] a range of coefficients

is suggested. From Dias a calculated value is used [Dias et al., 1988].

Using the Equation 2.17 general values both for Cw and Cdw are presented in

Table 2.4.

Cw (-) Cdw (-)

Sic 1.77 0.60

Hec min 1.69 0.57

Hec max 1.80 0.61

Dias 1.83 0.62

Ferro 1.86 0.63

Table 2.4: Constant discharge coefficients for the weirs
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2.5.5 Discharge coefficient depending on the head and the

weir height

Some authors do not consider the discharge coefficient constant, but dependent

on the head (He) and the weir height (W ).

Rehbock

The discharge coefficient for a rectangular weir without contraction can be

determined by the Rehbock formula [Henderson, 1966]:

Cdw = 0.611 + 0.08
He

W
. (2.19)

White

The following discharge coefficient approximation is given in [White, 1999]

Cw = 0.564 + 0.0846
He

W
(2.20)

if He/W is less than 2.

Rouse

Rouse proposed an equation for cases when He/W > 15 [Swamee, 1988]

Cdw = 1.06

(
1 +

W

He

)1.5

. (2.21)

Swammee

In [Swamee, 1988] the equations of Rouse and Rehbock are combined and

obtained the following full range equation:

Cdw = 1.06

((
14.14W

8.15W +He

)10

+

(
He

He +W

)1.5
)−0.1

. (2.22)
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The same author provides approximation for the discharge coefficient for

contracted weirs:

Cdw =
0.611 + 2.23

(
B
Bw
− 1
)0.7

1 + 3.8
(
B
Bw
− 1
)0.7 +

0.075 + 0.011
(
B
Bw
− 1
)1.46

1 + 4.8
(
B
Bw
− 1
)1.46 He

W
(2.23)

where B is the width of the weir and Bw is the weir width and He is the head

over the weir.

Bagheri and Heidarpour

In [Bagheri and Heidarpour, 2012] experimental upper and lower nappe profiles

were used and fitted them by quadratic and cubic equations and in addition

free vortex theorem was used to determine the discharge coefficient:

Cdw = 0.324 exp

(
0.94

Bw
B

)
ln

(
1 +

0.73
(
He

W + 3.64
)

exp
(
1.18Bw

B

) )
. (2.24)

Afzalimehr and Bagheri

In [Afzalimehr and Bagheri, 2009] a calibrated coefficient was used, there is a

correction factor that should be determined as a function (power) of He/W :

Cdw = 0.409

(
W

He

)0.459
[(

1 +
He

W

)2

− 1

]1/2
. (2.25)

2.5.6 Kindsvater-Carter equation

To calculate the discharge, one of the most recommended methods is the

Kindsvater-Carter method [Dodge, 2001]. The method is suitable for

submerged and free flow, and the improved version also for V-notch weirs.

The advantage of this method is that it accounts for the dependence of the

weir coefficient on the effective length of the weir and on the head. The

method applies to both fully and partially contracted weirs, and also for

suppressed weirs. This makes it very useful, because most of the methods are

only applicable for fully contracted or suppressed cases [Dodge, 2001].
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The Kindsvater-Carter equation for rectangular weir is also recommended by

several authors:

Q = Cdw
2

3

√
2g (Bw +Kb) (He +Kh)

3
2 (2.26)

where Q is the discharge, Cdw is the discharge coefficient, g is the acceleration

of gravity, Bw is the width of the notch and He is the head. The sum Bw+Kb is

called “effective width” and the sum He+Kh is called “effective head”. Kb and

Kh account for the combined effects of several phenomena including viscosity

and surface tension.

In [Herschy, 1995] the Kindsvater-Carter equation is presented with the

following constant numbers: Kh was estimated to be 0.001 m just like later in

[Sepúlveda, 2008] and Kb was taken to be Kb=0.003 m. Therefore,

Q = Cdw
2

3

√
2g (Bw + 0.003) (He + 0.001)

3/2
(2.27)

where

Cdw = 0.587

(
1− 0.003

W

He

)
. (2.28)

The discharge coefficient Kindsvater-Carter equation can be calibrated. The

dependence of the discharge coefficient on the ration of the head and the weir

height can be expressed in the following way:

Cdw = Cdwa
W

He
+ Cdwb (2.29)

where Cdwa and Cdwb are calibrated values.

2.6 Calibration of the weirs of the UPC-PAC

The laboratory canal has four weirs: one at the end of the canal, that is

completely orthogonal to the flow (Figure 2.20) and three weirs that are located

at the curvature of the flow (Figure 2.21). All the weirs are sharp crested weirs

with a height that is possible to change. During the construction of the canal

these weirs were calibrated using the Kindsvater-Carter method [Dodge, 2001],

but with the original calibration they had a considerable measurement error.

Therefore it was decided to carry out a study and a new calibration campaign.
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Figure 2.20: Top view of Weir 4

During this campaign, the upstream discharge was measured using a triangular

weir and a limnimeter and the water level 0.5 m upstream of the weirs was

measured with a metallic ruler (0.5 mm accuracy). Every measurement was

conducted in steady state that was reached in 30 min of waiting after setting

the conditions. The number of measured points are 12, 9, 12, 55 for Weir 1,

Weir 2, Weir 3 and Weir 4, respectively. The reason for measuring more points

for Weir 4 is its role: while the other weirs are used occasionally as offtakes,

Weir 4 is always in use and its discharge-stage relationship determines the water

level in the last pool. There is a small contraction (the opening is 0.395 m and

the width of the section us 0.44 m), therefore equations both with and without

taking the contraction into account are tested.

(a) Photograph of weir (b) Weir schematics

Figure 2.21: The position of the offtake weirs in the UPC-PAC
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The test of the discharge coefficients

Some constant approaches were tested. The average error in discharge was

calculated using the measured points. Discharge coefficients as functions of the

head or the head-weir height ratio have been tested. The equations were tested

with and without using the effective width. The effective width (Bwe) can be

computed using the Francis equation [Chow, 1959]:

Bwe = Bw − 0.2He. (2.30)

In [Bagheri and Heidarpour, 2010] it was found that the effective width varies

with the water depth. The minimum effective width was measured not at

the vicinity of the weir. They use an average value between the minimum

effective width and the effective width measured at the vicinity of the weir.

The following formula is suggested:

Bwe = Bw − 0.19He. (2.31)

The two formulas were tested and the latter (Equation 2.31) proved to be

better describing the conditions in the laboratory canal. In order to measure

the discharge a known flow was set and all the outflow was directed to the

weir to be calibrated by closing the gate just downstream of the given weir. In

some cases small leakages were observed, especially in case of the calibration of

Weir 3: the gate downstream of Weir 3 was not possible to be closed completely.

This leakage was estimated and the date were corrected with this leakage. This

explains the poorer quality of the calibration results for Weir 3.

2.6.1 Results with constant coefficient

Constant weir discharge coefficients suggested by different authors have been

tested. The average discharge error is presented in Table 2.5 and 2.6. The

same values are shown for each weir in Figures 2.22, 2.23, 2.24 and 2.25.
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HEC-

RAS
SIC Dias Ferro 0.61

Weir 1 2.4 3.1 4.4 5.1 3.8

Weir 2 2.7 3.4 4.9 5.7 4.2

Weir 3 3.8 4.7 6.7 7.7 5.7

Weir 4 1.2 1.3 2.3 3.0 1.7

Table 2.5: Average discharge error (l/s) using the constant coefficients

HEC-

RAS
SIC Dias Ferro 0.61

Weir 1 1.5 1.3 1.5 1.9 1.4

Weir 2 2.5 1.9 1.3 1.5 1.4

Weir 3 3.8 3.5 3.0 2.9 3.2

Weir 4 4.5 3.9 2.8 2.3 3.3

Table 2.6: Average discharge error (l/s) using the constant coefficients

Figure 2.22: Calibration of Weir 1
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Figure 2.23: Calibration of Weir 2

Figure 2.24: Calibration of Weir 3
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Figure 2.25: Calibration of Weir 4

In case of the weirs where the flow is not completely orthogonal (all except Weir

4) the graphs show the same pattern: the HEC-RAS and SIC method show

the best results and the constant 0.61 if contraction is not taken into account.

However, if contraction is assumed, the results are much better and for all the

methods the error is less than 2 l/s (except for Weir 3, Figure 2.24). In this

case there is no considerable difference between the methods, and generally

0.61 works well. For Weir 4, the use of formulas without contraction shows

better results, given the flow approaching Weir 4 is completely orthogonal.

2.6.2 Results with non-constant coefficients

The different methods introduced in subsection 2.5.5 to obtain the discharge

coefficient are evaluated. From the measured data the discharge coefficient is

calculated and the error between the measured (reference) and the calculated

discharge is compared.

The results with non-constant coefficients are shown in Table 2.7 and for the

non-contracted and for the contracted case in Table 2.8. For the latter the

contraction was included by using the approach of Equation 2.31. The same

values are shown for each weir in Figures 2.26, 2.27, 2.28 and 2.29.
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Rehbock White Swammee Bagheri Afzalimehr

Weir 1 5.3 4.7 5.1 5.6 6.3

Weir 2 6.6 5.9 6.4 7.0 7.7

Weir 3 8.9 8.1 8.7 9.6 10.4

Weir 4 5.1 4.5 4.9 5.7 6.3

Table 2.7: Average discharge error (l/s) using the calculated coefficients,
no contraction is assumed

Rehbock White Swammee Bagheri Afzalimehr K-C

Weir 1 2.2 1.7 2.1 2.5 3.1 2.4

Weir 2 2.1 1.6 2.0 2.6 3.1 2.9

Weir 3 2.9 2.5 2.8 3.2 4.0 4.0

Weir 4 1.4 1.4 1.4 1.6 1.9 1.2

Table 2.8: Average discharge error (l/s) using the calculated coefficients,
including contraction

Figure 2.26: Calibration of Weir 1 - Non-constant discharge coefficient
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Figure 2.27: Calibration of Weir 2 - Non-constant discharge coefficient

Figure 2.28: Calibration of Weir 3 - Non-constant discharge coefficient
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Figure 2.29: Calibration of Weir 4 - Non-constant discharge coefficient

The results in general are slightly worse than with constant coefficients. This

result is quite unexpected. One reason can be the propagation of the

measurement errors: once the head is wrongly measured this error is

multiplied when the discharge coefficient is calculated. Also for the

calibration of the gates, Sepúlveda [Sepúlveda et al., 2009] obtained similar

results: the constant coefficient had very good performance compared to

other methods.

Here in all cases including the contraction to the equation gives better results,

even for Weir 4 (Figure 2.29). The error is generally less than 3 l/s, and White

contracted method gives the best results.

2.6.3 Calibration of the discharge coefficient

The advantage of the calibration is that some phenomena that cannot be

accounted directly can be included. In order to calibrate the

Kindsvater-Carter equation, the data was split into calibration data and

validation data. The calibration is shown in Figures 2.30, 2.31, 2.32 and 2.33.

The results with the calibrated coefficients using the Kindsvater-Carter

method are shown in Table 2.9 and Figure 2.34. As expected the calibrated

results are better than the constant or the calculated ones. The error was

around 1.5 l/s except in case of Weir 3.
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Error (l/s) Cdwa(-) Cdwb (-)

Weir 1 1.4 0.123 0.586

Weir 2 1.4 0.012 0.639

Weir 3 2.3 0.334 0.486

Weir 4 1.5 0.178 0.591

Table 2.9: Calibrated discharge coefficients for the Kindsvater-Carter
equation and measured error

Figure 2.30: Calibration curve for the Kindsvater-Carter formula, Weir 1

Figure 2.31: Calibration curve for the Kindsvater-Carter formula, Weir 2
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Figure 2.32: Calibration curve for the Kindsvater-Carter formula, Weir 3

Figure 2.33: Calibration curve for the Kindsvater-Carter formula, Weir 4
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Figure 2.34: Kindswater-Carter

2.7 Conclusion

• The hydraulic structures can be used as effective discharge measurement

equipments in open channels in front of other measurement methods.

• In the UPC-PAC the gates and the weirs have been calibrated. For the

weirs several calibration methods have been used and compared:

constant, non-constant and calibrated discharge coefficient both

supposing and not supposing contraction. The best results were

obtained with the calibrated coefficients, as it was expected.

• The contraction is a very important factor, even in cases when it is very

small (the canal is 44 cm wide and the weir is 39.5 cm). It influences the

flow considerably and its effects should be taken into account.

• In most of the cases Weir 4 (completely orthogonal to the flow) showed

different characteristics than the other weirs whose position is not

completely orthogonal. For these weirs the formulas with contraction

showed better results. This contraction can also be observed on the

pictures taken of the flow pattern.

• The average error in discharge measurement for the UPC-PAC is less

than 2.5 l/s, that is less than 4% for normal operation conditions (70 l/s

discharge).

• The best performance was obtained with the calibrated discharge

coefficient (Kindsvater-Carter method). However, with constant
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discharge coefficient also acceptable results were obtained. Therefore in

case of possibility, calibration can be suggested. However, also without

calibration the weirs can be used to measure discharge by using

constant or calculated coefficients. In this case the constant coefficients

performed better than the variable ones.
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Chapter 3

Properties of canal pools

and identification

3.1 Introduction

In order to make robust and well performing controllers it is crucial to know

very well the characteristics of the canal. In this chapter the dynamics of

the canal pools are analyzed. Then an identification method, the Auto Tune

Variation (ATV) method, is described and used in the UPC-PAC. The results

are analyzed and the canal properties are summarized quantitatively.

3.2 General description of the hydraulic

behaviour of the canal pools

3.2.1 Type of canal pools

The canal pools can be classified into two types based on their dynamic

behaviour: (1) long and shallow pools with considerable delay time and (2)

short and deep pools. A short description of the categories is given in the

following.

63
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3.2.2 Long and flat canal pools

Long and flat canal pools can mainly be characterized by the time delay: the

time it takes for a disturbance (change in discharge or water level) to travel

from the upstream to the downstream end. A wave attenuates by the time it

reaches the downstream end of the canal reach due to the loss of energy caused

by the friction [Schuurmans, 1995]. An example for a long canal pool is the

first pool of one of the ASCE test canals [Clemmens et al., 1998], the Corning

canal (Figure 3.1a).

The canal pool can be divided in two parts: backwater and uniform flow

portion. In the uniform flow portion the friction loss is balanced by the

bottom slope and the canal reach has constant depth, called normal depth. In

the backwater portion the water depth exceeds normal depth and the water

surface is nearly horizontal. In canals that have both backwater and uniform

flow portion, the waves developed in the backwater part dampen fast as they

interact with the normal depth part, therefore they show few resonance.

(a) (b)

Figure 3.1: Examples of profiles of a long (a) and a short (b) canal pools

The Bode diagram of an example for this type is shown for the transfer

function between the upstream discharge and the downstream water level in

Figure 3.2a and the transfer function between the downstream discharge and

the downstream water level in Figure 3.2b. The Bode diagram shows the

response of a function to sinusoidal excitation: the magnitude plot shows the

change of the amplitude and the phase plot shows the phase shift of the
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output compared to the input. The low frequency gains show the integrator

behaviour, a straight line, whose gain can be determined from the slope of the

straight line. There are no resonant peaks. This shows the fact that a wave

coming from upstream attenuates and does not have enough energy to reflect

and go back again upstream. The phase starts at −90◦ showing the presence

of the integrator, while it decreases towards high frequencies showing the time

delay. The Bode plot for a pure integrator would be a straight line with a

slope of -20dB. However, this line bends at high frequencies representing the

zero shown by [Litrico and Fromion, 2004b].

This type of pools is very common and their control has been analyzed.

Research has been conducted to develop stable controller tuning rules:

[Schuurmans et al., 1999] and [Litrico and Fromion, 2006b].

(a) (b)

Figure 3.2: Transfer function between the upstream discharge-
downstream water level (a) and between the downstream discharge-

downstream water level (b)

3.2.3 Short and flat canal pools

Short and flat canal pools are almost entirely under backwater and the water

surface is nearly horizontal (see Figure 3.1b).

As the water level exceeds normal depth, the depth of a disturbance wave is

also bigger and it does not dissipate so fast. A disturbance occurring at the

upstream end reaches the downstream end and is able to reflect and travel

back upstream and then downstream again before it attenuates. The presence

of these waves are influenced positively by several factors: short canal pool,
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low friction, high water levels. The detailed description can be found in [van

Overloop, 2006b]. Figure 3.3 from [van Overloop, 2006b] summarizes the pool

characteristics influencing the resonant behaviour.

Figure 3.3: Canal pool properties influencing the resonance behaviour,
from [van Overloop, 2006b]

The UPC-PAC belongs to this type of canals. The Bode plot of the transfer

function between the upstream discharge and the downstream water level is

shown in Figure 3.4. At low frequencies the integrator behaviour can be seen

just as in case of the long pools, however at high frequencies peaks in the

amplitudes appear. These peaks show the resonance behaviour of the system,

if it is excited with its own frequency it behaves as an oscillator: the amplitude

(gain) increases. The first peak corresponds to the wave that starts upstream,

reflects downstream then travels upstream, reflects at the upstream end and

arrives downstream again. The subsequent peaks represent the higher order

harmonics.
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Figure 3.4: Bode plot of a canal pool with resonance

The control of this type of canal pools is much less studied and it is

challenging since the controlled and the control action variable are in

counter-phase. In case the wave is present at the downstream end, the

controller will decrease the discharge in the upstream end. However, the

upstream wave is already decreased, therefore in this way it just generates

more resonant waves (Figure 3.5). Some references about the study of this

lind of canal pools are already presented in subsection 1.1.3.

Figure 3.5: Illustration of resonance waves, from [van Overloop, 2006b]

The control of these canal pools raises difficulties, because the resonance peaks

can cause instability in the controller. The controller will be unstable in closed

loop according to the Nyquist stability criterion. According this criterion the
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number of unstable closed-loop poles is equal to the number of unstable open-

loop poles plus the encirclements of the point (-1,0) on the Nyquist plot of

the transfer function multiplied by the feedback gain. If the magnitude of

the resonance peak in open loop is larger than 1, the transfer function will

be unstable according to this criterion. To avoid this problem, in most of the

cases, low pass filters are used to filter out this resonance peak to avoid the

controller acting on it.

3.2.4 Resonance

As it was mentioned above, for short and flat canal-pool resonance is a common

phenomenon. An illustration of the waves traveling back and forth in the first

pool of the UPC-PAC is shown in Figure 3.6.

Figure 3.6: Illustration of resonance waves, numerical simulation of the
first pool of the UPC-PAC
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Figure 3.7: The first harmonics in the third pool of the UPC-PAC

The plot is obtained by with 1D hydrodynamic simulator SIC. In the first sub-

figure the surface is completely flat. Then the upstream gate in the pool is

opened (second subfigure) in order to send perturbation (additional discharge)

downstream. The wave travels downstream (3) reaches the downstream end

(4) and bounces back (5). The same process continues (6-8), the wave keeps

on travelling and bouncing back.

The peaks of the Bode plot are related to these resonance waves. This is

illustrated in Figure 3.7. The first peak corresponds to the first harmonic, the

second peak shows the second harmonic. The small figures show the standing

wave pattern that corresponds to that harmonic. There are infinite number of

harmonics that can be calculated using the following equation:

ωp(k) =
2πk

TR
(3.1)
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where k = 1, 2, ...,∞, ωp(k) is the frequency of the resonance peaks and TR is

the travel time: the time it takes for a wave to travel back and forth in the

canal pool and its calculation is given later by Equation 3.4. The first

harmonic is specially important for controller design (see the small figure

related to the first peak). When the downstream water level is under

setpoint, the controller would try to increase the upstream discharge.

However, by the time this increase arrives to the downstream end, the water

level will be in counter-phase and a larger peak level is produced. This is also

shown in Figure 3.5. In other words, due to the Nyquist stability criterion,

the feedback control system becomes unstable if the total gain of the canal

pool and the controller exceeds 1. Hence, systems with high resonance peaks

are more difficult to control since the controller gain cannot be too high.

According to the gain margin criterion, the proportional gain limitation is

expressed in the form:

Kp <
1

2MR
(3.2)

where Kp is the proportional gain of the feedback control system and MR is

the magnitude of the resonance peak.

There are three basic ways to deal with the resonance phenomenon:

1. Make a controller design that is always on the safe side, using the biggest

possible peaks for the design. This would result in a stable, but slowly

responding controller. In most of the cases, especially when the resonance

properties are unknown, this option is chosen.

2. Filter out the resonance. By adding a low pass filter to the incoming

water level signals, a controller can be designed as if resonance was not

present. Filtering would also slow down the controller reaction. In this

case the resonance will be present, but the controller will not act on

it. There are filter designs given in [Schuurmans, 1997] based on the

resonance properties of a canal pool.

3. The option of including the resonance in the model of the canal for the

controller is first treated in [van Overloop et al., 2010b].

In this work the first and the third option is treated in Chapter 4. The second

option was examined in [Horváth et al., 2013b], and in this work is not treated

due to the observed delay introduced by the filter.
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3.3 Identification of canal properties including

resonance characteristics

In this work the focus is on the control of short and flat canals, just as the

laboratory canal presented above. In order to develop or tune well performing

controllers, the main properties of the behaviour of the canal pool need to be

known. In [Schuurmans, 1997] tuning rules are developed for filters in order

to control these type of canal pools by filtering out the resonance peaks. In

[Litrico et al., 2007] tuning rules are developed for PI controllers based on the

same properties: backwater area, resonance frequency, resonance peak. Also

for more advanced control techniques these properties are crucial to develop

simple models, as it is described in [van Overloop et al., 2010b].

In the following some ways of obtaining these parameters are discussed.

3.3.1 Method 1: Equations

From the geometry of the canal some properties can be well approximated, like

the backwater surface (As) as the multiple of the canal top width (T ) and the

length (X) in case of regular channels:

As = XT. (3.3)

The resonance frequency can also be very well approximated from the travel

time (TR): the time it takes for a wave travel back (TRD) and forth (TRU ) in

the canal:

TR = TRD + TRU =
X

C + V
+

X

C − V
(3.4)

where C is the celerity and V is the velocity. And the frequency (ωR) of the

first resonance peak can be calculated as the following:

ωR =
2π

TR
. (3.5)

The resonance peak is more difficult to approximate. One approximation based

on second order model from [van Overloop et al., 2010b] is the following:

MR(ωR) =
R

4/3
h H

2gQXn2
(3.6)
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where MR is the magnitude of the resonance peak, Rh is the hydraulic radius,

H is the water level, Q is the discharge and n is the Manning’s coefficient. In

the above mentioned work, the results of a high-order model and the

approximations are compared: the resonance frequency is well approximated

by Equation 3.5, but the magnitude approximation is not so good by

Equation 3.6. Therefore there is a need for other methods to obtain the value

of the resonance peak.

3.3.2 Method 2: Bode plots

Using the frequency response of the pool, the canal properties can be calculated.

The frequency response can be obtained by approximating the Saint-Venant

equations with a high order linear model using Preissmann scheme or other

numerical schemes. A simple approximation is detailed in [Litrico and Fromion,

2004a], which is used in this work. The location of the first peak and its height

can be read from the graph, like in Figure 3.4. The backwater area (As) can

be calculated from the low frequency domain where the graph is a straight line

using:

As =
1

M(ωL)ωL
(3.7)

where ωL is the frequency and M(ωL) is the magnitude read from the low

frequency part (where the graph is a straight line) of the Bode plot.

The canal pools are modelled with constant discharge boundary condition, that

is, not taking into account the damping effect of the structures.

3.3.3 Method 3: System identification

Using system identification procedures and field/simulated data, a model

containing the resonance properties can be identified. This procedure is

detailed in [Miltenburg, 2008], [van Overloop et al., 2010b] and later some

improvements are given in [van Overloop and Bombois, 2012].
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3.3.4 Method 4: Auto Tune Variation

A simple experimental method to find the canal pool properties is the Auto

Tune Variation method (ATV), first described in [Litrico et al., 2007] and later

successfully applied in [Clemmens et al., 2012].

The basic idea of the ATV test is that a positive wave is sent downstream

(opening the upstream gate, increasing the upstream discharge), and when the

wave reflects from the downstream end the gate is closed again, and when

the wave arrives upstream, another positive change (opening the gate again) is

added in order to provide a maximum effect on the water level. The downstream

measurement location is in counter-phase with the upstream perturbations.

In terms of system identification it can be seen as a simple relay experiment

that is used to find the ultimate values (gain and period where the phase lag

is −180◦) for monovariable processes. The amplitude of the relay should be

chosen large enough to achieve good signal-noise ratio, but not too large to

avoid overflow. It is suggested to have an opening change that causes 10-20%

of discharge variation.

The resonance frequency can be calculated using Equation 3.5, where the

travel time is determined as the difference between two peaks of the measured

downstream water level. The calculation of the resonance peak is the

following from [Litrico and Fromion, 2004b]:

MR(ωR) =
π∆y

4∆Q
(3.8)

where ∆y is the change in water depth and ∆Q is the change in flow rate.

In order to calculate the backwater surface, low frequency data is needed: it

can be achieved by using delayed ATV tests. Adding a delay to the ATV

loop, the response of the system can be estimated in frequencies lower than the

resonance frequencies. In practice the delayed ATV test is similar to the ATV

test: a perturbation is generated by the upstream gate, and the perturbation

in the counter direction is made some time, later instead of the time when the

downstream water level crosses the setpoint. Depending on this time delay the

output signal (water level) will have different frequency, it will give a point at

different part of the Bode plot. From the test using the obtained frequency and

magnitude, the backwater area can be calculated according to Equation 3.7.
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3.4 The effect of downstream structures on the

resonance properties

A hydraulic structure at the downstream end of the canal can change the

behaviour to a considerable extent. The effect of the downstream structure

depends on the relationship that it imposes between the discharge and the

water level. This can be expressed by linearizing the equation of the structure

and using the factor (gain) between the discharge and the water level.

In case of a sluice gate, this gain is low. This is a typical example of the

canal pools separated by a sluice gate, for example Pool 1 and Pool 2 of the

UPC-PAC.

In contrast, in case of a thin plate weir, the gain of transfer function between

the water level and the outflow is not negligible, since the structure determines

the water level. It depends on the weir and the flow regime, but in some

cases it can be around one half. This means that the canal pool no longer

acts as an integrator. The transfer functions between the input discharge and

the downstream water level (p21) and between the downstream discharge and

the downstream water level (p22) can be calculated by using the the Saint-

Venant model. The downstream water level an be expressed by combining the

Saint-Venant model with the linearized equation of the weir:

h(s) =
p21(s)

1− khwp22(s)
qin(s) (3.9)

where h is the relative downstream water level, qin is the relative upstream

discharge, khw is the gain of the downstream weir, p21 is the transfer function

between the upstream discharge and the downstream water level and p22 is the

transfer function between the downstream discharge and the downstream water

level [Litrico and Fromion, 2004a]. The variables and the transfer functions are

illustrated in Figure 3.8. The Bode plot of this transfer function calculated for

the third pool of the UPC-PAC is shown in Figure 3.9. The magnitude plot

has not longer a slope, it is almost horizontal, and the phase plot is not -90

degrees.

The downstream structure influences the response time, hence the resonance

frequency. Its influence was investigated in [Munier et al., 2010]. It deepens
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on the discharge equation of the structure and the gain of the transfer function

between the water level at the downstream end of the pool and the discharge

of the structure.

Figure 3.8: Illustration of the transfer functions

Figure 3.9: Bode plot of Pool 3 of UPC-PAC with a downstream weir

3.4.1 Numerical test on the third pool of UPC-PAC

A numerical study was conducted by taking as example the third reach of the

UPC-PAC to analyze the effect of the downstream structure on the resonance

frequency and the magnitude of the resonance peak height. ATV test was

carried out with different downstream conditions: constant discharge (for
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example a pump), weirs with different height and sluice gates with different

opening (Figure 3.10). An example for the numerical ATV test is shown in

Figure 3.11. The resonance frequency and the resonance peak was calculated

in all cases, and the results are shown in Table 3.1.

(a) Constant discharge (b) Sluice gate (c) Weir

Figure 3.10: A canal reach with different boundary conditions

Resonance

Frequency

ωR (rad/s)

Resonance

peak

MR (s/m2)

Pump 0.179 3.85

Weir 30cm 0.169 1.17

Weir 35cm 0.174 1.18

Weir 40cm 0.179 1.23

Gate opening 8.5cm 0.185 3.15

Gate opening 11.5cm 0.170 2.35

Gate opening 14.5cm 0.161 1.73

Table 3.1: The effect of the hydraulic structures to the resonance
frequency and peak height

The resonance peak is the highest in the constant discharge case. Using a sluice

gate the bigger the gate opening, the smaller the resonance peak height. This is

explained by the fact that as the gate opening increases, the gain on the water

level also increases, that is the discharge depends more on the water level: as a

peak level is produced, the output discharge also increases and lowers the peak

level. A similar effect occurs in case of the weirs: as the weir height decreases

the gain on the discharge decreases as well, and the resonant peak increases.

The peak decreased more in case of the weir due to its bigger gain on the water

level. The frequency increases with the weir height but decreases with the gate

opening.

While the resonance peak was influenced to a great extend by the structure

(the peak height can change 50%), the resonance frequency changed only in a

range of 10%.
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Figure 3.11: Numerical ATV test on a canal pool, with sluice gate
downstream boundary condition

3.5 ATV experiments on the laboratory canal

The ATV tests are used to get the resonance properties of the pools and the

delayed ATV test is used to get the backwater area. For all the experiments

the same base discharge, 60 l/s was used, just as for the calculations.

3.5.1 ATV test

The ATV tests were carried out in the following way at each pool: first a

steady state was set. After achieving the steady state (20 min) the upstream

gate was moved in order to produce a positive disturbance that is equivalent

to about 5 l/s discharge. When the wave arrived downstream and the water

level started to change, the change in discharge was reversed by the discharge

controller. Every time the downstream water level crossed the setpoint the gate

movement was reversed. The resulting amplitude of the gate movement was
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about 3 cm. A bigger amplitude could not be chosen due to the constraint of

the gate opening speed. This signal already produced a measurable disturbance

that was possible to be distinguished from the noise.

The water levels (Figure 3.12a, Figure 3.13a and Figure 3.14a) and the

discharges (Figure 3.12b, Figure 3.13b and Figure 3.14b) are recorded for

each pool.

The obtained water level signals are shown in Figure 3.12a, Figure 3.13a and

Figure 3.14a. Using these figures the period and the amplitude of the waves

can be read.

As Figure 3.12b, Figure 3.13b and Figure 3.14b shows the discharge signals

were not exactly step signals as it is needed for the test. The reason is that

it took time for the gates to open and close in order to maintain the required

discharge: in other words, the gate speed is slow compared to the travel time

of the waves.

(a) Water level (b) Discharge

Figure 3.12: The ATV test on Pool 1
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(a) Water level (b) Discharge

Figure 3.13: The ATV test on Pool 2

(a) Water level (b) Discharge

Figure 3.14: The ATV test on Pool 3

3.5.2 Delayed ATV test

In order to find the backwater area, delayed ATV tests were carried out in a

similar manner as the ATV test. The upstream discharge of every pool was

increased and then decreased by 10 l/s. In these tests the period was set as

the combination of the original ATV test plus 1, 4 and 8 times the cycle time.

The corresponding frequencies and the actual frequencies achieved can be seen

in Table 3.2.

In case of Pool 3 the lowest actual frequency does not correspond to the planned

one due to the constraint of the gate speed. Since Pool 3 is half as short

as Pool 1 and 2, its resonance frequency is about the double of that of the

other pools. To excite this system according to the test fast gate movements
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are required. (Smaller gate movements would have resulted in unacceptable

signal-noise ratio.)

While establishing these frequencies, several factors need to be considered: the

frequency needs to be low enough to avoid the effect of the first resonance

peak. In some cases the discharge controller had difficulties to maintain the

same discharge for a long time. This occurred in case of the third experiment

(longest period) for the second pool (that is why only two tests are included in

Figure 3.16). As the water level at the downstream end of the gate increased the

gate opened to give more discharge. However, after certain time, the water level

increased more in the downstream pool due to the extra water volume and the

water level downstream of the gate increased. This suggested to the discharge

controller even bigger gate openings, and in case of the third experiment for

the second pool, these openings were too big and the gate was not any more

under submerged conditions. It did not happen for the first or the third pool.

In case of the first pool, due to the high water level of the reservoir, the gate

never opened so much to leave the submerged flow regime and for the third

pool the cycle times were shorter and the same discharge did not have to be

maintained for such long time.

Cycle

time

TR (s)

Actual

frequency

ω (rad/s)

Planned

frequency

ωplanned

(rad/s)

Backwater

area

As (m2)

Pool 1 Test 1 112 0.056 0.054 22.2

Test 2 464 0.014 0.014 35.5

Test 3 927 0.007 0.007 41.7

Pool 2 Test 1 130 0.048 0.049 20.0

Test 2 507 0.012 0.012 34.0

Pool 3 Test 1 238 0.026 0.105 21.5

Test 2 361 0.017 0.026 29.3

Test 3 584 0.011 0.013 43.4

Table 3.2: Results of the delayed ATV test

The upstream discharge signal and the downstream water depth are shown in

Figure 3.15a and Figure 3.15b, respectively.

The discharge signal was not an exact step signal (Figure 3.15b) due to the

physical constraints of the system (speed of the gate motors). As a result
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of this input signal, the downstream water level (Figure 3.15a) oscillates in

different frequencies. Also the amplitude was changing, but not monotonically,

as it was observed in [Clemmens et al., 2012]. We remark that the long peak

in Figure 3.16b was due to an accidental gate movement.

(a) Water level (b) Discharge

Figure 3.15: The delayed ATV test on Pool 1

(a) Water level (b) Discharge

Figure 3.16: The delayed ATV test on Pool 2
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(a) Water level (b) Discharge

Figure 3.17: The delayed ATV test on Pool 3

The ATV with the smallest delay is very close to the resonance frequency, and

in the third test there were problems with establishing the discharge signal, so

the results (backwater area) are taken from the second ATV test (8 times the

cycle time).

3.6 Results: resonance properties obtained by

different methods

3.6.1 Method 1: Equations

The characteristics obtained by the above described Method 1 (using equations)

is shown in Table 3.3. This way of calculating the backwater area can be used

when the canal pool completely under backwater and the surface is close to

horizontal. In case of the UPC-PAC due to the zero slope the use of this

method is completely justified and the calculated backwater area is expected

to be good.

Backwater

area

As (m2)

Travel time

TR (s)

Resonance

Frequency

ωR (rad/s)

Resonance

peak

MR (s/m2)

Pool 1 38.3 60 0.104 3.17

Pool 2 39.7 76 0.083 2.38

Pool 3 19.1 38 0.166 3.55

Table 3.3: Results of the canal properties from equations
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3.6.2 Method 2: Bode plots

The methodology described before were used to obtain the Bode plots for all

the three pools and from them calculate the resonance properties. The Bode

plot for Pool 2 as an example is shown in Figure 3.18. The location of the first

peak can be read from the graph and the magnitude of the peak can be read

from the gain axis. The gain in the figure is given in decibels.

The characteristics obtained by the above described Method 2 (by using the

numerical solution of the Saint-Venant equations) is shown in Table 3.4.

Figure 3.18: ATV test on Pool 3, Water level

Backwater

area

As (m2)

Travel time

TR (s)

Resonance

Frequency

ωR (rad/s)

Resonance

peak

MR (s/m2)

Pool 1 37.5 60 0.105 5.46

Pool 2 37.8 75 0.084 3.39

Pool 3 19.1 38 0.167 7.14

Table 3.4: Results of the canal properties from the Bode diagram of a
distributed model
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3.6.3 Method 3: System identification

Using the delayed ATV tests, a third order model could be identified to

represent the canal properties. The data preprocessing and the identification

process was carried out as in [van Overloop and Bombois, 2012]. First, as

preprocessing, the outliers were removed, the means were subtracted and the

data was detrended. Then the data was distributed to identification and

validation data (75% identification, 25% validation). The data was

re-sampled in order to avoid the identification of higher order behaviour: in

this case the information needed is the frequency and the height of the first

resonance peak. Since the model contains an integrator, it is difficult to

identify. A tamed differentiator is applied to the data: it only differentiates

the data at low frequencies where the integrator is present.

After this preprocessing, a 4th order model and a 5th order noise model were

identified. The delay is approximated from the cycle time calculated from

Equation 3.4. The transfer function of the identified models was multiplied

with the inverse of the differentiator and that resulted in a fifth order model.

Table 3.5 shows the characteristics of the models to be identified. The

sampling time was chosen in order to avoid higher order resonance peaks.

The cutoff frequency of the tamed differentiator was chosen in order to

differentiate only the low low frequency data that is relevant for the

integrator but not to affect the high frequency peaks. The values were chosen

following the recommendations from [van Overloop and Bombois, 2012].

Cutoff frequency

(rad/s)

Sampling time

(s)

Delay steps

(-)

Pool 1 0.005 5 2

Pool 2 0.001 5 1

Pool 3 0.001 10 2

Table 3.5: The parameters used for the identification of the models from
the delayed ATV tests

The resulting models are shown in Figures 3.19, 3.20 and 3.21. For the first two

pools at about 70% and for the last pool 90% fit is achieved. Since a fifth order

model was used the first two peaks (and the integrator) could be identified.

For Pool 3 (Figure 3.21) only one very flat peak could be identified. The lack



i
i

“main” — 2013/4/8 — 12:44 — page 85 — #113 i
i

i
i

i
i

Chapter 3. Properties of canal pools and identification 85

of the second harmonic shows that this pool does not exhibit strong resonant

behaviour.

(a) Residuals (b) Validation

(c) Model

Figure 3.19: The identified model for the first pool of the UPC-PAC



i
i

“main” — 2013/4/8 — 12:44 — page 86 — #114 i
i

i
i

i
i

Chapter 3. Properties of canal pools and identification 86

(a) Residuals (b) Validation

(c) Model

Figure 3.20: The identified model for the second pool of the UPC-PAC
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(a) Residuals (b) Validation

(c) Model

Figure 3.21: The identified model for the third pool of the UPC-PAC

The numerical results are shown in Table 3.6. The approximation of the

backwater areas are bigger for the first two pools (the reaches has similar

length) while smaller for the last pool. Pool 3 is half as long as the upstream

pools, therefore the backwater area should almost be the half. This difference

in this identification experiment might be due to the difficulties of identifying

a canal reach with a downstream weir at the downstream end. The resonance

frequencies are similar for the first two pools, while it is higher for Pool 3 - as

it was expected. The peaks are lower than the ones calculated beforehand. In

Pool 3, there is one very small peak showing that that this pool is not so

resonant as the others.
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Backwater

area

As (m2)

Resonance

Frequency

ωR (rad/s)

Resonance

peak

MR (s/m2)

Pool 1 38.5 0.104 1.82

Pool 2 34.6 0.080 1.23

Pool 3 29.7 0.140 0.96

Table 3.6: Results of the system identifiction

3.6.4 Method 4: ATV

The results of the ATV test were already described in subsection 3.5.1. Here

they are summarized numerically in Table 3.7. The resonance frequency and

resonance peak is obtained from the ATV test and the backwater area from

the delayed ATV test. The backwater areas are in the same range as expected

except the last canal pool. The reasons are already mentioned: due to the

downstream weir it shows a different behaviour and the backwater area cannot

be determined in the same way.

The resonance frequency is the highest for Pool 1. It was expected to be the

highest for Pool 3. However, Pool 3 is affected less by resonance due to the

downstream weir, therefore it was more difficult to identify resonance properties

(the resonance peak is smaller, the noise-signal ration is higher). Also due to

the short lenght of Pool 3 and the constraints with the gate speed the test was

complicated to carry out.

The resonance peaks as expected were higher in the first two pools and lower

in Pool 3.

Backwater

area

As (m2)

Cycle time

Tc (s)

Resonance

Frequency

ωR (rad/s)

Resonance

peak

MR (s/m2)

Pool 1 35.5 56 0.112 1.21

Pool 2 34.0 88 0.071 1.10

Pool 3 29.3 60 0.105 0.91

Table 3.7: Canal properties determinted from the ATV tests
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3.6.5 Discussion

The canal properties (backwater area, resonance frequency, resonance peak) of

the UPC-PAC were obtained in several ways. First, they were approximated by

Equations: 3.3, 3.4 and 3.5. Then a distributed model based on the linearized

Saint-Venant equation was calculated [Litrico and Fromion, 2004a] and from

the frequency response of this model, the resonance properties of the canal pools

were obtained. The same properties were obtained using ATV and delayed ATV

tests, and also with system identification methods using the data obtained from

the ATV tests. Tables 3.8, 3.9 and 3.10 summarize the results obtained with

the four different methods.

Backwater

area As

(m2)

Resonance

Frequency ωR

(rad/s)

Resonance

peak MR

(s/m2)

Equation 38.3 0.104 3.17

Bode 37.5 0.105 5.46

ATV 35.5 0.112 1.21

Ident 38.5 0.0958 1.82

Table 3.8: Results of the ATV test and the identified models, Pool 1

Backwater

area As

(m2)

Resonance

Frequency ωR

(rad/s)

Resonance

peak MR

(s/m2)

Equation 39.7 0.083 2.38

Bode 37.8 0.084 3.39

ATV 34.0 0.071 1.10

Ident 34.6 0.083 1.23

Table 3.9: Results of the ATV test and the identified models, Pool 2

Backwater

area As

(m2)

Resonance

Frequency ωR

(rad/s)

Resonance

peak MR

(s/m2)

Equation 19.1 0.166 3.55

Bode 19.1 0.167 7.14

ATV 29.3 0.105 0.91

Ident 29.7 0.150 0.96

Table 3.10: Results of the ATV test and the identified models, Pool 3
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In the majority of the cases all four types of tests have results that are similar

in order of magnitude. For the first two pools the results of all four tests are

similar, especially for the backwater area and for the resonance frequency.

There are differences in the resonance peak between the experimental and

theoretical methods. The results for Pool 3 show bigger differences between

the different methods.

For the first two pools some general conclusions can be drawn. The resonance

frequencies were similar for all type of tests. This shows that the resonance

frequency can be approximated very well by calculations.

The experimental values of the resonance peaks are similar, but much lower

than the theoretical ones. This can be explained by the fact that in calculations

the effect of the upstream and downstream structures were not taken into

account. As it was shown before, a weir or a sluice gate causes decreases the

resonance peak (compared to the constant discharge case), that is why the

experimental resonance peaks are lower. This result also shows the difficulty

to obtain values for the resonance peak by calculations and the importance of

identification experiments.

The values for the backwater areas were also approximated well with all

methods, for the first two pools the areas were approximated within a 15%

range of error. The approximation was especially good for Pool 1. As a

tendency, the experimentally obtained backwater areas are smaller than the

calculated ones.

In the case of Pool 3, the experimentally obtained frequencies (and also the

other properties) are more different from the theoretical ones. This can have

several explanations. One reason can be the constraint of the gate speed: this

pool is the shortest, hence the waves arrive to the downstream end in less time

and it was difficult to achieve the appropriate discharge signal needed for the

test. The frequency error should be corrected by the identification test. In

fact, the identified frequency is closer to the one obtained from the equations.

The difference in backwater area can also be explained with the different

configuration of the canal pools. Pool 3 has a weir at the downstream end.

The water surface is not completely horizontal, the surface might be bigger as

expected. Also due to the presence of the weir this pool shows less resonance

therefore the identification experiments might need different design. Finally
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as this pool was very short, and the gate speed was limited, the resulting

noise-signal ratio was worse for this pool than for the other pools.

The considerable difference between the theoretical and the experimental values

for the resonance peak just as in case of the upstream pools is explained by the

presence of the structures that are not included in the calculations. Pool 3 has

a weir at the downstream end, whose effect of lowering the peak is even bigger

than the effect of the gates. That is why the difference between the calculated

and the experimental values is bigger than in case of the upstream pools.

In the remaining of this work, the calculated frequencies (that are in almost all

cases equal to the experimental ones), the calculated backwater areas and the

experimentally obtained resonance peaks are used.

The first two canal pools present significant resonance, while Pool 3 is less

affected by resonance.

3.7 Conclusion

Four ways were shown in order to quantify the resonance properties of the

UPC-PAC canal: by given equations using the canal geometry, by using Bode

plots obtained from the numerical solution of the SV equations, by system

identification and by ATV tests.

• The actual identification tests (system identification and ATV) resulted in

similar resonance frequencies as the ones calculated from the geometrical

data.

• However, for resonance peak heights, the calculation results

overestimate the ones obtained by identification. This can be explained

by the presence of the structures: their effect was not taken into

account in the calculations.

• The results obtained by the ATV test and the system identification are

coherent. Both tests are good enough to obtain the resonance properties

of the canal.
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• The importance of the downstream condition was analyzed: having a

sluice gate at the downstream end decreases the resonance peak to some

extent while having a weir at the downstream end almost eliminates the

resonance.

• In the current configuration it can be said that the first two pools of the

UPC-PAC are dominated by resonance while the third pool shows very

small resonance.
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Chapter 4

Canal modelling and

control

4.1 Introduction

In this chapter several models for control purposes are presented and

compared in time and frequency domain. Based on these models centralized

model predictive controllers are developed. The goal of this chapter is to get

more insight about the capacities of each model and their suitability to be

inner models for MPC. The chapter is concluded with the choice of the

appropriate model for the UPC-PAC. A general categorization of models has

already been presented in the introduction, therefore here it is not repeated.

The models are first described for one canal reach, then the whole state space

model is constructed for the three reaches. The main variables are Qin (m3/s)

input discharge, Qout (m3/s) output discharge, H (m) downstream water

level, Qoff (m3/s) offtake discharge. In case of some models, an intermediate

discharge Qt is also considered. These discharges and the variables are used

to describe a trapezoidal cross section are shown in Figure 4.1.

93
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(a) Lateral view (b) Cross section

Figure 4.1: The notations used for the model development

The models are linearized around a steady state. In all cases the absolute

quantities are noted with capital letters, the steady state values have a zero

index, and the values relative to the steady state are noted with small letters.

For example, the relative input discharge is

qin (t) = Qin (t)−Qin0 (4.1)

where qin is the relative input discharge, Qin is the absolute input discharge

and Qin0 is the steady state (reference) input discharge. The objective is to

control the downstream water level of a canal pool by manipulating the input

discharge.

4.2 Description of the models

4.2.1 Muskingum model (MUS)

The Muskingum model is a frequently used linear model for flood routing

[Cunge, 1969]. It has also been used for control purposes [Rodellar et al.,

1993], [Gómez et al., 1998] and [Mantecón et al., 2002]. It describes the

relationship between the discharge entering and leaving a reach. Since the

purpose of this work to develop water level controllers, we need a model

describing the relationship between the upstream discharge and the

downstream water level. For this reason the canal reach is divided into two

zones: a transport zone and a storage zone (Figure 4.1). The Muskingum
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model is used to express the relationship between the discharge entering and

leaving the transport zone. The model is described with the following storage

and continuity equations, respectively:

vsto (t) = K [χqin (t) + (1− χ)qt (t)] (4.2)

dvsto
dt

= qin (t)− qt (t) (4.3)

where qin is the relative input discharge, qt is the relative discharge at the

end of the transport zone, vsto is the relative storage volume, K is the storage

time constant and χ is a dimensionless coefficient. The parameters K and χ

contain all the information about the reach. The storage time constant (with

the dimension of time) can be well approximated as the time it takes for one

wave to travel through the reach:

K =
X

C0 + V0
(4.4)

where X is the length of the canal pool, C0 is the steady state celerity and V0

is the steady state velocity. Parameter χ weighs the relative effects of inflow

and outflow on the reach storage, which varies in the range [0, 0.5]. It can be

approximated from the flow and geometrical properties of the canal [Cunge,

1969]. Applying the Laplace transform from the model above, the following

transfer function can be derived:

GMq(s) =
qt (s)

qin (s)
=

1−Kχs
1 +K(1− χ)s

. (4.5)

Details about the derivation of this transfer function can be found in

[Rodellar et al., 1989]. This transfer function shows the relationship between

the upstream discharge and the discharge at the end of the transport zone.

Now we need the transfer function between the upstream discharge and the

downstream water level. This can be achieved by modelling the storage-zone

as a tank:

Ae
dh

dt
= qt (t)− qout (t) (4.6)

where Ae is the surface of the storage area. It can be approximated as:

Ae = TX (4.7)
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where T is the surface width and X is the length of the storage zone. Applying

the Laplace transform to Equation 4.6 the following expression is obtained:

qt (s) = Aeh (s) s− qout (s) . (4.8)

By combining Equation 4.5 and Equation 4.8, the transfer function between

the upstream discharge and downstream water level can be expressed:

GM (s) =
h (s)

qin (s)
=

1−Kχs
Aes+K(1− χ)Aes2

. (4.9)

Hence the downstream water level is:

h (s) = GM (s) qin (s)− 1

Aes
qout (s) . (4.10)

The final values for Muskingum model are shown in Table 4.1. The

parameters for the Muskingum function were calculated as mentioned above:

K was approximated by the travel time (See Equation 3.4) while χ was

calculated based on the methodology described in [Cunge, 1969]. The surface

of the storage zone in case of the UPC-PAC was approximated with the

surface of the whole canal pool, since all the canal pool are completely under

backwater.

K(s) χ (-) Ae (m2)

Pool 1 28.29 0.01 28.29

Pool 2 31.67 0.01 31.67

Pool 3 16.65 0.01 16.65

Table 4.1: The calculated values of the parameters of the Muskingum
model for the UPC-PAC canal

For the discretization of the Muskingum procedure the following inequality

should be taken into account [Rodellar et al., 1989]:

∆t > 2χK (4.11)

where ∆t is the sampling period. In all cases this condition is kept. For the

calculation of the step response ∆t = 1 s was used, therefore this condition was

kept. For the controller development even bigger sampling time is used, so the

condition still holds.
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4.2.2 First order model from the Hayami equation (FO)

The Hayami model [Hayami, 1951] is the linearization of the diffusive wave

equation with the hypothesis that the celerity and diffusivity are constant:

∂q

∂t
+ C0

∂q

∂x
−D0

∂2q

∂x
= 0 (4.12)

where q is the relative discharge (deviation from the steady state discharge Q0),

C0 is the celerity coefficient and D0 is the diffusion coefficient. For trapezoidal

channels (see Figure 4.1) these coefficients are:

C0 =
5Q0

3Acr0
− 2Q0m

T 2
0

(4.13)

D0 =
Q0

2T0Sf0
(4.14)

where T0 is the top width, m is the side slope, Acr0 is the cross sectional area,

Sf 0 is the friction slope and it can be calculated from the Manning’s equation:

Sf0 =
Q2

0n
2

A2
cr0R

4/3
h0

(4.15)

where n is the Manning’s coefficient and Rh0 is the hydraulic radius.

One of the ways to obtain a simple linear model from the Hayami equation is

the momentum matching method, described in [Malaterre, 1994] and [Litrico

and Georges, 1999]. The low order moments of the Laplace transforms of the

calculated transfer function of the Hayami model are obtained. The concept is

to make these moments equal the low order moments of the first or second order

function with delay. The low order moments correspond to low frequencies (s

close to 0). These frequencies are the most common in natural systems. The

following dimensionless coefficient is derived to characterize the canal reach:

CL =
C0X

2D0
(4.16)

where X is the length of the canal reach. Three different categories can be

established:

• Category 1: If CL > 9/4, the reach is relatively long, a second order

function with delay can be defined.
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• Category 2: If 1 < CL ≤ 9/4, the reach is relatively small, the second

order transfer function with delay is unstable, therefore it is possible to

define a first order with delay or a second order transfer function. In this

case it is possible to equate the first three moments.

• Category 3: When CL ≤ 1, the river reach is very short. First order

transfer function can be defined by equating the first two moments.

An analysis about canals falling to each category with different length and

discharge can be found in [Alvarez Brotons, 2004].

The UPC-PAC falls into Category 3, therefore a first order transfer function

without delay can be defined:

GFOq (s) =
qt (s)

qin (s)
=

1

1 +K1s
(4.17)

where

K1 =
X

C0
. (4.18)

In the remaining of this chapter this model will be referred to as first order

(FO) model. Note that this model has no time delay, it is just a simple first

order model. Though the original Hayami equation includes more complex

wave movement, the first order model lacks all these dynamics.

Just as in the case of the Muskingum model, in order to get a transfer function

between the downstream water level and the upstream discharge, Equation 4.8

and Equation 4.17 should be combined, resulting into

GFO (s) =
h (s)

qin (s)
=

1

AeK1s2 +Aes
(4.19)

where GFO (s) is the transfer function between the upstream discharge and the

downstream water level. Thus the downstream water level can be expressed

as:

h (s) = GFO (s) qin (s)− 1

Aes
qout (s) . (4.20)

The final values for the FO model are shown in Table 4.2 for each reach of the

UPC-PAC.
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K1 (-) C0 (m/s) CL (-) Ae (m2)

Pool 1 278.9 0.31 0 28.29

Pool 2 238.1 0.38 0 31.67

Pool 3 90.23 0.48 0 16.65

Table 4.2: The calculated values of the parameters of the first order model
for the UPC-PAC canal

4.2.3 The Integrator Delay model (ID)

The ID model was developed in [Schuurmans, 1997] and it is widely used for

modelling water systems for control purposes. The model is based on the

division of the canal reach into an upstream and a downstream part (see

Figure 4.2). The upstream part is characterized by uniform flow, and the

downstream part is characterized by backwater. Some canals are completely

affected by backwater, like the UPC-PAC used in this study. In the

backwater part, the dynamics is complicated, waves are travelling up and

down and reflected.

Figure 4.2: Profile of the first pool of the Corning canal with 5.5 m3/s
flow
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However, in low frequencies it behaves as a tank, the change in water level can

be approximated as the integral of the flow change, whose gain is calculated

from the backwater surface. The model is illustrated in Figure 4.3. The upper

figure shows the discharge step and the lower shows the response of the water

level: after a certain time delay the water level starts to increase linearly with

a slope of equal to the backwater area, AeID.

Figure 4.3: The ID model

The ID model is very simple, it requires only two parameters that are easy

to obtain: the time delay and the backwater area. Both can be calculated

from the geometry of the canal or can be obtained using system identification

experiments. Since it is a linearized model, it performs well around the point

of linearization. These values depend on the operation regime, and in practice

can be very different depending on the discharges. An example is shown in [van

Overloop, 2006b]: for a steep test reach the difference between the parameters

for low flow and high flow resulted to be 63% in time delay and 52% in storage

area. First the uniform then the backwater part and finally the by combining

the two the whole model is described.

Uniform part

The flow is assumed to be uniform, the waves are assumed to travel only in the

downstream direction, the wave deformation is neglected and the water surface
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is parallel to the canal bed, having normal depth. A disturbance travels through

this part with a speed close to the speed of the kinematic shock wave. This part

is only described by one parameter: the time delay (τid). The output discharge

hydrograph is the input discharge hydrograph shifted in time Equation 4.21.

The time delay depends on the discharge, however, (that is one of the weakness

of this model) it is considered to be constant around the reference discharge.

The output discharge can be expressed as:

Qout(t) = Qin(t− τid) (4.21)

and in the Laplace domain:

Qout(s) = Qin(s)e−sτid . (4.22)

The time delay for the ID model (τid) will be approximated by the following

equation:

τID =
X

C0 + V0
(4.23)

where X is the length of the canal pool, C0 is the steady state celerity and V0

is the steady state velocity.

Backwater part

The backwater part is described as a reservoir and the water volume that

arrives causes the water level to increase (integrator action). Therefore the only

parameter to describe this part is the surface area / backwater area (AeID):

AeID
dH

dt
= Qin −Qout. (4.24)

This equation is the following in the Laplace domain:

h(s) =
1

sAeID
(qin(s)− qout(s)). (4.25)

The complete ID model

In the uniform part, since the velocity and the celerity are constant, the wave

travelling upstream dampens out quickly, therefore it can be assumed that the

flow rate downstream is the upstream flow rate plus delay. Altogether the
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model is:

h (s) =
1

AeIDs
e−τidsqin (s)− 1

AeIDs
qout (s) (4.26)

where τid is the time delay, qin is the upstream discharge, qout is the downstream

discharge and AeID is the gain of the integrator (backwater area), which can

be approximated by the surface of the canal pool:

AeID = TX (4.27)

where T is the surface width and X is the length of the canal pool. If the

water surface is close to the horizontal, this approximation is close to the real

backwater surface. In order to develop a controller that is using the

downstream water level as controller variable and the upstream discharge as

control variable, the transfer function between the upstream discharge and

the downstream water level is used:

GID (s) =
h (s)

qin (s)
=

1

Aes
e−sτid . (4.28)

The final values for the ID model are shown in Table 4.3 for the UPC-PAC

canal.

AeID (m2) τID (s)

Pool 1 38.28 28.29

Pool 2 39.69 31.67

Pool 3 19.14 16.65

Table 4.3: The calculated values of the parameters of the ID model for
the UPC-PAC canal

4.2.4 Integrator Delay Zero model (IDZ)

Similar to the ID model, the IDZ model [Litrico and Fromion, 2004b] is an

extension of the ID model that includes a zero in the transfer function. It is able

to represent the canal behavior in low and high frequencies; the integrator delay

accounts for low frequencies, whereas the zero represents the direct influence

of the discharge on the water level in high frequencies.

The IDZ model also assumes that the canal pool has two parts: a uniform flow

or transport section and a backwater section. For the uniform part, low and
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high frequency approximations are taken into account. The transfer function

of the IDZ model is similar to Equation 4.28 but extended with a zero:

GIDZ (s) =
h (s)

qin (s)
=
KIDZ1 s+ 1

AeIDZ s
e−τIDZ s (4.29)

where KIDZ is a parameter related to the zero calculated from the canal

properties, τ IDZ is the time delay and AeIDZ is the integrator/backwater

area approximation. The water level can be expressed as:

h (s) =
KIDZ1 s+ 1

AeIDZ s
e−τIDZ sqin (s)− KIDZ2 s+ 1

AeIDZ s
qout (s) . (4.30)

The detailed derivation of these transfer functions can be found in [Litrico and

Fromion, 2004b]. The final values for the IDZ model are shown in Table 4.4.

AeIDZ (m2) τIDZ (s) KIDZ1 (-) KIDZ2 (-)

Pool 1 37.87 28.24 39.46 30.2

Pool 2 38.84 31.56 43.28 34.51

Pool 3 18.68 16.60 24.45 18.97

Table 4.4: The calculated values of the parameters of the IDZ model for
the UPC-PAC canal

4.2.5 Integrator Resonance model (IR)

The integrator resonance model was developed in [van Overloop et al., 2010b]

especially for canals with resonance. The basic idea of the model is to capture

the integrator behaviour in low frequencies and the resonance behaviour at

high frequencies for short and flat canal pools. These characteristics can be

seen from the linearisation of the Saint-Venant equations and are analyzed in

Chapter 1 and Chapter 3.

The model is developed by discretising a channel into two elements, neglecting

the advection. The equation are presented in the time and in the Laplace

domain in [van Overloop et al., 2010b] and summarized in Appendix B. The

transfer function from upstream flow qin to the downstream water level h is

a third order model without delay consisting of an integrator whose gain is

the reciprocal of the storage area (As) and a damped oscillator with natural
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frequency ω0 and resonance peak Mr. The following equation presents the

Integrator Resonance model as transfer function in the Laplace domain:

GIR(s) =

Integrator︷︸︸︷
1

Ass
·

Resonance︷ ︸︸ ︷
ω2
0

s2 + 2ζω0s+ ω2
0

(4.31)

where ω0 is the natural frequency of the system and ζ is the damping ratio.

The natural frequency ω0 is approximated by the resonance frequency ωr, that

is estimated from the travel time of the waves. The backwater surface and the

resonance frequency can be experimentally obtained or can be calculated using

equations 3.3 and 3.5 presented in Chapter 3, respectively. The resonance peak

and the resonance frequency can be obtained from identification experiments.

The damping ratio can be calculated as

ζ =
1

2ωAsMr
. (4.32)

The downstream water level can be expressed as

h(s) =
ω2
0

Ass3 + s2

Mr
+ Asω2

0s
qin(s)−

2s2 + 2
AsMr

s+ ω2
0

Ass3 + s2

Mr
+ Asω2

0s
qout(s).

(4.33)

In order to build the IR models of the UPC-PAC several identification

experiments have been carried out. They are described in Chapter 3. The

resulting canal properties are presented in Table 4.5: the backwater area

obtained by calculation, resonance frequency obtained by calculation (that is

equal to the experimentally obtained ones) and calculated and experimentally

obtained resonance peak values. For controller development, the

experimentally obtained resonance peak values are used. On the other hand,

for the time and frequency domain comparisons the theoretical magnitudes

are used. The reason is the following: the experimental values contain the

effect of the downstream weir. Since none of the other models have the effects

of the weir included, for the sake of the comparison for the IR model the

theoretical values are used. Based on Chapter 3, the final model for the IR

based controller describes the third pool using the ID model since this pool

presents few resonance. For the time and frequency domain comparisons all

the three pools are modelled with IR model.
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Backwater

area

As (m2)

Resonance

Frequency

ωR (rad/s)

Resonance

peak,

experimental

MR (s/m2)

Resonance

peak,

theoretical

MR (s/m2)

Pool 1 38.28 0.1037 1.82 5.46

Pool 2 39.69 0.0831 1.23 3.39

Pool 3 19.14 0.1667 0.96 7.14

Table 4.5: Canal pool properties of the UPC-PAC used for developing the
IR model

4.3 Comparison of the models in the time and

frequency domains

In the time domain, the transport part of the models is examined. The

response of the downstream discharge to a step input in the upstream

discharge is analyzed. In the frequency domain, the relation between the

downstream level and the upstream discharge is studied. The use of

downstream level in modeling is particularly relevant for the automatic

control problem.

4.3.1 Comparison in the time domain

All flow steps are made from the usual operational discharge 60 l/s to 70 l/s.

The plots are based on the numerical solution of the equations. The continuous

models are first converted to discrete models using zero order hold, then they

are solved with a fixed step solver [Shampine and Gahinet, 2006]. This solver

is based on an implicit Runge-Kutta method, the Radau IIA. This method

belongs to the family of curvature methods, it is a third-order accurate implicit

Runge-Kutta algorithm in two stages. The calculated transfer function in the

Laplace and Z-domain can be found in Appendix D.

The step response of the Saint-Venant equations was calculated in a way

different from all the other five models: with the SIC 1D hydrodynamic

model that solves the Saint-Venant equations numerically by using the

implicit Preissmann scheme. The Courant number was about 0.5 depending
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on the different flow conditions. Therefore in both cases the step response was

in fact a response to a ramp as shown in Figure 4.4.

Figure 4.4: The ramp function of the step response

The step response of the four models and compared to the step response of the

Saint-Venant (SV) equations. Figure 4.5 and Figure 4.6 show the response of

the first pool, Figure 4.7 the second and Figure 4.8 the third pool.

With black line (Figure 4.5) the response of the Saint-Venant model is shown.

An initial time delay (Figure 4.6) is followed by a fast increase. Then the

increase is slowing down, similar to a first order response. Small oscillations

can be seen, they are decreasing in magnitude and finally disappearing: this is

the effect of the resonance waves.

At a first glance, the first order approximation is close to the Saint-Venant

model, especially in the middle terms. However, in the beginning there is an

important mismatch: the first order model does not capture the time delay,

the response starts at time step zero (Figure 4.6).

The Muskingum model has similar behaviour in the sense that it also lacks the

time delay. However, it has a rapid increase in the beginning of the step and

approaches the new discharge within 120 seconds.

The ID and IDZ model both approximate correctly the time delay (Figure 4.6).

The ID model shows the same step as the input discharge, only delayed in time.

This is the most simple approximation. The IDZ model has similar response to

a step, but in the beginning it shows an increase, it grows over the final value,

then slowly descends. This behaviour is due to the presence of the zero.

The IR model contains no explicit time delay. The step increases fast over the

final value, and then approaches it through oscillation. Note that the period of
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these oscillations is the same as the period of the response of the Saint-Venant

model. The response of the IR model reaches the final value much earlier than

the Saint-Venant model.

Comparing the responses of the three pools, there is a difference between the

intermediate pools and the last pool: the response of the last pool is faster

then the other two. This has two reasons: one is that the third pool is half as

long as the others and the other is that it has a weir as downstream boundary

condition. The models will be analyzed in the frequency domain, and the final

choice will be made by testing numerically the controller developed based on

them.

Figure 4.5: The simulated step response of the models, Pool 1
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Figure 4.6: The step response of the models, Pool 1 - zooming to the
beginning to the response

Figure 4.7: The simulated step response of the models, Pool 2
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Figure 4.8: The simulated step response of the models, Pool 3

4.3.2 Comparison in the frequency domain

The frequency response analysis shows the response of the system when the

input is a sinusoidal wave. The phase plot shows the change in the phase of the

input wave while the gain plot shows the change in the amplitude of the wave.

The frequency responses of the three pools of the UPC-PAC (Figures 4.9, 4.10

and 4.11) were obtained using the approximation method from [Litrico and

Fromion, 2004a] to solve numerically the linearized Saint-Venant equations. In

this process, just as for the comparison of the step response, the effect of the

downstream structures is not taken into account.

For the IR model the theoretical values for the peak and frequencies are used in

order not to take into account the effect of the structures. This step is necessary

for the comparison of the Bode plots of the models, because all the other models

are calculated without taking into account the effect of the structures.

All models are good in low frequencies (Figures 4.9, 4.10 and 4.11): in the gain

plot they have the straight line with the same slope and in the phase plot they
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start at -90 degrees. This means that all models have an integrator in their

structure with appropriate gain (compared to the SV equations).

In higher frequencies the SV model shows clearly the resonance peaks. Only the

IR model takes the first peak into account. The IDZ model cuts the resonance

peaks, while the other models approximate the gains lower than the SV (See

for example Pool 1: Figure 4.9).

The FO model has the lowest gain, the MUS model has higher gain. The gain

of the ID model is close that of the SV model, it starts to be lower only close to

the frequency of the first peak. The ID model becomes horizontal and crosses

the resonance peaks. The IDZ model approximates the high frequency values

by averaging the behaviour. This is the reason why it is crossing over the peaks.

In the phase plots (Figures 4.9, 4.10 and 4.11; lower subplots) the phase of

the SV model decreases in high frequencies, also showing the resonance waves.

The decreasing behaviour is captured by the ID and IDZ model, while the IR is

able to overlap with the SV model until the beginning of the second resonance

peak. The MUS and FO models remain horizontal. This is the same behaviour

that was seen in the step response: the last two models lack the time delay.

Figure 4.9: The frequency response of the models, Pool 1
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Figure 4.10: The frequency response of the models, Pool 2

Figure 4.11: The frequency response of the models, Pool 3
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The behaviour of the three pools are similar. However, a difference can be

observed in the location of the peaks: for Pool 3 (Figure 4.11) the first resonance

peak is located at higher frequencies. This frequency is higher because the

travel time is smaller due to the fact that this pool is the shortest.

As it was seen in the step responses, only the ID and the IDZ approximates

the time delay well. All models except the IDZ and the IR are underestimating

the high frequency gain.

4.4 State space formulation

In this section a general state space formulation is presented for any of the

discharge-water level models presented in this chapter, whose order is less than

or equal to three with or without delay. The particular state space equations

for the models are shown in the appendix: for the Hayami and Muskingum

model in section C.1, for the ID and IDZ model in section C.2 and for the IR

model in section C.3.

To build this model we start with a generalized transfer function:

hi =
paz

2 + pbz + pc
z3 + pdz2 + pez + pf

z−dqi −
pgz

2 + phz + pi
z3 + pdz2 + pez + pf

qi+1 (4.34)

where the parameters pa, pb, pc, pd, pe, pf depend on the model, and d is the

delay expressed in sampling instants between the relative upstream discharge

(qi) and the relative downstream water level (hi). The second term is the

effect of the discharge (qi+1) leaving the reach (this can be the discharge of the

following reach or an offtake), see Figure 4.12.

Figure 4.12: The frequency response of Pool 3 with downstream weir
boundary condition
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In the equations the relative quantities (the deviations from the reference

quantity) are used, while the notation in Figure 4.12 shows the absolute

quantities. (For example as a reminder: Qi = Qi0 + qi.) Equation 4.34 can be

written in the time domain as follows:

hi (k + 1) = −pdhi (k)− pehi (k − 1)− pfhi (k − 2) + paqi (k − d)

+pbqi (k − 1− d) + pcqi (k − 2− d) qi − pgqi+1 (k)

+phqi+1 (k − 1) + piqi+1 (k − 2) qi. (4.35)

Consider the water level error defined as:

ei (k) = hi (k)− hspi (k) (4.36)

where hspi is water level setpoint.

Using Equations 4.35 and 4.36, the following equation is obtained:

ei (k + 1) = −pdei (k)− peei (k − 1)− pfei (k − 2)

+paqi (k − d) + pbqi (k − 1− d) + pcqi (k − 2− d) qi

−pgqi+1 (k) + phqi+1 (k − 1) + piqi+1 (k − 2)

−hsp (k + 1)− pdhsp (k)− pehsp (k − 1)

−pfhsp (k − 2) . (4.37)

Consider the discharge is expressed incrementally in the form:

∆qi(k) = qi(k + 1)− qi(k). (4.38)

Finally, Equation 4.37 can be converted into the following state space form

xgen (k + 1) = Agenxgen (k) +Bgenugen (k) +Bdgendgen (k) (4.39)
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with the state and the control vector respectively, in the form

xgen (k) =



qi (k)

...

qi (k − d)

qi (k − d− 1)

qi (k − d− 2)

ei (k)

ei (k − 1)

ei (k − 2)


, (4.40)

ugen (k) = ∆qi (k) (4.41)

and the disturbance vector in the form:

dgen (k) =



qi+1 (k)

qi+1 (k − 1)

qi+1 (k − 2)

hsp (k + 1)

hsp (k)

hsp (k − 1)

hsp (k − 2)


. (4.42)

The state vector contains the upstream discharges in the present and past

time steps. The control vector contains only the incremental discharge. The

disturbance vector contains information about the output discharges and the

setpoints. The matrices are the following:

Agen =



1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 pa pb pc −pd −pe −pf
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0


(4.43)

Bgen =



1

0

0

0

0

0

0

0


(4.44)
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Bdgen =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

−pg −ph −pi
0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−1 −pd −pe −pf
0 0 0 0

0 0 0 0


. (4.45)

4.4.1 Canal reach with a hydraulic structure at the

downstream end

If the canal reach has a hydraulic structure downstream, the downstream

discharge can be expressed in terms of the water level using the linearized

equation of the hydraulic structure:

qi+1 (k) = khwhi (k) (4.46)

where khw is the gain of the structure (in case of the UPC-PAC the gain of the

weir). Using this equation in Equation 4.37 the error becomes:

ei (k + 1) = [−pd − pgkhw] ei (k) + [−pe − phkhw] ei (k − 1)

[−pf − pikhw] ei (k − 2) + paqi (k − d)

+pbqi (k − 1− d) + pcqi (k − 2− d)− hspi + (k + 1)

+ [−pd − pgkhw]hspi (k) + [−pe − phkhw]hspi (k − 1)

+ [−pf − pikhw]hspi (k − 2) (4.47)

and the state equation is

xgen (k + 1) = Astrxgen (k) +Bstrugen (k) +Bdstrdstr (k) . (4.48)
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The state, the control and the disturbance vector are the same as in

Equation 4.40, Equation 4.41, and Equation 4.42. The matrices are now:

Astr =



1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 pa pb pc −pd − pgkhw −pe − phkhw −pf − pikhw
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0


,

(4.49)

Bstr =



1

0

0

0

0

0

0

0


(4.50)

and

Bdstr =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

−pg −ph −pi
0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−1 −pd − pgkhw −pe − phkhw −pf − pikhw
0 0 0 0

0 0 0 0


.

(4.51)

4.4.2 State space model for multiple reaches

The general state space model is presented here for two reaches, with offtake

flows qoffi and qoff(i+1) at the downstream end of both reaches and a weir
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downstream boundary condition for the second reach. The same structure can

be generalized for i = 1, 2, ..., n reaches.

The state contains the flow at the present instant k and the previous instants

(k − d − 2) and the errors of the water level in the present and the previous

instants. This is repeated for the second reach (subscript i + 1).

xgen (k) =



qi (k)

qi (k − 1)

qi (k − 2)

...

qi (k − d)

qi (k − d− 1)

qi (k − d− 2)

ei (k)

ei (k − 1)

ei (k − 2)

qi+1 (k)

qi+1 (k − 1)

qi+1 (k − 2)

...

qi+1 (k − d)

qi+1 (k − d− 1)

qi+1 (k − d− 2)

ei+1 (k)

ei+1 (k − 1)

ei+1 (k − 2)


(4.52)

ugen (k) =

[
∆qi (k)

∆qi+1 (k)

]
(4.53)

dgen (k) =



qoffi (k)

qoffi (k − 1)

qoffi (k − 2)

hspi (k + 1)

hspi (k)

hspi (k − 1)

hspi (k − 2)

qoff(i+1) (k)

qoff(i+1) (k − 1)

qoff(i+1) (k − 2)

hsp(i+1) (k + 1)

hsp(i+1) (k)

hsp(i+1) (k − 1)

hsp(i+1) (k − 2)


(4.54)

Note that, while for a single reach i the control is just incremental flow through

the gate i, in the multiple-reach case the control is a vector ugen(k), which

contains the incremental flows through all the gates. Note that the disturbance

vector contains the offtake flows and the setpoints.

The matrices are the following:
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A
g
e
n
=

                                              1
0

..
.

0
0

0
0

0
0

0
0

0
..
.

0
0

0
0

0
0

1
0

..
.

0
0

0
0

0
0

0
0

0
..
.

0
0

0
0

0
0

0
1

..
.

0
0

0
0

0
0

0
0

0
..
.

0
0

0
0

0
0

..
. 0

0
..
.

0
0

0
0

0
0

0
0

0
..
.

0
0

0
0

0
0

0
0

..
.

1
0

0
0

0
0

0
0

0
..
.

0
0

0
0

0
0

0
0

..
.

0
1

0
0

0
0

0
0

0
..
.

0
0

0
0

0
0

0
0

..
.

p
a
i

p
b
i

p
c
i

−
p
d
i

−
p
e
i

−
p
f
i

−
p
g
i

−
p
h
i

−
p
ii

..
.

0
0

0
0

0
0

0
0

..
.

0
0

0
1

0
0

0
0

0
..
.

0
0

0
0

0
0

0
0

..
.

0
0

0
0

1
0

0
0

0
..
.

0
0

0
0

0
0

0
0

..
.

0
0

0
0

0
0

1
0

0
..
.

0
0

0
0

0
0

0
0

..
.

0
0

0
0

0
0

1
0

0
..
.

0
0

0
0

0
0

0
0

..
.

0
0

0
0

0
0

0
1

0
..
.

0
0

0
0

0
0

..
. 0

0
..
.

0
0

0
0

0
0

0
0

0
..
.

0
0

0
0

0
0

0
0

..
.

0
0

0
0

0
0

0
0

0
..
.

1
0

0
0

0
0

0
0

..
.

0
0

0
0

0
0

0
0

0
..
.

0
1

0
0

0
0

0
0

..
.

0
0

0
0

0
0

0
0

0
..
.

p
a
(i
+
1
)

p
b
(i
+
1
)

p
c
(i
+
1
)

−
p
d
(i
+
1
)

−
p
e
(i
+
1
)

−
p
f
(i
+
1
)

0
0

..
.

0
0

0
0

0
0

0
0

0
..
.

0
0

0
0

1
0

0
0

..
.

0
0

0
0

0
0

0
0

0
..
.

0
0

0
0

0
1

                                              ,

(4
.5
5
)
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Bgen =



1 0

0 0

0 0

...

0 0

0 0

0 0

0 0

0 0

0 0

0 1

0 0

0 0

...

0 0

0 0

0 0

0 0

0 0

0 0



, (4.56)

and
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B
d
g
e
n
=

                                              

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

..
. 0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
p
g
i

−
p
h
i

−
p
ii

−
1

−
p
d
i

−
p
e
i

−
p
f
i

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

..
. 0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−
p
g
(i
+
1
)

−
p
h
(i
+
1
)

−
p
i(
i+

1
)

−
1

−
p
d
(i
+
1
)

−
p
e
(i
+
1
)

−
p
f
(i
+
1
)

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

                                              .
(4
.5
7
)
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4.5 Controller development

In this section a predictive control law is obtained based on the state space

models derived in the previous sections. These models can be written in a

generic form with a simplified notation as follows:

x (k + 1) = Ax (k) +Bu (k) +Bdd (k) (4.58)

where x is the n-dimensional state vector, u is an m dimensional input vector,

A is a n×n square matrix, B is a n×m matrix and Bd is a nbd×n matrix. The

disturbance vector d is nbd dimensional. The control formulation is performed

in two steps: (1) a prediction of the future state vector over a perdition horizon,

and (2) a minimization problem to derive the control.

4.5.1 Prediction

To establish the prediction, we consider a time horizon [k, k+λ], where k is the

current real time instant and λ is a time horizon to be selected as a parameter.

The notation x(k + j|k) indicates the prediction of vector x for a future time

instant k + j within this interval. To add more generality in the presentation,

time dependent matrices are considered, although they are usually constant in

practice. Thus, the prediction starts with the following equation

x (k + 1 |k ) = A (k |k )x (k |k ) +B (k |k )u (k |k ) +Bd (k |k ) d (k |k ) (4.59)

where x(k|k) = x(k), u(k|k) = u(k) and d(k|k) = d(k).

Writing the same equation for the future instants:

x (k + 2 |k ) = A (k + 1 |k )x (k + 1 |k ) +B (k + 1 |k )u (k + 1 |k )

+Bd (k + 1 |k ) d (k + 1 |k ) . (4.60)

Substituting Equation 4.59 to Equation 4.60:

x (k + 2 |k ) = A (k + 1 |k )A (k |k )x (k |k ) +A (k + 1 |k )B (k |k )u (k |k )

+B (k + 1 |k )u (k + 1 |k ) +Bd (k + 1 |k ) d (k + 1 |k )

+A (k + 1 |k )Bd (k |k ) d (k |k ) . (4.61)
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The same can be written for x+ 3:

x (k + 3 |k ) = = A (k + 2 |k )A (k + 1 |k )A (k |k )x (k |k )

+A (k + 2 |k )A (k + 1 |k )B (k |k )u (k |k )

+A (k + 2 |k )A (k + 1 |k )Bd (k |k ) d (k |k )

+A (k + 2 |k )B (k + 1 |k )u (k + 1 |k )

+A (k + 2 |k )Bd (k + 1 |k ) d (k + 1 |k )

+B (k + 2 |k )u (k + 2 |k )

+Bd (k + 2 |k ) d (k + 2 |k ) . (4.62)

Reordering the equation:

x (k + 3 |k ) = A (k + 2 |k )A (k + 1 |k )A (k |k )x (k |k )

+A (k + 2 |k )A (k + 1 |k )B (k |k )u (k |k )

+A (k + 2 |k )B (k + 1 |k )u (k + 1 |k )

+B (k + 2 |k )u (k + 2 |k )

A (k + 2 |k )A (k + 1 |k )Bd (k |k ) d (k |k )

+A (k + 2 |k )Bd (k + 1 |k ) d (k + 1 |k )

+Bd (k + 2 |k ) d (k + 2 |k ) . (4.63)

In the same way the state can be predicted at the end of the prediction horizon,

in the instant k+λ:

x (k + λ |k ) = A (k + λ |k )A (k + λ− 1 |k ) ...A (k |k )x (k |k )

+A (k + λ− 1 |k ) ...A (k + 1 |k )B (k |k )u (k |k )

+A (k + λ− 1 |k ) ...B (k + 1 |k )u (k + 1 |k )

...+B (k + λ− 1 |k )u (k + n− 1 |k )

+A (k + λ− 1 |k ) ...A (k + 1 |k )Bd (k |k ) d (k |k )

+A (k + λ− 1 |k )Bd (k + 1 |k ) d (k + 1 |k )

+Bd (k + λ− 1 |k ) d (k + λ− 1 |k ) . (4.64)

All the single predictions can be lumped together in the following form:

X = Ax0 + BU + BdD (4.65)
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where x0 = x(k|k). The vectors and matrices are detailed above and their size

is summarized in Table 4.6.

X =



x (k + 1 |k )

x (k + 2 |k )

x (k + 3 |k )

...

...

x (k + λ |k )


(4.66)

U =



u (k |k )

u (k + 1 |k )

u (k + 2 |k )

...

...

u (k + λ− 1 |k )


. (4.67)

D =



d (k |k )

d (k + 1 |k )

d (k + 2 |k )

...

...

d (k + λ− 1 |k )


(4.68)

A =



A (k |k )

A (k + 1 |k )A (k |k )

A (k + 2 |k )A (k + 1 |k )A (k |k )

...

...

A (k + λ− 1 |k )A (k + λ− 2 |k ) ...A (k |k )


(4.69)
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Matrix Size

A λn × n

X λn × 1

B λn × mλ

U mλ × 1

Bd λn × ndλ

D ndλ × 1

Y nqλ × 1

C nqλ × nλ

Table 4.6: Summary of the size of the matrices in MPC

4.5.2 Control

In the previous section (subsection 4.5.1) the prediction was described for all

along the prediction horizon, and the state equation for this horizon was

expressed in matrix form in Equation 4.65. The control vector U is the vector

4.67 containing mλ unknowns: the values of the control vector u for each

reach at every time k|k, k + 1|k, ..., k + λ − 1|k. The whole vector U is

obtained though the minimization of the following cost function with

constraints:

min
U

J = XTPX + UTRU (4.72)

xmin < x < xmax

umin < u < umax

where P (λn× λn) and R (λm× λm) are weighing matrices. More explicitly

the cost function can be written in the form:

J =

λ∑
j=1

x (k + j |k )
T
Pjx (k + j |k ) +

λ−1∑
j=0

u (k + j |k )
T
Rju (k + j |k ) (4.73)

where Pn×nj and Rm×mj matrices such that:

Pj =


p1 0 0 0

0 p2 0 0

0 0 ... 0

0 0 0 pn

 , (4.74)
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Rj =


r1 0 0 0

0 r2 0 0

0 0 ... 0

0 0 0 rm

 . (4.75)

In this work all weighing matrices Pj and Rj are chosen to be equal and

diagonal, Pj = P for j = 1, 2, ..., λ and Rj = R for j = 0, 1, ..., λ− 1. In other

words, the weights of the optimization do not change during the prediction

horizon. The matrix R contains the corresponding weights to the input, the

matrix P contains the weights on the state. In this case the input is the

change in discharge, therefore matrix R penalizes the changes in discharge.

Matrix P penalizes the state. We chose to penalize the current water level

error (ei(k)), therefore only the diagonal elements of P corresponding to the

current water levels in the state are non-zero. The weights on the water level

error and change in discharge are normalized: the weights are the reciprocals

of the squares of the maximum allowed values [van Overloop, 2006b]. For

example: the maximum allowed water level error is chosen to be 3 cm:

eMAV E = 0.03 m then the corresponding entry of the weighing matrix P

can be expressed as:

p1 =
1

eMAV E2
. (4.76)

The penalties for the change in input discharge (the entries of P ) are expressed

in the same way.

The general MPC controller was developed without using constraints. In case of

the laboratory experiments it was not possible to carry out online optimization

and for this reasons the constraints were not implemented. For the numerical

simulation the optimization is carried out by quadratic programming, using

the function ”quadprog” from the computational software Matlab [Mathworks,

2008]. For the laboratory canal the problem is solved (without constraints)

analytically [Mart́ın Sánchez and Rodellar, 1996].

4.6 Test for the control algorithms

All tests were carried out by using the 1D hydrodynamic model: Simulation of

Irrigation Canals (SIC). The test scenarios are established in order to test the
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predictive controllers during this work. There are four test, shown in Table 4.7.

Setpoint

change
Disturbance

Known Test 1 Test 2

Unknown Test 3 Test 4

Table 4.7: Summary of the four tests

Both tests start and finish with the steady state conditions shown in Table 4.8.

The discharge is approximately (Qappr) is 60 l/s. The setpoint of the water

level in the first pool (Sp1) is 85 cm, the setpoint for the water level in the

second pool is 70 cm (Sp2) and in the third pool (Sp3) is 55 cm. The gate

openings in order to achieve the given water levels in each pool are shown for

Gate 1 (G1), Gate 2 (G2) and Gate 5 (G5). The hight of the final weir (W4)

was set to 35 cm .

Qappr

(l/s)

Sp1

(cm)

Sp2

(cm)

Sp3

(cm)

G1

(cm)

G3

(cm)

G5

(cm)

W4

(cm)

60 85 70 55 7.4 12.6 11.8 35

Table 4.8: Steady state

4.6.1 Test 1: Setpoint changes

This test implies three consecutive setpoint changes. First at Pool 1, then after

reaching the original situation, a setpoint change in Pool 2 and finally at Pool

3. All setpoint changes are 10 cm – this is more than the 10% change in water

level in all the cases. Since the last pool ends with a weir, the last setpoint

change implies change in the discharge. Table 4.9 shows the test step by step.

The columns Sp show the actual setpoints, and the columns W and Qw show

the properties of the weirs. Qw gives the weir discharge approximately, while W

gives the height of the weir. In this test all offtakes are closed, the weir height

is the maximum (90 cm). There is flow only over Weir 4, the flow leaving the

canal.
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Time

(min)

Qappr

(l/s)

Sp1

(cm)

Sp2

(cm)

Sp3

(cm)

W1

(cm)

Qw1

(cm)

W3

(cm)

Qw3

(cm)

W4

(cm)

0 60 85 70 55 90 0 90 0 35

30 84 85 70 60 90 0 90 0 35

60 60 85 70 55 90 0 90 0 35

90 60 85 60 55 90 0 90 0 35

180 60 85 70 55 90 0 90 0 35

210 60 75 70 55 90 0 90 0 35

240 60 85 70 55 90 0 90 0 35

270 End

Table 4.9: Setpoint change test

4.6.2 Test 2: Reaction to disturbances

The disturbance rejection was tested by using the lateral weirs (See Table 4.10).

In this test two disturbances occur: after 30 min the weir at the downstream

end of Pool 1 is open. At 60 min it is closed, hence the system has 30 min more

to recover. After this time, at 90 min the weir at the end of the second reach

is open for 30 min. The offtake is closed at 120 min and the test is finished at

150 min. In both cases the offtake discharge is 20 l/s. This is one third of the

actual discharge, hence it is a considerable change.

Time

(min)

Qappr

(l/s)

Sp1

(cm)

Sp2

(cm)

Sp3

(cm)

W1

(cm)

Qw1

(cm)

W3

(cm)

Qw3

(cm)

W4

(cm)

0 60 85 70 55 90 0 90 0 35

30 60 85 70 55 75 20 90 0 35

60 60 85 70 55 90 0 90 0 35

90 60 85 70 55 90 0 60 20 35

120 60 85 70 55 90 0 90 0 35

150 End

Table 4.10: Disturbance test
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4.7 Discussion of the results

4.7.1 Numerical results

For the numerical test the controllers were tuned in the following way: the

penalty on the water level error change was set constant (3 cm) while the

penalty on the change of the discharge was decreased until some oscillations

appeared in the gate movement. The weight (penalty on the change of the

discharge) was chosen to be small, but not too small, in order not to produce

oscillations. In this way the fastest possible control action was achieved for

each controller. The resulting tuning parameters, the Maximum Allowed Value

Estimates (MAVE), are shown in Table 4.11.

eMAVE

(m)

Setpoint

duMAVE

(m3/s)

Disturbance

duMAVE

(m3/s)

MUS 0.03 0.001 0.001

HAY 0.03 0.001 0.001

ID 0.03 0.011 0.04

IDZ 0.03 0.011 0.02

IR 0.03 0.01 0.03

Table 4.11: Tuning parameters

The results of the numerical tests are discussed for the five models separately.

The controllers developed based on each model are abbreviated, for example

model predictive controller developed based on the MUS model: MPC-MUS.

The Muskingum model was able to control the first two canal pools, although

with low performance. For the sepoint changes, the water level goes back

slowly through overshoots to the original level after the change. The setpoint

change in Pool 1 causes disturbances in Pool 2 and Pool 3 as well. It had

problems to control the water level in Pool 3. It was not able to carry out

the third setpoint change (Figure 4.13a), just like it was unable to keep the

level at setpoint against known disturbances (Figure 4.13b). For the unknown

disturbances the performance was even worst. Based on these results this

controller is not suggested to be further tested experimentally.
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(a) Setpoint changes (b) Disturbances

Figure 4.13: MPC-MUS, Known changes

The first order model also had difficulties to control the third pool. In the

setpoint change test Figure 4.14a, it was not able to follow the setpoint: the

water level in the first pool followed the first change (30 min to 60 min), but it

was not able to correct for the disturbances caused by the change of the water

level of the third pool (150 min to 180 min). The same occurred in the case

of the water level of Pool 2: it did not stay at setpoint when the change in

the third pool occurred. The water level in Pool 3 during the first two changes

oscillate around setpoint, while in the change of its setpoint it is not able to

follow the trajectory.

(a) Setpoint changes (b) Disturbances

Figure 4.14: MPC-HAY, Known changes

The results of the disturbance test (Figure 4.14b) are slightly better. The

control of Pool 1 and Pool 2 is acceptable (Pool 2 shows some steady state
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offset, the water levels are 1 cm under setpoint). However, the water level in

Pool 3 was not controlled well: in case of both disturbances the water level was

kept in a steady state 3 cm lower than the expected one.

For these reasons the performance of the unknown disturbance test is not

analyzed here and the controller is not tested experimentally. The MPC-ID

showed much better result than the two controllers presented above. The

results of Test 1 and Test 2 (known setpoint changes and disturbances) for

the MPC-ID are shown in Figure 4.15. The setpoint changes are shown in

Figure 4.15a. The time of the setpoint change is marked with black vertical

lines. In all three pools, the controller was able to carry out the setpoint

change and lead the water level to the new setpoint. When a change occurs in

one pool, only a slight perturbation can be observed in the water level of the

other pools. The feedforward nature of the MPC can also be observed: the

water level starts to change before the required setpoint change in order to

minimize the error.

In Figure 4.15b the response to the disturbances is seen. The disturbance

caused by the opening of the offtakes can hardly be seen, the controller rapidly

answers. Even before the opening of the offtake, the water level is increased.

Additional discharge is sent, in order to prepare for the opening of the offtake.

This shows the feedforward property of MPC. There are small oscillations seen

in the water level. These oscillations are not harmful, since they do not appear

in the gate opening.

(a) Setpoint changes (b) Disturbances

Figure 4.15: MPC-ID, Known changes
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The results of the unknown setpoint change and disturbance test are shown

in Figure 4.16. In this case there was no feedforward action, the controller

started to act when the disturbance was known. It acted just at the moment

of the change of the setpoint or the physical arrival of the disturbance. In case

of the setpoint change test, there is a small offset in the last pool due to the

fact that this is a different discharge regime than the one for which the model

was developed. This problem should be solved with a method that is able to

eliminate the offset. This problem is addressed in Chapter 5. In case of the

disturbance test this problem is clearly seen (Figure 4.16b): the water levels

are not kept at setpoint after the disturbance. The water level in the first pool

is about 3 cm under setpoint after opening the offtake. Also the water levels in

Pool 2 and Pool 3 reach a steady state that is under setpoint. When the offtake

is closed (60 min) all water levels return to the setpoint. When the offtake is

opened again (90 min) the water levels reach a steady state under setpoint.

(a) Setpoint changes (b) Disturbances

Figure 4.16: MPC-ID, Unknown changes

The IDZ model shows similar results as the ID model. For the setpoint test

(Figure 4.17a), the MPC-IDZ shows more strict action: the water levels follow

more the shape of the step required by the setpoint signal. However, this fast

action leads to a little bit more disturbances in the other water levels (for

example some disturbances in the first water level after the setpoint change of

the water level in Pool 2, at 90 min). A slight difference can be also seen in

case of the disturbance test (Figure 4.17b). Here the IDZ model reacts slower

due to the different tuning parameter (for the setpoint change they had the

same tuning parameter, see Table 4.11). Since it was not possible to put as

small weight as for the ID model to the input change due to the appearing
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oscillations, the IDZ model acts slower for disturbance rejection. It is worth

mentioning that the IDZ model, having similar structure to the ID model, could

accept only a bigger weight on the input change, otherwise it showed oscillatory

gate movements.

(a) Setpoint changes (b) Disturbances

Figure 4.17: MPC-IDZ, Known changes

The response of the MPC-IDZ to unknown changes is shown in Figure 4.18.

Similar conclusions can be drawn as above: the response is similar to that of the

MPC-ID. For setpoint changes (Figure 4.18a), it acts faster than the MPC-ID,

while for disturbance rejection (Figure 4.18b) it acts slower than the MPC-ID.

The MPC-IDZ produced steady state error during the setpoint change test of

Pool 3 (150 min - 180 min) and during the disturbance test.

With this performance, the MPC-IDZ has similar performance in order of

magnitude as the MPC-ID.

(a) Setpoint changes (b) Disturbances

Figure 4.18: MPC-IDZ, Unknown changes
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The MPC-IR has similar results as the MPC-ID (Figure 4.19). For the setpoint

change test (Figure 5.1b), it reacts slightly faster, it follows the step shape of

the trajectory slightly better, while it causes less disturbances in the other

levels. It can be seen, for example at 90 min, where the setpoint in Pool 2

changes, and only a small disturbance occurs in Pool 1. For the disturbance

rejection test (Figure 4.19b) the results were similar that for the MPC-ID. The

MPC-IR showed very good performance for both tests.

(a) Setpoint changes (b) Disturbances

Figure 4.19: MPC-IR, Known changes

The response of the MPC-IR to unknown changes is shown in Figure 4.20.

For the unknown setpoint changes (Figure 5.2b), the MPC-IR showed slightly

better results than the ID model, the water level produced less over and

undershoots. However, still, it was not able to bring the water level of Pool 3

to setpoint (between 150 min and 180 min). The unknown disturbance test

(Figure 4.20b) produced similar offsets, the MPC-IR was not able to keep the

setpoint constant again unknown disturbances. Generally the MPC-IR model

showed good performance, and the controller will be tested experimentally.

As a summary, the MPC-ID, MPC-IDZ and MPC-IR were able to maintain

the water level at setpoint while setpoint changes and disturbances occurred.

The MPC-ID and MPC-IR are tested experimentally in the following.

The MPC-MUS and MPC-HAY were not able to control the water level during

these numerical test, therefore they are not tested further.
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(a) Setpoint changes (b) Disturbances

Figure 4.20: MPC-IR, Unknown changes

4.7.2 Experimental analysis of controllers

MPC-ID and MPC-IR were tested experimentally in the laboratory canal UPC-

PAC.

The experimental results of the setpoint change are shown in Figure 4.21. Both

controllers were able to track the setpoint in the experiment. The IR model

shows slower responses, which might be improved with different tuning values.

In both cases, an offset can be observed in Pool 2 between 60 min and 90 min.

In some cases (for example after the first setpoint change) the water level in

the second reach was going slow or not reaching setpoint (Figures 4.21a and

4.21b). Also both models had difficulties with the third setpoint change, which

involves about 40% change of discharge.

(a) MPC-ID (b) MPC-IR

Figure 4.21: Known setpoint changes, experiment
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The gate movements belonging to the above experiments are shown in

Figure 4.22. In both cases the gates reach a maximum opening: this opening

was set in order to avoid free flow conditions. It can be noted when one

change requires a gate opening, for example for the first setpoint change test

at 30 min the required action is the opening of the gate in Pool 2 (in order to

reduce the water level in Pool 1). However, in the beginning of the change

also the gate in Pool 1 is acting, in order to facilitate the change. After a

short time this gate moves back to its original position. The same behaviour

can be seen for the second setpoint change. For the third setpoint change

(between 150 min and 180 min), all the three gates are moving because this

change involves changing to a new steady state with different discharge. The

MPC-ID (Figure 4.22a) showed faster and some slight oscillations. In case of

the MPC-IR Figure 4.22b the actions are slower, but also producing the same

final gate opening.

(a) MPC-ID (b) MPC-IR

Figure 4.22: Known setpoint changes, experiment, gate openings

In Figure 4.23 the results of the disturbance rejection test is shown. For the

MPC-IR the initial values are due to the different steady state where the

experiment was started. This initial part is not taken into account in the

analysis. Both controllers were able to control the water level, within some

offset. In general the MPC-IR produced less offset than the MPC-ID, for

example between 90 min and 120 min. In general, the MPC-IR resulted in

more smooth water levels, less under- and overshoots.
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(a) MPC-ID (b) MPC-IR

Figure 4.23: MPC-ID, Known disturbances, experiment

The gate openings belonging to the experiment are shown in Figure 4.24. The

same phenomena can be seen as before: for the MPC-IR the gate movements are

smoother. Also the height of the final opening for the MPC-IR (Figure 4.24b)

is different from that of the MPC-ID: the IR model was able to keep the water

level closer to setpoint.

(a) MPC-ID (b) MPC-IR

Figure 4.24: MPC-ID, Known disturbances, experiment, gate openings

As a conclusion of the experiments, both MPC-ID and MPC-IR were able to

control the UPC-PAC. The MPC-ID showed slightly better performance for

the setpoint test, while the MPC-IR showed considerably better performance

for the disturbance test.
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4.8 Conclusion

In this chapter five simple linear models were compared for control design.

They were compared first in the time and then in the frequency domain. Finally

predictive controllers were developed based on those models. The controllers

giving the best performance numerically were also tested experimentally in

the UPC-PAC. From the analysis of the results the following conclusions were

drawn:

• The response of the models is very different in time and frequency domain.

For example some models that showed good response in the time domain

had worse response in the frequency domain; and finally the controller

based on those models had low performance. Therefore by examining

the response only in the time domain might not be enough for controller

development.

• The effect of the downstream structures is very important, they can

change the behaviour of the canal pool. For most of the controllers it

was more difficult to control Pool 3 that has a weir at the downstream

end than the other pools that have sluice gates downstream.

• It was possible to develop controllers with acceptable performance based

on any of the 5 white box models, only using the knowledge about the

geometry of the canal.

• As general, the models developed for control showed much better

performance for the UPC-PAC canal, while the traditional hydrological

models had rather poor performance. The Muskingum and the first

order model are also discarded due to their poor performance.

• In general the MPC-ID and MPC-IR model have better performance than

the MPC-IDZ, and the MPC-MUS and the MPC-FO have much poorer

performance, therefore they were discarded as possible models for the

UPC-PAC.

• The reason while the IDZ model is not tested is that it is more complicated

than the ID model and it did not give any additional benefit compared

to the MPC-ID.
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• The two controllers MPC-ID and MPC-IR were tested experimentally.

Both of them were able to control the canal, both of them gate good

performance.

• All models showed steady-state error during the unknown disturbance

test. This problem can be solved by different controller development,

and it is addressed in the following chapters.

In the remaining of this work the IR model is selected, as it was especially

developed for canals prone to resonance, and its performance is in the same

order of magnitude as the best performing model, the ID. The controllers are

further developed in the following chapters: the development of the offset-free

MPC is addressed in Chapter 5 and the possibility of using the gate openings

as control action variables is discussed in Chapter 6.



i
i

“main” — 2013/4/8 — 12:44 — page 140 — #168 i
i

i
i

i
i



i
i

“main” — 2013/4/8 — 12:44 — page 141 — #169 i
i

i
i

i
i

Chapter 5

Offset-free model predictive

control

5.1 Introduction

In Chapter 4 MPC was implemented numerically and experimentally with

generally good performance, but in the case of some unknown disturbances

steady-state offset was present. In this chapter the controller is further

developed in order to be able to produce offset-free setpoint tracking. First

the steady-state offset problem is described, then a new method is proposed

to eliminate steady-state offset. The method is tested numerically and

experimentally.

The offset problem appears when the gravity offtakes are open, or in case of

the setpoint change in Pool 3. All these cases involve change in discharge over

the weirs. In case of the offtakes, the offtake discharge depends on the water

level in the pool where the weir is located. In case of the setpoint change in

Pool 3, the water level in Pool 3 depends on the discharge (because of the

presence of the downstream weir). For the MPC, the controller has to predict

the future discharge and the future water levels. Since these two variables

in the mentioned cases directly depend on each other, one of them should be

estimated. This estimation introduces errors in the prediction and results in

steady-state offset.

141
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There are two main ways to eliminate offset: combine an integral action to

the MPC controller [Mart́ın Sánchez and Rodellar, 1996] and [Wang, 2009] or

model the disturbances [Pannocchia and Rawlings, 2003]. Both methods are

common and have successful implementations in the industry.

In the field of canal control, [Begovich et al., 2007c] uses the internal model

principle: in order to reject constant disturbance it is necessary that an

integrator appear in the closed loop system, that is an internal model of the

constant disturbance. Therefore they propose an augmented model that

contains a disturbance model based on integrators.

In this work, we propose a method that is based on adding integrator action

to the model. The idea is to combine the MPC presented in Chapter 4 and

the MPC controller developed in [Mart́ın Sánchez and Rodellar, 1996]. The

method is applied to irrigation canals in [Rodellar et al., 1993]. The controller

referenced above has integral action, it is able to eliminate steady state offset,

however, it does not have the property of treating known disturbances, in other

words, acting to a known disturbance before it happens. It uses a constant

control action during the whole prediction horizon. Therefore the idea is to

combine the advantages of the two controllers: offset-free control and known

disturbance handling. There is a certain trade-off between these two actions,

in fact.

The new method is introduced in two steps. First the offset-free MPC presented

in [Rodellar et al., 1993] is summarized in section 5.2 and then, in section 5.3,

the combination of this with the existing controller developed in section 4.5 is

shown.

5.2 Controller with integral action

In order to describe the method we assume a system with the following

equation:

x (k + 1) = Ax (k) +Bu (k) +Bd2d (k) (5.1)

where x is a vector of n × 1, A is a square matrix of n × n, B is a matrix of

n×m, u is a vector of m× 1, d is an nbd × 1 disturbance vector and Bd2 is a

matrix of dimension n×nbd; n is the dimension of the system, m is the number
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of input variables and nbd is the number of the disturbance states. Then the

incremental state and the incremental input can be defined in the following

way:

xi (k) = x (k)− x (k − 1) (5.2)

and

ui (k) = u (k)− u (k − 1) . (5.3)

Using the above expressions for the incremental variables, Equation 5.1 can be

expressed in incremental form:

xi (k + 1) = Axi (k) +Bui (k) +Bd2di (k) . (5.4)

The control law will be calculated during a given interval, with the length of λ,

called the prediction horizon: [k,k+λ]. In this formulation of predictive control

constant control input is assumed during all the prediction horizon, therefore

the incremental input is zero after the first increment:

ui (n) = 0 for k + 1 < n < k + λ. (5.5)

Using the incremental model, the state can be calculated for k + 2:

xi (k + 2) = A2xi (k) +ABui (k) +ABd2di (k) +Bui (k + 1) +Bd2di (k + 1) .

(5.6)

Following the same method during all the prediction horizon, we can arrive to

the equation of the state at the end of the prediction horizon:

xi (k + λ) = Aλxi (k) +Aλ−1Bui (k) +Aλ−2Bui (k + 1) +

Aλ−1Bd2di (k) +Aλ−2Bd2di (k + 1) + ...

+Bd2di (k + λ− 1) . (5.7)

Summing up the state during all the prediction horizon, the following expression

can be obtained:

x (k + λ) = (Asum + I)x0 +Bsumu(k) + ([−Asumx (k − 1)−Bsumu (k − 1)])

+Bd2m1D2m1 (5.8)
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where Asum is a n× n matrix, Bsum is a n×m matrix, Bd2m1 is a nbd2 × λn
and D2m1 is a vector nbdλ × 1. Note that the resulting Equation 5.8 does

not contain incremental variables any more. On the left hand side it has the

state at the last instant of the prediction horizon, and on the right hand side it

contains constant matrices multiplied by the initial state x0 = x(k), the initial

input u(k), and the state and the input one time instant before. The last

term Bd2m1D2m1 contains the known disturbances during all the prediction

horizon.The matrices multiplying the state and the input are the following,

respectively:

Asum = [A (k |k ) +A (k + 1 |k )A (k |k ) + ...

+A (k + n− 1 |k )A (k + n− 2 |k ) ...A (k |k )] (5.9)

and

Bsum = [B (k |k )] + [A (k + 1 |k )B (k |k ) +B (k + 1 |k )] + ...

+[A (k + n− 1 |k ) ...A (k + 1 |k )B (k |k ) +A (k + n− 1 |k ) ...

+A (k + 2 |k )B (k + 1 |k ) + ...+B (k + n− 1 |k )]. (5.10)

The last term contains a matrix multiplied by the the disturbance vector D2m1,

which contains the disturbances during all the prediction horizon:

D2m1 =


d (k)

d (k + 1)

...

d (k + λ− 1)

 . (5.11)

The matrix multiplying the disturbances (Bd2m1) is a result of the coefficients

of d(k), d(k + 1),...d(k + λ) when equations 5.4, 5.6 ..., 5.7 are added up. The

matrix is the following:

Bd2m1 =
[

Bd1m2c1 Bd2m2c2 ... Bd1m2cn1 Bd1m2cn

]
(5.12)

where

Bd2m1c1 = Bd(k|k) +A(k + 1|k)Bd(k|k)

+A(k + λ− 1|k)A(k + λ− 2|k)...A(k + 1|k)Bd(k|k)(5.13)
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Bd2m1cn2 = Bd(k + 1|k) +A(k + 2|k)Bd(k + 1|k)

+A(k + 3|k)A(k + 2|k)Bd(k + 1|k)

+A(k + λ− 1|k)A(k + λ− 2|k)...A(k + 2|k)Bd(k|k)

(5.14)

Bd2m1cn1 = Bd(k + λ− 2|k)

+A(k + λ− 2|k)Bd(k + λ− 2|k) (5.15)

Bd2m1cn = Bd(k + λ− 1|k). (5.16)

The sum of the state equations during the prediction horizon, Equation 5.8,

can be expressed in a more compact form:

Xm1 = Am1x0 + Bm1Um1 + Bdm1Dm1. (5.17)

The terms of Equation 5.17 are detailed one by one.

The term Xm1 is the state at the end of the prediction horizon:

Xm1 = x (k + λ) . (5.18)

The input vector Um1 is the input vector of the system at the present instant

k:

Um1 = u(k). (5.19)

The matrices multiplying the state and the input are the following, respectively,

Am1 = Asum + I (5.20)

and

Bm1 = Bsum (5.21)

where the matrices Asum and Bsum are defined by equations 5.9 and 5.10. The

third term accounts for the disturbances (Equation 5.11) and the additional
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terms including u(k − 1) and x(k − 1) of Equation 5.8:

Dm1 =

[
D1m1

D2m1

]
. (5.22)

The matrix multiplying this term is composed of two parts, one multiplying

the disturbances (Equation 5.12), and the other multiplying the other part of

matrix Dm1:

Bdm1 =
[

Bd1m1 Bd2m1

]
. (5.23)

The other parts of matrices Dm1 (Equation 5.22) and Bdm1 (Equation 5.23)

are the following:

Bd1m1 = [−Asumx (k − 1 )− Bsumu (k − 1 )] (5.24)

and

D1m1 = 1. (5.25)

The size of all matrices used in this formulation are summarized in Table 5.1.

Matrix Size

Am1 n × n

Xm1 n × 1

Bm1 n × m

Um1 m × 1

Bdm1 n × (ndλ+1)

Dm1 (λnd + 1) × 1

x0 n × 1

D1m1 1 × 1

Bd1m1 n × 1

D2m1 λnd × 1

Bd2m1 n × λnd

Table 5.1: A summary of the size of the matrices

A predictive control objective associated to Equation 5.17 could be to find the

control vector Um1 such that the state vector at k+λ, x(k+λ|k) = Xm1 is as

close as possible to the setpoint through the minimization of x(k+λ|k)TQλx(k+

λ|k). Our strategy in this chapter consists in combining this objective with the

control objective presented in subsection 4.5.2 (Equation 4.73).
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5.3 Offset-free predictive control

In this step we combine the controller objective presented above and the one

presented in subsection 4.5.2, with the aim of combining the advantages of both

strategies.

The basic method has good reaction to known disturbances, but it is not able

to respond without offset to unknown disturbances. The simplified method

reaches always offset free response, however, its response to known disturbances

is not so good.

The control objective aims to find the control vector U that minimizes the

following performance criterion:

J = J1 + J2 =
λ∑
j=1

x (k + j |k )
T
Pjx (k + j |k )

+
λ∑
j=0

∆u (k + j |ki )T Rj∆u (k + j |k )

+x (k + λ|k)
T
Pm1x (k + λ |k ) . (5.26)

This performance criterion has two parts belonging to each formulation. The

first part has two terms and the second part has one term. By assigning

appropriate weights to both objectives, it is straightforward to balance between

the integral action and the anticipatory action of the MPC.

Now we give the details that allow to express the control objective in a matrix

compact form as follows

min
U

J = Xm4
TPm4Xm4 + UTRU. (5.27)

and

Xm4 = Am4x0 + Bm4U + Bdm4Dm4 (5.28)

where the terms are explained one by one an their size is summarized in

Table 5.2. Equation 5.28 comes from the combinations of Equation 4.65

(state equation used in subsection 4.5.1) and Equation 5.17. This, the state
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vector Xm4 is compiled in the form:

Xm4 =

[
X

Xm1

]
. (5.29)

where x contains the state all the time instants during the prediction horizon

and Xm1 = x(k + λ). The vectors x0 and U are the same as in Equation 4.65

of the original approach developed in Chapter 4. They are rewritten here for

completeness:

x0 = x(k|k) (5.30)

and

U =



u (k |k )

u (k + 1 |k )

u (k + 2 |k )

...

...

u (k + λ− 1 |k )


. (5.31)

The input vector U contains the input during all the prediction horizon. This

is the same input vector used in the previously developed MPC, in

subsection 4.5.1. However, the input vector used in this chapter, Um1

contains the input only for the present instant. Therefore the combination of

the two state spaces is based on connecting both vectors as follows: the first

part (of length m) of the input vector U (that is u(k)) will be made equal to

the input vector Um1, as:

Um1 = U(1 : m). (5.32)

The matrices are also combined suing the corresponding matrices from the two

formulations:

Am4 =

[
A

Am1

]
. (5.33)

Matrix Bm4 contains some zeros. The reason for this is the different length of

the input vectors: while the input vector of the MPC from Chapter 4 is mλ

long, the input vector of the method presented here has an input vector Um1
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with length of m. Therefore Bm4 is the following:

Bm4 =

[
B

Bm1 0n×m(λ−1)

]
. (5.34)

The disturbance vector Dm4 is the combination of the disturbance vector of

the two methods:

Dm4 =

[
D

Dm1

]
. (5.35)

Just as the disturbance vector, the matrix multiplying the disturbance vector

is the combination of the two matrices from the two methods:

Bdm4 =
[

Bd Bdm1

]
. (5.36)

Matrix Size

Am4 (λ+ 1)n × n

Xm4 (λ+ 1)n × 1

Bm4 (λ+ 1)n × mλ

U mλ × 1

Bdm4 n × (ndλ+1)

Dm4 (nd+1) × 1

Ym4 (λ+ 1)nq × 1

Cm4 (λ+ 1)nq × (λ+ 1)n

x0 n × 1

Table 5.2: A summary of the size of the matrices for the offset-free method

The weighing matrix Pm4 has the following form:

Pm4 =

[
P 0nλ×n

0n×nλ Pm1

]
. (5.37)

This matrix is the combination of the weighing matrix P presented in

subsection 4.5.2 in Equation 4.72 and the matrix Pm1.

Pm1 is a diagonal matrix with size n×n that has zero entries for the states that

we do not want to penalize and non-zero entries for the states that we wish to

penalize. In this work these states are the water level errors. The penalty can
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also be expressed as before:

Pm1(i, i) =
1

eiMAV E2
(5.38)

where eiMAV E is a value to be tuned.

The weighing matrix R is the same presented in by subsection 4.5.2

Equation 4.75.

Finally, the control vector U is obtained through the solution of the problem

defined by equations 5.27 and 5.28 at each sampling instant k.

5.3.1 Tuning parameters

There are three weights to tune: the penalty on the change of input, the penalty

on the state during all the prediction horizon and the penalty on the sum of

the states (this is from offset-free approach). This last penalty is the one that

should be adjusted in order to influence the strength of the integrating action.

The general tuning parameters (eMAVE, duMAVE, λ ) were the same as chosen

previously for controller tuning, while the tuning parameter of the presented

offset-free method has been chosen in the following way: the weight in the

integration procedure was increased until offset-freecontrol was achieved in the

given case. As a general guidance this value can be chosen equal to eMAVE and

then the effects between the integration and the MPC can be balanced. The

final tuning values of the offset free test eMAVE=0.03, duMAVE=0.009 for the

disturbance and duMAVE=0.015 for the setpoint test. The eiMAVE=0.03 for

both tests.

5.4 Results

5.4.1 Numerical results

The known and unknown setpoint change and disturbance tests defined and

used in Chapter 4 have been carried out to assess the extended control

approach.



i
i

“main” — 2013/4/8 — 12:44 — page 151 — #179 i
i

i
i

i
i

Chapter 5. Offset-free model predictive control 151

The performance in case of known disturbances is very similar compared to

the results without offset free control, while in case of the known setpoint

changes the performance is slightly lower. The performances are compared in

Figure 5.1.

(a) Using offset-free method (b) Without using offset-free method

Figure 5.1: MPC-IR, Following the known setpoint changes with and
without offser-free method

The over and undershoots of the integrating action can be seen. To some

extent, it is a deterioration of the performance. However, it can also be taken

into account that this test was designed to be more demanding than the usual

changes during canal operation, and the controller was tuned to be able to

tackle these changes as unknown disturbances. If the range of the possible

unknown disturbances is smaller, more fine tuning is possible, the integration

action can be reduced and hence the overshoot. Nevertheless, the controller

was able to bring the water levels to the desired setpoint. The controller kept

its feedforward property: the setpoint changes are starting before the actual

change happened to allow a smoother reaction.

There is almost no performance deterioration in case of the disturbance

rejection test. For this reason, this is not discussed here in detail. The reason

for this difference of performance between the two types of tests can be the

demanding nature of the setpoint test. For the unknown change, the results

of the setpoint test are compared in Figure 5.2. Here the difference can

clearly be seen between the two approaches. For the third change in the water

level of the last pool without using offset-free control, the water level slightly

changes, it does not go at all to the required setpoint. In the other pools it

reaches the setpoint, however, more slowly. By using the offset-free control
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method all setpoints are reached. The setpoints for Pool 1 and Pool 2 are

reached faster, though they result in under and overshoot. This phenomenon

is present not only in the target pool, but also in the other pools as

disturbance propagates. Sometimes small oscillations are seen in the water

level of the adjacent pools. These oscillations are not causing any harm, since

they are present in the water level, but not in the gate movement. If they

were present there, it would lead to wear and tear and they should have been

avoided.

(a) Using offset-free method (b) Without using offset-free method

Figure 5.2: MPC-IR, Following the setpoint with and without offset-free
method in case of unknown changes

The biggest improvement of the offset-free control can be observed for the

disturbance test (Figure 5.3). In this case, without this improvement, the

setpoints are not kept in any of the cases, the water level arrives to a steady

state sometimes 3 cm off setpoint. This offset is completely eliminated by the

proposed method. In less than 5 minutes the water level is back to setpoint.

To the other pools only a slight change is propagated and it is corrected fast.
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(a) Using offset-free method (b) Without using offset-free method

Figure 5.3: MPC-IR, Following the setpoint with and without offser-free
method in case of unknown changes

In general, based on the simulation results, it can be said that the proposed

offset-free method was able to follow the setpoint or keep it in the presence of

unknown disturbances. For the setpoint change test, a trade-off had to be made

between the disturbance canceling property and the introduced overshoot.

5.4.2 Experimental results

The controller was implemented and successfully tested on the UPC-PAC. The

resulting water levels for known setpoint and disturbance test are shown in

Figure 5.4. Just as in case of the numerical simulation, the controller was

able to follow the known setpoint changes and disturbances. The feedforward

property of MPC is observed: the water level starts to change before the actual

change in demand happens.

(a) Setpoint change (b) Disturbances

Figure 5.4: MPC-IR, Known changes, laboratory experiment
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There is a difference compared to the IR test without and with offset free

method: using offset free method some large amplitude oscillations in the water

level Figure 5.4a. These oscillations are also present in the gate movement.

These are caused by the minimum gate movement constraint: the gates cannot

move less than 8 mm. Therefore the integral error is accumulating, until a

certain point, and then a control action is taken. However this control action

makes the water level move to the other side of the setpoint. Then the same

phenomenon occurs: the error is accumulated until another action is taken.

Hence the water level oscillates around the setpoint. This can be avoided by

restricting the control action within a certain vicinity of the setpoint, however,

in this case there would always be an offset.

The known disturbance test in Figure 5.4b shows very good results, only small

deviations can be observed when the weirs are opened and closed. Note that

when the offtake is opened in Pool 1 (30 min), the disturbance is not observed

in Pool 2 and Pool 3.

(a) Setpoint change (b) Disturbances

Figure 5.5: MPC-IR, Unknown changes, laboratory experiment

The controlled water levels in case of the unknown changes are shown in

Figure 5.5. The same oscillations in the water level can be seen as commented

above. In all cases the offset-free control is reached. As it was expected, the

overshoot is bigger than for the known changes. The changes only start after

the disturbance happens, as the controller knows it only from measurements.

Especially for the disturbance test case in Figure 5.5b (as it is less demanding

as commented before), the controller shows very good performance: the water

levels are kept at setpoint, and they return to setpoint after the changes in

about 5 minutes.
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In general it was possible to implement the presented offset-free method and it

was able to achieve offset free control in the laboratory canal.

5.4.3 Conclusion

• A new offset-free centralized model predictive controller has been

proposed and tested numerically and experimentally on the UPC-PAC.

• The offset free control showed very good results with numerical

simulations, the controller was able to react to unknown disturbances

without steady-state offset.

Similar results were obtained experimentally.

• Both in case on numerical and experimental results, there is significant

under and overshoot. The reason for this might be the too small weight

on the integral action. While this weight proved to be adequate for the

numerical model, it might be too small for the experimental plant and

lead to excessive gate movements.

• In case of experimental implementation, if there is a constraint on

minimal gate movement, the implementation of the offset-free method

will result in small oscillations in the gate movement around the desired

position. This can be avoided by tuning or implementing restrictions on

the gate movement.

• It can be concluded that, after some tuning and tests, this method can

be used as a simple way to implement offset-free predictive controllers for

irrigation canals.
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Chapter 6

Gate opening as control

action variable

6.1 Introduction

In Chapter 4 model predictive controllers were developed and in general they

showed good performance, but in certain cases they produced steady state

offset. An offset free method was introduced in Chapter 5 in order to solve

this problem. In this chapter the improvement of the controllers is further

investigated: the question of using gate opening as control action variable is

addressed. First a short introduction about the use of different control action

variables is presented. Then a model is introduced that combines the gate

equation into the state space. This model was already published in [Horváth

et al., 2013a] and tested using LQG controllers. Here, model predictive

controllers based on this model are developed and tested numerically and

experimentally.

6.2 The use of different control action variables

In this section the use of different control action variables in control of irrigation

canals is discussed. An irrigation canal with several reaches is a complex system

157
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where each reach can be considered as a subsystem. These subsystems are

coupled through the discharge under the gates. A change in the opening of

one gate affects the gate discharge of the gates upstream and downstream

of the given gate and also the water levels upstream and downstream. This

new change in the discharge can be considered as a perturbation that travels

upstream and downstream. This effect is stronger in flat canals, with low

friction, but it is present in any canal under subcritical flow.

In order to develop a distant downstream controller (either water level or

discharge is controlled) the choice of the control action variables can be the

upstream discharge or the upstream gate opening. Both of these approaches

are commonly used in canal control [Malaterre, 2008]. The difference between

the two approaches is discussed below, first in the case of decentralized

control and second in the case of centralized control.

In case of decentralized control, several controllers are trying to control

individual systems that are in fact heavily coupled. For two canal reaches

connected by a gate, the gate opening can be the control action variable for

the downstream reach, while it is an unknown perturbation for the upstream

reach. Not taking this effects into account can lead to disturbance

amplification and unacceptable controller performance [Schuurmans, 1997].

One way to decouple these variables is using discharge as control action

variable instead of gate opening. In this case the gate opening is set by a

slave controller, taking into account the water level upstream of the gate that

belongs to the other canal pool. The slave controller can have several

configurations, the most simple is the inverted gate equation. A better

approximation is to take into account the change in water levels by using the

method of characteristics [Malaterre and Baume, 1999] or the integrator delay

zero model [Litrico et al., 2008]. In [Malaterre and Baume, 1999] different

possible configurations with different canal geometries are compared by using

PI controllers. The best results were achieved by using discharge as control

action variable and a slave controller that takes into account the water level

changes.

For centralized systems no such tests have been carried out. In case of using

discharge as control variable the internal model has no direct information about

the effect of the change of the water levels caused by the change of the opening.

Moreover, the controller has no information about the change of discharge



i
i

“main” — 2013/4/8 — 12:44 — page 159 — #187 i
i

i
i

i
i

Chapter 6. Gate opening as control action variable 159

further propagated upstream. This information enters the controller when

they occur in nature (after a certain delay) and then the controller is able to

react to that. Hence, these type of controllers as first action can only act on

the gates that are the neighbours of the gate where the opening occurred. In

order to develop a controller that is aware of this dynamics and can act faster,

the dynamics of the gates should be considered and implemented [Malaterre,

2008]. The gates in this case need to be modelled. It is possible to be carried

out by identification experiments or by linearizing the gate equation. In both

cases the problem is if the model is used in a regime far from the one where it

was linearized. This problem can be overcome by using multiple models [van

Overloop et al., 2008].

6.3 Gate modelling

In order to combine the model of gates into the state space model of the system

the classical gate equation is linearized. The equation is the following:

Q = CdLB
√

2g(H1 −H2) (6.1)

where Q is the discharge under the gate, Cd is the discharge coefficient, L is

the gate opening, B is the width of the gate, g is the acceleration of gravity,

H1 is the water level upstream and H2 is the water level downstream. The

variables used for the gate modelling can be seen in Figure 6.1.

Figure 6.1: The variables for one sluice gate
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Equation 6.1 can be linearized around the steady state Q0, L0, H10, H20. The

deviations from this steady state are noted by q, l, h1, h2, and the relative

discharge is:

q = kll + kh1h1 + kh2h2. (6.2)

The gains of the linearized equation are calculated as the following:

kh1 =
∂Q

∂H1
=

1

2
CdL0B

√
2g

1√
H1 −H2

(6.3)

kh2 =
∂Q

∂H2
= −1

2
CdL0B

√
2g

1√
H1 −H2

(6.4)

kl =
∂Q

∂L
= Cd

√
2g(H1 −H2). (6.5)

6.4 General state space equations

We are going to develop the state space model using a general model structure

for a third order system. The state space can be constructed in the same

manner to models with different order. First the expression of the downstream

water level, then the expression of the upstream water level is described, then

expressions for introducing a structure at the downstream end of the canal are

given. Finally, combining the equations derived before for the gate discharge

Equation 6.2 with the equations for the downstream and upstream water level,

the state space is constructed.

The general model is expressed in the z-domain. Any model described in this

domain can be used to follow this methodology. In our case, we used the

IR model, whose discrete transfer functions (the parameters for pia,..,piu for

i = 1, ..3) are given in Appendix D.

Expression of the downstream water level

The water level at the downstream end of each canal pool is influenced by the

discharge entering the reach (upstream discharge) and the discharge leaving
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the reach: the downstream discharge and the discharge through the offtakes.

An expression in the z-domain can be written as:

hi =
paiz

3 + pbiz
2 + pciz + pdi

z3 + peiz2 + pfiz + pgi
qiz
−1

−phiz
3 + p2iiz + pjiz + pki

z3 + peiz2 + pfiz + pgi
qi+1z

−1

−phiz
3 + p2iiz + pjiz + pki

z3 + peiz2 + pfiz + pg
qoffiz

−1

+
pli

z3 + peiz2 + pfiz + pgi
(6.6)

where qi is the input discharge, qi+1 is the output discharge (input discharge

of the next reach), qoffi is the offtake discharge, and the coefficients pa, pb, ...,

pl are specific of the chosen model. Equation 6.6 has four terms: the first term

accounts for the influence of the upstream discharge (qi) to the downstream

water level (hi), the second is the influence of the downstream discharge (qi+1)

to the downstream water level, the third term accounts for the influence of

the offtake discharge (qoffi) to the downstream water level, and the last term

contains constants depending on the model. The i subscript refers to the ith

reach. Equation 6.6 can be expressed in the time domain:

hi(k + 3) = −peih(k + 2)− pfihi(k + 1)− pgihi(k)

+paiqi(k + 2) + pbiqi(k + 1) + pciqi(k) + pdiqi(k − 1)

−phiqi+1(k + 2)− piiqi+1(k + 1)− pjiqi+1(k)− pkiqi+1(k − 1)

−phiqoffi(k + 2)− piiqoffi(k + 1)− pjiqoffi(k)− pkiqoffi(k − 1)

+pli. (6.7)

The water level error is introduced as the difference between the actual value

and the setpoint hisp:

ei(k) = hi(k)− hisp(k). (6.8)
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The water level error (Equation 6.8) can be combined to Equation 6.7:

ei(k + 1) = −peie(k)− pfiei(k − 1)− pgiei(k − 2)

−hisp(k + 1)− peihspi(k)− pfihspi(k − 1)− pgihspi(k − 2)

+paiqi(k) + pbiqi(k − 1) + pciqi(k − 2) + pdiqi(k − 3)

−phiqi+1(k)− piiqi+1(k − 1)− pjiqi+1(k − 2)− pkiqi+1(k − 3)

−phiqoffi(k)− piiqoffi(k − 1)− pjiqoffi(k − 2)− pkiqoffi(k − 3)

+pli. (6.9)

Expressing the upstream water level

Assuming the same structure of model, the same denominator the following

model can be written for the water level in the upstream end of the reach hu:

hui =
pmiz

3 + pniz
2 + poiz + ppi

z3 + peiz2 + pfiz + pgi
qiz
−1

−pqiz
3 + p2riz + psiz + pti

z3 + peiz2 + pfiz + pgi
qi+1z

−1

−pqiz
3 + p2riz + psiz + pti

z3 + peiz2 + pfiz + pg
qoffiz

−1

+
pui

z3 + peiz2 + pfiz + pgi
(6.10)

where hui is the upstream water level in the ith reach and pm, pn,...,pu are

model specific coefficients. This equation has also four terms just as the one

expressing the downstream water level. The first term is the transfer function

between the upstream discharge (qi) and the upstream water level, the second

term is the transfer function between the downstream discharge (qi+1) and the

upstream water level, the third one is the transfer function between the offtake

discharge (qoffi) and the upstream water level and the fourth term is a model

specific constant. Note that the denominator of the terms is the same as for

the equation of the downstream water level (Equation 6.6). This equation can
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be expressed in the time domain as well:

hui(k + 1) = −peihui(k)− pfihui(k − 1)− pgihui(k − 2)

+pmiqi(k) + pniqi(k − 1) + poiqi(k − 2) + ppiqi(k − 3)

−pqiqi+1(k)− priqi+1(k − 1)− psiqi+1(k − 2)− ptiqi+1(k − 3)

−pqiqoffi(k)− priqoffi(k − 1)− psiqoffi(k − 2)− ptiqoffi(k − 3)

+pui. (6.11)

The gate discharge equation

The equation of is derived to a specific gate (Equation 6.2) can be generalized

to any gate in the canal system. For example the discharge under the ith gate

is:

qi(k) = klili(k) + kh1ihui(k) + kh2ihi−1(k). (6.12)

Instead of the water level, the water level error (Equation 6.8) can be

substituted into Equation 6.12:

qi(k) = klili(k) + kh1ihui(k) + kh2ihspi−1(k) + kh2iei−1(k). (6.13)

Gate opening

For the construction of the state space the incremental gate opening is used:

li(k + 1) = li(k) + ∆li(k). (6.14)

Including the weir at the downstream end of the third reach

In order to construct a state space for a canal of multiple reaches, we have to

pay special attention to the last reach. In case this reach, the outflow can be

known (for example there is a pump) or there can be a hydraulic structure,

as in case of the UPC-PAC. Then the linearized equation of the structure can

be combined into the model. Now the UPC-PAC is taken as an example, and

its third reach is modelled with a weir at the end. The inflow to this reach

is q3 and the outflow is q4. The outflow depends on the weir, and it can be

approximated using the linearized equation of the weir.
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The linearized weir discharge equation is the following:

q4(k) = khwh3(k). (6.15)

Just as before, Equation 6.15 can be combined with the expression of the water

level error (Equation 6.8):

q4(k) = khwe3(k) + khwh3sp(k). (6.16)

Using the experssion of the output discharge Equation 6.16 and the general

equation of the downstream water level error (Equation 6.9), the water level

error in the third reach can be expressed as:

e3(k + 1) = −pe3e(k)− pf3ei(k − 1)− pg3e3(k − 2)− h3sp(k + 1)

−pe3hsp3(k)− pf3hsp3(k − 1)− pg3hsp3(k − 2) + pa3q3(k)

+pb3q3(k − 1) + pc3q3(k − 2) + pd3q3(k − 3)− ph3khwe3(k)

−ph3khwh3sp(k)− pi3khwe3(k − 1)− pi3khwh3sp(k − 1)

−pj3khwe3(k − 2)− pj3khwh3sp(k − 2)− pk3khwe3(k − 3)

−pk3khwh3sp(k − 3)− ph3qoff3(k)− pi3qoff3(k − 1)

−pj3qoff3(k − 2)− pk3qoff3(k − 3) + pl3. (6.17)

Combining the equation of the outflow of the last reach (Equation 6.16) with the

general expression for the upstream water level in any reach (Equation 6.11),

the upstream water level in the third reach can be written as:

hu3(k + 1) = −pe3h(k)− pf3hi(k − 1)− pg3h3(k − 2) + pm3q3(k)

+pn3q3(k − 1) + po3q3(k − 2) + pp3q3(k − 3)− pq3khwe3(k)

−pq3khwh3sp(k)− pr3khwe3(k − 1)− pr3khwh3sp(k − 1)

−ps3khwe3(k − 2)− ps3khwh3sp(k − 2)− pt3khwe3(k − 3)

−pt3khwh3sp(k − 3)− pq3qoff3(k)− pr3qoff3(k − 1)

−ps3qoff3(k − 2)− pt3qoff3(k − 3) + pu3. (6.18)

The whole state space model

The state space model is constructed using the equation for downstream water

level error (Equation 6.9), the upstream water level (Equation 6.11), the gate
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discharge (Equation 6.13) and the gate opening (Equation 6.14). For the last

reach, the specific equations are used for the downstream water level error

(Equation 6.17) and the upstream water level (Equation 6.18). A final state

space model can be developed in the form of

x(k + 1) = Ax(k) +Bu(k) +Bdd(k). (6.19)

The state (x(k)) contains the upstream water levels in the present and past

instants, the dowsntream water levels in the present and past instants, the

gate discharges in the present and past instants and the gate openings. The

final matrices for the state space are shown in Appendix E.

6.5 State space model including gate opening

as control action variable

In order to show the difference between the two approaches (1) discharge as

control action variable (2) gate equation is combined to the state space, some

step tests are carried out. To emphasize the differences, and 8-pool test canal

is chosen.

The capability of state space model containing the gate equations can be seen

if the model with gate openings as control action variables (Figure 6.2) is

compared to the model where the control action variable is the discharge

(Figure 6.3). These figures show the step responses of the ID models built for

a canal with 8 reaches in order to see the disturbance propagation.

Using model with discharge as control action variable, a change in the discharge

in a canal pool causes a change only in the water level of the same pool and in

the water level of the canal pool upstream to it. It does not cause any change

in the discharges in the state, since all the discharges are influenced only by

the control variable (that is the change in discharge). A simple test is carried

out using a canal of 8 canal pools, with constant water level in the reservoir

upstream and constant downstream discharge. The canal pools are connected

by sluice gates. In Figure 6.2, the discharge under Gate 5 is increased and

the response of the water levels can be seen. The water level in the Pool 4

(directly upstream of Gate 5) decreases and the water level in Pool 5 (directly
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downstream of the Gate 5) increases. The disturbance does not travel upstream

or downstream in the canal according to this model, while in reality it does as

it can be seen from the numerical solution of the Saint-Venant equations.

Figure 6.2: Model including gate openings

In case of the model with gate opening as control action variable, the linearized

gate equation is used. The water levels (hui) upstream in the pool are not

measured variables. Instead, they are related to discharges by using models as

the one in Equation 6.11. The result of this combined model is that the effects

of water level changes can propagate downstream and upstream as well. This

can be seen in Figure 6.2. The advantage of this model is twofold: (1) it is able

to reproduce the disturbances travelling in both directions, and (2) it does not

need measured data about the water levels at the upstream end of the canal

pools.
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Figure 6.3: Model with discharge as control action variable

6.6 Control implementation

Using the general state space development, the parameters of any third or less

order model in the z domain can be fit. The expressions to be discretized for

the IR model are derived in Appendix B. These equations were discretized by

zero order hold using the Matlab software, the numerical results are presented

in Appendix D. The state space was build as it was explained above, and the

controller was developed in the same way as explained in section 4.5.

This controller was tuned in the same manner as the ones presented before: as

a first estimate the normalized errors are used and then the penalty is decreased

on the control action in order to make the controller faster until its limits. The

controllers are separately tuned for the setpoint change and the disturbance

rejection given that both tests are very demanding but of different nature.

After the controller was tuned for the simple MPC case, the offset-free part

is connected and it is tuned in the same manner: the penalty on the integral
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error is increased until offset-free control is achieved (for the unknown changes

tests). The resulting tuning parameters are shown in Table 6.1.

eMAVE duMAVE eiMAVE

Setpoint change 0.03 0.015 -

Disturbances 0.03 0.009 -

Offset free setpoint 0.03 0.015 0.4

Offset free disturbances 0.03 0.009 0.09

Table 6.1: The tuning parameters for the MPC with gate openig as control
action variables

6.7 Results of the controller using gate opening

as control action variable

6.7.1 Numerical results

The results of the known and unknown setpoint change test are shown in

Figure 6.4. For the known setpoint change test (Figure 6.4a) the results using

gate opening as control action variable are not as good as the ones using

discharge. While the water levels in each pool follow the setpoint very well,

there is considerable disturbance present in the other pools. This effect might

be balanced by different tuning: by using less sharp control action less

disturbance would be propagated.

(a) Known setpoint change (b) Unknown setpoint change

Figure 6.4: Setpoint test, known and unknown changes, gate opening as
control action variable
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For the unknown setpoint change test (Figure 6.4b) the main difference is that

even the last setpoint is reached (in case of using discharge as control action

variable this setpoint was not reached). The water level arrives to this setpoint

slowly, this might be improved.

For the disturbances case the result (Figure 6.5) for the known disturbances

(Figure 6.5a) is similar to the case with discharge as control variable.

However, for the unknown disturbance case the results are considerably better

(Figure 6.5b): there is no steady state offset, the controller slowly brings back

to water levels to the setpoint. This is due to the better modeling of the

system. This is a big advantage compared to the case when the discharge is

the control variable.

(a) Known disturbances (b) Unknown disturbances

Figure 6.5: Known and unknown disturbances, gate opening as control
action variable

Though this method did not produce steady state offset, in case of unknown

disturbances it acted slow. This action can be improved by combining it with

the offset-free method introduced in Chapter 5. The results of the combination

of the gate opening as control action variable and the offset free method is

shown in Figure 6.6.

For the setpoint change test (Figure 6.6a) all the water levels followed the

setpoint without offset. Some over- and undershoot is produced by the

integration e.g. after 90 min at Pool 1. All the changes are very fast and

sharp, the new setpoints are reached within 8 mintues. For the unknown

disturbances (Figure 6.6b) the controller kept the water levels at setpoint

without excessive over- and undershoots. All levels are returned to setpoint in
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5 minutes. Only few disturbance is propagated, e.g. at 30 min when Weir 1 is

open in the first pool almost no disturbance is noticed in the water levels of

Pool 2 and Pool 3.

(a) Setpoint change test (b) Disturbance test

Figure 6.6: Unknown setpoint change and disturbance test, gate opening
as control action variable with offset-free method, simulation

6.7.2 Experimental results

The results of the known setpoint change and disturbance test using gate

opening as control action variable are shown in Figure 6.7.

(a) Setpoint change test (b) Disturbance test

Figure 6.7: Known setpoint change and disturbance test, gate opening as
control action variable, laboratory experiment

The setpoint change (Figure 6.7a) test shows that the controller was able to

keep the water levels at setpoint. However, the perturbations introduced to the
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other levels are much more significant compared to the case when discharge is

used as control action variable. On the other hand, the known disturbance test

(Figure 6.7b) shows very good results, better than the test when discharge is

the control action variable.

The results of the unknown setpoint change and disturbance test using gate

opening as control action variable are shown in Figure 6.8. Both test resulted

in zero steady-state offset that is a big advantage compared to the case when

discharge was used as control action variable. For the setpoint change test

several oscillations and overshoots can be seen (Figure 6.8a). On the other

hand, the last setpoint change is almost reached, unlike in the case when the

discharge was used as control action variable. The unknown disturbance test

(Figure 6.8b) shows no unnecessary oscillations. The water levels go smoothly

to the setpoint. This is a considerable improvement compared to having the

discharge as control action variable. The lowest performance of the setpoint

change test might be possible to improve with better tuning.

(a) Setpoint change test (b) Disturbance test

Figure 6.8: Unknown setpoint change and disturbance test, gate opening
as control action variable, laboratory experiment

The results of the known setpoint change and disturbance test using gate

opening as control action variable combined with the offset-free method are

shown in Figure 6.9. For the setpoint change test (Figure 6.9a) the offset free

method eliminated the big oscillations. For the disturbance test

(Figure 6.9b), the offset-free method made the action faster, the water levels

go back faster to setpoint. In general terms the offset-fee method improved

slightly the response for known disturbances.
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(a) Setpoint change test (b) Disturbance test

Figure 6.9: Known setpoint change and disturbance test, gate opening as
control action variable with offset-free method, laboratory experiment

The results of the unknown setpoint change and disturbance test using gate

opening as control action variable combined with the offset-free method are

shown in Figure 6.10.

(a) Setpoint change test (b) Disturbance test

Figure 6.10: Unknown setpoint change and disturbance test, gate opening
as control action variable with offset-free method, laboratory experiment

In this case the setpoint change test (Figure 6.10a) slightly improved compared

to the case without the use of the offset-free method: especially the oscillation

in the level of Pool 1 at 150 min - this time is the change of the water level in

Pool 3, that is equal to the change in discharge. For the unknown disturbance

test (Figure 6.10a) the water levels were kept at setpoint or oscillation around

setpoint. This might be the result of the too strong integral action and the

minimum gate movement restriction: due to this restriction the gate cannot
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move exactly to the position that would maintain the desired water level, there

is always a small steady-state error. The integral action tries to eliminate this

error, therefore it makes the gate move. However, as the minimal movement

is restricted, the gate moves to a new position that also generates a steady-

state error, but in the other direction. Then the process starts again. This

phenomena is seen as oscillations in the water level around the setpoint.

6.8 Conclusion

• The choice of the control action variables has been investigated for

centralized MPC: discharge or gate opening both by numerical and

laboratory tests. In case of known disturbances, the use of gate opening

as control variable performed slightly worst (it acted slower) than the

discharge as control action variable, however, for the unknown

disturbance case using the gate opening and a more complex model

seemed to achieve offset-free control.

• The simulation results showed that it is possible to design and

implement controllers using the gate opening as control action variable

and the linearized gate equations.

• In case of using the gate opening as control action variable a model of

the system of canal reaches can be built without using the measurement

of the water level at the upstream end of the canal pools (directly

downstream of the gate). While for a slave controller both water levels

upstream and downstream of the gate should be known, by using this

more complex model the water level directly downstream of the gate is

approximated, the controller does not use the information of that water

level measurement.

• By using the gate opening as control action variable, constraints can be

added to the gate opening or to its change. This can be useful to maintain

submerged conditions or in case of gate speed restrictions.

• An additional advantage of using the gate opening as control action

variable is that the controller produced no steady state offset even in

cases when unknown changes occurred in the discharge without

offset-free methods.
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• If the gate equation is combined to the state space, the water level

measured downstream of the gate is not used for the calculations. This

makes this control method more robust for sensor failures.

• Having the gate opening as control action variable in MPC, it is easier

to apply constraints to the gate opening itself (maximum gate opening)

and to the change of gate opening (gate speed).

• All these conclusions about the choice of control action variables are valid

for the studied canal type: short and flat canals.
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Conclusion

7.1 Conclusions on the flow measurement

The weirs and the gates of the UPC-PAC are used for discharge measurement in

the same way as in real irrigation canals. These structures had to be calibrated

and tested. Both the weirs and the gates are possible to be used for discharge

measurement. In the UPC-PAC the error of the measurement is less than

4%. These structures proved to be a simple and trustful way of discharge

measurement.

7.2 Conclusions of the hydraulic behaviour of

the UPC-PAC

The UPC-PAC belongs to the category of short and flat canals that are prone

to resonance. This is a common canal type and the knowledge of its behaviour

is crucial for control purposes. These pools exhibit resonance behaviour that

should be taken into account for controller design. In order to model or filter

out the resonance waves, the most important characteristics of them should be

known: the resonance frequency and the resonance peak. These parameters

can be obtained by calculation or by identification using direct measurements

on the canal. The difference between the calculated and the identified values is

175
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not so considerable for the resonance frequency, however, it is remarkable for

the resonance peak, especially in presence of hydraulic structures. Always it is

advisable to do some simple identification experiments like ATV.

Pool 1 and Pool 2 showed considerable resonance phenomenon, while Pool 3

due to the presence of the downstream weir showed very slight resonance.

7.3 Conclusion on modelling and control of

resonant canal pools

Different internal models for model predictive control have been compared in

the time and frequency domain, and finally MPC controllers were developed

using these models and their performance were compared and analyzed. From

the compared models two were hydrological models (Muskingum and

Hayami) and three were developed especially for controller design: Integrator

Delay, Integrator Delay Zero and Integrator Resonance. The best performing

controllers (MPC-ID and MPC-IR) were also tested experimentally on the

UPC-PAC. Both controllers showed very good performance for known

changes, however for unknown disturbances in some cases (for example an

offtake is opened) they produced steady state offset.

Using the canal properties obtained in Chapter 3, a simple model especially

developed for resonant canal pools, Integrator Resonance has been applied to

the laboratory canal. This was the first time that this model has been applied

experimentally for control purposes. The result is that this model in some

aspects showed better performance than the ID model. It was shown in the

introduction that in extreme resonant situations there is a clear need to use

the IR model. In this work the capacities of this model were tested. In all tests

the IR model performed well.

After all test, the IR model was chosen to model the first two canal pools of

the UPC-PAC, while Pool 3 (since it shows few resonance) was modelled with

the ID model.
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7.4 Conclusions on offset free control in

irrigation canals

The modelling of weir-type offtakes raises a difficulty when using MPC. As the

weir determines the relationship between the offtake discharge and the water

level, it is complicated to predict the offake discharge in the future instants (as

it depends on the water level, that is also predicted). If the offtake discharge

is not well approximated during the prediction horizon, it will cause a model

mismatch and this can result in a steady-state offset.

A new method to eliminate steady-state offset is introduced. This method is

based on the combination of an integrating method to the original. The basic

idea is to extend the objective function of MPC with the objective function of

an other method, that has no steady state offset, but it is not able to take into

account known changes. The method shows satisfactory results. Although in

introduces small overshoots, it completely eliminates the offset while keeping

the feedforward property of MPC.

Another way was shown to reduce or almost eliminate steady-state offset:

combining the gate equation into the state space model (Chapter 6). For

short and flat canal pools, if the gate equation is combined into the state

space of the internal model, the use of offset-free methods might be possible

to be avoided.

7.5 Conclusion on the choice of control

variables

The use of different control action variables has been investigated: discharge or

gate opening. For both approaches a general state space formulation is given.

The methods are compared numerically and experimentally. The use of gate

opening as control action variable provided several advantages.

First, as it was seen in the experimental results, an MPC based on the model

with gate openings shows no steady state offset, even against unknown

discharge changes in case of the UPC-PAC even with no offset-free method.
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While the model containing the discharge as control action variable resulted

in steady state offset, the model containing the gate openings was able to

eliminate it. The reason is that this model is more complex, it also includes

the relation between the downstream discharge and the upstream water level

- this processes that are not included in the simple model.

It should be mentioned that this method combined with the offset-free method

(presented in Chapter 5) produced some unnecessary over- and undershoots

that might be avoided with better tuning at each canal.

Another advantage as that the controller does not use the information about

the water levels directly downstream of the gates, they are calculated internally

by the model. This can result in less measurement error is introduced and it

is more robust for sensor failures.

Finally, by using the gate openings as control action variable, it is

straightforward to put constraints to the gate opening or to the change of the

gate opening (e.g. due to the speed of the motors).

These observations are valid for the type of canal pools investigated: short and

flat pools.

7.6 General conclusion

In this work the model predictive control of resonance sensitive canals has

been analyzed. A recently proposed model, the Integrator Resonance model

[van Overloop et al., 2010b] is implemented and successfully tested on the

experimental laboratory facility, the UPC-PAC. Tests with scheduled and

unscheduled changes have been carried out. The performance for the

unscheduled changes were not satisfactory, due to the steady-state offset. A

new type of integrator method in order to achieve offset-free control was

proposed. The question of the choice of the control action variables was also

investigated. It resulted that using the gate opening as control action variable

has several advantages, including the decrease of the steady state offset.
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7.7 Future work

The integrator resonance model showed good performance in the experimental

canal UPC-PAC. It should be further tested on the field. The proposed

offset-free method should also be tested, it can be compared to the existing

methods in terms of stability and robustness. The choice of control action

variables can also be further investigated, different methods of including the

gates to the controller can be implemented. Including the gate modelling into

the centralized controller can considerably improve the control system. As to

the UPC-PAC, the experimental platform proved to be a good means of

testing control algorithms. Several challenges have been faced that are not

always present in simulation, for example uncertainties in the measurements.

An experimental irrigation canal is an important step of testing control

algorithms between the numerical test and the real implementation.
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España, pages 20–21., Madrid.
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laboratorio y un canal simulado. In JIA 2011. II Jornadas del Ingenieŕıa del
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[Rodellar et al., 1993] Rodellar, J., Gómez, M., and Bonet, L. (1993). Control

method for on-demand operation of open channel flow. Journal of Irrigation

and Drainage Engineering, 119(2):225–241.

[Rodellar et al., 1989] Rodellar, J., Gómez, M., and Mart́ın Vide, J. P. (1989).

Stable predictive control of open-channel flow. Journal of Irrigation and

Drainage Engineering, 115(4):701–713.

[Rogers and Goussard, 1998] Rogers, D. and Goussard, J. (1998). Canal

control algorithms currently in use. Journal of Irrigation and Drainage

Engineering, 124(1):11–15.

[Ruiz and Ramirez, 1998] Ruiz, V. and Ramirez, J. (1998). Predictive control

in irrigation canal operation. In International conference on systems, man,

and cybernetics, Conference Proceeding, volume 1-5, pages 3897–3901, New

York, NY. IEEE.

[Sánchez-Juny et al., 2005] Sánchez-Juny, M., Castellet, E. B., and Agudo,
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Appendix A

Measured data for weir

calibration

Discharge

(m3/s)

Weir

height

(m)

Water

level

(m)

0.0397 0.493 0.645

0.0333 0.493 0.637

0.0435 0.493 0.654

0.0308 0.493 0.626

0.0464 0.443 0.617

0.0330 0.443 0.587

0.0379 0.443 0.595

0.0252 0.443 0.561

0.0267 0.493 0.615

0.0217 0.493 0.6

0.0579 0.443 0.644

0.0545 0.443 0.635

Table A.1: Measured data, Weir 1
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Appendix A. Measured data for weir calibration 198

Discharge

(m3/s)

Weir

height

(m)

Water

level

(m)

0.0625 0.443 0.653

0.0480 0.443 0.622

0.0400 0.543 0.699

0.0268 0.543 0.65

0.0265 0.443 0.565

0.0663 0.543 0.76

0.0595 0.543 0.747

0.0512 0.543 0.727

0.0425 0.443 0.607

Table A.2: Measured data, Weir 2

Discharge

(m3/s)

Weir

height

(m)

Water

level

(m)

0.0318 0.543 0.686

0.0415 0.543 0.714

0.0375 0.543 0.702

0.0764 0.543 0.780

0.0535 0.543 0.729

0.0645 0.493 0.705

0.0641 0.543 0.752

0.0708 0.493 0.722

0.0564 0.493 0.694

0.0416 0.493 0.661

0.0845 0.493 0.750

0.0295 0.493 0.630

Table A.3: Measured data, Weir 3
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Appendix A. Measured data for weir calibration 199

Discharge

(m3/s)

Weir

height

(m)

Water

level

(m)

0.0508 0.193 0.365

0.0508 0.193 0.365

0.0494 0.193 0.362

0.0366 0.193 0.336

0.0195 0.193 0.289

0.0307 0.193 0.3215

0.0280 0.193 0.314

0.0470 0.193 0.36

0.0519 0.193 0.368

0.0508 0.193 0.366

0.0523 0.193 0.369

0.0215 0.193 0.296

0.0794 0.293 0.523

0.0532 0.293 0.477

0.0563 0.343 0.532

0.0527 0.343 0.52

0.0237 0.343 0.453

0.0648 0.343 0.549

0.0518 0.343 0.522

0.0518 0.343 0.523

0.0394 0.343 0.495

0.0394 0.343 0.4945

0.0226 0.343 0.449

0.0570 0.343 0.531

0.0545 0.343 0.528

0.0627 0.343 0.548

0.0301 0.343 0.47

Table A.4: Measured data, Weir 4 (Part 1)
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Appendix A. Measured data for weir calibration 200

Discharge

(m3/s)

Weir

height

(m)

Water

level

(m)

0.0590 0.343 0.538

0.0590 0.343 0.54

0.0988 0.393 0.664

0.0371 0.393 0.541

0.0242 0.393 0.509

0.0536 0.393 0.576

0.0197 0.393 0.491

0.0533 0.393 0.578

0.0843 0.443 0.689

0.0727 0.443 0.669

0.0605 0.443 0.643

0.0286 0.443 0.571

0.0371 0.443 0.587

0.0269 0.443 0.564

0.0627 0.443 0.649

0.0704 0.443 0.662

0.0268 0.543 0.661

0.0269 0.543 0.662

0.0516 0.543 0.723

0.0471 0.193 0.359

0.0345 0.193 0.331

0.0845 0.293 0.529

0.0309 0.343 0.474

0.0570 0.343 0.5315

0.0290 0.343 0.467

0.0676 0.393 0.605

0.0458 0.443 0.61

0.0442 0.543 0.709

Table A.5: Measured data, Weir 4 (Part 2)
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The Integrator Resonance

model

The development of the IR model from [van Overloop et al., 2010b]. A

channel is discretized in two elements and the following assumptions are used:

(1) the advection can be neglected because the water level changes are small

compared to the depth of the channel and (2) the cross sectional area, the

wetted perimeter and the hydraulic radius can be considered constant. A

constant mean flow Q0 is present (Figure B.1). In this development no lateral

in or outflow is considered.

Figure B.1: (Channel discretization to develop the IR model, from [van
Overloop et al., 2010b]

After the linearisation of the Saint-Venant equations and transformation to the

Laplace domain the following equations can be written. The upstream and the

201
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Appendix B. The Integrator Resonance model 202

downstream water level is expressed as:

hu =
q1 − q

0.5XT0s
(B.1)

and

h =
q − q2

0.5XT0s
(B.2)

where hu is the upstream and h is the downstream water level, q is the

intermediate discharge in the section, q1 is the upstream and q2 is the

downstream discharge, X is the length of the section, T0 is the top width and

s is the Laplace variable. The intermediate discharge is expressed as:

q =
4gH0

X2

s2 + 2gQ0

C2
z0Rh0T0H0

s+ 8gH0

X2

(q1 + q2) +

gQ2
0

C2
z0Rh0T0H0

s

s2 + 2gQ0

C2
z0Rh0T0H0

s+ 8gH0

X2

(B.3)

where H0 is the reference water depth, Q0 is the reference discharge, Cz0 is the

Chézy coefficient, Rh is the hydraulic radius. From the combination of these

three equations (Equations B.1, B.2 and B.3), different transfer functions can

be expressed.

The downstream water level can be expressed as

h =

4gH0

X2
1

0.5XT0s

s2 + 2gQ0

C2
z0Rh0T0H0

s+ 8gH0

X2

q1

− 1

0.5XT0s
(1−

4gH0

X2

s2 + 2gQ0

C2
z0Rh0T0H0

s+ 8gH0

X2

)q2

1
0.5XT0s

gQ2
0

C2
z0Rh0T0H0

s

s2 + 2gQ0

C2
z0Rh0T0H0

s+ 8gH0

X2

. (B.4)

The first term is the transfer function between the input discharge and the

downstream water level and the second term is the transfer function between

the output (downstream) discharge and the downstream water level and the
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Appendix B. The Integrator Resonance model 203

third term is constant. The upstream water level can be expressed as:

hu =
1

0.5XT0s
(1−

4gH0

X2

s2 + 2gQ0

C2
z0Rh0T0H0

s+ 8gH0

X2

)q1

−
4gH0

X2
1

0.5XT0s

s2 + 2gQ0

C2
z0Rh0T0H0

s+ 8gH0

X2

q2

−
1

0.5XT0s

gQ2
0

C2
z0Rh0T0H0

s

s2 + 2gQ0

C2
z0Rh0T0H0

s+ 8gH0

X2

. (B.5)

This equation has also three terms, the first term is the transfer function

between the input discharge and the upstream water level, the second term is

the transfer function between the output discharge and the upstream water

level and the third term is constant.

The offtake discharges can be expressed using the same terms as the ones used

for the downstream discharge.

The basic idea of the model, that the transfer function between the downstream

water level (first term of Equation B.11) is a third order system: a second order

function with resonance (underdamped) and an integrator:

HIR(s) =

Integrator︷ ︸︸ ︷
1

As · s
·

Resonance︷ ︸︸ ︷
ω2
0

s2 + 2 · ζ · ω0s+ ω2
0

. (B.6)

From this, the parameters of the transfer function: the frequency (ω0) and the

damping (ζ) and the resonance peak can be expressed as:

ω0 =

√
8gH0

X2
(B.7)

ζ =

√
2gQ0X

4C2
z0R0T0H

2
3
0

(B.8)

M (ω0) =

∣∣∣∣∣
8gH0

T0L3

−jω3
0 −

2gQ0

C2
z0Rh0H0

ω2
0 + 8gH

X2 jω0

∣∣∣∣∣ =
C2
z0Rh0H0

2gQ0X
(B.9)
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ζ =
1

2ωAsMr
. (B.10)

Using these equations (B.7, B.8 and B.9), the whole expression for the

downstream water level (Equation B.11) and for the upstream water level

(Equation B.12):

h =
1

Ass

ω2
0

s2 + 2ζω0s+ ω2
0

q1

− 1

0.5Ass
(1− ω2

0/2

s2 + 2ζω0s+ ω2
0

)q2 +

Q2
0

A2
sMr

s2 + 2ζω0s+ ω2
0 . (B.11)

and

hu =
1

0.5Ass
(1− ω2

0/2

s2 + 2ζω0s+ ω2
0

)q1 +

1

Ass

ω2
0

s2 + 2ζω0s+ ω2
0

q2 +

Q2
0

A2
sMr

s2 + 2ζω0s+ ω2
0 . (B.12)

The parameters in these equations can be calculated or obtained by

identification experiments (like in Chapter 3). After discretising the equations

the discrete state space model can be written, detalied in Appendix C or

using the gate openigs as control action variable Appendix E.
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Appendix C

State space representation

of the models

C.1 State space representation of the models

Hayami, Muskingum - second order models

without delay

A general form of a model of second order without delay can be written as:

hi =
paiz + pbi

z2 + pciz + pdi
qi +

pgi
z − 1

qi+1 (C.1)

where hi is the downstream water level in the ith reach, qi is the upstream

and qi+1 is the downstream discharge and the coefficients pai, pbi, pci, pdi and

pgi are model specific. Equation C.1 has two terms: the first term is a second

order discrete function, the transfer function between the upstream discharge

and the downstream water level. The second term is just a first order transfer

function with a one pole (an integrator); it is the transfer function between the

downstream discharge and the downstream water level.

205
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Appendix C. State space representation of the models 206

The equation can be rewritten as where pfi and pgi are roots of the equation

z2 + pciz + pdi:

hi =
paiz + pbi

(z − pei)(z − pfi)
qi +

pgi
z − 1

qi+1. (C.2)

In this case, since the system has an integrator pfi = 1 always. Hence:

hi =
paiz + pbi

(z − pei)(z − 1)
qi +

pgi
z − 1

qi+1. (C.3)

Rearranging the above equation the following can be written:

hi(k + 1) = −pcihi(k)− pdihi(k − 1) + paiqi(k) + pbiqi(k − 1) +

pgiqi+1(k)− peipgiqi+1(k − 1). (C.4)

The water level error can be included in the formulation by using Equation 4.36:

ei(k + 1) = −pciei(k)− pdiei(k − 1)

+paiqi(k) + pbiqi(k − 1)

+pgiqi+1(k)− peipgiqi+1(k − 1)

−hspi(k + 1)− pcihspi(k)− pdihspi(k − 1) (C.5)

So far the model was presented for one reach. In order to formulate it for the

three reaches of the UPC-PAC, first the model of the last reach is developed,

because it is different from the models of the intermediate reaches. In order to

model the last reach with a weir at the downstream end, the outflow should

be expressed with the help of the weir equation. The linearized weir discharge

equation is the following:

q4(k) = khwh3(k) (C.6)

where q4 is the outflow from Pool 3, khw is the gain of the linearized weir

discharge equation and h3 is the water level in Pool 3. Hence the water level

error for the last reach can be written as:

e3(k + 1) = e3(k)(−pc3 + pg3khw) + e3(k − 1)(−pd3 − pe3pg3khw)

+pa3q3(k) + pb3q3(k − 1)− hsp3(k + 1)

+hsp3(k)(−pc3 + pg3khw) +

+hsp3(k − 1)(−pd3 − pe3pg3khw). (C.7)
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With this formulation the state (xgen), input (ugen) and disturbance (dgen)

vectors are presented in the following:

xgen (k) =



q1 (k)

q1 (k − 1)

q1 (k − 2)

e1 (k)

e1 (k − 1)

e1 (k − 2)

q2 (k)

q2 (k − 1)

q2 (k − 2)

e2 (k)

e2 (k − 1)

e2 (k − 2)

q3 (k)

q3 (k − 1)

q3 (k − 2)

e3 (k)

e3 (k − 1)

e3 (k − 2)



, (C.8)

ugen (k) =


∆q1 (k)

∆q2 (k)

∆q3 (k)

 (C.9)



i
i

“main” — 2013/4/8 — 12:44 — page 208 — #236 i
i

i
i

i
i

Appendix C. State space representation of the models 208

and

dgen (k) =



qoff1 (k + 1)

qoff1 (k)

qoff1 (k − 1)

qoff1 (k − 2)

hsp1 (k + 1)

hsp1 (k)

hsp1 (k − 1)

hsp1 (k − 2)

qoff2 (k)

qoff2 (k + 1)

qoff2 (k − 1)

qoff2 (k − 2)

hsp2 (k + 1)

hsp2 (k)

hsp2 (k − 1)

hsp2 (k − 2)

qoff3 (k + 1)

qoff3 (k)

qoff3 (k − 1)

qoff3 (k − 2)

hsp3 (k + 1)

hsp3 (k)

hsp3 (k − 1)

hsp3 (k − 2)



. (C.10)

The disturbance vector consists of the different setpoints and offtake discharges

in the present, past and future instants. The matrices in the state equation are

the following:
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A
g
e
n
=

                                         1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

p
a
1

p
b
1

0
−
p
c
1

−
p
d
1

0
p
g
1

p
e
1
p
g
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

p
a
2

p
b
2

0
−
p
c
2

−
p
d
2

0
p
g
2

−
p
e
2
p
g
2

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

p
a
3

p
b
3

0
−
p
c
3
+
p
g
3
k
h
w

−
p
d
3
+
p
e
3
p
g
3
k
h
w

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

                                         
(C

.1
1
)
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and

Bgen =



1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



. (C.12)

The matrix Bdgen has few non-zero entries, these are the following:

Bdgen(4, 2) = pg1

Bdgen(4, 3) = −pg1pe1
Bdgen(4, 5) = −1

Bdgen(4, 6) = −pc1
Bdgen(4, 7) = −pd1
Bdgen(8, 9) = pg2

Bdgen(8, 10) = −pg2pe2
Bdgen(8, 12) = −1

Bdgen(8, 13) = −pc2
Bdgen(8, 14) = −pd2
Bdgen(12, 16) = pg3

Bdgen(12, 17) = −pg3pe3
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Bdgen(12, 19) = −1

Bdgen(12, 20) = −pc3 + pg3khw

Bdgen(12, 21) = −pd3 − pe3pg3khw.

C.2 State space representation of the models

ID, IDZ - first order models with a zero

with delay

Similar to the models above, first the general equation of the water level is

given:

hi =
paiz + pbi
z − 1

z−pciqi +
pdiz + pei
z − 1

qi+1 (C.13)

where hi is the downstream water level, qi is the input discharge, qi+1 is the

output discharge and pai, pbi, pci, pdi, pei are model specific parameters. The i

subscript refers to the ith reach. The first term of the equation is the transfer

function between the upstream discharge and the downstream water level, the

second term is the transfer function between the output discharge and the

downstream water level. Both terms have a pole at the origin (integrator)

and zeros in the numerator. Since the ID model does not contain zeros, the

coefficients pai and pdi are zero. The first term has a delay. The time delay

expressed in sampling instants is denoted with pci. The following expression

for the water level can be derived:

hi(k+1) = hi(k)+paiqi(k+1−pci)+pbiqi(k−pci)+pdiqi+1(k+1)+peiqi+1(k).

(C.14)

By using Equation 4.36 the water level error can be expressed as:

ei(k + 1) = ei(k) + paiqi(k + 1− pci) + pbiqi(k − pci)

+pdiqi+1(k + 1) + peiqi+1(k)

−hspi(k + 1) + hspi(k). (C.15)

After having developed the general equation for an intermediate pool, we are

going to develop the equation of the downstream pool with a weir at the end.

As addition to the linearized weir discharge equation Equation C.6 we will use
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the following approximation for the weir discharge in the future instant (k+1):

q4(k + 1) ≈ khwh3(k). (C.16)

Note that this equation using the water level at instant k instead of k + 1.

This is a simplification that is used in order to simplify the formulation. Using

equations C.6 and C.16 the water level error in Pool 3 is expressed as:

e3(k + 1) = e3(k)(1 + pd3khw + pe3khw)

+pa3q3(k − 1) + pb3q3(k − 2)

−hsp3(k + 1) + hsp3(k)(1 + pd3khw + pe3khw). (C.17)

So far general equations were presented with delay pci. From this point we

specify the equations for the UPC-PAC and use the following delays in the

pools: pc1 = 3, pc2 = 3 and pc3 = 2. The state, the input and the disturbance

vector is the following:

xgen (k) =



q1 (k)

q1 (k − 1)

q1 (k − 2)

q1 (k − 3)

e1 (k)

e1 (k − 1)

e1 (k − 2)

q2 (k)

q2 (k − 1)

q2 (k − 2)

q2 (k − 3)

e2 (k)

e2 (k − 1)

e2 (k − 2)

q3 (k)

q3 (k − 1)

q3 (k − 2)

e3 (k)

e3 (k − 1)

e3 (k − 2)



, (C.18)
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ugen (k) =


∆q1 (k)

∆q2 (k)

∆q3 (k)

 (C.19)

and

dgen (k) =



qoff1 (k + 1)

qoff1 (k)

qoff1 (k − 1)

qoff1 (k − 2)

hsp1 (k + 1)

hsp1 (k)

hsp1 (k − 1)

hsp1 (k − 2)

qoff2 (k)

qoff2 (k + 1)

qoff2 (k − 1)

qoff2 (k − 2)

hsp2 (k + 1)

hsp2 (k)

hsp2 (k − 1)

hsp2 (k − 2)

qoff3 (k + 1)

qoff3 (k)

qoff3 (k − 1)

qoff3 (k − 2)

hsp3 (k + 1)

hsp3 (k)

hsp3 (k − 1)

hsp3 (k − 2)



. (C.20)

The matrices of the state space equation are the following:



i
i

“main” — 2013/4/8 — 12:44 — page 214 — #242 i
i

i
i

i
i

Appendix C. State space representation of the models 214

A
g
e
n

=

                                                1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

p
a
1

p
b
1

1
0

0
p
d
1

+
p
e
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
p
a
1

p
b
1

1
0

0
p
d
1

+
p
e
1

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
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0
0

0
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0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0
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0
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0

0
0

0
0
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0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
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a
1

p
b
1

1
+

(p
d
3

+
p
e
3
)k

h
w

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

                                                ,
(C

.2
1
)
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Bgen =



1 0 0

0 0 0

0 0 0

0 0 0

0 pd1 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 pd2

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



(C.22)

and
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B
d
g
e
n

=

                                0
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−

1
1

+
(p

d
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+
p
e
3
)k

h
w

0

                                .
(C

.2
3
)
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C.3 State space representation of the models

IR - third order model without delay

The general form of the IR model is a third order model without delay.

hi =
paiz

2 + pbiz + pci
z3 + pdiz2 + peiz + pfi

qi +
pgiz

2 + phiz + pii
z3 + pdiz2 + peiz + pfi

qi+1 (C.24)

where hi is the downstream water level, qi is the input discharge, qi+1 is the

output discharge and pai, pbi, pci, pdi, pei, pfi, pgi, phi, pii are model specific

parameters. The first term of the equation is the transfer function between

the upstream discharge and the downstream water level, the second term is

the transfer function between the output discharge and the downstream water

level. Both transfer functions have the same denominator, with other words

the transfer functions have the same poles. Equation C.24 can be written in

the time domain:

hi (k + 1) = −pdih (k)− peih (k − 1)− pfih (k − 2) + paiq1 (k − d)

+pbiq1 (k − 1− d) + pciq1 (k − 2− d) q1 + pgiq2 (k)

+phiq2 (k − 1) + piq2 (k − 2) q2 (C.25)

Combining the above equation with Equation 4.36 the water level error can be

expressed:

ei (k + 1) = −pdei (k)− peei (k − 1)− pfei (k − 2)

+paqi (k) + pbqi (k − 1− d) + pcqi (k − 2) qi

+pgqi+1 (k) + phqi+1 (k − 1) + piqi+1 (k − 2)

−hsp (k + 1)− pdhsp (k)− pehsp (k − 1)

−pfhsp (k − 2) (C.26)

where ei is the water level error and hspi is the setpoint. With the same

procedure described above in section C.2 and section C.1 combining the

linearized weir equation to the water level error equation Equation C.26 the

water level error can be expressed for the last reach. Then the state space

equation can be built, where the state, input and disturbance vector are the
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following:

xgen (k) =



q1 (k)

q1 (k − 1)

q1 (k − 2)

e1 (k)

e1 (k − 1)

e1 (k − 2)

q2 (k)

q2 (k − 1)

q2 (k − 2)

e2 (k)

e2 (k − 1)

e2 (k − 2)

q3 (k)

q3 (k − 1)

q3 (k − 2)

e3 (k)

e3 (k − 1)

e3 (k − 2)



, (C.27)

ugen (k) =


∆q1 (k)

∆q2 (k)

∆q3 (k)

 (C.28)
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and

dgen (k) =



qoff1 (k + 1)

qoff1 (k)

qoff1 (k − 1)

qoff1 (k − 2)

hsp1 (k + 1)

hsp1 (k)

hsp1 (k − 1)

hsp1 (k − 2)

qoff2 (k)

qoff2 (k + 1)

qoff2 (k − 1)

qoff2 (k − 2)

hsp2 (k + 1)

hsp2 (k)

hsp2 (k − 1)

hsp2 (k − 2)

qoff3 (k + 1)

qoff3 (k)

qoff3 (k − 1)

qoff3 (k − 2)

hsp3 (k + 1)

hsp3 (k)

hsp3 (k − 1)

hsp3 (k − 2)



. (C.29)

The matrices for the state space equation are described in the the following.

Matrix A is a 18 × 18 matrix, here the non-zero entries are given:

Agen(1, 1) = 1 Agen(4, 5) = −pe1
Agen(2, 1) = 1 Agen(4, 6) = −pf1
Agen(3, 2) = 1 Agen(4, 7) = pg1

Agen(4, 1) = pa1 Agen(4, 8) = ph1

Agen(4, 2) = pb1 Agen(4, 9) = pi1

Agen(4, 3) = pc1 Agen(5, 4) = 1

Agen(4, 4) = −pd1 Agen(6, 5) = 1
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Agen(7, 7) = 1 Agen(12, 11) = 1

Agen(8, 7) = 1 Agen(13, 13) = 1

Agen(9, 8) = 1 Agen(14, 13) = 1

Agen(10, 7) = pa2 Agen(15, 14) = 1

Agen(10, 8) = pb2 Agen(16, 13) = pa2

Agen(10, 9) = pc2 Agen(16, 8) = pb2

Agen(10, 10) = −pd2 Agen(16, 9) = pc2

Agen(10, 11) = −pe2 Agen(16, 10) = −pd3 − pg3khw
Agen(10, 12) = −pf2 Agen(16, 11) = −pe3 − ph3khw
Agen(10, 13) = pg2 Agen(16, 12) = −pf3 − pi3khw
Agen(10, 14) = ph2 Agen(17, 16) = 1

Agen(10, 15) = pi2 Agen(18, 17) = 1

Agen(11, 10) = 1.

Matrix Bgen is a 18 × 3 matrix, here the non-zero entries are given:

Bgen(1, 1) = 1

Bgen(7, 2) = 1

Bgen(13, 3) = 1.

Matrix Bdgen is a 18 × 24 matrix, here the non-zero entries are given:

Bdgen(4, 2) = −pg1 Bdgen(8, 14) = −pd2
Bdgen(4, 3) = −ph1 Bdgen(8, 15) = −pe2
Bdgen(4, 4) = −pi1 Bdgen(8, 16) = −pf2
Bdgen(4, 5) = −1 Bdgen(12, 18) = −pg3
Bdgen(4, 6) = −pd1 Bdgen(12, 19) = −ph3
Bdgen(4, 7) = −pe1 Bdgen(12, 20) = −pi3
Bdgen(4, 8) = −pf1 Bdgen(12, 21) = −1

Bdgen(8, 10) = −pg2 Bdgen(12, 22) = −pd3 − pg3khw
Bdgen(8, 11) = −ph2 Bdgen(12, 23) = −pe3 − ph3khw
Bdgen(8, 12) = −pi2 Bdgen(12, 24) = −pf3 − pi3khw
Bdgen(8, 13) = −1.
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Calculated transfer

functions of the models

D.1 Laplace domain

Pool 1

GID1(s) =
1

38.28s
e−28.29s (D.1)

GMUS1(s) =
−0.28s+ 1

1072.28s2 + 38.28s
(D.2)

GHAY 1(s) =
1

10676.18s2 + 38.28s
(D.3)

GIDZ1(s) =
39.46s+ 1

37.87s
e−28.24s (D.4)

GIR1(s) =
0.000281

s3 + 0.02106s2 + 0.010816s
(D.5)

GIRD1(s) =
−0.05195ss − 0.001094s− 0.0000281

s3 + 0.02106s2 + 0.010816s
(D.6)

221
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GIDZD1(s) =
−30.20s− 1

37.87s
(D.7)

Pool 2

GID2(s) =
1

39.69s
e−31.67s (D.8)

GMUS2(s) =
−0.3167s+ 1

1244.50s2 + 39.69s
(D.9)

GHAY 2(s) =
1

9450.82s2 + 39.69s
(D.10)

GIDZ2(s) =
43.28s+ 1

38.84s
e−31.56s (D.11)

GIR2(s) =
0.000185

s3 + 0.02509s2 + 0.0064s
(D.12)

GIRD2(s) =
−0.05780ss − 0.001450s− 0.000185

s3 + 0.02509s2 + 0.0064s
(D.13)

GIDZD2(s) =
−34.51s− 1

38.84s
(D.14)

Pool 3

GID3(s) =
1

19.14s
e−16.65s (D.15)

GMUS3(s) =
−0.3167s+ 1

1244.50s2 + 39.69s
(D.16)

GHAY 3(s) =
1

1727.03s2 + 19.14s
(D.17)

GIDZ3(s) =
24.45s+ 1

18.68s
e−16.60s (D.18)
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GIR3(s) =
0.000660

s3 + 0.03015s2 + 0.0196s
(D.19)

GIRD3(s) =
−0.06734ss − 0.00203s− 0.00066

s3 + 0.03015s2 + 0.0196s
(D.20)

GIDZD3(s) =
−18.97s− 1

18.68s
(D.21)

D.2 Z domain

Pool 1

GID1(z) =
0.2612

z − 1
z−3 (D.22)

GMUS1(z) =
0.03932z + 0.03910

z2 − 1.6998z + 0.6997
(D.23)

GHAY 1(z) =
0.004628z + 0.004573

z2 − 1.965z + 0.9648
(D.24)

GIDZ1(z) =
1.0418z − 0.7778

z − 1
z−3 (D.25)

GIR1(z) =
0.04215z2 + 0.1513z + 0.03787

z3 − 1.9195z2 + 1.7296z − 0.8102
(D.26)

GIRD1(z) =
−0.4773z2 + 0.6290z − 0.3829

z3 − 1.9195z2 + 1.7296z − 0.8102
(D.27)

GIDZD1(z) =
−0.7974z + 0.5334

z − 1
(D.28)
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Pool 2

GID2(z) =
0.2520

z − 1
z−3 (D.29)

GMUS2(z) =
0.03405z + 0.03475

z2 − 1.727z + 0.7269
(D.30)

GHAY 2(z) =
0.005217z + 0.005145

z2 − 1.959z + 0.9589
(D.31)

GIDZ2(z) =
1.114z − 0.8566

z − 1
z−3 (D.32)

GIR2(z) =
0.02809z2 + 0.1022z + 0.02475

z3 − 2.242z2 + 2.020z − 0.7781
(D.33)

GIRD2(z) =
−0.5500z2 + 0.8200z − 0.4250

z3 − 2.242z2 + 2.020z − 0.7781
(D.34)

GIDZD2(z) =
−0.8889z + 0.6311

z − 1
(D.35)

Pool 3

GID3(z) =
0.5225

z − 1
z−2 (D.36)

GMUS3(z) =
0.1268z + 0.1108

z2 − 1.545z + 0.5452
(D.37)

GHAY 3(z) =
0.02791z + 0.02690

z2 − 1.895z + 0.8951
(D.38)

GIDZ3(z) =
1.308z − 0.7733

z − 1
z−2 (D.39)

GIR3(z) =
0.09285z2 + 0.3104z + 0.07946

z3 − 1.306z2 + 1.046z − 0.7397
(D.40)
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GIRD3(z) =
−0.5805z2 + 0.5165z − 0.4186

z3 − 1.306z2 + 1.046z − 0.7397
(D.41)

GIDZD3(z) =
−1.015z + 0.4802

z − 1
(D.42)
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Appendix E

State space model

containing gate openings

The state matrix A is a 34 × 34 matrix, and it is described by its entries.

The input matrix, B, is 34 × 3 and the disturbance matrix Bd is 34 × 27.

The dimension of the state vector x is 34 × 1, and of the input vector u is 3

× 1 and the disturbance vector is 27 × 1.

The input vector, the state vector, and the disturbance vector are the following,

respectively:

u (k) =


∆l1 (k)

∆l2 (k)

∆l3 (k)

 , (E.1)

227
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x (k) =



q1 (k)

q1 (k − 1)

q1 (k − 2)

q1 (k − 3)

e1 (k)

e1 (k − 1)

e1 (k − 2)

hu1 (k)

l1 (k)

q2 (k)

q2 (k − 1)

q2 (k − 2)

q2 (k − 3)

e2 (k)

e2 (k − 1)

e2 (k − 2)

hu2 (k)

l2 (k)

q3 (k)

q3 (k − 1)

q3 (k − 2)

q3 (k − 3)

e3 (k)

e3 (k − 1)

e3 (k − 2)

hu3 (k)

l3 (k)



(E.2)
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and

d (k) =



qoff1 (k + 1)

qoff1 (k)

qoff1 (k − 1)

qoff1 (k − 2)

hsp1 (k + 1)

hsp1 (k)

hsp1 (k − 1)

hsp1 (k − 2)

1

qoff2 (k)

qoff2 (k + 1)

qoff2 (k − 1)

qoff2 (k − 2)

hsp2 (k + 1)

hsp2 (k)

hsp2 (k − 1)

hsp2 (k − 2)

1

qoff3 (k + 1)

qoff3 (k)

qoff3 (k − 1)

qoff3 (k − 2)

hsp3 (k + 1)

hsp3 (k)

hsp3 (k − 1)

hsp3 (k − 2)

1.



(E.3)

Matrix A is a 34 × 34 matrix. Only the non-zero entries are given as:
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A(1, 8) = kh21 A(12, 22) = kl2

A(1, 11) = kl1 A(13, 12) = 1

A(2, 1) = 1 A(14, 13) = 1

A(3, 2) = 1 A(15, 14) = 1

A(4, 3) = 1 A(16, 12) = pa2

A(5, 1) = pa1 A(16, 13) = pb2

A(5, 2) = pb1 A(16, 14) = pc2

A(5, 3) = pc1 A(16, 15) = pd2

A(5, 4) = pd1 A(16, 16) = −pe2
A(5, 5) = −pe1 A(16, 17) = −pf2
A(5, 6) = −pf1 A(16, 18) = −pg2
A(5, 7) = −pg1 A(16, 23) = −ph2
A(5, 12) = −ph1 A(16, 24) = −pi2
A(5, 13) = −pi1 A(16, 25) = −pj2
A(5, 14) = −pj1 A(16, 26) = −pk2
A(5, 15) = −pk1 A(17, 16) = 1

A(6, 5) = 1 A(18, 17) = 1

A(7, 6) = 1 A(19, 12) = pm2

A(8, 1) = pm1 A(19, 13) = pn2

A(8, 2) = pn1 A(19, 14) = po2

A(8, 3) = po1 A(19, 15) = pp2

A(8, 4) = pp1 A(19, 19) = −pe2
A(8, 8) = −pe1 A(19, 20) = −pf2
A(8, 9) = −pf1 A(19, 21) = −pg2
A(8, 10) = −pg1 A(19, 23) = −pq2
A(8, 12) = −pq1 A(19, 24) = −pr2
A(8, 13) = −pr1 A(19, 25) = −ps2
A(8, 14) = −ps1 A(19, 26) = −pt2
A(8, 15) = −pt1 A(20, 19) = 1

A(9, 8) = 1 A(21, 20) = 1

A(10, 9) = 1 A(22, 22) = 1

A(11, 11) = 1 A(23, 16) = kh13

A(12, 5) = kh12 A(23, 30) = kh23

A(12, 19) = kh22 A(23, 33) = kl3
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A(24, 23) = 1 A(30, 24) = pn3

A(25, 24) = 1 A(30, 25) = po3

A(26, 25) = 1 A(30, 26) = pp3

A(27, 23) = pa3 A(30, 30) = −pe3
A(27, 24) = pb3 A(30, 31) = −pf3
A(27, 25) = pc3 A(30, 32) = −pg3
A(27, 26) = pd3 A(30, 34) = −pt3kw
A(27, 27) = −pe3 − ph3kw A(30, 27) = −pq3kw
A(27, 28) = −pf2 − pi3kw A(30, 28) = −pr3kw
A(27, 29) = −pg2 − pj3kw A(30, 29) = −ps3kw
A(27, 34) = −pk3kw A(31, 30) = 1

A(28, 27) = 1 A(32, 31) = 1

A(29, 28) = 1 A(33, 33) = 1

A(30, 23) = pm3 A(34, 29) = 1.

Matrix B is a 34 × 3 matrix, and the non-zero entries are the following:

B(1, 1) = kl1

B(11, 1) = 1

B(12, 2) = kl2

B(22, 2) = 1

B(23, 3) = kl3

B(33, 3) = 1

.

The matrix Bd is 34 × 27, and the non-zero entries are given as:

Bd(5, 1) = −ph1 Bd(8, 2) = −pr1
Bd(5, 2) = −pi1 Bd(8, 3) = −ps1
Bd(5, 3) = −pj1 Bd(8, 4) = −pt1
Bd(5, 4) = −pk1 Bd(8, 9) = pu1

Bd(5, 5) = −1 Bd(12, 5) = kh12

Bd(5, 6) = −pe1 Bd(16, 10) = −ph2
Bd(5, 7) = −pf1 Bd(16, 11) = −pi2
Bd(5, 8) = −pg1 Bd(16, 12) = −pj2
Bd(5, 9) = −pl1 Bd(16, 13) = −pk2
Bd(8, 1) = −pq1 Bd(16, 14) = −1
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Bd(16, 15) = −pe2 Bd(27, 23) = −1

Bd(16, 16) = −pf2 Bd(27, 24) = −pe3 − ph3kw
Bd(16, 17) = −pg2 Bd(27, 25) = −pf3 − pi3kw
Bd(16, 18) = −pl2 Bd(27, 26) = −pg3 − pj3kw
Bd(19, 10) = −pq2 Bd(27, 27) = −pl3
Bd(19, 11) = −pr2 Bd(30, 19) = −pq3
Bd(19, 12) = −ps2 Bd(30, 20) = −pr3
Bd(19, 13) = −pt2 Bd(30, 21) = −ps3
Bd(19, 18) = pu2 Bd(30, 22) = −pt3
Bd(23, 14) = kh13 Bd(30, 27) = pu3

Bd(27, 19) = −ph3 Bd(30, 23) = −kwpq3
Bd(27, 20) = −pi3 Bd(30, 24) = −kwpr3
Bd(27, 21) = −pj3 Bd(30, 25) = −kwps3
Bd(27, 22) = −pk3 Bd(30, 26) = −kwpt3.
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20–21., Madrid
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Horváth, K., van Overloop, P.-J., Galvis, E., Gómez, M., and Rodellar, J.
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