Inelastic Analysis of Geometrically Exact Rods

P.L. Mata
A. H. Barbat
S. Oller
R. Boroschek

Monografía CIMNE IS-60 2008
Inelastic Analysis of Geometrically Exact Rods

P.L. Mata
A. H. Barbat
S. Oller
R. Boroschek

Monografía CIMNE IS-60 2008
MONOGRAFÍAS DE INGENIERÍA SÍSMICA
Editor A.H. Barbat

ISSN: 1134-3249

INELASTIC ANALYSIS OF GEOMETRICALLY EXACT RODS
Monografía CIMNE IS-60
© El autor

Depósito Legal: B-55290-2008

IMPRESO EN ESPAÑA-PRINTED IN SPAIN
Abstract

In this work a formulation for rod structures able to consider coupled geometric and constitutive sources of nonlinearity in both the static and the dynamic range is developed. Additionally, it is extended for allowing the inclusion of passive energy dissipating elements as a special rod element and geometric irregularities as a full three-dimensional body connected to the framed structure by means of a two-scale model.

The proposed formulation is based on the Reissner-Simo geometrically exact formulation for rods considering an initially curved reference configuration and extended to include arbitrary distribution of composite materials in the cross sections. Each material point of the cross section is assumed to be composed of several simple materials with their own thermodynamically consistent constitutive laws. The simple mixing rule is used for treating the resulting composite.

Cross sections are meshed into a grid of quadrilaterals, each of them corresponding to a fiber directed along the axis of the beam. A mesh independent response is obtained by means of the regularization of the energy dissipated at constitutive level considering the characteristic length of the mesh and the fracture energy of the materials. Local and global damage indices have been developed based on the ratio between the visco elastic and nonlinear stresses.

The consistent linearization of the weak form of the momentum balance equations is performed considering the effects of rate dependent inelasticity. Due to the fact that the deformation map belongs to a nonlinear manifold, an appropriated version of Newmark’s scheme and of the iterative updating procedure of the involved variables is developed. The space discretization of the linearized problem is performed using the standard Galerkin finite element approach. A Newton-Raphson type of iterative scheme is used for the step-by-step solution of the discrete problem.

A specific element for energy dissipating devices is developed, based on the rod model but releasing the rotational degrees of freedom. Appropriated constitutive relations are given for a wide variety of possible dissipative mechanisms.

Several numerical examples have been included for the validation of the proposed formulation. The examples include elastic and inelastic finite deformation response of framed structures with initially straight and curved beams. Comparisons with existing literature is performed for the case of plasticity and new results are presented for degrading and composite materials. Those examples show how the present formulation is able to capture different complex mechanical phenomena such as the uncoupling of the dynamic response from resonance due to inelastic incursions and suppression of the high frequency content. The study of realistic flexible pre-cast and cast in place reinforced concrete framed structures subjected to static and dynamic actions is also carried out. Detailed studies regarding to the evolution of local damage indices, energy dissipation and ductility demands are presented. The studies include the seismic response of concrete structures with energy dissipating devices. Advantages of the use of passive control are verified.
Table of Contents

1 Introduction
 1.1 Problem statement .. 3
 1.2 Objectives .. 4
 1.3 Layout ... 6

2 State of the art review .. 9
 2.1 Geometric nonlinearity .. 10
 2.1.1 Large rotations ... 11
 2.1.2 Research related to the Reissner–Simo rod theory 12
 2.1.3 Time-stepping schemes on the rotational manifold 14
 2.2 Constitutive nonlinearity 16
 2.2.1 Inelasticity in rod elements 16
 2.2.2 Cross sectional analysis 19
 2.2.3 Concrete structures 20

3 Geometrically exact formulation for rods 23
 3.1 Kinematics .. 24
 3.1.1 Initially curved and twisted reference rod 24
 3.1.2 Straight reference rod 26
 3.1.3 Current rod .. 27
 3.1.4 Geometric interpretation of elongation and shearing 31
 3.1.5 Time derivatives, angular velocity and acceleration 32
 3.1.6 Curvature vectors and tensors 33
 3.2 Strain measures ... 35
 3.2.1 Co–rotated derivative of the orientation triads 35
 3.2.2 Deformation gradient tensor 35
 3.2.3 Other strain measurements 42
 3.2.4 Material time derivative of F_n and strain rates 44
 3.3 Stress measures and stress resultants 46
 3.3.1 Cauchy stress tensor 46
 3.3.2 First Piola Kirchhoff stress tensor 47
 3.3.3 Second Piola Kirchhoff stress tensor 50
 3.3.4 Stress resultants and stress couples 50
5.3.2 Linearization of G_{ine} .. 119
5.3.3 Linearization of G_{ext} .. 121
5.4 Material updating rule of the rotational field 122
5.4.1 Linearization of G_{int} .. 122
5.4.2 Linearization of G_{ine} .. 124
5.4.3 Linearization of G_{ext} .. 125

6 Time-steeping schemes and configuration update 127
6.1 Formulation of the problem .. 128
6.1.1 Newmark algorithm on the rotational manifold 129
6.1.2 Configuration update .. 131
6.1.3 Updating procedure for the angular velocity and acceleration .. 132
6.1.4 Iterative strain and strain rate updating procedure 134
6.2 Discrete form of the linearized functional 137
6.2.1 Discrete form of the out of balance forces 139
6.2.2 Discrete tangential stiffness ... 140

7 Finite element implementation .. 145
7.1 Finite element discretization .. 146
7.1.1 Spatial derivatives ... 147
7.2 Out of balance force vector .. 148
7.2.1 Internal force vector .. 148
7.2.2 External force vector ... 149
7.2.3 Inertial force vector .. 149
7.3 Tangential stiffness ... 150
7.3.1 Internal contribution to the tangential stiffness 150
7.3.2 Inertial contribution to the tangential stiffness 151
7.3.3 External contribution to the tangential stiffness 152
7.4 Material updating of the rotational field 153
7.5 Out of balance force vector .. 154
7.5.1 Internal force vector .. 154
7.5.2 External force vector ... 155
7.5.3 Inertial force vector .. 155
7.6 Tangential stiffness ... 156
7.6.1 Internal contribution to the tangential stiffness 156
7.6.2 Inertial contribution of the tangential stiffness 158
7.6.3 External contribution of the tangential stiffness 159
7.7 Iterative Newton–Raphson scheme 159
7.7.1 Cross sectional analysis ... 160

8 Numerical Examples ... 167
8.1 Validation examples: elastic case ... 167
8.1.1 Unrolling and rerolling of a circular beam 167
8.1.2 Flexible beam in helicoidal motion 168
8.2 Nonlinear static examples .. 169
8.2.1 Mesh independent response of a composite cantilever beam 169
8.2.2 Framed dome ... 171
8.2.3 Nonlinear response of a forty-five degree cantilever bend 172
8.2.4 Nonlinear analysis of a right angle frame 174
8.3 Nonlinear dynamic examples .. 176
8.3.1 Visco elastic right angle cantilever beam 176
8.3.2 Near resonance response of a composite cantilever beam 178
8.3.3 Nonlinear vibration of a spatially curved structure 183
8.4 Reinforced concrete structures .. 185
8.4.1 Experimental–numerical comparative study of a scaled RC building model ... 185
8.4.2 Study of a RC plane frame ... 186
8.4.3 Dynamic study of a RC beam structure 189
8.4.4 Seismic response of a precast RC building with EDDs 193

9 Conclusions and further research ... 197
9.1 Conclusions ... 197
9.1.1 Summary of conclusions .. 201
9.2 Further lines of research ... 202

A Introduction to finite rotations ... 205
A.1 Large non-commutative rotations ... 206
A.2 Parametrization of the rotational manifold 209
A.2.1 The Euler´s theorem ... 211
A.2.2 Obtention the rotation pseudo–vector from rotation tensor 213
A.2.3 Tangent space to the rotational manifold 213
A.2.4 The exponential form of the rotation tensor 216
A.2.5 Differential map associated to exp[•] 217
A.2.6 General minimal vectorial parametrization 218
A.2.7 Non–minimal vectorial parameterizations: quaternions 219
A.3 Configurational description of motion ... 221
A.3.1 Preliminaries ... 221
A.3.2 Current and initial reference placements 225
A.4 Configurational description of compound rotations 227
A.4.1 Material description of the compound rotation 228
A.4.2 Spatial description of the compound rotation 229
A.4.3 Material tangent space to SO(3) .. 229
A.4.4 Incremental additive rotation vectors 230
A.4.5 Vector spaces on the rotational manifold 233
A.5 Variation, Lie derivative and Lie variation 234
A.5.1 Variation operator ... 236
A.5.2 Pullback operator .. 236
A.5.3 Push forward operator .. 237
A.5.4 Lie derivative ... 238
A.5.5 Lie variation ... 238

IV
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.5.6 Co-rotated derivatives</td>
<td>239</td>
</tr>
<tr>
<td>A.5.7 Configurational description of variations and derivatives</td>
<td>241</td>
</tr>
<tr>
<td>B Additional results</td>
<td>245</td>
</tr>
<tr>
<td>B.1 Reduced linear–elastic constitutive relations</td>
<td>245</td>
</tr>
</tbody>
</table>
List of Figures

3.1 Configurational description. .. 29
3.2 Scheme for the \mathbf{F}_n operator. 38
3.3 Strain vector. .. 40
3.4 Cauchy Stress Tensor. .. 46
3.5 First Piola Kirchhoff stress tensor. 47
3.6 Stress resultants and couples. 53
3.7 Differential cut slice. .. 57
3.8 Distributed Loads. ... 72
3.9 Seismic acceleration. ... 74

4.1 Constitutive nonlinearity. ... 76
4.2 Softening volume in the rod element. 77
4.3 Schematic representation of the damage model. 79
4.4 Differentiated traction compression behavior. 82
4.5 Function $\mathcal{G}(\chi)$. .. 84

6.1 Time-stepping scheme. ... 130
6.2 Configuration updating. ... 131

7.1 Iterative Newton–Raphson scheme (spatial form). 161
7.2 Discrete fiber like model of the beam element. 162
7.3 Flow chart of the cross sectional integration. 164

8.1 Deformed configurations of the circular beam. 168
8.2 Flexible beam in helicoidal motion 168
8.3 Displacements time history response of the free end of the beam. 169
8.4 RC cantilever beam. ... 169
8.5 Vertical reaction versus tip displacement. 170
8.6 Evolution of the local cross sectional damage index. 170
8.7 Global damage index. ... 171
8.8 Framed dome and detail of the cross sectional mesh. 171
8.9 Loading factor-displacement curve of the vertical apex of the dome. 172
8.10 Initial geometry and some examples of the deformed configurations. 173
8.11 Different components of the linear displacement. 173
8.12 Different components of the nonlinear displacement. 174
8.13 Right bent description. ... 175
8.14 Load-deflection curve. .. 175

VII
8.15 Load deflection curves and global damage indices. 176
8.16 Right angle frame description and deformed configurations. 177
8.17 Displacement time history responses. ... 177
8.18 Tip displacements time history response in the Y-Z plane. 178
8.19 Vertical cantilever beam subjected to a sinusoidal base acceleration. 179
8.20 Horizontal and vertical displacement at the top. 180
8.21 High frequency content suppression and energy dissipation. 181
8.22 Coupled geometric and constitutive nonlinear dynamic responses. 181
8.23 Evolution of the global damage index and energy dissipation. 182
8.24 Three-dimensional curved beam structure. .. 183
8.25 Displacement time history response of the node A. 184
8.26 Displacement time history response of the node B. 184
8.27 Comparison between numerical and experimental push-over analyze. ... 185
8.28 Map of fissures and cross sectional damage index. 186
8.29 RC planar frame details. ... 187
8.30 Increasing loading versus cyclic loading. .. 188
8.31 Global damage indices. ... 188
8.32 Plastic hinge. .. 189
8.33 Structural model of the RC planar frame. ... 190
8.34 Horizontal displacements versus base reaction. 191
8.35 Evolution of the local damage indices. .. 192
8.36 Description of the structure. ... 193
8.37 Model of the precast industrial frame with energy dissipating devices. ... 194
8.38 Capacity curves and global damage index. 194
8.39 Base shear–displacement relationship and global damage index. 195
8.40 Time history responses of the top beam–column joint. 196

A.1 Non-commutativity of rotation vector. .. 206
A.2 Composition of Rotations. ... 210
A.3 Rotation vector. ... 211
A.4 Tangent vector to a manifold. .. 215
A.5 Diagram of an operator and its adjoint. ... 222
A.6 Configurational description of the motion. 225
A.7 Representation of virtual work. ... 228
A.8 Geometric representation of the tangent spaces on $SO(3)$. 230
A.9 Commutative diagrams. ... 234
List of Tables

3.1 Reduced strain measures. ... 55
3.2 Load Densities. ... 73

4.1 Flow chart for the damage model 86
4.2 Flow chart for the plasticity model 91

6.1 Discrete push–forward. .. 129
6.2 Newmark Algorithm. ... 129
6.3 Discrete Newmark algorithm. 133

8.1 Mechanical properties ... 169
8.2 Mechanical properties ... 178
8.3 Steel reinforcement details of the different zones of the building. 190
8.4 Mechanical Properties of the materials. 191

A.1 Minimal parametrization of rotation. 219
Chapter 1

Introduction

The three dimensional nonlinear analysis of rod structures has captured the interest of many researchers and practitioners during the past decades and currently it still constitutes a very active branch of research in structural analysis [63]. In the case of civil engineering structures and some flexible mechanical components, reduced or one-dimensional (1D) formulations for structural elements appear as a solution combining both, numerical precision and reasonable computational costs [203, 205] when compared with fully three-dimensional (3D) descriptions of the structures.

Many contributions have been focused on the formulation of geometrically consistent models of beams undergoing large displacements and rotations, but considering that the material behavior remains elastic and, therefore, employing simplified linear constitutive relations in terms of cross sectional forces and moments [226, 135]. Most of the recent works in this field invoke the formulation and the numerical implementation proposed Simo et al. [277, 278, 280], which generalize to the three-dimensional dynamic case, by means of an appropriated parametrization of the rotational part of the kinematics, the formulation originally developed by Reissner [257, 256]. This formulation employs a director type approach in describing the configuration of the beam cross sections during the motion, considering finite shearing and finite extension, as described by Antman in Ref. [4]. The so called Reissner–Simo geometrically exact rod theory consider a straight and unstressed rod as reference configuration and the hypothesis of plane cross sections.

The resulting deformation map can be identified with elements belonging to the differential manifold obtained from the rotation group SO(3) and the canonical vector space \mathbb{R}^3. Posteriorly, other authors have contributed in different manners to the enrichment of the finite deformation theory of rods and also have applied it in a wide number of fields\(^1\); in this sense it is possible to quote [71, 138, 147, 167, 158, 297] among many others.

On the contrary, constitutive nonlinearity in numerical models for beam structures has been described by means of concentrated and distributed models, both of them formulated, in the most cases, for small strain and small displacement kinematics hypothesis. In the first case, inelasticity in a beam element is concentrated in springs located at the ends of a linear elastic element [272]. Among the most common drawbacks in concentrated plasticity models, one has to considers that transversal force-moment interaction is ignored.

\(^1\)A more complete review of the state of the art in the topics here mentioned is given in §2 of the present work.
Moreover, the cross sectional properties of the rod elements require a calibration based on experiments and usually the range of application of the obtained constitutive relations is rather limited due to the fact that specific hysteretic rules have to be defined for each type of cross section. If a new cross sectional shape or reinforcement configuration is employed in a structure, additional hysteretic models have to be provided. In the second case, distributed models allow to spread the inelastic behavior along the element, evaluating the constitutive equations at a fixed number of cross sections along the rod’s axis. Further enhancement in the analysis of the mechanical response of structures is obtained considering inhomogeneous distributions of materials on arbitrarily shaped cross sections [89]. In this case, the procedure consists into obtaining the constitutive relationship at cross sectional level by means of integrating on a selected number of points corresponding to fibers directed along the beam’s axis [299]. Thus, the mechanical behavior of beams with complex combinations of materials can be simulated [24]. The employment of fibers allows predicting a more realistic strain-stress state at the cross sectional level, but it requires the definition of uniaxial constitutive laws for each material point. In most cases, both types of models, the concentrated and the distributed ones, have been formulated under the hypothesis of infinitesimal deformation and commonly, inelasticity in the fibers is restricted to the component of the stress tensor acting perpendicular to the cross section; maintaining the other components (shear stresses) in the elastic range. Moreover, the thermodynamical basis of the constitutive equations are usually ignored [24]. In general, when materials with softening are considered, the numerical solutions are affected by strain localization. A technique based on the regularization of the energy dissipated at any material point [203] ensures that the whole structural response remains objective, but the length of the zone where softening occurs is still mesh dependent. Other approaches based on the use of strong discontinuities at a micro-scale have been recently considered [17]. Only a few works have been carried out using fully geometric and constitutive nonlinear formulations for beams, but they have been mainly focused on perfect plasticity [267, 276] and on the static analysis of the structures [117].

An important effort has been devoted to develop time-stepping schemes for the integration of the nonlinear dynamic equations of motion involving finite rotations. The main difficulty arises in the fact that the deformation map takes values in the differentiable manifold $S_0(3) \times \mathbb{R}^3$ and not in a linear space, as it is the case in classical dynamics. An implicit time-stepping algorithm is developed in Ref. [280] extending the classical Newmark’s scheme to $S_0(3)$, obtaining a formulation similar to that of the linear case. In the same work, the consistent linearization of the weak form of the balance equations yields to a tangential inertia tensor, nonsymmetric in the rotational components. Again, additional research have been carried out by a number of authors in this field e.g. [143, 192, 191].

Newmark’s family of implicit schemes fails to preserve certain conservation laws of the motion, such as the total energy and momentum of nonlinear Hamiltonian systems, producing numerical (fictitious) dissipation [64, 286]. A further improvement in the development of robust time-stepping schemes is provided by the energy-momentum conserving algorithms [287]. These algorithms have been extended to the rotation group by Simo et al. in Ref. [288] and applied to the nonlinear dynamic problems of rods, shells and rigid bodies. The attention recently captured by these methods rely on the potential applications and the algorithmic stability gained with them. For example, a list of representative works could
1.1. Problem statement

be [15, 13, 33, 142, 149, 262] (see also §2.1.3). More recently, attention have been turned towards variational integrators i.e. algorithms formed from a discrete version of Hamilton’s variational principle [178]. For conservative systems usual variational principles of mechanics are used, while for dissipative or forced systems, the Lagrange-d’Alembert principle is preferred. The main properties that make them attractive are: for the conservative case they are symplectic [197] and momentum conserving and permit the systematic construction of higher order integrators with remarkably good energy behavior. A summary can be found in [179, 198, 199]. At the author’s knowledge, this type of methods have not been formally applied to the present rod theory.

Additionally, modern practice in engineering permits designing structures for forces lower than those expected from the elastic response on the premise that the structural design assures significant energy dissipation potential and, therefore, the survival of the structures when subjected to severe accidental loads such as those derived from earthquakes [125]. Frequently, the dissipative zones are located near the beam–column joints and, due to cyclic inelastic incursions, some structural members can suffer a great amount of damage. A limited level of structural damage dissipates part of the energy induced by earthquakes and uncouples the dynamic response from resonance offering a certain protection [205], however, the large displacements can also increase the second order effects such as the so called $P-\Delta$ effect in seismic engineering. Moreover, these deformations can produce irreparable damage in those members.

As mentioned, fully 3D numerical techniques provide the most precise tools for the simulation of the nonlinear behavior of RC buildings, although the computing time required for real structures makes their applications unpractical. Considering that a great part of the elements in buildings are prismatic, one-dimensional formulations appear as a solution combining both, numerical precision and reasonable computational costs [203, 205].

1.1 Problem statement

In summary, a modern numerical approach to the structural analysis and design of three-dimensional rod–like engineering structures should take into account the following aspects:

(i) **Geometric nonlinearity.** Changes in the configuration of rod–like in structures (and flexible mechanisms) due to the action of static and/or dynamic actions produces additional stress fields which should be considered in a coupled manner with

(ii) **Constitutive nonlinearity.** Inhomogeneous distribution of inelastic materials can appear in many structures. The obtention of the reduced cross sectional forces and moments as well as the estimation of the dissipated energy should be considered in a manner consistent with the thermodynamic basis of the constitutive theory.

At the author’s knowledge the present state of the art in rod analysis have provided a set of partial solutions to the above mentioned requirements, however, there is not an unified approach covering them in a manner consistent with the principles of the continuum mechanics. The following list addresses in a summarized manner (see §2) the main lacks and drawbacks in the existing developments:
(i) Finite deformation models for rod-like structures, particularly the geometrically exact ones, even when are highly sophisticated and strongly founded formulations, in most of the cases have been restricted to the elastic case or when they consider inelasticity it corresponds to plasticity in the static case.

(ii) Most of the formulations for considering inelasticity in rods are developed under the small strain assumption, constitutive laws are valid for specific geometries of the cross sections or the thermodynamical basis of the constitutive theories are violated; limiting severely the possibility of obtaining good characterizations of the mechanical properties of the structures in the nonlinear dynamic range.

Taking into account the above list the following section presents the objectives of the present work, which tries to be a contribution to the improvement of those aspects in a unified form consistent with the laws of the continuum mechanics and oriented to the obtention of a software package able to be applied in practical (realistic) cases of study.

1.2 Objectives

The main purpose of this work consists in developing a formulation for rod structures able to consider in a coupled manner geometric and constitutive sources of nonlinearity in both static and dynamic range. To this end, the initially curved and twisted version of the Reissner–Simo geometrically exact formulation for rods is expanded to consider an inhomogeneous distribution of inelastic, probably rate dependent, composite materials on arbitrarily shaped, but planar cross sections. Constitutive laws for the materials should be developed consistently with the kinematics of the rod model and with the thermodynamical laws. Then, the following list of objectives can be defined according to their nature:

(i) **Theoretical objectives**

 (i.1) To perform a deep study and theoretical analysis of the continuum based theory of rods under the Reissner–Simo hypothesis.

 (i.2) To deduce explicit expressions for the strain measure and for the objective measure of the strain rate acting on each material point of the cross section, in terms of the variables defining the deformation map, its derivatives and the geometry of the beam cross section.

 (i.3) Based on (i.1) develop rate dependent and independent inelastic constitutive laws for simple materials lying on points on the cross sections in terms of the First Piola Kirchhoff stress tensor and the corresponding energetically conjugated strain measure. The developed laws have to be consistent with the kinematics of the rod model and the laws of the thermodynamics, and allow to describe plastic deformations and damage.

 (i.4) To include several simple materials as the components of a composite associated to a point of the cross section. To this end, an appropriated version of the

\[\text{This aspect can be exceptionally important in procedures currently applied in the earthquake resistant design of structures.}\]
1.2. Objectives

Mixing theory for composites has to be deduced for the case of the present rod theory.

(i.5) To develop explicit expressions for the stress resultant and stress couples which consider inelasticity.

(i.6) To propose local and global damage indices able to describe the evolution of the remaining load carrying capacity of complex structures.

(i.7) To carry out the consistent linearization of the weak form of the balance equations including the effects of the rate dependent inelasticity existing at material point level considering both, the spatial and material updating rules for the rotational field (see §A). In this way, the corresponding rate dependent and independent parts of the tangential stiffness should be deduced and added to the loading and geometric terms.

(ii) Numerical objectives

(ii.1) To provide numerical algorithms for the integration of the constitutive laws developed for simple materials as well as for the obtention of the mechanical behavior of composites.

(ii.2) To perform the time discretization according to the Newmark’s method of the linearized problem defined in (i.7). Newmark’s scheme has been preferred due to the fact that the present study is focused on dissipative structures and its implementation in a standard finite element code is rather straightforward. Additionally, considering that the key idea in numerics is to implement the solution procedure in an iterative Newton–Raphson scheme, iterative updating procedures, consistent with the nonlinear nature of the manifold $\mathbb{R}^3 \times SO(3)$, have to be developed for the strain and strain rate measures defined in (i.2).

(ii.3) To develop an appropriated cross sectional analysis, based on the fiber discretization of the cross sections. Each fiber must has associated a composite material. The calculation of the damage indices at material point and cross sectional level should also developed at this stage. Moreover, the procedure for obtaining the cross sectional tangential stiffness should be provided.

(ii.4) To perform the discretization in space of the linearized problem using the Galerkin finite element interpolation of the deformation variables and their linearized forms.

(ii.5) To provide the explicit expression for the iterative Newton–Raphson scheme which includes the cross sectional analysis and the Newmark’s updating scheme for the dynamic variables.

(iii) Practical objectives

(iii.1) To validate the proposed formulation through a set of linear elastic numerical examples in the static and dynamic cases which are compared with results provided in existing literature.

(iii.2) To validate the proposed formulation throughout an extensive set of numerical examples (statics and dynamics) covering inelastic constitutive equations. The results should be compared with those provided in existing literature when possible.
To validate the obtention of a mesh independent response when materials presenting softening are considered.

To verify the ability of the proposed model for predicting the ultimate load, ductility and other relevant engineering parameters when compared with experimental tests on real structures.

To evaluate the ability of the proposed damage indices for predicting the load carrying capacity of structures.

To study the static and dynamic (even seismic) response of real two and three-dimensional reinforced concrete structures comparing the results obtained when full nonlinearity is not considered in the numerical simulations.

1.3 Layout

The organization of the present document is as follows:

Chapter 2 is regarded to perform a state of the art review in nonlinear analysis of rod–like structures. Section 2.1 is dedicated to the formulations developed for the treatment of geometric nonlinearity; in §2.1.1, §2.1.2 and §2.1.3 material related to large rotations, research related to rod models and time–stepping schemes on the rotational manifold are reviewed. §2.2 is devoted to the constitutive nonlinearity in rod–like structures including §2.2.2 about cross sectional analysis.

Chapter 3 is devoted to the presentation of a geometrically exact formulation for rods capable of undergoing finite deformation based on that originally proposed by Reissner [257, 256] and Simo [277]. In Section 3.1 a detailed description of the kinematic of the model is carried out with special attention paid on the formal definition of the configuration and placement manifolds as well as their tangent spaces. In §3.2 to §3.3, after calculating the deformation gradient tensor, the strain and strain rate measures at both, material point and dimensionally reduced levels, are described along with the corresponding conjugated stress measures deduced using the power balance condition in §3.4. The rod’s equations of motion are deduced starting from the local form of the linear and angular balance conditions. An appropriated (weak) form for numerical implementations is deduced in §3.5 and §3.6, for the nonlinear functional corresponding to the virtual work principle. Finally, hyperelastic cross sectional constitutive laws and load types are treated in §3.7 and §3.8, respectively.

Chapter 4 treats on constitutive nonlinearity. Section 4.1 provides the a general view of the approach followed for considering softening materials and strain localization in rod elements. Sections 4.2.2 to 4.2.3 are devoted to the development of specific damage and plasticity models for rods including viscosity which are formulated in terms of the material forms of the strain and stress vectors existing on the face of a given cross section. In §4.3 the mixing rule for composite materials is presented in a way such that it is able to be included for simulating arbitrary distributions of inelastic materials on the cross section. In §4.4 the explicit expressions for the calculation of the stress resultant and stress couples (cross sectional forces) are given along with the deduction of the corresponding cross sectional tangential stiffness which includes rate dependent effects. In §4.5 local and global damage indices able to estimate the remaining load carrying capacity of damaged
structures are described.

Chapter 5 is concerned with the linearization of the virtual work functional, in a manner consistent with the geometry of the configurational manifold. Formally, the linearization procedure is carried out using the directional derivative. In Section 5.1.1 some basic linear forms are calculated, in §5.1.2, §5.1.3 and §5.1.4 the consistent linearization of the strain, spin variables and strain rate measures is performed. Section 5.2 is devoted to the linearization of the stress resultant and couples considering rate dependent inelastic constitutive equations for composite materials. Finally, in §5.3 to §5.4 the consistent linearization of the virtual work functional is deduced, which yields to the consistent tangential tensors including rate dependent (viscous) and rate independent contributions. In all the cases, linearization is preformed considering both the material and the spatial rule for updating rotations.

Chapter 6 concerns with the presentation of a time–stepping scheme consistent with the kinematic assumptions made for the present rod model. In the case of the rotational part of the motion, explanations and new developments follow Ref. [280]. In Section 6.1 the formulation of the problem is presented along with the Newmark algorithm for rotational variables (§6.1.1), the iterative updating procedure for the configuration variables and their related kinematical objects (§6.1.2, §6.1.3) as well as the strain and strain rate measures §6.1.4 (§6.1.4.a – §6.1.4.d) are presented. Section 6.2 is dedicated to obtain the semi–discrete version of the linearized form of the virtual work principle. The (semi) discrete out of balance force terms are given in §6.2.1 and the discrete tangential stiffness are obtained in §6.2.2.a to §6.2.2.c.

Chapter 7 describes the spatial discretization based on the Galerkin isoparametric finite element (FE) approximation of the time discretization presented in §6 for the variational equations described in §5.3.3. The applied procedure yields to a system of nonlinear algebraic equations well suited for the application of the Newton iterative method. Sections 7.5 to 7.3 are dedicated to the spatial updating of the rotational field. While, in §7.4 to §7.6 the material updating rule is used. In both cases, the obtained inertial and viscous tangential matrices are consistent with the Newmark procedure previously described. Finally, Section 7.7 is devoted to the implementation of the iterative Newton–Raphson scheme and the cross sectional analysis.

Chapter 8 presents the results obtained from numerical simulations showing the ability of the developed formulations in simulating the full geometric and constitutive nonlinear dynamics of rod–like structures including local irregularities. §8.1, §8.2 and §8.3 are devoted to the validation of the present version of the geometrically exact rod model in the linear elastic and inelastic cases. The following sections cover studies of real engineering structures including reinforced concrete structures in §8.4.

Finally, in Chapter 9 conclusions about the works performed are presented. A detailed survey is given in §9.1 and an additional section (§9.2) is included for considering further lines of research born from the results of the present work. The present work is complemented with the Appendix A including technical details pertaining to the large rotations theory.
1.3. Layout

Notation

Scalar quantities are denoted using lightfaced letters with italic or calligraphic style or lightfaced mathematical symbols. First order tensors are denoted using lightfaced letters or symbols but equipped with the over-head hat $\hat{\cdot}$. Tensors of greater order are written in boldface. A special case are skew–symmetric tensors which boldfaced and equipped with an over-head tilde $\tilde{\cdot}$. Upper or lower case letters are used for scalars, vectors or tensors, but subjected to the previously defined convention. The symbol $\text{Diag}[a_1, a_2, a_3]$ is used to denote a diagonal matrix constructed from the values $a_1, a_2, a_3 \in \mathbb{R}$. The superscript T is used to denote the transpose of a given quantity. The superscripts ’m’ and ’s’ are used for distinguish quantities in the material or spatial description, respectively. In the same manner, the superscripts ’me’ , ’mt’ are used for denoting the material description of the elastic and tangential version of a tensorial quantity, respectively. Analogously, the superscripts ’se’ , ’st’ are used for denoting the spatial description of the elastic and tangential version of tensorial quantities. Other sub and superscripts are employed in several quantities through the text, but they are defined the first time they are used. Summation index convention applies through the text. Latin indices, such as i, j, range over the values: $\{1, 2, 3\}$ and Greek indices, such as α, β, range over the values: $\{2, 3\}$. If it is not the case, specific ranges are given in the text. The absolute value is denoted by $\text{Ab}(\cdot)$ and the symbol $\langle \pm \cdot \rangle = \frac{1}{2}(\text{Ab}(\cdot) \pm \cdot)$ denotes the McAuley’s function. The inner (dot), cross, and tensorial products are denoted by means of the symbols (\cdot), (\times) and (\otimes), respectively. Partial differentiation of the quantity (\cdot) with respect to the variable x is denoted as $(\cdot)_x$ and the overhead dot is used to denote the time derivative \textit{i.e.} (\cdot). Other operators and specific symbols are introduced in Appendix A.
Chapter 2

State of the art review

The three dimensional nonlinear dynamic analysis of beam structures currently constitutes a very active branch of research in structural analysis [63]. In the case of engineering structures and flexible components of mechanical systems, one-dimensional formulations for structural elements appear as a solution combining both, numerical precision and reasonable computational costs [203, 205]. Numerous contributions have been devoted to the formulation of geometrically consistent models of beams undergoing finite deformation, but employing simplified linear cross sectional constitutive relations. By the other hand, constitutive nonlinearity has been described by means of concentrated and distributed models, formulated in the most cases, considering the small strain hypothesis. Works coupling geometric and constitutive nonlinearity have been mainly focused on plasticity. Moreover, modern engineering permits designing structures on the premise that the design assures significant energy dissipation potential and, therefore, the survival of the structure when subjected to severe accidental loads [125]. Frequently, the dissipative zones are located near the beam-column joints and, due to dynamic cyclic inelastic incursions, some structural members can be severely damaged. If the damage is limited, it contributes to dissipate a part of the energy induced by the action and prevents resonance offering a certain protection, however, larger displacements can also increase the second order effects.

In Summary, a modern approach to the analysis and design of framed structures should take into account in a coupled manner, geometric and constitutive sources of nonlinearity in both static and dynamic ranges. The present chapter deals with an extensive (as much as possible) state of the art review in several topics of the nonlinear analysis of rod structures and the treatment given to the local irregularities. As it can be though, this review does not intend to be exhaustive due to the large amount of works existing in most of the topics here covered, however, the provided reference list naturally complements the works quoted throughout the text. The exposition is given in such a way that its reading, along with the reviewing of the quoted works, should provide an acceptable basis for the compression of the new contributions of the present work, which are declared in the objectives of Chapter 1.
2.1 Geometric nonlinearity

Geometric nonlinearity in rod elements has been developed by two different approaches:

(i) The so-called *inexact* or *co–rotational* formulations which considers arbitrarily large displacements and rotations but infinitesimal strains and

(ii) the *geometrically exact* formulations obtained from the full three dimensional problem by a reduction of the dimensions by means of the imposition of appropriated restrictions on the kinematics of the displacement field.

A complete survey about the co–rotational techniques for rod elements is carried out in the textbooks of Crisfield [85] Ch. 7 and 17 for static problems and 24 for dynamic problems, it also includes in Ch. 16 a complete review of the mathematical treatment for large rotations from an engineering point of view. Other classical textbooks such as [29, 132] consider the formulation of beam elements with different degrees of detail. Specific research papers are also available e.g. in [84] the dynamics of the co–rotated beam models is investigated. Hsiao et al. in [131] develop a consistent co–rotational finite element formulation for geometrically nonlinear dynamic analysis of 3D beams. An application to the three-dimensional continua is given in [221]. Behdinans and Tabarrok [40] use the updated Lagrangian method to obtain a finite element solution for flexible sliding beams. In [323] Xue and Meek study the dynamic response and instability of frame structures using a co–rotational formulation for beams and columns. Battini and Pacoste in [32] develop co–rotational beam elements with warping effects for the study of instabilities problems.

On the other hand, attending to the number of works devoted to the topic and the wide range of the applications, probably the more successful formulations are the geometrically exact ones [201]. The theoretical basis for the process that allows to make the dimensional reduction for obtaining rod models can be consulted in the book of Antman [4]. Additional works of the same author covering invariant dissipative mechanism for the motion of artificially damped rods and visco elastic rods can be reviewed in [6, 5] and references therein. A theoretical discussion about the dimensional reduction using nonconvex energy is given in [67]. Additionally, a complete work about the exact theory of stress and strain in stress can be consulted in Ref. [100].

Other approaches such as the core-congruential formulation for geometrically nonlinear beam finite elements can also be consulted, for example in the work of Felippa et al. [104]. Healey and Mehta in [126] study the computation of the spatial equilibria of geometrically exact Cosserat rods. Zupan and Saje [327] develops a FE formulation of geometrically exact rods based on interpolation of strain measures; in [330] the linearized theory is considered and in [328] a rod’s formulation based on curvature is presented. In [271] a rod element based on the interpolation of the curvature is developed. Hjelmstad and Taciroglu [127] develop a mixed variational methods for finite element analysis of geometrically nonlinear Bernoulli–Euler beams. Complementarily, theoretical works are also available: Izzuddin [157] analyzes some conceptual issues in geometrically nonlinear analysis of rod structures. In [181] Liu and Hong also study the finite deformation dynamics of three-dimensional beams. Luczko [190] investigates the bifurcations and internal resonances in
rods. Rey [258] study the mathematical basis of the symmetry breaking, averaging and elastic rods with high intrinsic twist. The nonlinear equations for thin and slender rods are developed in [252, 255], respectively. Rosen et al. [264] develop a general nonlinear structural model of a multirod systems. A theoretical work about constitutive relations for elastic rods is developed by O’Reilly in [238]. Simmonds [275] discusses about the possibility of developing a nonlinear thermodynamic theory of arbitrary elastic beams. Moreover, the most invoked geometrically exact formulation is that originally proposed by Simo [277] which generalize to the three dimensional dynamic case the formulation originally developed by Reissner [257, 256] for the plane static problem. According to the author, this formulation should be regarded as a convenient parametrization of a three-dimensional extension of the classical Kirchhoff–Love¹ [182] rod model due to Antman [4], employing a director type approach for describing the configuration of the beam cross sections during the motion, which allows to consider finite shearing and finite extension. In this formulation, the concepts of rotations and moments have the classical meanings i.e. actions of the orthogonal group on the Euclidean space, which do not commute. Posteriorly, Simo and Vu-Quoc [278, 280] implemented the numerical integration of the equations of motion of rods in the context of the finite element framework for the static and dynamic cases. They have considered a straight and unstressed rod as reference configuration and the hypothesis of planar sections, neglecting any kind of warping. One of the main conceptual difficulties arising in the Reissner–Simo formulation is given by the fact that the resulting configuration space for the rod in no longer a linear space but a nonlinear differentiable manifold. Concretely, the mentioned manifold is obtained by the pairing $\mathbb{R}^3 \times SO(3)$, where $SO(3)$ is the rotation group [8] (see Appendix A). Therefore, the application of the standard techniques of continuum mechanics and numerical methods has to be carried out taking into account the intrinsic non–additive nature of a part of the kinematics of the rods. For example, after the linearization of the equilibrium equations, the resulting geometric stiffness is non-symmetric away from equilibrium [300]. A deep analysis about this and other aspects were provided by Simo in [286]. Other earlier works on finite deformation of rod elements can be found in the works of Atluri and Vasudevan [19], Bathe and Bolourchi [28], Iaura and Atluri [135, 134] and Meek and Loganathan [214] among others.

2.1.1 Large rotations

The fact that the configuration manifold of the rod model involves large rotations become strongly desirable to dispose of an acceptable background in mathematics of Lie groups, its associated Lie algebras and other topics related to rotations such as: parametrization [302], linearization, configurational description of rotational motion, time derivatives [324] and so on (see Appendix A).

Literature about the parametrization of the rotational motion can be found e.g. in the papers of Bauchau and Trainelli [35], Trainelli [302], Bauchau and Choi [36], Argyris [7],

¹The Kirchhoff–Love formulation can be seen as the finite strain counterpart of the Euler formulation for beams [24, 89].
2.1. Geometric nonlinearity

Argyris and Poterasu [8] and Grassia [114], among many others; on the Lie group methods for rigid body dynamics in [74]. A survey about integration of differential equations on manifolds can be reviewed in [52, 66].

Works about the parametrization of finite rotations in computational mechanics can be reviewed in [43, 55, 193, 215], for the specific case of shells Refs. [83, 148] are available. Ibrahimbegović presents a discussion about the choice of finite rotation parameters in [141] and the computational aspects of vector–like parametrization of three-dimensional rotations are analyzed in [139]. Rhim and Lee [260] follow a similar approach for the vectorial approach and the computational modeling of beams undergoing finite rotations. A formulation of the rotational dynamics of rigid bodies using the Cayley Klein parametrization is presented in the work of Cottingham and Doyle [82]. Gerardin and Cardona [111] employ a Quaternion algebra for parameterizing the kinematics and dynamics of rigid and flexible mechanisms. Park and Ravani in [246] develop a smooth invariant interpolation of rotations.

In most of the works about parametrization of finite rotations, different versions of the so called Rodrigues’s formula for the exponentiation of a vectorial quantity are presented. For example, Ritto-Corrêa and Camotin in [261] develop a complete survey about the differentiation of this formula and its significance for the vector–like parametrization of Reissner–Simo beam theory. A careful analysis about the interpolation of rotations and its application to geometrically exact rods is given by Romero in [263]. A classical work about the parametrization of the three-dimensional rotation group is provided by Stuelpnagel in Ref. [298].

2.1.2 Research related to the Reissner–Simo rod theory

A great amount of works on both theoretical and numerical implementation of the geometrically exact formulations for beams have been developed starting from the Reissner–Simo works. Particularly, interesting developments have been carried out by Ibrahimbegović and Frey to extend the formulation given in Ref. [277] to the case of a two dimensional curved reference configuration of the rod in [136] and by Ibrahimbegović [138] in the three dimensional case; proposing alternative numerical treatments for the parametrization of rotations [141] and applications to the optimal design and control of structures [153, 152]. Li [180] and Kapania and Li [167, 168] develop a careful presentation of the initially curved and twisted rod theory based on the principles of the continuum mechanics. Mäkinen [194] presents a total Lagrangian formulation for geometrically exact rod elements, which does not presents singularities in the rotational manifold.

Jelenić and Saje [158] develop a formulation based on the so called generalized principle of virtual work, eliminating the displacement variables of the model and retaining only rotational degrees of freedom, avoiding thus the shear locking phenomenon, previously investigated in [162], in the numerical simulations. The usual discretization procedures

2 More theoretical works in the context of differential geometry can be consulted for e.g. [79] or the textbooks of Dubrokin et al. [95] and Marsden and Ratiu [200].

3 More specific works can also be consulted, e.g. Borri et al. in [51] presents general variational formulations for dynamical problems, which are well suited to be implemented numerically.

4 Both authors have also make contributions in the theory of shells with finite rotations [137].
applied in implementing the strain measures in the finite element method violates the objectivity condition of this tensor; Jelenić and Crisfield in Refs. [88, 159] propose a remedy for this problem. In [150] several improvements in finite element implementations are addressed to ensure the invariance of the continuum problem. Additional numerical work to obtain frame indifference of the strain measurements in the numerical implementations have been carried out by Betsch and Steinmann in [42], details about this specific subject can be found in Refs. [158, 159, 88].

A formulation equivalent to that proposed by Simo has been employed by Cardona and Gerardin [70] using an total Lagrangian updating rule for the rotational components. Cardona and Huespe [71] have used this formulation for evaluating the bifurcation points along the nonlinear equilibrium trajectory of flexible mechanisms. Ibrahimbegović et al. [147, 140] for studying the buckling and post buckling behavior of framed structures. A comparative study between tangent and secant formulations of Cosserat beams for the study of critical points is carried out by Pérez Morán [247]. By other hand, Sansour et al. in [269] develop a finite element approach for studying the in plane chaotic motion of geometrically exact rods. Vu-Quoc and Li in [320] use the Reissner–Simo formulation for studying the some complex phenomenon in the dynamics of sliding geometrically-exact beams. Further, Vu-Quoc et al. [322, 321] extend the formulation for considering the dynamics of geometrically exact sandwich beams/1D plates. Saje et al. [268] study the instability of rod–like systems.

A very active research area closely connected to the development of geometrically exact rod formulations is given by the analysis of flexible multi-body systems. Advances in both fields usually provide shearable results. For example, Ambrósio [3] develops efficient descriptions for the kinematics of joints for flexible multi-body systems and the same scheme can be applied to rods; alternatively, [105] can also be consulted. In [145] rigid components and joint constraints in dynamics of flexible multi-body systems with 3D rods is studied.

An additional improvement in reproducing more realistic strain fields on the cross section is obtained starting from enhanced kinematical hypothesis. For example, other works based on alternative kinematic hypothesis allow to consider the warping of the cross section [117, 287]. Particularly, Simo andVu-Quoc in [285] develop a geometrically exact rod model incorporating torsion-warping deformation. In spite of the fact that the mentioned theory is exact, at cross sectional level the warping functions are taken from the small strain theory as deduced in [155] starting from the Saint-Venant’s principle. Petrov and Géradin in two works develop a finite element theory for rods based on exact solutions for three-dimensional solids. In [249] they present the geometrically exact nonlinear formulation and in [250] extend the previous work to the anisotropic case.

Another active research area is focused on designing time-integration schemes for nonlinear dynamics of flexible structural systems undergoing large overall motion [149]. By one hand, in certain circumstances it is desirable to develop time–stepping schemes able to reproduce conserved quantities of the motion (see e.g. [197] and references herein) and by the other hand, considering that the finite element method provides a poor estimate of the higher frequencies, for certain systems, it is desirable to eliminate or reduce the contribution of higher frequencies in computed response of a system. This is the main motivation for introducing numerical dissipation on higher modes. The next section is
devoted to the review of a number of relevant works related to the design and the numerical implementation of time-stepping schemes applied to the dynamic of rods undergoing finite deformations.

2.1.3 Time-stepping schemes on the rotational manifold

An important effort has been devoted to develop time-stepping schemes for the integration of the nonlinear dynamic equations of motion involving finite rotations [69]. As in the static case, the basic difficulty arises in the noncommutative nature of the group $SO(3)$ [280]. A general view of numerical integration schemes for both explicit and semi-implicit methods applied to rotational motion can be consulted in [171]. Simo and Vu-Quoc in [280] develop an implicit transient algorithm that extends the classical Newmark formulae, stated in \mathbb{R}^3, to the rotation group $SO(3)$, obtaining a formulation similar to that of the linear case. In the same work, the consistent linearization of the weak form of the balance equations yields to a tangential inertia tensor, nonsymmetric in the rotational components. A comparison among implicit time-stepping schemes according to different choices of rotational parameters can be reviewed in Ref. [143] and in [142] Ibrahimbegović and Mazen discusses about the parametrization of finite rotations in dynamics of beams and implicit time-stepping schemes (see also [144]). Recently, Mata et al. [205] present the inclusion of viscous and rate independent dissipation in the Reissner–Simo rod model considering a thermodynamically consistent visco damage model on each material point of the cross section. Details about its numerical implementation in a Newmark time-stepping scheme are also addressed. Rubin in [265] provides a simplified implicit Newmark integration scheme for finite rotations.

Even though Newmark’s scheme has been widely applied to the study of the dynamic response of structures, rigid bodies and flexible mechanisms, Mäkinen states in Ref. [192] that it only constitutes an approximated version of the corrected formulae, which are given in his work for the spatial and material descriptions. The main reasons are that material descriptions of the spin and acceleration vectors involved in the updating procedures, belong to different tangent spaces at different times. Additionally, a critical study of Newmark’s scheme on the manifold of finite rotations is given by the same author in [191]. On the other hand, Newmark’s family of implicit schemes fails to preserve certain conservation laws of the motion, such as the total energy and momentum of nonlinear Hamiltonian systems, producing numerical (fictitious) dissipation [64]. Algorithms which inherit the conservation properties of the Hamiltonian dynamical system are attractive due to the fact that conserved quantities often capture important qualitative characteristics of the long-term dynamics [64] and numerically, conservation the total energy lead to convenient notions of algorithmic stability [113]. A further improvement in the development of robust time-stepping schemes is provided by the energy-momentum conserving algorithms. One of the pioneering works in constructing one of such of that algorithms is due to Simo et al. [287] which also develops symplectic schemes for nonlinear dynamics including an extension to the rotational motion. A recent survey on algorithms inheriting conservation properties for rigid and elastic bodies as well as constrained mechanical systems can be consulted in the works of Betsch and Steinmann [44, 45, 46]. Simo et al. in [288] provide
a detailed formulation and the numerical implementation of a time-stepping algorithm designed to conserve exactly the total energy, the linear and the angular momentum for 3D rods.

Some additional enhancements have been carried out, for example: Armero and Romero develops an energy-dissipating momentum-conserving time-stepping algorithms for nonlinear rods in [15]. A survey about second order methods for high-frequency dissipative algorithms is given by the same authors in [13]. Bauchau and Theron [33] present an energy-decaying scheme for beams. It is worth to note that, finite elements based on the space interpolation of rotational variables may be afflicted with problems such as nonobjective and path-dependent solutions; in [262] Romero and Armero develop an objective FE approach for the energy-momentum conserving dynamics of geometrically exact rods. Betsch and Steinmann [47] avoid the use of rotational variables regarding nonlinear beams from the outset as constrained mechanical systems. An energy-decaying scheme constructed as an extension of the energy-conserving schemes proposed by Simo [288] is presented by Ibrahimbegović and Mamouri in [149]. Jelenić and Crisfield [161] analyzes the problems associated with the use of Cayley transform and tangent scaling for energy and momenta conservation in the Reissner-Simo theory for rods.

Closely related applications of the previous time-stepping schemes are found in the field of multi-body dynamics. Bauchau and Bottasso [34] design an energy preserving and decaying scheme for flexible multi-body systems. An application of the geometrically exact theory of rods to multi-body dynamics with holonomic constrains and energy conserving schemes can be reviewed in Ibrahimbegović et al. [146]. In Refs. [142] and [149] a complete study of the general dynamics of flexible mechanisms is carried out and an energy conserving/decaying time-stepping scheme is proposed for eliminating the high frequency content in the response of flexible structures. In [54] Bottasso et al. develop conserving/dissipating numerical schemes for the integration of elastic multi-body systems. The specific case of rods is covered in [53]. Shell elements have been also investigated see e.g. [62, 61, 59] for the application of the Newmark scheme with finite rotations and [291] for energy-momentum conserving schemes. In [112] the dynamic analysis of rigid and deformable multi-body systems with penalty methods and energy-momentum schemes is considered and in [177, 225] energy preserving implicit and explicit integrators for constrained multi-body systems are developed. A survey about non-linear dynamics of flexible multi-body systems is given in [151].

More recently, attention have been turned towards variational integrators i.e. algorithms formed from a discrete version of Hamilton’s variational principle [178]. For conservative systems usual variational principles of mechanics are used, while for dissipative or forced systems, the Lagrange-d’Alembert principle is preferred. The main properties that make these algorithms attractive are: for the conservative case variational integrators are, symplectic [197] and momentum conserving. These methods also permit the systematic construction of higher order integrators. Variational integrators also have remarkably good energy behavior. A summary can be reviewed in [179, 199]. An extensive treatment for the case of the continuum mechanics can be reviewed in [198]. Additionally, in [166] Kane et al. discuss about variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Marsden and Wendlandt [197] present a nice overview on mechanical systems with symmetry, variational princi-
2.2 Constitutive nonlinearity

2.2.1 Inelasticity in rod elements

In spite of the great capacity of the mentioned formulations, works considering both constitutive and geometric nonlinearity are rather scarce. Research on constitutive nonlinearity have progressed based on different approaches, that’s, lumped and distributed plasticity models [244]. Experimental evidence shows that inelasticity in beam elements can be formulated in terms of cross-sectional quantities and, therefore, the beams’ behavior can be described by means of concentrated (lumped) models, some times called plastic hinges, which focalizes all the inelastic behavior at the ends of linear elastic structural elements by means of ad-hoc force-displacement or moment-curvature relationships (see e.g. Bayrak and Sheikh [37] or Lubliner [187], among many others). Mitsugi in [218] proposes a method for the measurement of strains develop in a finite deformation formulation for hinge connected beam structures. Some of these models have been extended for considering a wide variety of failure criteria; an example is shown in the work of Hyo-Gyoung Kwank and Sun-Pil Kim [173] where a moment-curvature relationship for the study of reinforced concrete (RC) beams subjected to cyclic loading is defined. This method is recommended by certain authors due to its numerical efficiency when compared with the full three-dimensional formulation of the nonlinear problem. It is important to note that the nonlinear constitutive laws are valid only for specific geometries of the cross section and that usually, the thermodynamical basis of the material behavior are violated [123]. Moreover, some components of the reduced forces and/or moments are frequently treated elastically [89, 124, 223].

A further refinement in the analysis of the mechanical response of beam structures is obtained considering inhomogeneous distributions of materials on arbitrarily shaped cross sections [89]. In the case of distributed plasticity models, the constitutive nonlinearity is evaluated at a fixed number of cross sections along the beam axis, allowing to obtain a distributed nonlinear behavior along the structural elements. In this case, the usual procedure consists into obtaining the constitutive relationship at cross-sectional level by integrating on a selected number of points corresponding to fibers directed along the beam’s axis [273, 299]. Thus, the mechanical behavior of beams with complex combinations of materials can be simulated [24, 81]. Fiber models fall into the category known as distributed beam models [120] due to the fact that inelasticity spreads along the beam element axis [244]. The employment of fibers allows predicting a more realistic strain-stress state at the cross sectional level, but it requires the definition of uniaxial constitutive laws for each material point. A combination of both models, applied to the study of the collapse loads of RC structures, is proposed by Kim and Lee [170]. Another example is given in the work of Mazars et al. [213] where a refined fiber models is used for the analysis of concrete elements including torsion and shear. Monti and Spacone use a fiber beam element for considering the bond-slip effect in reinforced concrete structural elements in
2.2. Constitutive nonlinearity

[222]. In most cases, both types of models, the concentrated and the distributed ones, have been formulated under the hypothesis of infinitesimal deformation. Two versions of the distributed plasticity models can be found in literature: the stiffness (displacement based) and flexibility (force based) methods [244]. The first one is based on the interpolation of the strain field along the elements. A precise representation of forces and moments requires a refined FE mesh for each structural element in which nonlinear constitutive behavior is expected to appear. In the flexibility method, the cross sectional forces and moments are obtained interpolating the nodal values and satisfying the equilibrium equations even in the nonlinear range [272]. Examples of flexibility based finite elements for the geometrically nonlinear analysis of beams structures can be found in the work of Neuenhofer and Filippou [224] and Barham et al. [26] for elastic perfectly plastic beam structures.

Both approaches are affected by the strain localization phenomenon when materials with softening behavior are employed. A extensive review of the strain localization in force-based frame elements is presented by Coleman, Spacone and El-Tawil in [78, 295]. A more theoretical work about this topic is given by Armero and Ehrlich in [16] and Ehrlich and Armero [97] for a plastic hinge model incorporated into a infinitesimal formulation for Euler-Bernoulli rods and frames. In the stiffness method, localization occurs in a specific element and, in the case the flexibility method, nonlinearity is concentrated in the volume associated to a specific cross section of the element undergoing strain softening. In any case, the whole structural response becomes mesh dependent if no appropriate corrections are considered. Several techniques have been proposed for ensuring objectivity\(^5\) of the structural element response: Scott and Fenves [272] develop a new integration method based on the Gauss-Radau quadrature that preserve the objectivity for force based elements; Hanganu et al. [123] and Barbat et al. [24] regularize the energy dissipated at material point level, limiting its value to the specific fracture energy of the material [228]. These methods ensure that the whole structural response remains objective, but the length of the zone where softening occurs is still mesh dependent. Recently, some developments employing strong discontinuities\(^6\) have been applied to the study of beam models but considering constitutive laws in terms of cross sectional forces and infinitesimal deformations, as it can be seen in Armero and Ehrlich [17, 18] and in references therein. The characterization of localized solutions in a softening bar using an analysis of the propagation of waves is presented by Armero in Ref. [14].

One of the most common limitation of distributed formulations arises from fact that constitutive nonlinearity is defined for the component of the strain acting in the direction normal to the face of the cross section and, therefore, the shearing components of the stress are treated elastically. This assumption does not allows to simulate the nonlinear coupling between different stress components at constitutive level, resulting in models

\(^5\)Note that in this case, the term objectivity is used for referring to a mesh independent response of the structure in stead of the usual sense in continuous mechanics where it refers to an invariant response under rigid body motions.

\(^6\)For an extensive review about the employment of the strong discontinuity approach for the treatment of localized dissipative mechanisms in a local continuum see Armero [10]; the theoretical basis of these methods in the three dimensional version of fracture in mechanics can be found in [230, 229, 316] and references therein.
where cross sectional shear forces and torsion moments are transmitted elastically across then elements [89, 223]. This assumption predefines the way in which the failure of the members occurs, limiting severely the participation of shear forces to the equilibrium. A comparative study of different plasticity models applied to earthquake analysis of buildings can be consulted in [93].

Most of the geometrically nonlinear models are limited to the elastic case [277, 278]. Works considering both constitutive and geometric nonlinearity are scarce and the inelastic behavior has been mainly restricted to plasticity [267, 287]. In [48, 49] and [94] a higher order approximation is used for the calculation of the axial strain in truss elements and uniaxial constitutive descriptions are used for different material behaviors. Simo et al. in [276] extends the formulation of rod elements with warping of arbitrary cross sections for considering a small strain formulation for elastic visco plastic constitutive materials. An outstanding work considering the warping of cross sections made of elastic plastic materials is due to Gruttmann et al. [117]. Additionally, Wagner and Gruttmann in [305] develop the finite element analysis of the Saint-Venant torsion problem considering the exact integration of the elastic plastic constitutive equations. Nukala and White [226] develop a mixed finite element for studying the stability behavior of steel structures. Pi and Bradford [251] study the coupled elastic plastic buckling and the post buckling evolution of arches subjected to central loads. In [216] a method for studying the large deflection of three-dimensional steel frames is proposed. Gebbeken [110] develop a numerical approach for the (static) ultimate load analysis of steel framed structures. Isotropic hardening is included in the model presented by Park and Lee in [245] which is based on the work of Simo [278] for considering geometric nonlinearity. A kinematically exact formulation of elastic plastic frames is presented in [266] by Saje et al., however, results are restricted to the plane case.

Recently, Mata et al. [203, 205] have extended the geometrically exact formulation for rods due to Reissner, Simo and others [138, 159, 167] to include an arbitrary distribution of composite materials with inelastic constitutive laws on the cross sections for the static and dynamic cases; thermodynamically consistent constitutive laws of visco damage and plasticity are developed in terms of the material form first Piola Kirchhoff stress vector in the framework of the mixing theory for composites. Some basic requirements, such as the objectivity of the response when strain localization for softening materials occurs is also considered by means of a regularization of the energy dissipated by the materials [24, 124].

Alternative approaches are also available, e.g. in [129, 130] Hori and Sasagawa develop a large deformation model based on subelements for inelastic analysis of large space frames. Examples of application of the proposed model are given in the second paper. In all the above references, examples are restricted to the static case. In the dynamic case, Galucio et al. [109] employ the finite element method for the study of the mechanical response of a infinitesimal deformation version of visco elastic sandwich beams using fractional derivative operators. Turkalj et al. [304] uses the external stiffness approach for large displacement analysis of elastic plastic framed structures. Shi and Atluri [274] employ a plastic hinge formulation for the elastic plastic analysis of space–frames considering large deformation. Battini and Pacoste in [31] study the plastic instability of beam structures using the co–rotational technique.
Other kind of research has been conducted toward the more precisely estimation of the constitutive behavior of rod-like structures, it corresponds to the employment of the homogenization theory at material point level on the cross section (see e.g. [176, 325]) or the *asymptotic cross sectional analysis* [311]. This last type of approximation can give a very precise simulation of the behavior of the materials but they have the inconvenient that it is very expensive in computing time. In distributed models for the coupled constitutive and geometric nonlinear analysis of rod-like structures, the cross sectional analysis became a crucial step. According to the hypothesis assumed, several degrees of refinement can be obtained. This specific topic is covered in the next section.

2.2.2 Cross sectional analysis

The cross sectional analysis in a *strain driven* numerical method can be defined as the set of procedures used for determining: (i) the stress distribution in a cross section for a given strain field; (ii) the stress resultant and stress couples (see §3 for formal definitions) and (iii) the reduced (cross sectional) tangential stiffness if inelastic materials are considered. All these procedures are usually dependent on the shape of the cross section and, the distribution and the constitutive relation of the involved materials.

Therefore, a large amount of research have been concentrated on this topic. The significance of the techniques developed for the precise cross sectional analysis arises on the accuracy of the stress field assigned to point on the rod. Special attention has been directed to the determination of the shear stress and the shear strain distribution on arbitrarily shaped cross sections. Gruttmann *et al.* [116] develop a refined method based on the finite element for shear stresses in prismatic beams and Gruttmann and Wagner [119] use the same method for calculating the shear correction factors in Timoshenko’s beams. An analytical study about the shear coefficients is performed by Hutchinson in [133]. Jiang and Henshall [163] present a finite element model coupled with the cross sectional analysis for the torsion problem in prismatic bars. Similarly, Petrolo and Casciaro [248] develop 3D beam element based on the Saint Venant’s rod theory.

Specific efforts have been oriented to the case of thin walled (closed or not) cross sections; For example, Freddi *et al.* [107] analyze the case of thin-walled beams of rectangular shape. Beams made of composite materials have received great attention due to the fact that failure in this type of structures is closely related to the shear distribution between layers. For example, Reznikov in [259] develops a method for the analysis of the nonlinear deformation of composites including finite rotations. An application to the analysis of sections of rotor blades made of composite materials can be reviewed in [164]. Ovesy *et al.* [239] perform the geometric nonlinear analysis of channel sections using the so called finite strip method. Mokos and Sapountzakis in [220] propose the use of the *boundary element method* [270] for obtaining a solution to the transverse shear loading of composite beams.

An innovative procedure for the precise analysis of stresses in arbitrary cross sections is given by the *asymptotic variational methods* which take advantage of certain small parameters inherent to beam-like structures [313]. Several works can be quoted in this line of research, *e.g.* Cesnik *et al.* [75] analyze the role of the short–wavelength extrapolation in a refined theory of composite beams. Popescu and Hodges [253] uses the method for
deducing an asymptotically correct version of the Timoshenko anisotropic beam theory. Yu and Hodges compares the elasticity solutions with those obtained from asymptotic analysis for prismatic beams in [315] and in [314] Yu et al. apply the method to initially curved and twisted composite beams. Additional works can be reviewed e.g. in [306, 319]. Most of the previous mentioned references are restricted the small strain deformation or to the elastic case. In several areas of engineering the inelastic response of the structures is required, as is the case of earthquake engineering. Moreover, several modern techniques of characterizing structures are based on nonlinear analysis e.g. [303] or the work of Fantilli et al. [102] about flexural deformability of concrete beams. Complex phenomena such as the effect of confinement in shear dominated failures of civil engineering structures have received increasing research efforts [254]. Burlion et al. [68] analyze the compaction and tensile damage in concrete including the development of constitutive relations in the dynamic range. In [219] Mohd Yassina and Nethercotb develop a procedure for the calculation of the key cross sectional properties of steelconcrete composite beams of complex cross sections. In [310] Yang and Leu develop constitutive laws and a force recovery procedure for the nonlinear analysis of trusses. Thanoon et al. [301] propose a method for estimating the inelastic response of composite sections. Ayoub and Filippou [20] employ a mixed formulation for structures with composite steel and concrete cross sections. In the work of Bentz [41] an intend to develop a method for the cross sectional analysis is presented. The reference list is extensive, with works covering from specific aspects to more general procedures. Recently, Bairan and Mari [21, 22] present a coupled model for the nonlinear analysis of anisotropic sections. In §7.7.1 of the present work, a method for the cross sectional analysis consistent with the Reissner–Simo rod hypothesis is developed. The present procedure tries to combine simplicity and the sophistication required by composite materials.

2.2.3 Concrete structures

During the last decades, great efforts have been done in developing numerical formulations and their implementation in computer codes for the simulation of the nonlinear dynamic response of RC structures, for example a recent state of the art review for the case of concrete structures can be found in [295].

The engineering community agrees with the fact that the use of general fully 3D numerical technics, such as finite elements with appropriated constitutive laws, constitute the most precise tools for the simulation of the behavior of RC buildings subjected to earthquakes [156, 296] to other kind of loads [172]. However, usually the computing time required when using full models of real structures became their application unpractical. Several approaches have been developed to overcome this difficulty; some authors propose the use of the so called macro–elements, which provide simplified solutions for the analysis of large scale problems [90, 91, 101]. Considering that most of the elements in RC buildings are columns or beams, one–dimensional formulations for structural elements, obtained trough the reduction of spatial dimensions by means of kinematic assumptions [4, 67], appear as a solution combining both numerical precision and reasonable computational costs [203]. Experimental evidence [37] shows that nonlinearity in beam elements can be formulated in terms of cross sectional forces and/or moments and displacements.
and/or curvatures, which is frequently quoted in literature as plastic hinges models [78] (see §2.2). Some formulations of this type have been extended to take into account geometric nonlinearities [241, 293, 317, 318] allowing to simulate the $P-\Delta$ effect, which occurs due to the changes of configuration of the structure during the earthquake [65, 118, 293, 309]. Several limitations have been reported to this kind of models, specially for the modeling of RC structures with softening behavior in the dynamic range [299] (this aspect is covered in §4.1). A discussion about topics such as step-by-step methods, path bifurcation, overall stability, limit and deformation analysis in the context of the plastic hinges formulation for beam structures can be consulted in [77].

An additional refinement is obtained considering inhomogeneous distributions of materials on arbitrarily shaped beam cross sections [226]. Therefore, using this approach the mechanical behavior of beams constituted by complex combinations of materials, such it is the case of RC beams, can be simulated [121, 122, 30]. In general, the engineering community agree with the fact that although this models are more expensive, in terms of computational cost, than the plastic hinges ones, they allow to estimate more precisely the response nonlinear response of RC and other kind of structures [23, 89, 299]. Formulations of this type, considering both constitutive and geometric nonlinearity are rather scarce [94]; moreover, most of the geometrically nonlinear models for beams are limited to the elastic range of materials, as it can be consulted for example in Refs. [138, 201, 277] and the treatment of constitutive nonlinear behavior has been mainly restricted to plasticity [48, 117]. In reference [106] a theory for the stress analysis of composite beams is presented, however the formulation is only valid for moderated rotations and the behavior of the materials remain in the elastic range. Recently, Mata et al. [203, 205] has extended the geometrically exact formulation for beams due to Reissner–Simo [257, 256, 277, 278, 280] for considering and arbitrary distribution of composite materials con the cross sections for the static and dynamic cases.
Chapter 3

Geometrically exact formulation for rods

This chapter is devoted to the presentation of a geometrically exact formulation for rods capable of considering large displacements and rotations. The present formulation is based on that originally proposed by Simo [277] and extended by Vu-Quoc [278, 280], which generalize to the full three-dimensional dynamic case the formulation originally developed by Reissner [257, 256] for the plane static problem. These works are based on a convenient parametrization of the three-dimensional extension of the classical Kirchhoff–Love\(^1\) [182] model. The approach can be classified as a director type’s one according to Antman [4, 6], which allows to consider finite shearing, extension, flexure and torsion. In the present case, an initially curved and unstressed rod is considered as the reference configuration in an analogous approach as Ibrahimbegović et al. [138, 142].

First, a detailed description of the kinematic assumptions of the rod model is carried out in the framework of the configurational description of the mechanics. Due to its importance in the development of time-stepping schemes in next chapters, special attention is paid to the formal definition of the nonlinear differentiable manifolds that constitute the configuration, placement and their tangent spaces. After defining translational and rotational strain vectors and calculating the deformation gradient tensor, a set of strain measures at material point level on the cross section are described following the developments of Kapania and Li [167, 168]. However, the developments are not limited to the static case and explicit expressions for the material, spatial and co-rotational versions of the strain rate vectors as functions of the spin variables are also provided. At material point level, the conjugated stress measures are deduced from the principles of continuum mechanics and using the power balance condition for deducing the stress measure energetically conjugated to the cross sectional strain measures.

The equations of the motion of the rod are deduced starting from the local form of the linear and angular balance conditions and integrating over the rod’s volume. A form (weak) appropriated for the numerical implementation is deduced for the nonlinear functional corresponding to virtual work principle, considering the noncommutative nature of a part of the admissible variation of the displacement field.

\(^1\)The Kirchhoff–Love formulation can be seen as the finite strain counterpart of the Euler formulation for beams frequently employed in structural engineering [24, 89].
Finally, a discussion about the deduction of reduced constitutive relations considering hyperelastic materials is presented, leaving the detailed treatment of the rate dependent and independent constitutive nonlinearity for the next chapter.

3.1 Kinematics

For an appropriated description of the three-dimensional motion of rods and shells in finite deformation (and in the rigid body dynamics [4, 47, 86, 148]) it is necessary to deal with the (finite) rotation of a unit triad and therefore, the results of Appendix A will be used repeatedly here to describe the Reissner–Simo geometrically exact formulation for rods.

First, it is necessary to define the orthogonal frame \(\{ \hat{E}_i \} \) which corresponds to the material reference frame of the configurational description of the mechanic, and it is defined to be coincident with the fixed spatial frame \(\{ \hat{e}_i \} \) by convenience. The concept of spatially fixed means that the corresponding spatially fixed objects are fixed in an arbitrarily chosen orthogonal frame \(\{ \hat{e}_i \} \) that has no acceleration nor rotation in the 3D inertial physical space [280].

3.1.1 Initially curved and twisted reference rod

The configuration of a physically unstrained, unstressed, curved and twisted rod, simply called curved reference rod, is defined by a smooth and spatially fixed reference curve with its position vector given by

\[
\hat{\varphi}_0 = \varphi_0(S_0) \in \mathbb{R}^3 = \varphi_0 \hat{e}_i \in \mathbb{R}^3, \quad S_0 \in [0, L_0]
\]

where reference curve is parameterized by its real arch–length coordinate \(S_0 \in [0, L_0] \subset \mathbb{R} \) with \(L_0 \in \mathbb{R} \) being the total real arch–length of the initially curved and twisted reference curve.

The reference curve also correspond to the line of centroid connecting a family of cross sections through the geometry, mass or elasticity [180, 277]. Formally, plane cross sections are defined considering the local orthogonal frame \(\{ \hat{t}_0(S) \} \), which is rigidly attached to each \(S_0 \in [0, L_0] \) with its origin at \(\hat{\varphi}_0(S) \). It is explicitly given by

\[
\hat{t}_0 = \hat{t}_0(S_0) = t_{0ij} \hat{e}_j \in \mathbb{R}^3, \quad \hat{t}_0 \cdot \hat{t}_0 = \delta_{ij}
\]

where the components of the vectors \(\hat{t}_0 \) are given referred to the spatial frame \(\{ \hat{e}_i \} \).

Considering the coordinate system \(\xi_\beta \in \mathbb{R}, \ (\beta = 2, 3) \) defined along the base vectors \(\{ \hat{t}_0 \} \) it is possible to construct a compact subset of \(\mathbb{R}^2 \) defining the shape and size of the rod cross section, which is obtained by means of selecting an appropriated set of pairs \((\xi_\beta) \in \mathbb{R}^2 \). This set is designed as \(A_0 = A_0(S_0) \subset \mathbb{R}^2 \) and in following it will be identified with the corresponding plane rod cross section at \(S_0 \). An additional assumption is that \(A_0 \) vary smoothly along the material points on the reference curve \(\hat{\varphi}_0 \), but it is invariant under any deformation. Thats to say, material points attached to a given cross section

\footnote{The base vector \(\{ \hat{e}_i \} \) is such that \(\hat{e}_i \cdot \hat{e}_j = \delta_{ij}; \quad (i, j = 1 \ldots 3) \).}
are always the same. Since, the curved reference rod is considered to be free of either strain nor stress, it is conventionally assumed that the cross section planes of the curved reference rod are normal to the unit tangent vector\(^3\) \(\hat{\varphi}_{0,S_0} \in \mathbb{R}^3\) at the point \(S_0 \in [0, L_0]\) [138, 180, 277] and, therefore, we have

\[
\begin{align*}
\hat{\varphi}_{0,S_0} & = \hat{t}_{01} \quad (3.3a) \\
\hat{\varphi}_{0,S_0} \cdot \hat{t}_{0i} & = \delta_{i} \quad (3.3b) \\
\|\hat{t}_{0i}\| & = 1. \quad (3.3c)
\end{align*}
\]

In this manner, we have that the position vector of any material point \(\hat{x}_0 = \hat{x}_0(S_0, \xi_\beta) \in \mathbb{R}^3\) on the curved reference rod\(^4\) is described by

\[
\hat{x}_0 = \hat{\varphi}_0(S_0) + \xi_\beta \hat{t}_{0\beta}(S_0) = \hat{\varphi}_0 + \xi_2 \hat{t}_{02} + \xi_3 \hat{t}_{03}
\]

(3.4)

where \((S_0, \xi_\beta) \in ([0, L_0] \times \mathcal{A}_0) \subset (\mathbb{R} \times \mathbb{R}^2)\). It is worth to note that the reference curve \(\hat{\varphi}_0\) corresponds to the set of material points of the form described by the family of vectors \(\hat{x}(S_0, \xi_\beta = 0)\). Therefore, the kinematic assumptions imply that an admissible configuration of the curved reference rod is formed by material points as those described by Eq. (3.4).

Due to the fact that \(\{\hat{E}_i\}\) and \(\{\hat{e}_i\}\) are orthogonal frames, there exist an orthogonal tensor \(\Lambda_0 = \Lambda_0(S_0) \in SO(3)\) relating \(\hat{t}_{0i}\) and \(\hat{E}_i\) by

\[
\hat{t}_{0i} = \Lambda_0 \hat{E}_i \quad \Leftrightarrow \quad \Lambda_0 \equiv \hat{t}_{0i} \otimes \hat{E}_i = t_{0ji} \hat{e}_i \otimes \hat{E}_j = \Lambda_{0ij} \hat{e}_i \otimes \hat{E}_j.
\]

(3.5)

Therefore, the components of \(\Lambda_0\) referred to the basis \(\{\hat{e}_i \otimes \hat{E}_j\}\) are given by

\[
[\Lambda_0]_{\hat{e}_i \otimes \hat{E}_j} = [\Lambda_{0ij}]_{\hat{e}_i \otimes \hat{E}_j} = \begin{bmatrix}
t_{011} & t_{021} & t_{031} \\
t_{012} & t_{022} & t_{032} \\
t_{013} & t_{023} & t_{033}
\end{bmatrix}.
\]

(3.6)

Hence, considering that \(t_{0ij} = \hat{t}_{0i} \cdot \hat{e}_j\) gives the director cosine of \(\hat{t}_{0i}\) with respect to \(\hat{e}_j\), we have that the orthogonal tensor \(\Lambda_0 \in SO(3)\) determines the orientation of the cross sections of the curved reference rod. For this reason the rotation tensor \(\Lambda_0 = \hat{t}_{0i} \otimes \hat{E}_j\) is usually referred as the orientation tensor of the curved reference rod cross section [180, 277].

By the other hand, \(\Lambda_0\) corresponds to a two-point tensor relating vectors belonging to the material space vector, obtained by the expansion of the material reference frame \(\{\hat{E}_i\}\) and vectors belonging to the spatial space vector obtained expanding the spatial reference frame \(\{\hat{t}_{0i}\}\). In this way, it is possible to say that \(\Lambda_0\) has 'one leg' in the material reference configuration and the another in the spatial one.

The above results imply that the configuration of the curved reference rod is completely determined by the family of position vectors of the centroid curve \(\hat{\varphi}_0\) and the family of

\(^3\)The symbol \((\bullet)_x\) denotes partial differentiation with respect to the variable \(x\) i.e. \(\partial(\bullet)/\partial x\).

\(^4\)It has been identified each material point or particle on the rod with its corresponding coordinate coordinate values i.e. \((S_0, \xi_\beta) \in [0, L_0] \times \mathcal{A}(S_0)\) along the spatial frame \(\{\hat{t}_{0i}\}\) or equivalently \(\{\hat{e}_i\}\).
orthogonal rotation tensors \mathbf{A}_0 [193, 277, 278]. Moreover, taking into account the results of §A.3 to §A.5 of Appendix A, it is possible to construct the following definitions:

Definition 3.1. Curved reference configuration

In this way, it is possible to define the curved reference configuration by the following manifold

$$\mathcal{C}_0 := \{ (\hat{\varphi}_0, \mathbf{A}_0) : [0, L_0] \to \mathbb{R}^3 \times SO(3) \mid \hat{\varphi}_0, S_0 \cdot \hat{t}_{01} > 0 \}$$

(3.7)

which is the set composed by the family of pairs $(\hat{\varphi}_0, \mathbf{A}_0)$ that define the initial geometry of the curved reference rod.

Definition 3.2. Material placement

The material placement of the curved reference rod is defined as

$$\mathcal{B}_0 := \{ \hat{x}_0(S_0, \xi_\beta) \in \mathbb{R}^3 \mid \hat{x}_0 = \hat{\varphi}_0(S_0) + \xi_\beta \mathbf{A}(S_0) \hat{E}_\beta; \quad (S_0, \xi_\beta) \in [0, L_0] \times \mathcal{A}_0 \}$$

(3.8)

constituted by all the physical points of the space which are occupied by material points at the initial time, conventionally designed by t_0.

Definition 3.3. Tangent bundle

The tangent space to the material placement of the curved reference rod is given by

$$T\mathcal{B}_0 := \{ (\hat{U}_{x_0}, \hat{x}_0) \in \mathbb{R}^3 \otimes \mathcal{B}_0 \subset \mathbb{R}^3 \otimes \mathbb{R}^3 \mid \hat{U}_{x_0} \in \mathbb{R}^3; \quad \hat{x}_0 \in \mathcal{B}_0 \}.$$

(3.9)

That is to say, the tangent space to \mathcal{B}_0 corresponds to the set of vectors belonging to \mathbb{R}^3 (or an isomorphic linear space) with base points on the elements of \mathcal{B}_0.

Definitions 3.1 and 3.2 correspond to nonlinear differentiable manifolds. If one takes a fixed point \hat{x}_0, by analogy with Eq. (3.9), it is possible to define the tangent space to the material placement with base point \hat{x}_0 denoted by $T_{\hat{x}_0} \mathcal{B}_0$. Moreover, one have

$$T\mathcal{B}_0 \equiv \bigcup_{\hat{x}_0 \in \mathcal{B}_0} T_{\hat{x}_0} \mathcal{B}_0.$$

3.1.2 Straight reference rod

Additionally, a spatially fixed, straight, unstrained and untwisted reference rod can be defined, whose the centroid line is given by the position vector

$$\hat{\varphi}_{00}(S_{00}) = S_{00} \hat{E}_1 = S_{00} \hat{e}_1$$

(3.10)

with its arch-length coordinate S_{00} and total arch-length L_{00} exactly the same as in the case of the curved reference rod i.e. $S_{00} \equiv S_0$ and $L_{00} \equiv L_0$. The corresponding local frames $\{ \hat{t}_{000} \}$ of the cross sections are given by $\hat{t}_{000} \equiv E_i = \hat{e}_i$.

By analogy with the case of the curved reference rod, the position vector $\hat{x}_{00} = \hat{x}_{00}(S_{00}, \xi_\beta)$ of any material point (S_{00}, ξ_β) for $S_{00} \equiv S_0 \in [0, L_{00}]$ and $(\xi_\beta) \in \mathcal{A}_{00}(S_{00})$ on the cross section, can be described by

$$\hat{x}_{00} = \hat{\varphi}_{00}(S_{00}) + \xi_\beta \hat{t}_{000} = S_{00} \hat{E}_1 + \xi_2 \hat{E}_2 + \xi_3 \hat{E}_3.$$

(3.11)
Following analogous procedures as for Λ_0, the corresponding orientation tensor (or rotation tensor) for the straight reference rod is simply given by

$$\Lambda_{00} \in SO(3) \equiv \hat{\mathbf{i}}_{00} \otimes \hat{E}_i = \hat{E}_i \otimes \hat{E}_i = \mathbf{I}$$

where \mathbf{I} is the second–order identity tensor of dimension three on the material vector space spanned by $\{\hat{E}_i \otimes \hat{E}_j\}$. The configuration of the straight reference rod is completely determined by the family of the arch–length coordinates S_{00} and orthogonal rotation tensors Λ_{00}, therefore, it is possible to define the following mathematical objects:

Definition 3.4. Straight reference configuration

The straight reference configuration is defined by

$$C_{00} := \{ (S_{00}, \Lambda_{00} = \mathbf{I}) : [0, L_{00}] \rightarrow \mathbb{R} \times SO(3) \}$$

which is fixed in space and time \blacksquare

Definition 3.5. Material placement

The material placement of the straight reference rod is defined as

$$B_{00} := \{ \hat{x}_{00}(S_{00}, \xi_\beta) \in \mathbb{R}^3 \mid \hat{x}_{00} = S_{00}\hat{E}_1 + \xi_\beta\hat{E}_\beta ; \quad (S_{00}, \xi_\beta) \in [0, L_{00}] \times A_{00} \}$$

which is equivalent to the set of material points of the rod at the fictitious time $t_{00} \blacksquare$

Definition 3.6. Tangent bundle

The tangent bundle to the material placement of the straight reference rod is given by

$$T\mathcal{B}_{00} := \{ (\hat{U}_{x_{00}}, \hat{x}_{00}) \in \mathbb{R}^3 \otimes B_{00} \subset \mathbb{R}^3 \otimes \mathbb{R}^3 \mid \hat{U}_{x_{00}} \in \mathbb{R}^3; \quad \hat{x}_{00} \in \mathcal{B}_{00} \}.$$

Therefore, the tangent bundle to \mathcal{B}_0 corresponds to the set of vectors belonging to \mathbb{R}^3 (or an isomorphic linear space) with base points on the elements of $\mathcal{B}_{00} \blacksquare$

As before in the curved reference rod, definitions 3.5 and 3.6 correspond to nonlinear differentiable manifolds. The tangent space to the material placement with base point $\hat{x}_{00} = \hat{X}$ denoted by $T_{\hat{X}}\mathcal{B}_{00}$ and one has

$$T\mathcal{B}_{00} \equiv \bigcup_{\hat{X} \in \mathcal{B}_{00}} T_{\hat{X}}\mathcal{B}_{00}.$$

3.1.3 Current rod

During the motion the rod deforms from the curved reference rod configuration at time t_0 to the current rod configuration at time t. The position vector of any material point initially located on the curved reference rod with coordinate $S_0 \equiv S \in [0, L_0]$ moves from $\hat{\phi}_0 \in \mathbb{R}^3$ to $\hat{\phi} \in \mathbb{R}^3$ at time t throughout the addition of the translational displacement $\hat{u} = \hat{u}(S) \in \mathbb{R}^3$ i.e.

$$\hat{\phi}(S) = \hat{\phi}_0(S) + \hat{u}(S)$$

(3.16)
3.1. Kinematics

during the same motion, the initial local orientation frame Λ_0 is rotated, along with the plane cross section, from $\hat{t}_0i \in \mathbb{R}^3$ at time t_0 to $\hat{t}_i \in \mathbb{R}^3$ at time t, which stays orthogonal and unitary ($\hat{t}_i \cdot \hat{t}_j = \delta_{ij}$), by means of the orthogonal incremental rotation tensor $\Lambda_n \in SO(3)$ in the following way

$$\hat{t}_i \equiv \Lambda_n \hat{t}_0i = \Lambda_n \Lambda_0 \hat{E}_i.$$ (3.17)

The term $\Lambda = \Lambda_n \Lambda_0 \in SO(3)$ corresponds to a compound rotation as it has been defined in Eq. (A.3). In Eq. (3.17) the spatial updating rule for rotations has been used; if the material updating is preferred Eq. (3.17) transforms to the equivalent $\Lambda = \Lambda_0 \Lambda_m$ with $\Lambda_m = \Lambda^T \Lambda_n \Lambda$. By simplicity in the exposition, for the moment the spatial rule will be used in most of the cases; on the contrary it will be clearly indicated.

In the configurational description of the motion, the rotation tensor Λ can be seen as a two-point operator that maps vectors belonging the space spanned by the material reference frame $\{\hat{E}_i\}$ to vectors belonging the space spanned by the current spatial frame $\{\hat{e}_i\}$. Furthermore, Λ can be seen as a linear application as follows

$$\Lambda : \{\hat{E}_i\} \rightarrow \{\hat{e}_i\}$$

$$\hat{V} \rightarrow \Lambda \hat{V} = \hat{v}$$ (3.18)

where \hat{V} and \hat{v} are two generic vectors belonging to the spaces spanned by $\{\hat{E}_i\}$ and $\{\hat{e}_i\}$, respectively. The components of Λ in those two reference systems are simply given by

$$\Lambda \equiv \hat{t}_i \otimes \hat{E}_i \in SO(3).$$ (3.19)

By the other hand, the incremental rotation tensor Λ_n maps the base vectors $\{\hat{t}_0i\}$ to the base vectors $\{\hat{t}_i\}$ and the components of Λ_n given in those reference systems are given by

$$\Lambda_n \equiv \hat{t}_i \otimes \hat{t}_0i \in SO(3).$$ (3.20)

Considering that $\hat{t}_i = t_{ij} \hat{e}_j$, it is possible to observe that the component representation of the orthogonal tensor Λ, referred to the bases $\{\hat{e}_i \otimes \hat{E}_j\}$, is

$$[\Lambda]_{\hat{e}_i \otimes \hat{E}_j} = [\Lambda_{ij}]_{\hat{e}_i \otimes \hat{E}_j} = \begin{bmatrix} t_{11} & t_{21} & t_{31} \\ t_{12} & t_{22} & t_{32} \\ t_{13} & t_{23} & t_{33} \end{bmatrix} = [\hat{t}_1, \hat{t}_2, \hat{t}_3].$$ (3.21)

In this manner, the orthogonal tensor Λ determines the orientation of the moving rod cross section at time t. Similar to Λ_0, the rotation tensor Λ is frequently called the orientation tensor of the current rod cross section at the material point $(S, \xi_\beta = 0)$.

It is worth to note that the rotation operator $\Lambda(S, t)$ can be minimally parameterized (see Appendix A, Section A.2) using the material or spatial description of the rotation vector $\hat{\Psi}(S, t) \in T^\text{mat}_1$, $\psi(S, t) \in T^\text{spa}_1$, respectively.

The position vector $\hat{x} \equiv \hat{x}(S, \xi_\beta, t) \in \mathbb{R}^3 \times \mathbb{R}^+$ of any material point $(S, \xi_\beta) \in [0, L] \times \mathcal{A}$
Figure 3.1: Configurational description of the rod model.

on the moving rod cross section at time t is

$$\hat{x}(S, \xi, t) = \hat{\varphi}(S, t) + \xi \hat{t}(S, t) = \hat{\varphi}(S, t) + \xi \Lambda(S, t) \hat{E}.$$

Eq. (3.22) realizes the Reissner–Simo hypothesis for rods [256, 277], hence it is a parametrization of the constraint infinite-dimensional manifold that arise from the hypothesis that the configuration of the rod is described by means of the displacement of a centroid line more the rigid body-rotation of the cross sections attached to it.

The position vector field \hat{x} can also be viewed as an one-dimensional solid, i.e. an internally one-dimensional vector bundle constituted by the cross section planes of the rod; and time t is considered as an independent parameter. For a more complete review of this point of view of the rod theory it is convenient to consult the works of Mäkinen et al. [193, 192].

The above results imply that the moving rod configuration at time $t \in \mathbb{R}^+$ can be completely determined by the position vector of the centroid curve $\hat{\varphi} \in \mathbb{R}^3$ and the family of orthogonal rotation tensors $\Lambda \in SO(3)$ of the rod cross section [193, 277, 278]. The following definitions complete the kinematical hypothesis for the current rod:

Definition 3.7. Current configuration space

In this way, it is possible to define the current configuration space at time t by

$$\mathcal{C}_t := \{(\hat{\varphi}, \Lambda) : [0, L_0] \rightarrow \mathbb{R}^3 \times SO(3) \mid \hat{\varphi}_{S_0} \cdot \hat{t}_{S_0} > 0, (\hat{\varphi}_{0}, \Lambda_0)|_{\partial \hat{\varphi}_{0}} = (\hat{\varphi}_{0}, \Lambda_{0})\}$$

subjected to have prescribed values $(\hat{\varphi}_{0}, \Lambda_{0})$ on a subset $\partial \hat{\varphi}_{0}$ of the two end points of the rod defined by the set $\partial \hat{\varphi}_{0} = \{\hat{\varphi}_{0}(0), \hat{\varphi}_{0}(L_0)\}$. The manifold \mathcal{C}_t is called the abstract configuration space of the rod. Note that $\partial \hat{\varphi}_{0} = \emptyset$ implies the free fly of a rod [288] ■

Particular cases are \mathcal{C}_0 of Eq. (3.7), at time t_0 when the moving rod coincides with the
3.1. Kinematics

spatially fixed curved reference rod and C_{90} of Eq. (3.13), at ‘time’ t_{00} when it coincides with the spatially fixed straight reference rod configuration. Therefore, the configuration space can be globally included in the Cartesian product $\mathbb{R}^3 \times SO(3)$ where \mathbb{R}^3 refers to the translational displacement and $SO(3)$ to the rotational displacement.

Definition 3.8. Spatial placement of the rod

The spatial placement of the rod is defined as

$$B_t := \{ \hat{x}(S, \xi_\beta, t) \in \mathbb{R}^3 \mid \hat{x} = \hat{\varphi}(S, t) + \xi_\beta \Lambda(S, t) \hat{E}_\beta; \quad (S, \xi_\beta, t) \in [0, L_0] \times \mathcal{A} \times \mathbb{R} \} \quad (3.24)$$

which can be seen as the set of the point in the ambient space which are occupied by the material points of the rod at time t.

Definition 3.9. Tangent bundle

The tangent bundle to the spatial placement is given by

$$TB_t := \{ \delta(\hat{x}) \in \mathbb{R}^3 \mid \delta(\hat{\varphi}) + \delta(\Lambda) \xi_\beta \hat{E}_\beta, \quad \hat{x} \in B \} \quad (3.25)$$

where the variation $\delta(\bullet)$ can also be replaced by other vectors with base point on material points of the rod at the current configuration.

Again, one has that C_t and B_t are differentiable manifolds. The tangent space to B_t at base point \hat{x} is denoted by $T_{\hat{x}}B_t$ and the following relation holds

$$TB_t \equiv \bigcup_{\hat{x} \in B_t} T_{\hat{x}}B_t.$$

If the material updating rule is used for compound rotations, we have that the variation field $\delta \hat{x} \in TB_t$, which define the elements of the tangent space to the spatial placement B_t in Eq. (3.24), can be written in material representation as

$$\delta \hat{x} = \delta \hat{\varphi} + \Lambda \delta \hat{\Theta} \xi_\beta \hat{E}_\beta \quad \in \quad T_{\hat{x}}B_t \quad (3.26)$$

where $\Lambda \delta \hat{\Theta} \in T^\text{mat}_\Lambda SO(3) = T^{\chi}_{\Lambda}B_{90} \otimes T^*_{\chi}B_{90}$ corresponds to the variation of the rotation operator Λ given in Eq. (A.96a). By the other hand, if Λ is updated using the spatial rule $i.e. \hat{\theta} = \Lambda \hat{\Theta}$, it is also possible to represent the variation field $\delta \hat{x}$ in spatial form as

$$\delta \hat{x} = \delta \hat{\varphi} + \hat{\theta} \Lambda \xi_\beta \hat{E}_\beta = \delta \hat{\varphi} + \hat{\Theta} \xi_\beta \hat{t}_\beta \quad \in \quad T_{\hat{x}}B_t \quad (3.27)$$

where $\hat{\theta} \Lambda \in T^\text{spa}_\Lambda SO(3) = T_{\hat{x}}B_t \otimes T^*_{\hat{x}}B_t$. One of the main advantages of choosing the material representation for the rotation tensor and their variation field is avoiding the employment of Lie derivatives in the linearization of the virtual work functional and, therefore, avoiding certain complications related with the obtention of the tangent stiffness tensor for numerical calculations, as it will be explained in next chapters.

5Note that both curved and straight reference rod configurations are spatially fixed and independent of time though moving rod configuration may coincide with these by respectively taking pre–subscripts ‘0’ and ‘00’.
3.1 Kinematics

The straight and curved reference configurations as well as the current configuration have been drawn in Fig. 3.1. All the above described tangent spaces have associated the corresponding dual tangent spaces\(^6\): \(T^*_B \), \(T^*_B \) and \(T^*_B \) respectively, spanned by the co–vector base \(\{ \hat{E}_i^* \} \). Considering that the material reference frame \(\{ \hat{E}_i \} \) is an Euclidean spatially fixed basis, it is possible to assume that the associated dual basis \(\{ \hat{E}_i^* \} \) is coincident with it, i.e. \(\{ \hat{E}_i \} \cong \{ \hat{E}_i^* \} \); therefore, strictly no differentiation is needed between \(T(\bullet) \) and \(T(\bullet) \).

3.1.4 Geometric interpretation of elongation and shearing

The arch–element \(ds \) of the current rod centroid line corresponding to the material point at \(S \in [0, L] \) on the curved reference rod is \(ds = J dS \), where \(J = \| \hat{\varphi}_S \|_{L^2} \). Then the elongation or elongation ratio of the centroid line of the moving rod at time \(t \) is defined by [180]

\[
e(S) = \frac{ds}{dS} - 1 = J - 1.
\] (3.28)

Thus, the unit tangent vector of the centroid curve of the moving rod at time \(t \) corresponding to the material point \(S \in [0, L] \) on the rod centroid curve is calculated as

\[
\hat{\varphi}_S = \frac{d\hat{\varphi}}{dS} \frac{dS}{ds} = \frac{1}{J} \hat{\varphi}_S = \frac{1}{1 + e} \hat{\varphi}_S.
\] (3.29)

In the general case, the unit normal vector \(\hat{t}_1 \) of the deformed rod cross section does not coincide with the unit tangent vector \(\hat{\varphi}_S \) because of the shearing; the angle changes between the tangent vector of the centroid curve and \(\hat{t}_1 \) and away from orthogonal to \(\hat{t}_2 \) and \(\hat{t}_3 \) are the angles of shearing, denoted by \(\gamma_{11} \) and determined (see [180, 167, 135]) by

\[
\hat{\varphi}_S \cdot \hat{t}_1 = \frac{1}{1 + e} \hat{\varphi}_S \cdot \hat{t}_1 = \cos \gamma_{11}
\]

\[
\hat{\varphi}_S \cdot \hat{t}_2 = \frac{1}{1 + e} \hat{\varphi}_S \cdot \hat{t}_2 = \cos \left(\frac{\pi}{2} - \gamma_{12} \right) = \sin \gamma_{12}
\]

\[
\hat{\varphi}_S \cdot \hat{t}_3 = \frac{1}{1 + e} \hat{\varphi}_S \cdot \hat{t}_3 = \cos \left(\frac{\pi}{2} - \gamma_{13} \right) = \sin \gamma_{13}.
\] (3.30)

At time \(t_0 \) the moving rod coincides with the curved reference rod. Similarly, it is possible to rewrite Eqs. (3.30) for the curved reference rod throughout the corresponding

\(^6\)Some times called co–vector spaces or space of the one forms [192].

\(^7\)The \(L^2 \) norm of a vector is \(\| \hat{v} \|_{L^2} = (\hat{v} \cdot \hat{v})^{\frac{1}{2}} \) for any vector \(\hat{v} \in \mathbb{R}^n \).
elongation and shearing as

\[
\frac{1}{1+e_0} \hat{\varphi}^{0,s} \hat{t}_{01} = \cos \gamma_{011} \\
\frac{1}{1+e_0} \hat{\varphi}^{0,s} \hat{t}_{02} = \sin \gamma_{012} \\
\frac{1}{1+e_0} \hat{\varphi}^{0,s} \hat{t}_{03} = \sin \gamma_{013}, \quad e_0 = 0, \ \gamma_{01i} = 0.
\]

3.1.5 Time derivatives, angular velocity and acceleration

Considering the spatial updating of the compound rotation \(\Lambda = \Lambda_n \Lambda_0 \) we have that the velocity of a material point in the current configuration is calculated as the following material time derivative [196]:

\[
\dot{x} = \frac{dx}{dt} = \dot{\varphi} + \ddot{\varphi} \mathcal{F} = \Lambda \left[\Lambda^T \dot{\varphi} + \ddot{\varphi} \hat{E} \right] \in T_\Lambda B, \quad (3.31a)
\]

where \(\mathcal{F} \equiv \xi_\beta \hat{t}_\beta, \ \hat{E} \equiv \xi_\beta \hat{E}_\beta \) and the spatial angular velocity tensor \(\tilde{\nu} = \dot{\Lambda} \Lambda^T \in T^\text{spa}_\Lambda SO(3) \) of the current cross section is referred to the straight reference configuration and it is calculated employing the result of Eq. (A.111) as

\[
\tilde{\nu} = \tilde{\nu}_n + \Lambda_n \tilde{\nu}_0 \Lambda_n^T = \tilde{\nu}_n \in T^\text{spa}_{\Lambda_n} SO(3) \quad (3.31b)
\]

where \(\tilde{\nu}_0 = \dot{\Lambda}_0 \Lambda_0^T = 0 \) due to the fact that \(\Lambda_0 \) is a spatially fixed tensor\(^8\). In Eq. (3.31a) the angular velocity tensor is also phrased in terms of the material angular velocity tensor referred to the straight reference rod, which is explicitly given by

\[
\tilde{V} = \Lambda^T \dot{\Lambda} = \Lambda^T \tilde{\nu}_n \Lambda = \Lambda_0^T V_n \Lambda_0 \in T^\text{mat}_\Lambda SO(3) \quad (3.31c)
\]

where \(V_n = \Lambda_n^T \dot{\Lambda}_n \in T^\text{mat}_\Lambda SO(3) \) and in an analogous manner as with the spatial case we have that \(\tilde{V}_0 = 0 \). The corresponding axial vectors are: \(\dot{v} = \dot{v}_n \in T^\text{spa}_\Lambda, \ V \in T^\text{mat}_\Lambda \) and \(\dot{V}_n \in T^\text{mat}_\Lambda \).

Taking an additional material time derivative on Eq. (3.31a) we obtain the acceleration of a material point on the current configuration as

\[
\ddot{x} = \frac{\partial^2 x}{\partial \hat{t}^2} = \ddot{\varphi} + \dddot{\varphi} \mathcal{F} + \ddot{\varphi} \mathcal{F} = \ddot{\varphi} + [\dddot{\Lambda} \tilde{V} + \Lambda \Lambda_0^T \tilde{V}_n \Lambda_0] \hat{E} \in T_\Lambda B, \quad (3.32a)
\]

where the time derivative of \(\tilde{v}, \tilde{V}_n \) and \(\mathcal{F} \) are calculated as

\[
\dot{v} = \dot{v}_n = \frac{d}{dt} (\dot{\Lambda}_n \Lambda_n T) = \dot{\Lambda}_n T \Lambda_n + \dot{\Lambda}_n (\Lambda_n T) \\
= \Lambda_n \Lambda_n T - \tilde{\nu}_n \tilde{\alpha}_n = \tilde{\alpha}_n = \tilde{\alpha} \in T^\text{spa}_{\Lambda_n} \quad (3.32b)
\]

\(^8\) Detailed definitions of the material and spatial tangent spaces to \(SO(3) \) at the base point \(\Lambda \) and their associated linear spaces, are given in Appendix A, Section A.4.
\[\hat{\mathbf{V}} = \dot{\mathbf{V}}_n = \frac{d}{dt}(\Lambda_n^T \dot{\mathbf{A}}_n) = (\Lambda_n^T \dot{\mathbf{A}}_n) + \Lambda_n^T \ddot{\mathbf{A}}_n = -\Lambda_n^T \mathbf{v}_n \dot{\mathbf{A}}_n + \Lambda_n^T \ddot{\mathbf{A}}_n = -\Lambda_n^T \mathbf{v}_n \ddot{\mathbf{A}}_n + \Lambda_n^T \ddot{\mathbf{A}}_n \]
\[\hat{\mathbf{F}} = \tilde{\mathbf{v}}_n \hat{\mathbf{F}}. \]

(3.32c)

(3.32d)

Considering Eqs. (3.32b) to (3.32d) and the fact that \(\mathbf{A}^T \dot{\mathbf{V}}_n \mathbf{A}_0 = -\dot{\mathbf{V}} \dot{\mathbf{V}} \) and \(\dot{\mathbf{A}} = \dot{\mathbf{A}} \), we obtain that

\[\ddot{x} = \frac{\partial^2 \dot{x}}{\partial t^2} = \ddot{\varphi} + [\tilde{\mathbf{a}}_n + \tilde{\mathbf{v}}_n \dot{\mathbf{v}}_n] \hat{\mathbf{F}} = \Lambda[\Lambda^T \ddot{\varphi} + [\tilde{\mathbf{a}}_n + \dot{\mathbf{V}}_n \dot{\mathbf{V}}_n \ddot{\mathbf{F}}] \]

(3.33)

with the corresponding axial vectors \(\tilde{\mathbf{a}}_n \in T^{\text{spa}}_{A_n} \), \(\dot{\mathbf{A}}_n \in T^{\text{mat}}_{A_n} \).

REMARK 3.1. If the material updating rule for rotations is preferred *i.e.* \(\mathbf{A} = \Lambda_0 \Lambda_n^m \) \((\Lambda_n^m = \Lambda^T \Lambda_n) \), an entirely equivalent set of equations is obtained, which are summarized as

\[\dot{x} = \dot{\varphi} + \Lambda_0 \tilde{\mathbf{v}}^m_n \Lambda_0^T \hat{\mathbf{F}} = \dot{\varphi} + \tilde{\mathbf{v}}^m_n \hat{\mathbf{F}} = \Lambda[\Lambda^T \ddot{\varphi} + \tilde{\mathbf{v}}^m_n \hat{\mathbf{F}}] \]

(3.34)

\[\ddot{x} = \ddot{\varphi} + \Lambda_0 [\tilde{\mathbf{a}}^m_n + \tilde{\mathbf{v}}^m_n \dot{\mathbf{v}}^m_n] \Lambda_0^T \hat{\mathbf{F}} = \ddot{\varphi} + [\tilde{\mathbf{a}}^m_n + \tilde{\mathbf{v}}^m_n \dot{\mathbf{v}}^m_n] \hat{\mathbf{F}} = \Lambda[\Lambda^T \ddot{\varphi} + \tilde{\mathbf{a}}^m_n \hat{\mathbf{F}}] \]

(3.35)

where \(\tilde{\mathbf{v}}^m_n = \dot{\Lambda}_0 \Lambda_n^m, \tilde{\mathbf{a}}^m_n = \dot{\mathbf{v}}^m_n \in T^{\text{spa}}_{A_n}, \tilde{\mathbf{v}}^m_n = \Lambda_n^m \mathbf{v}_n \Lambda_n^m, \tilde{\mathbf{a}}^m_n = \Lambda^T \tilde{\mathbf{a}}^m_n \Lambda \in T^{\text{mat}}_{A_n} \), with the corresponding axial vectors \(\dot{\tilde{\mathbf{a}}}^m_n, \dot{\tilde{\mathbf{a}}}^m_n \in T^{\text{spa}}_{A_n} \) and \(\dot{\mathbf{V}}^m_n, \dot{\mathbf{A}}^m_n \in T^{\text{mat}}_{A_n} \).

3.1.6 Curvature vectors and tensors

Employing identical procedures as for the case of time derivatives of the rotation tensor in the preceding section, (see also §A.5.7), it is possible to construct the curvature tensors for the spatial and material configurations as

\[\tilde{\omega}_0 \equiv \Pi[\tilde{\varphi}_0] = \Lambda_0^T \Lambda^T_0 \in T^{\text{spa}}_{A_0} \text{SO}(3) \]

(3.36a)

\[\tilde{\Omega}_0 \equiv \Pi[\tilde{\Omega}_0] = \Lambda^T_0 \Lambda_0^T = \Lambda_0^T \tilde{\omega}_0 \Lambda_0 \in T^{\text{mat}}_{A_0} \text{SO}(3) \]

(3.36b)

and

\[\tilde{\omega} \equiv \Pi[\tilde{\omega}] = \Lambda_S^T \Lambda^T = \tilde{\omega}_n + \Lambda_0 \tilde{\omega}_0 \Lambda_n^T \in T^{\text{spa}}_{A} \text{SO}(3) \]

(3.37a)

\[\tilde{\Omega} \equiv \Pi[\tilde{\Omega}] = \Lambda^T \Lambda_S = \tilde{\Omega}_n = \Lambda^T \tilde{\omega}_n \Lambda = \tilde{\Omega}_n + \tilde{\Omega}_0 \in T^{\text{mat}}_{A} \text{SO}(3) \]

(3.37b)

where \(\tilde{\omega}_n \) and \(\tilde{\Omega}_n \) are given by

\[\tilde{\omega}_n \equiv \Pi[\tilde{\omega}_n] = \Lambda_n^T \Lambda^T_n \in T^{\text{spa}}_{A} \text{SO}(3) \]

(3.38a)

\[\tilde{\Omega}_n = \Pi[\tilde{\Omega}_n] = \Lambda^T_0 (\tilde{\omega}_n) = \Lambda^T_0 \Lambda_n^T \Lambda_0 \]

= \(\Lambda^T \tilde{\omega}_n \Lambda = \Lambda^T \Lambda_S - \Lambda_0^T \Lambda_0^T \in T^{\text{mat}}_{A} \text{SO}(3) \).

(3.38b)
By simplicity, it is possible to say that the skew-symmetric tensors $\tilde{\omega}_0$, $\tilde{\omega}_n$, $\tilde{\omega}$, $\tilde{\Omega}_0$, $\tilde{\Omega}_n$ and $\tilde{\Omega}$ belongs to $so(3)^9$, with their corresponding associated axial vectors, Eq. (A.98), given by

$$\hat{\omega} \equiv \omega_j \hat{e}_j = \Omega_j \hat{t}_j \quad \in T_{\text{spa}}^{\text{spa}} \quad (3.39a)$$

$$\hat{\omega}_0 \equiv \omega_0 \hat{e}_j = \Omega_{0j} \hat{t}_0j \quad \in T_{\text{spa}}^{\text{spa}} \quad (3.39b)$$

$$\hat{\omega}_n \equiv \omega_j \hat{e}_j = \Omega_j \hat{t}_j \quad \in T_{\text{spa}}^{\text{spa}} \quad (3.39c)$$

for the spatial form and

$$\hat{\Omega} \equiv \Omega_j \hat{E}_j = \Lambda^T \hat{\omega} \quad \in T_{\text{mat}}^{\text{mat}} \quad (3.39d)$$

$$\hat{\Omega}_0 \equiv \Omega_{0j} \hat{E}_j = \Lambda_{0}^T \hat{\omega}_0 \quad \in T_{\text{mat}}^{\text{mat}} \quad (3.39e)$$

$$\hat{\Omega}_n \equiv \Omega_{nj} \hat{E}_j = \Lambda^T \hat{\omega}_n = \hat{\Omega} - \hat{\Omega}_0 \quad \in T_{\text{mat}}^{\text{mat}} \quad (3.39f)$$

for the material forms.

The terms $\hat{\omega}_0$ and $\hat{\Omega}_0$ are the curvature vectors of the curved reference rod configuration in the spatial and material descriptions, they measure the orientation change rate of the cross section with respect to the arch-length coordinate S. The component Ω_{01} is the twist rate around the tangent vector \hat{t}_01, and Ω_{02} and Ω_{03} are the corresponding curvature components around \hat{t}_{02} and \hat{t}_{03}, respectively.

Similarly, we also call $\hat{\omega}$ and $\hat{\Omega}$ the curvature vectors of the current rod in spatial and material forms; they denote the orientation change rate of the cross section of the current rod with respect to the arch-length coordinate S. Analogously, the component Ω_1 is the twist rate around the normal vector \hat{t}_1, and Ω_2 and Ω_3 are the corresponding curvature components around \hat{t}_2 and \hat{t}_3, respectively.

It is interesting to note that, according to the result of Eq. (A.98) of §A.5.6 of Appendix A, the components of the spatial curvature vectors in the spatial moving frame $\{\hat{t}_i\}$ or $\{\hat{E}_i\}$ are identical to the components of the material curvature vectors in the material reference frame $\{\hat{E}_i\}$ i.e.

$$\Omega_{0j} = \hat{\Omega}_0 \cdot \hat{E}_j = \hat{\omega}_0 \cdot \hat{t}_0j$$

$$\Omega_j = \hat{\Omega} \cdot \hat{E}_j = \hat{\omega} \cdot \hat{t}_j \quad (3.40)$$

Additionally, it is possible to call $\hat{\omega}_n$ and $\hat{\Omega}_n$ the curvature change vectors in spatial and material forms, of the current rod relative to the curved reference rod, and they denote orientation change of the cross sections of the current rod relative to the curved and twisted reference configurations with respect to the arch-length coordinate $S \in [0, L]$. The component Ω_{n1} is the twist rate change around the normal vector \hat{t}_1, and Ω_{n2} and Ω_{n3} are the corresponding curvature components around \hat{t}_2 and \hat{t}_3, respectively. In this manner, the elongation, shearing and curvature change have been described.

The fact that the cross section rotates away from the orthogonality with the tangent vector

9 In the corresponding spatial and material tangent spaces according to Eqs. (3.36a), (3.37a) and (3.38a).
3.2 Strain measures

For deducing explicit expressions for the strain measures some preliminary results are required; the calculation of the co-rotated derivative of the orientation frames of a cross section of the current and curved reference rods.

3.2.1 Co-rotated derivative of the orientation triads

Explicit expressions for the spatial derivative of the orientation triads $\{\hat{t}_0\}$ and $\{\hat{t}_i\}$ can be calculated taking their co-rotated derivative with respect to the arch-length coordinate $S \in [0, L]$, recovering the Frenet-Serret formulae in the original sense as explained in Ref. [180]. They read as (see Def. A.27 of Appendix A, pp. 240)

$$\nabla_{\hat{t}_0, S} \equiv \Lambda_0(\hat{t}_0) = \hat{t}_{0i, S} - \hat{\omega}_0 \hat{t}_{0i} = \Lambda_0(\Lambda_0^T \hat{t}_{0i}), S = \Lambda_0(\hat{E}_i), S = 0$$

$$\nabla_{\hat{t}_i, S} \equiv \Lambda(\hat{t}_i) = \hat{t}_{i, S} - \hat{\omega} \hat{t}_i = \Lambda(\Lambda^T \hat{t}_i), S = \Lambda(\hat{E}_i), S = 0$$

what imply that

$$\hat{t}_{0i, S} = \hat{\omega}_0 \hat{t}_{0i} = \hat{\omega}_0 \times \hat{t}_{0i} \quad (3.41a)$$

$$\hat{t}_{i, S} = \hat{\omega} \hat{t}_i = \hat{\omega} \times \hat{t}_i \quad (3.41b)$$

considering that $\hat{\omega}_0 = \Omega_{0j} \hat{t}_{0j}$ and writing for each component one obtains

$$\hat{t}_{01, S} = \Omega_{02} \hat{t}_{02} - \Omega_{03} \hat{t}_{03}; \quad \hat{t}_{02, S} = -\Omega_{03} \hat{t}_{01} + \Omega_{01} \hat{t}_{03}; \quad \hat{t}_{03, S} = \Omega_{02} \hat{t}_{01} - \Omega_{01} \hat{t}_{02},$$

for the curved reference orientation triad and considering $\hat{\omega} = \Omega_j \hat{t}_j$, one has that

$$\hat{t}_{1, S} = \Omega_3 \hat{t}_2 - \Omega_2 \hat{t}_3; \quad \hat{t}_{2, S} = -\Omega_3 \hat{t}_1 + \Omega_1 \hat{t}_3; \quad \hat{t}_{3, S} = \Omega_2 \hat{t}_1 - \Omega_1 \hat{t}_2, \quad (3.41c)$$

for the current orientation triad.

3.2.2 Deformation gradient tensor

The deformation gradient can be defined as the material gradient of the deformation $\hat{x}(S, \xi_\beta, t)$ and it can be calculated with the aid of the formula $F = \nabla_{\hat{x}} \hat{x}$. However, the deformation $\hat{x} : B_{00} \rightarrow B_t$ is more like a point mapping than a vector. Hence, the deformation gradient tensor can be defined as the tangent field of the deformation mapping

10Shearing can be expressed in terms of the distortion angle as it has been described in §3.1.4. This measurement of shear or elongation is obtained from the engineering point of view; consult e.g. [180, 167, 168].
[193, 192] i.e.

\[\mathbf{F} := T_X \hat{x} \in T_x \mathcal{B}_t \otimes T^*_{X} \mathcal{B}_{00} \]

(3.42)

where \(\mathbf{F} \) is also a linear application \(T_X(\hat{x}) \in \mathcal{L}(T_x \mathcal{B}_t \otimes T^*_{X} \mathcal{B}_{00}) \) is formally defined as

\[T_X \hat{x} := \frac{\partial x_i}{X_j} X_j = \mathbf{F} \hat{X}. \]

In Eq. (3.42) it has been assumed that \(\hat{x} \) is a tensor of rank one i.e. a vector. The study of the deformation gradient helps to determine the strain measures at any material point of the current cross section of the rod [278, 167]. In this section, we will indirectly obtain the deformation gradient tensor of the current rod configuration relative to the curved reference rod configuration by means of obtaining the deformation gradient tensors of the two curved rod configurations relative to the straight reference rod configuration followed by a change of reference configuration\(^{11}\) (see Ogden [227]).

Considering the expression for the position vector of material points on the curved and current rods, \(\hat{x}_0 \) and \(\hat{x} \), given by Eqs. (3.4) and (3.22) respectively, and the result of \(\S 3.1.6 \), it is possible to calculate the following derivatives:

\[\hat{x}_{0,S} = \phi_{0,S} + \hat{\omega}_0 \hat{\mathcal{J}}_0 = \hat{e}_0 + \hat{t}_{01} = \mathbf{L}_0[\Lambda \phi_{0,S} + \Omega \hat{\mathcal{E}}] = \mathbf{L}_0[\hat{e}_0 + \hat{E}_1] \]

(3.43a)

\[\hat{x}_{0,\beta} = \hat{t}_{0\beta} = \mathbf{L}_0 \hat{E}_\beta \]

(3.43b)

where we have denoted \(\hat{\mathcal{E}} := \xi_\beta \hat{E}_\beta \in T_X \mathcal{B}_{00} \) and \(\hat{\mathcal{J}}_0 := \xi_\beta \hat{t}_{0\beta} \in T_x \mathcal{B}_0 \) by simplicity and the vectors \(\hat{e}_0 \in T_x \mathcal{B}_0 \) and \(\hat{E}_0 \in T_X \mathcal{B}_{00} \) are given by

\[\hat{e}_0 = E_0 \hat{E}_j = \hat{E}_j \]

(3.44a)

\[\hat{E}_0 = E_0 \hat{E}_j = \Lambda^T \phi_{0,S} - \hat{E}_1 \]

(3.44b)

with \(\hat{\gamma}_0 \in T_x \mathcal{B}_0 \) and \(\hat{\Gamma}_0 \in T_X \mathcal{B}_{00} \) given by

\[\hat{\gamma}_0 = \Gamma_0 \hat{\gamma}_0 = \varphi_{0,S} - \hat{t}_{01} \]

(3.45a)

\[\hat{\Gamma}_0 = \Gamma_0 \hat{E}_j = \Lambda_0 \varphi_{0,S} - \hat{E}_1 \]

(3.45b)

for a point on the curved reference rod and

\[\hat{x}_{0,S} = \phi_{0,S} + \hat{\omega} \hat{\mathcal{J}} = \hat{e} + \hat{t}_1 = \Lambda \phi_{0,S} + \Omega \hat{\mathcal{E}} = \Lambda \hat{\mathcal{E}} + \hat{E}_1 \]

(3.46a)

\[\hat{x}_{0,\beta} = \hat{t}_\beta = \Lambda \hat{E}_\beta \]

(3.46b)

where we have denoted \(\hat{\mathcal{J}} := \xi_\beta \hat{t}_\beta \in T_x \mathcal{B}_t \) by simplicity and the vectors \(\hat{e} \in T_x \mathcal{B}_t \) and \(\hat{E} \in T_X \mathcal{B}_{00} \) are given by

\[\hat{e} = E_j \hat{E}_j = \hat{\gamma} + \hat{\omega} \hat{\mathcal{J}} \]

(3.47a)

\[\hat{E} = E_j \hat{E}_j = \hat{\Gamma} + \hat{\Omega} \hat{\mathcal{E}} \]

(3.47b)

\(^{11}\)Avoiding use covariant and contra–variant reference frames.
with $\dot{\gamma} \in T_xB_t$ and $\dot{\Gamma} \in T_xB_{00}$ given by

$$\dot{\gamma} \equiv \Gamma_j \dot{t}_j = \dot{\varphi}_s - \dot{t}_1$$ \hspace{1cm} (3.48a)
$$\dot{\Gamma} \equiv \Gamma_j \dot{E}_j = \Lambda^T \dot{\varphi}_s - \dot{E}_1$$ \hspace{1cm} (3.48b)

for a material point on the current rod. Therefore, employing the results of Eqs. (3.5) and (3.19) for rotation tensors, the deformation gradient tensors $F_0 \in T_xB_0 \otimes T_xB_{00}$ and $F \in T_xB_t \otimes T_xB_{00}$, of the curved reference rod and the current rod configuration, it is possible to obtain the components of $\dot{\gamma}_0(S)$ and $\dot{\gamma}(S)$ referred to the local frames as

$$\gamma_{0j} = \Gamma_{0j} = \dot{\varphi}_{0,S} \cdot \dot{t}_{0j} - \dot{t}_{0j} \cdot \dot{t}_{0j} = \dot{\varphi}_{0,S} \cdot \dot{t}_{0j} - \delta_{1j}; \quad e_0 = 0; \quad \gamma_{0i1} = 0$$ \hspace{1cm} (3.51a)
$$\gamma_{j} = \Gamma_{j} = \dot{\varphi}_s \cdot \dot{t}_j - \dot{t}_1 \cdot \dot{t}_j = \dot{\varphi}_s \cdot \dot{t}_j - \delta_{1j}.$$ \hspace{1cm} (3.51b)

Then the components of $\dot{\epsilon}_{0}(S,\xi_{j})$ and $\dot{\epsilon}(S,\xi_{j})$ in Eqs. (3.44a), (3.44b), (3.47a) and (3.47b) referred to their local frames are

$$\mathcal{E}_{01} = \gamma_{01} + \xi_{3}\Omega_{02} - \xi_{2}\Omega_{03}; \quad \mathcal{E}_{02} = \gamma_{02} - \xi_{3}\Omega_{01}; \quad \mathcal{E}_{03} = \gamma_{03} + \xi_{2}\Omega_{01},$$ \hspace{1cm} (3.52a)

and

$$\mathcal{E}_1 = \gamma_1 + \xi_{3}\Omega_2 - \xi_{2}\Omega_3; \quad \mathcal{E}_2 = \gamma_2 - \xi_{3}\Omega_4; \quad \mathcal{E}_3 = \gamma_3 + \xi_{2}\Omega_4.$$ \hspace{1cm} (3.52b)

Note that the component representation of F_0 and F in the spatial form as well as \overline{F}_0 and \overline{F} in the material form (see §A.3.1) can be identified from Eqs. (3.49a), (3.49b), (3.50a) and (3.50b) as [167]

$$[F_0]_{\dot{t}_n \otimes \dot{E}_j} = [\overline{F}_0]_{\dot{E}_n \otimes \dot{E}_j} = \begin{bmatrix} 1 + \mathcal{E}_{01} & 0 & 0 \\ \mathcal{E}_{02} & 1 & 0 \\ \mathcal{E}_{03} & 0 & 1 \end{bmatrix}.$$ \hspace{1cm} (3.53a)
and

\[
[F]_{\hat{t}_i \otimes \hat{E}_i} = [\hat{F}]_{\hat{E}_i \otimes \hat{E}_i} = \begin{bmatrix}
1 + \mathcal{E}_1 & 0 & 0 \\
\mathcal{E}_2 & 1 & 0 \\
\mathcal{E}_3 & 0 & 1
\end{bmatrix}.
\]

(3.53b)

The determinants of \(F_0(S, \xi)\) and \(\hat{F}(S, \xi)\) can be obtained from Eqs. (3.53a) and (3.53b) as

\[
g_0 \equiv \text{Det}[F_0] = |\Lambda_0||\hat{F}_0| = |\hat{F}_0| = 1 + \mathcal{E}_{01} = 1 + \Gamma_{01} + \xi_3 \Omega_{02} - \xi_2 \Omega_{03}
\]

(3.54a)

\[
g \equiv \text{Det}[F] = |\Lambda||\hat{F}| = |\hat{F}| = 1 + \mathcal{E}_1 = 1 + \Gamma_1 + \xi_3 \Omega_2 - \xi_2 \Omega_3
\]

(3.54b)

respectively, and the inverses of \(F_0\) and \(F\) are

\[
F_0^{-1} = (\Lambda_0 \hat{F}_0)^{-1} = \hat{F}_0^{-1} \Lambda_0^T = (-\frac{1}{g_0} \hat{\mathcal{E}}_0 \otimes \hat{E}_1 + I) \Lambda_0^T = [\mathcal{E}_0 \hat{\mathcal{E}}_1 + \hat{E}_1 \otimes \hat{E}_1]^{-1} \Lambda_0^T
\]

(3.55a)

\[
F^{-1} = (\Lambda \hat{F})^{-1} = \hat{F}^{-1} \Lambda^T = (-\frac{1}{g} \hat{\mathcal{E}} \otimes \hat{E}_1 + I) \Lambda^T = [\mathcal{E}_1 \hat{\mathcal{E}}_1 + \hat{E}_1 \otimes \hat{E}_1]^{-1} \Lambda^T
\]

(3.55b)

Taking into account the definitions given for \(F_0\) and \(F\) in Eqs. (3.49a) and (3.49b) as well as (3.55a) and (3.55b), it is possible to obtain the deformation gradient tensor of the current beam relative to the curved reference rod through a change of reference configuration, following the procedure described in Ref. [227].

As it has been previously explained the gradient tensor \(F_0 \in T_{\tilde{x}_0}B_0 \otimes T^*_X B_{00}\) maps differential elements of length from the straight reference configuration \(B_{00}\) to the curved reference configuration \(B_0\), i.e. \(F_0(d\tilde{x}_{00}) \rightarrow d\tilde{x}_0\). By other hand, the gradient tensor \(F \in T_{\tilde{X}}B_t \otimes T^*_X B_{00}\) maps differential elements of length from the straight reference configuration \(B_{00}\) to the current placement of the body \(B_t\), i.e. \(F(d\tilde{X}_{00}) \rightarrow d\tilde{x}\). Considering

\[\text{Figure 3.2: Diagram of domains and ranges for the gradient tensor } F_n.\]

that both gradient tensors are invertible applications it is possible to construct a third gradient tensor \(F_n \in T_{\tilde{x}_0}B_0 \otimes T^*_X B_t\) relating differential elements of length between the
curved reference placement \(B_0\) and the current placement \(B_t\) as

\[
F_n := F \circ F_0^{-1} \in T_\Delta B_t \otimes T_{\Delta 0}^* B_0; \quad \text{such that}
\]

\[
F_n : T_\Delta B_0 \rightarrow T_\Delta B_t
\]

\[
d\hat{x}_0 \mapsto F_n(d\hat{x}_0) = d\hat{x}
\]

The scheme of Fig. 3.2 shows the vector fields where the gradient tensor \(F_n\) acts. An explicit expression for the deformation gradient tensor \(F_n\) can be calculated as

\[
d\hat{x} \equiv F_n d\hat{x}_0
\]

\[
F_n = FF_0^{-1} = (\mathcal{E}, \hat{t}_i \otimes \hat{E}_i + \hat{t}_i \otimes \hat{E}_i)(-g_0^{-1}\mathcal{E}_{0j}\hat{E}_j \otimes \hat{t}_{0j} + \hat{E}_j \otimes \hat{t}_{0j})
\]

\[
= -g_0^{-1}\mathcal{E}_j\mathcal{E}_0\delta_{ij}\hat{t}_i \otimes \hat{t}_{0j} - g_0^{-1}\mathcal{E}_{0j}\delta_{ij}\hat{t}_i \otimes \hat{t}_{0j} + \mathcal{E}_j\hat{t}_i \otimes \delta_{ij}\hat{t}_{0j} - \mathcal{E}_j\delta_{ij}\hat{t}_i \otimes \hat{t}_{0j}
\]

\[
= - \frac{g_0^{-1}\mathcal{E}_j\mathcal{E}_0\delta_{ij}}{\mathcal{E}_0^{-1} + 1}\hat{t}_i \otimes \hat{t}_{0j} + \hat{t}_i \otimes \hat{t}_{0j}
\]

\[
= \frac{1}{g_0}\varepsilon_n \otimes \hat{t}_{0j} + \Lambda_n = \Lambda \tilde{\Omega}_n \Lambda^T \in T_\Delta B_0 \otimes T_\Delta 0^* B_0
\]

(3.56)

(3.57)

where, employing Eqs. (3.44a) to (3.52b), and noting that \(\tilde{\Omega}_n(\bullet) = \tilde{\Omega}_n \times (\bullet)\) we have

\[
\hat{\mathcal{E}}_n \equiv \mathcal{E}_{nj}\hat{E}_j \in T_X B_0
\]

\[
= \hat{\mathcal{E}} - \mathcal{E}_0 = \hat{\mathcal{E}}_n + (\xi_3\Omega_{n2} - \xi_2\Omega_{n3})\hat{E}_1 + \Omega_{n1}(\xi_2\hat{E}_3 - \xi_3\hat{E}_2)
\]

(3.58)

\[
\hat{\mathcal{E}}_n = \Lambda \hat{\mathcal{E}}_n = \hat{\mathcal{E}} - \Lambda_n \hat{\mathcal{E}}_0 = \hat{\gamma}_n + \tilde{\omega}_n \tilde{\mathcal{F}} \in T_\Delta B_0
\]

(3.59)

with

\[
\mathcal{E}_{nj} = \mathcal{E}_j - \mathcal{E}_{0j} = \hat{x}_{0j} - \hat{x}_{0j} = \hat{\mathcal{E}}_0 - \mathcal{E}_0
\]

(3.60a)

\[
\mathcal{E}_n1 = \Gamma_{n1} + \xi_3\Omega_{n2} - \xi_2\Omega_{n3}
\]

\[
\mathcal{E}_n2 = \Gamma_{n2} - \xi_3\Omega_{n1}
\]

\[
\mathcal{E}_n3 = \Gamma_{n3} + \xi_3\Omega_{n1}
\]

(3.60b)

\[
\Gamma_{nj} = \Gamma_{nj} - \Gamma_{0j} = \hat{\phi}_{s} \hat{t}_j - \hat{\phi}_{s} \hat{t}_j = \hat{\gamma}_n + \tilde{\omega}_n \tilde{\mathcal{F}} = \mathcal{E}_{nj}\hat{t}_j
\]

(3.61a)

(3.61b)

and

\[
\hat{\Gamma}_n = \hat{\Gamma}_n - \hat{\Gamma}_0 = \Lambda^T \hat{\phi}_s - \Lambda_n^T \hat{\phi}_{0s} = \Gamma_{nj}\hat{E}_j
\]

(3.61a)

\[
\hat{\gamma}_n = \Lambda \hat{\gamma}_n = \hat{\phi}_s - \Lambda_n \hat{\phi}_{0s} = \hat{\gamma}_n = \hat{\gamma}_n - \hat{t}_1 = \mathcal{E}_{rj}\hat{t}_j
\]

(3.61b)

where \(\gamma_{0j} = \Gamma_{0j} = 0\), considering that the curved reference configuration \(\hat{x}_0\) is unstressed and unstrained.
3.2. Strain measures

The determinant of F_n can be obtained employing Eqs. (3.53a) and (3.55a) [180] as

$$g_n = \text{Det}[F_n] = \text{Det}[FF_0^{-1}] = \text{Det}[F] \text{Det}[F_0^{-1}] = \frac{\text{Det}[F]}{\text{Det}[F_0]} = \frac{g}{g_0} = 1 + \frac{\xi_{n1}}{g_0} \quad (3.62)$$

and, using Eqs. (3.49a) and (3.55b), it is possible to obtain the inverse of F_n as

$$F_n^{-1} = (FF_0^{-1})^{-1} = F_0F^{-1} = \Lambda_n^T (-\frac{1}{g} \hat{\varepsilon}_n \otimes \hat{t}_1 + I). \quad (3.63)$$

It is important to note that $\hat{\varepsilon}_0$, $\hat{\varepsilon}$, $\hat{\xi}_0$ and $\hat{\xi}$ (in the spatial and material forms, respectively) are the strain vectors at any point of the cross section and $\hat{\gamma}_0$, $\hat{\gamma}$, $\hat{\Gamma}_0$ and $\hat{\Gamma}$ are the strain vectors on the centroid-curve for the curved reference rod and the current rod relative to the straight reference configuration. They determine the corresponding elongation and shearing relative to the straight reference rod [138, 148, 277].

Fig. 3.3 show a schematic representation of the these strain measurements expressing their components in the material reference frame by simplicity; additionally, the material form of the curvature vector has been draw to highlight the relation between $\hat{\varepsilon}$, $(\hat{\xi})$, and $\hat{\gamma}$, $(\hat{\Gamma})$, given in Eqs. (3.58) to (3.61a).

![Figure 3.3: Geometric representation of the reduced strain vectors.](image)

Noting the similarity between Eqs. (3.57b) and (3.50b), one may intuitively choose $\hat{\varepsilon}_n/g_0$, $\hat{\xi}_n/g_0$ as the right strain vector of the current rod configuration relative to the curved reference rod that is conjugated to the First Piola Kirchhoff\footnote{More details about stress measurements will be given in the next section.} stress vector. The term $g_0 = |F_0|$, given in Eq. (3.54a), is the scale factor between the differential volumes of the curved reference rod and the straight reference rod at any material point (S, ξ, β)

$$dV_0 = g_0 dV_{00} = g_0 dS d\xi_2 d\xi_3 \quad (3.64a)$$
$$dV_{00} = dS d\xi_2 d\xi_3 \quad (3.64b)$$

where V_0 and V_{00} are the volume domains of the curved reference rod and straight reference rod configurations, respectively. Additionally, the following relation holds for the current
3.2. Strain measures

differential element of volume
\[dV = g \, dV_0 = g_n \, dV_0. \]
(3.64c)

An unit–length fiber parallel to \(\hat{E}_1 \), the normal to the straight reference rod cross section is *stretched* to be \(g_0 \) in the direction of \(\hat{t}_{01} \), the normal of the curved reference rod cross section, if the rod moves from the straight reference configuration to the curved reference configuration. In fact, using Eq. (3.49a) for the *deformation*\(^{13} \) gradient tensor \(F_0 \) of the curved reference rod relative to the straight reference rod and Eq. (3.54a) for \(g_0 \), one has
\[
(F_0 \hat{E}_1 dS) \cdot \hat{t}_{01} = (\dot{\epsilon}_0 + \dot{\hat{t}}_{01}) \cdot \hat{t}_{01} = (\dot{\epsilon}_0 \cdot \hat{t}_{01} + \dot{\hat{t}}_{01} \cdot \hat{t}_{01}) dS = (\mathcal{E}_{01} + 1) dS \equiv g_0 dS
\]
(3.65)

which is dependent on the curvature of the curved reference rod configuration but not on the twist for a given point on the cross section, see Eq. (3.52b). This result is in agreement with the assumption that the rod cross section remains plane and undeformed during the motion. If in stead, an unit–length fiber along \(\hat{E}_\beta \) is chosen we have that
\[
(F_0 d\xi_\beta \hat{E}_\beta) \cdot \hat{t}_{03} = ((\dot{\epsilon}_0 \otimes \hat{E}_1 + \Lambda) d\xi_\beta \hat{E}_\beta) \cdot \hat{t}_{03} = (\dot{\epsilon}_0 \delta_{1\beta} + d\xi_\beta \hat{t}_{03}) \cdot \hat{t}_{03} = d\xi_\beta
\]
(3.66)

which is in conformity with the kinematic assumption that suppose that cross sections remain planes and undeformed. The same result is obtained if in Eq. (3.66) \(F_0 \) and \(\hat{t}_{03} \) are replaced by \(F \) and \(\hat{t}_\beta \), respectively. Therefore, one have the following result for elements of differential area
\[
dA_{00} = dA_0 = dA.
\]
(3.67)

Eq. (3.64b) also implies that any 'cut' slide of the curved reference rod through two cross section planes with differential length \(dS \), at any point on the mid–curve, is *linearly tapered* and its thickness in direction \(\hat{t}_{01} \) varies according to \(g_0 dS \) as the material point varies on the curved reference rod cross section [180]. Any fiber parallel to \(\hat{t}_{01} \) has a real length \(g_0 dS \) at \((S, \xi_\beta) \) if a fiber parallel to \(\hat{t}_{03} \) has a real length \(dS \) at \(S \) on the mid–curve. The factor \(g_0^{-1} \) (in front of \(\dot{\epsilon}_n \)) in the deformation gradient tensor \(F_n \) of Eq. (3.57a), appears due to the fact that variations are taken with respect to the real undeformed fiber’s length [180]. The same conclusion can be reached from the relation \(d\hat{x} \equiv F_n d\hat{x}_0 \) in the same set of equations, in which \(d\hat{x}_0 \) and \(d\hat{x} \) are the spatial vectors of an oriented differential fiber element with real length *before* and *after* deformation with the orthonormal reference frame \(\{\hat{e}_i\} \) or \(\{\hat{t}_i\} \).

The term \(g_0 \) can be identified with the initial curvature correction term, whose effect may be significant for thick and moderately thick curved rods and small for slender rods. Similar explanations may be made for \(g = |F| \) as defined in Eq. (3.54b) and \(g_n = |F_n| \) in Eq. (3.62).

\(^{13}\)Here the term deformation has been used instead of gradient to highlight that \(F_0 \) contains all the information relative to stretches and rotations of differential length elements [196, 227].
3.2. Strain measures

3.2.3 Other strain measurements

In continuous mechanics different strain measurements can be defined; Crisfield in reference [85], (Chapters 1–5), shows a good introduction to different measurement of strains in the one-dimensional case. For the 3D case it is possible to consult [196, 227]. The importance of studying several strain measurements is due to the fact that some of them are energetically conjugated to stress measurements although there are some exceptions.

Starting from \(\mathbf{F}_n \) and removing the rigid body component \(\mathbf{\Lambda}_n \) it is possible to define the following spatial strain tensor \(\mathbf{\epsilon}_n \) (or \(\mathbf{\mathcal{E}}_n \) in the material form):

\[
\mathbf{\epsilon}_n \equiv (\mathbf{F}_n \hat{t}_0 - \mathbf{\Lambda}_n \hat{t}_0) \otimes \hat{t}_0 = \mathbf{F}_n - \mathbf{\Lambda}_n \quad \in \quad T_2 \mathcal{B}_t \otimes T_{\hat{x}_0} \mathcal{B}_0 \tag{3.68a}
\]

\[
\mathbf{\mathcal{E}}_n \equiv (\mathbf{\bar{F}}_n \hat{E}_i - \mathbf{I} \hat{E}_i) \otimes \hat{E}_i = \mathbf{\bar{F}}_n - \mathbf{I} \quad \in \quad T_X \mathcal{B}_{00} \otimes T_X \mathcal{B}_{00} \tag{3.68b}
\]

which, as it will shown in next sections, is the energetically conjugated strain measurement to the First Piola Kirchhoff stress tensor. The component form of this strain measurement is

\[
[\mathbf{\epsilon}_n]_{i\otimes j} = [\mathbf{\mathcal{E}}_n]_{i\otimes j} = \frac{1}{g_0} \begin{bmatrix} \mathcal{E}_{n1} & 0 & 0 \\ 0 & \mathcal{E}_{n2} & 0 \\ 0 & 0 & \mathcal{E}_{n3} \end{bmatrix} = \frac{1}{g_0} \begin{bmatrix} \hat{\mathbf{\epsilon}}_n \cdot \hat{0} \hat{0} \end{bmatrix}. \tag{3.69}
\]

In fact, as it has been previously described, the vector \(g_0^{-1} \hat{\mathbf{\epsilon}}_n = \mathbf{\mathcal{E}}_n \cdot \hat{\mathbf{E}}_1 \) corresponds to the right strain measurement acting on the face of the cross section of the current rod configuration relative to the curved reference rod. The geometrical meaning of the strain vector \(g_0^{-1} \hat{\mathbf{\epsilon}}_n \) can be appreciated from the alternative definition:

\[
g_0^{-1} \hat{\mathbf{\epsilon}}_n \equiv \mathbf{F}_n \hat{t}_0 - \mathbf{\Lambda}_n \hat{t}_0 \quad \in \quad T_2 \mathcal{B}_t \tag{3.70}
\]

which is the stretching of an oriented unit length fiber \(\hat{t}_0 \) of the curved reference rod at any material point to \(\mathbf{F}_n \hat{t}_0 \) with the rigidly rotated part \(\hat{t}_1 = \mathbf{\Lambda}_n \hat{t}_0 \) removed. The component \(g_0^{-1} \epsilon_{n1} \) along \(\hat{t}_1 \) may be called the extensional strain, and the components \(g_0^{-1} \epsilon_{n2} \) and \(g_0^{-1} \epsilon_{n3} \) along \(\hat{t}_2 \) and \(\hat{t}_3 \) respectively, called the shear strains. For small strain problems the three components of the strain vector \(g_0^{-1} \hat{\mathbf{\epsilon}}_n \) become the extensional and shear strains in the classical or engineering sense [227].

Taking advantage of the standard theory of continuum mechanics [196, 227], it is possible to construct the following definitions for the present theory:

Definition 3.10. Symmetric Green strain tensor

Taking into account the result of Eq. (3.57a), the symmetric Green strain tensor in spatial
and material forms are defined as [180]

\[
\epsilon_G = \frac{1}{2}(\mathbf{F}_n^T \mathbf{F}_n - \mathbf{I}) = \frac{1}{2}\left((g_{0}^{-1}\mathcal{E}_{n}\hat{t}_{01} \otimes \hat{t}_{i} + \hat{t}_{0i} \otimes \hat{t}_{i}) (g_{0}^{-1}\mathcal{E}_{nk}\hat{t}_{k} \otimes \hat{t}_{01} + \hat{t}_{i} \otimes \hat{t}_{0k}) - \mathbf{I}\right)
\]

\[
= \frac{1}{2}\left(g_{0}^{-2}\mathcal{E}_{nk}\mathcal{E}_{nk}\hat{t}_{01} \otimes \hat{t}_{i} + g_{0}^{-1}\mathcal{E}_{nk}\hat{t}_{01} \otimes \hat{t}_{0k} + g_{0}^{-1}\mathcal{E}_{nk}\hat{t}_{0k} \otimes \hat{t}_{01} + \hat{t}_{i} \otimes \hat{t}_{0k} - \mathbf{I}\right)
\]

\[
= \left(\frac{g_{0}^{-2}}{2}\hat{\epsilon}_{n} \cdot \hat{\epsilon}_{n} + g_{0}^{-1}\mathcal{E}_{n1}\right) \hat{t}_{01} \otimes \hat{t}_{01} + \left(\frac{g_{0}^{-1}}{2}\mathcal{E}_{n}\right)(\hat{t}_{01} \otimes \hat{t}_{01} + \hat{t}_{01} \otimes \hat{t}_{01})
\]

\[
\mathcal{E}_G = \mathcal{E}_{Gij} \hat{t}_{i} \otimes \hat{t}_{j} \quad \in \quad T_{X_0} \mathcal{B}_0 \otimes T_{X_0} \mathcal{B}_0
\]

where the material form is obtained by means of the pullback operation by the rotation tensor \(\Lambda_0 \) as \(\mathcal{E}_G = \Lambda_0^T \epsilon_G \Lambda_0 \).

The corresponding component form is

\[
[\mathcal{E}_G]_{\hat{t}_{0i} \otimes \hat{t}_{0j}} = [\mathcal{E}_G]_{\hat{E}_i \otimes \hat{E}_j} = \frac{1}{2g_{0}} \begin{bmatrix}
2\mathcal{E}_{n1} + g_{0}^{-1}\hat{\epsilon}_{n} \cdot \hat{\epsilon}_{n} & \mathcal{E}_{n2} & \mathcal{E}_{n3} \\
\mathcal{E}_{n2} & 0 & 0 \\
\mathcal{E}_{n3} & 0 & 0
\end{bmatrix}
\]

which is conjugated to the Second Piola Kirchhoff stress tensor.

Definition 3.11. Symmetric Eulerian strain tensor

The spatial and material forms of the *symmetric Eulerian* strain tensor are defined as

\[
\epsilon_E = \frac{1}{2}(\mathbf{I} - \mathbf{F}_n^{-T} \mathbf{F}_n^{-1}) \equiv \mathbf{F}_n^{-T} \epsilon_G \mathbf{F}_n^{-1}
\]

\[
= \frac{1}{2}\left(\mathbf{I} - (g^{-1}\mathcal{E}_{nk}\hat{t}_{i} \otimes \hat{t}_{0k} + \hat{t}_{i} \otimes \hat{t}_{0k}) (g^{-1}\mathcal{E}_{nj}\hat{t}_{0j} \otimes \hat{t}_{i} + \hat{t}_{0j} \otimes \hat{t}_{j})\right)
\]

\[
= \frac{1}{2}\left(\mathbf{I} - \hat{t}_{i} \otimes \hat{t}_{k} - g^{-2}\mathcal{E}_{nk}\mathcal{E}_{nk}\hat{t}_{1} \otimes \hat{t}_{1} - g^{-1}\mathcal{E}_{nk}\hat{t}_{1} \otimes \hat{t}_{k} - g^{-1}\mathcal{E}_{nk}\hat{t}_{k} \otimes \hat{t}_{1}\right)
\]

\[
= -\frac{g^{-1}}{2}\left((g^{-1}|\hat{\epsilon}_{n}|^2 + 2\mathcal{E}_{nk})\hat{t}_{1} \otimes \hat{t}_{1} + \mathcal{E}_{n}\mathcal{E}_{n}\mathcal{E}_{n}\right)
\]

\[
\mathcal{E}_E = \mathcal{E}_{Eij} \hat{t}_{i} \otimes \hat{t}_{j} \quad \in \quad T_{B_0} \mathcal{B}_0 \otimes T_{B_0} \mathcal{B}_0
\]

respectively. In Eq. (3.73b) the material form is obtained by means of the pullback operation by \(\Lambda \) as \(\mathcal{E}_G = \Lambda^T \epsilon_G \Lambda \).

This stress tensor does not have an energetically conjugated strain measure. The
corresponding component form is

\[
[\epsilon_E]_{i_0,\otimes i_0} = [\epsilon_E]_{i_0,\otimes \hat{E}_j} = -\frac{1}{2g_0g_r} \begin{bmatrix}
2\epsilon_n + (g_r g_0)^{-1} \hat{\epsilon}_n \cdot \hat{\epsilon}_n & \epsilon_{n2} & \epsilon_{n3} \\
\epsilon_{n2} & 0 & 0 \\
\epsilon_{n3} & 0 & 0
\end{bmatrix}.
\] (3.74)

Both the Green strain tensor \(\epsilon_G\) and the Eulerian strain tensor \(\epsilon_E\) consist of those of the symmetric part of the engineering strain tensor \(\epsilon_n\). Writing both the Green and the Eulerian strain tensors in terms of the components of \(\epsilon_n\), one obtains that they consist of the following nonlinear quadratic term:

\[
\left(\frac{1}{2g_0}\right) \hat{\epsilon}_n \cdot \hat{\epsilon}_n = \left(\frac{1}{2g_0}\right) \epsilon_{ni} \epsilon_{ni}.
\]

3.2.4 Material time derivative of \(F_n\) and strain rates

In this section we calculate the material time derivative of \(F_n\), that will be used in next sections for the presentation of the balance laws for rod–like bodies. Noticing Eqs. (3.31b), (3.32b) for the angular velocity of the cross section, Eq. (A.103) for the co–rotated derivative of a second order tensor and Eqs. (3.57a) and (3.57b) for the spatial and material forms of the gradient tensor \(F_n\), we have

\[
\dot{F}_n = \frac{\text{d}}{\text{d}t} (\Lambda F_n \Lambda_0^T) = \dot{\Lambda} F_n \Lambda_0^T + \dot{\Lambda} F_n (\dot{\Lambda}_0)^T
\]

where it has been used the fact that \(\dot{\Lambda}_0 = 0\) (spatially fixed) and the co–rotated time derivative of the deformation tensor \([\tilde{F}_n]\) is calculated considering \(\dot{\Lambda} = \dot{t}_k \otimes \hat{E}_k\) and \(\Lambda_0^T = \hat{E}_p \otimes \hat{t}_0 p\), as

\[
[\tilde{F}_n] = \Lambda (F_n) = \dot{\Lambda} F_n \Lambda_0^T = \frac{1}{g_0} (\dot{t}_k \otimes \hat{E}_k) \cdot \hat{\dot{E}} \otimes \hat{E}_1 \cdot (\hat{E}_p \otimes \dot{\hat{t}}_0 p)
\]

\[
= \frac{1}{g_0} \dot{\hat{E}}_n \dot{\hat{t}}_k \delta_{ik} \otimes \delta_{p1} \dot{\hat{t}}_0 p = \frac{1}{g_0} \dot{\hat{E}}_n \dot{\hat{t}}_i \otimes \dot{\hat{t}}_0 1 = g_0^{-1} \Lambda \hat{\dot{E}} \otimes \dot{\hat{t}}_0 1
\]

\[
= \frac{1}{g_0} [\hat{\dot{E}}_n] \otimes \dot{\hat{t}}_0 1 \in T_1 B_1 \otimes T_{\hat{x}_0} B_0
\]

where the explicit explicit expression for the time derivative of the material form of the deformation gradient is calculated as

\[
\dot{F}_n = \frac{1}{g_0} \dot{\hat{E}}_n \otimes \hat{E}_1
\]

\[\] Another researchers [135, 134], prefer to use \(g_0 \epsilon_{nj} = \dot{x},_S \cdot \dot{t}_j - \dot{x}_0, S \cdot \dot{t}_0 j\), as the strain measure which is conjugated to the First Piola Kirchhoff stress tensor divided by the term \(g_0\).
with
\[
\dot{\mathbf{s}}_n = \dot{E}_n = \dot{\Gamma}_n + \dot{\Omega}_n \mathbf{\bar{e}} \tag{3.78a}
\]
\[
\dot{s}_n = \dot{\bar{e}}_n = \mathbf{\Lambda} \dot{E}_n \mathbf{\Lambda}^T = [\dot{\gamma}_n] + [\dot{\omega}_n] \mathbf{\bar{\Omega}}. \tag{3.78b}
\]

Explicit formulae for the co–rotated strain rate vector, Eq. (3.78b), of any material point \((S, \xi, \beta)\) on the current rod can be deduced with the aid of the expressions given for the spatial, material and co–rotated forms of the translational and rotational strain rates, as follows:
\[
\begin{align*}
\dot{\gamma}_n &= \frac{d}{dt} (\dot{\varphi}_S - \dot{\bar{t}}_1) = \dot{\varphi}_S - \ddot{\bar{v}}_n \ddot{\bar{t}}_1 \tag{3.79a} \\
\dot{\Gamma}_n &= \frac{d}{dt} (\mathbf{\Lambda}^T \dot{\gamma}_n) = \mathbf{\Lambda}^T \dot{\varphi}_S + \dot{\mathbf{\bar{v}}}_n \dot{\varphi}_S = \mathbf{\Lambda}^T (\dot{\varphi}_S - \ddot{\bar{v}}_n \dot{\varphi}_S) \tag{3.79b} \\
\dot{\gamma}_n &= \mathbf{\Lambda} \dot{\Gamma}_n = \ddot{\varphi}_S - \dddot{\bar{v}}_n \dot{\varphi}_S \tag{3.79c}
\end{align*}
\]

for the reduced translational strain rate vectors and
\[
\begin{align*}
\dot{\mathbf{\omega}}_n &= \frac{d}{dt} (\Lambda_n S \mathbf{\Lambda}_n^T) = (\Lambda_n)_n S \mathbf{\Lambda}_n^T + \Lambda_n S \mathbf{\Lambda}_n^T \tag{3.80a} \\
&= (\ddot{\mathbf{v}}_n S \Lambda_n + \mathbf{\bar{v}}_n \Lambda_n S) \mathbf{\Lambda}_n^T - \Lambda_n S \mathbf{\Lambda}_n^T \ddot{\bar{v}}_n \\
&= \ddot{\mathbf{v}}_n S + \mathbf{\bar{v}}_n \mathbf{\bar{\omega}} - \dddot{\bar{v}}_n \mathbf{\bar{v}}_n \tag{3.80b} \\
\dot{\Omega}_n &= \frac{d}{dt} \left(\Lambda_0^T \mathbf{\Lambda}_0 S \Lambda_0 \right) = \Lambda_0^T \left[(\dot{\mathbf{\Lambda}}_n) S \mathbf{\Lambda}_n^T + \mathbf{\Lambda}_n \dot{(\mathbf{\Lambda}}_n)_n \right] S \Lambda_0 \\
&= \Lambda_0^T (\dddot{\mathbf{v}}_n S \Lambda_n + \mathbf{\bar{v}}_n \Lambda_n S) \mathbf{\Lambda}_n^T \tag{3.80c}
\end{align*}
\]

for the spatial, material and co–rotated descriptions of the rotational strain rate tensors, respectively. Therefore, the spatial, material and co–rotated descriptions of their associated rotational strain rate vectors are given by
\[
\begin{align*}
\dot{\mathbf{\omega}}_n &= \dot{\mathbf{v}}_n S - \dddot{\mathbf{v}}_n \dot{\mathbf{\omega}}_n = \dot{\mathbf{v}}_n S + \mathbf{\bar{v}}_n \dddot{\mathbf{\omega}}_n \tag{3.81a} \\
\dot{\Omega}_n &= \frac{d}{dt} (\mathbf{\Lambda}^T \dot{\mathbf{\omega}}_n) = \mathbf{\Lambda}^T \dot{\mathbf{\omega}}_n + \mathbf{\Lambda}^T (\dot{\mathbf{v}}_n S + \mathbf{\bar{v}}_n \dddot{\mathbf{\omega}}_n) = \mathbf{\Lambda}^T \dot{\mathbf{v}}_n S \tag{3.81b} \\
\dot{\omega}_n &= \mathbf{\Lambda} \dot{\Omega}_n = \dot{\mathbf{v}}_n S = \dot{\mathbf{\omega}}_n + \dddot{\mathbf{\omega}}_n \mathbf{\bar{v}}_n \tag{3.81c}
\end{align*}
\]

Finally, Eq. (3.78b) can be rewritten as
\[
\dot{s}_n = [\dot{\bar{e}}_n] = [\dot{\gamma}_n] + [\dot{\omega}_n] \mathbf{\bar{\Omega}} = \ddot{\bar{v}}_n S + \mathbf{\bar{\omega}}_n \mathbf{\bar{\Omega}}. \tag{3.82}
\]

As it has been noted by Simo [277], Eq. (3.82) corresponds to the strain rate measured by an observer located on the current reference system \(\{\bar{t}_1\}\).
3.3 Stress measures and stress resultants

In the general theory of continuous mechanics several stress measurements can be constructed (see e.g. [196, 227, 297]). In this work only the Cauchy, the First Piola Kirchhoff and the Second Piola Kirchhoff stress tensors will be presented and deduced for a material point on the current cross section of the rod. Then, the stress resultants and stress couples will be defined in the classical sense [4, 257, 256, 277].

3.3.1 Cauchy stress tensor

The definition of the Cauchy stress tensor\(^{15}\) starts from the postulation of the existence of a vector field \(\hat{t}(\hat{x}, \hat{k}, t)\), depending on time \(t\), the spatial point \(\hat{x}(\hat{X}, t)\) and the unit vector \(\hat{k}\). Physically, \(\hat{t}\) represents the force per unit area exerted on a surface element oriented with normal \(\hat{k}\). It is also called the Cauchy stress vector (see Fig. 3.4).

Assuming that the balance of momentum\(^{16}\) holds, that \(\hat{x}\) is \(C^1\) and \(\hat{t}\) is a continuous function of its arguments; then, there is a unique \(\mathfrak{F}(2, 0)\) tensor field (see §A.3.1 of Appendix A) denoted \(\sigma \in T_\hat{x} B_t \otimes T_{\hat{x}} B_t\), depending on \(\hat{x}\) and \(t\) such that

\[
\hat{t} = (\sigma, \hat{k}) \leftrightarrow t^i = \sigma^{ij} g_{kj} k^j = \sigma^i_k k^j. \tag{3.83}
\]

In Eq. (3.83) the component form of the stress vector \(\hat{t}\) has been expressed in terms of the tensor field \(\sigma\) associated to a general curvilinear coordinate system on \(B_t\) with metric tensor \(g\). Therefore, two equivalent expressions are obtained: \(\sigma = [\sigma^{ij}]_{i \otimes i} = [\sigma^j_i]_{i \otimes i}\); considering that \(\sigma^{ij} g_{kj} = \sigma^k_i\). As it can be consulted in [196] the Cauchy stress tensor is symmetric.

\[
\begin{array}{c}
\hat{k} \\
\mathcal{U} \subset B_t \\
\hat{t}
\end{array}
\]

Figure 3.4: Geometric interpretation of the Cauchy stress vector.

In the case of the rod theory presented in this work, the Cauchy stress tensor \(\sigma\) at any

\(^{15}\)The Cauchy stress tensor is sometimes called the right or true Cauchy stress tensor [196].

\(^{16}\)Given \(\hat{x}(\hat{X}, t)\), \(\rho(\hat{x}, t)\), \(\hat{t}(\hat{x}, \hat{k}, t)\) the motion function, density in the spatial form, the stress vector defined as before and \(b(\hat{x}, t)\) the body force, we say that the balance of momentum is satisfied provided that for every nice open set \(\mathcal{U} \subset B\):

\[
\frac{d}{dt} \int_{\hat{x}(\mathcal{U})} \rho v dV = \int_{\hat{x}(\mathcal{U})} \rho b dV + \int_{\partial \hat{x}(\mathcal{U})} \hat{t} d\mathcal{A}.
\]

Where \(v = \partial \hat{x}/\partial t\), \(\hat{t}\) is evaluated on the unit outward normal \(\hat{k}\) to \(\partial \hat{x}(\mathcal{U})\) at the point \(\hat{x}\) [196, 227].
material point \((S, \xi, \beta)\) referred to a differential volume of the current rod cross section is given by

\[
\sigma \equiv \hat{\sigma}_j \otimes \hat{t}_j = \Sigma_{ji} \hat{t}_i \otimes \hat{t}_j \in T_B \otimes T_B (3.84a)
\]

\[
\Sigma = \Sigma_{ji} \hat{E}_i \otimes \hat{E}_j \in T_{\chi B_0} \otimes T_{\chi B_0} (3.84b)
\]

in the spatial and material descriptions, respectively. The term \(\hat{\sigma}_j\) is the stress vector acting on the current face and referred to the real area of the same face of the current rod with \(\hat{t}_j\) as unit normal vector. Explicit expressions are

\[
\hat{\sigma}_j \equiv \Sigma_{ji} \hat{t}_j \in T_B (3.85a)
\]

\[
\hat{\Sigma}_j = \Sigma_{ji} \hat{E}_j \in T_{\chi B_0} (3.85b)
\]

\[
\Sigma_{ji} \equiv \Sigma_{ij}
\]

3.3.2 First Piola Kirchhoff stress tensor

The first Piola Kirchhoff (FPK) stress tensor \(P \in T_B \otimes T_{\chi B_0}\) is usually defined by means of the relation\(^17\)

\[
\hat{P}dA_t = P \cdot \hat{N}_0dA_0
\]

where \(\hat{N}_0 \in T_{\chi B_0}\) is the unit normal co–vector belonging to the cotangent space of the material placement (see §A.3) \(dA_0\) and \(dA_t\) are the differential areas in the material and spatial placements and \(P \in T_B\) is the FPK stress vector (see Fig. 3.4) that belongs to the tangent space of the spatial placement \(B_t\). We note that the basis vector \(\{\hat{t}_i\}\) spans the tangent space \(T_B\). The FPK stress tensor \(P\) is an example of two point tensor in the sense that its stress vector belongs to the spatial vector space, its normal vector to the material vector space and its differential area to the material placement.

![Figure 3.5: Geometric interpretation of the FPK stress tensor; note that \(P \cdot \hat{N}_0dA_0 \in T_B\) although it is drawn on the material placement.](image)

Moreover, it is possible to write the FPK stress tensor as a linear combination of stress...

\(^{17}\)A more formal definition of the FPK stress tensor require the definition of the Piola transform and it can be consulted in [196].
3.3. Stress measures and stress resultants

The differential volume of the curved reference rod is obtained as

\[\mathbf{P} = \hat{P}_1 \otimes \hat{E}_1 + \hat{P}_2 \otimes \hat{E}_2 + \hat{P}_3 \otimes \hat{E}_3 \in T_2 \mathcal{B}_t \otimes T_X \mathcal{B}_{00} \] (3.87)

where \(\hat{P}_i = \hat{P}_i(\hat{x}, t) \) is the spatial stress vector belonging to the tangent space of spatial placement \(\mathcal{B}_t \) and \(\{ \hat{E}_i \} \) is the material basis. Material and spatial place vector are related by Eq. (A.58).

For the case of the present rod theory, using Eq. (3.63) for the inverse of the deformation tensor \(\mathbf{F}_n^{-1} = \mathbf{A}_n^T(-g^{-1}\hat{\mathbf{e}}_n \otimes \hat{t}_1 + \mathbf{I}) \), the fact that \(\mathbf{F}_n^{-T} = -g^{-1}\hat{\mathbf{e}}_n \otimes \mathbf{e}_{n1k}\hat{t}_{0k} + \hat{t}_k \otimes \hat{t}_{0k} \), the relation \(g_n = 1 + g_0^{-1}\hat{\mathbf{e}}_{ij} \) as given in Eq. (3.62) and taking into account the definition given by Ogden [227], one obtains that the asymmetric FPK stress tensor \(\mathbf{P} \) referred to a differential volume of the curved reference rod is obtained as

\[
\mathbf{P} \equiv g_n \mathbf{F}_n^{-T} = -\frac{g_n}{g} \left[\Sigma_{ij} \hat{t}_j \otimes \hat{t}_i \otimes \mathbf{e}_{nk1} \hat{t}_{0k} \right] + g_n \left[\Sigma_{ij} \hat{t}_j \otimes \hat{t}_i \otimes \hat{t}_k \otimes \hat{t}_{0k} \right] \\
= -g_0^{-1} \Sigma_{ij} \hat{t}_i \otimes \mathbf{e}_{nk1} \hat{t}_{0k} + g_n \Sigma_{ij} \hat{t}_i \otimes \hat{t}_{0k} = \left[g_n \hat{\sigma}_k - \frac{\mathbf{e}_{nk1}}{g_0} \hat{\sigma}_1 \right] \otimes \hat{t}_{0k} \\
= \hat{P}_k \otimes \hat{t}_{0k} \equiv \mathbf{P}_m \hat{t}_i = g_n \hat{\sigma}_k - \frac{\mathbf{e}_{nk1}}{g_0} \hat{\sigma}_1 \in T_2 \mathcal{B}_t \otimes T_2 \mathcal{B}_{00} \] (3.88a)

\[
\mathbf{P}_m \equiv \mathbf{A}_n^T \mathbf{A}_n^T = \mathbf{P}_m \hat{E}_i \otimes \hat{E}_k \in T_X \mathcal{B}_{00} \otimes T_X \mathcal{B}_{00} \] (3.88b)

\[
\hat{P}_k = \mathbf{P}_m \hat{t}_i = g_n \hat{\sigma}_k - \frac{\mathbf{e}_{nk1}}{g_0} \hat{\sigma}_1 \in T_2 \mathcal{B}_t \] (3.88c)

\[
\hat{P}_m = \mathbf{P}_m \hat{E}_i \in T_X \mathcal{B}_{00} \] (3.88d)

\[
\hat{P}_1 = \hat{\sigma}_1 \] (3.88e)

where \(\hat{P}_j \) is the FPK stress vector acting on the deformed face in the current rod placement corresponding to the reference face with normal \(\hat{t}_{0j} \) in the curved reference configuration and referred to the real area of the same reference face.

Additionally, considering \(\mathbf{F}_n^T = g_0^{-1} \mathbf{e}_{n11} \hat{t}_{01} \otimes \hat{t}_i + \hat{t}_{0k} \otimes \hat{t}_i \), one obtains

\[
\mathbf{P} \mathbf{F}_n^T \equiv \frac{g_n \Sigma_{ij} \mathbf{e}_{nk1}}{g_0} \frac{1}{g_0} \mathbf{e}_{np1} \hat{t}_i \otimes \hat{t}_{0k} \cdot \hat{t}_{01} \otimes \hat{t}_p \\
+ \left[g_n \Sigma_{ij} - \frac{1}{g_0} \mathbf{e}_{nk1} \right] \frac{1}{g_0} \mathbf{e}_{np1} \hat{t}_i \otimes \hat{t}_{0p} \cdot \hat{t}_p \\
= \frac{g_n \Sigma_{ij} \mathbf{e}_{np1} - \frac{1}{g_0} \mathbf{e}_{jk1} \mathbf{e}_{n11} + g_n \Sigma_{iij} - \frac{1}{g_0} \mathbf{e}_{nk1} }{g_0} \hat{t}_i \otimes \hat{t}_p \\
= \left[1 + \frac{(\mathbf{e}_{n11}/g_0)}{g_0^2} \Sigma_{ij} \mathbf{e}_{np1} - \frac{1}{g_0^2} \Sigma_{ij} \mathbf{e}_{nk1} \mathbf{e}_{n11} + g_n \Sigma_{iij} - \frac{1}{g_0} \mathbf{e}_{nk1} \right] \hat{t}_i \otimes \hat{t}_p \\
= g_n \Sigma_{ij} \hat{t}_i \otimes \hat{t}_p = g_n \Sigma_{ij} \hat{t}_p \otimes \hat{t}_i \; \text{; (Symmetry of } \Sigma) \] (3.88f)
On the other hand, one has
\[
F_n P^T_n \equiv \frac{1}{g_0} \mathcal{E}_{np1} \left[g_n \Sigma_{ki} - \frac{1}{g_0} \Sigma_{1i} \mathcal{E}_{nki1} \right] \hat{t}_p \otimes \hat{t}_{01} \cdot \hat{t}_{0k} \otimes \hat{t}_i \\
+ \left[g_n \Sigma_{ki} - \frac{1}{g_0} \Sigma_{1i} \mathcal{E}_{nki1} \right] \hat{t}_p \otimes \hat{t}_{0p} \cdot \hat{t}_{0k} \otimes \hat{t}_i \\
= \left[\frac{1 + (\mathcal{E}_{n11}/g_0)}{g_0} \Sigma_{1i} \mathcal{E}_{np11} - \frac{1}{g_0} \Sigma_{1i} \mathcal{E}_{npi} \mathcal{E}_{n11} + g_n \Sigma_{pi} - \frac{1}{g_0} \Sigma_{1i} \mathcal{E}_{npi} \right] \hat{t}_p \otimes \hat{t}_i \\
= g_n \Sigma_{pi} \hat{t}_p \otimes \hat{t}_i, \tag{3.88g}
\]

comparing the result of Eq. (3.88g) with the one of Eq. (3.88f) one obtains the identity \(P F_n^T = F_n P^T \). Inversely, noticing Eq. (3.57b) for \(F_n \), we have
\[
\sigma \equiv \frac{1}{g_n} P F_n^T = \frac{1}{g_r} (P_{ji}^m + \mathcal{E}_{nj1} P_{1j}^m) \hat{t}_i \otimes \hat{t}_j = \frac{1}{g_n} (P_{ij}^m + \mathcal{E}_{n11} P_{1j}^m) \hat{t}_i \otimes \hat{t}_j. \tag{3.89}
\]

Similarly, for later reference, the FPK stress tensor \(P^0 \) referred to a differential volume of the straight reference configuration is given by
\[
P^0 \equiv g \sigma F^{-T} = g_0 P F_0^T = g \Sigma_{jk} \hat{t}_k \otimes \hat{t}_j \cdot \left(-\frac{1}{g} \mathcal{E}_{i11} \hat{t}_1 \otimes \hat{E}_i + \hat{t}_i \otimes \hat{E}_i \right) \\
= g \Sigma_{jk} \hat{t}_k \otimes \hat{E}_j - \Sigma_{ik} \hat{t}_k \otimes \mathcal{E}_{i1} \hat{E}_i \\
= g \sigma_j \otimes \hat{E}_j - \dot{\sigma}_1 \otimes \hat{E}_1 = \hat{P}_i \otimes \hat{E}_i \in T_y B_i \otimes T_x B_{00} \tag{3.90a}
\]
\[
\hat{P}_1^0 = \hat{P}_1 = \dot{\sigma}_1 \in T_y B_i, \\
\hat{P}_2^0 = g_0 \hat{P}_2 - \mathcal{E}_{021} \hat{P}_1 = g \dot{\sigma}_2 - \mathcal{E}_{21} \dot{\sigma}_1 \in T_x B_{00}, \\
\hat{P}_3^0 = g_0 \hat{P}_3 - \mathcal{E}_{031} \hat{P}_3 = g \dot{\sigma}_3 - \mathcal{E}_{31} \dot{\sigma}_1 \in T_x B_{00}, \\
P^0 F^T \equiv FP^{0T} \tag{3.90b}
\]

where \(\hat{P}_i^0 \) is the corresponding stress vector acting on the deformed face in the current placement corresponding to the reference face normal to \(\hat{E}_i \) in the straight reference configuration and referred to the real area of the same reference face.

Correspondingly, the material form of \(P^0 \) is given by
\[
P^0_{mn} = \Lambda^T P^0 = g \Sigma_{jk} \hat{E}_k \otimes \hat{E}_j - \Sigma_{ik} \hat{E}_k \otimes \mathcal{E}_{i1} \hat{E}_i \\
= g \tilde{\Sigma}_j \otimes \hat{E}_j - \tilde{\Sigma}_1 \otimes \hat{E}_1 = \hat{P}_i \otimes \hat{E}_i \in T_x B_{00} \otimes T_x B_{00} \tag{3.91}
\]

REMARK 3.2. Note that the FPK stress vector referred to the cross section of any rod configuration is the same as the real Cauchy stress vector on the current cross section because it remains undeformed during the motion (see Eq. (3.67)).

3.3.3 Second Piola Kirchhoff stress tensor

Formally, the Second Piola Kirchhoff (SPK) stress tensor $S \in T_X B_{00} \otimes T_X B_{00}$ is obtained by pulling the first leg of the FPK stress tensor P back by F (see the Section §A.5.2). In coordinates,

$$S^{AB} = \left(F^{-1} \right)_a^A p^a B = J \left(F^{-1} \right)_a^A (F^{-1})_b^B \sigma^{ab}$$

where J is the Jacobian of the map \hat{x} and the coordinate systems $\{\hat{X}_A\}$ and $\{\hat{X}_a\}$ with their corresponding dual basis $\{\hat{X}^A\}$ and $\{\hat{X}^a\}$, are used to describe the material and spatial placements, respectively.

In the Reissner–Simo rod theory, S (see e.g. [196, 227]) is given in terms of the FPK and the Cauchy stress tensors as

$$S = g_n F_n^{-1} \sigma F_n^{-T} = F_n^{-1} P$$

with the corresponding material form given by

$$S^m = \Lambda_0^T S \Lambda_0 = \Lambda_0^T \hat{S}_j \otimes \hat{E}_p \in T_X B_{00} \otimes T_X B_{00}$$

$$\hat{S}_j = F_n^{-1} \hat{P}_j = F_n^{-1} (P^m_{ji} \hat{t}_i) = P^m_{ji} (F_n^{-1} \hat{t}_i) = S^m_{ji} \hat{t}_i \in T_X B_{00}$$

$$S^m_{ij} = \frac{P^m_{ij} - \varepsilon_{mij} p^m_{ji}}{g_n g_0} = \frac{P^m_{ij} - \varepsilon_{mij} P^m_{ji}}{g_n g_0}$$

In Eq. (3.93a) \hat{S}_j is the stress vector acting on the deformed face in the current placement corresponding to the reference face normal to \hat{t}_i in the curved reference configuration and referred to the real area of the same reference face. That is equivalent to contract back \hat{P}_j to the curved reference rod. It can be seen that the differences among the Cauchy stress and the FPK and SPK stresses are obvious for finite strain problems, though the differences tend to vanish for small strain problems (see Crisfield [85, 86]).

3.3.4 Stress resultants and stress couples

For the reduced one-dimensional rod model, it is convenient to define the stress resultant which is the internal force vector acting on the current cross section and the stress couple (i.e. the internal moment vector acting on the same cross section).

18 For a detailed deduction of the SPK stress tensor see [196] Ch.2
The material form of the stress resultant \(\hat{n}^m(S, t) \in T_x^* B_{00} \) and stress couple \(\hat{m}^m(S, t) \in T_x^* B_{00} \) are defined by means of the following general formulas [192]:

\[
\hat{n}^m \triangleq \int_{A_0} \Lambda^T \hat{P}_1 dA_0 = \int_{A_0} \hat{P}_{1m} dA_0 \quad (3.94a)
\]

\[
\hat{m}^m \triangleq \Lambda^T \hat{Q} \hat{P}_1 dA_0 = \int_{A_0} \tilde{\mathbf{e}} \hat{P}_{1m} dA_0 \quad (3.94b)
\]

where \(A_{00}(S) \) is the cross section at \(S \in [0, L] \), \(\tilde{\mathbf{e}} \) is the skew–symmetric tensor obtained from \(\hat{E} \) and \(\hat{P}_m \) is the FPK stress vector acting in the face of the cross sectional area with normal \(\hat{E}_1 \). The stress couple vector can be viewed as an element of the \(T_A^{\text{mat}*} \) space that is the material co–vector space of rotation vectors.

For the formulation of the rod theory in terms of a straight and curved reference configurations it is necessary to define the spatial/material stress resultant and the spatial/material stress couple vectors in following forms:

\[
\hat{n} (S) = \int_{A(S)} \sigma \hat{t}_1 d\xi_2 d\xi_3 = \int_{A} \hat{\sigma}_1 dA \quad \in \quad T_x B_t^* \quad (3.95a)
\]

\[
\hat{N} (S) = \int_{A_0(S)} \hat{P}_{01} d\xi_2 d\xi_3 = \int_{A_0} \hat{P}_1 dA_0 = \hat{n} \quad \in \quad T_x B_{00}^* \quad (3.95b)
\]

\[
\hat{N}^0 (S) = \int_{A_{00}(S)} \hat{P}_{01} d\xi_2 d\xi_3 = \int_{A_{00}} \hat{P}_{1m} dA_0 = \hat{m}^m \quad \in \quad T_x B_{00}^* \quad (3.95c)
\]

\[
\hat{n}^* (S) = \int_{A_0(S)} F_n \hat{S}_{01} d\xi_2 d\xi_3 = \int_{A_0} F_n \hat{S}_1 dA_0 \quad \in \quad T_x B_{0}^* \quad (3.95d)
\]

\[
\hat{n} = N_i \hat{t}_i.
\]

Considering that the rod has to maintain the internal force equilibrium in any configuration and neglecting the fact that all the stress resultant of Eqs. (3.95a) to (3.95d) are defined in their appropriated co–vector spaces, it is possible to write

\[
\hat{n} (S) = \hat{N} (S) = \hat{N}^0 (S) = \hat{n}^* (S) \quad (3.96)
\]

with components \(N_i = \int_{A_{00}} P_{1i}^m dA_0 \).
3.4. Power balance condition

For the case of the stress couple vector \(\hat{m}(S) \), the following expressions are obtained [180]:

\[
\hat{m} = \int_{A(S)} (\hat{x} - \hat{\varphi}) \times (\sigma \hat{t}_1) \, d\xi_2 \, d\xi_3 = \int_A \tilde{\mathcal{F}} \hat{\sigma}_1 \, dA \quad \in \quad T_x \mathcal{B}_i \tag{3.97a}
\]

\[
\hat{M} = \int_{A_0(S)} (\hat{x} - \hat{\varphi}) \times (\mathcal{P}_t \hat{t}_0) \, d\xi_2 \, d\xi_3 = \int_{A_0} \tilde{\mathcal{F}} \hat{P}_t \, dA_0 = \hat{m} \quad \in \quad T_{x_0} \mathcal{B}_0^* \tag{3.97b}
\]

\[
\hat{M}^0 = \int_{A_{00}(S)} \Lambda^T (\hat{x} - \hat{\varphi}) \times (\mathcal{P}^0 \hat{E}_1) \, d\xi_2 \, d\xi_3 = \int_{A_{00}} \tilde{\mathcal{F}} \hat{P}^0_t \, dA_{00} = \hat{m}^m \quad \in \quad T_{X} \mathcal{B}_0^* \tag{3.97c}
\]

\[
\hat{m}^s = \int_{A_0(S)} (\hat{x} - \hat{\varphi}) \times (\mathcal{F} n \hat{S}_t \hat{t}_0) \, d\xi_2 \, d\xi_3 = \int_{A_0} \tilde{\mathcal{F}} \mathcal{F} n \hat{S}_1 \, dA_0 \quad \in \quad T_{x_0} \mathcal{B}_0^* \tag{3.97d}
\]

\[
\hat{m} = M_i \hat{t}_i \tag{3.97e}
\]

where \(\tilde{\mathcal{F}} \) is the skew–symmetric tensors obtained from \(\hat{\mathcal{F}} \). The component of Eqs. (3.97a) to (3.97d) are given by

\[
M_1 = \int_{A_{00}} \xi_2 P_{13}^m - \xi_3 P_{12}^m \, dA_{00}; \quad M_2 = \int_{A_{00}} \xi_3 P_{11}^m \, dA_{00}; \quad M_3 = -\int_{A_{00}} \xi_2 P_{11}^m \, dA_{00}. \tag{3.98}
\]

In analogous manner to the case of the stress resultant, considering the equilibrium condition and the fact that all the tangent spaces to the material point on the body manifold in any configuration are isomorphic to \(\mathbb{R}^3 \), it is possible to write:

\[
\hat{m}(S) = \hat{M}(S) = \hat{M}^0(S) = \hat{m}^s(S). \tag{3.99}
\]

Given the stress resultant and the stress couple in their spatial forms \(\hat{n} \) and \(\hat{m} \) respectively, it is possible to obtain the corresponding material forms by means of pullback by \(\Lambda \) as

\[
\hat{n}^m(S) = \Lambda [\hat{n}] \Lambda^T \hat{n} = N_i \hat{E}_i \quad \in \quad T_X^* \mathcal{B}_{00} \tag{3.100a}
\]

\[
\hat{m}^m(S) = \Lambda [\hat{m}] \Lambda^T \hat{m} = M_i \hat{E}_i \quad \in \quad T_X^* \mathcal{B}_{00}, \tag{3.100b}
\]

respectively.

In Eqs. (3.95a) to (3.95d) and (3.97a) to (3.97d) \(n_1 = N_1 \) is the normal force component in the cross section with normal direction \(\hat{t}_1 \) while \(n_2 = N_2 \) and \(n_3 = N_3 \) are the shear force components in the directions \(\hat{t}_2 \) and \(\hat{t}_3 \), respectively. On the other hand, \(m_1 = M_1 \) is the torque component around the normal \(\hat{t}_1 \) while \(m_2 = M_2 \) and \(m_3 = M_3 \) are the bending moment components around \(\hat{t}_2 \) and \(\hat{t}_3 \), respectively. See Fig. 3.6 for a schematic representation of the stress resultant and the stress couple in the current configuration.

3.4 Power balance condition

The purpose of this section is to formulate properly invariant reduced constitutive equations in terms of global kinetic and kinematical objects. The first step consists into obtain a reduced expression for the internal power from the general expression of three-
3.4. Power balance condition

This reduced expression yields the appropriated definition of strain measures conjugate to the resultant cross sectional forces and moments in the spatial as well as in the material descriptions.

3.4.1 Internal power

The general power balance condition can be stated as:

If the mechanical energy is conserved then, the power of the external loadings (surface traction and body force) is equal to the kinetic stress power plus the internal power for a given reference volume domain of the continuum using the Lagrangian description. The converse is also true.

The internal power per unit of reference volume of the continuum is

\[\mathfrak{P}_{\text{int}} = \text{Tr}[\mathbf{P}^T \mathbf{\dot{F}}_n] = g^{-1} \mathbf{P}^T (\delta_{11} \dot{\epsilon}_n + \dot{t}_i) \cdot \dot{t}_0 = \text{Tr}[\mathbf{P}^T (\tilde{\mathbf{v}}_n \delta_{11} \dot{\epsilon}_n + \dot{t}_i)] \cdot \dot{t}_0 \]

(3.101)

where the trace operator has been used, Eq. (A.53), the internal power has been written in terms of the FPK stress tensor \(\mathbf{P} \), Eq. (3.88a), and the material time derivative of the deformation gradient, \(\dot{\mathbf{F}}_n \), which is an objective scalar, independent of the observer and the reference frame at a given material point. The objective of studying the internal power is to determine the strain measures that are conjugate to the FPK stresses for the curved reference rod.

Considering Eqs. (3.75) to (3.81c) for the material time derivative of the deformation tensor, \(\dot{\mathbf{F}}_n \), and Eq. (A.54) for the trace of the product of two second order tensors, one obtains that the current rod internal power per unit of volume of the curved reference rod at any material point \((S, \xi) \) is

\[\mathfrak{P}_{\text{int}}(S, \xi) = \text{Tr}[\mathbf{P}^T \mathbf{\dot{F}}_n] = \text{Tr}[\mathbf{P}^T \mathbf{\dot{F}}_n^\triangledown] \]

(3.102)
Chapter 3. Power balance condition

The first term of the above equations is due to rigid–body rotation and should vanish. In fact, noticing Eq. (3.88a) for the relation between the FPK stress tensor and the Cauchy stress tensor as well as the symmetry of the Cauchy stress tensor and skew-symmetry of \(\vec{v} \), we have [180]

\[
\text{Tr}\left[P (\vec{v} F_n)^T \right] = \text{Tr}\left[g_n \sigma F_n^{-T} F_n^T \vec{v}^T \right] = -g_n \text{Tr}[\sigma \vec{v}]
\]

\[
= -g_n \text{Tr}[\sigma \vec{v}] = -g_n \text{Tr}[\sigma \vec{v}^T] = g_n \text{Tr}[\sigma \vec{v}] = 0
\]

(3.103)

then, the second term become

\[
\text{Tr}[P^T \mathbf{F}_n^\n] = \text{Tr}\left[(\hat{\iota}_{0j} \otimes \hat{\iota}_j)(\frac{1}{g_0} \mathbf{\hat{\iota}_n} \otimes \hat{\iota}_{01}) \right] = \frac{1}{g_0} \text{Tr}\left[(\hat{P}_1 \cdot \mathbf{\hat{\iota}_n})(\hat{\iota}_{01} \otimes \hat{\iota}_{01}) \right] = \frac{1}{g_0} \hat{P}_1 \cdot \mathbf{\hat{\iota}_n}.
\]

(3.104)

It follows that the current rod internal power per unit of the curved reference rod at any material point \((S, \xi_\beta)\) is

\[
\mathbf{P}_{\text{int}} = \text{Tr}[P^T \mathbf{F}_n] = \text{Tr}[P^T \mathbf{F}_n^\n] = \text{Tr}[P^{mT} \mathbf{F}_n^\n] = \hat{P}_1 \cdot \left(\frac{1}{g_0} \mathbf{\hat{\iota}_n} \right) = \hat{P}_1^m \cdot \left(\frac{1}{g_0} \mathbf{\hat{\iota}_n} \right).
\]

(3.105)

Therefore, \(g_0^{-1} \mathbf{\hat{\iota}_n} \) in the spatial form or \(g_0^{-1} \mathbf{\hat{\iota}_n} \) in the material one is the strain vector at the material point \((S, \xi_\beta)\) on the current cross section energetically conjugate to the FPK stress vector \(\hat{P}_1 \) in the spatial form or to \(\hat{P}_1^m \) in the material description.

Additionally, it is possible to see that the strain tensors \(\mathbf{\epsilon}_n, (\mathbf{E}_n) \), Eqs. (3.68a) to (3.68b), are the energetically conjugated couples to the FPK stress tensors \(P, (P^m) \).

As it has been mentioned in §3.2.3 the Green strain tensors \(\mathbf{\epsilon}_G, (\mathbf{E}_G) \), are the energetically conjugated couples to the SPK stress tensors. Noting their relation with the FPK strain tensor, Eq. (3.93a), it is possible to rewrite the internal power density as

\[
\mathbf{P}_{\text{int}} \equiv \text{Tr}[\mathbf{S} \mathbf{\epsilon}_G] = \text{Tr}[P \mathbf{\hat{F}}_n] = S_i^j \mathbf{\epsilon}_G = P_{ij} \mathbf{\hat{\epsilon}}_n = \hat{P}_1^m \cdot \left(\frac{1}{g_0} \mathbf{\hat{\iota}_n} \right).
\]

(3.106)

However, the symmetric Eulerian strain tensor \(\mathbf{\epsilon}_E, (\mathbf{E}_E) \), does not have an energetically conjugated stress measure. In the case of the Cauchy stress tensor \(\sigma, (\Sigma) \), a conjugated strain rate tensor can by constructed in the following way [196, 227]

\[
\mathbf{P}_{\text{int}} \equiv g_n \text{Tr}[\sigma \mathbf{\Sigma}^*] = \text{Tr}[P^T \mathbf{F}_n^\n] \equiv \Sigma_{ij} \Sigma_{ij}^{m} = \hat{\Sigma}_1 \cdot \left(\frac{1}{g_0} \mathbf{\hat{\iota}_n} \right) = \hat{P}_1^m \cdot \left(\frac{1}{g_0} \mathbf{\hat{\iota}_n} \right)
\]

(3.107)

where \(\mathbf{\Sigma}^* \equiv F_n^{-T} \mathbf{\epsilon}_G F_n^{-1} \equiv \Sigma_{ij}^{m} \hat{\iota}_{0i} \otimes \hat{\iota}_{0j} \) is the Eulerian strain rate tensor, which can not be obtained simply taking the material time derivative on \(\mathbf{\epsilon}_E \) nor on \(\mathbf{E}_E \) in Eq. (3.73a).

The component description of \(\mathbf{\Sigma}^* \) is

\[
[\Sigma^*]_{0i} \otimes \hat{\iota}_{0j} = \frac{1}{2 g_0 g_n} \begin{bmatrix}
\dot{\mathbf{\hat{\iota}}}_{n1} & \dot{\mathbf{\hat{\iota}}}_{n2} & \dot{\mathbf{\hat{\iota}}}_{n3} \\
\dot{\mathbf{\hat{\iota}}}_{n2} & 0 & 0 \\
\dot{\mathbf{\hat{\iota}}}_{n3} & 0 & 0
\end{bmatrix}.
\]

(3.108a)
3.5 Equations of motion

At cross sectional level, the current rod internal power per unit of arch–length of the curved reference rod is

\[P_{\text{int}}(S) = \int_{A(S)} \mathcal{Q}_{\text{int}} g_0 d\xi_2 d\xi_3 = \int_{A(S)} \dot{P}_1 \cdot \left(\frac{1}{g_0} \left[\hat{\mathcal{E}}_n \right] \right) g_0 dA \]

\[= \int_{A(S)} \dot{\hat{\mathcal{P}}}_1 \cdot \left[\hat{\gamma}_n \right] + \dot{\hat{\omega}}_n \cdot \hat{\mathcal{T}} dA = \left[\int_{A(S)} \dot{\hat{\mathcal{P}}}_1 dA \right] \cdot \hat{\gamma}_n + \left[\int_{A(S)} \hat{\mathcal{T}} \dot{\hat{\mathcal{P}}}_1 dA \right] \cdot \hat{\omega}_n . \quad (3.109) \]

The current rod internal power in spatial and material forms are

\[\mathcal{P}_{\text{int}}^{\text{spa}} = \hat{n} \cdot [\hat{\gamma}_n] + \hat{m} \cdot [\hat{\omega}_n] \quad (3.110a) \]

\[\mathcal{P}_{\text{int}}^{\text{mat}} = \hat{n} \cdot \dot{\hat{\Gamma}}_n + \hat{m} \cdot \dot{\hat{\Omega}}_n \quad (3.110b) \]

therefore, \(\hat{\gamma}_n \) and \(\hat{\omega}_n \) (\(\hat{\Gamma}_n \) and \(\hat{\Omega}_n \)) are the strain measures conjugate to the stress resultant \(\hat{n}(S) \) and stress couple \(\hat{m}(S) \) (\(\hat{\Gamma}_n(S) \) and \(\hat{\Omega}_n(S) \)), respectively. These strain measures are summarized in Table 3.1.

Table 3.1: Reduced strain measures.

<table>
<thead>
<tr>
<th>Strain measure</th>
<th>Spatial form</th>
<th>Material form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translational</td>
<td>(\hat{\gamma}_n = \hat{\varphi}_n - \dot{t}_1)</td>
<td>(\hat{\Gamma}_n = \Lambda^T \hat{\gamma}_n)</td>
</tr>
<tr>
<td>Rotational</td>
<td>(\hat{\omega}n = \text{axial}[\Lambda{\text{n},S} \Lambda_{\text{n}}^T])</td>
<td>(\hat{\Omega}_n = \Lambda^T \hat{\omega}_n)</td>
</tr>
</tbody>
</table>

Once the reduced strain vectors are determined, the strain vector \(g_0^{-1} \epsilon_n \) at any material point \((S, \xi_3)(S \in [0, L]; \xi_3 \in A(S))\) on the current rod cross section can be determined according to Eqs. (3.60a) and (3.54a). Having this information at hand, all the other strain measures reviewed in this work can be calculated using the equations of Section 3.2.3. Finally, the current rod internal power relative to the curved reference rod, \(\Pi_{\text{int}} \), can be determined integrating along the length of the current rod as

\[\Pi_{\text{int}} = \int_{A(S) \times [0, L]} \text{Tr}[\mathbf{P}^T \mathbf{F}] dS d\xi_2 d\xi_3 = \left\{ \int_0^L \left\{ \hat{n} \cdot \left[\hat{\gamma}_n \right] + \hat{m} \cdot \left[\hat{\omega}_n \right] \right\} dS \right\} \quad \text{Spatial form} \]

\[\left\{ \int_0^L \left\{ \hat{n} \cdot \dot{\hat{\Gamma}}_n + \hat{m} \cdot \dot{\hat{\Omega}}_n \right\} dS \right\} \quad \text{Material form} \quad (3.111) \]

3.5 Equations of motion

The *Lagrangian differential equations of motion*\(^{19}\) of a material point of the continuum without boundary conditions, can be written in terms of the FPK stress tensor referred

\(^{19}\)Alternatively, Iaura and Atluri [135, 134] work directly with the principle of virtual work for the reduced balance of equations of the initially curved/twisted rods.
to the curved reference configuration as

\[\nabla \cdot \mathbf{P} + \hat{b} = \rho_0 \ddot{x} \]

\[\mathbf{P}^T \mathbf{F}_n^T = \mathbf{F}_n \mathbf{P}^T \] \hspace{1cm} (3.112)

where \(\hat{b} \) and \(\rho_0 \) are the body force vector and the material density in the curved reference configuration, respectively. However, it is not convenient to work directly on the expression given in Eq. (3.112) because the divergence term is inconvenient to expand in the local frame \(\{ \hat{t}_0 \} \) along the mid–curve\(^{20} \) [180, 167, 168].

As stated by Simo [277], it is possible to work on the straight reference configuration to obtain the equations of motion of the current rod. In this case, the equilibrium equations including boundary conditions are

\[\nabla \cdot \mathbf{P}^0 + \hat{b}(\hat{X}, t) = \rho_{00} (\dot{\hat{X}}) \ddot{\hat{x}}(\hat{X}, t) \] \hspace{1cm} \text{in } \mathcal{B}_{00} \] \hspace{1cm} (3.113a)

\[\mathbf{P}^0 \hat{N}_{00} = \mathbf{t}_\sigma \text{ on } \partial \mathcal{B}_{00 \sigma} \] \hspace{1cm} (3.113b)

\[\dot{\hat{X}} = \mathbf{\hat{X}} \text{ on } \partial \bar{\mathcal{B}}_{00 \sigma} \] \hspace{1cm} (3.113c)

where the boundary of the rod with applied initial conditions is defined by \(\partial \mathcal{B}_{00} = \overline{\partial \mathcal{B}_{00 \sigma} \cup \partial \mathcal{B}_{00 \sigma} \cap \partial \bar{\mathcal{B}}_{00 \sigma} } = \emptyset \) and \(\hat{b}, \rho_{00} = g_0 \rho_0, \hat{N}_{00}, \mathbf{t}_\sigma \) and \(\ddot{x} \) are the body force vector, the material density in the straight reference configuration, the vector normal to the traction boundary, the prescribed traction force vector and the prescribed placement vector, respectively. The base points are given in the material placement \(\mathcal{B}_{00} \), but they occupy tangent spaces of the spatial placement \(T_{\hat{x}} \mathcal{B}_{t} \) i.e. \(\hat{b} := \hat{b}(\hat{x}) \in T_{\hat{x}} \mathcal{B}_{t} \) and \(\mathbf{P}^0 \mathbf{F}_n^T \in T_{\hat{x}} \mathcal{B} \otimes T_{\hat{x}} \mathcal{B} \).

According to Ogden [227] it is possible to work with the integral counterpart of Eq. (3.113a) yielding to the Lagrangian field form of the linear momentum balance equation written in term of integrals over \(\mathcal{B}_{00} \) as

\[\int_{\mathcal{B}_{00}} \nabla \cdot \mathbf{P}^0 \, dV_{00} + \int_{\mathcal{B}_{00}} \hat{b} \, dV_{00} = \int_{\mathcal{B}_{00}} \rho_{00} \ddot{x} \, dV_{00}. \] \hspace{1cm} (3.114)

By one hand, following analogous developments as those presented in [277] we have that \(\nabla \cdot \mathbf{P}^0 = \hat{P}^0_{1 \cdot S} + \hat{P}^0_{\beta \cdot \xi_S} \) and by Eqs. (3.95a), (3.95b), (3.97a) and (3.97b) we obtain

\[\hat{n} \cdot S = \int_{A_{00}} \hat{P}^0_{1 \cdot S} \, dA_{00} \] \hspace{1cm} (3.115)

\(^{20}\)Taking directional derivatives can be a choice but more complicated algebraic developments are involved.
where it has been taken into the fact that $\hat{P}_1^0 = \hat{\sigma}_1$; considering Eq. (3.113a) we have

$$
\int_0^L \hat{n}_S dS = -\int_{V_{00}} \{ \hat{P}_1^0 \hat{\xi}_\beta \rho_{00} + \rho_{00} \hat{b} \} dV_{00} + \int_{V_{00}} \rho_{00} \hat{x} dV_{00}
$$

$$
= -\{ \int_{A_{00}} \hat{P}_1^0 \nu_{00} \beta dA_{00} + \int_{V_{00}} \rho_{00} \hat{b} dV_{00} \} + \int_{V_{00}} \rho_{00} \hat{x} dV_{00} \tag{3.116}
$$

where A_{00} is the arbitrarily chosen surface domain, $\nu_{00} = \nu_{00} \hat{E}_\beta$ the outward unit vector of the differential surface dA_{00}, and V_{00} the corresponding volume domain surrounded by A_{00}. In Eq. (3.116) it has been used the divergence theorem to convert the volume integrals in area integrals.

Considering Eq. (3.33) it is possible to rewrite the last term in Eq. (3.116) as

$$
\int_{V_{00}} \rho_{00} \hat{x} dV_{00} = \int_{[0, L] \times A_{00}} \rho_{00}(\hat{\varphi} + [\hat{\alpha}_n + \tilde{v}_n \tilde{v}_n] \hat{\mathcal{T}}) dA_{00} dS
$$

$$
= \int_{0}^{L} \hat{\varphi} \int_{A_{00}} \rho_{00} dA_{00} dS + \int_{0}^{L} \tilde{v}_n \int_{A_{00}} \rho_{00} \hat{\mathcal{T}} dA_{00} dS
$$

$$
+ \int_{0}^{L} \tilde{v}_n \int_{A_{00}} \rho_{00} \hat{\mathcal{S}}_{\rho_{00}} dS
$$

$$
= \int_{0}^{L} \tilde{\varphi} A_{00} dS + \int_{0}^{L} \tilde{\alpha}_n \tilde{S}_{\rho_{00}} dS + \int_{0}^{L} \tilde{v}_n \tilde{v}_n \tilde{S}_{\rho_{00}} dS
$$

$$
= \int_{0}^{L} \tilde{\varphi} A_{00} + \tilde{\alpha}_n \tilde{S}_{\rho_{00}} + \tilde{v}_n \tilde{v}_n \tilde{S}_{\rho_{00}} dS \tag{3.117}
$$

where $A_{\rho_{00}}(S) = \int_{A_{00}} \rho_{00} dA_{00} \in \mathbb{R}$ and $\tilde{S}_{\rho_{00}} = \int_{A_{00}} \rho_{00} \hat{\mathcal{T}} dA_{00} \in T_2 B_1$.

If the Eq. (3.116) are applied to a parallel 'cut' slice through the straight reference configuration with differential length dS parallel to \hat{E}_1, defining the surface and volume integration domains (see Fig. 3.7), where dA_{00} is separated into the lateral surface dA_{00L} and the cut surface $dA_{00N} = dA_{00N+} \cup dA_{00N-}$, and then using the variable and domain changes, one obtains the explicit expression for the reduced external force density per unit
of arch-length of the curved reference rod as

\[\hat{N}^* = \int_{A_{00L}} \hat{P}_0^0 \hat{\nu}_{00\beta} dA_{00L} + \int_{V_{00}} \rho_{00} \hat{b} dA_{00} dS \]

(3.118)

and using Eq. (3.117) along with the preceding result one obtains the integral version of the linear momentum balance equation of the rod referred to the curved reference configuration, which read as

\[\int_0^L \left\{ \hat{n}_s + \hat{N}^* - A_{\rho_{00}} \ddot{\varphi} - \hat{\alpha}_n \hat{S}_{\rho_{00}} - \hat{\nu}_n \hat{v}_n \hat{S}_{\rho_{00}} \right\} dS. \]

(3.119)

The local form of Eq. (3.119) constitutes the linear momentum balance condition and is given by

\[\hat{n}_s + \hat{N} = A_{\rho_{00}} \ddot{\varphi} + \hat{\alpha}_n \hat{S}_{\rho_{00}} + \hat{\nu}_n \hat{v}_n \hat{S}_{\rho_{00}}. \]

(3.120)

Identical procedures allow to deduce the linear momentum balance condition when the reference configuration is the curved one. In this case one has

\[\hat{n}_s + \hat{N} = A_{\rho_0} \ddot{\varphi} + \hat{\alpha}_n \hat{S}_{\rho_0} + \hat{\nu}_n \hat{v}_n \hat{S}_{\rho_0} \]

(3.121)

where the stress resultant \(\hat{n} \in T^*_x B_t \) has been given in Eq. (3.95a), \(A_{\rho_0} \) is the reduced form of the translational mass density per unit of reference arch-length with explicit expression given by

\[A_{\rho_0} = \int_{A_0} g_0 \rho_0 dA_0 \]

(3.122)

\(\hat{v}_n \in T^{spa}_x \) is the angular velocity vector of the current rod cross section; \(\hat{\alpha} \in T^{spa}_x \) is the rotational acceleration of the current rod cross section and the first mass moment density vector \(\hat{S}_{\rho_0} \) per unit of arch-length of the curved reference rod mid-curve is

\[\hat{S}_{\rho_0} = \int_{A_0} \hat{\gamma} g_0 \rho_0 dA_0 = \hat{S}_{\rho_03} \hat{i}_2 + \hat{S}_{\rho_02} \hat{i}_3 \]

(3.123)

\[\hat{S}_{\rho_03} = \int_{A_0} g_0 \rho_0 \xi_2 dA_0, \quad \hat{S}_{\rho_02} = \int_{A_0} g_0 \rho_0 \xi_3 dA_0 \]

and \(\hat{N} \in T^*_x B_t \) corresponds to the reduced form of the external applied forces calculated for the case of the curved reference rod as

\[\hat{N} = \int_{A_{00L}} \hat{F}_\beta \hat{\nu}_{00\beta} dA_{00L} + \int_{V_{00}} \rho_{00} \hat{b} dV_{00} dS \]

(3.124a)

\[= \int_{A_{0L}} (g_0 \hat{F}_0^{-T}) (g_0^{-1} \hat{F}_0^T \hat{\nu}_0 dA_0) + \int_{V_0} g_0 \rho_0 \hat{b} dV_0 \]

(3.124b)
3.5. Equations of motion

\[
\begin{align*}
\mathbf{P} & = \int_{A_0} \mathbf{P} \hat{\mathbf{t}}_0 dA_0L + \int_{V_0} g_0 \rho_0 \hat{\mathbf{t}}_0 dV_0 \\
& = \int_{C_A} \frac{g_0}{\nu_0^2} \hat{\mathbf{P}}_j \hat{\mathbf{t}}_{0j} dC_A + \int_{V_0} g_0 \rho_0 \hat{\mathbf{t}}_0 dV_0 \quad \in \quad T^*_x B_t.
\end{align*}
\]

(3.124c)

(3.124d)

The above expression for \(\mathcal{N} \) include the load boundary conditions for the lateral surface traction with outward unit vector \(\hat{\mathbf{t}}_0 = \hat{\mathbf{t}}_{0j} \) of the curved reference rod configuration; \(dC_A \) is the differential element of the contour line \(C_A \) of the cross section domain \(A \) and \(\hat{\mathbf{t}}_{0cA} = \hat{\mathbf{t}}_{02} + \hat{\mathbf{t}}_{2cA} \) the unit normal outward vector of \(C_A \) in the cross section plane of the curved reference rod configuration [180].

Analogously, for the case of the angular momentum balance condition we have

\[
\int_{V_0} (\dot{\mathbf{x}} - \ell) \times (\nabla \cdot \mathbf{P}^0) dV_0 + \int_{V_0} \rho_0 (\dot{\mathbf{x}} - \ell) \times \dot{\mathbf{t}}_0 dV_0 = \int_{V_0} \rho_0 (\dot{\mathbf{x}} - \ell) \times \ddot{\mathbf{t}}_0 dV_0
\]

(3.125)

where \(\ell \in \mathbb{R}^3 \) is and arbitrarily spatially fixed position vector. By one hand, developing for the right side of Eq. (3.125) and considering \(\ell = \dot{\phi} \) by convenience along with the result of Eq. (A.21b) we obtain

\[
\int_{V_0} \rho_0 \dot{\mathbf{t}} \times \ddot{\mathbf{t}}_0 dV_0 = \int_{V_0} \rho_0 \dot{\mathbf{t}} \times \ddot{\mathbf{t}}_0 dV_0 + \int_{V_0} \rho_0 \mathbf{T} \mathbf{a}_n \dot{\mathbf{T}} dV_0 + \int_{V_0} \rho_0 \mathbf{T} \mathbf{v}_n \dot{\mathbf{T}} dV_0
\]

(3.126)

to develop an alternative expression for Eq. (3.126), it is necessary to take into account that

\[
\mathbf{T} \mathbf{v}_n \dot{\mathbf{T}} = \mathbf{T} \mathbf{v}_n \times \dot{\mathbf{T}} = -\mathbf{P} \mathbf{v}_n \dot{\mathbf{T}} = -\mathbf{T} \mathbf{v}_n \dot{\mathbf{T}} = -\mathbf{T} \mathbf{v}_n \dot{\mathbf{T}}
\]

which allows to rewrite Eq. (3.126) as

\[
\int_{V_0} \rho_0 \dot{\mathbf{t}} \times \ddot{\mathbf{t}}_0 dV_0 = \int_{V_0} \rho_0 \dot{\mathbf{t}} \times \dot{\mathbf{t}} dV_0 - \int_{V_0} \rho_0 \mathbf{T} \mathbf{T} \mathbf{a}_n \dot{\mathbf{T}} dV_0 - \int_{V_0} \rho_0 \mathbf{v}_n \mathbf{T} \mathbf{v}_n \dot{\mathbf{T}} dV_0
\]

(3.127)

where the spatial inertial dyadic, \(\mathbf{I}_{poo} \), with respect to the straight reference configuration is expressed by

\[
\mathbf{I}_{poo} = -\int_{A_{oo}} \mathbf{T} \mathbf{T} dA_{oo} = \int_{A_{oo}} \rho_0 (|| \dot{\mathbf{T}} ||^2 \mathbf{I} - \dot{\mathbf{T}} \otimes \dot{\mathbf{T}}) dA_{oo}
\]

(3.128)

the corresponding material form is obtained as \(\mathbf{I}_{poo} = \Lambda^T \mathbf{I}_{poo} \Lambda \). Before analyzing the left side of Eq. (3.125) we will present a previous result as follows: Considering Eq. (3.113c)
and the results given in Eqs. (A.21a) to (A.21g) of Appendix A, we have that

\[
\mathbf{P}^0 \mathbf{F}^T = \mathbf{FP}^0 \mathbf{T}
\]

\[
\hat{P}^0 \otimes \hat{x},S + \hat{P}^0 \otimes \hat{x},\xi_d = \hat{x},S \otimes \hat{P}^0 + \hat{x},\xi_d \otimes \hat{P}^0
\]

\[
\leftrightarrow (\hat{P}^0 \otimes \hat{x},S - \hat{x},S \otimes \hat{P}^0) + (\hat{P}^0 \otimes \hat{x},\xi_d - \hat{x},\xi_d \otimes \hat{P}^0) = 0
\]

\[
\leftrightarrow \Pi[\hat{x},S] \Pi[\hat{P}^0] - \Pi[\hat{P}^0] \Pi[\hat{x},S] + \Pi[\hat{x},\xi_d] \Pi[\hat{P}^0] - \Pi[\hat{P}^0] \Pi[\hat{x},\xi_d] = 0
\]

\[
\rightarrow \Pi[\hat{x},S \times \hat{P}^0 + \hat{x},\xi_d \times \hat{P}^0] = 0
\]

\[
\rightarrow \hat{x},S \times \hat{P}^0 + \hat{x},\xi_d \times \hat{P}^0 = 0.
\] (3.129)

By the other hand, the derivative with respect to the arch–length parameter \(S \) of the the cross sectional moment, Eq. (3.97b), is calculated considering Eqs. (3.125) and (3.129) as

\[
\dot{m},_S = \int_{A_{00}} \hat{x},S \times \hat{P}^0 d\mathbf{A}_{00} - \hat{\varphi},S \times \int_{A_{00}} \hat{P}^0 d\mathbf{A}_{00} + \int_{A_{00}} \hat{\mathbf{F}} \times \hat{P}^0
\]

\[
\rightarrow \int_0^L (\dot{m},_S + \dot{\varphi},_S \times \dot{n}) dS = \int_0^L (\hat{S}_{\rho \rho} \times \hat{\varphi} + \mathbf{I}_{\rho \rho} \hat{\alpha}_n + \hat{\mathbf{v}}_n \mathbf{I}_{\rho \rho} \dot{n}) dS
\]

\[
- \int_0^L \int_{A_{00}} \rho_{00} \hat{\mathbf{F}} \times \hat{\mathbf{b}} d\mathbf{A}_{00} dS + \int_0^L \int_{A_{00}} \hat{x},S \times \hat{P}^0_{00} d\mathbf{A}_{00} dS
\]

\[
+ \int_0^L \int_{A_{00}} \hat{\mathbf{F}} \times \hat{P}^0_{\beta \xi_d} d\mathbf{A}_{00} dS
\]

where, using the divergence theorem and the result of Eq. (3.129) allows to deduce the integral form of the momentum balance condition as

\[
\int_0^L (\dot{m},_S + \dot{\varphi},_S \times \dot{n}) dS = \int_0^L (\hat{S}_{\rho \rho} \times \hat{\varphi} + \mathbf{I}_{\rho \rho} \hat{\alpha}_n + \hat{\mathbf{v}}_n \mathbf{I}_{\rho \rho} \dot{n}) dS - \int_0^L \int_{A_{00}} \rho_{00} \hat{\mathbf{F}} \times \hat{\mathbf{b}} d\mathbf{A}_{00} dS
\]

\[
+ \int_0^L \int_{A_{00}} \{ \hat{x},S \times \hat{P}^0_{\beta} + \hat{x},\xi_d \times \hat{P}^0_{\beta} \} d\mathbf{A}_{00} dS + \int_0^L \int_{\partial A_{00}} \hat{\mathbf{F}} \times \hat{P}^0_{\beta} \nu_{\beta} d\partial \mathbf{A}_{00} dS
\]

\[
= \int_0^L (\hat{S}_{\rho \rho} \times \hat{\varphi} + \mathbf{I}_{\rho \rho} \hat{\alpha}_n + \hat{\mathbf{v}}_n \mathbf{I}_{\rho \rho} \dot{n} - \dot{\mathbf{M}}^*) dS
\] (3.130)

where \(\dot{\mathbf{M}}^* \) is the external applied moment per unit of reference arch–length, which reads

\[
\dot{\mathbf{M}}^* = \int_{\partial A_{00}} \hat{\mathbf{F}} \times \hat{P}^0_{\beta} \nu_{\beta} d\partial \mathbf{A}_{00} - \int_{A_{00}} \rho_{00} \hat{\mathbf{F}} \times \hat{\mathbf{b}} d\mathbf{A}_{00}.
\] (3.131)

The corresponding local form of the momentum balance condition is obtained from the previous equation as

\[
\dot{m},_S + \dot{\varphi},_S \times \dot{n} + \dot{\mathbf{M}}^* = \hat{S}_{\rho \rho} \times \hat{\varphi} + \mathbf{I}_{\rho \rho} \hat{\alpha}_n + \hat{\mathbf{v}}_n \mathbf{I}_{\rho \rho} \dot{n}.
\] (3.132)
3.5. Equations of motion

Identical procedures allow to deduce the momentum balance condition when the reference configuration is the curved one. In this case, one obtains

$$\dot{\mathbf{m}}_S + \dot{\hat{\mathbf{r}}}_S \times \dot{n} + \dot{\mathbf{M}} = \underbrace{\hat{\mathbf{S}}_{\rho_0} \times \hat{\mathbf{\phi}}}_K + \mathbf{I}_{\rho_0} \hat{\mathbf{\alpha}}_n + \mathbf{v}_n \mathbf{I}_{\rho_0} \dot{\hat{\mathbf{n}}}_n$$

(3.133)

where the stress couple $\dot{\mathbf{m}} \in T_2^* \mathbf{B}_t$ has been given in Eq. (3.97a) and the rotational mass or mass moment density tensor \mathbf{I}_{ρ_0} per unit of arch-length of the curved reference rod is

$$\mathbf{I}_{\rho_0} = - \int_{A_0} g_0 \rho_0 \hat{\mathbf{\vartheta}} \hat{\mathbf{\varpi}} \mathrm{d} A_0 = \int_{A_0} g_0 \rho_0 (\| \hat{\mathbf{\varpi}} \|^2 \mathbf{I} - \hat{\mathbf{\varpi}} \otimes \hat{\mathbf{\varpi}}) \mathrm{d} A_0 = \mathbf{I}_{\rho_012} t_2 \otimes t_3$$

(3.134)

and the reduced external moment density per unit of arch-length of the curved reference rod mid-curve is

$$\hat{\mathbf{M}} = \int_{A_{00L}} \hat{\mathbf{\vartheta}} \times \left[\mathbf{P} \hat{\mathbf{\nu}}_{00} \mathrm{d} A_{00L} \right] + \int_{A_0} \rho_{00} \hat{\mathbf{\vartheta}} \times \hat{\mathbf{\nu}}_0 \mathrm{d} A_0 = \int_{A_{00L}} \hat{\mathbf{\vartheta}} \times \mathbf{P} \hat{\mathbf{\nu}}_0 \mathrm{d} A_{00L} + \int_{A} g_0 \hat{\mathbf{\vartheta}} \times \rho_0 \hat{\mathbf{\nu}}_0 \mathrm{d} A_0$$

$$= \int_{C_A} \frac{g_0}{\hat{\mathbf{\nu}}_0 \cdot \hat{\mathbf{\nu}}_0} \hat{\mathbf{\vartheta}} \times (\mathbf{P} \hat{\mathbf{\nu}}_0) \mathrm{d} C_A + \int_{A} g_0 \hat{\mathbf{\vartheta}} \times \rho_0 \hat{\mathbf{\nu}}_0 \mathrm{d} A \in T^*_x \mathbf{B}_t.$$

(3.136a)

The same equations of motion can be derived by very different principles and approaches as it can be reviewed in references [4, 135]. It is worth to note that the linear and angular momentum balance equations for the case of the present initially curved and twisted rods is also a stress resultant formulation, consistent with the continuum mechanics at the resultant level [71, 111].

The system of nonlinear differential equations of Eqs. (3.121) and (3.133) have to be supplemented with the following boundary conditions:

$$(\dot{\mathbf{\varphi}}, \Lambda_\mathbf{\varphi}) \in \partial \mathbf{\varphi} \hat{\mathbf{\varpi}} \times [0, T]$$

(3.137a)

$$(\hat{\mathbf{n}}_\Sigma, \hat{\mathbf{m}}_\Sigma) \in \partial \mathbf{\varphi} \hat{\mathbf{\varpi}} \times [0, T]$$

(3.137b)

with the standard conditions $\partial_\mathbf{\varphi} \hat{\mathbf{\varphi}}_0 \cup \partial_\mathbf{\varphi} \hat{\mathbf{\varphi}}_0 = \partial \hat{\mathbf{\varphi}}_0$ and $\partial_\mathbf{\varphi} \hat{\mathbf{\varphi}}_0 \cap \partial_\mathbf{\varphi} \hat{\mathbf{\varphi}}_0 = \emptyset$ assumed to hold.

The additional initial data are given by

$$\hat{\mathbf{\varphi}}(S, 0) = \hat{\mathbf{\varphi}}_0(S) \quad \text{and} \quad \Lambda(S, 0) = \Lambda_0(S), \quad \forall S \in [0, L]$$

(3.137c)

$$\dot{\mathbf{\varphi}}(S, 0) = \dot{\hat{\mathbf{\varphi}}}_0(S) \quad \text{and} \quad \dot{\Lambda}(S, 0) = \dot{\Lambda}_0(S) \hat{\mathbf{v}}_{0n}(S), \quad \forall S \in [0, L]$$

(3.137d)
where \((\hat{\gamma}_0, \hat{V}_0) : [0, L] \to \mathbb{R}^3 \times \mathbb{R}^3\) is a prescribed velocity field. The static version can be obtained ignoring the terms of Eqs. (3.137c) and (3.137d) and the corresponding inertial terms in the equilibrium equations.

Remark 3.3. For an untwisted straight rod made of homogeneous material with no initial elongation of the rod mid–curve, \((g_0 = 1)\), the first mass moment density \(\hat{S}\rho_0\) of Eq. (3.123) vanishes if the rod reference curve is chosen as the geometry centroid line of the rod cross section. In this case, the terms \(\hat{R}_1\) and \(\hat{R}_2\) of Eqs. (3.119) and (3.133) vanish and the balance equations reduce to the original forms given by Simo [277] and Simo and Vu-Quoc [278, 280]. In addition, if the rod is also uniform, Eqs. (3.124a) to (3.124d) and (3.136a) to (3.136a) also are reduced to those given by Simo et al. For initially curved rods, \(g_0 \neq 1\), and if the rod reference curve is chosen as the geometric centroid line, \(\hat{S}\rho_0\) does not vanish in general though its entries are small for slender rods. On other hand, if one choose the mass centroid line as the rod reference curve, \(\hat{S}\rho_0\) also vanishes.

3.6 Virtual work forms

In this section, we derive the principle of virtual work [161] for the Reissner–Simo rod theory. As stated by Mäkinen in Ref. [192] we state that the virtual work may be viewed as a linear form on the tangent field–bundle \(T\mathcal{B}_0\) (see §A.5). This field bundle is also a tangent bundle of the placement manifold at fixed time. In following we give definitions for the virtual work in the finite–dimensional and infinite–dimensional cases. Moreover, it will be shown that the principle of virtual work constitutes a weak form of the linear and angular momentum balance equations recovering Eqs. (3.113a) to (3.113c) or equivalently Eqs. (3.121) and (3.133). Detailed explanations about virtual work forms on manifolds are given in Defs. A.18 and A.19 of §A.3.1 of Appendix A.

3.6.1 Principle of virtual work

The principle of virtual work states that at a dynamical equilibrium, the virtual work with respect to any virtual displacement, at time \(t = t_0\) and place vector \(\hat{x}_*\), vanishes i.e.

\[
G(\hat{x}_*, \delta \hat{x}) := \int_{\mathcal{B}_0} \hat{f} \cdot \delta \hat{x} d\mathcal{B}_0 = 0 \quad \forall \hat{x}_* \in \mathcal{B}_{t_0}, \delta \hat{x} \in T_{\hat{x}_*} \mathcal{B}_{t_0} \tag{3.138}
\]

where the virtual displacement field \(\delta \hat{x} \in T\mathcal{B}_0\) and the force field \(\hat{f} = \hat{f}(t_0, \hat{x}_*) \in T^* \mathcal{B}_{t_0}\) i.e. it belongs to the co–tangent field bundle.

3.6.2 Weak form of the balance equations

One choice for constructing a continuum based expression of the virtual work is given by taking as pair quantity the FPK stress tensor. This selection is very popular for the geometrically exact rod theories [135, 192, 277] since the work pair for the FPK stress tensor is the virtual deformation gradient, as it has been shown in §3.4, yielding rather a simple formulation. The virtual deformation gradient corresponds to the Lie variation
As it has been mentioned, the virtual work can be decomposed into three components: external, internal and inertial virtual works according to the following equation:

\[G = G_{\text{ext}} + G_{\text{int}} - G_{\text{ine}} \]

REMARK 3.4. It is worth to note that the term \(\delta [\mathbf{F}] : \mathbf{P} \) also satisfies the balance equation of momentum \(\mathbf{P} \mathbf{F}^T - \mathbf{F} \mathbf{P}^T \) but the term \(\delta \mathbf{F} : \mathbf{P} \) does not \[193]\] ■

REMARK 3.5. As it has been mentioned, the virtual work can be decomposed into three components: external, internal and inertial virtual works according to the following equation:

\[G = G_{\text{ext}} + G_{\text{int}} - G_{\text{ine}} \]
where the minus sign indicate that the inertial forces act against the virtual displace-
ments. Additionally, the inertial virtual work G_{ine} includes the minus sign inside its form.
Sometimes it is convenient to avoid additional minus signs by introducing the virtual work of acceleration forces by the formula $G_{\text{ine}} = -G_{\text{acc}}$.

3.6.3 Reduced form virtual work principle

A dimensionally reduced version of the virtual work principle may also be obtained from the reduced linear and angular balance equilibrium equations [135, 158]. In this work an analogous procedure to these presented by Ibrahimbegović [138] will be used for the case of initially curved rods.

According to Eq. (3.27) taking an admissible variation of the position vector (consistent with the prescribed boundary conditions) in the current rod configuration $\delta \hat{x} = \delta \hat{\varphi} + \delta \hat{\theta} \times \hat{T} \in T^r \mathcal{B}_t$ i.e. a virtual displacement field, where $\delta \hat{\varphi} \in \mathbb{R}^3$ is an arbitrary but kinematically admissible variation of the translational field, $\delta \hat{\theta} = \delta \hat{\theta}_n \in T^a \mathcal{P} \text{SO}(3)$ an arbitrary but kinematically admissible rotation increment associated with the skew–symmetric tensor $\delta \hat{\theta} = \delta \Lambda_n \Lambda^T_n \in T^a \text{SO}(3)$ thus, a virtual incremental rotation; taking the dot product of $\hat{\eta}^S = (\delta \hat{\varphi}, \delta \hat{\theta}) \in T^c \mathcal{T} \equiv \mathbb{R}^3 \times T^a \Lambda \text{SO}(3)$ with Eqs. (3.119) and (3.133) and integrating over the length of the curved reference rod we obtain the following contributions to the nonlinear functional corresponding to the reduced virtual work principle:

3.6.3.a Virtual work of external forces and moments

Considering the externally applied forces and moments we obtain the following expression for the virtual work of the external loading:

$$G_{\text{ext}}(\hat{\varphi}, \Lambda, \hat{\eta}^S) = \int_0^L \left\langle \left[\begin{array}{c} \delta \hat{\varphi} \\ \delta \hat{\theta} \end{array} \right], \left[\begin{array}{c} \hat{N}^* \\ \hat{M}^* \end{array} \right] \right\rangle_{g} dS = \int_0^L \left(\delta \hat{\varphi} \cdot \hat{N}^* + \delta \hat{\theta} \cdot \hat{M}^* \right) dS. \quad (3.142)$$

It is worth noting that it has been carried out a separated integration for the translational part of the external work corresponding to the forces $\hat{N}^* \in \mathbb{R}^3$ and for the rotational part associated to the moments $\hat{M}^* \in T^a \Lambda^\ast$ which is an element of the co–vector space of rotation and the work conjugated of the virtual incremental rotation vector $\delta \hat{\theta} \in T^a \Lambda^\ast$.

3.6.3.b Virtual work of the internal forces and moments

The virtual work of the internal forces and moments can be computed in a similar way but taking the corresponding terms of Eqs. (3.119) and (3.133) as

$$G_{\text{int}}(\hat{\varphi}, \Lambda, \hat{\eta}^S) = \int_0^L \left\langle \left[\begin{array}{c} \delta \hat{\varphi} \\ \delta \hat{\theta} \end{array} \right], \left[\begin{array}{c} \hat{n}_S \\ \hat{\nu}_S + \hat{\phi}_S \times \hat{\nu} \end{array} \right] \right\rangle_{g} dS$$

$$= \int_0^L \left[\delta \hat{\varphi} \cdot \hat{n}_S + \delta \hat{\theta} \cdot \hat{m}_S + \delta \hat{\theta} \cdot (\hat{\phi}_S \times \hat{\nu}) \right] dS. \quad (3.143)$$
3.6.3.c Virtual work of the inertial forces

The virtual work of the inertial forces can be computed in a similar way but taking the other terms of Eqs. (3.119) and (3.133) as

\[
G_{\text{ine}}(\hat{\varphi}, \Lambda, \hat{\eta}^s) = \int_0^L \left[\frac{\delta \hat{\varphi}}{\delta \hat{\theta}} \cdot \left(\mathbf{I}_{p_0} \hat{\alpha}_n + \mathbf{\tilde{v}}_n \mathbf{I}_{p_0} \hat{v}_n \right) \right] \, dS
\]

\[
= \int_0^L \left[\delta \hat{\varphi} \cdot A_{p_0} \hat{\varphi} + \delta \hat{\theta} \cdot \left(\mathbf{I}_{p_0} \hat{\alpha}_n + \mathbf{\tilde{v}}_n \mathbf{I}_{p_0} \hat{v}_n \right) \right] \, dS.
\]

Finally, the principle of virtual work for the Reissner–Simo rod’s theory becomes

\[
G(\hat{\varphi}, \Lambda, \hat{\eta}^s) = [G_{\text{int}} + G_{\text{ine}} - G_{\text{ext}}](\hat{\varphi}, \Lambda, \hat{\eta}^s)
\]

\[
= \int_0^L \left[\delta \hat{\varphi} \cdot \hat{n}_s + \delta \hat{\theta} \cdot (\hat{m}_s + \hat{\varphi}_s \times \hat{n}) \right] \, dS
\]

\[
+ \int_0^L \left[\delta \hat{\varphi} \cdot A_{p_0} \hat{\varphi} + \delta \hat{\theta} \cdot (\mathbf{I}_{p_0} \hat{\alpha}_n + \mathbf{\tilde{v}}_n \mathbf{I}_{p_0} \hat{v}_n) \right] \, dS
\]

\[
- \int_0^L (\delta \hat{\varphi} \cdot \hat{N}^* + \delta \hat{\theta} \cdot \hat{M}^*) \, dS = 0.
\]

From the above equation, taking integration by parts for the \(\hat{n}_s \) and \(\hat{m}_s \) terms and noticing \(\delta \hat{\theta} \cdot (\hat{\varphi}_s \times \hat{n}) = (\delta \hat{\theta} \times \hat{\varphi}_s) \cdot \hat{n} \), one may easily obtains that

\[
G(\hat{\varphi}, \Lambda, \hat{\eta}^s) = \int_0^L \left[(\delta \hat{\varphi}_s - \delta \hat{\alpha}_s) \cdot \hat{n} + \delta \hat{\theta}_s \cdot \hat{m} \right] \, dS
\]

\[
+ \int_0^L \left[\delta \hat{\varphi} \cdot A_{p_0} \hat{\varphi} + \delta \hat{\theta} \cdot (\mathbf{I}_{p_0} \hat{\alpha}_n + \mathbf{\tilde{v}}_n \mathbf{I}_{p_0} \hat{v}_n) \right] \, dS
\]

\[
- (\delta \hat{\varphi} \cdot \hat{n}) \Big|_0^L - (\delta \hat{\theta} \cdot \hat{m}) \Big|_0^L - \int_0^L (\delta \hat{\varphi} \cdot \hat{N}^* + \delta \hat{\theta} \cdot \hat{M}^*) \, dS = 0.
\]

By this way it is possible to rewrite the external virtual work including the natural boundary conditions: \((\delta \hat{\varphi} \cdot \hat{n}) \big|_0^L + (\delta \hat{\theta} \cdot \hat{m}) \big|_0^L\) and an alternative (weak [278]) form of contribution, which constitutes spatial version of the variational form of reduced internal power as given in Eq. (3.111) i.e.

\[
G(\hat{\varphi}, \Lambda, \hat{\eta}^s) = \int_0^L (\delta \hat{\varphi}_s \cdot \hat{n} + \delta \hat{\theta}_s \cdot \hat{m}) \, dS.
\]

where \(\delta [\bullet] \) is the Lie variation (or co-rotated variation) as it is explained in §A.5.5 of Appendix A. A deeper presentation of the calculation of the variations of mathematical quantities involved in the linearization of the weak form of the virtual work principle will be given in Chapter 5, for the moment it is sufficient to indicate that

\[
\delta[\hat{\varphi}_s] = \delta \hat{\varphi}_s - \delta \hat{\alpha}_s ; \quad \delta[\hat{\theta}_s] = \delta \hat{\theta}_s = \delta \hat{\alpha}_s.
\]
3.7. Constitutive relations

Considering that in virtue of the results presented in Section A.5 one have that \(\delta \hat{\Gamma}_n = \Lambda^T \delta [\hat{\gamma}_n] \) and \(\delta \hat{\Omega}_n = \Lambda^T \delta [\hat{\omega}_n] \), therefore, Eq. (3.147) is completely equivalent to its material form which is given by

\[
G(\hat{\varphi}, \Lambda, \hat{\eta}^s) = \int_0^L (\delta \hat{E}_n \cdot \hat{n}^m + \delta \hat{\Omega}_n \cdot \hat{m}^m)dS. \tag{3.148}
\]

A formal demonstration of the mentioned equivalence is left to Section 5.3. In the more general term, the power balance equation in its variational form becomes the virtual work equation while the internal power becomes the internal virtual work.

REMARK 3.6. The superscripts ‘s’ and ‘m’ has been added to the internal virtual work of Eqs. (3.147) and (3.148) to indicate that the corresponding scalar quantity \(G_{\text{int}} \) is phrased in terms of spatial (correspondingly material) quantities, although it is well known that a scalar by itself is independent of the reference system.

3.7 Constitutive relations

In most of the cases in finite deformation theories for rods, hyper-elastic, isotropic and homogeneous materials have been assumed (see e.g. [57, 69, 104, 142, 278]) and therefore, the reduced constitutive equations become very simple. Other authors have extended the constitutive relations to the nonlinear case performing an integration of the constitutive equations at material point level and then obtaining the corresponding stress resultant and stress couple by mean of a second integration loop on the cross sectional area. Most of those works have been focused on plasticity [85, 94, 117, 226, 240, 245].

In the case that cross sections are composed by several materials, some authors prefer to work with 1D constitutive laws for the normal component of the stress tensor maintaining the shear behavior linear (see e.g. [89, 93, 170]). This last approach normally imply the violation of the law of thermodynamics [24, 234] conducing to spurious energy dissipation.

In the present work, cross sections are considered as formed by an inhomogeneous distribution of composite materials, each of them having several simple material components. Each simple material have associated its own constitutive law and the behavior of the composite is obtained using the mixing rule theory [72]. However, in this section only a brief overview of elastic constitutive relations for stress resultant and stress couples is discussed.

3.7.1 Hyperelastic materials

An elastic material is said to be a hyperelastic or a Green–elastic material if a strain energy function per unit volume \(W_{\text{str}} \) exist and the FPK stress tensor \(P^0 \) can also be defined [227] as

\[
P := \frac{\partial W_{\text{str}}(F)}{\partial F} \in T_L \mathcal{B}_L \otimes T_{X_00} \mathcal{B}_{00}. \tag{3.149}
\]
where it has been assumed that the strain energy function is frame–indifferent under orthogonal transformation \(i.e. \mathbf{F}^+ = \Lambda \mathbf{F}\) by obeying the identity:

\[
W_{\text{str}}(\mathbf{F}^+) = W_{\text{str}}(\Lambda \mathbf{F}) = W_{\text{str}}(\mathbf{F})
\]

with \(\Lambda \in SO(3)\). This means that the strain energy function is invariant under rigid-body rotations. The Lie variation by \(\Lambda\), Eq. (A.93), of the energy function \(W_{\text{str}}(\mathbf{F})\) can be written using Eqs. (3.149) as

\[
\delta \nabla [W_{\text{str}}] = \frac{\partial W_{\text{str}}}{\partial \mathbf{F}} : \delta [\mathbf{F}] \quad \in \quad \mathbb{R}
\]

(3.150)

that is equal to the virtual work of internal forces \(G_{\text{int}}\) of Eq. (3.139). We get the same result for \(W_{\text{str}}(\Lambda^T \mathbf{F})\). Employing the Lie variation, pullback and push–forward operators (see §A.5) it is possible to express Eq. (3.150) as

\[
\delta [W_{\text{str}}] = \mathbf{P} : (\Lambda \delta (\Lambda^T \mathbf{F})) = (\Lambda^T \mathbf{P}) : \delta (\Lambda^T \mathbf{F}) = (\Lambda^T \mathbf{P}) : \delta (\Lambda^T \mathbf{F} - \mathbf{I}).
\]

(3.151)

Therefore the Lie variation of the strain energy function, Eq. (3.150), introduces the material strain and stress tensors defined by

\[
\Sigma := \Lambda^T \mathbf{P} \quad \in \quad T^*_X \mathcal{B}_{00} \otimes T_X \mathcal{B}_{00} \quad (3.152a)
\]

\[
\mathbf{H} := \Lambda^T \mathbf{F} - \mathbf{I} \quad \in \quad T_X \mathcal{B}_{00} \otimes \mathcal{T}^*_X \mathbf{B}_{00} \quad (3.152b)
\]

The material stress tensor \(\Sigma = \Sigma_{ij} \hat{E}_i \otimes \hat{E}_j\) can be identified with the material form of the FPK stress tensor as given in Eq. (3.88b) and its work conjugated \(\mathbf{H} = H_{ij} \hat{E}_i \otimes \hat{E}_j^*\) can be identified with the material form of the strain measure \(\mathcal{E}\) given in Eq. (3.68b). Both \(\Sigma\) and \(\mathbf{H}\) are nonsymmetric tensors and are not named in continuum mechanics.

Let us to consider the constitutive relation between the components of the stress tensor \(\Sigma\) and the components of \(\mathbf{H}\) given by

\[
\Sigma = \mathcal{C}_{\text{me}} : \mathbf{H}
\]

(3.153)

where the elasticity tensor \(\mathcal{C}_{\text{me}} \in T^*_X \mathcal{B}_{00} \otimes T_X \mathcal{B}_{00} \otimes T^*_X \mathcal{B}_{00} \otimes T_X \mathcal{B}_{00}\) is a fourth order tensor. For the purpose of establish a linear constitutive relation for the strain and stress measures acting on the face of the current cross section (see Fig. 3.3) we introduce the following simple linear constitutive relations in component form:

\[
\Sigma_{11} = EH_{11}; \quad \Sigma_{21} = GH_{21}; \quad \Sigma_{31} = GH_{31}
\]

(3.154)

where \(E\) denote the elastic modulus and \(G\) the shear modulus. The constitutive relations of Eq. (3.154) correspond to commonly named the engineering approach. We note that the vector \(\hat{H}_{11} \hat{E}_1\) corresponds to \(\hat{\mathcal{E}}\) as given in Eq. (3.68b). Thus, we could to express the material stress vector \(\Sigma_{i1} \hat{E}_i^*\) as

\[
\Sigma_{i1} \hat{E}_i^* = (E \hat{E}_1^* \otimes \hat{E}_1^* + G \hat{E}_2^* \otimes \hat{E}_2^* + G \hat{E}_3^* \otimes \hat{E}_3^*) \hat{\mathcal{E}}.
\]

(3.155)
Comparing the preceding equation with Eq. (3.87) and the material stress tensor \(\Sigma \), Eq. (3.152a), we get the material form of the stress vector at the current cross section

\[
\Sigma_{i1} \hat{E}_i^* = \Lambda^T \hat{P}_1 = \hat{P}_1^m. \tag{3.156}
\]

Now we can substitute the above equation into the formula of the stress resultant vector \(\hat{n}^m \), obtained materializing Eq. (3.95c), that yields after integrating over the cross section to the following result:

\[
\hat{n}^m = \int_{A_{00}} \Sigma_{i1} \hat{E}_i^* dA_{00} = (E A_{00} \hat{E}_1^* \otimes \hat{E}_1^* + G A_{00} \hat{E}_\beta^* \otimes \hat{E}_\beta^*) \hat{\dot{\Sigma}} \in T_X^* B_{00}. \tag{3.157}
\]

Similarly, we may derive the stress couple vector \(\hat{m}^m \), obtained materializing Eq. (3.97c), as

\[
\hat{m}^m = \int_{A_{00}} \bar{\hat{e}} C_{me} \dot{\hat{\Sigma}} dA_{00} \hat{\dot{\Sigma}} = \left[\int_{A_{00}} \bar{\hat{e}} C_{me} \dot{\hat{\Sigma}} dA_{00} \right] \hat{\dot{\Sigma}} - \left[\int_{A_{00}} \bar{\hat{e}} C_{me} \dot{\hat{\Sigma}} dA_{00} \right] \hat{\dot{\Omega}}
\]

\[
\hat{m}^m = \left[(G(-1)^\beta \int_{A_{00}} \xi_\beta dA_{00}) \hat{E}_1^* \otimes \hat{E}_\alpha^* + (E(-1)^\alpha \int_{A_{00}} \xi_\alpha dA_{00}) \hat{E}_\beta^* \otimes \hat{E}_1^* \right] \hat{\dot{\Sigma}}
\]

\[
+ \left[(G_{r_0011} \hat{E}_1^* \otimes \hat{E}_1^* + E_{r_0001} \hat{E}_\alpha^* \otimes \hat{E}_\beta^*) \hat{\dot{\Omega}} \right]. \tag{3.158}
\]

In Eq. (3.158) the formula for the material form second moment of inertia \(I_{\rho_{00}} \) given in Eqs. (3.134) and (3.135) has been used.

3.7.2 General formulation for the linear elastic case

Due to the fact that the reference configuration is describe using Euclidean coordinates, it will be assumed that \(\{ \hat{E}_1 \} \cong \{ \hat{E}_i \} \) by simplicity in the notation. A general expression for the linear elastic relation between the material form of the FPK stress vector, \(\hat{P}_1^m \) given in Eq. (3.88c), and its energetically conjugate strain vector, \(\hat{\dot{E}}_n \) given Eq. (3.69), at any material point \((S, \xi_\beta) \in [0, L] \times A(S)\) on the current rod cross section for a hyperelastic but not necessarily isotropic nor homogeneous material can be given by

\[
P_i^m = [P_i^m \hat{E}_i] \cdot \hat{E}_i = \hat{P}_i^m \cdot \hat{E}_i = g_0^{-1} C_{me} \dot{\epsilon}_{nj}; \quad C_{me} = \tilde{\alpha} C_{me}; \quad \tilde{\alpha} = \tilde{\alpha}(S, \xi_\beta) \tag{3.159}
\]

where \(C_{me} = C_{me} \) are the general elasticity constants for a given material point and they can vary over the material point considered; \(C_{me} = C_{me} \) are the arbitrarily chosen reference material constants and do not vary over different material points; \(\tilde{\alpha} \) is a scalar factor between \(C_{me} \) and \(C_{me} \) depending on the material point.

Then, the linear constitutive relation for a given material point on the current rod cross
section may be described in the material and spatial settings as
\[
\dot{P}_1^m = g_0^{-1}C_{ij}^m \hat{E}_i \otimes \hat{E}_j, \quad C_{ij}^m = C_{ij}^{me} \hat{E}_i \otimes \hat{E}_j, \quad (3.160a)
\]
\[
\dot{P}_1 = g_0^{-1}C_{ij}^{se} \hat{\epsilon}_n, \quad C_{ij}^{se} = C_{ij}^{se} \hat{t}_i \otimes \hat{t}_j, \quad (3.160b)
\]
respectively.

Substituting Eq. (3.160b) into the formulae for the components \(N_i \) and \(M_i \) of the stress resultant \(\hat{n} \) and stress couple \(\hat{m} \) vectors in Eqs. (3.95a) to (3.97d) and using the formulae for the components \(\hat{\epsilon}_n \) without the initial curvature correction term in Eq. (3.59), it is possible to obtain, following analogous procedures as those given in Eqs. (3.157) and (3.158), the reduced linear constitutive relations as
\[
\dot{\hat{n}} = C_{nn}^{se} \hat{\gamma}_n + C_{nm}^{se} \hat{\omega}_n \quad (3.161a)
\]
\[
\dot{\hat{m}} = C_{mm}^{se} \hat{\gamma}_n + C_{nm}^{se} \hat{\omega}_n \quad (3.161b)
\]
for the spatial description, and
\[
\dot{\hat{n}}^m = C_{nn}^{me} \hat{\gamma}_n + C_{nm}^{me} \hat{\Omega}_n \quad (3.161c)
\]
\[
\dot{\hat{m}}^m = C_{mm}^{me} \hat{\gamma}_n + C_{nm}^{me} \hat{\Omega}_n \quad (3.161d)
\]
for the material description (see Eqs. (3.100a) and (3.100b)); where
\[
C_{pq}^{se} = [C_{pq}^{me}]_{ij} \hat{t}_i \otimes \hat{t}_j, \quad C_{pq}^{me} = [C_{pq}^{me}]_{ij} \hat{E}_i \otimes \hat{E}_j, \quad C_{pq}^{se} = \Lambda C_{pq}^{me} \Lambda^T \quad (3.162)
\]
and the subscripts \(p, q \in \{m, n\} \). Explicit expressions for the general coefficients of Eqs. (3.161c) and (3.161d) are given in Appendix B.

The simplest case of the cross sectional elasticity constants is obtained when the rod material is isotropic and homogeneous
\[
P_{1}^m = g_0^{-1}E \epsilon_{n1}; \quad P_{2}^m = g_0^{-1}G \epsilon_{n2}; \quad P_{3}^m = g_0^{-1}G \epsilon_{n3} \quad (3.163)
\]
i.e. \(\bar{\alpha} = 1 \) and \(C_{11}^{me} = E, C_{22} = C_{33} = G, C_{ij}^{m} = \delta_{ij} \) otherwise. Then, the cross section elasticity constants became
\[
[C_{nn}^{me}]_{i \otimes i} = [C_{nn}^{me}]_{i \otimes i} = \begin{bmatrix} E A_{00} & 0 & 0 \\ 0 & G k_s A_{00} & 0 \\ 0 & 0 & G k_s A_{00} \end{bmatrix} \quad (3.164a)
\]
\[
[C_{nm}^{me}]_{i \otimes j} = [C_{nm}^{me}]_{i \otimes j} = \begin{bmatrix} 0 & E S_2 & - E S_3 \\ -G S_2 & 0 & 0 \\ G S_3 & 0 & 0 \end{bmatrix} \quad (3.164b)
\]
3.8. External loads

The applied external loads can be very complex in practice, for example when interaction between structure and environment is considered, such as the forces derived from fluid–structure interaction for aircrafts or the effects of earthquakes on civil engineering structures (see e.g. [93]) among many others. The complexity in the form of external forces acting on a given structure enforces to develop simplified models for simulating the real phenomena.

3.8.1 Point loads and concentrated moments

Clearly if a point load is applied in a globally fixed direction, the conventional procedures apply [86]. Consequently, we will concentrate on follower loads i.e. loads which maintain the position relative to the rod configuration. In general, this type of loads can be defined as referred to the local frame \(\{ \hat{t}_i \} \), therefore, an applied point load can be described by

\[
P_f = P_{fi} \hat{t}_i
\] (3.165)

the corresponding contribution to the external virtual work of Eq. (3.142) is

\[
G_{\text{ext}} = \delta \hat{\varphi} \cdot (P_{fi} \hat{t}_i)
\] (3.166)
where the contribution to the external virtual work is configuration dependent due to the fact that the components of the follower point load are given with respect to a movable frame.

By the other hand, applied moments about fixed axes, \(\hat{M}_f = M_f \hat{e}_i \), are non-conservative (for a demonstration see e.g. [86, 150]) i.e. the work done by a mechanical system due to the application of a concentrated moment is path-dependent. The corresponding contribution to \(G_{\text{ext}} \) is

\[
G_{\text{ext}} = \delta \hat{\theta} \cdot (M_f \hat{e}_i)
\]

(3.167)

As it will be shown in a next chapter the non-conservative nature of concentrated moments leads to a non-symmetric tangent stiffness in the linearized problem.

3.8.2 Distributed loads

Three types of distributed loads, in the form of load densities, are considered, following the proposition given by Kapania and Li [167, 168]:

(I) The applied load density is given per unit of unstressed arch–length of curved configuration referred to the spatially fixed frame \(\{ \hat{e}_i \} \). One manner to define the self-weight of the structure is employing this kind of loads, but it has the disadvantage that is difficult to define for cross sections composed with different materials. Therefore, the differential force \(d\hat{f}_g \) and moment \(d\hat{m}_g \), exerted on the differential element \(dS \) are calculated as:

\[
d\hat{f}_g = \lambda \hat{N}_g(S)dS
\]

(3.168a)

\[
d\hat{m}_g = \lambda \hat{M}_g(S)dS,
\]

(3.168b)

respectively; where \(\hat{N}_g(S) \) and \(\hat{M}_g(S) \) are the corresponding densities and \(\lambda \in \mathbb{R} \) is a proportional loading factor. This type of loading is deformation invariant and usually conservative [180, 86].

(II) The applied load density is given as a constant in space in the sense that the load acting on unit projection length \(ds_d \) of the deformed arch–length \(ds \) corresponding to the undeformed arch–length \(dS \) at a material point \(S \) on the mid-curve onto any plane with normal \(\hat{d}_N = \hat{N}_d/||\hat{N}_d|| \in \mathbb{R}^3 \) is constant, given by

\[
d\hat{f}_d = \int_0^\lambda \hat{N}_d ds_d d\lambda
\]

(3.169)

where \(\hat{N}_d \) is constant with respect to both space and the rod itself; however, \(ds_d \) depends on the deformation and motion of the rod. \(ds_d \) relates the deformation and undeformed arch–length element \(dS \) as well as the direction of \(\hat{N}_d \) by

\[
ds_d = (\hat{d}_N \times \hat{\varphi}_s) \times \hat{d}_N \cdot \hat{\phi}_s dS = -[\hat{d}_N \hat{\varphi}_s] \cdot \hat{\phi}_s dS.
\]

Assuming that extension or elongation of the rod mid-curve is small and can be
ignored, \(i.e. ds_d = dS\), the above equation for \(ds_d\) can be simplified as

\[
ds_d = -[d_{\bar{N}} \hat{\varphi}, S] \cdot \hat{\varphi}, S \, dS.
\] (3.170)

Therefore, Eq. (3.170) can be rewritten as [180]

\[
d\hat{f}_d = \mathcal{N}_d \int_{0}^{\lambda} (-[d_{\bar{N}} \hat{\varphi}, S] \cdot \hat{\varphi}, S) \, d\lambda dS = \lambda c_N \mathcal{N}_d dS
\] (3.171)

where

\[
c_N = -\frac{1}{\lambda} \int_{0}^{\lambda} [d_{\bar{N}} \hat{\varphi}, S] \cdot \hat{\varphi}, S \, d\lambda.
\]

Similarly, we may define the differential moment \(d\hat{m}_d\), exerted on the arc–element \(dS\) of the rod mid–curve, as

\[
d\hat{m}_d = \lambda c_M \mathcal{M}_d dS
\] (3.172)

where

\[
\hat{d}_M = \mathcal{M}_d/\|\mathcal{M}_d\| \in \mathbb{R}^3
\]

\[
c_M = -\frac{1}{\lambda} \int_{0}^{\lambda} [d_{\bar{M}} \hat{\varphi}, S] \cdot \hat{\varphi}, S \, d\lambda.
\]

Note that both \(d\hat{f}_d\) and \(d\hat{m}_d\) are dependent on deformation. The force density \(\mathcal{N}_d\) may be a good approximation for loads acting on a uniform rod when loading process is addressed and the load itself can cause relatively large displacements/rotations. Therefore, this kind of loading can be non conservative.

Figure 3.8: Different types of distributed applied loadings.
The differential force \(df_p \) and moment, \(d\hat{m}_p \), exerted on the arch–length \(dS \) are calculated as follows:

\[
\begin{align*}
\hat{f}_p &= \lambda \hat{N}_p dS = \lambda \Lambda \hat{N}_p dS \quad (3.173a) \\
\hat{m}_p &= \lambda \hat{M}_p dS = \lambda \Lambda \hat{M}_p dS \quad (3.173b)
\end{align*}
\]

where \(\hat{N}_p = \hat{N}_p e_j \) and \(\hat{M}_p = \hat{M}_p e_j \) are given in the material form. This type of loads depends on the rotational displacements and, therefore, is non-conservative.

In Fig. 3.8 are show the three types of applied distributed loads. Now it is possible to define

\[
\begin{align*}
\hat{N}_{\text{dist}} &= \lambda [\hat{N}_g + c_N \hat{N}_d + \hat{N}_p]
\end{align*}
\]

as the force density and the moment density along the rod mid–curve at current loading respectively.

Table 3.2 summarize the different types of loading. Note that all the components of the applied load densities are constant for given \(S \) in load types I and III and \(s_d \) in type II.

<table>
<thead>
<tr>
<th>Load type</th>
<th>Force Density</th>
<th>Moment Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(\hat{N}g(S) = N{gj}(S)\hat{e}_j)</td>
<td>(\hat{M}g(S) = M{gj}(S)\hat{e}_j)</td>
</tr>
<tr>
<td>II</td>
<td>(\hat{N}d(s_d) = N{dj}(s_d)\hat{e}_j)</td>
<td>(\hat{M}d(s_d) = M{dj}(s_d)\hat{e}_j)</td>
</tr>
<tr>
<td>III</td>
<td>(\hat{N}p(S) = \hat{N}{pj}(S)\hat{t}_j)</td>
<td>(\hat{M}p(S) = \hat{M}{pj}(S)\hat{t}_j)</td>
</tr>
</tbody>
</table>

3.8.3 Body loads

In Section 3.6 it has been written the balance law Eqs. (3.119) and (3.133), which include the external loads due to a body forces per unit of volume \(\hat{b} \) in the terms \(\hat{N} \) and \(\hat{M} \). The evaluation of these external body forces at element level require the numerical integration of the following integrals

\[
\begin{align*}
\hat{N}_{bd} &= \int_0^L \int_{A_0} g_0(\rho_0 \hat{b})(S, \xi_\beta) dV_0 \in T^*_{x_0} B_t \quad (3.175) \\
\hat{M}_{bd} &= \int_0^L \int_{A_0} \mathcal{F} g_0 \rho_0 \hat{b}(S, \xi_\beta) dV_0 \in T^*_{x_0} B_t \quad (3.176)
\end{align*}
\]

in analogous manner as explained in §3.6 if the mass centroid of the cross section is chosen as the reference curve for the rod, the term \(\hat{M}_{bd} \) in Eq. (3.176) vanish.
3.8.4 Seismic loading

If the structure is subjected to the base acceleration corresponding to a seismic input, the acceleration of each material point can be written as the sum of the acceleration of the material point with reference to the fixed inertial frame \(\{ \hat{E}_i \} \), Eq. (3.32a) or (3.31b), and the acceleration of the inertial frame itself. It worth to note that usually in earthquake engineering seismic inputs are considered as a record of three base accelerations acting in three independent directions and, therefore, any rotational acceleration of the inertial frame itself have to be considered in the calculations. The resulting expression for the acceleration of the material point \((S, \xi_\beta) \) in the spatial description is given by

\[
\ddot{x} = \ddot{\varphi} + \ddot{\alpha} + \left[\ddot{\alpha} + \dddot{\varphi} \right] \hat{T} \in T \mathcal{B}_t
\]

(3.177)

where the vector \(\ddot{\alpha} \) corresponds to the translational acceleration of the fixed reference frame \(\{ \hat{E}_i \} \) (see Fig. 3.9).

Figure 3.9: Seismic acceleration of the material point \((S, \xi_\beta) \).

In this case Eqs. (3.119) and (3.119) are rewritten to consider the additional acceleration term \(\ddot{\alpha} \) as

\[
\dot{n}_S + \dot{N} = A_{p_0} (\ddot{\varphi} + \ddot{\alpha}) + \dddot{\varphi}_n \hat{s}_{p_0} + \dddot{\varphi}_n \hat{v}_n \hat{s}_{p_0}
\]

(3.178)

\[
\dot{m}_S + \dot{\varphi}_S \times \dot{n} + \dot{M} = \hat{s}_{p_0} \times (\dddot{\varphi} + \dddot{\alpha}) + \mathcal{I}_{p_0} \dddot{\alpha}_n + \dddot{v}_n \mathcal{I}_{p_0} \dddot{v}_n
\]

(3.179)

As it has been said the terms \(\dot{A}_1 \) and \(\dot{A}_2 \) can be neglected if the reference curve of the rod coincide with the mass centroid or if the eccentricity between the mechanical center of the section and the mass centroid is small. In this case the seismic acceleration only affects to the linear momentum balance condition. The seismic acceleration vector \(\ddot{\alpha} \) is independent of the material point and can be treated as an additional body force adding it to the term \(\dot{N} \) on the right side of Eq. (3.178). Therefore, Eq. (3.175) can be employed to calculate the total body load acting on the rod.
Chapter 4

Constitutive nonlinearity

As it has been mentioned in previous sections, most of the works treating geometrically nonlinear rod theories have considered hyperelastic, isotropic and homogeneous material properties [104, 138, 277, 278] considering rather simple reduced constitutive equations. Normally, in engineering problems we are interested in knowing the behavior of the structures beyond the linear elastic case. Therefore, the assumption linearity of the constitutive relations may be in general not applicable in practical studies of engineering structures. Additionally, the viscous damping reduces the effects of the dynamic actions on structures, which has been considered, for example, in many seismic codes. Therefore, realistic studies focused on the simulation of the nonlinear dynamics of beam structures should consider inelastic rate dependent constitutive relations as well as geometric effects.

This chapter is focused on the treatment given in this work to constitutive nonlinearity. To this end, material points on the cross sections are considered as formed by a composite material corresponding to a homogeneous mixture of different components, each of them with its own constitutive law. The composite behavior is obtained by means of the mixing theory for composite materials. A schematic representation of these ideas is shown in Fig. 4.1 where a typical transversal cut throughout a cross section of a rod in the current configuration shows a material point that has associated a composite which is divided in a set of simple materials represented schematically in the zoom view by different zones hatched with points, lines, etc. The mechanical response of the composite is obtained supposing a rheological model where all the components work in parallel.

Two types of nonlinear constitutive models for simple materials are used in this work, corresponding to the damage and the plasticity models, both of them formulated in the rate independent and rate dependent forms and in a manner that is consistent with the laws of the thermodynamics for adiabatic processes [185, 184]. They have been chosen due to the fact that combining different parameters of the models a wide variety of mechanical behaviors can be reproduced, e.g. concrete, fiber reinforced composites and metals among others [124, 24, 236]. This chapter is organized starting with the formulation of the rate independent models for components; rate dependent behavior and viscosity is then included by means of a Maxwell model [234]. The mixing rule for composites is then introduced along with a continuum version of the cross sectional analysis.

Considering that the components of any spatial vector or tensor in the local frame $\{\hat{t}_i\}$ are the same as those of their corresponding material forms described in the material frame
\{\hat{E}_i\}$, in this section the constitutive models are formulated in terms of the material form of the FPK stress vector, \hat{P}_m^1, and the strain and strain rate measures \hat{E}_n and \dot{S}_n, respectively.

We start assuming that each component of the composite associated to a material point is described by means of a nonlinear strain-stress relation; by the moment this relation can be considered rate independent. Considering Eqs. (3.88a) to (3.88f) for the material form of the FPK stress vector referred to a differential volume of the curved reference rod, we can suppose a relation of the form

$$
\hat{P}_m^1 = \hat{P}_m^1 (g_0^{-1} \hat{E}_n).
$$

(4.1)

It is also possible to assume that there exist a linearized relation between linear increments of the material forms of \hat{P}_m^1 and \hat{E}_n, given by the tangential constitutive tensor in material description C^{mt}, as

$$
\delta \hat{P}_m^1 = g_0^{-1} C^{mt} \delta \hat{E}_n; \quad C^{mt}_{ij} = g_0 (\hat{P}_m^1, \hat{E}_n).
$$

(4.2)

where the spatial form of the tangential constitutive tensor is obtained as $C^{st} = \Lambda C^{mt} \Lambda^T$.

Explicit expressions for Eqs. (4.1) and (4.2) depend on the constitutive formulation assigned to the material considered. Additionally, taking into account the relation between material and co-rotated linear increments by means of employing the push–forward operation by the rotation tensor Λ we have that

$$
\delta [\hat{P}_1] = \Lambda \delta \hat{P}_1 = \Lambda [g_0^{-1} C^{mt} \delta \hat{E}_n] = g_0^{-1} C^{st} \delta [\hat{E}_n].
$$

(4.3)

However, attention should be paid that the stress vector must be determined according to the specific constitutive laws described in Eq. (4.1) for the general case.
4.1 Softening materials and strain localization

As noted by Armero and Ehrlich [17, 16] the failure of framed structures is normally determined by the localization of the degradation of the mechanical properties of the materials in critical cross sections. This process usually occurs when materials presenting softening are associated to the points on the cross section. Therefore, the strain localization phenomenon can occur on specific zones of the rod for certain loading levels [230]. Some authors have confined the dissipative zone to the existence of a band with defining a characteristic length of the material, which is called the size effect appearing in softening zones before the failure [38, 39] and have given correlations with complex redistribution of forces and moments in redundant structures. In any case, softening behavior of points on the cross section implies the induction of a softer response at cross sectional level and, in this manner, the strain localization induced at material point level is translated to the cross sectional force-displacement and moment-curvature relationships leading to the classical concept of the formation of plastic hinges (see e.g. [77, 87, 93, 170] among many others).

Several approaches has been developed to treat the failure in framed structures, which cover from the theoretical studies to more practical engineering applications. By one hand, some classical techniques in structural analysis such as the limits analysis do not consider a softening response on the hinges after the yielding threshold of the cross section has been reached [187]. By the other hand, the inelastic analysis of rod structures in softening regime has been developed considering concentrated and distributed models (see §2 for a more complete survey about this topic).

In this work, cross sectional degradation with softening is modeled considering that a specific length of the rod concentrates the large localized strains (see Fig. 4.2a) and the force-displacement and/or moment-curvature relations are estimated throughout cross sectional integration of the stress field (see Eqs. (3.94a) and (3.94b)). In this sense, the present approach fall in the category of distributed models, where inelasticity can occurs elsewhere in a given element. A similar approach has been followed by several authors

![Figure 4.2: Softening volume in the rod element.](image)
in recent works as for example, Bratina et al. [63] or Coleman and Spacone [78] (and reference therein). Among the main advantages of this approach it is possible to mention:

(i) The definition of a finite length associated to the softening zone allows to simulate the distributed damage observed in some composite structures such as reinforced concrete in tension where numerous micro-cracks connect each with the others along a finite zone before the collapse of an element. In the case of compression a distributed damage zone appears before the shear band dominate the global response of the element [78].

(ii) The cross sectional force-displacement and/or moment-curvature relations are deduced \textit{a posteriori} depending on the material distribution and their corresponding constitutive laws. In Fig. 4.2a a typical cross section associated to the volume of the beam where strain localization will have place has been depicted. The beam is subjected to a simple flexural moment M. In the case (i) the stress distribution in the beam depth is irregular in the sense that it does not follows the same path as the strain according to the distribution of materials and their constitutive laws. On the right side it has been drawn the corresponding moment-curvature, $M - \theta$, relation. If M is increased, case (ii), the stress distribution changes and some points suffer a great degradation of their mechanical properties producing the softening branch in the corresponding $M - \theta$ diagram.

In general, the structural response becomes dependent on the mesh size and therefore, appropriated corrections has to be made. The \textit{mesh independent response} of the structure is obtained regularizing the constitutive equations according to the energy dissipated in the corresponding softening volume, limiting this value to the specific fracture energy of the material [203]. Details about the regularization process can be consulted in [205, 234, 232]. Chapter 7 devoted to the finite element implementation of the present formulation allows to identify the mentioned specific length with the characteristic length associated to an integration point on a finite element.

Some criticisms can be made to the present approach in what regards to treatment given to the softening response of rod structures, \textit{e.g.} the fact that even in the case that the characteristic length of the materials exists (intrinsically, as a material property), this length should be largely smaller that the scales considered in the meshes [17]. However, among the above described capabilities, the present approach has been considered due to its versatility to be included in a standard finite element code for beam elements. Other alternative procedures based on considering the \textit{strong discontinuity approach}1 on the generalized displacement field of the beam can be consulted in [17, 16, 18]. In that case, the proposed approach leads to the regularization of the mathematical problem and to an solution with physical significance. However, at the author knowledge at the moment these results do not have been extended to cover some important characteristics of the mechanical behavior of the structures such as those described in (i) and (ii).

1For a detailed treatment of this topics, consult [10, 230, 229] and references therein.
4.2 Constitutive laws simple materials

This section presents thermodynamically consistent formulations for the rate independent and rate dependent versions of the damage and plasticity models which allow their inclusion in the present geometrically exact rod model.

4.2.1 Degrading materials: damage model

The model here presented corresponds to an adaptation of the isotropic damage model proposed by Oliver et al. [228] and based on the early ideas of Kachanov [165]; in a way that it is consistent with the kinematic assumptions of the rod (see §3). The behavior of most of the degrading materials is presented attending to the fact that micro-fissuration in geomaterials occurs due to the lack of cohesion between the particles, among other processes. Different micro-fissures connect each with others generating a distributed damage zone in the material. After a certain loading level is reached a fractured zone is clearly defined2 [123, 165]. In the 3D case, the directions of the dominating fissures are identified from the trajectories of the damaging points.

Considering a representative volume3 $B \in \mathbb{R}^3$ of material in the reference configuration and an arbitrary cut with normal \hat{k}, as it has been shown in Fig. 4.4, the undamaged area is S_n and \bar{S}_n is the effective area obtained subtracting the area of the defects from S_n. Therefore, the damage variable associated to this surface is

$$d_n = \frac{S_n - \bar{S}_n}{S_n} = 1 - \frac{\bar{S}_n}{S_n} \in [0, 1]$$ (4.4)

which measures the degradation level and is equal to zero before loading. When damage increases, the resisting area (also called effective) $\bar{S}_n \to 0$, which implies that $d_n \to 1$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{damage_model.png}
\caption{Schematic representation of the damage model.}
\end{figure}

The material form of the effective stress vector \hat{P}^m_1 is constructed from the material

2In this sense, the fractured zone is composed by the geometric place of all completely damaged points.

3A volume big enough to contain a large number of defects but small enough to be considered representative of the behavior of a material point.
description of the FPK stress vector \hat{P}_1^m starting from the fact that the material form of the force \hat{F}_k acting in the section S_n, can be written as [123]

$$\hat{F}_k = \hat{P}_1^m S_n = \hat{P}_1^m \bar{S}_n$$ \hspace{1cm} (4.5)

and considering Eq. (4.4) we have that

$$\hat{P}_1^m = (1 - d) \hat{P}_1^m = (1 - d) \mathbf{C}^{me} \hat{\xi}_n.$$ \hspace{1cm} (4.6)

While damage is increasing, the effective area resists the external loads and, therefore, \hat{P}_1^m is a quantity more representative of the physical phenomenon. Eq. (4.6) show that the material form of the FPK stress vector is obtained from its linear elastic counterpart (undamaged) $\mathbf{C}^{me} \hat{\xi}_n$ by means of multiplying by degrading factor $(1 - d)$. In this kind of models degradation is introduced by means of the internal state variable $d \in [0, 1]$, called the damage, which measure the lack of secant stiffness of the material as it can be seen in Fig. 4.4.

In this work, a damage model consistent with the kinematic assumption of the rod theory and based on the 3D formulation presented by Oliver et al. [228] is developed. The model has only one internal variable (isotropic) employed for simulating the mechanical degradation of the material. The concept of isotropic damage is used to denote models that consider only one scalar damage parameter which affects to all the components of the elastic constitutive stress tensor avoiding to differentiate between preferential directions in space [123]. This model is based on the earlier ideas of Kachanov (1958) [165] and it presents a good equilibrium between the required complexity for modeling the behavior of softening materials and versatility for being used in large numerical simulations. In this case, fissuration is interpreted as a local effect defined by means of the evolution of a set material parameters and functions which control the beginning and evolution of the damage [228].

One advantage of this kind of model is that it avoids the formulation in terms of directional damage and the fissuration paths are identified a posteriori from the damaged zones. The simple idea above explained allows to employ the damage theory for describing the mechanical behavior of even more complex degrading materials if a special damage function, which considers a differentiated material response for tension or compression, is included in the formulation of the model [123, 279].

4.2.1.a Secant constitutive equation and mechanical dissipation

In the case of thermally stable problems, with no temperature variation, the model has associated the following expression for the free energy density Ψ in terms of the material form of the elastic free energy density Ψ_0 and the damage internal variable d [195]:

$$\Psi(\hat{\xi}_n, d) = (1 - d)\Psi_0 = (1 - d) \left(\frac{1}{2\rho_0} \hat{\xi}_n \cdot (\mathbf{C}^{me} \hat{\xi}_n) \right)$$ \hspace{1cm} (4.7)

where $\hat{\xi}_n$ is the material form of the strain vector, ρ_0 is the mass density in the curved reference configuration and $\mathbf{C}^{me} = \text{Diag}[E, G, G]$ is the material form of the elastic consti-

4.2. Constitutive laws simple materials

tutive tensor, with E and G the Young and shear undamaged elastic modulus. In this case, considering that the *Clausius Planck* (CP) inequality for the *mechanical dissipation* is valid, its local form [185, 195] can be written as

$$
\dot{\Xi}_m = \frac{1}{\rho_0} \hat{P}_m^1 \cdot \hat{E}_n - \dot{\Psi} \geq 0
$$

$$
= \left(\frac{1}{\rho_0} \hat{P}_m^1 - \frac{\partial \Psi}{\partial \hat{E}_n} \right) \cdot \dot{\hat{E}}_n - \frac{\partial \Psi}{\partial d} \dot{d} \geq 0
$$

(4.8)

where $\dot{\Xi}_m$ is the dissipation rate.

For the unconditional fulfilment of the CP inequality and applying the Coleman’s principle, we have that the arbitrary temporal variation of the free variable $\dot{\hat{E}}_n$ must be null [185]. In this manner, the following constitutive relation for the material form of the FPK stress vector acting on each material point of the beam cross section is obtained:

$$
\hat{P}_m^1 = (1 - d) \mathbf{C}^{me} \hat{E}_n = \mathbf{C}^{ms} \hat{E}_n = (1 - d) \hat{P}_{m0}^1
$$

(4.9)

where $\mathbf{C}^{ms} = (1 - d) \mathbf{C}^{me}$ and $\hat{P}_{m0}^1 = \mathbf{C}^{me} \hat{E}_n$ are the material form of the *secant constitutive tensor* and the *elastic* FPK stress vector, respectively.

Inserting the result of Eq. (4.9) into (4.8) the following expression is obtained for the dissipation rate

$$
\dot{\Xi}_m = - \frac{\partial \Psi}{\partial d} \dot{d} = \Psi_0 \dot{d} \geq 0.
$$

(4.10)

Eq. (4.9) shows that the FPK stress vector is obtained from its elastic (undamaged) counterpart by multiplying it by the degrading factor $(1 - d)$. The internal state variable $d \in [0, 1]$ measures the lack of secant stiffness of the material as it can be seen in Fig. 4.4. Moreover, Eq. (4.10) shows that the temporal evolution of the damage \dot{d} is always positive due to the fact that $\Psi_0 \geq 0$.

4.2.1.b Damage yield criterion

By analogy with the developments presented in [24, 124, 236], the damage yield criterion denoted by the scalar value \mathcal{F} is defined as a function of the undamaged elastic free energy density and written in terms of the components of the material form of the undamaged principal stresses, \hat{P}_{m0}^i, as

$$
\mathcal{F} = \mathcal{P} - f_c = [1 + r(n - 1)] \sqrt{\sum_{i=1}^{3} (\hat{P}_{m0}^i)^2} - f_c \leq 0
$$

(4.11a)

where \mathcal{P} is the equivalent (scalar) stress and the parameters r and n given in function of the tension and compression strengths f_c and f_t, respectively; and the parts of the free energy density developed when the tension or compression limits are reached, $(\Psi_L^0)_{T}$ and
Figure 4.4: Differentiated traction compression behavior and evolution of the internal variable.

\[(\Psi_c^0)_L, \text{ respectively. These quantities are defined as} \]

\[(\Psi_{t,c}^0)_L = \sum_{i=1}^{3} \frac{(\pm E_{ni})^{P_{m0}i}}{2\rho_0}, \quad \Psi_L^0 = (\Psi_t^0)_L + (\Psi_c^0)_L \quad (4.11b)\]

\[f_t = (2\rho\Psi_t^0 E_0)^{\frac{1}{2}}_L, \quad f_c = (2\rho\Psi_c^0 E_0)^{\frac{1}{2}}_L \quad (4.11c)\]

\[n = \frac{f_c}{f_t}, \quad r = \frac{\sum_{i=1}^{3} |P_{m0}i|}{\sum_{i=1}^{3} |P_{m0}i|} \quad (4.11d)\]

where \(|u|\) is the absolute value function and \(\langle \pm u \rangle = 1/2(|u| \pm u)\) is the McAuley’s function defined \(\forall u \in \mathbb{R}\).

REMARK 4.1. As it has been shown by Oliver et al. in [228], other kind of damage yield criteria can be used in substitution of \(P\) e.g. Mohr–Coulomb, Drucker–Prager, Von Mises etc, according to the mechanical behavior of the material (see also e.g. Hanganu et al. [124]).

A more general expression equivalent to that given in Eq. (4.11a) [24] is the following, which was originally proposed by Simo and Ju [279]:

\[\mathcal{F} = \mathcal{G}(P) - \mathcal{G}(f_c) \quad (4.12)\]

where \(\mathcal{G}(\bullet)\) is a scalar monotonic function to be defined in such way to ensure that the energy dissipated by the material on an specific integration point is limited to the specific energy fracture of the material [228].
4.2. Constitutive laws simple materials

4.2.1.c Evolution of the damage variable

The evolution law for the internal damage variable d is given by

$$\dot{d} = \dot{\mu} \frac{\partial \bar{F}}{\partial P} = \dot{\mu} \frac{\partial G}{\partial P} \tag{4.13}$$

where $\dot{\mu} \geq 0$ is the damage consistency parameter. Additionally, a damage yield condition $\bar{F} = 0$ and consistency condition $\dot{\bar{F}} = 0$ are defined analogously as in plasticity theory [292]. By one hand, the yield condition implies that

$$P = f_c \tag{4.14a}$$

and the consistency condition along with an appropriated definition of the damage variable expressed in terms of G i.e. $d = G(f_c)$, allows to obtain the following expression for the damage consistency parameter:

$$\dot{\mu} = \dot{\bar{P}} = \dot{f_c} = \frac{\partial P}{\partial P_{01}} \cdot \dot{P}_{01} = \frac{\partial P}{\partial P_{01}} \cdot C_{me} \dot{\hat{E}}_n. \tag{4.15}$$

Details regarding the deduction of Eqs. (4.14b) to (4.15) can be consulted in Refs. [24, 124]. These results allow to rewrite Eqs. (4.10) and (4.13) as

$$\dot{d} = \frac{dG}{dP} \dot{P} \tag{4.16a}$$

$$\dot{\Xi}_m = \Psi_0 G(P) = \Psi_0 \left[\frac{dG}{dP} \frac{\partial P}{\partial P_{01}} \right] \cdot C_{me} \dot{\hat{E}}_n. \tag{4.16b}$$

Finally, the Kuhn-Thucker relations: (a) $\dot{\mu} \geq 0$ (b) $\bar{F} \leq 0$ (c) $\dot{\mu} \bar{F} = 0$, have to be employed to derive the unloading–reloading conditions i.e. if $\bar{F} < 0$ the condition (c) imposes $\dot{\mu} = 0$, on the contrary, if $\dot{\mu} > 0$ then $\bar{F} = 0$.

4.2.1.d Definition of G

In an analogous manner as Barbat et al. in [24] and Oliver et al. [228], the following expression is employed for the function G of Eq. (4.12):

$$G(\chi) = 1 - \frac{\tilde{G}(\chi)}{\chi} = 1 - \frac{\chi^*}{\chi} e^{\kappa(1-\frac{\chi}{\chi^*})} \tag{4.17}$$

where the term $\tilde{G}(\chi)$ gives the initial yield stress for certain value of the scalar parameter $\chi = \chi^*$ and for $\chi \to \infty$ the final strength is zero (see Fig. 4.5).

The parameter κ of Eq. (4.17) is calibrated to obtain an amount of dissipated energy equal to the specific fracture energy of the material when all the deformation path is followed.

Integrating Eq. (4.8) for an uniaxial tension process with a monotonically increasing
Figure 4.5: Function $\mathcal{G}(\chi)$.

Load, and considering that in this case the elastic free energy density can be written as $\Psi_0 = \mathcal{P}^2/(2n^2E_0)$ [24], it is possible to obtain that the total energy dissipated is [228]

$$\Xi^{\text{max}}_t = \int_{\mathcal{P}^*}^{\infty} \frac{\mathcal{P}^2}{2\rho_0n^2E_0} d\mathcal{G}(\mathcal{P}) = \frac{\mathcal{P}^2}{2\rho_0E_0} \left[\frac{1}{2} - \frac{1}{\kappa} \right].$$

Therefore, the following expression is obtained for $\kappa > 0$

$$\kappa = \frac{1}{\frac{\Xi^{\text{max}}_t}{f_c} - \frac{1}{2}} \geq 0 \quad \text{(4.19)}$$

where it has been assumed that the equivalent stress tension \mathcal{P}^* is equal to the initial damage stress f_c. The value of the maximum dissipation in tension Ξ^{max}_t is a material parameter equal to the corresponding fracture energy density g_f, which is derived from the fracture mechanics as

$$g_f^d = G_f^d/l_c$$

where G_f^d the tensile fracture energy and l_c is the characteristic length of the fractured domain employed in the regularization process [186]. Typically, in the present rod theory this length corresponds to the length of the fiber associated to a material point on the beam cross section (see §4.1).

An identical procedure gives the fracture energy density g_c^d for a compression process yielding to the following expressions for κ

$$\kappa = \frac{1}{\frac{\Xi^{\text{max}}_c}{f_c} - \frac{1}{2}} \geq 0. \quad \text{(4.21)}$$

Due to the fact that the value of κ have to be the same for a compression or tension test, we have that

$$\Xi^{\text{max}}_c = n^2\Xi^{\text{max}}_t. \quad \text{(4.22)}$$
4.2. Constitutive laws simple materials

4.2.1.e Tangential constitutive tensor

Starting from Eq. (4.9) and after several algebraic manipulations which can be reviewed in [24, 124], we obtain that the material form of the tangent constitutive tensor \mathbf{C}^{mt} can be calculated as

$$
\delta \hat{\mathbf{P}}^m_1 = \mathbf{C}^{ms} \delta \hat{\mathbf{E}}_n + \delta \mathbf{C}^{ms} \hat{\mathbf{E}}_n.
$$

(4.23)

Considering

$$
D \mathbf{C}^{ms} \cdot \delta \mathbf{d} = \left. \frac{d}{d\beta} \left[(1 - (d + \beta \delta d) \mathbf{C}^{me} \right) \right|_{\beta=0} = -\delta d \mathbf{C}^{me}
$$

(4.24)

where $\beta \in \mathbb{R}$ and the definition of directional (Fréchet) derivative (see §A.21 of Appendix A) has been used to calculate the linear increment in the material form of the constitutive tensor. Using the results of Eqs. (4.13) and (4.15) in linearized form one obtains

$$
\delta d \mathbf{C}^{me} \hat{\mathbf{E}}_n = \frac{\partial \mathbf{G}}{\partial \mathbf{P}} \left[\frac{\partial \mathbf{P}}{\partial \hat{\mathbf{P}}^m_{01}} \cdot (\mathbf{C}^{me} \delta \hat{\mathbf{E}}_n) \right] \hat{\mathbf{P}}^m_{01}
$$

(4.25)

which after using Eq. (A.52) of Def. A.13 of Section A.3 and replacing in Eq. (4.23) yields to

$$
\delta \hat{\mathbf{P}}^m_1 = \mathbf{C}^{mt} \delta \hat{\mathbf{E}}_n = \left[(1 - d) \mathbf{I} - \frac{d \mathbf{G}}{d \mathbf{P}} \hat{\mathbf{P}}^m_{01} \otimes \frac{\partial \mathbf{P}}{\partial \hat{\mathbf{P}}^m_{01}} \right] \mathbf{C}^{me} \delta \hat{\mathbf{E}}_n
$$

(4.26)

where \mathbf{I} is the identity tensor. It is worth noting that \mathbf{C}^{mt} is nonsymmetric and it depends on the elastic FPK stress vector. Note that no explicit expression has been given for $\delta \hat{\mathbf{E}}_n$ what will be done in §5 devoted to linearization.

A backward Euler scheme is used for the numerical integration of the constitutive damage model. The flow chart with the step-by-step algorithm used in numerical simulations is shown in Table 4.1.

4.2.2 Rate dependent effects

In this section, the rate independent damage model presented in the previous section is extended to consider viscosity and, as it will be shown, the same formulation can be directly applied to visco elasticity neglecting the damage internal variable. For the case of materials with a visco plastic constitutive equation, reference [285] can be consulted and, therefore, those results are omitted here. In an analogous way as for the inviscid case, the formulation of the rate dependent damage model is carried out in terms of the material forms of the FPK stress vector $\hat{\mathbf{P}}^m_1$ and the strain and strain rate vectors $\hat{\mathbf{E}}_n$ and $\hat{\mathbf{S}}_n$, respectively.

The rate dependent behavior of a compounding material is considered by means of using the Maxwell model [123, 234]. In this case, the material form of the FPK stress vector $\hat{\mathbf{P}}^m_1$ is obtained as the sum of a rate independent part $\hat{\mathbf{P}}^m_1$ and a viscous component $\hat{\mathbf{P}}^{mv}_1$ as

$$
\hat{\mathbf{P}}^m_1 = \hat{\mathbf{P}}^m_1 + \hat{\mathbf{P}}^{mv}_1 = (1 - d) \mathbf{C}^{me} \hat{\mathbf{E}}_n + \eta \hat{\mathbf{S}}_n = (1 - d) \mathbf{C}^{me} \hat{\mathbf{E}}_n + \eta \hat{\mathbf{S}}_n
$$

(4.27)
Table 4.1: Flow chart for the damage model

1. **INPUT:** material form of the strain vector \(\dot{\varepsilon}_n \) existing on a given integration point on the beam cross section

2. Compute the material form of the elastic (undamaged) FPK stress vector, at the loading step \(k \) and global iteration \(j \) as

\[
(\hat{P}_{01}^m)^{(k)}_j = C^{mt}(\dot{\varepsilon}_n)^{(k)}_j
\]

3. **Integration of the constitutive equation (Backward Euler scheme)**

 Loop over the inner iterations: \(l^{th} \) iteration

 For \(l = 1 \rightarrow (\hat{P}_1^m)^{(k,0)} = (\hat{P}_1^m)^{(k)}_j \)

 \((*)\)

 IF \(\bar{F}(\mathcal{P}_j^{(k,l)}, d_j^{(k,l)}) \leq 0 \) → no damage → GOTO 4
 ELSE → Damage

 \[
 (\Delta d)_j^{(k,l)} = G(\mathcal{P}_j^{(k,l)}) - d_j^{(k,l-1)}, \quad \text{Eq. (4.17)}
 \]

 \[
 d_j^{(k,l)} = (\Delta d)_j^{(k,l)} + d_j^{(k,l-1)}
 \]

 \[
 (\mathcal{C}_{mt})^{(k,l)}_j = \mathcal{C}_{me} \left[(1 - d) \mathbf{I} - \frac{\partial \mathcal{P}_m}{\partial \hat{P}_{01}^m} \otimes \frac{\partial \mathcal{P}_m}{\partial \hat{P}_{01}^m} \right]^{(k,l)}_j
 \]

 \[
 l = l + 1 \rightarrow \text{GO BACK TO (\(*)\)}

4. **OUTPUT:** Updated values of the FPK stress vector and tangent constitutive tensor \(i.e. \)

\[
(\hat{P}_1^m)^{(k)}_j = (\hat{P}_1^m)^{(k,l)}_j \text{ and } (\mathcal{C}_{mt})^{(k,l)}_j = (\mathcal{C}_{mt})^{(k,l)}_j
\]

STOP.

where \(\hat{P}_1^m \) is the material form of the total FPK stress vector, \(\dot{S}_n \) is the material form of the strain rate vector given in Eq. (3.78b) and \(\eta_{sm} \) is the material description of the secant viscous constitutive tensor defined from the material description of the secant constitutive tensor as

\[
\eta_{sm} = \eta \mathcal{C}_{ms} = \tau \mathcal{C}_{ms}.
\]

The scalar parameter \(\eta \) is the viscosity and \(\tau \) is the relaxation time, defined as the time required by the visco elastic system to reach a stable configuration in the undamaged configuration [123].

REMARK 4.2. It is interesting to note that in Eq. (4.27) for the case of a material completely damage \((d = 1) \) the corresponding stresses are zero and for the case of an elastic material \(\mathcal{C}_{ms} = \mathcal{C}_{me} \) and, therefore, the pure visco elastic behavior is recovered ■

In this case the dissipative power is given by

\[
\dot{\Xi}_m = \left[\Psi_0 + \frac{\tau}{\rho_0} \dot{\varepsilon}_n \cdot \mathcal{C}_{me} \dot{\varepsilon}_n \right] \frac{dG}{d\mathcal{P}_m} \frac{\partial \mathcal{P}_m}{\partial \hat{P}_{01}^m} \cdot \mathcal{C}_{ms} \dot{\varepsilon}_n.
\]

(4.29)
The linearized increment of the material form of the FPK stress vector is calculated as

\[
\delta \hat{P}_{mt}^1 = \delta \hat{P}_{m1} + \delta \eta \hat{S}_n + \eta \delta \hat{S}_n
\]

\[
= C^{mt} \delta \hat{E}_n + \eta \delta \hat{S}_n = C^{mt} \delta \hat{E}_n + \eta \delta \hat{S}_n
\]

\[
= C^{mt} \delta \hat{E}_n - \delta d \hat{P}_{mv} + \eta \delta \hat{S}_n = C^{mv} \delta \hat{E}_n + \eta \delta \hat{S}_n
\]

\[
(4.30)
\]

where \(\hat{P}_{m1} \) is the material form of the FPK visco elastic stress vector, \(\delta \hat{S}_n \) is the linearized increment of the material description of the strain rate vector, which will be given in Chapter 5, and \(C^{mv} \) is the material description of the tangent constitutive tensor which considers the viscous effects and is calculated in a completely analogous manner as Eq. (4.26) i.e.

\[
C^{mv} = \left(I - D^{mv} \right) C^{me} = \left[I - \left(dI + \frac{dG}{dP_m} (\hat{P}_{m1} + \hat{P}_{mv}) \otimes \frac{\partial P}{\partial P_m} \right) \right] C^{me}.
\]

(4.31)

The co-rotated form of the linearized increment of the total FPK stress vector is obtained from Eq. (4.3) by means of the push-forward operation on Eq. (4.30) according to

\[
\delta [\hat{P}_n^1] = \Lambda \delta \hat{P}_{mt}^1 = C^{sv} \delta [\hat{\epsilon}_n] + \eta \delta [\hat{s}_n]
\]

(4.32)

where \(C^{sv} = \Lambda C^{mv} \Lambda^T \) and \(\eta \) are the spatial descriptions of the rate dependent tangent and the secant viscous constitutive constitutive tensors, respectively.

4.2.3 Plastic materials

For case of a material which can undergo non-reversible deformations, the plasticity model formulated in the material configuration is used for predicting the corresponding mechanical response. The model here presented is adequate to simulate the mechanical behavior of metallic and ceramic materials as well as geomaterials [232]. Assuming a thermally stable process, small elastic and finite plastic deformations, we have that the free energy density \(\Psi \) is given by the addition of the elastic and the plastic parts [186] as

\[
\Psi = \Psi^e + \Psi^P = \frac{1}{2\rho_0} (\hat{E}_n^e \cdot C^{me} \hat{E}_n^e) + \Psi^P(k_p)
\]

(4.33)

where the \(\hat{E}_n^e \) is the elastic strain vector calculated subtracting the plastic strain vector \(\hat{E}_n^P \) from the total strain vector \(\hat{E}_n \). \(\Psi^e \) and \(\Psi^P \) are the elastic and plastic parts of the free energy density, respectively, \(\rho_0 \) is the density in the material configuration and \(k_p \) is the plastic damage internal variable.

4.2.3.a Secant constitutive equation and mechanical dissipation

Following analogous procedures as those for the damage model i.e. employing the CP inequality and the Coleman’s principle [185, 195], the secant constitutive equation and
4.2. Constitutive laws simple materials

the mechanical dissipation take the following forms

\[
\dot{P}_1^{m} = \rho_0 \frac{\partial \Psi (\dot{E}^e_n, k_p)}{\partial \dot{E}^e_n} = \mathcal{C}^{ms} \left(\dot{\varepsilon}^p_n - \dot{\varepsilon}^e_n \right) = \mathcal{C}^{me} \dot{\varepsilon}^e_n \quad (4.34a)
\]

\[
\dot{\varepsilon}_m = \dot{P}_1^{m} \cdot \dot{\varepsilon}_n - \frac{\partial \Psi^P}{\partial k_p} k_p \geq 0 \quad (4.34b)
\]

where the material description of the secant constitutive tensor \(\mathcal{C}^{ms} \) coincides with the elastic one \(\mathcal{C}^{me} = \text{Diag}[E, G, G] \). It is worth to note that Eqs. (4.34a) and (4.34b) constitute particular cases of a more general formulation of the so called coupled plastic–damage models as it can be reviewed in [232].

4.2.3.b Plastic yielding and potential functions

Both, the yield function, \(\mathcal{F}_p \), and plastic potential function, \(\mathcal{G}_p \), for the plasticity model, are formulated in terms of the material form of the FPK stress vector \(\hat{P}_1^{m} \) and the plastic damage internal variable \(k_p \) as

\[
\mathcal{F}_p (\hat{P}_1^{m}, k_p) = \mathcal{P}_p (\hat{P}_1^{m}) - f_p (\hat{P}_1^{m}, k_p) = 0 \quad (4.35a)
\]

\[
\mathcal{G}_p (\hat{P}_1^{m}, k_p) = \mathcal{K} \quad (4.35b)
\]

where \(\mathcal{P}_p (\hat{P}_1^{m}) \) is the (scalar) equivalent stress, which is compared with the hardening function \(f_p (\hat{P}_1^{m}, k_p) \) depending on the damage plastic internal variable \(k_p \) and on the current stress state, and \(\mathcal{K} \) is a constant value [189, 232].

REMARK 4.3. Common choices for \(\mathcal{F}_p \) and \(\mathcal{G}_p \) are Tresca or Von Mises for metals, Mohr-Coulomb or Drucker-Prager for geomaterials ■

According to the evolution of the plastic damage variable, \(k_p \), it is possible to treat materials considering isotropic hardening as in Refs. [117, 245, 287]. However, in this work \(k_p \) constitutes a measure of the energy dissipated during the plastic process and, therefore, it is well suited for materials with softening. In this case \(k_p \) is defined [186, 233] as

\[
g_f^P = \frac{G_f^P}{l_c} = \int_{t=0}^{\infty} \hat{P}_1^{m} \cdot \dot{\varepsilon}_n^P dt \quad (4.36a)
\]

\[
0 \leq [k_p = \frac{1}{g_f^P} \int_{t=0}^{t} \hat{P}_1^{m} \cdot \dot{\varepsilon}_n^P dt] \leq 1 \quad (4.36b)
\]

where \(G_f^P \) is the specific plastic fracture energy of the material in tension and \(l_c \) is the length of the fractured domain defined in analogous manner as for the damage model. The integral term in Eq. (4.36b) corresponds to the energy dissipated by means of plastic work and, therefore, \(k_p \) constitutes a measure of the part of the fracture energy that has been consumed during the deformation. Similarly, it is possible to define the normalized plastic damage variable for the case of a compressive test related with \(g_c^P \).
4.2.3.c Evolution laws for the internal variables

The flow rules for the internal variables $\dot{\mathcal{E}}_n^P$ and k_p are defined as usual for plastic models defined in the material configuration [186, 184] according to

$$
\dot{\mathcal{E}}_n^P = \dot{\lambda} \frac{\partial \mathcal{P}_p}{\partial \hat{P}_m^m} \tag{4.37}
$$

$$
\dot{k}_p = \dot{\lambda} \mathcal{F}_p(P_1^m, k_p, G_f^P) \cdot \frac{\partial \mathcal{P}_p}{\partial P_1^m} = \mathcal{O}(P_1^m, k_p, G_f^P) \cdot \dot{\mathcal{E}}_n^P \tag{4.38}
$$

where $\dot{\lambda}$ is the plastic consistency parameter and \mathcal{O} is the following hardening vector [186, 232]

$$
\dot{k}_p = \left[\frac{r}{g_f} + \frac{1-r}{g_c} \right] \hat{P}_m^m \cdot \dot{\mathcal{E}}_n^P = \mathcal{O} \cdot \dot{\mathcal{E}}_n^P \tag{4.39}
$$

where term $\hat{P}_m^m \cdot \dot{\mathcal{E}}_n^P$ is the plastic dissipation and r is given in Eq. (4.11d). It is interesting to note that the proposed evolution rule allows to differentiate between tensile and compressive properties of the material, distributing the total plastic dissipation as weighted parts of the compressive and tensile fracture energy densities.

In what regards the hardening function of Eq. (4.35a), the following evolution equation has been proposed [189]:

$$
\mathcal{F}_p(P_1^m, k_p) = r \sigma_t(k_p) + (1-r) \sigma_c(k_p) \tag{4.40}
$$

where r has been defined in Eq. (4.11d) and the (scalar) functions $\sigma_t(k_p)$ and $\sigma_c(k_p)$ represent the evolution of the yielding threshold in uniaxial tension and compression tests, respectively. It is worth noting that in Eq. (4.40) a differentiated traction–compression behavior has been taken into account.

As it is a standard practice in plasticity, the loading/unloading conditions are derived in the standard form from the Kuhn-Tucker relations formulated for problems with unilateral restrictions, i.e., (a) $\dot{\lambda} \geq 0$, (b) $\mathcal{F}_p \leq 0$ and (c) $\dot{\lambda} \mathcal{F}_p = 0$.

By other hand, starting from the plastic consistency condition $\mathcal{F}_p = 0$ one has

$$
\mathcal{F}_p = \dot{P}_p - \dot{f}_p = 0 = \frac{\partial \mathcal{P}_p}{\partial P_1^m} \cdot \dot{P}_m^m - \frac{\partial \mathcal{P}_p}{\partial P_1^m} \cdot \dot{P}_m^m - \frac{\partial f_p}{\partial k_p} \dot{k}_p = 0
$$

where it has been used the expression for the temporal variation of Eq. (4.34a). Considering the flow rules of Eqs. (4.37) and (4.38), it is possible to deduce the explicit form of $\dot{\lambda}$ as [232, 233]

$$
\dot{\lambda} = -\frac{\frac{\partial \mathcal{F}_p}{\partial P_1^m} \cdot (\mathcal{C}^{me} \dot{\mathcal{E}}_n)}{\left(\frac{\partial \mathcal{F}_p}{\partial P_1^m} \right)} \tag{4.41}
$$
4.2. Constitutive laws simple materials

4.2.3.d Tangent constitutive tensor

The material form of the tangent constitutive tensor is calculated taking the time derivative of Eq. (4.34a), considering the flow rule of Eq. (4.37), replacing the plastic consistency parameter of Eq. (4.41), using Eq. (A.52) of Def. A.13 of Section A.3 and after several algebraic manipulations \[232, 233\], it is obtained as

\[
\delta \dot{P}_m^1 = C^{me}(\delta \dot{E}_n - \delta \lambda \frac{\partial G_p}{\partial P_1^m})
\]

\[
= C^{me} \delta \dot{E}_n - C^{me} \left[\frac{\partial F_p}{\partial P_1^m} \cdot (C^{me} \delta \dot{E}_n) \right] \frac{\partial G_p}{\partial P_1^m}
\]

\[
= \left[C^{me} - \frac{\partial F_p}{\partial P_1^m} \cdot (C^{me} \frac{\partial G_p}{\partial P_1^m}) \right] \delta \dot{E}_n
\]

where \(\Phi_p\) is the so called hardening parameter.

4.2.3.e Perfect plasticity with Von Mises yield criterion

If the Von Mises criterion is chosen for the both the yielding and potential functions, equal tension/compression yielding thresholds are considered \(i.e., n = 1\) and \(G_f = G_c \approx \infty\), one obtains that \(k_p \approx 0, \dot{k}_p \approx 0\) and \(f_p \sim f_c\) with \(\sigma^*\) being the characteristic yielding threshold of the material, the following expressions are obtained

\[
F_p = P_p - f_p = \sqrt{P_1^m \cdot S_{P_1^m} - \sigma^*}; \quad S = \text{diag}[1, 3, 3] \quad (4.43a)
\]

\[
\frac{\partial F_p}{\partial P_1^m} = \frac{\partial G_p}{\partial P_1^m} = S_{P_1^m} := \dot{N}_1^m \quad (4.43b)
\]

\[
\dot{\lambda} = - \frac{\dot{N}_1^m \cdot (C^{me} \dot{\dot{E}}_n)}{\dot{N}_1^m \cdot (C^{me} \dot{\dot{N}}_1^m)} \quad (4.43c)
\]

\[
C^{mt} = C^{me} - \frac{(C^{me} \dot{\dot{N}}_1^m) \otimes (C^{me} \dot{\dot{N}}_1^m)}{\dot{N}_1^m \cdot (C^{me} \dot{\dot{N}}_1^m)} \quad (4.43d)
\]

In this particular case, more simple expressions are obtained as it can be seen in Eqs. (4.43a) to (4.43d) including a symmetric tangential tensor. Therefore, the perfect plasticity case can be considered as a limit case of the present formulation, for materials with an infinite fracture energy.

The backward Euler scheme is used for the numerical integration of the constitutive plasticity model \[232\]. A flow chart with the step-by-step algorithm used in numerical simulations is shown in Table 4.2.
4.3 Mixing theory for composite materials

4.3.1 Hypothesis

Each material point on the beam cross is treated as a composite material according to the mixing theory [203, 232], considering the following assumptions:

(i) Each composite has a finite number of simple materials (see Fig. 4.1).

(ii) Each component participate in the mechanical behavior according to its volumetric participation k_i defined as

$$k_q = V_q / V \rightarrow \sum_i k_q = 1$$
i.e. according to its proportional part V_i (in terms of volume) with respect to the total volume V associated to the material point.

(iii) All the components are subjected to the same strain field, what can be interpreted as a *rheological model* where each compounding substance works in parallel with the others.

Therefore, the interaction between all the components defines the overall mechanical behavior at material point level. Supposing that a generic material point, where coexist $N_c < \infty$ different components (hypothesis (i)), is subjected to a strain field described by the material strain vector $\hat{\mathcal{E}}_n$, according to hypothesis (iii) we have the following closing equation:

$$
\hat{\mathcal{E}}_n \equiv (\hat{\mathcal{E}}_n)^1 = \cdots = (\hat{\mathcal{E}}_n)^j = \cdots = (\hat{\mathcal{E}}_n)^{N_c}
$$

(4.44)

which imposes the strain compatibility between components.

4.3.2 Free energy density of the composite

The free energy density of the composite is written for the adiabatic case as the weighted sum of the free energy of the components [232]

$$
\Psi(\hat{\mathcal{E}}_n, \alpha_p) \equiv \sum_{q=1}^{N_c} k_q \Psi_q(\hat{\mathcal{E}}_n, \alpha_{pq})
$$

(4.45)

where $\Psi_q(\hat{\mathcal{E}}_n, \alpha_{pq})$ is the free energy of the q^{th} compounding substance with an associated constitutive model depending on p internal variables, α_{pq}, and k_q is the volumetric fraction of the component. As it has been explained, in the present work only degrading and plastic materials are used as compounding substances, therefore, the values that the index p can take, is limited to 1 for the degrading materials, (the damage variable d), and to 2 for the plastic ones (the plastic strain vector $(\hat{\mathcal{E}}^P)_q$ and the plastic damage $(k_p)_q$. In any case, a generic notation has been preferred by simplicity, even though it is necessary to have in mind that different substances have associated a different number of internal variables.

4.3.3 Secant constitutive relation and mechanical dissipation

Starting from Eq. (4.45), it is possible to obtain the material form of the secant constitutive equation, the secant constitutive tensor, $\mathbf{\bar{C}}^{\text{ins}}$ and the mechanical dissipation $\dot{\Xi}_m$ for the composite in analogous way as for simple materials *i.e.*

$$
\hat{P}_m^1 \equiv \rho_0 \frac{\partial \Psi(\hat{\mathcal{E}}_n, \alpha_p)}{\partial \hat{\mathcal{E}}_n} = \sum_{q=1}^{N_c} (\rho_0)_q k_q \frac{\partial \Psi_q(\hat{\mathcal{E}}_n, \alpha_{pq})}{\partial \hat{\mathcal{E}}_n} = \sum_{q} k_q (\hat{P}_m^1)_q
$$

(4.46a)

$$
\dot{\Xi}_m = - \sum_{q=1}^{N_c} k_q (\dot{\Xi}_m)_q = - \sum_{q=1}^{N_c} k_q \left[\sum_{j=1}^{p} \frac{\partial \Psi(\hat{\mathcal{E}}_n, \alpha_j)}{\partial \alpha_j} \dot{\alpha_j} \right]_q \geq 0.
$$

(4.46b)

where $(\hat{P}_m^1)_q$ and $(\dot{\Xi}_m)_q$, are the material form of the FPK stress vector and the mechanical dissipation of the q^{th} component, respectively. It is worth to comment the meaning of
4.3 Mixing theory for composite materials

\[\rho_0 \text{ in Eq. (4.48) it corresponds to the average value of the material form of the density obtained as result of applying the mixing theory. Having calculated the material form of the FPK stress vector, the spatial form is obtained by } P_1 = \Lambda P_1^m. \text{ From Eq. (4.48) it is possible to conclude that}
\]

\[\bar{\mathcal{C}}_{ms} \equiv \sum_{q=1}^{N_c} k_q (\mathcal{C}_{ms})_q \to \hat{P}_1^m = \bar{\mathcal{C}}_{ms} (\hat{E}_n - \hat{E}_n^P) \]

(4.46c)

\[\hat{E}_n^P = \sum_{q=1}^{N_c} k_q (\hat{E}_n^P)_q \]

(4.46d)

where \((\mathcal{C}_{ms})^i\) and \((\hat{E}_n^P)^i\), are the material form of the secant constitutive tensor and the (fictitious) material plastic strain vector, respectively. It is worth to comment the meaning of \(\hat{E}_n^P\) in Eq. (4.50), it corresponds to the average value of the material form of the plastic strain vector of the composite obtained using the mixing theory.

4.3.4 Tangent constitutive tensor

The material form of the tangent constitutive tensors, \(\bar{\mathcal{C}}_{mt}\), of the composite is estimated in analogous way as for simple materials i.e.

\[\delta \hat{P}_1^m = \bar{\mathcal{C}}_{mt} \delta \hat{E}_n = \sum_{i=1}^{N_c} k_q (\mathcal{C}_{mt})_q \delta \hat{E}_n \]

(4.47)

where \((\mathcal{C}_{mt})_q\), \(\delta \hat{P}_1^m\) and \(\delta \hat{E}_n\) are the material form of the tangent constitutive tensors and the variation of the material stress and strain vectors, respectively.

4.3.5 Rate dependent effects

Using the same reasoning as in Section 4.2.2, the participation of rate dependent effects in the composite can be considered in the following form:

\[\tilde{P}_1^m = \sum_{q} k_q (\tilde{P}_1^m + \tilde{P}_1^{mv})_q = \sum_{q} k_q [(1 - d)\mathcal{C}_{me} (\hat{E}_n + \eta \hat{S}_n)]_q \]

\[= \sum_{q} k_q (\mathcal{C}_{ms})_q \hat{E}_n + \sum_{q} k_q (\eta_{sm})_q \hat{S}_n = \bar{\mathcal{C}}_{ms} \hat{E}_n + \eta_{sm} \hat{S}_n \]

(4.48)

where \(\eta_{sm}\) corresponds tho the viscous secant tensor of the composite.

By analogy with Eq. (4.30), the linearized relation between material forms of strain and stress vectors is given by

\[\delta \tilde{P}_1^m = \tilde{C}_{mv} \delta \hat{E}_n + \tilde{\eta}_{sm} \delta \hat{S}_n; \quad \tilde{C}_{mv} = \sum_{q} k_q (\mathcal{C}_{mv})_q, \quad \tilde{\eta}_{sm} = \sum_{q} k_q (\eta_{sm})_q. \]

(4.49)
The co-rotated form of the linearized relation between strains and stresses for the composite material is based on the weighted sum of the spatial form of the tangent constitutive tensors \((C^{\text{sv}})_{i}^{\text{q}}\) plus the rate dependent tensors \((\eta^{\text{ss}})_{i}^{\text{q}}\) of Eq. (4.31) for each one of the components and it is given by

\[
\vartheta \[\hat{\delta} P_{1}^{T} \] = \sum_{q=1}^{N_{c}} k_{q}(C^{\text{sv}})_{q} \delta \[\hat{\vartheta} \varepsilon_{n} \] + \sum_{q=1}^{N_{c}} k_{q}(\eta^{\text{ss}})_{q} \delta \[\hat{\vartheta} s_{n} \] = \tilde{C}^{\text{sv}} \delta \[\hat{\vartheta} \varepsilon_{n} \] + \tilde{\eta}^{\text{ss}} \delta \[\hat{\vartheta} s_{n} \]. \tag{4.50}
\]

Therefore, an entirely analogous formulation for composite materials is obtained considering the participation of the volumetric fraction of each component.

REMARK 4.4. An important aspect to consider is regarded to the total fracture energy of the composite, which is an experimental quantity. It is obtained as the sum of the fracture energy of the components \(i.e.\)

\[
G_{i}^{P} = \sum_{i} G_{i}^{P},
\]

more details can be consulted in [72, 73].

4.4 Stress resultant, couples and related reduced tensors

As it has been explained in Section 4.2, the distribution of materials on the beam cross sections can be arbitrary (see Fig. 4.1). Considering Eqs. (3.100a) and (3.100b), one has that the material form of the cross sectional stress resultant and couples can be written as

\[
\hat{n}^{m} = \int_{A_{00}} \hat{P}^{\text{mt}} dA_{00} = \int_{A_{00}} \tilde{C}^{\text{ms}} \hat{E}_{n} dA_{00} + \int_{A_{00}} \tilde{\eta}^{\text{sm}} \hat{E}_{n} dA_{00} \hat{S}_{n} \tag{4.51}
\]

\[
\hat{m}^{m} = \int_{A_{00}} \tilde{\beta} \hat{P}^{\text{mt}} dA_{00} = \int_{A_{00}} \tilde{\beta} \tilde{C}^{\text{ms}} \hat{E}_{n} dA_{00} + \int_{A_{00}} \tilde{\beta} \tilde{\eta}^{\text{sm}} \hat{E}_{n} dA_{00} \tag{4.52}
\]

where Eqs. (4.51) and (4.52) have been written in terms of the secant tensors for the composite even when there is not an explicit expression for them when plasticity is used (see §4.2.3.a). The numerical obtention of \(\hat{n}^{m} \) and \(\hat{m}^{m} \) will be explained in detail in §7.

4.4.1 Cross sectional tangential tensors

Taking into account the result of Eq. (4.49) it is possible to obtain the linearized relation between the material form of the stress resultant and couples and the corresponding
linearized forms of the reduced strain measures as

\[
\delta \hat{n}^m = \int_{A_{00}} \delta \hat{P}_1^m dA_00 = \int_{A_{00}} \hat{C}^{mn} \delta \hat{\varepsilon}_n dA_{00} + \int_{A_{00}} \tilde{\eta}^{sm} \delta \hat{S}_n dA_{00}
\]

\[
= \left[\int_{A_{00}} \hat{C}^{mn} dA_{00} \right] \delta \hat{\Gamma}_n - \left[\int_{A_{00}} \hat{C}^{mn} \tilde{\varrho} dA_{00} \right] \delta \hat{\Omega}_n
\]

\[
+ \left[\int_{A_{00}} \tilde{\eta}^{sm} dA_{00} \right] \delta \hat{\Gamma}_n - \left[\int_{A_{00}} \tilde{\eta}^{sm} \tilde{\varrho} dA_{00} \right] \delta \hat{\Omega}_n
\]

\[
= \hat{C}^{mn} \delta \hat{\Gamma}_n + \hat{\eta}^{sm} \delta \hat{\Omega}_n + \hat{\Upsilon}^{sm} \delta \hat{\Gamma}_n + \hat{\Upsilon}^{sm} \delta \hat{\Omega}_n
\]

\[\text{(4.53a)}\]

\[
\delta \hat{m}^m = \int_{A_{00}} \delta \hat{\Pi}_1^m dA_00 = \int_{A_{00}} \hat{\varepsilon}^{mn} \delta \hat{\varepsilon}_n dA_{00} + \int_{A_{00}} \hat{\eta}^{sm} \delta \hat{S}_n dA_{00}
\]

\[
= \left[\int_{A_{00}} \hat{\varepsilon}^{mn} dA_{00} \right] \delta \hat{\Gamma}_n - \left[\int_{A_{00}} \hat{\varepsilon}^{mn} \tilde{\varrho} dA_{00} \right] \delta \hat{\Omega}_n
\]

\[
+ \left[\int_{A_{00}} \hat{\eta}^{sm} dA_{00} \right] \delta \hat{\Gamma}_n - \left[\int_{A_{00}} \hat{\eta}^{sm} \tilde{\varrho} dA_{00} \right] \delta \hat{\Omega}_n
\]

\[
= \hat{C}^{mn} \delta \hat{\Gamma}_n + \hat{\eta}^{sm} \delta \hat{\Omega}_n + \hat{\Upsilon}^{sm} \delta \hat{\Gamma}_n + \hat{\Upsilon}^{sm} \delta \hat{\Omega}_n
\]

\[\text{(4.53b)}\]

where the material and viscous cross sectional tangential tensors \(\hat{C}^{mn}_{ij}\) and \(\hat{\Upsilon}^{sm}_{ij}\) \((i, j \in \{n, m\})\) are calculated in an completely analogous manner as for the elastic case but replacing the components of the elastic constitutive tensor by their tangent and viscous tangent counterparts (see §3.7.2).

It is worth noting that in Eqs. (4.53a) and (4.53b) the linearized material strain and strain rate vectors have been written as \(\delta \hat{\varepsilon}_n = \delta \hat{\Gamma}_n - \hat{\varepsilon} \delta \hat{\Omega}_n\) and \(\delta \hat{\varepsilon}_n = \delta \hat{\Gamma}_n - \hat{\varepsilon} \delta \hat{\Omega}_n\), however, by the moment we do not have explicit expressions for these linearized quantities. They will be calculated in great detail in §5.

Taking into account the results of §A.5.5 of Appendix A one has that the Lie variation (or co–rotated) variation of the stress resultant and couples are obtained as

\[
\delta \hat{n}^m = \Lambda \delta \hat{\Gamma}_n + \hat{C}^{sv}_{mn} \delta \hat{\Gamma}_n + \hat{C}^{sv}_{nm} \delta \hat{\Gamma}_n + \hat{\Upsilon}^{sv}_{mn} \delta \hat{\Omega}_n
\]

\[\text{(4.53c)}\]

\[
\delta \hat{m}^m = \Lambda \delta \hat{\Omega}_n + \hat{C}^{sv}_{mn} \delta \hat{\Omega}_n + \hat{C}^{sv}_{nm} \delta \hat{\Omega}_n + \hat{\Upsilon}^{sv}_{mn} \delta \hat{\Omega}_n
\]

\[\text{(4.53d)}\]

where the spatial form of the cross sectional tangential tensors \(\hat{C}^{sv}_{ij}\) and \(\hat{\Upsilon}^{sv}_{ij}\), \(i, j \in \{n, m\}\) are obtained applying the push–forward by \(\Lambda\) i.e. \(\hat{C}^{sv}_{ij} = \Lambda \hat{C}^{sv}_{ij} \Lambda^T\) and \(\hat{\Upsilon}^{sv}_{ij} = \Lambda \hat{\Upsilon}^{sv}_{ij} \Lambda^T\), respectively. Additionally, the co–rotated linearized form of the reduced strain and strain rate vector has been included considering that \(\delta \hat{\psi} = \Lambda \hat{\psi}, \forall \hat{\psi} \in \mathbb{R}^3\). The above results can be summarized in matrix form as

\[
\begin{bmatrix}
\delta \hat{n}^m \\
\delta \hat{m}^m
\end{bmatrix} =
\begin{bmatrix}
\hat{C}^{mn} & \hat{C}^{mn} \\
\hat{C}^{mn} & \hat{C}^{mn}
\end{bmatrix}
\begin{bmatrix}
\delta \hat{\Gamma}_n \\
\delta \hat{\Omega}_n
\end{bmatrix}
\begin{bmatrix}
\hat{\Upsilon}^{sm} & \hat{\Upsilon}^{sm} \\
\hat{\Upsilon}^{sm} & \hat{\Upsilon}^{sm}
\end{bmatrix}
\begin{bmatrix}
\delta \hat{\Omega}_n \\
\delta \hat{\Gamma}_n
\end{bmatrix}
\]

\[\text{(4.54)}\]
\[
\begin{bmatrix}
\delta \hat{\Gamma}_n \\
\delta \hat{\Omega}_n
\end{bmatrix} = \begin{bmatrix}
C_{sv}^{\nu} & C_{sv}^{\nu} & C_{sv}^{\nu} & C_{sv}^{\nu} \\
C_{nm}^{\nu} & C_{mn}^{\nu} & C_{nm}^{\nu} & C_{mn}^{\nu}
\end{bmatrix}
\begin{bmatrix}
\delta \hat{\Gamma}_n \\
\delta \hat{\Omega}_n
\end{bmatrix} + \begin{bmatrix}
\bar{\Upsilon}_{ss}^{\nu} & \bar{\Upsilon}_{ss}^{\nu} & \bar{\Upsilon}_{ss}^{\nu} & \bar{\Upsilon}_{ss}^{\nu} \\
\bar{\Upsilon}_{mm}^{ss} & \bar{\Upsilon}_{mn}^{ss} & \bar{\Upsilon}_{mm}^{ss} & \bar{\Upsilon}_{mn}^{ss}
\end{bmatrix}
\begin{bmatrix}
\delta \hat{\Gamma}_n \\
\delta \hat{\Omega}_n
\end{bmatrix}.
\] (4.55)

4.4.1.a Fiber reinforcements and structural damping

By one hand, the mixing rule provides an appropriated framework for simulating the mechanical behavior of some advanced composed materials such as: epoxy based materials with glass or carbon fibers or even reinforced concrete [232]. This behavior usually is based on the response of a matrix component which is reinforced with oriented fibres e.g. epoxy based materials with glass or carbon fibers or even reinforced concrete, where the usual steel bars and stirrups can be seen as embedded reinforcing fibers.\(^4\)

The behavior of fiber directed along the beam axis, i.e. longitudinal reinforcements, can be simulated by means of appropriated one–dimensional constitutive laws. Due to the limitations imposed by the assumption that plane cross section remain plane during the motion, the incorporation of stirrups or other kind of transversal reinforcements is not allowed in the present formulation. The reason is based on the fact that the mechanical effects of transversal reinforcements is due to the stretches of the fibers when the changes in cross sectional shape occurs (see §3.2.2 of Chapter 3 for a detailed discussion about the deformation of differential line elements in the rod). However, the simulation of the effect of this kind of reinforcement is carried out by means of modifying the fracture energy and the limit stress of the matrix material for increasing the cross sectional ductility, deformability, resistance and so on [203, 205, 206], even when this is an approximated method.

By the other hand, the employment of nonlinear constitutive equations at material point level implies that the global structural damping is added to the system in the term \(G_{int}(\dot{\phi}, \Lambda, \dot{\eta}^a)\) of the virtual work, Eq. (3.143), by means of the stress resultant and couples obtained through the cross sectional integration of stresses according to Eqs. (4.51) and (4.52). These reduced quantities include the contribution of any kind of rate independent or viscous effects, according to the distribution of the materials on the cross section.

Some branches of engineering are focused on the dynamic response of damped system but considering that the material behavior remains within the linear elastic range, such as in robotics, in the study of flexible mechanisms and in earthquake engineering. Therefore, with this objective, several ad hoc approximations have been developed, most of them based on adding a damping term to the equilibrium equations, which is considered to be a function of the strain rates [149]. As it is well known, a widely used method in structural dynamics is Rayleigh’s method, which develops a damping matrix using a linear combination of potentials of the stiffness and mass matrices [76]. In this work, a constitutive approach using rate dependent constitutive models is preferred due to the fact that it avoids predefining the way in which the structural damping behaves. Therefore, the proposed method makes hypothesis only at constitutive level.

\(^4\)A detailed presentation of the mixing rule applied to composites can be consulted the work of E. Car [73]
4.5 Damage indices

The estimation of damage indexes representative of the real remaining loading capacity of a structure has become a key issue in modern performance-based design approaches of civil engineering [169]. Several criteria have been defined for estimating the damage level of structures [124, 231]; some of them are defined for the global behavior of the structure, others can be applied to individual members or subparts of the structure [80]. The FPK stress vector at any material point on the cross section gives a suitable starting point for defining a damage index representative for the real remaining loading capacity of a structure [123]. The damage index developed in this work is based on an analogy with the problem at micro-scale (constitutive) level. A measure of the damage level of a material point can be obtained as the ratio of the existing stress level, obtained applying the mixing rule, to its undamaged elastic counter part. Following this idea, it is possible to define the fictitious damage variable \hat{D} as follows:

$$
\hat{D} = 1 - \frac{\sum_{i=1}^{3} |P_{mi}^{\text{nt}}|}{\sum_{i=1}^{3} |P_{mi}^{\text{nt}}|^0}
$$

(4.56)

where $|P_{mi}^{\text{nt}}|$ and $|P_{mi}^{\text{nt}}|^0$ are the absolute values of the components of the existing and visco elastic stress vectors in material form, respectively. Observe that $|P_{mi}^{\text{nt}}|$ can includes the viscous part of the stress. It is worth to note that \hat{D} considers any kind of stiffness degradation (damage, plasticity, etc.) at the material point level through the mixing rule and then it constitutes a measure of the remaining load carrying capacity. Initially, for low loading levels, the material remains elastic and $\hat{D} = 0$, but when the entire fracture energy of the material has been dissipated $|P_{mi}^{\text{nt}}| \rightarrow 0$ and, therefore, $\hat{D} \rightarrow 1$. Eq. (4.56) can be extended to consider elements or even the whole structure by means of integrating the stresses over a finite volume of the structure. It allows defining the local and global damage indices as follows:

$$
\dot{D} = 1 - \frac{\int_{V_p} \left(\sum_i |P_{mi}^{\text{nt}}| \right) dV_p}{\int_{V_p} \left(\sum_i |P_{mi}^{\text{nt}}|^0 \right) dV_p}
$$

(4.57)

where V_p is the volume of the part of the structure.

By one hand, the local/global damage index defined in Eq. (4.57) is a force-based criterion, which is able to discriminate the damage level assigned to a set of elements or to the whole structure, according to the manner in which they are loaded, in the same way as it has been explained in reference [124]. By the other hand, Eq (4.57) is easily implemented in an standard finite element code without requiring extra memory storage or time consuming calculations.
4.5.1 Cross sectional damage index

Considering Eq. (4.57) a cross sectional damage index, $\hat{D}_A(S)$, can be constructed restricting the integrations to the cross sectional area as

$$\hat{D}_A(S) = 1 - \frac{\int_A \left(\sum_i |P_{m_1}^{|i}| \right) dA}{\int_A \left(\sum_i |P_{m_0}^{|i}| \right) dA} \quad \forall S \in [0, L].$$

(4.58)

In this way, Eq. (4.57) can be rewritten as

$$\hat{D} = \int_0^L \hat{D}_A(S) dS.$$

(4.59)

The cross sectional damage index has the virtue of being a dimensionally reduced quantity that capture in a scalar the degradation level of the rod at the arch-length coordinate $S \in [0, L]$.

Chapter 5

Linearization of the virtual work principle

As stated by Marsden (see [201] Ch. 5), nonlinear problems in continuum mechanics are invariably solved by linearizing an appropriated form of nonlinear equilibrium equations and iteratively solving the resulting linear systems until a solution to the nonlinear problem is found. The Newton-Raphson method is the most popular example of such a technique [29]. Correct linearization of the nonlinear equations is fundamental for the success of such techniques.

As it has been demonstrated in §3.6 the virtual work principle is an equivalent representation of the equilibrium equations. For prescribed material and loading conditions, its solution is given by a deformed configuration fulfilling the equilibrium equations and the boundary conditions. Normally, the development of an iterative step-by-step procedure, such as the Newton-Raphson solution procedure, can be obtained based on the linearization, using the general directional derivative (see Def. A.22 in §A.5), of the virtual work functional, which is nonlinear with respect to the kinematic and kinetic variables, the loading and the constitutive behavior of the materials (see §4). Two approaches are available: (i) To discretize the equilibrium equations and then linearize with respect to the nodal positions or (ii) To linearize the virtual work statement and then discretize [50]. Here the later approach is adopted in Chapters 6 and 7 due to the fact that it is a more suitable for the solution of problems in solid mechanics.

This chapter is concerned with the linearization of the virtual work principle, in a manner consistent with the geometry of the configurational manifold where the involved kinetic and kinematical quantities belongs. The procedure requires an understanding of the directional derivative. The linearization procedure is carried out using the directional (Gâteaux) derivative considering it provides the change in an item due to a small change in something upon which item depends. For example, the item could be the determinant of a matrix, in which case the small change would be in the matrix itself.

The fact that the rotational part of the displacement field can be updated using two alternatively but equivalent rules, the material and the spatial one (see Appendix A), implies that two sets of linearized kinetic and kinematical quantities can be obtained, according to the selected updating rule. It is possible to show that both sets are also equivalent by mean of the replacement of the identities summarized in Eqs. (A.65a) to (A.65c) of §A.4.
In any case and by completeness, both set of linearized expressions are obtained in the following sections of this chapter.

5.1 Consistent linearization: admissible variations

At it has been explained in Section 3.1.3 the *current configuration* manifolds of the rod at time \(t \) is specified by the position of its line of centroid and the corresponding field of orientation tensors, Eq. (3.23), explicitly \(\mathcal{C}_t := \{ (\hat{\varphi}, \Lambda) : [0, L] \rightarrow \mathbb{R}^3 \times SO(3) \} \) which is a nonlinear differentiable manifold. Following the procedure presented in [278], where Simo and Vu-Quoc, according to the standard practice, carry out the linearization procedure based on using the Gâteaux differential (see Appendix A) as a way to approximate to the more rigorous Fréchet differential\(^1\), it is possible to construct a *perturbed configuration* onto \(\mathcal{C}_t \) as follows:

(i) Let \(\beta > 0 \in \mathbb{R} \) be a scalar and \(\delta\hat{\varphi}(S) = \delta\varphi_i(S)\hat{e}_i \) be a vector field (see Def. A.26 of Appendix A) considered as a *superimposed infinitesimal displacement* onto the line of centroid defined by \(\hat{\varphi} \).

(ii) Let \(\delta\tilde{\theta} = \delta\tilde{\theta}_{ij}\hat{e}_i \otimes \hat{e}_j \) be the spatial version of a skew–symmetric tensor field interpreted, for \(\beta > 0 \), as a *superimposed infinitesimal rotation* onto \(\Lambda \), Eqs. (3.19) and (3.21), with axial vector \(\delta\tilde{\theta} \in T_{\Lambda}^{\text{spa}} \) (see §A.4.4).

(iii) Let \(\delta\hat{\Theta} = \delta\hat{\Theta}_{ij}\hat{E}_i \otimes \hat{E}_j \) be the material version of a skew–symmetric tensor field interpreted, for \(\beta > 0 \), as a *superimposed infinitesimal rotation* onto \(\Lambda \), Eqs. (3.19) and (3.21), with axial vector \(\delta\hat{\Theta} \in T_{\Lambda}^{\text{mat}} \).

(iv) Then, the perturbed configuration

\[
\mathcal{C}_{t\beta} \triangleq \{ (\hat{\varphi}_\beta, \Lambda_\beta) : [0, L] \rightarrow \mathbb{R}^3 \times SO(3) \}
\]

is obtained by setting\(^2\)

\[
\begin{align*}
\hat{\varphi}_\beta(S) &= \hat{\varphi}(S) + \beta\delta\hat{\varphi}(S) & \in \mathbb{R}^3 \\
\Lambda_\beta(S) &= \exp[\beta\delta\hat{\theta}(S)]\Lambda(S) & \in SO(3).
\end{align*}
\]

The term \(\Lambda_\beta \) defined in Eq. (5.1b) is also a rotation tensor, due to the fact that it is obtained by means of the exponential map acting on the skew–symmetric tensor \(\beta\delta\hat{\theta} \in so(3) \) and, therefore, the perturbed configuration \(\mathcal{C}_{t\beta} \) belongs to \(\mathbb{R}^3 \times SO(3) \) as well as the current configuration \(\mathcal{C}_t \) does (\(\mathcal{C}_{t\beta} \subset \mathcal{C}_t \)). It should be noted that the perturbed configuration also constitute a possible current configuration of the rod.

Note that in Eq. (5.1b) the spatial updating rule for compound rotations has been

1. In reference [292] a rigorous foundation for this procedure can be found.
2. Note that as it has been explained in §A, finite rotations are defined by orthogonal transformations, whereas *infinitesimal rotations* are obtained through skew–symmetric transformations. The exponential map (see §A.2.4) allows to obtain the finite rotation for a given skew–symmetric tensor.
chosen for the superimposed infinitesimal rotation, i.e. \(\beta \delta \tilde{\theta} \in T^\text{spa}_\Lambda SO(3) \). If the material updating rule is preferred, Eq. (5.1b) has to be rewritten as

\[
\Lambda_\beta(S) = \Lambda(S) \exp[\beta \delta \tilde{\Theta}(S)] \in SO(3)
\]

(5.2)

where \(\beta \delta \tilde{\Theta}(S) \in T^\text{mat}_\Lambda SO(3) \).

As it has been explained in Appendix A.4, both skew–symmetric tensors \(\delta \tilde{\theta} \) and \(\delta \tilde{\Theta} \) have associated the corresponding axial vectors \(\delta \tilde{\theta} \) and \(\delta \tilde{\Theta} \in \mathbb{R}^3 \), respectively. Alternatively, it is possible to work with the field defined by the pair \(\tilde{\eta}(S) \triangleq (\delta \hat{\varphi}(S), \delta \tilde{\theta}(S)) \in TC_t \approx \mathbb{R}^3 \times \mathbb{R}^3 \) and in this case the definition for admissible variation given in §A.5.1 and §3.1.5 is recovered. The meaning for the two component of \(\tilde{\eta}(S) \) is analogous to those given for \((\delta \hat{\varphi}, \delta \tilde{\Theta}) \) if the material updating rule of rotations is used.

Due to attention is focused on the boundary value problem in which displacements and rotations are the prescribed boundary data and starting from the previous definition for \(\tilde{\eta} \), it follows that the linear space of kinematically admissible variations is

\[
\eta^s = \{ \tilde{\eta}^s = (\delta \hat{\varphi}, \delta \tilde{\theta}) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid \tilde{\eta}^s|_{\partial \Phi} = 0 \} \subset TC_t
\]

(5.3)

if the spatial updating rule for rotations is used; if the material rule is preferred one has that

\[
\eta^m = \{ \tilde{\eta}^m = (\delta \hat{\varphi}, \delta \tilde{\Theta}) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid \tilde{\eta}^m|_{\partial \Phi} = 0 \} \subset TC_t.
\]

(5.4)

The above definitions allows to construct the expression given in Eq. (3.27) for the tangent space in the spatial form \(T_xB_t \), which was originally developed following Ref. [192], Eqs. (A.83), (A.84), (A.85) and (A.86). Employing a slight abuse in the notation it is possible to write \(\tilde{\eta}^s(S) \in T_{\Phi}C_t \) i.e. the kinematically admissible variation belong to the tangent space to the current configuration \(C_t \) at the material point \(\Phi = (\hat{\varphi}, \Lambda) \subset C_t \).

5.1.1 Basic linearized forms

The basic set-up is: given the current configuration space \(C_t \), we consider the spatial description for the admissible variation field \(\tilde{\eta}^s \in T_{\Phi}C_t \) and the corresponding perturbed configuration \(C_{t\beta} \), Eqs. (5.1a) and (5.1b). For the case of the material representation we use \(\tilde{\eta}^m \in T_{\Phi}C_t \). To systematically carry out the linearization process [138, 196, 278, 292] we make use of the notion of directional (Gâteaux) derivative (see §A.5.1) as follows:

\[
D\hat{\varphi} \cdot \delta \hat{\varphi} \triangleq \left. \frac{d}{d\beta} \hat{\varphi}_\beta \right|_{\beta=0} = \delta \hat{\varphi}
\]

(5.5a)

\[
D\Lambda \cdot \delta \tilde{\theta} = \delta \Lambda \triangleq \left. \frac{d}{d\beta} \Lambda_\beta \right|_{\beta=0} = \delta \tilde{\Theta}
\]

(5.5b)

\[
D\Lambda \cdot \delta \tilde{\Theta} = \delta \Lambda \triangleq \left. \frac{d}{d\beta} \Lambda_\beta \right|_{\beta=0} = \Lambda \delta \tilde{\Theta}.
\]

(5.5c)

\[\text{Note that } (\delta \hat{\varphi}, \delta \tilde{\theta}) \approx (\delta \hat{\varphi}, \Lambda \delta \tilde{\Theta} \Lambda^T) \text{ due to the fact that } (\mathbb{R}^3 \times T^\text{spa}_\Lambda SO(3)) \approx (\mathbb{R}^3 \times T^\text{mat}_\Lambda SO(3)).\]
5.1. Consistent linearization: admissible variations

It is well known that the position vector and its linearized increment vector belong to the same vector space, $T\hat{\mathbf{x}}_B$, then the additive rule for vectors applies to them. Also it is interesting to note that Eqs. (5.5b) and (5.5c) recovers the spatial and material representations of the variation of the rotation tensor given in Eq. (A.96b) of §A.5.5. Repeating the procedures followed in Eqs. (5.5b) and (5.5c) for the case of the rotation tensor from the curved reference rod to the current rod configuration, Λ_n, we have the spatial and material representations of the corresponding admissible variation as

\[
\delta \Lambda_n = \frac{d}{d\beta} \bigg|_{\beta=0} \Lambda_n \exp[\beta \delta \hat{\Theta}] = \Lambda_n \delta \hat{\Theta},
\]

\[
\delta \Lambda_n = \frac{d}{d\beta} \bigg|_{\beta=0} \Lambda_n \exp[\beta \delta \hat{\Theta}] = \Lambda_n \delta \hat{\Theta}. \tag{5.6b}
\]

Note that in Eqs. (5.5a) and (5.6b) the symbol δ has been included to empathize the infinitesimal nature of the involved quantities. In analogous manner, the spatial and material forms of the admissible variation of the compound orientation tensor $\Lambda = \Lambda_n \Lambda_0$ (see §3.1.1 and §3.1.3) is

\[
\delta \Lambda = \frac{d}{d\beta} \bigg|_{\beta=0} \Lambda \beta = \frac{d(\Lambda_n \Lambda_0)}{d\beta} \bigg|_{\beta=0} = \delta \hat{\Theta} \Lambda_0 = \delta \hat{\Theta} \Lambda \tag{5.7a}
\]

\[
\delta \Lambda = \frac{d}{d\beta} \bigg|_{\beta=0} \Lambda \beta = \frac{d(\Lambda_n \Lambda_0)}{d\beta} \bigg|_{\beta=0} = \Lambda_0 \Lambda_n \delta \hat{\Theta} = \Lambda \delta \hat{\Theta} \tag{5.7b}
\]

due to the fact that Λ_0 is fixed in space and time.

5.1.2 Linearization of the strain measures

Since the admissible variations of the orthogonal tensor and the displacement fields of the current rod referred to the curved reference rod have been determined, other relevant linearized forms can be obtained using the chain rule for partial derivatives. An important aspect to be mentioned is given by the fact it has been assumed that variations and temporal derivatives commute, which is also a common assumption in continuum mechanics, however, it implies that all the considered restrictions are holonomic; more details can be consulted in [192]. In this section the admissible variations of strain measures given in Table 3.1 are calculated.

5.1.2.a Translational strains

Considering the spatial updating rule for rotations for the admissible variation field $\hat{\eta}^s = (\delta \hat{\varphi}, \delta \hat{\theta}) \approx (\delta \hat{\varphi}, \delta \hat{\Theta})$, the spatial form of the translational strain vector, $\hat{\gamma}_n = \hat{\varphi}_s - \hat{t}_1$, the results given in Eq. (5.6a) and the fact that $\hat{t}_1 = \Lambda_n \hat{t}_{01}$, one has the following derivation for the linearized form of $\hat{\gamma}_n$:

\[
D\hat{\gamma}_n \cdot \hat{\eta}^s = \delta \hat{\gamma}_n \triangleq \frac{d}{d\beta} \hat{\gamma}_n \bigg|_{\beta=0} = \delta (\hat{\varphi}_s - \hat{t}_1) = \delta \hat{\varphi}_s - \delta (\Lambda_n \hat{t}_{01})
\]

\[
= \delta \hat{\varphi}_s - \delta \Lambda_n \hat{t}_{01} = \delta \hat{\varphi}_s - \delta \hat{\Theta} \Lambda_n \hat{t}_{01} = \delta \hat{\varphi}_s - \delta \hat{\Theta} \hat{t}_1 = \delta \hat{\varphi}_s + \hat{t}_1 \delta \hat{\Theta}. \tag{5.8a}
\]
where $\mathbf{t}_1 = \Pi[\mathbf{t}_1]$ is the skew–symmetric tensor obtained from $\mathbf{t}_1 \in \mathbb{R}^3$. In the case of the material form of the translational strain vector, $\hat{\Gamma}_n = \Lambda^T \hat{\gamma}_n$, and noticing from Eq. (5.6a) the fact that $\delta \Lambda^T = -\Lambda^T \delta \bar{\theta}$, one obtains that

$$
D\hat{\Gamma}_n \cdot \hat{\eta}^s = \delta \hat{\Gamma}_n \triangleq \frac{d}{d\beta} \hat{\Gamma}_n|_{\beta = 0} = \delta (\Lambda^T \hat{\gamma}_n) = \delta \Lambda^T \hat{\gamma}_n + \Lambda^T \delta \hat{\gamma}_n \\
= -\Lambda^T \delta \bar{\theta}(\bar{\varphi}_S, -\mathbf{t}_1) + \Lambda^T (\delta \bar{\varphi}_S - \delta \bar{\mathbf{t}}_1) \\
= \Lambda^T (-\delta \bar{\theta}(\bar{\varphi}_S, -\mathbf{t}_1) + \delta \bar{\varphi}_S - \delta \bar{\mathbf{t}}_1) = \Lambda^T (\delta \bar{\varphi}_S - \delta \bar{\mathbf{t}}_1).
$$

Employing the result of Eqs. (5.8a) and (5.8b) and the definition of Lie variation given in Eq. (A.94) it is possible to show that the Lie or co–rotated variation of the translational strain vector, $\delta [\hat{\gamma}_n]$, is given by

$$
\delta \Lambda [\hat{\gamma}_n] = \delta [\hat{\gamma}_n] = \Lambda \delta \hat{\Gamma}_n = \delta \bar{\varphi}_S + \bar{\varphi}_S \delta \bar{\theta} \quad (5.8c)
$$

where $\bar{\varphi}_S = \Pi[\bar{\varphi}_S] \in \mathfrak{so}(3)$.

5.1.2.b Rotational strains

Similarly, considering the spatial form of the incremental curvature strain tensor, Eq. (3.38a), i.e. $\tilde{\omega}_n = \Lambda_{n,S} \Lambda_n^T$, (or equivalently its corresponding axial vector) and the fact that $\delta \Lambda_n^T = -\Lambda_n^T \delta \bar{\theta}$, one obtains that

$$
D\tilde{\omega}_n \cdot \delta \bar{\theta} = \delta \tilde{\omega}_n \triangleq \frac{d}{d\beta} \tilde{\omega}_n|_{\beta = 0} = \delta (\Lambda_{n,S} \Lambda_n^T) \\
= \delta \Lambda_{n,S} \Lambda_n^T + \Lambda_{n,S} \delta \Lambda_n^T = \delta(\Lambda_{n,S})_S \Lambda_n^T + \Lambda_{n,S} (-\Lambda_n^T \delta \bar{\theta}) \\
= (\delta \Lambda_{n,S})_S \Lambda_n^T - \Lambda_{n_S} \Lambda_n \delta \bar{\theta} = \delta \bar{\theta}_S \Lambda_n \Lambda_n^T + \delta \bar{\theta} \Lambda_{n,S} \Lambda_n^T - \Lambda_{n,S} \Lambda_n^T \delta \bar{\theta} \\
= \delta \bar{\theta}_S + \delta \bar{\theta}_n - \bar{\omega}_n \delta \bar{\theta} \\
= \delta \bar{\theta}_S + \Pi[\delta \bar{\theta} \times \bar{\omega}_n] = \delta \bar{\theta}_S + [\bar{\omega}, \bar{\omega}_n]. \quad (5.9a)
$$

For the case of the material form of the incremental curvature tensor, we obtain

$$
D\tilde{\Omega}_n \cdot \delta \bar{\theta} = \delta \tilde{\Omega}_n \triangleq \frac{d}{d\beta} \tilde{\Omega}_n|_{\beta = 0} = \Lambda_0^T \delta(\Lambda_n^T \Lambda_{n,S}) \Lambda_0 \\
= \Lambda_n^T (\Lambda_n^T \delta \Lambda_{n,S} + \delta \Lambda_n^T \Lambda_{n,S}) \Lambda_0 = \Lambda_0^T [(\Lambda_n^T \delta \bar{\theta}) \Lambda_{n,S} - \Lambda_n^T \delta \bar{\theta} \Lambda_{n,S}] \Lambda_0 \\
= \Lambda_0^T \Lambda_n^T (\delta \bar{\theta}_S \Lambda_n + \delta \bar{\theta} \Lambda_{n,S}) - \Lambda_n^T \delta \bar{\theta} \Lambda_{n,S} \Lambda. \quad (5.9b)
$$

Then, the co–rotated variation of the rotational strain tensor is then given by

$$
\delta \Lambda [\tilde{\omega}_n] = \delta [\tilde{\omega}_n] = \Lambda \delta \tilde{\Omega}_n \Lambda^T = \delta \bar{\theta}_S. \quad (5.9c)
$$
Employing the fact that for any two vectors \(\hat{v}_1, \hat{v}_2 \in \mathbb{R}^3 \) it is possible to define a third vector \(\hat{v} = \hat{v}_1 \times \hat{v}_2 \) and to define the skew–symmetric tensor constructed from \(\hat{v} \), \(\Pi[\hat{v}] = \vec{\Omega} \), which has the following property: \(\vec{v} = \hat{v}_1\hat{v}_2 - \hat{v}_2\hat{v}_1 = [\hat{v}_1, \hat{v}_2] \) (Lie brackets, see Def. A.5 of Appendix A); then, we can rewrite Eq. (5.9a) in terms of axial vectors as
\[
D\hat{\omega}_n \cdot \delta\hat{\theta} = \delta\hat{\omega}_n = \delta\hat{\theta}_s + \delta\hat{\theta}\hat{\omega}_n = \delta\hat{\theta}_s - \hat{\omega}_n\delta\hat{\theta}.
\] (5.10a)

Considering that the material form of the curvature vector is obtained by means of the pullback operator by the rotation tensor \(\Lambda \) acting on its spatial form as given by Eq. (3.39e), \(\hat{\Omega}_n = \Lambda^T\hat{\omega}_n \), one obtains that
\[
D\hat{\Omega}_n \cdot \delta\hat{\theta} = \delta\hat{\Omega}_n \triangleq \frac{d}{d\beta} \hat{\Omega}_n|_{\beta=0} = \delta(\Lambda^T\hat{\omega}_n) = \delta\Lambda^T\hat{\omega}_n + \Lambda^T\delta\hat{\omega}_n
\]
\[
= -\Lambda^T\delta\hat{\theta}\hat{\omega}_n + \Lambda^T(\delta\hat{\theta}_s - \hat{\omega}_n\delta\hat{\theta}) = \Lambda^T\delta\hat{\theta}_s .
\] (5.10b)

The above results allow to obtain the co–rotated variation of the curvature strain vector as
\[
\delta_\Lambda[\hat{\omega}_n] = \delta[\hat{\Omega}_n] = \Lambda\delta\hat{\Omega}_n = \delta\hat{\theta}_s
\] (5.10c)

and considering Eq. (5.10a) the following identity is obtained: \(\delta\hat{\theta}_s = \delta\hat{\omega}_n + \hat{\omega}_n\delta\hat{\theta} \). This result allows to rewrite Eqs. (5.10b) and (5.10c) as
\[
\delta\hat{\Omega}_n = \Lambda^T(\delta\hat{\omega}_n + \hat{\omega}_n\delta\hat{\theta})
\] (5.11a)
\[
\delta[\hat{\omega}_n] = \delta\hat{\theta}_s = \delta\hat{\omega}_n + \hat{\omega}_n\delta\hat{\theta},
\] (5.11b)

respectively. If \(\delta\hat{\theta} \) (\(\delta\hat{\Theta} \)) is parameterized in terms of other kind of pseudo–vectors as those described in §A.2.6 and summarized in Table A.1, the deduction of the admissible variations of the strain vectors and tensors is more complicated and it will be omitted here.

Summarizing the above results in matrix form, we can rewrite Eqs. (5.8a) to (5.11b) as
\[
\begin{bmatrix}
\delta\hat{\omega}_n \\
\delta\hat{
\omega}_n
\end{bmatrix} =
\begin{bmatrix}
\left[\frac{d}{d\tau} I\right] \\
0
\end{bmatrix}
\begin{bmatrix}
\hat{t}_1 \\
([\frac{d}{d\tau} I] - \hat{\omega}_n)
\end{bmatrix}
\begin{bmatrix}
\delta\hat{\varphi} \\
\delta\hat{\theta}
\end{bmatrix} = \mathbf{B}^s(\hat{\varphi}, \Lambda)\hat{\eta}^s
\] (5.12a)
\[
\begin{bmatrix}
\delta\hat{
\omega}_n \\
\delta\hat{
\omega}_n
\end{bmatrix} =
\begin{bmatrix}
\left[\frac{d}{d\tau} I\right] \\
0
\end{bmatrix}
\begin{bmatrix}
\Lambda^T[\frac{d}{d\tau} I] \\
\Lambda^T[\frac{d}{d\tau} I]
\end{bmatrix}
\begin{bmatrix}
\delta\hat{\varphi} \\
\delta\hat{\theta}
\end{bmatrix} = \mathbf{B}^t(\hat{\varphi}, \Lambda)\hat{\eta}^s
\] (5.12b)

for the admissible variations of the spatial and material descriptions of the strain vectors, respectively. The operator \(\left[\frac{d}{d\tau} I\right](\bullet) = I \cdot (\bullet)_s \). The corresponding
expressions for the co-rotated variations are rearranged as

\[
\begin{bmatrix}
\delta [\gamma_n] \\
\delta [\omega_n]
\end{bmatrix} = \begin{bmatrix}
\frac{d}{ds} I & \Pi [\hat{\varphi}_S] \\
0 & \frac{d}{ds} I
\end{bmatrix} \begin{bmatrix}
\delta \hat{\varphi} \\
\delta \hat{\theta}
\end{bmatrix} = B(\hat{\varphi}) \cdot \hat{\eta}^{*} = (I_A B^s) \hat{\eta}^{*}
\] (5.12c)

where \(I_A \) is a \((6 \times 6)\) matrix formed by four \((3 \times 3)\) blocks. The blocks located on and above the diagonal are equal to \(\Lambda \) and the another one is zero. This matrix perform the push-forward operation on \(B(\hat{\varphi}, \Lambda) \).

5.1.2.c Material updating of the rotational field

Alternatively, if the material updating procedure is chosen for the rotational field \(i.e. \hat{\eta}^m = (\delta \hat{\varphi}, \delta \hat{\theta}) \), we obtain the following expressions for the spatial, material and co-rotated versions of the translational strain vector:

\[
D\hat{\gamma}_n \cdot \hat{\eta}^m = \delta \hat{\gamma}_n = \delta \hat{\varphi}_S - \delta \hat{\Theta} E_1 = \delta \hat{\varphi}_S - \Lambda \delta \hat{\Theta} E_1 = \delta \hat{\varphi}_S + \Lambda E_1 \delta \hat{\Theta}
\]

\[
D\hat{\Gamma}_n \cdot \hat{\eta}^m \equiv \delta \hat{\Gamma}_n = \delta \Lambda^T \hat{\gamma}_n = \delta \Lambda^T \hat{\gamma}_n + \Lambda^T \delta \gamma_n
\]

\[
= - \delta \hat{\Theta} \Lambda^T \hat{\varphi}_S + \Lambda^T \delta \hat{\varphi}_S = \Pi[\Lambda^T \hat{\varphi}_S] \delta \hat{\Theta} + \Lambda^T \delta \hat{\varphi}_S
\]

\[
\delta \Lambda[\hat{\gamma}_n] = \delta [\hat{\gamma}_n] = \Lambda \delta \hat{\Gamma}_n = \delta \hat{\varphi}_S + \Lambda \Pi[\Lambda^T \hat{\varphi}_S] \delta \hat{\Theta} = \delta \hat{\varphi}_S + \Pi[\hat{\varphi}_S] \delta \hat{\Theta}
\] (5.13c)

Eqs. (5.13a), (5.13b) and (5.13c) are completely equivalent to those given in Eqs. (5.8a), (5.8b) and (5.8c) provided that \(\delta \hat{\Theta} = \Lambda^T \delta \hat{\Theta} \Lambda \).

For the case of the spatial, material and co-rotated version of curvature tensors, we have

\[
D\hat{\omega}_n \cdot \delta \hat{\Theta} = \delta \hat{\omega}_n = \Lambda_n (\delta \hat{\Theta}_S) = (\delta \Lambda_n)_S \Lambda_n^T + \Lambda_n^T (\delta \Lambda_n)^T
\]

\[
= (\Lambda_n, \delta \hat{\Theta} + \Lambda_n \delta \hat{\Theta}_S) \Lambda_n^T - \Lambda_n, \delta \hat{\Theta} \Lambda_n^T = \Lambda_n \delta \hat{\Theta}_S \Lambda_n^T
\]

\[
D\hat{\Omega}_n \cdot \delta \hat{\Theta} = \delta \hat{\Omega}_n = \delta (\Lambda^T \hat{\omega}_n \Lambda) = (\delta \Lambda)^T \hat{\omega}_n \Lambda + \Lambda^T \delta \hat{\omega}_n \Lambda + \Lambda^T \delta \hat{\omega}_n \Lambda
\]

\[
= - \delta \hat{\Theta} \Lambda^T \omega_n \Lambda + \delta \hat{\Theta}_S + \Lambda^T \delta \hat{\omega}_n \Lambda \delta \hat{\Theta}
\]

\[
= \delta \hat{\Theta}_S + \delta \hat{\Theta}_S - \delta \hat{\Theta}_S \hat{\Omega}_n = \delta \hat{\Theta}_S + \hat{\Omega}_n, \delta \hat{\Theta}
\]

\[
\delta \hat{\omega}_n = \Lambda \delta \hat{\varphi}_S + \Lambda \delta \hat{\Theta}_S + \Lambda \delta \hat{\varphi}_S \Lambda \delta \hat{\Theta}_S
\]

\[
\delta \hat{\omega}_n = \Lambda \delta \hat{\varphi}_S + \Lambda \delta \hat{\Theta}_S + \Lambda \delta \hat{\varphi}_S \Lambda \delta \hat{\Theta}_S
\]

with the following relations for the associated axial vectors:

\[
D\hat{\omega}_n \cdot \delta \hat{\Theta} = \delta \hat{\omega}_n = \Lambda_n \delta \hat{\Theta}_S
\]

\[
D\hat{\Omega}_n \cdot \delta \hat{\Theta} = \delta \hat{\Omega}_n = \delta \hat{\Theta}_S + \hat{\Omega}_n, \delta \hat{\Theta}
\]

\[
\delta \hat{\omega}_n = \Lambda \delta \hat{\varphi}_S + \Lambda \delta \hat{\Theta}_S + \Lambda \delta \hat{\varphi}_S \Lambda \delta \hat{\Theta}_S
\] (5.15c)
5.1. Consistent linearization: admissible variations

Summarizing the above results in matrix form, we can rewrite Eqs. (5.13a) to (5.15c) as

\[
\begin{bmatrix}
\delta \hat{\gamma}_n \\
\delta \hat{\omega}_n
\end{bmatrix} =
\begin{bmatrix}
\frac{d}{dt} I & \Lambda^E \\
0 & \Lambda_n\left[\frac{d}{ds} I\right]
\end{bmatrix}
\begin{bmatrix}
\delta \hat{\varphi} \\
\delta \hat{\Theta}
\end{bmatrix} = B^m(\hat{\varphi}, \Lambda) \dot{\eta}^m
\] (5.16a)

\[
\begin{bmatrix}
\delta \hat{\Gamma}_n \\
\delta \hat{\Omega}_n
\end{bmatrix} =
\begin{bmatrix}
\Lambda^T \left[\frac{d}{ds} I\right] & \Pi \left[\Lambda^T \hat{\varphi}; S\right] \\
0 & \left[\frac{d}{ds} I + \Omega_n\right]
\end{bmatrix}
\begin{bmatrix}
\delta \hat{\varphi} \\
\delta \hat{\Theta}
\end{bmatrix} = \bar{B}^m(\hat{\varphi}, \Lambda) \dot{\eta}^m
\] (5.16b)

for the admissible variations of the spatial and material descriptions of the strain vectors, respectively; the co–rotated admissible variations is written in matrix form as

\[
\begin{bmatrix}
\delta \varphi_v \\
\delta \varphi_n
\end{bmatrix} =
\begin{bmatrix}
\frac{d}{ds} I & \Lambda \Pi \left[\Lambda^T \hat{\varphi}; S\right] \\
0 & \Lambda_n \left[\frac{d}{ds} I + \Omega_n\right]
\end{bmatrix}
\begin{bmatrix}
\delta \hat{\varphi} \\
\delta \hat{\Theta}
\end{bmatrix} = \bar{B}(\hat{\varphi}, \Lambda) \dot{\eta}^m. \quad (5.16c)
\]

5.1.3 Linearization of the spin variables

Considering the spatial description of the admissible variation of the current rod configuration \(\hat{\varphi} \approx (\delta \hat{\varphi}, \delta \hat{\Theta}) \), and the spatial form of the angular velocity tensor \(\bar{v}_n = \hat{\Lambda}_n \Lambda_n^T \in T^{\text{spa}} SO(3) \) of the current rod relative to the curved reference rod, Eq. (3.31b), one obtains the following linearized form

\[
D \bar{v}_n \cdot \delta \hat{\theta} =\delta \bar{v}_n \triangleq \delta (\hat{\Lambda}_n \Lambda_n^T) = (\delta \hat{\Lambda}_n) \Lambda_n^T + \hat{\Lambda}_n (\delta \Lambda_n^T)
\]

\[
= \delta \hat{\theta} \hat{\Lambda}_n \Lambda_n^T + \delta \hat{\theta} \hat{\Lambda}_n \Lambda_n^T - \hat{\Lambda}_n \Lambda_n^T \delta \hat{\theta} = \delta \hat{\theta} + \delta \hat{\theta} \bar{v}_n - \bar{v}_n \delta \hat{\theta} = \delta \hat{\theta} + \left[\delta \hat{\theta}, \bar{v}_n\right]. \quad (5.17a)
\]

The admissible variation of the axial vector of \(\bar{v}_n \), the angular velocity vector, \(\bar{v}_n \in T^{\text{spa}} \), is

\[
D \bar{v}_n \cdot \delta \hat{\theta} = \delta \bar{v}_n = \delta \hat{\theta} - \bar{v}_n \delta \hat{\theta}. \quad (5.17b)
\]

By the other hand, considering the spatial form of the angular acceleration tensor of the current rod referred to the curved reference rod \(\hat{\bar{v}}_n = \hat{\Lambda}_n \Lambda_n^T + \hat{\Lambda}_n \Lambda_n^T \in T^{\text{spa}} SO(3) \), Eq. (A.119), we obtain that its admissible variation can be expressed as

\[
D \hat{\bar{v}}_n \cdot \delta \hat{\theta} = \delta \hat{\bar{v}}_n = (\delta \hat{\Lambda}_n) \Lambda_n^T + \Lambda_n (\delta \Lambda_n^T) + \hat{\Lambda}_n \delta \Lambda_n^T.
\]

Prior to obtain an explicit expression for the linear form, we have to consider the following results:

\[
\delta (\hat{\Lambda}_n^T) = (\delta (\hat{\Lambda}_n^T)) = ((\delta \hat{\theta} \hat{\Lambda}_n)^T) = -\hat{\Lambda}_n^T \delta \hat{\theta} - \Lambda_n^T \delta \hat{\theta}
\]

\[
\delta (\hat{\Lambda}_n) = (\delta \hat{\theta} \Lambda_n) = \delta \hat{\theta} \Lambda_n + \delta \hat{\theta} \Lambda_n
\]

\[
\delta (\hat{\Lambda}_n) = (\delta \hat{\Lambda}_n) = \delta \hat{\theta} \Lambda_n + 2 \delta \hat{\theta} \Lambda_n + \delta \hat{\theta} \Lambda_n
\]
which after several algebraic manipulations allow to obtain
\[
D\tilde{v}_n \cdot \delta \dot{\theta} = \delta \alpha_n = \delta \dot{\theta} + \dot{\theta} \tilde{v}_n - \tilde{v}_n \delta \dot{\theta} + \delta \dot{\theta} \alpha_n - \alpha_n \delta \dot{\theta} = \delta \dot{\theta} + [\delta \dot{\theta}, \tilde{v}_n] + [\delta \dot{\theta}, \alpha_n],
\]
with the associated admissible variation of the axial vector \(\hat{v}_n \in T^\text{spa}_\Lambda\) given by
\[
D\hat{v}_n \cdot \delta \dot{\theta} = \delta \hat{\alpha}_n = \delta \ddot{\theta} - \tilde{v}_n \delta \dot{\theta} - \alpha_n \delta \dot{\theta}.
\]
Employing analogous procedures as those followed through Eqs. (5.17a) to (5.17d), the admissible variations of the material forms of the angular velocity and acceleration tensors \(\tilde{V} \in T^\text{mat}_\Lambda SO(3)\) and \(\hat{V} \in T^\text{mat}_\Lambda SO(3)\) are
\[
D\tilde{V} \cdot \delta \dot{\theta} = \delta \tilde{V} = \Lambda^T_0 \delta \tilde{V}_n \Lambda_0 = \Lambda^T_0 [((\delta \Lambda_n)^T \Lambda_n + \Lambda^T_n (\delta \Lambda_n)] \Lambda_0
\]
\[
= \Lambda^T_0 [-\Lambda^T_n \delta \dot{\theta} \Lambda_n + \Lambda^T_n (\delta \dot{\theta} \Lambda_n + \delta \dot{\theta} \Lambda_n)] \Lambda_0
\]
\[
= -\Lambda^T \delta \dot{\theta} \tilde{V}_n \Lambda + \Lambda^T \delta \dot{\theta} \Lambda + \Lambda^T \delta \dot{\theta} \tilde{V}_n \Lambda = \Lambda^T \delta \dot{\theta} \Lambda
\]
\[
D\hat{V} \cdot \delta \dot{\theta} = \delta \hat{V} = ((\delta \Lambda)^T) \delta \Lambda + (\delta \Lambda^T) \delta \Lambda + \delta \Lambda^T \Lambda + \Lambda^T (\delta \Lambda)
\]
\[
= (-\Lambda^T \delta \dot{\theta}) \Lambda + (\Lambda^T) (\delta \dot{\theta} \Lambda + \delta \dot{\theta} \Lambda) - \Lambda^T \delta \dot{\theta} \Lambda + \Lambda^T (\delta \dot{\theta} \Lambda + \delta \dot{\theta} \Lambda)
\]
\[
= \Lambda^T [(\delta \dot{\theta} + \dot{\theta} \delta \dot{\theta} - \tilde{v} \delta \dot{\theta}) + \Lambda T [\delta \ddot{\theta} + [\delta \ddot{\theta}, \tilde{v}] \Lambda] = \Lambda^T [\delta \ddot{\theta} + [\delta \ddot{\theta}, \tilde{v}] \Lambda].
\]
Additionally, the linearized form of the axial vectors \(\hat{V}_n, \hat{v}_n \in T^\text{mat}_\Lambda\) are
\[
D\hat{V}_n \cdot \delta \dot{\theta} = \delta \hat{V}_n = \Lambda^T \delta \dot{\theta}
\]
\[
D\hat{V}_n \cdot \delta \dot{\theta} = \delta \hat{V}_n = \Lambda^T (\delta \ddot{\theta} - \tilde{v}_n \delta \dot{\theta})
\]

5.1.3.a Material updating of the rotational field
If we chose the material description of the admissible variation of the current rod configuration \(\tilde{q}^n \equiv (\delta \varphi, \delta \Theta)\), then, the admissible variations of the spatial and material forms of the angular velocity and acceleration tensors can be calculated employing the same procedures as described above. The resulting expressions are summarized as follows:
\[
D\tilde{v} \cdot \delta \dot{\Theta} = \delta \tilde{v} = \delta (\Lambda \Lambda^T) = (\delta \Lambda) \Lambda^T + \Lambda (\delta \Lambda)^T
\]
\[
= (\Lambda \delta \dot{\Theta} + \Lambda \delta \Theta \dot{\Lambda}) \Lambda^T + \Lambda (\delta \dot{\Theta} \Lambda^T)
\]
\[
D\hat{v} \cdot \delta \Theta = \delta \hat{v} = \delta (\Lambda^T \Lambda) = (\delta \Lambda)^T \Lambda + \Lambda (\delta \Lambda)
\]
\[
= -\delta \Theta \Lambda^T \Lambda + \Lambda (\delta \Theta \Lambda + \Lambda \delta \dot{\Theta})
\]
\[
= \delta \dot{\Theta} - \delta \dot{\Theta} \Lambda + \Lambda \Theta \delta \Theta = \delta \dot{\Theta} + [\Lambda \dot{\Theta}, \delta \Theta]
\]
\[D\ddot{\mathbf{w}} \cdot \delta \mathbf{\Theta} = \delta \ddot{\mathbf{\alpha}} = (\delta \dot{\Lambda})\Lambda^T + \dot{\Lambda}(\delta \Lambda)^T + (\delta \dot{\Lambda})(\Lambda^T) + \dot{\Lambda}((\delta \Lambda)^T) \]
\[= (\dot{\Lambda} \delta \Theta + \Lambda \ddot{\Theta})\Lambda^T - \dot{\Lambda}(\delta \Theta \Lambda^T) + (\Lambda \delta \Theta + \Lambda \ddot{\Theta})(\Lambda^T) - \dot{\Lambda}(\delta \Theta \Lambda^T) \]
\[= \Lambda [\delta \ddot{\Theta} + \dddot{\mathbf{V}} \delta \Theta - \delta \ddot{\mathbf{V}}]\Lambda^T = \Lambda [\delta \ddot{\Theta} + [\dddot{\mathbf{V}}, \delta \Theta]]\Lambda^T \quad (5.20c) \]

\[D\ddot{\mathbf{v}} \cdot \delta \mathbf{\Theta} = \delta \ddot{\mathbf{a}} = (\Lambda \delta \dot{\Theta} + \Lambda \ddot{\Theta})\Lambda^T + \Lambda \Lambda^T(\Lambda \delta \dot{\Theta}) \]
\[= \delta \ddot{\Theta} + \dddot{\mathbf{A}} \delta \Theta - \delta \ddot{\mathbf{A}} + \dddot{\mathbf{V}} \delta \Theta - \delta \ddot{\mathbf{V}} \]
\[= \delta \ddot{\Theta} + \dddot{\mathbf{A}} \delta \Theta + \dddot{\mathbf{V}} \delta \Theta - \delta \ddot{\mathbf{V}} \]
\[= \delta \ddot{\Theta} + [\dddot{\mathbf{V}}, \delta \Theta] + [\dddot{\mathbf{A}}, \delta \Theta] \quad (5.20d) \]

with the corresponding axial vectors given by

\[D\dot{\mathbf{v}} \cdot \delta \hat{\Theta} = \delta \dot{\mathbf{v}} = \Lambda \delta \hat{\Theta} \quad (5.21a) \]
\[D\dot{\mathbf{V}} \cdot \delta \hat{\Theta} = \delta \dot{\mathbf{V}} + \dddot{\mathbf{V}} \delta \hat{\Theta} \quad (5.21b) \]
\[D\dot{\mathbf{a}} \cdot \delta \hat{\Theta} = \delta \dot{\mathbf{a}} = \Lambda [\delta \ddot{\hat{\Theta}} + \dddot{\mathbf{V}} \delta \hat{\Theta}] \quad (5.21c) \]
\[D\dot{\mathbf{V}} \cdot \delta \hat{\Theta} = \delta \dot{\mathbf{A}} = \delta \ddot{\hat{\Theta}} + \dddot{\mathbf{A}} \delta \hat{\Theta} + \dddot{\mathbf{V}} \delta \hat{\Theta}. \quad (5.21d) \]

5.1.4 Linearization of the strain rates

By one hand, considering the spatial rule for updating the rotational part of the motion, we have that the linearized form of the spatial description of the translational strain rate vector given in Eq. (3.79a) can be obtained considering that \(\delta \mathbf{v}_n = (\hat{\Theta} + \delta \hat{\Theta}\mathbf{v}_n - \tilde{\mathbf{v}}_n \delta \hat{\Theta}) \)

and \(\delta \mathbf{a}_1 = \delta \hat{\Theta}_1 \) in the following way:

\[D\hat{\gamma}_n \cdot \hat{\eta}_s = \delta \hat{\gamma}_n = \delta [\hat{\phi}, \gamma_n \tilde{\mathbf{l}}_1] = \delta \hat{\phi}, \gamma_n - \delta \tilde{\mathbf{v}}_n \tilde{\mathbf{l}}_1 + \tilde{\mathbf{v}}_n \delta \tilde{\mathbf{l}}_1 \]
\[= \delta \hat{\phi}, \gamma_n - (\delta \hat{\phi} + \delta \hat{\Theta} \mathbf{v}_n - \tilde{\mathbf{v}}_n \delta \hat{\Theta}) \tilde{\mathbf{l}}_1 + \tilde{\mathbf{v}}_n \delta \tilde{\mathbf{l}}_1 \]
\[= \delta \hat{\phi}, \gamma_n - \delta \hat{\Theta} \tilde{\mathbf{l}}_1 - \delta \hat{\Theta} \mathbf{v}_n \tilde{\mathbf{l}}_1 = \delta \hat{\phi}, \gamma_n - \hat{\Theta} \mathbf{l}_1 \delta \hat{\Theta} - \tilde{\mathbf{v}}_n \Delta \hat{\phi}, \gamma_n \]

and the linearized form of the material description of the translational strain rate vector given in Eq. (3.79b) can be obtained considering that \(\delta \Lambda^T = -\Lambda^T \delta \hat{\Theta} \) as

\[D\hat{\Gamma}_n \cdot \hat{\eta}_s = \delta \hat{\Gamma}_n = \delta [\Lambda^T(\hat{\phi}, \gamma_n - \tilde{\mathbf{v}}_n \hat{\phi}, \gamma_n)] = \delta \Lambda^T(\hat{\phi}, \gamma_n - \tilde{\mathbf{v}}_n \hat{\phi}, \gamma_n) + \Lambda^T \delta (\hat{\phi}, \gamma_n - \tilde{\mathbf{v}}_n \hat{\phi}, \gamma_n) \]
\[= \Lambda^T(\Pi(\hat{\phi}, \gamma_n) \delta \hat{\Theta} + \tilde{\mathbf{v}}_n \Pi(\hat{\phi}, \gamma_n) \delta \hat{\Theta} + \delta \hat{\phi}, \gamma_n - \delta \hat{\Theta} \tilde{\mathbf{v}}_n \hat{\phi}, \gamma_n) \]
\[= \Lambda^T(\Pi(\hat{\phi}, \gamma_n) \delta \hat{\Theta} + \tilde{\mathbf{v}}_n \Pi(\hat{\phi}, \gamma_n) \delta \hat{\Theta} + \delta \hat{\phi}, \gamma_n - \delta \hat{\Theta} \tilde{\mathbf{v}}_n \hat{\phi}, \gamma_n). \quad (5.22b) \]

REMARK 5.1. Note that the strain rate vectors \(\hat{\gamma}_n \) and \(\hat{\Gamma}_n \) depend on time derivatives of the configuration variables, therefore, formally the linearization process is carried out as \(D(\bullet) \cdot \hat{\eta}_s + D(\bullet) \cdot \hat{\eta}_s \); considering perturbations onto \(\hat{\eta}_s \) and its time derivative, however, the same notation as before is used for avoiding an excessive proliferation of symbols. ■

By the other hand, the linearized form of the spatial and material descriptions of
the rotational strain rate vectors, given in Eqs. (3.80a) and (3.80b), can be obtained considering that \(\delta \dot{\omega}_n = \delta \dot{\theta}_n \cdot \bar{\omega}_n \theta \) and \(\delta \dot{v}_n = \delta \dot{\theta} - \bar{\omega}_n \delta \theta \) in the following way:

\[
\begin{align*}
D \dot{\omega}_n \cdot \hat{\eta}^a &= \delta \dot{\omega}_n = \delta \dot{\theta}_n \cdot \bar{\omega}_n \theta + \delta \bar{\omega}_n \dot{\theta} + \delta \dot{\omega}_n \bar{\omega}_n \delta \theta = \delta \dot{\theta}_n \cdot \bar{\omega}_n \theta + [\delta \dot{\theta}, \bar{\omega}_n] \\
D \dot{\Omega}_n \cdot \hat{\eta}^a &= \delta \dot{\Omega}_n = \delta \Lambda^T \dot{\omega}_n, S = -\Lambda^T \delta \dot{\theta} \bar{\omega}_n, S + \Lambda^T (\delta \dot{\omega}_n, S)
\end{align*}
\]

(5.23a)

The co-rotated variation of the translational and rotational strain rates can be calculated considering the definition of the Lie’s variation (see Appendix A) i.e. \(\delta [\dot{\omega}_n] = \Lambda [\dot{\Omega}_n] \) and \(\delta [\dot{\gamma}_n] = \Lambda [\dot{\Gamma}_n] \), respectively [203]; which explicitly are given by

\[
\begin{align*}
\delta [\dot{\gamma}_n] &= (\dot{\varphi} \cdot \bar{\nu} - \bar{\nu} \cdot \dot{\varphi}) \delta \theta + \bar{\varphi} \cdot \bar{\nu} \delta \dot{\theta} + \delta \dot{\varphi} \cdot \bar{\nu} - \bar{\nu} \delta \dot{\varphi} \\
\delta [\dot{\omega}_n] &= \delta \dot{\theta}_n \cdot \bar{\omega}_n \theta \delta \theta
\end{align*}
\]

(5.23c)

Following analogous procedures it is possible to show that the linearized forms of the corresponding spatial and material descriptions and the co-rotated strain rate tensors can be expressed as

\[
\begin{align*}
D \dot{\omega}_n \cdot \hat{\eta}^a &= \delta \dot{\omega}_n = \delta \dot{\theta}_n \cdot \bar{\omega}_n \theta + \delta \bar{\omega}_n \dot{\theta} + \delta \dot{\omega}_n \bar{\omega}_n \delta \theta = \delta \dot{\theta}_n \cdot \bar{\omega}_n \theta + [\delta \dot{\theta}, \bar{\omega}_n] \\
D \dot{\Omega}_n \cdot \hat{\eta}^a &= \delta \dot{\Omega}_n = \Lambda^T (\delta \bar{\omega}_n \cdot \bar{\nu} - \bar{\nu} \cdot \delta \bar{\omega}_n) = \Lambda^T \delta \dot{\theta} \bar{\omega}_n, S + \Lambda^T [\delta \dot{\theta}, \bar{\omega}_n] \Lambda
\end{align*}
\]

(5.24a)

Finally, the material and co-rotated descriptions of the linearized increment of the strain rate at material point level is calculated as

\[
\begin{align*}
D \dot{\mathbf{S}}_n \cdot \hat{\eta}^a &= \delta \dot{\mathbf{S}}_n = \delta \dot{\mathbf{E}}_n = \delta \dot{\Gamma}_n + \delta \dot{\mathbf{H}}_n \times \hat{\mathbf{E}} \\
\delta [\dot{\mathbf{E}}_n] &= \delta \dot{\mathbf{S}}_n = \delta \dot{\mathbf{E}}_n = \Lambda \delta \dot{\mathbf{E}}_n + \delta [\dot{\gamma}_n] \times \hat{\mathbf{F}}
\end{align*}
\]

(5.25)

(5.26)

where it has been considered the fact that \(\hat{\mathbf{F}} = \Lambda \hat{\mathbf{E}} \).

The terms \(\delta \dot{\varphi}, \delta \dot{\varphi} \cdot \bar{\nu}, \delta \dot{\theta} \) and \(\delta \dot{\theta} \cdot \bar{\nu} \) of Eqs. (5.23c) and (5.23d) do not allow to express directly the co-rotated variations of the strain rate vectors in terms of \(\delta \dot{\varphi} \) and \(\delta \dot{\theta} \). To this end, the specific time-stepping scheme used in the numerical integration of the equations of motion provides the needed relations [280]. This aspect will be explained in detail in §6.

For the present developments, let suppose that there exist two linear operators \(\mathbf{H}_a \in \mathbb{R}^{6 \times 6} \),

5.1. Consistent linearization: admissible variations

\[\mathcal{L}(\mathbb{R}^3, \mathbb{R}^{3*}) \text{ and } \mathcal{H}_b(\hat{\theta}) \in \mathcal{L}(T_{\Delta}^{\text{pa}}, T_{\Delta}^{\text{pa}*}) \text{ such that} \]

\[\begin{align*}
\delta \hat{\varphi} &= \mathcal{H}_a \delta \hat{\varphi}, \\
\delta \hat{\theta} &= \mathcal{H}_b \delta \hat{\theta}, \\
\end{align*} \tag{5.27a} \]

\[\begin{align*}
\delta \hat{\varphi}_s &= \mathcal{H}_a \delta \hat{\varphi}_s + \mathcal{H}_a \delta \hat{\varphi}, \\
\delta \hat{\theta}_s &= \mathcal{H}_b \delta \hat{\theta}_s + \mathcal{H}_b \delta \hat{\theta}. \\
\end{align*} \tag{5.27b} \]

Therefore, Eqs. (5.23c) and (5.23d) can be rearranged as

\[\begin{bmatrix} \delta [\hat{\gamma}_n] \vphantom{\mathcal{H}_a \frac{d}{ds} I + \mathcal{H}_a \mathcal{S}_n - \mathcal{H}_b \mathcal{S}_n + \mathcal{H}_b \mathcal{S}_n} \delta \hat{\omega}_n \end{bmatrix} = \begin{bmatrix} \mathcal{H}_a \frac{d}{ds} I + \mathcal{H}_a \mathcal{S}_n - \mathcal{H}_b \mathcal{S}_n + \mathcal{H}_b \mathcal{S}_n & \mathcal{H}_a \frac{d}{ds} I - \mathcal{H}_a \mathcal{S}_n \end{bmatrix} \begin{bmatrix} \delta \hat{\varphi} \\ \delta \hat{\theta} \end{bmatrix} = \mathcal{V} \hat{\eta}^* \tag{5.28} \]

where \(\hat{\gamma}_n = \Pi [\hat{\varphi}_s], \hat{\varphi}_s = \Pi [\hat{\varphi}], 1 \) is the 3 \times 3 identity matrix and the operator \(\frac{d}{ds} I \) is defined as \(\frac{d}{ds} I = I \frac{d}{ds} (\bullet) \). It is worth to note that the tensor \(\mathcal{V} \) is configuration dependent and it couples the rotational and translational parts of the motion.

5.1.4.a Material updating of the rotational field

If we chose the material description of the admissible variation of the current rod configuration \(\hat{\eta}_n \equiv (\delta \hat{\varphi}, \delta \hat{\theta}) \), then, the admissible variations of the spatial form of the translational strain rate vector can be calculated considering \(\dot{\mathbf{I}}_1 = \Lambda \mathbf{E}_1 \delta \hat{\Theta} \) and the result of Eq. (5.20a) as

\[\begin{align*}
D \hat{\gamma}_n \cdot \hat{\eta}^m &= \delta \hat{\gamma}_n = \delta \hat{\varphi}_s - \delta \hat{\varphi}_s - \mathcal{H}_a - \mathcal{S}_n \delta \hat{\varphi}_s - \Lambda \delta \hat{\Theta} \Lambda^T \hat{\varphi}_s - \mathcal{H}_b \mathcal{S}_n \delta \hat{\varphi}_s - \Lambda \delta \hat{\Theta} \Lambda^T \mathbf{E}_1 \delta \hat{\Theta} \\
&= \delta \hat{\varphi}_s - \Lambda \mathbf{E}_1 \delta \hat{\Theta} - \mathcal{H}_a \mathcal{S}_n \delta \hat{\varphi}_s - \Lambda \mathbf{E}_1 \delta \hat{\Theta} - \mathcal{H}_b \mathcal{S}_n \delta \hat{\varphi}_s - \Lambda \mathbf{E}_1 \delta \hat{\Theta} \\
&= \delta \hat{\varphi}_s - \Lambda \mathbf{E}_1 \delta \hat{\Theta} - \mathcal{H}_a \mathcal{S}_n \delta \hat{\varphi}_s - \Lambda \mathbf{E}_1 \delta \hat{\Theta} - \mathcal{H}_b \mathcal{S}_n \delta \hat{\varphi}_s - \Lambda \mathbf{E}_1 \delta \hat{\Theta} \tag{5.29a} \end{align*} \]

for the case of the material form of the translational strain rate vector, we have

\[\begin{align*}
D \hat{\gamma}_n \cdot \hat{\eta}^m &= \delta \hat{\gamma}_n = \delta \left[\Lambda^T (\hat{\varphi}_s - \mathcal{H}_a \mathcal{S}_n \hat{\varphi}_s) \right] \\
&= \left(\delta \Lambda \right)^T (\hat{\varphi}_s - \mathcal{H}_a \mathcal{S}_n \hat{\varphi}_s) + \Lambda^T (\delta \hat{\Theta} \Lambda^T \hat{\varphi}_s - \mathcal{H}_a \mathcal{S}_n \delta \hat{\varphi}_s - \Lambda \mathbf{E}_1 \delta \hat{\Theta}) \\
&= - \delta \hat{\Theta} \Lambda^T (\hat{\varphi}_s - \mathcal{H}_a \mathcal{S}_n \hat{\varphi}_s) + \Lambda^T (\delta \hat{\Theta} \Lambda^T \hat{\varphi}_s - \mathcal{H}_a \mathcal{S}_n \delta \hat{\varphi}_s - \Lambda \mathbf{E}_1 \delta \hat{\Theta}) \\
&= \hat{\Gamma}_n \delta \hat{\Theta} - \mathcal{H}_a \mathcal{S}_n \delta \hat{\varphi}_s - \Lambda \mathbf{E}_1 \delta \hat{\Theta} \tag{5.29b} \end{align*} \]

where \(\hat{\Gamma}_n \) is the skew–symmetric tensor obtained from \(\hat{\Gamma}_n \). Finally, the co–rotated variation is obtained as

\[\delta \left[\hat{\gamma}_n \right] = \Lambda \delta \hat{\gamma}_n = [\hat{\gamma}_n] \Lambda \delta \hat{\Theta} + \Lambda \mathcal{H}_a [\Lambda^T \hat{\varphi}_s, \mathcal{S}_n \delta \hat{\varphi}_s] \delta \hat{\Theta} + \delta \hat{\varphi}_s - \mathcal{H}_a \mathcal{S}_n \delta \hat{\varphi}_s \tag{5.29c} \]
where $\tilde{\gamma}_n^\top = \Pi[\tilde{\gamma}_n]$ is a so(3). In the case of the spatial form of rotational strain rate tensor and considering the results of Eqs. (5.13c) and (5.20a), we have

$$D\dot{\omega}_n \cdot \delta \dot{\Theta} = \delta \dot{\omega}_n = \delta (\bar{\omega}_{n,S} + \hat{\vec{v}}_n \omega_n - \tilde{\omega}_n \bar{\vec{v}}_n)$$

$$= (\Lambda \delta \dot{\Theta} \Lambda^T)_S + \Lambda \delta \dot{\Theta} \tilde{\omega}_n \Lambda^T + \Lambda \dot{\vec{v}}_n \delta \dot{\Theta}_S \Lambda^T - \Lambda \delta \dot{\Theta}_S \Lambda \dot{\vec{v}}_n \Lambda^T - \Lambda \dot{\vec{\Omega}}_n \dot{\Theta} \Lambda^T$$

$$= \Lambda \{ \delta \dot{\Theta}_S + \dot{\vec{V}}_n \delta \dot{\Theta}_S - \delta \dot{\Theta}_S \dot{\vec{v}}_n \} \Lambda^T = \Lambda \{ \delta \dot{\Theta}_S + [\dot{\vec{V}}_n, \delta \dot{\Theta}_S] \} \Lambda^T. \quad (5.30a)$$

For the case of the material form of the strain rate tensor, considering Eqs. (3.80b) and (5.20a), we obtain

$$D\dot{\Omega}_n \cdot \delta \dot{\Theta} = \delta \dot{\Omega}_n = \delta (\Lambda T \bar{\omega}_{n,S} \Lambda) = (\delta \Lambda T \bar{\omega}_{n,S} \Lambda + \Lambda T \delta \bar{\omega}_{n,S} \Lambda + \Lambda T \Lambda) \Lambda \delta \bar{\omega}_{n,S} \delta \Lambda$$

$$= \dot{\Omega}_n \delta \dot{\Theta} - \delta \dot{\Theta} \dot{\Omega}_n + \Lambda T (\lambda, S) \delta \dot{\Theta} \Lambda^T + \Lambda \delta \dot{\Theta}_S \Lambda^T + \Lambda \delta \dot{\Theta} (\Lambda T)_S \Lambda$$

$$= \dot{\Omega}_n \delta \dot{\Theta} + \dot{\Omega}_n \delta \dot{\Theta} \dot{\Omega}_n + \dot{\Omega}_n \delta \dot{\Theta} - \delta \dot{\Theta} \dot{\Omega}_n = \dot{\Omega}_n \delta \dot{\Theta} + [\dot{\Omega}_n, \delta \dot{\Theta}] + [\dot{\Omega}_n, \delta \dot{\Theta}] \Lambda. \quad (5.30b)$$

Taking into account the previous result we have that the co–rotated form of the strain rate tensor is given by

$$\delta [\dot{\omega}_n] = \Lambda [\delta \dot{\Theta}_S + \dot{\Omega}_n, \delta \dot{\Theta}] + [\dot{\Omega}_n, \delta \dot{\Theta}] \Lambda^T. \quad (5.30c)$$

The axial vectors of the strain rate tensor of Eqs. (5.30a) to (5.30a) are then given by

$$D\dot{\omega}_n \cdot \delta \dot{\Theta} = \delta \dot{\omega}_n = \Lambda \{ \delta \dot{\Theta}_S + \dot{\vec{V}}_n \delta \dot{\Theta}_S \} \quad (5.31a)$$

$$D\dot{\Omega}_n \cdot \delta \dot{\Theta} = \delta \dot{\Omega}_n = \Lambda \{ \delta \dot{\Theta}_S + \dot{\vec{V}}_n \delta \dot{\Theta}_S + \dot{\vec{v}}_n \delta \dot{\Theta}_S \} \quad (5.31b)$$

$$\delta [\dot{\omega}_n] = \Lambda \dot{\Omega}_n = \Lambda \{ \delta \dot{\Theta}_S + \dot{\vec{v}}_n \delta \dot{\Theta}_S + \dot{\vec{v}}_n \dot{\Theta} \} \quad (5.31c)$$

It is worth note that $\delta [\dot{\omega}_n] \neq D[\dot{\omega}_n] \dot{\gamma}_n^m$, where on the right hand side the linearization of the co–rotated curvature strain rate vector is performed on the tangent space where it belongs *i.e. T_n^mat.*

Analogously as for the case of the spatial updating of the rotational field, one obtains that the material and co-rotated descriptions of the linearized increment of the strain rate at material point level are calculated as

$$\delta \dot{S}_n = \delta \dot{\bar{\vec{e}}}_n = \delta \dot{\bar{\vec{e}}}_n + \delta \dot{\Omega}_n \times \dot{\vec{e}} \quad (5.32)$$

$$\delta \delta_n = \delta [\dot{\bar{\vec{e}}}_n] = \Lambda \delta \dot{\bar{\vec{e}}}_n = \delta [\tilde{\gamma}_n] + \delta [\dot{\omega}_n] \times \dot{\vec{r}}. \quad (5.33)$$

The terms $\delta \dot{\vec{r}}$, $\delta \dot{\vec{r}}_S$, $\delta \dot{\Theta}$ and $\dot{\vec{r}}_S \delta \dot{\Theta}$ of Eqs. (5.29c) and (5.31c) do not allow to express directly the co-rotated variations of the strain rate vectors in terms of $\dot{\gamma}_n^m$. The specific time–stepping scheme used in the numerical integration of the equations of motion provides the needed relations [280]. This aspect will be explained in detail in §6.

Analogously as for the case of the spatial updating of the rotations, lets suppose that
there exist an additional linear operator $\mathcal{H}^m_b(\vec{\Theta}) \in \mathcal{L}(T^\text{mat}_A, T^\text{mat}_A)$ such that

$$\delta \hat{\Theta} = \mathcal{H}^m_b \delta \Theta, \quad \delta \hat{\Theta}_{,S} = \mathcal{H}^m_b \delta \Theta_{,S} + \mathcal{H}^m_b \cdot \delta \Theta$$ (5.34)

Therefore, Eqs. (5.29c) and (5.31c) can be rearranged as

$$
\begin{bmatrix}
\delta [\hat{\gamma}_n] \\
\delta [\hat{\omega}_n]
\end{bmatrix}
= \begin{bmatrix}
\left(\mathcal{H}_a - \vec{\nu}_n \right) \left[\frac{b}{\Omega_{x}} I \right] + \mathcal{H}_a, \text{S} & [\hat{\gamma}_n] \Lambda + \Lambda [\mathcal{T}_n \hat{\varphi}, \mathcal{H}^m_b] \\
0 & \Lambda (\mathcal{H}^m_b \left[\frac{b}{\Omega_{x}} I \right] + \mathcal{H}^m_b, \text{S} + \hat{\Omega}_n + \hat{\Omega}_n \mathcal{H}^n_b)
\end{bmatrix}
\begin{bmatrix}
\delta \hat{\varphi} \\
\delta \hat{\Theta}
\end{bmatrix}
= \vec{\nu} \hat{\eta}^m.
\end{array}
$$

(5.35)

It is worth to note that the tensor $\vec{\nu}$ is configuration dependent and it couples the rotational and translational parts of the motion.

5.2 Linearization of the stress resultants and couples

5.2.1 Elastic case

Considering the variation of strains, Eqs. (5.8a) trough (5.11b), the constitutive relations for stress resultant and couples in material form given in §3.7 for the linear case and denoting $\mathcal{C}^{\text{me}}_n = \mathcal{C}^{\text{me}}_{nm}$ and $\mathcal{C}^{\text{me}}_m = \mathcal{C}^{\text{me}}_{mm}$, one obtains that

$$D\hat{n}^m \cdot \delta \hat{n}^m = \mathcal{C}^{\text{me}}_m \delta \hat{n}^m + \mathcal{C}^{\text{me}}_n \delta \hat{n} + \mathcal{C}^{\text{me}}_n \Lambda^T (\delta \hat{\varphi}, \text{S} + \Pi [\hat{\varphi}, \text{S}] \delta \hat{\Theta}) + \mathcal{C}^{\text{me}}_{mm} \Lambda^T \delta \hat{\Theta}_{,S}$$ (5.36)

where $\mathcal{C}^{\text{me}}_{ij}, (i, j \in \{n, m\})$ are the material forms of the elastic constitutive tensors obtained according to the mixing rule as explained in §4.3. Hence, employing the pullback and push–forward operations we obtain the Lie variation (or co–rotated variation) as

$$\delta [\hat{n}] = \Lambda \delta (\Lambda^T \hat{n}) = \Lambda \delta \hat{n}^m = \frac{\Lambda \mathcal{C}^{\text{me}}_m \Lambda^T (\delta \hat{\varphi}, \text{S} + \Pi [\hat{\varphi}, \text{S}] \delta \hat{\Theta}) + \Lambda \mathcal{C}^{\text{me}}_{mm} \Lambda^T \delta \hat{\Theta}_{,S}}{\mathcal{C}^{\text{me}}_n}$$

$$= \mathcal{C}^{\text{me}}_m (\delta \hat{\varphi}, \text{S} + \Pi [\hat{\varphi}, \text{S}] \delta \hat{\Theta}) + \mathcal{C}^{\text{me}}_{mm} \delta \hat{\Theta}_{,S}$$ (5.37)

where $\mathcal{C}^{\text{me}}_{ij}, (i, j \in \{n, m\})$ are the spatial forms of the elastic constitutive tensors. Similarly, one obtain for the case of the stress couples

$$D\hat{n}^m \cdot \hat{\eta}^s = \delta \hat{n}^m = \mathcal{C}^{\text{me}}_m \Lambda^T (\delta \hat{\varphi}, \text{S} + \Pi [\hat{\varphi}, \text{S}] \delta \hat{\Theta}) + \mathcal{C}^{\text{me}}_{mm} \Lambda^T \delta \hat{\Theta}_{,S}$$ (5.38)

$$\delta \hat{m} = \mathcal{C}^{\text{me}}_m (\delta \hat{\varphi}, \text{S} + \Pi [\hat{\varphi}, \text{S}] \delta \hat{\Theta}) + \mathcal{C}^{\text{me}}_{mm} \delta \hat{\Theta}_{,S}$$ (5.39)

The linear form of the spatial stress resultant is calculated noticing the following relation for the co–rotated variation: $\delta [\hat{n}] = \delta \hat{n} - \vec{\nu} \hat{n} = \delta \hat{n} + \vec{\nu} \hat{n}$, (where $\vec{\nu} = \Pi [\hat{n}]$) as

$$D\hat{n} \cdot \hat{\eta}^s = \delta \hat{n} = \mathcal{C}^{\text{me}}_m (\delta \hat{\varphi}, \text{S} + \Pi [\hat{\varphi}, \text{S}] \delta \hat{\Theta}) + \mathcal{C}^{\text{me}}_{mm} \delta \hat{\Theta}_{,S} - \vec{\nu} \hat{n}$$

$$= \mathcal{C}^{\text{me}}_m \delta \hat{\varphi}, \text{S} + (\mathcal{C}^{\text{me}}_m \Pi [\hat{\varphi}, \text{S}] - \vec{\nu}) \delta \hat{\Theta} + \mathcal{C}^{\text{me}}_{mm} \delta \hat{\Theta}_{,S}$$ (5.40)
and analogously for the variation of the spatial form of the stress couple

\[
D\hat{m} \cdot \hat{\eta} = \delta \hat{m} = C^{\text{me}}_{mn} \delta \hat{\varphi}, S + (\bar{C}^{\text{me}}_{mn} \Pi[\hat{\varphi}, S] - \bar{m}) \delta \hat{\theta} + C^{\text{me}}_{mn} \delta \hat{\theta} , S .
\] (5.41)

The derivation of expressions for the admissible variations of the stress resultant and couples for a general parametrization of the rotational field is omitted here. The results obtained for the admissible variation of the stress resultant and couples given in Eqs. (5.36) to (5.41) can be summarized and written in matrix form as

\[
\begin{bmatrix}
\delta \hat{m}^m \\
\delta \hat{n}^m
\end{bmatrix} = \begin{bmatrix}
\bar{c}^{\text{me}}_{nm} & \bar{c}^{\text{me}}_{nm} \\
c^{\text{me}}_{nm} & c^{\text{me}}_{nm}
\end{bmatrix} \begin{bmatrix}
\Lambda^T \left[\frac{d}{dS} \right] I & \Lambda^T \Pi[\hat{\varphi}, S] \\
\Lambda^T \left[\frac{d}{dS} \right] I
\end{bmatrix} \begin{bmatrix}
\delta \hat{\varphi} \\
\delta \hat{\theta}
\end{bmatrix} = [C^{\text{me}} B^s] \eta^s
\] (5.42)

where the material form of the constitutive tensor \(\bar{C}^{\text{me}} \) has been given in Eqs. (3.164a) to (3.164d). By other hand, the co–rotated admissible variation of the stress resultant and couples is

\[
\begin{bmatrix}
\delta \hat{n} \\
\delta \hat{m}
\end{bmatrix} = \begin{bmatrix}
c^{\text{me}}_{nm} & c^{\text{me}}_{nm} \\
c^{\text{me}}_{nm} & c^{\text{me}}_{nm}
\end{bmatrix} \begin{bmatrix}
\bar{c}^{\text{me}}_{nm} & \bar{c}^{\text{me}}_{nm} \\
c^{\text{me}}_{nm} & c^{\text{me}}_{nm}
\end{bmatrix} \begin{bmatrix}
\Pi[\hat{\varphi}, S] \\
\Pi[\hat{\varphi}, S]
\end{bmatrix} \begin{bmatrix}
\delta \hat{\varphi} \\
\delta \hat{\theta}
\end{bmatrix} = [\bar{C}^{\text{me}} B] \eta^s
\] (5.43)

It is worth noting the relations \(I_A \bar{C}^{\text{me}} I_A^T = C^{\text{me}} \) and \(I_A B^s = B \) where the push–forward operation by \(\Lambda \) has been used to carry the material form of the constitutive tensor to the spatial form, i.e. \(C^{\text{me}} = \Lambda C_{ij} \Lambda^T \) \((i, j \in \{n, m\}) \).

Finally, the spatial form of the admissible variation of the stress resultant and couples can be expressed in matrix form as

\[
\begin{bmatrix}
\delta \hat{n} \\
\delta \hat{m}
\end{bmatrix} = \begin{bmatrix}
c^{\text{me}}_{nm} & c^{\text{me}}_{nm} \\
c^{\text{me}}_{nm} & c^{\text{me}}_{nm}
\end{bmatrix} \begin{bmatrix}
\bar{c}^{\text{me}}_{nm} & \bar{c}^{\text{me}}_{nm} \\
c^{\text{me}}_{nm} & c^{\text{me}}_{nm}
\end{bmatrix} \begin{bmatrix}
[\bar{\Pi}[\hat{\varphi}, S] & \bar{\Pi}[\hat{\varphi}, S] \\
0 & 0
\end{bmatrix} \begin{bmatrix}
\delta \hat{\varphi} \\
\delta \hat{\theta}
\end{bmatrix} = \{C^{\text{me}} B + \mathcal{N}\} \eta^s
\] (5.44)

where the tensor \(\mathcal{N} \) takes into account for the stress state existing in the current rod configuration.

5.2.1.a Material updating of the rotational field

Considering the variation of strains, Eqs. (5.8a) trough (5.11b), the constitutive relations for stress resultant and couples in material form given in §3.7 for the linear case, one obtains that

\[
D\hat{m} \cdot \hat{\eta}^m = \delta \hat{m}^m = \bar{C}^{\text{me}}_{mn} \delta \hat{\Gamma}^n + \bar{C}^{\text{me}}_{nm} \delta \hat{\Omega}^n = \bar{C}^{\text{me}}_{mn} (\Pi[\Lambda^T \hat{\varphi}, S] \delta \hat{\Theta} + \Lambda^T \bar{\Pi}[\hat{\varphi}, S] + \bar{C}^{\text{me}}_{mn} (\delta \hat{\Theta}, S + \bar{\Omega}_n \delta \hat{\Theta} .
\] (5.45)
Additionally, employing the pullback and push-forward operations we obtain the Lie variation, (or co–rotated variation), as

$$\delta [\hat{n}] = \Lambda \delta (\Lambda^T \hat{n}) = \Lambda \delta \hat{n}^m = \bar{C}^{se}_{nn}(\Pi [\Lambda^T \hat{\varphi}, \hat{\varphi}, S] \delta \hat{\Theta} + \delta \hat{\varphi}, S) + \bar{C}^{se}_{nm}(\Lambda \delta \hat{\Theta}, S + \hat{n} \Lambda \delta \hat{\Theta})$$ \hspace{1cm} (5.46)

where \(\bar{C}_{ij}^{se}, (i, j \in \{n, m\})\) are the spatial forms of the elastic constitutive tensors. Similarly, one obtain for the case of the stress couples

$$D \hat{n}^m \cdot \hat{n}^m = \delta \hat{n}^m = \bar{C}^{me}_{nn}(\Pi [\Lambda^T \hat{\varphi}, \hat{\varphi}, S] \delta \hat{\Theta} + \Lambda^T \Lambda \Lambda \delta \hat{\Theta}, S + \bar{C}^{me}_{nm}(\Lambda \delta \hat{\Theta}, S + \hat{n} \Lambda \delta \hat{\Theta})$$ \hspace{1cm} (5.47)

$$\delta [\hat{n}] = \bar{C}^{se}_{nn}(\Lambda \Pi [\Lambda^T \hat{\varphi}, S] \delta \hat{\Theta} + \Lambda^T \hat{\varphi}, S) + \bar{C}^{se}_{nm}(\Lambda \delta \hat{\Theta}, S + \hat{n} \Lambda \delta \hat{\Theta}) \hspace{1cm} (5.48)$$

The linear form of the spatial stress resultant is calculated noticing the following relation for the co–rotated variation: \(\delta [\hat{n}] = \delta \hat{n} - \bar{\hat{n}} \delta \hat{\Theta} = \delta \hat{n} + \bar{\hat{n}} \delta \hat{\Theta}\) as

$$D \hat{n} \cdot \hat{n}^m = \delta \hat{n} = \bar{C}^{me}_{nn}(\Lambda \Pi [\Lambda^T \hat{\varphi}, S] \delta \hat{\Theta} + \Lambda^T \Lambda \Lambda \delta \hat{\Theta}, S + \bar{C}^{me}_{nm}(\Lambda \delta \hat{\Theta}, S + \hat{n} \Lambda \delta \hat{\Theta})$$ \hspace{1cm} (5.49)

and analogously for the variation of the spatial form of the stress couple

$$D \hat{n} \cdot \hat{n}^m = \delta \hat{n} = \bar{C}^{me}_{mn}(\Lambda \Pi [\Lambda^T \hat{\varphi}, S] + \bar{C}^{me}_{mm}(\Lambda \delta \hat{\Theta}, S + \hat{n} \Lambda \delta \hat{\Theta})$$ \hspace{1cm} (5.50)

The results obtained for the admissible variation of the stress resultant and couples given in Eqs. (5.36) to (5.41) can be summarized and written in matrix form as

$$\begin{bmatrix} \delta \hat{n}^m \\
\delta \hat{n}^m \end{bmatrix} = \begin{bmatrix} \bar{C}^{me}_{nn} & \bar{C}^{me}_{nm} \\
\bar{C}^{me}_{mn} & \bar{C}^{me}_{mm} \end{bmatrix} \begin{bmatrix} \Lambda^T [\frac{d}{dS}] \Pi [\Lambda^T \hat{\varphi}, S] \\
0 \end{bmatrix} \begin{bmatrix} \delta \hat{\Theta} \\
\delta \hat{\Theta} \end{bmatrix} = [\bar{C}^{me} B^m] \hat{n}^m$$ \hspace{1cm} (5.51)

where the material form of the constitutive tensor \(\bar{C}^{me}\) has been given in Eqs. (3.16a) to (3.16d). By other hand, the co–rotated admissible variation of the stress resultant and couples is

$$\begin{bmatrix} \hat{n}^m \\
\hat{n}^m \end{bmatrix} = \begin{bmatrix} \bar{C}^{se}_{nn} & \bar{C}^{se}_{nm} \\
\bar{C}^{se}_{mn} & \bar{C}^{se}_{mm} \end{bmatrix} \begin{bmatrix} \Lambda^T [\frac{d}{dS}] \Pi [\Lambda^T \hat{\varphi}, S] \\
0 \end{bmatrix} \begin{bmatrix} \delta \hat{\Theta} \\
\delta \hat{\Theta} \end{bmatrix} = [\bar{C}^{se} B^m] \hat{n}^m$$ \hspace{1cm} (5.52)
Finally, the spatial form of the admissible variation of the stress resultant and couples can be expressed in matrix form as

\[
\begin{bmatrix}
\delta \hat{n} \\
\delta \hat{m}
\end{bmatrix} = \begin{bmatrix}
\tilde{C}_{\text{sec}} & \tilde{C}_{\text{sec}} \\
\tilde{C}_{\text{sec}} & \tilde{C}_{\text{sec}}
\end{bmatrix} \begin{bmatrix}
\frac{d}{dS} I \\
0
\end{bmatrix} \left(\Lambda \left[\frac{d}{dS} I \right] + \omega_n \Lambda \right) + \begin{bmatrix}
0 & -\hat{n} \\
0 & -\hat{m}
\end{bmatrix} \left[\frac{\delta \hat{\varphi}}{\delta \Theta} \right] = (\tilde{C}_{\text{sec}} B + \mathcal{N}) \hat{\eta}^m
\]

(5.53)

where the tensor \(\mathcal{N} \) takes into account for the stress state existing in the current rod configuration.

5.2.2 Inelastic case

In Chapter 4 (§4.2.2) it has been shown that the linearized form of the material version of the total (possibly rate dependent) FPK stress vector can be expressed as

\[
\delta \hat{P}_{1\text{m}} = \delta \hat{P}_{1\text{m}} + \delta \hat{P}_{1\text{mv}} = \tilde{\mathcal{C}}^{\text{mv}} \delta \hat{\varepsilon}_n + \tilde{\eta}^{\text{ms}} \delta \hat{S}_n
\]

(5.54)

where \(\tilde{\mathcal{C}}^{\text{mv}} \) and \(\tilde{\eta}^{\text{ms}} \) are the material form of the rate dependent and viscous tangent constitutive tensors, calculated using the mixing rule for composites as explained in Section 4.3. The term \(\delta \hat{S}_n \) is the linearized increment of the material description of the strain rate vector, Eq. (5.25) or (5.32).

The co-rotated form of Eq. (5.54) is obtained by means of applying the push–forward by the rotation tensor \(\Lambda \) as

\[
\delta [\hat{P}_{1\text{i}}] = \Lambda \delta \hat{P}_{1\text{m}} + \Lambda \delta \hat{P}_{1\text{mv}} = \tilde{\mathcal{C}}^{\text{sv}} \delta [\hat{\varepsilon}_n] + \tilde{\eta}^{\text{ss}} \delta [\hat{s}_n]
\]

(5.55)

where \(\tilde{\mathcal{C}}^{\text{sv}} = \Lambda \tilde{\mathcal{C}}^{\text{mv}} \Lambda^T \) and \(\tilde{\eta}^{\text{ss}} = \Lambda \tilde{\eta}^{\text{mv}} \Lambda^T \) are the spatial form of the corresponding constitutive tensors.

By other hand, the components of the spatial version of the total FPK stress vector can be expressed in the local (time varying) frame \(\{ \hat{t}_i \} \) as \(\hat{P}_{1\text{i}} = P_{1\text{i}}^\chi \hat{t}_i \) and in the case of its material form \(\hat{P}_{1\text{m}} = P_{1\text{m}}^\chi \hat{E}_i \); taking an admissible variation in both cases, one obtains

\[
\delta \hat{P}_{1\text{m}} = \delta P_{1\text{m}}^\chi \hat{E}_i
\]

(5.56a)

\[
\delta \hat{P}_{1\text{i}} = \delta P_{1\text{i}}^\chi \hat{t}_i + \hat{\theta} \delta P_{1\text{i}}^\chi \hat{t}_i = \delta P_{1\text{i}}^\chi \hat{t}_i + \hat{\theta} \hat{P}_{1\text{i}}.
\]

(5.56b)

The co-rotated version of the linearized increment of the FPK stress vector is obtained by means of applying the push–forward to \(\delta \hat{P}_{1\text{m}} \) according to

\[
\delta [\hat{P}_{1\text{i}}] = \Lambda \delta \hat{P}_{1\text{m}} = \delta P_{1\text{i}}^\chi \hat{t}_i
\]

(5.57a)

\(^4\)Here it has been used the denomination rate dependent tangent tensor for the general case of a material presenting viscosity, however it is replaced by the rate independent version when corresponds without altering the formulation.
where it is possible to deduce, taking into account Eqs. (5.55) and (5.55), that

$$\delta \tilde{P}_1^t = \delta [\tilde{P}_1^t] + \delta \tilde{\theta} \tilde{P}_1^t = \mathbf{C}^{sv} \delta [\tilde{\varepsilon}_n] + \mathbf{\eta}^{sv} \delta [\tilde{n}] + \delta \tilde{\theta} \tilde{P}_1^t$$ \hspace{1cm} (5.57b)

where it is possible to replace $\tilde{\theta} \in \text{so}(3)$ by $\tilde{\Theta} \in \text{so}(3)$ if the material updating rule is preferred.

As it has been detailed in §3.3.4, Eqs. (3.95b) and (3.97b), one has explicit expressions for \tilde{n} and \tilde{m} and the corresponding linearized forms can be estimated starting from the result provided in Eq. (5.57b) and integrating over the cross sectional area as

$$\begin{bmatrix} \delta \tilde{n} \\ \delta \tilde{m} \end{bmatrix} = \begin{bmatrix} C^{sv}_{nm} & C^{sv}_{mm} \\ C^{sv}_{mn} & C^{sv}_{mm} \end{bmatrix} \begin{bmatrix} \delta \tilde{\gamma}_n \\ \delta \tilde{\omega}_n \end{bmatrix} + \begin{bmatrix} \Upsilon_{ss}^{nm} & \Upsilon_{ss}^{mm} \\ \Upsilon_{ss}^{mn} & \Upsilon_{ss}^{mm} \end{bmatrix} \begin{bmatrix} \delta \tilde{\gamma}_n \\ \delta \tilde{\omega}_n \end{bmatrix} + \begin{bmatrix} 0 & -\tilde{n} \\ 0 & -\tilde{m} \end{bmatrix} \begin{bmatrix} \delta \tilde{\phi} \\ \delta \tilde{\theta} \end{bmatrix}$$ \hspace{1cm} (5.58)

where C^{sv}_{ij} and Υ_{ij}^{sj}, $(i, j = n, m)$ are the spatial forms of the reduced tangential and reduced viscous tangential constitutive tensors, which are calculated simply replacing $\tilde{\mathbf{C}}^{se}$ in each material point on the cross section by the tangential $\tilde{\mathbf{C}}^{sv}$ and viscous $\tilde{\mathbf{\eta}}^{se}$ constitutive tensors in spatial description, and integrating over the cross section according the procedure described in §4.4 for the elastic case. It is interesting to note that in the present formulation the reduced tangential and viscous constitutive tensors are rate dependent.

The corresponding material forms are obtained as $\tilde{\mathbf{C}}^{mv}_{ij} = \Lambda^T \tilde{\mathbf{C}}^{sv}_{ij} \Lambda$ and $\tilde{\mathbf{\Upsilon}}^{mv}_{ij} = \Lambda^T \tilde{\mathbf{\Upsilon}}^{se}_{ij} \Lambda$.

If the spatial rule for the Updating procedure of the rotational field is used, Eq. (5.58) can be rewritten, along with expressions for the linearized form of the material and co–rotated versions of the stress resultant and couples, as

$$\begin{align*}
\delta \tilde{\Phi} &= (\mathbf{C}^{sv} \mathbf{B} + \mathbf{\Upsilon}^{ss} \mathbf{V}) \tilde{\eta}^s \\
\delta \tilde{\Phi}^m &= (\mathbf{C}^{mv} \mathbf{B} + \mathbf{\Upsilon}^{ms} \mathbf{V}) \tilde{\eta}^s \\
\delta \tilde{\Phi} &= (\mathbf{C}^{sv} \mathbf{B} + \mathbf{\Upsilon}^{ss} \mathbf{V} + \mathbf{\nu}) \tilde{\eta}^s
\end{align*}$$ \hspace{1cm} (5.59)

where the notation $\delta \tilde{\Phi} = [\delta \tilde{n}, \delta \tilde{m}]$, $\delta \tilde{\Phi} = [\delta \tilde{n}, \delta \tilde{m}]$ and $\delta \tilde{\Phi}^m = [\delta \tilde{n}^m, \delta \tilde{m}^m]$ has been used. In the deduction of Eqs. (5.59a) to (5.59a) it also has been used the results of Eqs. (5.12a), (5.16a), (5.12c) and (7.45).

If the material updating rule is preferred Eqs. (5.59a) to (5.59c) take the following form:

$$\begin{align*}
\delta \tilde{\Phi} &= (\mathbf{C}^{sv} \mathbf{B} + \mathbf{\Upsilon}^{ss} \mathbf{V}) \tilde{\eta}^m \\
\delta \tilde{\Phi}^m &= (\mathbf{C}^{mv} \mathbf{B} + \mathbf{\Upsilon}^{ms} \mathbf{V}^m) \tilde{\eta}^m \\
\delta \tilde{\Phi} &= (\mathbf{C}^{sv} \mathbf{B} + \mathbf{\Upsilon}^{ss} \mathbf{V} + \mathbf{\nu}) \tilde{\eta}^m
\end{align*}$$ \hspace{1cm} (5.60)

where it has been taken into account the results of Sections 5.1.4 and 5.2.1.
5.2.3 Equivalence between G^m and G^s

Prior to carry out formally the linearization of the virtual work functional, Eq. (3.145), we will show the equivalence between the material, G^m, and spatial, G^s, phrasing of this scalar quantity as it has been noted in Remark 3.6.

Consider again any admissible variation in spatial description $\tilde{\eta}^s \in T_0 C_t$ superposed onto the configuration $(\hat{\varphi}^s, \Lambda^s) \in C_t$ at time t_*. Substituting Eqs. (5.62), (5.63), (5.10b) and (5.10c) into Eq. (3.147) one obtains the internal part of the material description of the weak form of the momentum balance equations [278, 280], $G^m(\hat{\varphi}^s, \Lambda^s, \tilde{\eta}^s)$, or virtual work; taking the internal contribution of this expression one has that

$$G^m_{\text{int}}(\hat{\varphi}^s, \Lambda^s, \tilde{\eta}^s) = \int_0^L (\delta \hat{\Gamma}^s \cdot \hat{n}^m + \delta \hat{\Omega}^s \cdot \hat{m}^m) dS$$

$$= \int_0^L \left\{ [A^s_T (\delta \hat{\varphi}^s + \Pi [\hat{\varphi}^s, S] \delta \hat{\theta})] \cdot \hat{n}^m + (\Lambda^s_T \delta \hat{\theta}, S) \cdot \hat{m}^m \right\} dS$$

$$= \int_0^L \{ (\delta \hat{\varphi}^s + \Pi [\hat{\varphi}^s, S] \delta \hat{\theta}) \cdot (\Lambda^s \hat{n}^m) + \delta \hat{\theta}, S \cdot (\Lambda^s \hat{m}^m) \} dS$$

$$= \int_0^L \{ \delta [\hat{\gamma}^s_n] \cdot \hat{n}^s + \delta [\hat{\omega}^s_n] \cdot \hat{m}^s \} dS = G^m_{\text{int}}(\hat{\varphi}^s, \Lambda^s, \tilde{\eta}^s). \quad (5.61)$$

Considering the external contribution, G^s_{ext}, we obtain

$$G^s_{\text{ext}}(\hat{\varphi}^s, \Lambda^s, \tilde{\eta}^s) = \int_0^L \left\{ \delta \hat{\varphi} \cdot \hat{N}^s + \delta \hat{\theta} \cdot \hat{M}^s \right\} dS = \int_0^L \{ \tilde{\delta} \hat{\varphi} \cdot \Lambda^s \hat{N}^m + \tilde{\delta} \hat{\theta} \cdot \Lambda^s \hat{M}^m \} dS$$

$$= \int_0^L \{ \Lambda^s_T \delta \hat{\varphi} \cdot \hat{N}^m + \delta \hat{\theta} \cdot \hat{M}^m \} dS = G^s_{\text{ext}}(\hat{\varphi}^s, \Lambda^s, \tilde{\eta}^s). \quad (5.62)$$

where $\Lambda^s_T \delta \hat{\varphi}$ can be seen as the materialization of the spatial quantity $\delta \hat{\varphi}$.

$$G^s_{\text{int}}(\hat{\varphi}, \Lambda, \tilde{\eta}^s) = \int_0^L \left\{ \delta \hat{\varphi} \cdot \Lambda_{p\theta} \hat{\varphi}_s + \delta \hat{\theta} \cdot \left[\mathbf{I}_{p\theta} \hat{\Omega}_s + \hat{\mathbf{v}}_s (\mathbf{I}_{p\theta} \hat{\mathbf{v}}_s) \right] \right\} dS$$

$$= \int_0^L \left\{ \delta \hat{\varphi} \cdot \Lambda_{p\theta} \hat{\varphi}_s + \delta \hat{\theta} \cdot \left[\mathbf{I}_{p\theta} \hat{\Omega}_{n*} + \hat{\mathbf{V}}_{n*} (\mathbf{I}_{p\theta} \hat{\mathbf{V}}_{n*}) \right] \right\} dS$$

$$= G^m_{\text{int}}(\hat{\varphi}^s, \Lambda^s, \tilde{\eta}^s). \quad (5.63)$$

In Eqs. (5.62) to (5.63) the relation between spatial and material descriptions for the angular velocity and acceleration, via the pullback operator by the rotation tensor Λ, $\hat{\mathbf{V}}_n = \Lambda^T \hat{\mathbf{v}}_n$ and $\hat{\mathbf{A}}_{n*} = \Lambda^T \hat{\mathbf{a}}_{n*}$, have been used. The material form of the inertia tensor, (rotational mass), given in Eq. (3.134) in spatial form is obtained by means of the pullback operator for second order tensors $\mathbf{I}_{p\theta} = \Lambda^T \mathbf{I}_{p\theta} \Lambda$. In the same way the material forms of the external applied forces and moments $\hat{\mathbf{N}}$ and $\hat{\mathbf{M}}$ are obtained as $\hat{\mathbf{N}}^m = \Lambda^T \hat{\mathbf{N}}$, $\hat{\mathbf{M}}^m = \Lambda^T \hat{\mathbf{M}}$ respectively. Note that independently if the material or spatial form is selected for linearization, always the admissible variation $\tilde{\eta}^s$ is given in spatial form.
5.3 Linearization of the virtual work functional

In order to obtain numerical solution procedures of Newton type one need the linearized equilibrium or state equation, which can be achieved through the linearization of the principle of virtual work in its continuum form. The main objective of this section is to obtained the linearized form of the virtual work functional in the form more convenient to a C^1 continuous finite element formulation, though a C^0 continuous curved rod element\(^5\). In this section advantages of the results obtained in the previous sections is taken. Considering the spatial form for the admissible variation $\hat{\gamma}$, we must have

$$\hat{\gamma} = \hat{\gamma}^{\text{s}} + \hat{\gamma}^{\text{t}}$$

and $\hat{\gamma}^{\text{s}} \equiv (\Delta \hat{\varphi}, \Delta \hat{\theta}) \in T_{\Psi}C_\gamma$ is an admissible variation as described in §5.1. The physical interpretation of Eq. (5.64) is standard [278, 146]. The term $G(\hat{\varphi}, \Lambda, \hat{\eta}^s)$ supplies the unbalanced force at the configuration $(\hat{\varphi}, \Lambda, \hat{\eta}^s) \in C\gamma$ and the term $DG(\hat{\varphi}, \Lambda, \hat{\eta}^s) \cdot \hat{p}^s$, linear in \hat{p}^s, yields the so called tangential stiffness. If $(\hat{\varphi}, \Lambda, \hat{\eta}^s)$ is an equilibrium configuration, we must have $G(\hat{\varphi}, \Lambda, \hat{\eta}^s) = 0$ for any $\hat{\eta}^s \equiv (\delta \hat{\varphi}, \delta \hat{\theta})$.

5.3.1 Linearization of G_{int}

Before to develop the linearization of the internal force term, Eq. (3.143), it is necessary to obtain the linear part of the co–rotated variations of the reduced strain vectors, $\delta [\hat{\Psi}]$, given in matrix form in Eq. (5.12c) i.e.

$$D\delta [\Psi] \cdot \hat{p}^s = D(B, \hat{\eta}^s) \cdot \hat{p}^s = \begin{bmatrix} D(\delta \hat{\varphi}, \hat{\eta}^s, \delta \hat{\theta}) \cdot \hat{p}^s & \Pi \delta \hat{\theta} \cdot \hat{p}^s \\ \Pi \delta \hat{\theta} \cdot \hat{p}^s & \Pi \delta \hat{\theta} \cdot \hat{p}^s \end{bmatrix} = D(\delta \hat{\varphi}, \hat{\eta}^s, \delta \hat{\theta}) \cdot \hat{p}^s + \Pi \delta \hat{\theta} \cdot \hat{p}^s$$

where $\delta \hat{\Psi} = [\delta \hat{\gamma}^{\text{s}}, \delta \hat{\gamma}^{\text{t}}]^T$ and it has been neglected the terms of order $\Delta \delta(\bullet) \approx 0$. The matrix denoted by Ψ has been given in the transposed form by convenience. Moreover, considering the previous result, employing Eqs. (5.59a) and (5.59c) for the linearized increment of the internal cross sectional force and moment vectors and Eq. (5.12c) for the co–rotated variations of the reduced strain vectors it is possible to express

\(^5\)A rigorous mathematical foundation of the linearization procedures can be found in [196].
in matrix form the linearization of the internal term of the virtual work as

\[
DG_{\text{int}*} \cdot \hat{\bar{p}}^s = \int_0^L D(\delta[\hat{\Psi}]_s \cdot \hat{\Phi}_s) \cdot \hat{\bar{p}}^s \, dS \\
= \int_0^L \left((D\delta[\hat{\Psi}]_s \cdot \hat{\bar{p}}^s) \cdot \hat{\Phi}_s + \delta[\hat{\Psi}]_s \cdot (D\hat{\Phi}_s \cdot \hat{\bar{p}}^s) \right) \, dS \\
= \int_0^L \left(\hat{\bar{p}}_s^T \hat{\Psi}(\hat{\bar{p}}^s) \hat{\Phi}_s + \hat{\bar{p}}_s^T \hat{\bar{B}}_s^T (\hat{\bar{C}}_s^v B_s + \hat{\bar{Y}}_s^v \mathbf{V}_s + \mathbf{N}_s) \hat{\bar{p}}^s \right) \, dS. \tag{5.66}
\]

By other hand, it is necessary to note that

\[
\Psi(\hat{\bar{p}}^s) \hat{\Phi}_s = \\
\begin{bmatrix}
0 & 0 \\
-\Pi[\Delta\hat{\phi}, \mathbf{S}] & 0
\end{bmatrix}
\begin{bmatrix}
\hat{n}_s \\
\hat{m}_s
\end{bmatrix}
= \\
\begin{bmatrix}
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\Delta\hat{\phi} \\
\Delta\hat{\theta}
\end{bmatrix} = \mathbf{F}_s \hat{\bar{p}}^s \tag{5.67}
\]

which allows to rewrite Eq. (5.66) as

\[
DG_{\text{int}*} \cdot \hat{\bar{p}}^s = \int_0^L \hat{\bar{p}}_s^T \left(\mathbf{F}_s + B_s^T \hat{\bar{C}}_s^v B_s + B_s^T \hat{\bar{Y}}_s^v \mathbf{V}_s + B_s^T \mathbf{N}_s \right) \hat{\bar{p}}^s \, dS \\
= \int_0^L \hat{\bar{p}}_s^T \left(B_s^T \hat{\bar{C}}_s^v B_s \right) \hat{\bar{p}}^s \, dS + \int_0^L \hat{\bar{p}}_s^T \left(\mathbf{F}_s + B_s^T \mathbf{N}_s \right) \hat{\bar{p}}^s \, dS \\
+ \int_0^L \hat{\bar{p}}_s^T \left(B_s^T \hat{\bar{Y}}_s^v \mathbf{V}_s \right) \hat{\bar{p}}^s \, dS = K_{M_s} + K_{G_s} + K_{V_s}. \tag{5.68}
\]

where the scalars \(K_{M_s}, K_{G_s}\) and \(K_{V_s}\) correspond to the material (constitutive), geometric (stress dependent) and viscous tangential stiffness.

REMARK 5.2. Several observations can be made in Eq. (5.68):

(i) The linear part \(DG_{\text{int}}(\hat{\phi}_s, \Lambda_s, \hat{\bar{p}}^s) \cdot \hat{\bar{p}}^s\) constitutes a bilinear form (operator) on \(T_\beta C_s\).

(ii) The matrix \([B_s^T \hat{\bar{C}}_s^v B_s]\) of \(K_{M_s}\) is always symmetric although configuration dependent; in contrast with the matrices \([\mathbf{F}_s + B_s^T \mathbf{N}_s]\) and \([B_s^T \hat{\bar{Y}}_s^v \mathbf{V}_s]\) of \(K_{G_s}\) \(K_{V_s}\) respectively; which are always nonsymmetric away from equilibrium \(\blacksquare\)

5.3.2 Linearization of \(G_{\text{ine}}\)

Considering the spatial form of the kinematically admissible variation \(\hat{\bar{p}}^s \in T_\beta C_s\), the inertial term of the virtual work functional, Eq. (3.144), can be expressed as

\[
G_{\text{ine}}(\hat{\phi}_s, \Lambda_s, \hat{\bar{p}}^s) = \int_0^L \hat{\bar{p}}_s^T \left(I_{\rho_s} \hat{\bar{\alpha}}_n + \mathbf{V}_n \mathbf{T}_{\rho_s} \hat{\bar{v}}_n \right) \, dS = \int_0^L \hat{\bar{p}}_s^T \left(I_{\rho_s} \hat{\bar{A}}_n + \mathbf{V}_n \mathbf{I}_{\rho_s} \hat{\bar{V}}_n \right) \, dS \tag{5.69}
\]
where the spatial form of the rotational terms is phrased in terms of the material angular acceleration and velocity of the current rod relative to the curved reference rod, by means of the push-forward operation by \(\Lambda_s \), by convenience. Employing the same procedure as for the internal virtual work, we have that the linearized increment of the acceleration term \(G_{ine} \) is

\[
DG_{ine}(\hat{\phi}_s, \Lambda_s, \hat{\eta}) \cdot \hat{p}^s = \int_{\tilde{\Theta}_1}^{\tilde{\Theta}_2} \left[D[A_s \{ I_{p_0} \hat{A}_{ns} + \tilde{V}_{ns} I_{p_0} \tilde{V}_{ns} \}] \cdot \hat{\rho}^s \right] dS
\]

Considering that \(\Delta \Lambda = \Delta \tilde{\theta} \Lambda \) and \(\Pi[\hat{v}_a] \hat{v}_b = -\Pi[\hat{v}_b] \hat{v}_a = \forall \hat{v}_a, \hat{v}_b \in \mathbb{R}^3 \), it is possible to give the following expressions for the terms \(\tilde{\Xi}_1 \) and \(\tilde{\Xi}_2 \) in Eq. (5.70) as

\[
\tilde{\Xi}_1 = -\Pi[I_s (I_{p_0} \hat{A}_{ns} + \tilde{V}_{ns} I_{p_0} \tilde{V}_{ns})] \Delta \tilde{\theta}
\]

\[
\tilde{\Xi}_2 = \Lambda_s I_{p_0} (\Delta \hat{A}_{ns}) + \Lambda_s \Pi[\Delta \tilde{V}_{ns}] (I_{p_0} \tilde{V}_{ns}) + \Lambda_s \tilde{V}_{ns} I_{p_0} (\Delta \hat{V}_{ns})
\]

\[
\tilde{\Xi}_2 = \Lambda_s I_{p_0} \Delta \hat{A}_{ns} + (\Lambda_s \tilde{V}_{ns} I_{p_0} - \Lambda_s \Pi[I_{p_0} \tilde{V}_{ns}]) \Delta \hat{V}_{ns}
\]

Noticing that from Eqs. (5.19a) and (5.19b) that \(\Delta \hat{V}_{ns} = \Lambda^T \Delta \tilde{\theta} \) and \(\Delta \hat{A}_{ns} = \Lambda^T (\Delta \tilde{\theta} - \tilde{\omega}_n \Delta \tilde{\theta}) \); it is possible to rewrite Eqs. (5.71a) and (5.71b) as

\[
\tilde{\Xi}_1 = -\Pi[I_s (I_{p_0} \hat{A}_{ns} + \tilde{V}_{ns} I_{p_0} \tilde{V}_{ns})] \Delta \tilde{\theta}
\]

\[
\tilde{\Xi}_2 = (\Lambda_s I_{p_0} \Lambda_s^T) \Delta \tilde{\theta} + \Lambda_s (\tilde{V}_{ns} I_{p_0} - I_{p_0} \tilde{V}_{ns} - \Pi[I_{p_0} \tilde{V}_{ns}]) \Lambda_s^T \Delta \tilde{\theta}
\]

\[
\tilde{\Xi}_2 = I_{p_0} \Delta \tilde{\theta} + (\tilde{\omega}_n I_{p_0} - I_{p_0} \tilde{\omega}_n - \Pi[I_{p_0} \tilde{\omega}_n]) \Delta \tilde{\theta}
\]

This last results allow to rewrite the linear part of the acceleration term \(G_{ine} \) as

\[
DG_{ine}(\hat{\phi}_s, \Lambda_s, \hat{\eta}) \cdot \hat{p}^s = \int_{\tilde{\Theta}_1}^{\tilde{\Theta}_2} [M_s \left[\Delta \tilde{\theta} \right] + C_{gyrs} \left[\Delta \tilde{\omega}_n \right] + K_{cent} \left[\Delta \tilde{\omega}_n \right]] dS
\]

\[
= M_s + K_{gyrs} + K_{cent}
\]

where the mass, gyroscopic and centrifugal stiffness matrices are defined as follows [70]

\[
[M] = \begin{bmatrix} A_{p_0} & 0 \\ 0 & \mathbf{I} \end{bmatrix}
\]

\[
[C_{gyrs}] = \begin{bmatrix} 0 & \{\tilde{V}_{ns} I_{p_0} - I_{p_0} \tilde{V}_{ns} - \Pi[I_{p_0} \tilde{V}_{ns}]\} \\ \{\tilde{\omega}_n I_{p_0} - I_{p_0} \tilde{\omega}_n - \Pi[I_{p_0} \tilde{\omega}_n]\} & 0 \end{bmatrix}
\]

\[
[K_{cent}] = \begin{bmatrix} 0 & 0 \\ 0 & -\Pi[I_{p_0} \tilde{A}_{ns} + \tilde{V}_{ns} (I_{p_0} \tilde{v}_n)] \end{bmatrix}
\]
and \(M_*, K_{gyr*} \) and \(K_{cent*} \) are the corresponding translational, gyroscopic and centrifugal terms of the tangential stiffness, respectively. From the previous equations it is possible to appreciate the mass matrix \(M \) is always symmetric; the gyroscopic matrix depends linearly on angular velocities and the centrifugal stiffness matrix depends linearly on angular acceleration and quadratically on angular velocity.

5.3.3 Linearization of \(G_{ext} \)

Following the same procedure as for the internal and inertial terms of the virtual work, the external contribution to the virtual work, Eq. (3.146), can be written as

\[
G_{ext}(\hat{\phi}^*, \Lambda^*, \hat{\eta}^*) = \int_0^L \eta^T \left[\dot{N}^* \dot{M}^* \right] dS + \sum_{k=1}^{N_p} \hat{\eta}^T \left[\hat{P}_g^k + \Lambda_* \hat{P}_p^k \hat{M}_g^k \right]
\]

where the terms \(\dot{N}^* \) and \(\dot{M}^* \) consider the contribution of distributed and body external loadings. The summation term consider the contribution of all concentrated forces and moments. \(Np \) is the number of points where external loads are applied. Recalling Eqs. (3.169) through (3.173b), Eq. (5.75) can be rewritten as

\[
G_{ext}(\hat{\phi}^*, \Lambda^*, \hat{\eta}^*) = \int_0^L \eta^T \left[\left(df_g + d\hat{f}_{ds} + d\hat{f}_{ps} \right) + \left(\hat{R}_\varphi \hat{R}_\theta \right) \right] dS + \sum_{k=1}^{N_p} \hat{\eta}^T \left[\hat{P}_g^k + \Lambda_* \hat{P}_p^k \hat{M}_g^k \right]
\]

which give rise to the external loading. In many practical engineering application the body load contribution arranged in the term \(\partial_{bd} = [\hat{R}_\varphi \hat{R}_\theta] \), which considers the earthquake loading, can be reduced to the form of distributed forces and moments and therefore, no additional considerations will be made about it. In the case of earthquake loading the external body moment contribution can be neglected remaining only the force body loads due to the base acceleration \(\hat{a} \) which is configuration independent and it vanish in the linearization process for obtaining the tangential stiffness tensor. The corresponding linearization is given by

\[
DG_{ext} \cdot \hat{\eta}^* = \lambda \left(\int_0^L \eta^T \Delta \left[\hat{N}_g + c_{N_*} \hat{N}_d + \Lambda_* \hat{N}_p^* \hat{M}_g + c_{M_*} \hat{M}_d + \Lambda_* \hat{M}_p \right] dS + \sum_{k=1}^{N_p} \hat{\eta}^T \left[\hat{P}_g^k + \Lambda_* \hat{P}_p^k \hat{M}_g^k \right] \right)
\]
\[
\begin{align*}
&= \lambda \left[\int_0^L \tilde{\eta}^T \left[\begin{array}{c} \dot{N}_d \Delta C_{N*} + \Delta \Lambda_s \dot{N}_p \\ \dot{M}_d \Delta C_{M*} + \Delta \Lambda_s \dot{M}_p \end{array} \right] \right] dS + \sum_{k=1}^{N_p} \tilde{\eta}_k^T \left[\begin{array}{c} \Delta \Lambda_s \dot{\theta}_p \\ 0 \end{array} \right], \\
&= \lambda \left[\int_0^L \tilde{\eta}^T \left[-\left(\dot{N}_d \otimes \hat{\mathcal{G}}_{N*} \right) \Delta \hat{\varphi}_S - \dot{N}_p \Delta \hat{\theta} \right] - \left(\dot{M}_d \otimes \hat{\mathcal{G}}_{M*} \right) \Delta \hat{\varphi}_S - \dot{M}_p \Delta \hat{\theta} \right] dS - \sum_{k=1}^{N_p} \tilde{\eta}_k^T \left[\begin{array}{c} \dot{\bar{P}}_{p*}^k \Delta \hat{\theta} \\ 0 \end{array} \right], \\
&= -\lambda \left[\int_0^L \tilde{\eta}^T \left[\left(\dot{N}_d \otimes \hat{\mathcal{G}}_{N*} \right) + \dot{N}_p \right] \tilde{\eta}^T dS + \sum_{k=1}^{N_p} \tilde{\eta}_k^T \left[\begin{array}{c} \dot{\bar{P}}_{p*}^k \tilde{\eta}_k^T \\ 0 \end{array} \right] \right] (5.78)
\end{align*}
\]

where the vectors \(\hat{\mathcal{G}}_{N*} \) and \(\hat{\mathcal{G}}_{M*} \) are defined as

\[
\begin{align*}
\hat{\mathcal{G}}_{N*} &= \frac{2}{\lambda} \int_0^\lambda (\tilde{d}_N)^2 \tilde{\varphi}_S d\lambda; \\
\hat{\mathcal{G}}_{M*} &= \frac{2}{\lambda} \int_0^\lambda (\tilde{d}_M)^2 \tilde{\varphi}_S d\lambda,
\end{align*}
\]

respectively. Therefore, it is possible to write

\[
\Delta c_{N*} = -\hat{\mathcal{G}}_{N*} \cdot \Delta \tilde{\varphi}_S; \quad \Delta c_{M*} = -\hat{\mathcal{G}}_{M*} \cdot \Delta \tilde{\varphi}_S ,
\]

for the deformation-dependent loading of type II or \(\hat{\mathcal{G}}_{N*} = 0 \) and \(\hat{\mathcal{G}}_{M*} = 0 \) for deformation-independent loading of type I.

The term \(DG_{\text{ext}}(\tilde{\varphi}, \Lambda_s, \tilde{\eta}^s) \cdot \tilde{p}^s = K_{p*} \) corresponds to the loading dependent part of the tangential stiffness.

Finally, Eq. (5.64) can be rewritten as

\[
\mathcal{L}[G(\varphi, \Lambda_s, \tilde{\eta}^s, \tilde{p}^s)] = G_s + K_{M*} + K_{V*} + K_{G*} + K_{p*} + M_s + K_{\text{gyr}*} + K_{\text{cent}*}. \quad (5.81)
\]

The discretization of Eq. (5.81) by using the FEM will be explained in detail in §7.

\section*{5.4 Material updating rule of the rotational field}

Analogously as for the case of the spatial updating of the rotation field, it is possible to chose the material form of the admissible variation \(\tilde{p}^m \in T_q C \) yielding to the result that are presented in the next sections.

\subsection*{5.4.1 Linearization of \(G_{\text{int}} \)}

In this case, the linear part of the co-rotated variations of the reduced strain vectors, Eq. (5.12c), is given by

\[
D\overline{\gamma} \hat{\Psi}_s \cdot \tilde{p}^m = D(\tilde{B}, \tilde{\eta}^m) \cdot \tilde{p}^m = \left[D(\delta \hat{\varphi}_S + \Lambda_s \Pi [\Lambda^T_s \tilde{\varphi}_S, \delta \hat{\theta}]) \cdot \tilde{p}^m \right]
\]

Remark 5.2 hold when using the material updating rule for the rotations. By other hand, it is necessary to note that

\[
\text{where } \delta \Psi = [\delta \gamma, \delta \omega]^T \text{ and it has been neglected the terms of order } \Delta \delta(\bullet) \approx 0. \text{ The matrix } \Psi \text{ has been given in the transposed for by convenience. Then, employing Eqs. (5.60a) and (5.60c) for the linearized increment of the internal cross sectional force and moment vectors, it is possible to express in matrix form the linearization of the internal term of the virtual work as}
\]

\[
DG_{\text{int}} \cdot \bar{p}^m = \int_0^L D(\delta \Psi) \cdot \bar{p}^m dS = \int_0^L \left(\left(D(\delta \Psi) \cdot \bar{p}^m \right) \cdot \hat{\Phi}_s + \delta \Psi \cdot (D\hat{\Phi}_s \cdot \bar{p}^m) \right) dS
\]

\[
= \int_0^L (\eta^T \Psi \bar{p}^m \hat{\Phi}_s + \eta^T B^T \begin{pmatrix} C_{sv} & \bar{T} + \bar{\mathcal{N}} \end{pmatrix} \bar{p}^m) dS. \tag{5.83}
\]

By other hand, it is necessary to note that

\[
\bar{\Psi}(\bar{p}^m) \hat{\Phi}_s = \begin{bmatrix}
\Lambda_s [\Delta \Omega \Delta \Theta - \Delta \Phi \theta] + \Delta \Theta \Pi \Delta \Phi, S \\
\Pi [\Delta \Phi, S] \\
0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\Delta \Omega \Delta \Theta - \Delta \Phi \theta \\
\Pi [\Delta \Phi, S] \\
0
\end{bmatrix}
\]

\[
\begin{bmatrix}
\hat{\Psi}^T \bar{p}^m \\
\hat{\Phi}_s
\end{bmatrix}
\]

which allows to rewrite Eq. (5.83) as

\[
DG_{\text{int}} \cdot \bar{p}^m = \int_0^L \eta^T \left(\bar{\mathcal{F}}_s + \bar{B}_s^T C_{sv} \bar{B}_s + \bar{B}_s^T \bar{Y}_s \bar{\mathcal{V}}_s + \bar{B}_s^T \bar{\mathcal{N}}_s \right) \bar{p}^m dS
\]

\[
= \int_0^L \eta^T \left(\bar{B}_s^T \Pi C_{sv} \bar{B}_s + \bar{B}_s^T \eta^T \bar{Y}_s \bar{\mathcal{V}}_s + \bar{B}_s^T \bar{\mathcal{N}}_s \right) \bar{p}^m dS
\]

\[
= K^m \bar{p}^m + \int_0^L \eta^m \bar{B}_s^T \left(\bar{Y}_s \bar{\mathcal{V}}_s + \bar{\mathcal{N}}_s \right) \bar{p}^m dS
\]

\[
= K^m \bar{p}^m + \int_0^L \bar{B}_s^T \left(\bar{Y}_s \bar{\mathcal{V}}_s + \bar{\mathcal{N}}_s \right) \bar{p}^m dS
\]

where the scalars \(K^m \) correspond to the material (constitutive), geometric (stress dependant), and viscous tangential stiffness. The same observations made in Remark 5.2 hold when using the material updating rule for the rotations.
5.4. Material updating rule of the rotational field

5.4.2 Linearization of G_{ine}

Considering the material updating rule for rotations, $\tilde{m}^\eta \in T_{x} C_\xi$, the inertial term of the virtual work functional can be expressed as

$$G_{\text{ine}}(\tilde{\phi}_s, \Lambda_s, \tilde{m}^\eta) = \int_{[0,L]} \dot{\tilde{m}}^\eta T \left[\mathbf{A}_{p_0} \tilde{\phi}_s + \mathbf{V}_{n_s} \mathbf{I}_{p_0} \dot{\tilde{V}}_{n_s} \right] dS$$

(5.86)

Employing the same procedure as for the internal virtual work, we have that the linearized increment of the acceleration term G_{ine} is

$$DG_{\text{ine}}(\tilde{\phi}_s, \Lambda_s, \tilde{m}^\eta) \cdot \dot{\tilde{p}}^m = \int_{[0,L]} \dot{\eta}^m T \left[\frac{D[\mathbf{A}_{p_0} \tilde{\phi}_s] \cdot \dot{\tilde{p}}^s}{\dot{\tilde{m}}^\eta} \right] dS$$

(5.87)

considering Eqs. (5.21b) and (5.21d), it is possible to give the following expression for the terms \tilde{m}^η in Eq. (5.87) as

$$\tilde{m}^\eta = \mathbf{I}_{p_0} \Delta \tilde{\phi}_s + (\tilde{V}_{n_s} \mathbf{I}_{p_0} - \Pi[\mathbf{I}_{p_0} \dot{\tilde{V}}_{n_s}]) \Delta \tilde{V}_{n_s}$$

$$= \mathbf{I}_{p_0} (\Delta \tilde{\phi} + \tilde{A}_{ns} \Delta \tilde{\Theta} + \tilde{V}_{n_s} \Delta \tilde{\Theta}) + (\tilde{V}_{n_s} \mathbf{I}_{p_0} - \Pi[\mathbf{I}_{p_0} \dot{\tilde{V}}_{n_s}]) (\Delta \tilde{\phi} + \tilde{V}_{n_s} \Delta \tilde{\Theta})$$

$$= \mathbf{I}_{p_0} \Delta \tilde{\phi} + (\mathbf{I}_{p_0} \tilde{V}_{n_s} - \Pi[\mathbf{I}_{p_0} \dot{\tilde{V}}_{n_s}]) \Delta \tilde{\phi}$$

$$+ (\mathbf{I}_{p_0} \tilde{A}_{ns} - \Pi[\mathbf{I}_{p_0} \dot{\tilde{V}}_{n_s}]) \tilde{V}_{n_s} + \tilde{V}_{n_s} \mathbf{I}_{p_0} \Delta \tilde{\Theta}$$

(5.88)

This last results allow to rewrite the linear part of the acceleration term G_{ine} as

$$DG_{\text{ine}}(\tilde{\phi}_s, \Lambda_s, \tilde{m}^\eta) \cdot \dot{\tilde{p}}^m = \int_{[0,L]} \dot{\eta}^m T \left[\mathbf{A}_{p_0} \frac{\Delta \tilde{\phi}^s}{\Delta \tilde{\Theta}} + \mathbf{C}_{\text{gyr}}^m \frac{\Delta \tilde{\phi}}{\Delta \tilde{\Theta}} + \mathbf{K}_{\text{cent}}^m \frac{\Delta \tilde{\phi}}{\Delta \tilde{\Theta}} \right] dS$$

(5.89)

where the mass, gyroscopic and centrifugal stiffness matrices are defined as follows

$$[\mathbf{M}^m] = \begin{bmatrix} \mathbf{A}_{p_0} & 0 & 0 \\ 0 & \mathbf{I}_{p_0} & 0 \end{bmatrix}$$

(5.90a)

$$[\mathbf{C}_{\text{gyr}}^m] = \begin{bmatrix} 0 & 0 \\ 0 & (\mathbf{I}_{p_0} \tilde{V}_n - \Pi[\mathbf{I}_{p_0} \dot{\tilde{V}}_{n_s}]) \mathbf{V}_{n_s} \mathbf{I}_{p_0} \end{bmatrix}$$

(5.90b)

$$[\mathbf{K}_{\text{cent}}^m] = \begin{bmatrix} 0 & 0 \\ 0 & (\mathbf{I}_{p_0} \tilde{A}_{ns} - \Pi[\mathbf{I}_{p_0} \dot{\tilde{V}}_{n_s}]) \tilde{V}_{n_s} + \tilde{V}_{n_s} \mathbf{I}_{p_0} \tilde{V}_{n_s} \end{bmatrix}$$

(5.90c)

and \mathbf{M}_s, \mathbf{K}_{gyr}, and \mathbf{K}_{cent} are the corresponding translational, gyroscopic and centrifugal terms of the tangential stiffness, respectively.

From the above equations it is possible to appreciate the mass matrix \mathbf{M}^m is always
symmetric and constant; the gyroscopic and centrifugal stiffness matrices depend on the angular velocities and accelerations.

5.4.3 Linearization of G_{ext}

Considering the material updating rule for the rotational field and taking admissible variation $\tilde{p}^m \in \eta^m$, Eq. (3.146), can be written as

$$G_{\text{ext}}(\dot{\phi}_s, \Lambda_s, \tilde{\eta}^m) = \int_0^L \tilde{\eta}^m T \left[\begin{array}{c} d\dot{f}_g + d\dot{f}_{ds} + d\dot{f}_{ps} \end{array} \right] \text{d}S + \sum_{k=1}^{N_p} \tilde{\eta}^m T \left[\begin{array}{c} \hat{P}_g + \hat{P}_{ps} \\ M_g^{k} \end{array} \right]$$

$$= \lambda \int_0^L \tilde{\eta}^m T \left[\begin{array}{c} \tilde{N}_g + \tilde{R}_\varphi + c_{N_s} \tilde{N}_d + \Lambda_s \tilde{N}_p \\ \tilde{M}_g + \tilde{R}_\theta + c_{M_s} \tilde{M}_d + \Lambda_s \tilde{M}_p \end{array} \right] \text{d}S + \sum_{k=1}^{N_p} \tilde{\eta}^m T \left[\begin{array}{c} \hat{P}_g + \Lambda_s \hat{P}_p \\ M_g^{k} \end{array} \right]$$

(5.91)

where $\tilde{R}_\varphi = \int_{A_0} g_0 \lambda_0 (\dot{b} + \dot{a}) \text{d}A_0$ and $\tilde{R}_\theta = \int_{A_0} g_0 \lambda_0 (\dot{b} + \dot{a}) \text{d}A_0$ consider the earthquake loading and, along with \tilde{N}_g and \tilde{M}_g, vanish in the linearization process. The corresponding linear part is given by

$$DG_{\text{ext}} \cdot \tilde{p}^m = \lambda \int_0^L \tilde{\eta}^m T \left[\begin{array}{c} \tilde{N}_g + c_{N_s} \tilde{N}_d + \Lambda_s \tilde{N}_p \\ \tilde{M}_g + c_{M_s} \tilde{M}_d + \Lambda_s \tilde{M}_p \end{array} \right] \text{d}S + \sum_{k=1}^{N_p} \tilde{\eta}^m T \left[\begin{array}{c} \hat{P}_g + \Lambda_s \hat{P}_p \\ M_g^{k} \end{array} \right]$$

$$= \lambda \int_0^L \tilde{\eta}^m T \left[\begin{array}{c} \tilde{N}_d \Delta c_{N_s} + \Delta \Lambda_s \tilde{N}_p \\ \tilde{M}_d \Delta c_{M_s} + \Delta \Lambda_s \tilde{M}_p \end{array} \right] \text{d}S + \sum_{k=1}^{N_p} \tilde{\eta}^m T \left[\begin{array}{c} \Delta \Lambda_s \hat{P}_p \\ 0 \end{array} \right]$$

$$= \lambda \int_0^L \tilde{\eta}^m T \left[\begin{array}{c} -\tilde{N}_d \otimes \tilde{\phi}_s \Delta \dot{\varphi}_s - \tilde{N}_p \Delta \dot{\Theta} \\ -\tilde{M}_d \otimes \tilde{\phi}_s \Delta \dot{\varphi}_s - \tilde{M}_p \Delta \dot{\Theta} \end{array} \right] \text{d}S - \sum_{k=1}^{N_p} \tilde{\eta}^m T \left[\begin{array}{c} \hat{P}_p^{k} \Delta \dot{\Theta} \\ 0 \end{array} \right]$$

$$= -\lambda \int_0^L \tilde{\eta}^m T \left[\begin{array}{c} (\tilde{N}_d \otimes \tilde{\phi}_s) \left[\frac{d}{dS} I \right] + \tilde{N}_p \\ (\tilde{M}_d \otimes \tilde{\phi}_s) \left[\frac{d}{dS} I \right] + \tilde{M}_p \end{array} \right] \tilde{p}^m \text{d}S + \sum_{k=1}^{N_p} \tilde{\eta}^m T \left[\begin{array}{c} \hat{P}_p^{k} \\ 0 \end{array} \right] = K_p^{m} \tilde{p}^{m}$$

(5.92)

where the vectors $\tilde{\phi}_s$, $\tilde{\phi}_s$, c_{N_s}, and c_{M_s} have been defined in Eqs. (5.79) and (5.80).

Finally, Eq. (5.64) can be rewritten as

$$\mathcal{L}[G(\dot{\phi}_s, \Lambda_s, \tilde{\eta}^s, \tilde{p}^s)] = G_s + K_{M_s}^{m} + K_{V_s}^{m} + K_{G_s}^{m} + K_{P_s}^{m} + M_s^{m} + K_{\text{gyrs}}^{m} + K_{\text{cent.s.}}^{m}$$

(5.93)

The discretization of Eq. (5.93) by using the FEM will be explained in detail in §7.
Chapter 6

Time-stepping schemes and configuration update

This chapter concerns with the presentation of a time-stepping scheme consistent with the kinematic assumptions made for the rod model (see §3) i.e. able to manage variables belonging to $SO(3)$ and its tangent space [74]. The time-stepping scheme chosen for the updating procedure corresponds to the classical Newmark algorithm for the translational part of the motion and it can be consulted, for example in Refs. [29, 85, 132] among others. In the case of the rotational part, explanations and new developments follow the procedures originally proposed by Simo and Vu-Quoc\(^1\) [280], which has been also applied in a large set of posterior works (see §2).

The crucial difficulty rely on the development of a version of the Newmark scheme consistent with the nonlinear nature of rotations. To this end, time is considered as a set of discrete instants. The problem consists in determining values of points in the configuration manifold (and their related kinematical objects) at these instants, which fulfils the equilibrium equations. As usual, at each time step the linearized problem is solved by means of an iterative scheme until convergency is achieved. Therefore, consistent updating procedures for strains, strain rates, stresses, etc, have to be developed. In the present work, an iterative updating procedure is performed i.e. the kinematics variables are updated with respect to the last iterative configuration attained in a given time step. In this sense, the present approach corresponds to an Eulerian updating procedure. Other works prefers to carry out the updating, as well as the consistent linearization, on the last converged configuration [143] yielding to an updated Lagrangian procedure or work directly on the initial configuration yielding to a total Lagrangian formulation [70, 194]. Even when both, the updated lagrangian and the total one, can present some advantages such as symmetric stiffness tensors, in the author opinion, the algebraic processes required for obtaining consistent updating procedures as well as tangential stiffness tensors are much more involved. Each section of the present work covers both possibilities: the spatial and the material updating rule for the rotational part of the motion.

Some discussions about the validness of more refined formulations of the Newmark’s method, [193, 191, 194], are also addressed. On other hand, more refined energy-momentum conserving algorithms [11, 146, 262, 287] are also presented by completeness

\(^{1}\)Other authors have developed specific time-stepping schemes for the co-rotational approach [131].
and with the objective of developing an energy conserving–decaying scheme based on constitutive damping. Finally, and in the category of a proposal, some results are presented about the possibility of deducing consistent time–stepping schemes based on the use of variational integrators which inherit in the discrete case some conserving properties arising from Hamiltonian structure of the problem.

6.1 Formulation of the problem

An iterative step-by-step integration scheme, which considers finite rotations, is here presented following the work of Ref. [280]. The proposed method employs the discrete counterparts of the exponential map, summarized in Table A.1, and the parallel transport\(^2\) in SO(3) as it will be explained in the next sections. The algorithm and the associated configuration update procedure can be formulated in either the material or the spatial descriptions.

Let the subscript \(n \) to denote the temporal discrete approximation of a given time–varying quantity at time \(t_n \in \mathbb{R}^+ \). Thus, for the field corresponding to the translational part of the motion one has,

\[
\hat{\varphi}_n(S) \triangleq \hat{\varphi}(S, t_n) \quad (6.1a)
\]

\[
\dot{\hat{\varphi}}_n(S) \triangleq \dot{\hat{\varphi}}(S, t_n) \quad (6.1b)
\]

\[
\ddot{\hat{\varphi}}_n(S) \triangleq \ddot{\hat{\varphi}}(S, t_n) \quad (6.1c)
\]

and for the rotational field and its associated kinetics variables

\[
\Lambda_n(S) \triangleq \Lambda(S, t_n) \in SO(3) \quad (6.2a)
\]

\[
\dot{\hat{\nu}}_n(S) \triangleq \dot{\hat{\nu}}(S, t_n), \quad \dot{\alpha}_n(S) \triangleq \dot{\alpha}(S, t_n) \in T^{\text{spa}}_{\Lambda_n} \quad (6.2b)
\]

\[
\dot{\hat{V}}_n(S) \triangleq \dot{\hat{V}}(S, t_n), \quad \dot{\hat{A}}_n(S) \triangleq \dot{\hat{A}}(S, t_n) \in T^{\text{mat}}_{\Lambda_n} \quad (6.2c)
\]

where the subscript \(n \) in Eqs. (6.2a) to (6.2c) denotes time and do not refers to the incremental quantity from the curved reference rod to the current one. The corresponding angular velocity and angular acceleration tensors can be obtained as usual suing the \(\Pi(\cdot) = \cdot \) operator.

The basic problem consists in:

(i) Given a configuration \((\hat{\varphi}_n, \Lambda_n) \in \mathcal{C}_{t_n}\), its associated linear and angular velocity vectors, \((\hat{\nu}_n, \dot{\nu}_n) \in \mathbb{R}^3 \times T^{\text{spa}}_{\Lambda_n}\), and linear and angular acceleration vectors \((\dot{\hat{\varphi}}_n, \ddot{\hat{\varphi}}_n) \in \mathbb{R}^3 \times T^{\text{spa}}_{\Lambda_n}\),

(ii) obtain the updated configuration \((\hat{\varphi}_{n+1}, \Lambda_{n+1}) \in \mathcal{C}_{t_{n+1}}\) and the corresponding associated linear and angular velocity vectors \((\hat{\nu}_{n+1}, \dot{\nu}_{n+1}) \in \mathbb{R}^3 \times T^{\text{spa}}_{\Lambda_{n+1}}\), and the updated linear and angular acceleration vectors \((\dot{\hat{\varphi}}_{n+1}, \ddot{\hat{\varphi}}_{n+1}) \in \mathbb{R}^3 \times T^{\text{spa}}_{\Lambda_{n+1}}\), in a manner that is consistent with the virtual work principle.

\(^2\)For a formal definition of the parallel transport see e.g. [95, 196].
The material forms of the angular velocity and acceleration vectors can be obtained by using the discrete version of the pullback and push-forward relations between material and spatial descriptions at times t_n and t_{n+1}. These relations have been summarized in Table 6.1.

<table>
<thead>
<tr>
<th>Material</th>
<th>Spatial</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_n</td>
<td>t_{n+1}</td>
</tr>
<tr>
<td>\tilde{V}_n</td>
<td>\tilde{V}_{n+1}</td>
</tr>
<tr>
<td>\tilde{A}_n</td>
<td>\tilde{A}_{n+1}</td>
</tr>
</tbody>
</table>

REMARK 6.1. It is worth to note that $\tilde{v}_n \in T^{\text{spa}}_{\Lambda_n} SO(3)$ and $\tilde{v}_{n+1} \in T^{\text{spa}}_{\Lambda_{n+1}} SO(3)$ i.e. they belong to different tangent spaces on the rotational manifold i.e. with different base points, therefore they should not be added directly. The same applies for $\tilde{\alpha}_n$, $\tilde{\alpha}_{n+1}$; \tilde{V}_n, \tilde{V}_{n+1}; and \tilde{A}_n, \tilde{A}_{n+1} and the corresponding associated skew–symmetric tensors

6.1.1 Newmark algorithm on the rotational manifold

In this work the classical Newmark algorithm for nonlinear elastodynamics [280] is employed to update the translational part of the configuration and its associated dynamic variables, ($\hat{\varphi}_n$, $\dot{\varphi}_n$, $\ddot{\varphi}_n$) and, therefore, no explicit details are given in this section.

In the case of the rotational part, Simo and Vu-Quoc [280] purpose the Newmark time–stepping algorithm formulated in material form and given in Table 6.2, where $\beta \in [0, \frac{1}{2}]$, $\gamma \in [0,1]$ are the classical (scalar) parameters of the algorithm and Δt is the time step length.

<table>
<thead>
<tr>
<th>Translation</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\varphi}_{n+1} = \hat{\varphi}_n + \hat{u}_n$</td>
<td>$\Lambda_{n+1} = \Lambda_n \exp[\hat{\Theta}_n] \equiv \exp[\hat{\theta}_n] \Lambda_n$</td>
</tr>
<tr>
<td>$\hat{u}_n = \Delta t \hat{\varphi}_n + (\Delta t)^2 \left[\frac{1}{2} - \beta \right] \dot{\varphi}n + \beta \ddot{\varphi}{n+1}$</td>
<td>$\hat{\Theta}_n = \Delta t \hat{V}_n + (\Delta t)^2 \left[\frac{1}{2} - \beta \right] \dot{A}n + \beta \dot{A}{n+1}$</td>
</tr>
<tr>
<td>$\dot{\varphi}_{n+1} = \dot{\varphi}_n + \Delta t \left[(1 - \gamma) \ddot{\varphi}n + \gamma \ddot{\varphi}{n+1} \right]$</td>
<td>$\hat{V}_{n+1} = \hat{V}_n + \Delta t \left[(1 - \gamma) \dot{A}n + \gamma \dot{A}{n+1} \right]$</td>
</tr>
</tbody>
</table>

The geometric interpretation of the algorithm is shown in Fig. 6.1. For the translational part the time–stepping procedure takes place in \mathbb{R}^3 and, therefore, the exponential map reduces to the identity and the parallel transport is simply a shift in the base point. For the rotation part the time–stepping procedure takes place in $SO(3)$. A given configuration $\Lambda_n \in SO(3)$ is updated forward in time by means of exponentiating the incremental rotation $\hat{\theta}_n \in \mathbb{R}^3$ to obtain $\Lambda_{n+1} = \exp[\hat{\theta}_n] \Lambda_n$ (or in material description $\Lambda_{n+1} = \Lambda_n \exp[\hat{\Theta}_n]$).

3A formal presentation of time–stepping algorithms can be reviewed in [29, 85, 86, 132, 234].
Formulation of the problem

Figure 6.1: Discrete configuration updating in spatial form. (a): Translational part in \mathbb{R}^3. (b): Rotational part in $SO(3)$.

This procedure ensures Λ_{n+1} remains in $SO(3)$ by making use of the discrete form of the exponential map. Note that in Fig. 6.1b the step forward in time is performed in material description by employing

$$\tilde{v}_{n+1} = \Lambda_{n+1} \tilde{V}_{n+1} \Lambda^T_{n+1}$$

and

$$\tilde{\alpha}_{n+1} = \Lambda_{n+1} \tilde{A}_{n+1} \Lambda^T_{n+1}.$$

This makes sense since \tilde{V}_{n+1} and \tilde{A}_{n+1} belong in the same vector space $T^{\text{mat}}_{\Lambda_{n+1}} \approx \mathbb{R}^3$.

REMARK 6.2. Mäkinen in Ref. [191] notes that the scheme presented for the rotational part by Simo and Vu-Quoc is only an approximated version to the correct one, due to the fact that the second and third formulas in Table 6.2 make no sense because the angular velocity vector $\tilde{\Omega}_n$ and the angular acceleration $\tilde{\Lambda}_n$ belongs to different tangent space than the angular velocity and acceleration, $\tilde{\Theta}_n$, $\tilde{\Theta}_{n+1}$, $\tilde{\Omega}_n$, $\tilde{\Omega}_{n+1}$, \tilde{A}_n, $\tilde{A}_{n+1} \in T^{\text{mat}}_{\Lambda_n}$ and $T^{\text{mat}}_{\Lambda_{n+1}}$. However, that is not necessarily correct due to the fact that the material (respectively spatial) spin vectors by itself belongs to T^{mat}_1 (respectively T^s_1) and therefore, they should be additive. The nonadditive case has been explained above.

If material form of the angular velocity and acceleration vectors are considered as independent variables using the Newmark scheme of Table 6.2, the obtained solution procedure yields to the case where the rotational and translational parts are integrated in similar way. However, this would be in contradiction with the fact that the rotation group $SO(3)$ is a non-trivial manifold and not a linear space.

Mäkinen [191] purpose a remedy for this contradiction employing the tangential transformation defined in Eq. A.72 to obtain a linearized and additive approximation between two consecutive rotation vectors which define the rotational part of the configuration of the system.

In this work only the approximated version of the Newmark algorithm on rotational manifold, as originally proposed in [280], will be employed, due to the fact that the present
study is concerned with structures which dissipate most of the energy throughout inelastic mechanisms and therefore, no great advantages are obtained by means of using more sophisticated formulations for time-stepping algorithms.

6.1.2 Configuration update

The linearized form of Eq. (3.146) (see §5.3 and §5.4 of Chapter 5) is solved in a Newton–Raphson scheme for each time step \(t_{n+1} \). Usually, each time step require several iterations to converge; lets denote generically by \((i)\) to the \(i\)th iteration. Assuming that the configuration \((\hat{\varphi}_{n+1}^{(i)}, \Lambda_{n+1}^{(i)}) \in C_{t_{n+1}}\) is known, by solving the linearized system it is possible to obtain a incremental field

\[
\mathcal{L}[G(\hat{\varphi}_{n+1}^{(i)}, \Lambda_{n+1}^{(i)}, \dot{\eta}^s)] = G(\hat{\varphi}_{n+1}^{(i)}, \Lambda_{n+1}^{(i)}, \dot{\eta}^s) + DG(\hat{\varphi}_{n+1}^{(i)}, \Lambda_{n+1}^{(i)}, \dot{\eta}^s) \cdot \hat{p}_{n+1}^{(i)} \approx 0 \tag{6.3}
\]

which is approximately zero for a new family of configuration variables in equilibrium (see §??). Then, the basic setup [280] is:

- Given \((\hat{\varphi}_{n+1}^{(i)}, \Lambda_{n+1}^{(i)}) \in C_{t_{n+1}}\) and the incremental field \((\Delta \hat{\varphi}_{n+1}^{(i)}, \Delta \hat{\theta}_{n+1}^{(i)}) \in TC_{t_{n+1}}\).

- Update \((\hat{\varphi}_{n+1}^{(i)}, \Lambda_{n+1}^{(i)}) \in C_{t_{n+1}}\) to \((\hat{\varphi}_{n+1}^{(i+1)}, \Lambda_{n+1}^{(i+1)}) \in C_{t_{n+1}}\) in a manner consistent with the time–stepping algorithm given in Table 6.2.

The translational part is updated as usual in \(\mathbb{R}^3\), in this case the exponential map reduces to the identity and parallel transport reduces to shift the base point (see Fig. 6.2a). The central issue concerns the update of incremental rotation.

Figure 6.2: Iterative configuration updating in spatial form. (a): Translational part in \(\mathbb{R}^3\). (b): Rotational part in \(SO(3)\).

4See Mäkinen [191, 194] for an improved Newmark scheme, Betsch and Steinmann [47] for a constrained version of the problem of determining a precise dynamics of rods; Energy/momentum schemes can be consulted in the works of Simo et al. [288], Armero and Romero [11, 12, 13, 262] or Ibrahimbegović [149].
Taking into account the results of Appendix A and using the exponential map, one has

\[\Lambda^{(i)}_{n+1} = \exp[\theta^{(i)}_n] \Lambda_n \]
\[\Lambda^{(i+1)}_{n+1} = \exp[\theta^{(i+1)}_n] \Lambda_n \]

(6.4a, 6.4b)

where \(\theta^{(i)}_n \) and \(\theta^{(i+1)}_n \) are the skew-symmetric tensors associated to the spatial form of the rotation vectors which parameterize the rotation from \(\Lambda_n \) to \(\Lambda^{(i)}_{n+1} \) and \(\Lambda^{(i+1)}_{n+1} \) corresponding to the iterations \((i) \) and \((i+1) \), respectively. Note that the incremental rotation \(\Delta \hat{\theta}^{(i)}_{n+1} \) is non-additive to \(\hat{\theta}^{(i)}_n \) but \(\Lambda^{(i+1)}_{n+1} = \exp[\Delta \hat{\theta}^{(i)}_{n+1}] \Lambda^{(i)}_n \).

(6.5)

By other hand, it is interesting to note the fact that both \(\theta^{(i)}_n \Lambda_n \) and \(\theta^{(i+1)}_n \Lambda_n \) are elements of the same tangent space \(T^{\text{spa}} \Lambda_n \text{SO}(3) \) and \(\Delta \hat{\theta}^{(i)}_{n+1} \Lambda^{(i)}_n \in T^{\text{spa}} \Lambda^{(i+1)}_{n+1} \text{SO}(3) \), therefore, the updating procedure described in Eqs. (6.4a) to (6.5) makes perfect sense (see Fig. 6.2). The second formula in Eq. (6.4a) requires the obtention of \(\hat{\theta}^{(i+1)}_n \) from \(\hat{\theta}^{(i)}_n \) and \(\Delta \hat{\theta}^{(i)}_{n+1} \); this procedure can be carried out with the aid of Eq. (A.74) as

\[\hat{\theta}^{(i+1)}_n = \hat{\theta}^{(i)}_n + T(\hat{\theta}^{(i)}_n) \Delta \hat{\theta}^{(i)}_{n+1}. \]

(6.6)

REMARK 6.3. In Ref. [280] the procedure defined in Eq. (6.5) is preferred for updating the rotation tensor in each iteration of a time-step. Other authors [138, 142] prefer to use Eqs. (6.4a) and (6.6) i.e. the total incremental rotation vector is the main independent variable selected for describing rotations. This last choice of parametrization for rotations produce symmetric tangential stiffness matrices but the deduction and implementation of the resulting numerical problem become much more complicated and time consuming during calculations.

6.1.3 Updating procedure for the angular velocity and acceleration

As it has been described translational velocities \(\dot{\varphi}^{(i)}_{n+1} \) and accelerations \(\ddot{\varphi}^{(i+1)}_{n+1} \) in each point of the current rod can be obtained by means of employing the formulas of Table 6.2 as usual in elastodynamics. The iterative version of the time-stepping algorithm is presented in Table 6.3. The updated angular velocity \(\dot{V}^{(i+1)}_{n+1} \) and acceleration \(\ddot{A}^{(i+1)}_{n+1} \) vectors in material form\(^5\) are obtained assuming the following approximation for the time-step \(t_{n+1} \) iterations \((i) \) and \((i+1) \):

\[\dot{\theta}^{(i+1)}_n = \Delta t \dot{V}_n + (\Delta t)^2 \left[\frac{1}{2} - \beta \right] \dot{A}_n + \beta \dot{A}^{(i+1)}_{n+1} \]
\[\dot{\theta}^{(i)}_n = \Delta t \dot{V}_n + (\Delta t)^2 \left[\frac{1}{2} - \beta \right] \dot{A}_n + \beta \dot{A}^{(i)}_{n+1} \]

(6.7)

\(^5\)As it has been highlighted in [280] the material description is more advantageous for writing time-stepping algorithms in \text{SO}(3) due to the inertia tensor has constant components.
6.1. Formulation of the problem

where \(\hat{\Theta}^{(i)} = \Lambda_n^T \hat{\theta}^{(i)} \) and \(\hat{\Theta}^{(i+1)} = \Lambda_n^T \hat{\theta}^{(i+1)} \). Subtracting the two expressions of Eq. (6.7) one obtains

\[
\hat{\lambda}_{n+1}^{(i+1)} = \hat{\lambda}_{n+1}^{(i)} + \frac{1}{(\Delta t)^2 \beta} \left[\hat{\Theta}^{(i+1)} - \hat{\Theta}^{(i)} \right].
\]

(6.8)

Similarly, in the case of the material angular velocities one has,

\[
\hat{\nu}^{(i+1)} = \hat{\nu}^{(i)} + \Delta t \left[(1 - \gamma) \hat{A}_n + \gamma \hat{A}_{n+1}^{(i+1)} \right]
\]

(6.9)

\[
\hat{\nu}^{(i)} = \hat{\nu}^{(i)} + \Delta t \left[(1 - \gamma) \hat{A}_n + \gamma \hat{A}_{n+1}^{(i)} \right]
\]

subtracting the two expressions of Eqs. (6.9) and employing Eq. (6.8) one obtains

\[
\hat{\nu}_{n+1}^{(i+1)} = \hat{\nu}_{n+1}^{(i)} + \gamma \frac{\Delta t}{\Delta t^2 \beta} \left[\hat{\Theta}^{(i+1)} - \hat{\Theta}^{(i)} \right]
\]

(6.10)

The complete iterative updating procedure for the dynamic variables employing the Newmark algorithm has been summarized in Table 6.3.

Table 6.3: Discrete Newmark algorithm.

<table>
<thead>
<tr>
<th>Translation</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\varphi}{n+1}^{(i+1)} = \hat{\varphi}{n+1}^{(i)} + \hat{\nu}_{n+1}^{(i)})</td>
<td>(\Lambda_{n+1}^{(i+1)} = \exp \left[\Delta t \hat{\theta}{n+1}^{(i)} \right] \Lambda{n+1}^{(i)})</td>
</tr>
<tr>
<td>(\hat{\varphi}{n+1}^{(i+1)} = \hat{\varphi}{n+1}^{(i)} + \frac{\gamma}{(\Delta t)^2 \beta} \Delta \hat{\varphi}_{n+1}^{(i)})</td>
<td>(\exp \left[\hat{\theta}{n+1}^{(i)} \right] = \exp \left[\Delta t \hat{\theta}{n+1}^{(i)} \right] \exp \left[\theta_n^{(i)} \right])</td>
</tr>
</tbody>
</table>
| \(\hat{\varphi}_{n+1}^{(i+1)} = \hat{\varphi}_{n+1}^{(i)} + \frac{1}{(\Delta t)^2 \beta} \Delta \hat{\varphi}_{n+1}^{(i)} \) | \(\hat{\nu}_{n+1}^{(i+1)} = \hat{\nu}_{n+1}^{(i)} + \gamma \frac{\Delta t}{\Delta t^2 \beta} \left[\hat{\Theta}_{n+1}^{(i+1)} - \hat{\Theta}_{n+1}^{(i)} \right] \)

In each iteration the angular velocity and acceleration are updated in the material description, their spatial counterparts are obtained throughout the push-forward relations:

\[
\hat{\varphi}_{n+1}^{(i+1)} = \Lambda_{n+1}^{(i+1)} \hat{\varphi}_{n+1}^{(i+1)}; \quad \text{and} \quad \hat{\nu}_{n+1}^{(i+1)} = \Lambda_{n+1}^{(i+1)} \hat{\nu}_{n+1}^{(i+1)}.
\]

A geometric interpretation of the procedure summarized in Table 6.3 is given in spatial description taking into account that

\[
\hat{\varphi}_{n+1}^{(i+1)} = \Lambda_{n+1}^{(i+1)} \Lambda_{n+1}^{T} \hat{\varphi}_{n+1}^{(i+1)} + \frac{\gamma}{(\Delta t)^2 \beta} \Lambda_{n+1}^{(i+1)} \Lambda_{n}^{T} \left[\hat{\Theta}_{n+1}^{(i+1)} - \hat{\Theta}_{n+1}^{(i)} \right]
\]

(6.11)

Since \(\Lambda_{n+1}^{(i+1)} \Lambda_{n+1}^{(i)} T_{\Lambda_{n+1}^{(i+1)}} \Lambda_{n+1}^{T} : T_{\Lambda_{n+1}^{(i+1)}} SO(3) \rightarrow T_{\Lambda_{n+1}^{(i+1)}} SO(3) \) and \(\Lambda_{n+1}^{(i+1)} \Lambda_{n+1}^{T} : T_{\Lambda_{n+1}^{(i+1)}} SO(3) \rightarrow T_{\Lambda_{n+1}^{(i+1)}} SO(3) \), the first term in Eq. (6.11) may be interpreted as the parallel transport of \(\hat{\varphi}_{n+1}^{(i+1)} \) from \(T_{\Lambda_{n+1}^{(i+1)}} SO(3) \) to \(T_{\Lambda_{n+1}^{(i+1)}} SO(3) \); whereas the second term is the parallel transport of \(\left[\hat{\Theta}_{n+1}^{(i+1)} - \hat{\Theta}_{n+1}^{(i)} \right] \) from \(T_{\Lambda_{n+1}^{(i+1)}} SO(3) \) to \(T_{\Lambda_{n+1}^{(i+1)}} SO(3) \) (see Figure 6.1).

The update procedure summarized in Table 6.3 applies for \(i \geq 1 \). For \(i = 0 \), the initial
6.1. Formulation of the problem

guess in the Newton process, one sets:

\[\hat{\varphi}_{n+1} = \hat{\varphi}_n, \quad \Lambda_{n+1}^{(0)} = \Lambda_n. \]

(6.12)

With this assumption \((\hat{\varphi}_{n+1}^{(0)}, \hat{v}_{n+1}^{(0)})\) and \((\hat{\varphi}_{n+1}^{(0)}, \hat{\alpha}_{n+1}^{(0)})\) are computed by the Newmark formulae of Table 6.2 giving

\[\hat{A}_{n+1}^{(0)} = [1 - \frac{1}{2\beta}] \hat{A}_n - \frac{1}{\beta \Delta t} \hat{V}_n \]

(6.13)

\[\hat{V}_{n+1}^{(0)} = \hat{V}_n + \Delta t [(1 - \gamma) \hat{A}_n + \gamma \hat{A}_{n+1}^{(0)}]. \]

(6.14)

6.1.3.a Corrected Newmark scheme

As it has been explained in Section 6.1.1 (see Remarks 6.1 and 6.2) the Newmark scheme on the rotation manifold presented in Table 6.2 or equivalently in Eqs. (6.7) and (6.9) is only an approximated formulation (see Mäkinen [191]). This scheme can not be corrected directly with the aid of the tangential transformation \(T\) given in Eq. (A.74), because it is a linearized operator and the incremental rotation vector \(\hat{\theta}_n\) is not necessarily a small quantity. However, the iterative form of the Newmark scheme (see Table 6.3) may be adjusted with the aid of \(T\) obtaining

\[\hat{\Theta}_{n+1}^{(i+1)} = \hat{\Theta}_n^{(i)} + \Delta \hat{\Theta}_n^{(i)} \in T_{\Lambda_n}^{\text{mat}} \]

(6.15a)

\[\hat{V}_{n+1}^{(i+1)} = \hat{V}_n^{(i)} + \frac{\gamma}{\Delta t \beta} T(\hat{\Theta}_n^{(i+1)}) \Delta \hat{\Theta}_n^{(i)} \]

(6.15b)

\[\hat{A}_{n+1}^{(i+1)} = \hat{A}_n^{(i+1)} + \frac{1}{(\Delta t)^2 \beta} T(\hat{\Theta}_n^{(i+1)}) \Delta \hat{\Theta}_n^{(i)} + \frac{\gamma}{\Delta t \beta} T(\hat{\Theta}_n^{(i+1)}) \Delta \hat{\Theta}_n^{(i)} \]

(6.15c)

\[\Lambda_{n+1} = \Lambda_n \exp[\hat{\Theta}_n^{m}] = \exp[\hat{\Theta}_n^{m}] \Lambda_n; \quad \text{for convergent solution } \hat{\Theta}_n^{m}. \]

(6.15d)

In this case, the tangential transformation is a map \(T : T_n^{\text{mat}} \rightarrow T_{n+1}^{\text{mat}}\) so the scheme defined in Eqs. (6.15a) to (6.15d) makes sense due to all the vectors belongs to the same vector space on the rotation manifold. During iteration, they occupy on a linear space, (a fixed tangential vector space), which changes with time-step. The last term in Eq. (6.15c) arise from the existence of the non-constant tangential transformation \(T\) in Eq. (6.15b). This Newmark time–stepping algorithm can be called *exact updated Lagrangian formulation*, where unknown rotational vectors belongs to the tangential space of previously converged configuration, (see [193, 192, 191] for more details).

6.1.4 Iterative strain and strain rate updating procedure

The discrete form, about the configuration \((\hat{\psi}_{n+1}^{(i)}, \Lambda_{n+1}^{(i)}) \in C_{n+1}\) of the spatial form of the translational and rotational strains, existing in each point \(S \in L\) of the mid-curve of the current rod configuration relative to the curved reference configuration (summarized in
Table 3.1 of §3.4.1), can be written as

\[
\begin{align*}
\{\hat{\gamma}_n\}_{n+1}^{(i)} &= \{\hat{\varphi} \cdot \mathcal{S}\}_{n+1}^{(i)} - \{\ell_1\}_{n+1}^{(i)} \quad (6.16a) \\
\{\hat{\omega}_n\}_{n+1}^{(i)} &= \text{axial}[\Lambda_{n+1}^{(i)}(\Lambda^n_T)_{n+1}^{(i)}] \quad (6.16b)
\end{align*}
\]

where the material description is obtained employing the pullback operation as

\[
\begin{align*}
\{\hat{\Gamma}_n\}_{n+1}^{(i)} &= \Lambda_{n+1}^{(i)} \{\hat{\gamma}_n\}_{n+1}^{(i)} \quad (6.17a) \\
\{\hat{\Omega}_n\}_{n+1}^{(i)} &= \Lambda_{n+1}^{(i)} \{\hat{\omega}_n\}_{n+1}^{(i)} \quad (6.17b)
\end{align*}
\]

Given an incremental field \((\Delta \hat{\gamma}_{n+1}^{(i)}, \Delta \hat{\theta}_{n+1}^{(i)})\), it is possible to construct an update algorithm as it is described in the next subsections.

6.1.4.a Translational strains

Displacements are updated as described in Table 6.3, the vector normal to the cross section \(\ell_1\) is updated by means of the application of the incremental (iterative) rotation tensor, obtained from the exponentiation of the iterative rotation increment \(\exp[\Delta \hat{\theta}_{n+1}^{(i)}]\), on the previous iterative rotation tensor to obtain the updated orientation triad \(\{\hat{\ell}_1\}_{n+1}^{(i)}\) at time \(t_{n+1}\), iteration \((i + 1)\). Therefore, the spatial form of the updated translational strains vector is computed as

\[
\begin{align*}
\{\hat{\gamma}_n\}_{n+1}^{(i+1)} &= \{\hat{\varphi} \cdot \mathcal{S}\}_{n+1}^{(i+1)} + \Delta \hat{\varphi} \cdot \mathcal{S} \{\hat{\gamma}_n\}_{n+1}^{(i)} - \exp[\Delta \hat{\theta}_{n+1}^{(i)}]\{\hat{\ell}_1\}_{n+1}^{(i)} \\
 &= \{\hat{\varphi} \cdot \mathcal{S}\}_{n+1}^{(i+1)} - \{\ell_1\}_{n+1}^{(i+1)} \quad (6.18a)
\end{align*}
\]

and

\[
\{\hat{\Gamma}_n\}_{n+1}^{(i+1)} = \exp[\Delta \hat{\theta}_{n+1}^{(i)}] \Lambda_{n+1}^{(i)} \{\hat{\gamma}_n\}_{n+1}^{(i+1)} = \Lambda_{n+1}^{(i+1)} T \{\hat{\gamma}_n\}_{n+1}^{(i+1)} \quad (6.18b)
\]

for the material description.

6.1.4.b Rotational strains

An additive updating rule for the spatial form of the rotational strain tensor (curvature tensor) can be constructed based on Eq. (3.37a) of Section 3.1.6 as follows

\[
\begin{align*}
\{\hat{\varepsilon}_n\}_{n+1}^{(i+1)} &= \Delta \{\hat{\varepsilon}_n\}_{n+1}^{(i)} + \exp[\Delta \hat{\theta}_{n+1}^{(i)}] \{\hat{\varepsilon}_n\}_{n+1}^{(i)} \exp[\Delta \hat{\theta}_{n+1}^{(i)}] T \\
&= d(\exp[\Delta \hat{\theta}_{n+1}^{(i)}]) S^{-1} \exp[-\Delta \hat{\theta}_{n+1}^{(i)}] + \exp[\Delta \hat{\theta}_{n+1}^{(i)}] \{\hat{\varepsilon}_n\}_{n+1}^{(i)} \exp[\Delta \hat{\theta}_{n+1}^{(i)}] T \quad (6.19a)
\end{align*}
\]

and for the material description one obtains

\[
\begin{align*}
\{\hat{\Omega}_n\}_{n+1}^{(i+1)} &= \Lambda_{n+1}^{(i)}\exp[\Delta \hat{\theta}_{n+1}^{(i)}] T \{\hat{\varepsilon}_n\}_{n+1}^{(i+1)} = \Lambda_{n+1}^{(i+1)} T \{\hat{\varepsilon}_n\}_{n+1}^{(i+1)} \quad (6.19b)
\end{align*}
\]
Finally, the updated rotational strain vectors are obtained as
\[\{\hat{\omega}_n\}_{n+1}^{(i+1)} = \text{axial}[\{\hat{\omega}_n\}_{n+1}^{(i+1)}] \quad (6.19c)\]
\[\{\hat{\Omega}_n\}_{n+1}^{(i+1)} = \text{axial}[\{\hat{\Omega}_n\}_{n+1}^{(i+1)}]. \quad (6.19d)\]

In Eq. (6.19a) it is necessary to compute the term \((d(\exp[\Delta \hat{\theta}_{n+1}]) / dS) \exp[-\Delta \hat{\theta}_{n+1}^T]\) which can be done according to the methods described in Ref. [278] or [159]. The first method due to Simo and Vu-Quoc is described in §7 of Appendix B but details will be omitted in this section by briefly.

6.1.4.c Strain vector at material point level

The spatial form of the iterative strain vector at given material point on the current cross section, Eq. (3.59), is obtained from the results of Eqs. (6.18a) and (6.19a) as
\[\{\hat{\varepsilon}_n\}_{n+1}^{(i+1)} = \frac{1}{|F_0|} \left[\{\hat{\gamma}_n\}_{n+1}^{(i+1)} + \{\hat{\omega}_n\}_{n+1}^{(i+1)} \{\hat{\mathcal{F}}\}_{n+1}^{(i+1)} \right]. \quad (6.20)\]

The material form of \(\{\hat{\varepsilon}_n\}_{n+1}^{(i+1)}\), which is used for integrating the constitutive equations, is obtained by means of the pullback operation with the updated rotation tensor \(\Lambda_{n+1}^{(i+1)}\) as
\[\{\hat{\mathcal{E}}_n\}_{n+1}^{(i+1)} = \Lambda_{n+1}^{(i+1)T} \{\hat{\varepsilon}_n\}_{n+1}^{(i+1)} = \frac{1}{|F_0|} \left[\{\Gamma_n\}_{m+1}^{(i+1)} + \{\bar{\Omega}_n\}_{n+1}^{(i+1)} \hat{\theta}\right] \quad (6.21)\]
with \(|F_0|^{-1} = (\Lambda_0^T \hat{\varphi}_0, S \cdot \hat{E}_1 + \xi_0 \hat{\Omega}_{02} - \xi_2 \hat{\Omega}_{03}) \quad [167]\), which is a initial geometric parameter.

6.1.4.d Strain rate vector

An objective measure [227] of the strain rate vector on each material point of the cross section of the current rod is obtained from Eq. (3.81c). Having estimated \(\hat{\varphi}_{n+1}^{(i+1)}, \hat{\varphi}_{n+1}^{(i+1)}\) and \(\hat{v}_{n+1}^{(i+1)}\) from Newmark’s algorithm, it is possible to construct the discrete form of the co-rotated strain rate vector as
\[\{\hat{s}_n\}_{m+1}^{(i+1)} = \{\hat{\varphi}_n, S\}_{n+1}^{(i+1)} - \{\hat{v}_{n+1}\}_{n+1}^{(i+1)} \{\hat{\varphi}_n, S\}_{n+1}^{(i+1)} + \{\hat{v}_n, S\}_{n+1}^{(i+1)} \hat{\varphi}_{n+1}^{(i+1)} \quad (6.22a)\]
\[\{\hat{S} \}^{(i+1)}_{n+1} = \Lambda_{n+1}^{(i+1)T} \{\hat{s}_n\}_{n+1}^{(i+1)} \quad (6.22b)\]

In Eq. (6.22a) it has been supposed that \(\hat{\varphi}_{n+1}^{(i+1)}, \hat{\varphi}_{n+1}^{(i+1)}\) and \(\{\hat{v}_n\}_{n+1}^{(i+1)} = \Pi[n \{\hat{v}_n\}_{n+1}^{(i+1)}\] are known functions of the coordinate \(S \in [0, L]\); this assumption will be explicitly explained in Section 7 about finite element implementation.

REMARK 6.4. In Eq. (6.22a) it has been supposed that the angular velocity tensor is interpolated at the integration point by means of using an isoparametric [132] approximation \(i.e. \{\tilde{v}_n\}_{n+1}^{(i+1)}(S) = \sum_{i=1}^{N_d} N_i(S) \{\tilde{v}_n\}_{n+1}^{(i+1)}\) and, therefore, the term \(\{\tilde{v}_n, S\}_{m+1}^{(i+1)}\) is calculated as \(\sum_{i=1}^{N_d} N_i(S, S) \{\tilde{v}_n\}_{m+1}^{(i+1)}\), where \(N_d\) is the number of nodal points on a beam element.\]
Another possibility for estimating the discrete form of the strain rate vector is by means of applying the finite difference method as follows:

\[
\{ \hat{s}_n \}_{n+1}^{(i+1)} = \Lambda_{n+1}^{(i+1)} \left[\{ \hat{\xi}_n \}_{n+1}^{(i+1)} - \{ \hat{\xi}_n \}_n \right] \Delta t \tag{6.23}
\]

where \(\Delta t \) is the length of the time-step between the current configuration and the previous one at \(t_n \).

6.2 Discrete form of the linearized functional

In order to give an explicit expression for the term \(DG(\hat{\varphi}_{n+1}^{(i)}, \Lambda_{n+1}^{(i)}, \hat{\eta}) \), Eq. (6.3), entering in the iterative Newton–Raphson scheme, one has to be able to write the discrete version of the linear forms of §5 in terms of the spatial form of the incremental (iterative) field \((\Delta \hat{\varphi}_{n+1}^{(i)}, \Delta \hat{\theta}_{n+1}^{(i)}) \in T\mathcal{C}_{n+1} \).

First, in analogous manner as in §5.1.1, it is necessary to calculate the discrete counterpart of a curve of perturbed configurations in \(\mathcal{C}_{n+1} \), that is, a map

\[
\mathbb{R} \rightarrow \mathcal{C}_{n+1}
\]

\[
\varepsilon \mapsto (\hat{\varphi}_{\varepsilon(n+1)}^{(i)}, \Lambda_{\varepsilon(n+1)}^{(i)})
\]

by setting

\[
\hat{\varphi}_{\varepsilon(n+1)}^{(i)} \triangleq \hat{\varphi}_{n+1}^{(i)} + \varepsilon \Delta \hat{\varphi}_{n+1}^{(i)} \tag{6.25a}
\]

\[
\Lambda_{\varepsilon(n+1)}^{(i)} \triangleq \exp[\varepsilon \Delta \hat{\theta}_{n+1}^{(i)}] \exp[\hat{\theta}_{n+1}^{(i)}] \Lambda_n.
\tag{6.25b}
\]

Then one defines the linearized quantities \((\Delta \hat{\varphi}_{\varepsilon(n+1)}^{(i)}, \Delta \Lambda_{\varepsilon(n+1)}^{(i)}) \) as the objects in the tangent space \(T\mathcal{C}_{n+1} \) given in terms of the directional derivative by the following expressions:

\[
\Delta \hat{\varphi}_{n+1}^{(i)} \triangleq \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} \hat{\varphi}_{\varepsilon(n+1)}^{(i)} = \Delta \hat{\varphi}_{n+1}^{(i)} \tag{6.26a}
\]

\[
\delta \Lambda_{n+1}^{(i)} \triangleq \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} \Lambda_{\varepsilon(n+1)}^{(i)} = \Delta \hat{\theta}_{n+1}^{(i)} \Lambda_n.
\tag{6.26b}
\]

To proceed further with the linearization of the incremental rotational vector, we make use of representations for \(\Lambda_{\varepsilon(n+1)}^{(i)} \) and \(\Lambda_{n+1}^{(i)} \) in terms of exponential maps starting at \(\Lambda_n \).

By one hand, one has that \(\Lambda_{\varepsilon(n+1)}^{(i)} = \exp[\hat{\theta}_{\varepsilon(n)}^{(i)}] \Lambda_n \) and, \(\hat{\theta}_{\varepsilon(n)}^{(i)} \Lambda_n \) and \(\hat{\theta}_n^{(i)} \Lambda_n \) belong to \(T_{\Lambda_n}^{\text{spa}} SO(3) \). We have to note that \([280]\) \(\Delta \hat{\theta}_{n+1}^{(i)} \Lambda_{n+1}^{(i)} \) belongs to the tangent space \(T_{\Lambda_{n+1}^{(i)}}^{\text{spa}} SO(3) \) at \(\Lambda_{n+1}^{(i)} \) and hence,

\[
\exp[\hat{\theta}_{\varepsilon(n)}^{(i)}] = \exp[\varepsilon \Delta \hat{\theta}_{n+1}^{(i)}] \exp[\hat{\theta}_n^{(i)}] \tag{6.27}
\]
with this relation in mind, we obtain the linearization of the \textit{discrete incremental rotation} \(\hat{\theta}^{(i)}_{\varepsilon(n)} \), which is the axial vector of \(\tilde{\theta}^{(i)}_{\varepsilon(n)} \) in Eq. (6.27), as

\[
D\hat{\theta}^{(i)}_n \cdot \Delta \hat{\theta}^{(i)}_{n+1} \triangleq \delta \hat{\theta}^{(i)}_n = \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} \hat{\theta}^{(i)}_{\varepsilon(n)} = T(\hat{\theta}^{(i)}_n) \Delta \hat{\theta}^{(i)}_{n+1}
\]

(6.28)

where \(T : T^{\text{spa}}_{\Lambda^{(i)}_{n+1}} SO(3) \to T^{\text{spa}}_{\Lambda^{(i)}_n} SO(3) \) is the linear tangential map defined in Eq. (A.74) of §A.4.4. From Eq. (6.28) and the time-stepping algorithm of Table 6.3 it is possible to write the linearized forms of the angular velocity and acceleration in material form about the configuration \((\varphi^{(i)}_{n+1}, \Lambda^{(i)}_{n+1}) \) as

\[
\delta \hat{\dot{\varphi}}^{(i)}_{n+1} = \frac{\gamma}{\Delta t} \Lambda^{(i)}_n T(\hat{\theta}^{(i)}_n) \Delta \hat{\varphi}^{(i)}_{n+1}
\]

(6.29a)

\[
\delta \hat{\dot{\theta}}^{(i)}_{n+1} = \frac{1}{(\Delta t)^2} \Lambda^{(i)}_n T(\hat{\theta}^{(i)}_n) \Delta \hat{\theta}^{(i)}_{n+1}
\]

(6.29b)

If the material form of the incremental (iterative) field \((\Delta \varphi^{(i)}_{n+1}, \Delta \hat{\varphi}^{(i)}_{n+1}) \in T\mathcal{C}_{n+1} \) is preferred a set of equivalent iterative rules are obtained. First, it is necessary to calculate the discrete counterpart of a \textit{curve of perturbed configurations} \((\dot{\varphi}^{(i)}_{n+1}, \Lambda^{(i)}_{n+1}) \in \mathcal{C}_{n+1} \).

Here we only will concentrate on the rotational field because the translational part is the same as for the spatial incremental field. Then we have

\[
\Lambda^{(i)}_{n+1} := \Lambda_n \exp[\tilde{\varphi}^{(i)}_{n+1}] \exp[\varepsilon \Delta \tilde{\varphi}^{(i)}_{n+1}].
\]

(6.30)

and

\[
\delta \Lambda^{(i)}_{n+1} := \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} \Lambda^{(i)}_{n+1} = \Lambda^{(i)}_n \Delta \tilde{\varphi}^{(i)}_{n+1}.
\]

(6.31)

By one hand, one has that \(\Lambda^{(i)}_{n+1} \Lambda^{(i)}_{n} \tilde{\varphi}^{(i)}_{n+1} \Lambda^{(i)}_{n} \tilde{\varphi}^{(i)}_{n+1} \in T^{\text{spa}}_{\Lambda^{(i)}_n} SO(3) \), in the same manner, \(\Lambda^{(i)}_{n+1} \Delta \tilde{\varphi}^{(i)}_{n+1} \in T^{\text{mat}}_{\Lambda^{(i)}_{n+1}} SO(3) \) which allow to write

\[
\exp[\tilde{\varphi}^{(i)}_{n+1}] = \exp[\tilde{\varphi}^{(i)}_{n}] \exp[\varepsilon \Delta \tilde{\varphi}^{(i)}_{n+1}].
\]

(6.32)

Then, the linearization of the material form of the \textit{discrete incremental rotation} \(\tilde{\theta}^{(i)}_{\varepsilon(n)} \), which is the axial vector of \(\tilde{\theta}^{(i)}_{\varepsilon(n)} \), is obtained as

\[
D\tilde{\theta}^{(i)}_n \cdot \Delta \tilde{\theta}^{(i)}_{n+1} = \delta \tilde{\theta}^{(i)}_n = \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} \tilde{\theta}^{(i)}_{\varepsilon(n)} = T^T(\hat{\theta}^{(i)}_n) \Delta \hat{\theta}^{(i)}_{n+1}
\]

(6.33)

where \(T \) is the same tensor as in Eq. (6.28) but written in terms of \(\hat{\theta}^{(i)}_n \) and \(T^T : T^{\text{mat}}_{\Lambda^{(i)}_{n+1}} SO(3) \to T^{\text{mat}}_{\Lambda^{(i)}_n} SO(3) \) (see §A.4.4). In this case, the linearized forms of the angular
velocity and acceleration in material form about the configuration \((\hat{\varphi}^{(i)}_{n+1}, \Lambda^{(i)}_{n+1})\) reads

\[
\delta \dot{V}^{(i)}_{n+1} = \frac{\gamma}{\Delta t \beta} \mathbf{T}^T(\hat{\dot{\varphi}}^{(i)}_{n}) \Delta \dot{\varphi}^{(i)}_{n+1}
\]

\[
\delta \dot{A}^{(i)}_{n+1} = \frac{1}{\Delta t^2 \beta} \mathbf{T}^T(\hat{\dot{\varphi}}^{(i)}_{n}) \Delta \dot{\varphi}^{(i)}_{n+1}
\]

\[(6.34a)\]

\[(6.34b)\]

6.2.1 Discrete form of the out of balance forces

The discrete form of the \textit{out-of-balance force} term of Eq. (6.3), \(G(\hat{\varphi}^{(i)}_{n+1}, \Lambda^{(i)}_{n+1}, \hat{\eta}) \approx G_{n+1}^{(i)}\), is obtained from the contribution of the \textit{internal}, \textit{external} and \textit{inertial} terms as follows

6.2.1.a Internal component

The discrete contribution of the internal component to the residual force vector is obtained as

\[
G^{(i)}_{\text{int}(n+1)} = \int_0^L \hat{\eta}^T B(\hat{\varphi}^{(i)}_{n+1})^T \hat{\Phi}^{(i)}_{n+1} dS = \int_0^L \hat{\eta}^m T B(\hat{\varphi}^{(i)}_{n+1}, \Lambda^{(i)}_{n+1})^T \hat{\Phi}^{(i)}_{n+1} dS
\]

where the discrete forms of the operators \(B^{(i)}_{n+1}\) and \(\bar{B}^{(i)}_{n+1}\) are obtained evaluating the expressions of Eqs. (5.12c) and (5.16c) at the configuration \((\hat{\varphi}^{(i)}_{n+1}, \Lambda^{(i)}_{n+1})\). Observe that the internal force and moment vector \(\hat{\Phi}^{(i)}_{n+1}\) corresponds to those calculated at the time step \(t_{n+1}\) iteration \((i)\).

6.2.1.b Inertial component

The discrete contribution of the inertial forces to the out of balance force vector is obtained as

\[
G^{(i)}_{\text{ine}(n+1)} = \int_0^L \hat{\eta}^T \left[\mathbf{I}^{(i)}_{\rho_0(n+1)} \left\{ \dot{\Lambda}^{(i)}_{n+1} + \mathbf{A}^{\rho_0(\hat{\varphi}^{(i)}_{n+1})}_{n+1} \right\} \right] dS
\]

\[
= \int_0^L \hat{\eta}^m T \left[\mathbf{I}^{(i)}_{\rho_0} \left\{ \dot{\Lambda}^{(i)}_{n+1} + \mathbf{A}^{\rho_0(\hat{\varphi}^{(i)}_{n+1})}_{n+1} \right\} \right] dS
\]

where the discrete form of the spatial inertial tensor \(\mathbf{I}^{(i)}_{\rho_0}\) is obtained by means of the push–forward operation by the rotation tensor \(\Lambda^{(i)}_{n+1}\) acting on the material form of the inertial tensor \(\mathbf{I}^{(i)}_{\rho_0}\), according to \(\mathbf{I}^{(i)}_{\rho_0(n+1)} = \Lambda^{(i)}_{n+1} \mathbf{I}^{(i)}_{\rho_0}\).

Additionally, considering the time–stepping algorithm of Table 6.3 it is possible to construct an iterative updating for the inertial component of the out of balance force vector as

\[
G^{(i+1)}_{\text{ine}(n+1)} = G^{(i)}_{\text{ine}(n+1)} + \frac{1}{\Delta t^2 \beta} \int_0^L \hat{\eta}^m T \left[\mathbf{A}^{\rho_0(\hat{\varphi}^{(i)}_{n+1})} \hat{\Phi}^{(i+1)}_{n+1} + (\gamma \Delta t)^2 \hat{\Phi}^{(i+1)}_{n+1} \left(\mathbf{I}^{(i)}_{\rho_0} \hat{\Phi}^{(i+1)}_{n+1} \right) \right] dS
\]

\[(6.35)\]

\[(6.36a)\]

\[(6.36b)\]
where $\tilde{\Theta}_n^{(i+1)} = [\tilde{\Theta}_n^{(i+1)} - \tilde{\Theta}_n^{(i)}].$

6.2.1.c External component

By the other hand, the discrete contribution of the external loading to the out of balance force vector is obtained as

$$G_{\text{ext}(n+1)}^{(i)} = K_{M(n+1)}^{(i)} \cdot \tilde{p}_{n+1}^{(i)} = \int_0^L \tilde{\eta}^T \left[C_{mn}^{\text{sv}} \tilde{C}_{mn}^{\text{sv}} \right]_{n+1}^{(i)} \left[B(\tilde{\varphi}_n^{(i)}) \right]_{n+1}^{(i)} \tilde{p}_{n+1}^{(i)} dS$$

where $\tilde{p}_{n+1}^{(i)} = P_{n+1}^{(i)} + \Lambda_{(n+1)}^{(i)} \cdot \tilde{p}_{n+1}^{(i)}.$ Eq. (6.37) is obtained evaluating the configuration dependent terms of the different types of applied forces and moments (see §3.8) at the configuration $(\tilde{\varphi}_n^{(i)}, \Lambda_{(n+1)}^{(i)}).

6.2.2 Discrete tangential stiffness

Of course, if the configuration $(\tilde{\varphi}_n^{(i)}, \Lambda_{(n+1)}^{(i)}) \in C_{n+1}$ is an equilibrium configuration, it follows that $G_{n+1}^{(i)} \approx 0 \forall \dot{\varphi} \in TC_{n+1}.$ On the contrary a next iteration has to be performed using the discrete form of the tangential stiffness $DG_{n+1}^{(i)} \cdot \tilde{p}_{n+1}^{(i)},$ Eq. (6.3), which is obtained as the sum of the three contributions i.e. the internal, external and inertial terms as

$$DG_{n+1}^{(i)} \cdot \tilde{p}_{n+1}^{(i)} = [DG_{\text{int}(n+1)}^{(i)} + DG_{\text{ext}(n+1)}^{(i)} + DG_{\text{inert}(n+1)}^{(i)}] \cdot \tilde{p}_{n+1}^{(i)} = [K_M + K_V + K_G + K_P + M + K_{\text{gyr}} + K_{\text{cent}}]^{(i)}_{n+1}$$

$$= [K_M^m + K_V^m + K_G^m + K_P^m + M^m + K_{\text{gyr}} + K_{\text{cent}}]^{(i)}_{n+1} = DG_{n+1}^{(i)} \cdot \tilde{p}_{n+1}^{(i)}$$

In this section, explicit expressions for the different terms which contributes to the discrete tangent stiffness are given according to Section 5.3.

6.2.2.a Internal tangential stiffness

According to Eq. (5.68) we have that the discrete version of the tangential stiffness due to the contribution of the internal forces, $[K_M + K_G + K_V]^{(i)}_{n+1},$ is obtained as

$$K_M^{(i)} = \int_0^L \tilde{\eta}^T [B(\tilde{\varphi}_n^{(i)})]^T \left[C_{mn}^{\text{sv}} \tilde{C}_{mn}^{\text{sv}} \right]_{n+1}^{(i)} [B(\tilde{\varphi}_n^{(i)})]_{n+1}^{(i)} dS \approx \int_0^L \tilde{\eta}^T \left[B_{n+1}^{(i)} \tilde{C}_{nm}^{\text{sv}} \Lambda_{(n+1)}^{(i)} \right]_{n+1}^{(i)} B_{n+1}^{(i)} \tilde{p}_{n+1}^{(i)} dS$$

where $\tilde{C}_{ij}(\Lambda_{(n+1)}^{(i)}) = \Lambda_{(n+1)}^{(i)} \tilde{C}_{ij}^{\text{sv}} \Lambda_{n+1}^{(i)^T} i, j \in \{n, m\}$ and $B_{n+1}^{(i)}$ is obtained from Eq. (5.12c) evaluating at $\tilde{\varphi}_n^{(i)}.$ By the other hand, the geometric part given by

$$K_G^{(i)} = \int_0^L \tilde{\eta}^T [B_{n+1}^{(i)} \tilde{N}_{(n+1)}^{(i)} + F_{n+1}^{(i)^T}]_{n+1}^{(i)} dS$$

(6.39b)
where the stress dependent tensors \mathcal{N} and \mathcal{F} are calculated according to Eqs. (5.58) and (5.67) but the associated values of the stress resultant and couples are those corresponding to $\hat{\phi}_{n+1}^{(i)} \in T^*\mathcal{C}_{n+1}$. The viscous dependent part is obtained as

$$K_G^{(i)}(n+1) = \int_0^L \eta \gamma \left[B_n^{(i)}(i) T_{n+1}^{ss(i)} \gamma_{n+1}^{(i)} \right] \rho_{n+1}^{(i)} dS$$

(6.39c)

where $T_{n+1}^{ss(i)}(\Lambda_{n+1}^{(i)}) = \Lambda_{n+1}^{(i)} T_{n+1}^{ss(i)} i, j \in \{n, m\}$ are calculated according to Eqs. (4.53a) and (4.53b). The strain rate dependent tensor $Y_{n+1}^{(i)}$ can be calculated considering the fact that Newmark’s time stepping scheme, Eq. (6.29a), along with the discrete form of the result of Eq. (5.19a), which allow to establish the following equivalences:

$$\Delta \hat{\phi}_{n+1}^{(i)} = \left[\gamma/(\Delta t \beta) \right] I \Delta \hat{\phi}_{n+1}^{(i)}$$

$$\Delta V_{n+1}^{(i)} = \left[\gamma/(\Delta t \beta) \right] \Lambda_n^{(i)} T(\hat{\theta}_{n+1}) \Delta \hat{\phi}_{n+1}^{(i)} = \Lambda_n^{(i)} \Delta \hat{\phi}_{n+1}^{(i)}$$

identifying the tensors $[\gamma/(\Delta t \beta)] I$ and $[\gamma/(\Delta t \beta)] T(\hat{\theta}_{n+1})$ with \mathcal{H}_n and \mathcal{H}_b of Eqs. (5.27a) and (5.27b), respectively; Therefore, the following expressions are obtained:

$$\Delta \hat{\phi}_{n+1}^{(i)} = \gamma \Delta t \beta [T(\hat{\theta}_{n+1}) \Delta \hat{\phi}_{n+1}^{(i)}$$

(6.40a)

$$\Delta \hat{\phi}_{S(n+1)}^{(i)} = \gamma \Delta t \beta [T(\hat{\theta}_{n+1}) \Delta \hat{\phi}_{S(n+1)}^{(i)} + T(\hat{\theta}_{n+1}) \Delta \hat{\phi}_{S(n+1)}^{(i)}]$$

(6.40b)

and $\delta \hat{\phi}_{n+1}^{(i)} = [\gamma/(\Delta t \beta)] I \Delta \hat{\phi}_{S(n+1)}^{(i)}$. In Eqs. (6.40a) and (6.40b) the explicit expression for $T(\hat{\theta}_{n+1})$ can be consulted in Ref. [70]. Finally, the discrete form of Eqs. (5.23c) and (5.23d) can be rearranged as

$$\delta[\Phi] = \left[\begin{array}{c} \gamma \Delta t \beta [I \Delta \hat{\phi}_{S(n+1)}^{(i)} + \hat{\phi}_{S(n+1)}^{(i)}] \\ 0 \\ \gamma \Delta t \beta [\hat{\phi}_{n+1}^{(i)} - \hat{\phi}_{n+1}^{(i)}] \\ \gamma \Delta t \beta [\hat{\phi}_{n+1}^{(i)} + \hat{\phi}_{n+1}^{(i)}] \end{array} \right] \rho_{n+1}^{(i)} = Y_{n+1}^{(i)} \rho_{n+1}^{(i)}$$

(6.41)

where the scalar $\gamma_n = \gamma \Delta t \beta$ and $T_n^{(i)} = T(\hat{\theta}_{n+1})$. On the other hand, if the material updating rule is preferred for the rotational part and according to Eq. (5.85) we have that the discrete version of the tangential stiffness due to the contribution of the internal forces, $[K^m M + K^m G + K^m V]$, is obtained as

$$K^m M_{n+1}^{(i)} = \int_0^L \eta \gamma \left[\hat{B}_n^{(i)}(i) \hat{C}_n^{(i)}(\Lambda_{n+1}^{(i)}) \hat{B}_n^{(i)}(i) \right] \rho_{n+1}^{(i)} dS$$

(6.42a)

where the sub-matrices $C_n^{(i)}(\Lambda_{n+1}^{(i)}) i, j \in \{n, m\}$ of the reduced constitutive tensor $\hat{C}_n^{(i)}$ are as in Eq. (6.39a) and $\hat{B}_n^{(i)} = \hat{B}(\hat{\phi}_n^{(i)}, \Lambda_{n+1}^{(i)})$ is obtained from Eq. (5.16c) evaluating at
(\tilde{\varphi}_{n+1}^{(i)}, \Lambda_{n+1}^{(i)}) and its derivatives with respect to the arch–length $S \in [0, L]$. The geometric part given by

$$K_{G(n+1)}^{m(i)} = \int_0^L \eta^m \left[B_n^{(i)} T_n^{(i)} \Lambda_{n+1}^{(i)} + \mathcal{F}_n^{(i)} \right] \rho_{n+1}^{m(i)} dS \quad (6.42b)$$

where the stress dependent tensor $\mathcal{F}_n^{(i)}(\tilde{\varphi}_n^{(i)}, \Lambda_n^{(i)}, \hat{\Phi}_n^{(i)})$ is calculated according to Eq. (5.84). The viscous dependent part is obtained as

$$K_{G(n+1)}^{m(i)} = \int_0^L \eta^m \left[B_n^{(i)} T_n^{(i)} \Lambda_{n+1}^{(i)} + \mathcal{F}_n^{(i)} \right] \rho_{n+1}^{m(i)} dS. \quad (6.42c)$$

In this case, the material strain rate dependent tensor $\hat{\mathcal{Y}}_{n+1}^{(i)}$ can be calculated considering Eqs. (6.29a) and (5.21b), being established the following equivalences:

$$\Delta \hat{\varphi}_{n+1}^{(i)} = \left[\gamma / (\Delta t \beta) \right] T_n^{(i)} \Delta \hat{\Theta}_{n+1}^{(i)} = \Delta \hat{\varphi}_{n+1}^{(i)} + \hat{\mathcal{Y}}_{n+1}^{(i)} \Delta \hat{\Theta}_{n+1} \quad (6.42d)$$

which allows to deduce the following expressions for the tensor $\mathcal{H}_n^{m(i)}$ of Eq. (7.45) and its derivative $\mathcal{H}_n^{m(i)}$ as follows:

$$\Delta \hat{\varphi}_{n+1}^{(i)} = \left[\gamma / (\Delta t \beta) \right] T_n^{(i)} \Delta \hat{\Theta}_{n+1}^{(i)} \quad (6.43a)$$

$$\Delta \hat{\Theta}_{n+1}^{(i)} = \left[\gamma / (\Delta t \beta) \right] T_n^{(i)} \Delta \hat{\Theta}_{n+1}^{(i)} + \left[\gamma / (\Delta t \beta) \right] T_n^{(i)} \Delta \hat{\Theta}_{n+1}^{(i)} \quad (6.43b)$$

where $T_n^{T(i)} = T_n^{(i)}(\hat{\Theta}_n^{(i)})$, $T_n^{T(i)} = T_n^{(i)}(\hat{\Theta}_n^{(i)})$ and the explicit expression for $T_n^{T(i)}$ can be consulted in Ref. [70]. Finally, the discrete form of Eq. (7.45) can be expressed as

$$\tilde{\varphi}_{n+1}^{(i)} = \begin{bmatrix} \gamma / (\Delta t \beta) \frac{d I}{d S} \tilde{v}_{n+1}^{(i)} \left[\frac{d I}{d S} \right] \end{bmatrix} + \begin{bmatrix} \Lambda_{n+1}^{(i)} \Lambda_{n+1}^{(i)} \end{bmatrix} \begin{bmatrix} \mathcal{H}_n^{m(i)} \mathcal{H}_n^{m(i)} \end{bmatrix} \begin{bmatrix} \delta \hat{\varphi}_{n+1}^{(i)} \delta \hat{\Theta}_{n+1}^{(i)} \end{bmatrix} = \begin{bmatrix} \tilde{\varphi}_{n+1}^{(i)} \rho_{n+1}^{m(i)} \end{bmatrix}. \quad (6.44)$$

It is worth to note that, in general, $\tilde{\mathcal{V}}$ is configuration dependent and it couples the rotational and translational parts of the motion.

6.2.2.b Inertial tangent stiffness

Considering the iterative Newmark time–stepping scheme of Table 6.3, it is possible to rewrite the discrete form of the term $A_{\rho_0}^{\tilde{\varphi}}$ in Eq. (5.70) as

$$A_{\rho_0} \Delta \tilde{\varphi}_{n+1}^{(i)} = \frac{1}{h^2 \beta} A_{\rho_0} \Delta \tilde{\varphi}_{n+1}^{(i)} = \Xi_{\tilde{\varphi}} \Delta \tilde{\varphi}_{n+1}^{(i)} \quad (6.45)$$
where it is possible to see that Ξ_φ is a constant (configuration independent) tensor. Employing the results of Eqs. (6.29a) and (6.29b), it is possible to rewrite the terms $\dot{\Xi}_{\theta_1}$ and $\dot{\Xi}_{\theta_2}$ of Eqs. (5.71a) and (5.71a) in discrete form as

$$
\dot{\Xi}_{\theta_1(n+1)} = -\Pi \left[\Lambda_{n+1}^{(i)} \{ I_{\rho_0} \{ \dot{A}_n \}_{n+1} + \{ \dot{V}_n \}_{n+1} (I_{\rho_0} \{ \dot{V}_n \}_{n+1}) \} \right] \Delta \dot{\theta}_n^{(i)} + \frac{1}{(\Delta t)^{2\beta}} \Lambda_{n+1}^{(i)} \{ I_{\rho_0} + \Delta t \gamma \left(\{ \dot{V}_n \}_{n+1} I_{\rho_0} - \Pi \{ I_{\rho_0} \{ \dot{V}_n \}_{n+1} \} \right) \} \Lambda_n^T T(\dot{\theta}_n^{(i)}) \Delta \dot{\theta}_n^{(i)} \quad (6.46a)
$$

$$
\dot{\Xi}_{\theta_2(n+1)} = \frac{1}{(\Delta t)^{2\beta}} \Lambda_{n+1}^{(i)} \{ I_{\rho_0} + \Delta t \gamma \left(\{ \dot{V}_n \}_{n+1} I_{\rho_0} - \Pi \{ I_{\rho_0} \{ \dot{V}_n \}_{n+1} \} \right) \} \Lambda_n^T T(\dot{\theta}_n^{(i)}) \Delta \dot{\theta}_n^{(i)} \quad (6.46b)
$$

then, the following result is obtained:

$$
\dot{\Xi}_{\theta_1(n+1)} + \dot{\Xi}_{\theta_2(n+1)} = \Xi_{\theta(n+1)} \Delta \dot{\theta}_n^{(i)} \quad (6.47)
$$

where the $\Xi_{\theta(n+1)}$ is a non-symmetric and configuration dependent tensor. This last result allows to obtain the discrete form of the inertial contribution to the tangential stiffness as

$$
DG_{\text{ine}(n+1)} \cdot \ddot{\rho}_{n+1}^{(i)} = [M + K_{\text{gyr}} + K_{\text{cent}}]_{n+1}^{(i)} = K_{\text{ine}(n+1)}^{(i)} = \int_0^L \eta^{(i)} S_T \left[\Xi_\varphi \begin{bmatrix} 0 \\ \Xi_{\theta(n+1)} \end{bmatrix} \right] \ddot{\rho}_{n+1}^{(i)} dS = \int_0^L \eta^{(i)} S_T M_{\varphi\theta(n+1)}^{(i)} \ddot{\rho}_{n+1}^{(i)} dS \quad (6.48)
$$

where the explicit expression (in matrix form) of the inertial stiffness tensor $M_{\varphi\theta(n+1)}^{(i)}$ is

$$
M_{\varphi\theta(n+1)}^{(i)} = \begin{bmatrix} \frac{1}{(\Delta t)^{2\beta}} A_{\rho_0} I & 0 \\ 0 & 0 \end{bmatrix} - \Pi \left[\Lambda_{n+1}^{(i)} \{ I_{\rho_0} \{ \dot{A}_n \}_{n+1} + \{ \dot{V}_n \}_{n+1} (I_{\rho_0} \{ \dot{V}_n \}_{n+1}) \} \right] + \frac{1}{(\Delta t)^{2\beta}} \Lambda_{n+1}^{(i)} \{ I_{\rho_0} + \Delta t \gamma \left(\{ \dot{V}_n \}_{n+1} I_{\rho_0} - \Pi \{ I_{\rho_0} \{ \dot{V}_n \}_{n+1} \} \right) \} \Lambda_n^T T^{(i)} \end{bmatrix}. \quad (6.49)
$$

By the other hand, if the material updating rule for rotations is preferred one has, from Eqs. (6.34a) and (6.34b), that

$$
\dot{\Xi}_{\theta(n+1)} = I_{\rho_0} \Delta \dot{A}_n^{(i)} + (\dot{V}_n^{(i)}(n+1) I_{\rho_0} - \Pi \{ I_{\rho_0} \{ \dot{V}_n^{(i)} \}_{n+1} \}) \Delta \dot{V}_n^{(i)}
$$

$$
= \left[\frac{1}{(\Delta t)^{2\beta}} I_{\rho_0} + \frac{\gamma}{\Delta t^2} \left(\dot{V}_n^{(i)}(n+1) I_{\rho_0} - \Pi \{ I_{\rho_0} \{ \dot{V}_n^{(i)} \}_{n+1} \} \right) \right] T_n^T \Delta \dot{\theta}_n^{(i)} = \Xi_{\theta(n+1)}^{(i)} \Delta \dot{\theta}_n^{(i)} \quad (6.50)
$$

where $T_n^{(i)} = T^T(\dot{\theta}_n^{(i)})$ and $\Xi_{\theta(n+1)}^{(i)}$ is also a non-symmetric and configuration dependent tensor, which considers the contributions of the centripetal and centrifugal effects. Eq. (6.51) allows to rewrite the discrete form of the inertial contribution to the tangential stiffness as

$$
DG_{\text{ine}(n+1)} \cdot \ddot{\rho}_{n+1}^{(i)} = [M^m + K_{\text{gyr}}^m + K_{\text{cent}}^m]_{n+1}^{(i)} = K_{\text{ine}(n+1)}^{(i)}
$$
\[\int_0^L \dot{\eta}^m_{n+1} \begin{bmatrix} 0 & \Xi^m_{\Theta(n+1)} \end{bmatrix} \dot{p}^m_{n+1} dS = \int_0^L \dot{\eta}^s T M^m_{\varphi\Theta(n+1)} \dot{p}^m_{n+1} dS \tag{6.51} \]

where the explicit expression (in matrix form) of the inertial stiffness tensor \(M^m_{\varphi\Theta(n+1)} \) is

\[
M^m_{\varphi\Theta(n+1)} = \begin{bmatrix} \frac{1}{(\Delta t)^2} I \rho_0 & 0 \\ 0 & \left[\frac{1}{(\Delta t)^2} I \rho_0 + \frac{\gamma}{(\Delta t)^2} \left(\tilde{V}_{n(n+1)} I \rho_0 - \Pi[I \rho_0 V_{n(n+1)}^C] \right) \right] \end{bmatrix} T^F_n \tag{6.52} \]

6.2.2.c External load tangential stiffness

The discrete form of the contribution to the tangential stiffness due to external loading \(K_L \) is obtained directly from Eq. (5.78) as

\[
DG_{ext(n+1)} \cdot \dot{p}^m_{n+1} = -\lambda \int_0^L \dot{\eta}^s T \begin{bmatrix} (\tilde{N}_{d(n+1)} \otimes \tilde{\mathcal{C}}^N_{N(n+1)}) & \frac{d}{ds} \tilde{\mathcal{N}}^{(i)}_{p(n+1)} \\ (\tilde{M}_{d(n+1)} \otimes \tilde{\mathcal{C}}^M_{M(n+1)}) & \frac{d}{ds} \tilde{\mathcal{M}}^{(i)}_{p(n+1)} \end{bmatrix} \dot{p}^m_{n+1} dS \\
+ \sum_{k=1}^{N_p} \dot{\eta}_k^s T \begin{bmatrix} \tilde{P}^{k(i)}_{p(n+1)} & \dot{p}^m_{k(n+1)} \end{bmatrix} \tag{6.53} \]

where the involved loading quantities as well as the vectors \(\tilde{\mathcal{C}}_N \) and \(\tilde{\mathcal{C}}_M \) have to be evaluated at the configuration \((\tilde{\varphi}_{n+1}^{(i)}, \Lambda_{n+1}^{(i)}) \in C_{n+1} \).
Chapter 7

Finite element implementation

This chapter describes the spatial discretization used in the Galerkin [132] finite element approximation of the time discretization presented in §6 for the (weak) variational equations described in §5.3.3. As usual in the FEM the applied procedure yields to a system of nonlinear algebraic equations well suited for the application of the Newton iterative method. Then, the main purpose of this part of the work is to develop a Galerkin discretization of the linearized form of the virtual work functional consistent with the time discretization previously discussed.

As in the case of the formulation of a time-discrete version of the problem, the main difficulty arises in the fact that the spatial interpolation of the configuration variables should be consistent with the nonlinear nature of the configuration manifold $\mathbb{R}^3 \times SO(3)$. The developed elements are based on isoparametric interpolations of both the incremental displacement and the incremental rotation vectors.

It should be addressed again that, the material or spatial updating rule for the rotations are equivalent and, therefore, their corresponding interpolated (iterative or incremental) rotation vectors can be used to parameterize and update the rotational variables. In this manner and by completeness, both schemes are presented yielding to the corresponding tangential stiffness matrices and unbalanced force vectors. However, the numerical procedures based on the spatial form of the iterative incremental rotation vector are preferred to others\(^1\), due to the fact that it makes the expressions for the internal, external and inertial vectors and the tangential matrices concise and explicit, as opposed to the case when using the incremental rotation vector. This choice seems to be more efficient and robust for computations and more convenient for programming. The obtained inertial and viscous tangential matrices are consistent with the Newmark updating procedure described in §6.

Finally, a section devoted to the cross sectional analysis is included, explaining the numerical obtention of the iterative cross sectional forces and moments as well as the cross sectional tangential tensors required in the full Newton–Raphson scheme.

\(^1\)See e.g. Ibrahimbegović Ref. [138] for the employment of an updated additive rotation vector or Cardona et al. Ref. [70] for the total Lagrangian formulation
7.1 Finite element discretization

In following we consider a FE discretization of a generic one–dimensional domain \([0, L]\):

\[
[0, L] = \bigcup_{e=1}^{N_e} I^h_e; \quad (I^h_i \cap I^h_j = \emptyset; \ \forall \ i, j \in \{1 \cdots N_e\}) \tag{7.1}
\]

where \(I^h_e \subset [0, L]\) denotes a typical element with length \(h > 0\), and \(N_e\) is the total number of elements. The space of admissible variations \(T\mathcal{C}_t\) is approximated by a finite dimensional subspace \(V^h \subset T\mathcal{C}_t\).

As usual, the calculations are performed on an element basis [280]. Accordingly, let \(\hat{\eta}^h\) be the restriction to a typical element \(I^h_e\) of the incremental displacement field/rotation field (using the spatial updating rule for rotations) \(\hat{\eta}^h = (\Delta \hat{\varphi}^h, \Delta \hat{\theta}^h) \in V^h\) superposed onto the configuration \((\hat{\varphi}^0, \Lambda_e) \in \mathcal{C}_t\) (at \(t = t_s\)).

The conventional Lagrangian interpolation [29] is used for describing the initially curved/twisted reference rod configuration \(\hat{\varphi}^0(e)\), the current rod position vector \(\hat{\varphi}_e\), the displacement vector, \(\hat{u}_e\) and the linearized increments \(\Delta \hat{\varphi}_e\) and \(\Delta \hat{\theta}_e\) of any rod element\(^2\) i.e.

\[
s \in [-1, 1] \mapsto \begin{cases}
\hat{\varphi}_0(e)(s) = \sum_{I=1}^{N_d} N_I(s) \hat{\varphi}_0 I(e) \\
\hat{\varphi}_e(s) = \sum_{I=1}^{N_d} N_I(s) \hat{\varphi}_I(e) \\
\Delta \hat{\theta}_e(s) = \sum_{I=1}^{N_d} N_I(s) \Delta \hat{\theta}_I(e) \\
\Delta \hat{\varphi}_e(s) = \sum_{I=1}^{N_d} N_I(s) \delta \hat{\varphi}_I(e);
\end{cases} \tag{7.2}
\]

where \(N_d\) is the number of nodes on a given element and \(N_I(s) I = 1 \cdots N_d\) are the local (elemental) shape functions. Note that in Eq. (7.2) the symbol \(\Delta\) denoting the linearized increment can be replaced by \(\delta\) denoting the admissible variation. Therefore, the value at \(s \in [-1, 1]\) of any vectorial quantity, denoted generically by \(\hat{H}(s)^{(e)}\), is obtained from the values at the nodes as

\[
\hat{H}(e)(s) = \begin{bmatrix}
N_{11} & \cdots & 0 \\
0 & \cdots & N_{16}
\end{bmatrix}
\begin{bmatrix}
N_{11} & \cdots & 0 \\
0 & \cdots & N_{16}
\end{bmatrix}
\begin{bmatrix}
\hat{H}_1 \\
\vdots \\
\hat{H}_{N_d}
\end{bmatrix}
\]

\[
= [N_1 \cdots |N_I| \cdots |N_{N_d}|] \hat{\hat{H}}^{(e)} = [N] \hat{\hat{H}}^{(e)} \tag{7.3}
\]

where \(\hat{H}(e)_I\) is the value of the vectorial quantity \(\hat{H}(e)\) at the node \(I\); \([N(s)]_I = \text{Diag}[N(s)_I]\), \((i = 1, \ldots, 6)\) is the diagonal matrix with the values of the shape function corresponding to the node \(I\) evaluated at \(s\). With this notation in mind, for example, the value of the admissible variation in the third degree of freedom of displacement at \(s\) in the element

\(^2\)The superscript \((e)\) is used in reference to the \(e\)th element in the mesh.
(e) is obtained as \(\delta \varphi_{e3}(s) = [N]_{3*} \cdot \delta \hat{H}_e \), with \(\delta \hat{H}_e = [\delta \hat{\varphi}_1^T \cdots \delta \hat{\vartheta}_1, \cdots, \delta \hat{\varphi}_{N_d} \cdots \delta \hat{\vartheta}_{N_d}] \) and \([N]_{3*}\) the third row of the matrix \(N \). The same holds for the components of \(\delta \hat{\vartheta}_e \), \(\delta \hat{\Theta}_e \), etc. Recovering the expressions given in Eqs. (7.2).

The updating procedure for the rotations can be carried out in either material or spatial representations [192] due to the fact that both representations are equivalents and the denominations material or spatial are employed only to indicate the way in which rotations are handled. A comparison between both formulations can be found in [70].

REMARK 7.1. A possibility for calculating the interpolated values of the skew–symmetric tensor \(\hat{\Theta}(s)_e \) (or \(\hat{\Theta}(s)_I \)) using Eq. (7.3) and then applying the operator \(\Pi[\cdot] \) (see §A.2.1 of Appendix A). Other possibility is the direct interpolation using the matrix \(N \) of the values of the skew–symmetric tensors \(\hat{\Theta}(s)_I \) at the nodes, taking advantages of the linearity of \(so(3) \).

By contrast with the result of the preceding Remark, if the rotation tensor \(\Lambda(S) \) has to be determined we have

\[
\Lambda(s)_e = \exp[\hat{\theta}(s)_e] \neq [N]_{4-6*} \exp[\hat{\theta}_I(e)] = \Lambda
\]

where \([N]_{4-6*}\) is the matrix corresponding to the rows 4 to 6 of the matrix \(N \). Therefore, the rotation tensor obtained from the interpolated values of the rotation tensor is a rotation tensor; however, in general we have that \(\Lambda \Lambda^T \neq I \) and in this way the interpolation by the shape forms of the nodal values of the rotation tensor do not produce a rotation tensor due to the fact that \(SO(3) \) is not a linear space.

7.1.1 Spatial derivatives

The derivative with respect to the parameter \(S \in [0, L] \) of the quantities defined by in Eqs. (7.2) can be calculated starting from Eq. (7.3) as

\[
\hat{H}(s)_e, S = [N_1, S] \cdots [N_{I,S}] \cdots [N_{N_d, S}] \hat{H}(e) = [N, S] \hat{H}(e)
\]

where it has been used the generic notation \(\hat{H}(s)_e \) and \([N_{I,S}] = \text{Diag}[N(S)_{I,S}], (i = 1, \ldots, 6) \) corresponds to the diagonal matrix constructed from the derivatives with respect to \(S \) of the shape functions \(N_I \) corresponding to the node \(I \) of the element. As usual in FE implementations shape functions normalized with respect to a curvilinear coordinate\(^3\) \(s \in [-1, 1] \) are used; and in this case Eq. (7.5) is rewritten as

\[
\hat{H}(s)_e, S = J_s^{-1}[N_s] \hat{H}(e)
\]

with \(J_s = \sqrt{\varphi_0,S \cdot \varphi_0,S} \) being the Jacobian of the transformation between \(S \) and \(s \).

\(^3\) Usually called it natural coordinates.
7.2 Out of balance force vector

Following standard procedures for nonlinear finite element analysis [237], the element contribution to the residual force vector is obtained from the discrete approximation to the weak form of momentum balance.

7.2.1 Internal force vector

The finite element approximation of the internal component of the virtual work principle, given in Eq. (3.147), \(G^h_{\text{int}}(\hat{\varphi}, \Lambda, \hat{\eta}^h)_{(e)} \), with \(\hat{\eta}^h = [\hat{\eta}_1^h \cdots \hat{\eta}_N^h]^T = [(\delta \hat{\varphi}_1, \delta \hat{\theta}_1) \cdots (\delta \hat{\varphi}_{N_d}, \delta \hat{\theta}_{N_d})]^T \in V^h \) the vector containing nodal values of the admissible variation of the configuration variables \((\hat{\varphi}, \Lambda)_{(e)}\) is

\[
G^h_{\text{int}}(\hat{\varphi}, \Lambda, \hat{\eta}^h)_{(e)} = \int_0^{L_e} \left(\left[\delta \left[\begin{array}{c} \nabla \hat{\varphi}_1 \\ \vdots \\ \nabla \hat{\varphi}_N \\ \hat{\theta}_1 \\ \vdots \\ \hat{\theta}_{N_d} \end{array} \right] \right] \cdot \left[\frac{\hat{n}}{\hat{m}} \right] \right) dS = \int_0^{L_e} \left(\left[\begin{array}{c} \nabla h \end{array} \right] \left[B \right] \left[\hat{\eta}^h \right] \right) dS \]

\[
= \int_0^{L_e} \left([\hat{\eta}_1^h \cdots \hat{\eta}_N^h \hat{\eta}_{N_d}] [N_1 \cdots N_I \cdots N_{N_d}]^T \left[B \right]^T \right) \left[\frac{\hat{n}}{\hat{m}} \right] dS \quad (7.7)
\]

where it has been considered Eq. (5.12c) and the following expression is obtained for the generic term \(N_I^T B^T \):

\[
N_I^T B^T = \begin{bmatrix} N_{I,s} & 0 \\ -N_I \bar{\varphi}_{s} & N_{I,s} \end{bmatrix} \quad (7.8)
\]

with \(\bar{\varphi}_{s} = J_s^{-1} \Pi [N_{(1-3)\ast s}] \hat{\varphi}_{(e)} \) according to Eq. (7.5). In this way , it is possible to rewrite Eq. (7.7) as

\[
G^h_{\text{int}}(\hat{\varphi}, \Lambda, \hat{\eta}^h)_{(e)} = \sum_{I=1}^{N_d} \left[\delta \hat{\varphi}_I \right] \cdot \int_0^{L(e)} \left(J_s^{-1} \begin{bmatrix} N_{I,s} \hat{\eta}_s \\ -N_I \bar{\varphi}_{s} N_{I,s} \end{bmatrix} \right) dS = \int_0^{L(e)} \left(J_s^{-1} \begin{bmatrix} N_{I,s} \hat{\eta}_s \\ -N_I \bar{\varphi}_{s} N_{I,s} \end{bmatrix} \right) dS \quad (7.9)
\]

Here, \(\hat{\eta}_{\text{int}(e)I} \) denotes the internal force vector related to the node \(I \) in a typical element \(I^h_e \).

The integral appearing in this equation can be calculated using a standard numerical procedure selecting a set of \(N_{ip} \) integration points on the element and using the corresponding weighting factors \(W_J (J = 1, \ldots, N_{ip}) \) (e.g. Gauss, Lobatto etc. [132]). Therefore, the
Finally, considering the results of Eqs. (7.10), (7.11) and (7.12), the term \(\hat{q}_{\text{int}(e)I}^h \) is obtained as

\[
\hat{q}_{\text{int}(e)I}^h = \left[\int_0^{L_e} \int_0^{N_{I,s}} (J_s^{-1}N_{I,s}\hat{n})dS \right] = \sum_{j=1}^{N_{ip}} \left[J_s^{-1}N_{I,s}\hat{n} \right] J_s W_j (7.10)
\]

where \((\bullet)|_j \) denotes the evaluation of the given quantity at the integration point number \(J \). The evaluation of the spatial form of the cross sectional forces and moments, \(\hat{n} \) and \(\hat{m} \), at the integration points is carried out by means of and appropriated cross sectional analysis as it will be explained in the next sections.

7.2.2 External force vector

In the same way as for the internal force vector, the finite element approximation of the external component of the virtual work principle, given in Eq. (3.142), \(G_{\text{ext}(e)}^h(\hat{\varphi}, \Lambda, \hat{\eta}^h)_{(e)} = G_{\text{ext}(e)}^h \) is

\[
G_{\text{ext}(e)}^h = \hat{\eta}^h \cdot \int_0^{L_e} \left([N]^T [\hat{M}] \right) dS = \sum_{l=1}^{N_d} \left[\Delta \hat{\varphi}_l \right] \cdot \int_0^{L_e} \sum_{j=1}^{N_{ip}} \left[N_I \hat{M}_g + c_M \hat{M}_d + \Lambda \hat{M}_p \right] dS
\]

\[
= \sum_{l=1}^{N_d} \left[\Delta \hat{\varphi}_l \right] \cdot \sum_{j=1}^{N_{ip}} \left[N_I \hat{M}_g + c_M \hat{M}_d + \Lambda \hat{M}_p \right] J_s W_j = \hat{\eta}^h T \sum_{l=1}^{N_d} \hat{q}_{\text{ext}(e)I}^h (7.11)
\]

where \(\hat{q}_{\text{ext}(e)I}^h \) is the external load vector at the node \(I \).

7.2.3 Inertial force vector

The internal nodal forces in the dynamic case correspond to those of the static case but adding the inertial contribution, which can be calculated starting from Eq. (3.144), \(G_{\text{int}(e)}^h(\hat{\varphi}, \Lambda, \hat{\eta}^h)_{(e)} \) as

\[
G_{\text{int}(e)}^h(\hat{\varphi}, \Lambda, \hat{\eta}^h)_{(e)} = \hat{\eta}^h \cdot \int_0^{L_e} \left([N]^T \left[\dot{I}_{\rho_0} + \ddot{\varphi} \right] \right) dS
\]

\[
= \sum_{l=1}^{N_d} \left[\Delta \hat{\varphi}_l \right] \cdot \sum_{j=1}^{N_{ip}} \left[N_I \dot{I}_{\rho_0} + \ddot{\varphi} \right] J_s W_j = \hat{\eta}^h I \sum_{l=1}^{N_d} \hat{q}_{\text{int}(e)I}^h (7.12)
\]

where \(\hat{q}_{\text{int}(e)I}^h \) is the inertial force load vector at the node \(I \).

Finally, considering the results of Eqs. (7.10), (7.11) and (7.12), the unbalanced force term
is written as

\[G^h_{(e)}(\hat{\varphi}, \Lambda, \hat{\eta}^h) = \hat{\eta}^h \cdot \hat{q}^h = \hat{\eta}^hT \sum_{I=1}^{N_d} (\hat{q}^h_{\text{int}(e)I} + \hat{q}^h_{\text{line}(e)I} - \hat{q}^h_{\text{ext}(e)I}) \] (7.13)

7.3 Tangential stiffness

The FE discretization of the tangent stiffness matrix is obtained from the linearized form of the virtual work principle as given in Section 6.2.1 [138, 180, 167, 278], or equivalently by means of the linearization of the nodal unbalanced load vector as

\[\Delta \hat{q}^h_{(e)I} = [\Delta \hat{\eta}^h_{(e)}] IJ \cdot [\Delta \hat{\varphi}, \Delta \hat{\theta}] e J. \] (7.14)

Here \([K_{IJ}^h(e)]\) is the tangential stiffness matrix, relating the nodes \(I\) and \(J\) at a given configuration, in the element \(e\). In the same manner as it was done for the unbalance load vector, the static and dynamic cases will be treated separately.

7.3.1 Internal contribution to the tangential stiffness

Considering \(\hat{\eta}^h(S) = N \hat{\eta}^h_{(e)}\) and \(\hat{p}^h(S) = N \hat{p}^h_{(e)}\) (see Eq. (7.3)), it is possible to consider the FE approximation of the linearized form of the internal contribution to the virtual work principle, Eq. (5.68), relative to the element \(I^h_e\) at a given configuration, which can be expressed as

\[
DG^h_{\text{int}(e)} \cdot \hat{p}^h = \hat{\eta}^hT \left[\int_0^{L_e} \left(N^T B^T \tilde{C}^{sv} BN \right) dS \right] \hat{p}^h \\
+ \hat{\eta}^hT \left[\int_0^{L_e} \left(N^T (F + B^T N') N \right) dS \right] \hat{p}^h + \hat{\eta}^hT \left[\int_0^{L_e} \left(N^T (B^T \tilde{Y}^{sv} Y) N \right) dS \right] \hat{p}^h = \hat{\eta}^hT (K_{M(e)} + K_{G(e)} + K_{V(e)}) \hat{p}^h
\] (7.15)

where \([K_{M(e)}]\), \([K_{G(e)}]\) and \([K_{V(e)}]\) are the material (constitutive), geometric and viscous components of the element stiffness matrix at the current configuration. Then we have that the material stiffness matrix can be written as

\[
[K_{M(e)}] = \sum_{I,J}^{N_d} \int_{0}^{L_e} N_I^T B^T \tilde{C}^{sv} BN_J dS = \sum_{I,J}^{N_d} [K_{M(e)}]_{IJ}
\] (7.16)
where \([K_{M^{(e)}}]_{IJ} \) denote the sub-matrix coupling the nodes \(I \) and \(J \) of the finite element with explicit expression, after the numerical integration procedure, given by

\[
[K_{M^{(e)}}]_{IJ} = \sum_{K} J_s^{-1} \begin{bmatrix}
N_{ls} \sum_{J_s} C_{nn}^{sv} N_{ls} C_{nn}^{sv} & N_{ls} \left(C_{nn}^{sv} N_{ls} + C_{mn}^{sv} N_{ls} \right) \\
-N_{ls} N_{ls} C_{nn}^{sv} & -N_{ls} \left(C_{nn}^{sv} N_{ls} + C_{mn}^{sv} N_{ls} \right)
\end{bmatrix}_K W_K
\]

(7.17)

which is always symmetric.

In an analogous manner for the term \([K_{G^{(e)}}]_{IJ} \), taking into account Eq. (7.8) one has

\[
[K_{G^{(e)}}]_{IJ} = \sum_{K} J_s^{-1} \begin{bmatrix}
0 & 0 \\
N_{ls} \hat{n}_{N_{ls}} & 0
\end{bmatrix}_K W_K
\]

(7.18)

which is not necessarily symmetric and it has been used the identity of Eq. (A.21b) of §A.

Analogously, the FE discretization of the viscous component off the tangential stiffness is computed as

\[
[K_{V^{(e)}}] = \sum_{I,J} \int_{[0,l]} N_{J_s}^{T}(B^{T}T_{ss}N_{J_s})N_{J_s}dS = \sum_{I,J} [K_{V^{(e)}}]_{IJ}
\]

(7.19)

where the sub-matrix \(I-J \) of the viscous component of the tangential stiffness matrix is given by

\[
[K_{V^{(e)}}]_{IJ} = J_s^{-1} \sum_{K} \begin{bmatrix}
N_{ls} \sum_{J_s} (\gamma_{tl} I - \tilde{v}) & N_{ls} \left(\gamma_{tl} \hat{\varphi}_{ls} + \varphi_{ls} \gamma_{tl} \text{T} - \tilde{v} \varphi_{ls} \right) + \gamma_{tl} \text{T} N_{J_s} + \gamma_{tl} \text{T} N_{J_s} \\
-N_{ls} \sum_{J_s} \gamma_{tl} \text{T} N_{J_s} & -N_{ls} \left(\gamma_{tl} \hat{\varphi}_{ls} + \varphi_{ls} \gamma_{tl} \text{T} - \tilde{v} \varphi_{ls} \right) + \gamma_{tl} \text{T} N_{J_s} + \gamma_{tl} \text{T} N_{J_s}
\end{bmatrix}_K W_K.
\]

(7.20)

7.3.2 Inertial contribution to the tangential stiffness

The finite element discretization of the inertial contribution to the elemental tangent stiffness \(K_{\text{ine}^{(e)}} \), Eq. (6.48), is obtained as

\[
K_{\text{ine}^{(e)}} = \dot{\eta}^{sh} T \left[\int_{0}^{L^{(e)}} N^{T} M_{\varphi \theta} N dS \right] \dot{\varphi}^{sh} = \dot{\eta}^{sh} T [K_{\text{ine}^{(e)}}]^{sh}
\]

(7.21)
7.3. Tangential stiffness

where the elemental inertial stiffness matrix \([K_{\text{ine}(e)}]\) is calculated as

\[
[K_{\text{ine}(e)}] = \sum_{IJ} \int_0^{L_{(e)}} N_I^T M_{\varphi\theta} N_J \, dS = \sum_{IJ} [K_{\text{ine}(e)}]_{IJ} \tag{7.22}
\]

where \([K_{\text{ine}(e)}]_{IJ}\), coupling the degree of freedom of node \(I\) and of node \(J\), is the sum of the operators \([[[K_M]_e^h + [K_G]_e^h + [K_L]_e^h]]_{IJ}\) of Eq. (7.15). The explicit expression for \([K_{\text{ine}(e)}]_{IJ}\) Eq. (6.49) is the following:

\[
[K_{\text{ine}(e)}]_{IJ} = \int_0^{L_{(e)}} N_I^T \begin{bmatrix} \Xi_x & 0 \\ 0 & \Xi_\theta \end{bmatrix} N_J \, dS \in \mathbb{R}^{6 \times 6}
\]

\[
= \sum_k \frac{1}{N_{ij}} \begin{bmatrix} \Xi_x & 0 \\ 0 & \Xi_\theta \end{bmatrix} \begin{bmatrix} -\Lambda \Pi [I_{po} \dot{A}_n + \tilde{V}_n \times I_{po} \hat{V}_n] \\ + \frac{1}{(\Lambda + \beta)} \Lambda (I_{po} - \Delta t \gamma \Pi [I_{po} \tilde{V}_n]) \right) \Lambda^s T N_{ij} N_J \end{bmatrix} J_s W_K \tag{7.23a}
\]

where \(\Lambda^s T\) corresponds to the last converged configuration and the remaining \(\Lambda\)’s are the iterative ones as described in §6.2. Both \(\Xi_x\) and \(\Xi_\theta\) are elements of \(\mathbb{R}^{3 \times 3}\). As noted in Section 6.2.2.b, the tangent inertia matrix is nonsymmetric and configuration dependent. This property concerns only the rotational degrees of freedom. The sub-matrix \(\Xi_x\) corresponds to the translational degrees of freedom and is constant, as usually found in the expression for the consistent matrix when the deformation map takes values in a linear space.

7.3.3 External contribution to the tangential stiffness

By the linearization of the external load vector, (see Eq. (5.78)), one obtains the discrete form of the tangential stiffness matrix due to the applied loadings.

\[
[K_{P(e)}] = \tilde{\eta}^{shT} \int_0^{L_e} N^T \begin{bmatrix} \tilde{N}_d \otimes \tilde{\phi}_N \left[\frac{d}{dS} I \right] + \tilde{N}_p^p \\ \tilde{M}_d \otimes \tilde{\phi}_M \left[\frac{d}{dS} I \right] + \tilde{\mathcal{M}}_p \end{bmatrix} N \, dS \tilde{p}^{sh} = \tilde{\eta}^{shT} (\tilde{[K_{P(e)}]} + [K_{P1(e)}]) \tilde{p}^{sh} \tag{7.24}
\]

where

\[
[K_{P1(e)}] = \sum_{IJ} \int_0^{L_{(e)}} N_I^T \begin{bmatrix} \tilde{N}_d \otimes \tilde{\phi}_N \left[\frac{d}{dS} I \right] + \tilde{N}_p^p \\ \tilde{M}_d \otimes \tilde{\phi}_M \left[\frac{d}{dS} I \right] \end{bmatrix} N_J \, dS = \sum_{IJ} [K_{P1(e)}]_{IJ}
\]

\[
[K_{P2(e)}] = \sum_{IJ} \int_0^{L_{(e)}} N_I^T \begin{bmatrix} \tilde{N}_p^p \\ \tilde{\mathcal{M}}_p \end{bmatrix} N_J \, dS = \sum_{IJ} [K_{P2(e)}]_{IJ}.
\]
The two components of the tangent stiffness matrix due to external loading coupling the nodes \(I \) and \(J \) are explicitly given by

\[
[K_{P1(e)}]_{IJ} = \sum_{k=1}^{N_{ip}} \begin{bmatrix} N_I N_J \mathbf{N}_d \otimes \ddot{\mathbf{C}}_N \\ N_I N_J \mathbf{M}_d \otimes \ddot{\mathbf{C}}_M \end{bmatrix} W_K
\]

the second part is known as the pressure stiffness matrix and is given by

\[
[K_{P2(e)}]_{IJ} = \sum_{k=1}^{N_{ip}} \begin{bmatrix} N_I N_J \mathbf{N}_p \\ N_I N_J \mathbf{M}_p \end{bmatrix} J_s W_K.
\]

REMARK 7.2. According to Li [180] both \([K_{P1}]_e\) and \([K_{P2}]_e\) can be neglected for small displacements/rotations but not for large displacements/rotations, especially when an exact bifurcation analysis is needed [140, 71, 147].

Finally, the tangent stiffness matrix of Eq. (7.14), relating the nodes \(I \) and \(J \), is given by

\[
[K_e]_{IJ} = \left[[K_{M(e)}] + [K_{G(e)}] + [K_{V(e)}] + [K_{ine(e)}] + [K_{P1(e)}] + [K_{P2(e)}] \right]_{IJ}.
\]

7.4 Material updating of the rotational field

In the case of the material updating rule of the rotational field we have that the space of admissible variations \(TC_t \) is approximated by a finite dimensional subspace \(V^{mh} \subset TC_t \). Accordingly, an element in \(V^{mh} \) is given by \(\hat{\eta}_e^{mh} \equiv (\Delta \hat{\varphi}^h, \Delta \hat{\Theta}^h) \) superposed onto the configuration \((\hat{\varphi}_t, \Lambda_t) \in \hat{C}_t \).

The conventional Lagrangian interpolation [29] is used for describing the incremental rotation \(\hat{\Theta}_e(e) \) and its linearized (iterative) increment \(\Delta \hat{\Theta}_e(e) \) of any rod element \(i.e. \)

\[
\hat{\Theta}_e(s) = \sum_{I=1}^{N_\varphi} N_I(s) \hat{\Theta}_I(e) \quad \Delta \hat{\Theta}_e(s) = \sum_{I=1}^{N_\varphi} N_I(s) \Delta \hat{\Theta}_I(e).
\]

Note that in Eq. (7.27) the symbol \(\Delta \) denoting the linearized increment can be replaced by \(\delta \) denoting the admissible variation. Therefore, the value at \(s \in [-1, 1] \) of any (material) vectorial quantity, denoted generically by \(\hat{H}_e^{m(e)} \), is obtained from the values at nodes as

\[
\hat{H}(S)_e^{m} = \begin{bmatrix} |N_1| \cdots |N_I| \cdots |N_{Nd}| \end{bmatrix} \hat{H}_e^{m} = [N] \hat{H}_e^{m}
\]

where \(\hat{H}_e^{m} = [\hat{H}_{1e}^{m} \cdots \hat{H}_{Nd}^{m}] \) and \(\hat{H}_{1e}^{m} \) is the value of the material form of the vectorial quantity \(\hat{H}_e^{m} \) at the node \(I \). For example, the value of the admissible variation in the third degree of freedom of rotation at \(s \) in the element \((e) \) is obtained as \(\delta \hat{H}_{e3}(S) = (\delta N_{e6}) \cdot \delta \hat{H}_e^{m} \), with \(\delta \hat{H}_e^{m} = [\delta \hat{\varphi}_1^T \cdots \delta \hat{\Theta}_1, \ldots, \delta \hat{\varphi}_{Nd} \cdots \delta \hat{\Theta}_{Nd}]_e \) and \(N_{e6} \), the sixth row of the matrix \(N \).

The derivative with respect to the parameter \(S \in [0, L] \) of the quantities defined in Eq.
(7.28) can be calculated in analogous manner as in Eq. (7.5) i.e.

\[\dot{\mathbf{H}}(s)_{(e),S}^m = \begin{bmatrix} N_{1,S} & \cdots & N_{I,S} & \cdots & N_{N_d,S} \end{bmatrix} \dot{\mathbf{H}}_e^m = [N_{s,S}] \dot{\mathbf{H}}_e^m \] \tag{7.29}

where it has been used the generic notation \(\dot{\mathbf{H}}(S)_e^m \) and Eq. (7.5) can be rewritten as

\[\dot{\mathbf{H}}(S)_{(e),S}^m = J_s^{-1} [N_{s,S}] \dot{\mathbf{H}}_e^m \] \tag{7.30}

with \(J_s = \sqrt{\varphi_0 S \cdot \varphi_0 S} \) being the Jacobian of the transformation between \(S \) and \(s \) (see §7.1.1).

7.5 Out of balance force vector

Following standard procedures for nonlinear finite element analysis [237], the element contribution to the residual force vector is obtained from the discrete approximation to the weak form of momentum balance.

7.5.1 Internal force vector

The FE approximation of the internal component of the virtual work principle, given in Eq. (3.147), \(G^h_{\text{int}}(\hat{\varphi}, \Lambda, \hat{\eta}^h)_{(e)} \), with \(\hat{\eta}^h = [\hat{\eta}_1^m \cdots \hat{\eta}_I^m \cdots \hat{\eta}_N^m]^T \) \(= [(\delta \hat{\varphi}_1, \delta \Theta_1) \cdots (\delta \hat{\varphi}_N, \delta \Theta_N)]^T \) \(\in V^m \) the vector containing nodal values of the admissible variation of the configuration variables \((\hat{\varphi}, \Lambda)_{(e)} \) is

\[G^h_{\text{int}}(\hat{\varphi}, \Lambda, \hat{\eta}^h)_{(e)} = \int_0^{L_e} (\hat{\eta}_1^m \cdots \hat{\eta}_I^m \cdots \hat{\eta}_N^m) \cdot \left[[N_1 \cdots N_I \cdots N_N]^T \mathbf{B}^T \left[\begin{array}{c} \hat{n} \\ \hat{m} \end{array} \right] \right] dS \] \tag{7.31}

where it has been considered Eq. (5.12c) and the following expression is obtained for the generic term \(\mathbf{N}_j^T \mathbf{B}^T \):

\[\mathbf{N}_j^T \mathbf{B}^T = \begin{bmatrix} N_{1,s} & 0 \\ -N_I \Lambda^T \hat{\varphi}_S & [N_{1,s} \mathbf{I} - N_I \hat{\Omega}_n] \Lambda^T \end{bmatrix} \] \tag{7.32}

with \(\hat{\varphi}_S = J_s^{-1} \mathbf{B} \left[[N_{1,3} \cdots s] \hat{\varphi}_{(e)} \right] \) according to Eq. (7.5). In this way, it is possible to rewrite Eq. (7.31) as

\[G^h_{\text{int}}(\hat{\varphi}, \Lambda, \hat{\eta}^h)_{(e)} = \int_0^{L_e} (J_s^{-1}) \begin{bmatrix} N_{1,s} & 0 \\ -N_I \Lambda^T \hat{\varphi}_S & [N_{1,s} \mathbf{I} - N_I \hat{\Omega}_n] \Lambda^T \end{bmatrix} \left[\begin{array}{c} \hat{n} \\ \hat{m} \end{array} \right] dS \]

\[= \sum_{l=1}^{N_d} \left[\delta \hat{\varphi}_l \right] \cdot \int_0^{L_e} \begin{bmatrix} N_{1,s} \hat{n} \\ -N_I \hat{\varphi}_S \hat{n} + [N_{1,s} \mathbf{I} - N_I \hat{\Omega}_n] \hat{m} \end{bmatrix} \left[\begin{array}{c} \hat{n} \\ \hat{m} \end{array} \right] dS = \sum_{l=1}^{N_d} \left[\delta \hat{\varphi}_l \right] \cdot \hat{q}_{\text{int}(e)}^h. \] \tag{7.33}
Here, $\dot{q}_{\text{int}(e)I}^h$ denotes the internal force vector related to the node I in a typical element I_e^h. Numerically, the term $\dot{q}_{\text{int}(e)I}^h$ is obtained as

$$\dot{q}_{\text{int}(e)I}^h = \sum_{J=1}^{N_{ip}} \left[-N_J \dot{\Phi}_s \dot{n}^m + [N_{I,s} - N_J \tilde{\Omega}_n] \dot{n}^m \right] W_J. \quad (7.34)$$

As in Section 7.5.1, the evaluation of the spatial form of the cross sectional forces and moments, \dot{n} and \dot{m} is carried out by means of and appropriated cross sectional analysis.

7.5.2 External force vector

The FE approximation of the external component of the virtual work principle, given in Eq. (3.142), $G_{\text{ext}}^h(\dot{\varphi}, A, \dot{\eta}_{\text{ext}}^m)_e = G_{\text{ext}}^m$ is

$$G_{\text{ext}}^m = \dot{\eta}_{\text{ext}}^m \cdot \int_{[0,L_e]} ([\mathbf{N}]^T \left[\dot{\mathbf{M}} \right]_{(e)})dS = \sum_{l=1}^{N_d} \Delta \dot{\varphi}_l \left[\int_{[0,L_e]} N_I \left[\dot{\mathbf{M}}_g + c_M \dot{\mathbf{M}}_d + \dot{\mathbf{M}}_p \right] \right] J_s W_J = \sum_{l=1}^{N_d} \dot{\eta}_{\text{ext}(e)I} \cdot \dot{q}_{\text{ext}(e)I}^h \quad (7.35a)$$

where $\dot{q}_{\text{ext}(e)I}^h$ is the external load vector at the node I.

7.5.3 Inertial force vector

The FE discretization of the inertial contribution to the out of balance force vector can be calculated starting from Eq. (3.144), $G_{\text{in}}^h(\dot{\varphi}, A, \dot{\eta}_{\text{in}}^m)_e$ as

$$G_{\text{in}}^h(\dot{\varphi}, A, \dot{\eta}_{\text{in}}^m)_e = \dot{\eta}_{\text{in}}^m \cdot \int_{[0,L_e]} ([\mathbf{N}]^T \left[A_{\rho_0} \dot{\varphi} \right]_{(e)} dS = \sum_{l=1}^{N_d} \left[\int_{[0,L_e]} N_I [A_{\rho_0} \dot{\varphi}] \right] J_s W_J = \sum_{l=1}^{N_d} \dot{\eta}_{\text{in}(e)I} \cdot \dot{q}_{\text{in}(e)I}^m \quad (7.36)$$

where $\dot{q}_{\text{in}(e)I}^m$ is the inertial force load vector at the node I. Finally, considering the results of Eqs. (7.33), (7.35a) and (7.36), the unbalanced force term is written as

$$G_{(e)}^h(\dot{\varphi}, A, \dot{\eta}_{(e)}^m) = \dot{\eta}_{(e)}^m \cdot \dot{q}_{(e)}^m = \sum_{l=1}^{N_d} \dot{\eta}_{(e)I} \cdot (\dot{q}_{\text{in}(e)I}^m + \dot{q}_{\text{ext}(e)I}^m - \dot{q}_{\text{ext}(e)I}^m) \quad (7.37)$$
7.6 Tangential stiffness

In this section the FE discretization of the tangent stiffness deduced considering the material updating rule for rotations is presented, according with the results of Section 6.2.2.

7.6.1 Internal contribution to the tangential stiffness

Considering $\bar{\eta}^{\text{int}}(S) = N\hat{\eta}^{\text{m(e)}}$ and $\bar{p}^{\text{int}}(S) = N\hat{p}^{\text{m(e)}}$, one obtains that the FE approximation of the linearized form of the internal contribution to the virtual work principle, Eq. (5.85) can be expressed as

$$
DG_{\text{int(e)}}' \cdot \bar{p}^{\text{int}} = \bar{\eta}^{\text{intT}} \left(\int_{0}^{L_e} (N^T \bar{B}^T C^{sv} \bar{B} N) dS \right) + \left[\int_{0}^{L_e} (N^T (\bar{\mathcal{F}} + \bar{B}^T \mathcal{N}) N) dS \right] \bar{p}^{\text{int}}
$$

$$
+ \left[\int_{0}^{L_e} (N^T (\bar{B}^T \bar{I}^{sv} \bar{V}) N) dS \right] \bar{p}^{\text{int}} = \bar{\eta}^{\text{intT}} (K_{M(e)}^{m} + K_{G(e)}^{m} + K_{V(e)}^{m}) \bar{p}^{\text{int}}
$$

(7.38)

where $[K_{M(e)}^{m}]$, $[K_{G(e)}^{m}]$ and $[K_{V(e)}^{m}]$ are the material (constitutive), geometric and viscous components of the element stiffness matrix at the current configuration consistent with a material updating of the rotational field. Then, we have

$$
[K_{M(e)}^{m}] = \sum_{I,J}^{N_d} \int_{0}^{L_e} N_I^T \bar{B}^T C^{sv} \bar{B} N_J dS = \sum_{I,J}^{N_d} [K_{M(e)}^{m}]_{IJ}
$$

(7.39)

with $[K_{M(e)}^{m}]_{IJ}$ given by

$$
[K_{M(e)}^{m}]_{IJ} = \sum_{K}^{N_p} J_s^{-1} \begin{bmatrix} N_I^s & N_J^s & C^{sv}_{nn} \\
N_I^s & N_J^s & \tilde{\mathcal{F}}^{s} \\
-N_I^s \Lambda^{s} \tilde{\mathcal{F}}^{s} & C^{sv}_{nn} N_J^s & N_J^s \\
-N_I^s \Lambda^{s} \tilde{\mathcal{F}}^{s} & C^{sv}_{nn} N_J^s & N_J^s \\
-N_I^s \Lambda^{s} \tilde{\mathcal{F}}^{s} & C^{sv}_{nn} N_J^s & N_J^s \\
\end{bmatrix} \begin{bmatrix} N_{J,s} [C^{sv}_{nn} \bar{\mathcal{F}}^{s} + \Lambda N_J + C^{sv}_{nnn} \Lambda N_J + C^{sv}_{nnn} \Lambda N_J] \\
N_{J,s} [C^{sv}_{nn} \bar{\mathcal{F}}^{s} + \Lambda N_J + C^{sv}_{nnn} \Lambda N_J] \\
N_{J,s} [C^{sv}_{nn} \bar{\mathcal{F}}^{s} + \Lambda N_J + C^{sv}_{nnn} \Lambda N_J] \\
\end{bmatrix}
$$

(7.40)
which is always symmetric. In an analogous manner for the term \([K_{G(e)}]_{IJ} \), taking into account Eq. (7.8) one has

\[
[K_{G(e)}]_{IJ} = \sum_{K} \left(N_I \bar{\Phi} N_J + N_I^T \bar{B}^T \mathcal{N} N_J \right) \Bigg|_K J_s W_K
\]

\[
= \sum_{K} \left([K_{G1(e)}]_{IJ} + [K_{G2(e)}]_{IJ} \right) \Bigg|_K W_K \tag{7.41}
\]

where

\[
[K_{G1(e)}]_{IJ} = \begin{bmatrix} 0 & N_I \left([\Pi^T \bar{\Phi}, s] \tilde{m}^m + \tilde{m}^m_{s} \right) N_J + N_I^T \tilde{m}^m_{s} N_J^{s} + J_s \{ \tilde{m}^m \bar{\Omega}_n - \bar{\Omega}_n \tilde{m}^m \} N_J \\ N_I \tilde{m}^m_{s} N_J^{s} \end{bmatrix}
\]

\[
[K_{G2(e)}]_{IJ} = \begin{bmatrix} 0 & -N_J^{s} \bar{n} N_J \\ 0 & N_I \tilde{\varphi}_s \tilde{n}^m N_J - \{ N_I^{s} I - N_I J_s \bar{\Omega}_n \tilde{m}^m N_J \} \end{bmatrix}
\]

which, inserting Eqs. (7.43) and (7.42b) in (7.41) yields to

\[
[K_{G(e)}]_{IJ} = \sum_{K} \left(\begin{bmatrix} 0 & -N_J^{s} \bar{n} N_J \\ N_I \tilde{m}^m_{s} N_J^{s} \end{bmatrix} N_I \left([\Pi^T \bar{\Phi}, s] \tilde{m}^m + \tilde{m}^m_{s} \right) N_J + N_I^T \tilde{m}^m_{s} N_J^{s} + J_s \{ \tilde{m}^m \bar{\Omega}_n - \bar{\Omega}_n \tilde{m}^m \} N_J \\ N_I \tilde{m}^m_{s} N_J^{s} \end{bmatrix} \right) \Bigg|_K W_K \tag{7.43}
\]

which is not necessarily symmetric and it has been used the identity of Eq. (A.21b) of §A.

The FE discretization of the viscous component off the tangential stiffness is computed as

\[
[K_{V(e)}] = \sum_{IJ} \int_{[0,L]} N_I^T (\bar{B}^T \bar{\Upsilon}^{\omega} \bar{\Psi}) N_J dS = \sum_{IJ} [K_{V(e)}]_{IJ} \tag{7.44}
\]
7.6. Tangential stiffness

Considering the results of Eqs. (4.55), (7.32) and (7.45) one obtains that the sub-matrix \(I - J \) of the viscous component of the tangential stiffness matrix is given by

\[
[K_{V(e)}]_{IJ} = J_s \sum_K^{N_{ip}} \left[\begin{array}{c|c} N_{I,s} \bar{T}_{nn}^{ss}(\gamma_{t\beta} - \tilde{v}_n)N_{J,s} \vspace{1em} & \begin{array}{c} N_{I,s} \left(\bar{T}_{mn}^{ss}(\tilde{t}_n) + \bar{\varphi}_S \bar{\Lambda} \bar{\mathcal{H}}_b^{m} \right)N_{J,s} + \bar{\Omega}_n + \bar{\Omega}_n \bar{\mathcal{H}}_b^{m} [N_J] \\
-N_{I,s} \bar{\Lambda}_T \bar{\varphi}_S \bar{T}_{nn}^{ss}(\gamma_{t\beta} - \tilde{v}_n)N_{J,s} + [N_{I,s}] - N_{I,s} \bar{\Omega}_n \bar{\Lambda}_T \bar{T}_{mn}^{ss}(\gamma_{t\beta} - \tilde{v}_n)N_{J,s} \end{array} \end{array} \right] W_K \quad (7.45)
\]

7.6.2 Inertial contribution of the tangential stiffness

The FE discretization of the inertial contribution to the elemental tangent stiffness \(K_{\text{ine}(e)}^m \), Eq. (6.51) is obtained as

\[
K_{\text{ine}(e)}^m = \hat{\eta}^{hmT} \left[\int_0^{L_e} N^T \dot{M}_{\varphi} \dot{\varphi} N dS \right] \hat{\eta}^{hmT} = \hat{\eta}^{hmT} [K_{\text{ine}(e)}^m] \hat{\eta}^{hmT} \quad (7.46)
\]

where the elemental inertial stiffness matrix \([K_{\text{ine}(e)}^m]\) is calculated as

\[
[K_{\text{ine}(e)}^m] = \sum_{I,J}^{N_d} \int_0^{L_e} N^T \dot{M}_{\varphi} \dot{\varphi} N dS = \sum_{I,J}^{N_d} [K_{\text{ine}(e)}^m]_{IJ} \quad (7.47)
\]

where the explicit expression for \([K_{\text{ine}(e)}^m]_{IJ}\) is the following:

\[
[K_{\text{ine}(e)}^m]_{IJ} = \int_0^{L_e} N^T \left[\begin{array}{ccc} \Xi_{\varphi} & 0 & 0 \\
0 & \Xi_{\theta} & 0 \\
0 & 0 & \Xi_{\varphi\theta} \end{array} \right] N dS \in \mathbb{R}^{6 \times 6}
\]

\[
= \sum_{K}^{N_{ip}} \left[\begin{array}{cc|c}
\frac{1}{(\Delta t)^2} \bar{A}_{\rho_0} N_I N_J & 0 & \frac{1}{(\Delta t)^2} \bar{A}_{\rho_0} N_I N_J \\
0 & 0 & \frac{\gamma}{\Delta l^3} \left(\vec{V}_n \bar{I}_{\rho_0} - \Pi [\bar{I}_{\rho_0} \bar{V}_n] \right) T^T N_I N_J \end{array} \right] J_s W_K. \quad (7.48)
\]

As noted in Section 6.2.2.b, the tangent inertia matrix is \textit{nonsymmetric} and \textit{configuration dependent}. This property concerns only the rotational degrees of freedom. The sub-matrix
\(\Xi_{\varphi} \) corresponds to the translational degrees of freedom and is constant.

7.6.3 External contribution of the tangential stiffness

By the linearization of the external load vector, (see Eq. (5.92)), one obtains

\[
K_{m}^{e} = \eta^{mhT} \left[\int_{0}^{L_e} N^{T} \left[(\tilde{N}_{d} \otimes \tilde{C}_{N}) \left[\frac{d}{dS} I \right] + \tilde{M}_{p} \right] N_{d} dS \right] \hat{p}^{mh}
\]

\[
= \eta^{mhT} \left[\sum_{IJ} N_{d}^{T} \left[(\tilde{N}_{d} \otimes \tilde{C}_{N}) \left[\frac{d}{dS} I \right] \right] N_{d} dS + \sum_{IJ} N_{d}^{T} \left[\tilde{M}_{p} \right] N_{d} dS \right] \hat{p}^{mh}
\]

\[
= \eta^{mhT} \left[\left[K_{P1}^{m(e)} \right]_{IJ} + \left[K_{P2}^{m(e)} \right]_{IJ} \right] \hat{p}^{mh}
\]

(7.49)

The two components of the tangent stiffness matrix due to external loading coupling the nodes \(I \) and \(J \) are explicitly given by

\[
\left[K_{P1}^{m(e)} \right]_{IJ} = \sum_{k=1}^{N_{e}} \left[\begin{array}{c} N_{I} N_{J, s} \tilde{N}_{d} \otimes \tilde{C}_{N} \\ N_{I} N_{J, s} \tilde{M}_{d} \otimes \tilde{C}_{M} \end{array} \right] W_{K}
\]

\[
\left[K_{P2}^{m(e)} \right]_{IJ} = \sum_{k=1}^{N_{e}} \left[\begin{array}{c} N_{I} N_{J, s} \tilde{M}_{p} \\ N_{I} N_{J, s} \tilde{M}_{p} \end{array} \right] J_{s} W_{K}
\]

(7.50a)

(7.50b)

Finally, the tangent stiffness matrix of Eq. (7.14), relating the nodes \(I \) and \(J \), is given by

\[
\left[K_{(e)}^{mh} \right]_{IJ} = \left[K_{M(e)}^{m} + K_{G(e)}^{m} + K_{V(e)}^{m} + K_{\text{ine}(e)}^{m} + K_{P1(e)}^{m} + K_{P2(e)}^{m} \right]_{IJ}.
\]

(7.51)

7.7 Iterative Newton–Raphson scheme

As it has been previously mentioned, an iterative form of the Newton–Raphson scheme, Eq. (6.3), (see §6.1.2) is used for solving the discrete (in space and time) version of the linearized form of the virtual work functional.

The standard procedures for the FEM holds, then, one has (for more details it is possible to consult classical textbooks such as those of Refs. [29, 85, 86, 132]) that the **global unbalanced force vector**, the **global stiffness matrix** and the **incremental configuration field** are

\[
\bar{q} = \mathbf{A} \hat{q}^{h(e)}_{e, I} J_{I}; \quad [\mathbf{K}] = \mathbf{A} \left[K^{h(e)} \right]_{IJ}; \quad \bar{p} = \mathbf{A} \hat{p}^{h(e)}_{e, I} J_{I}
\]

(7.52)

respectively; where \(\mathbf{A} \) denotes the usual assembly procedure which runs over the number of elements \(N_{e} \) and their corresponding nodal points \(N_{d} \). Then, by means of using the
FEM the solution of the nonlinear system of differential equations of the rod is reduced to solving the following linear systems of equations for obtaining the iterative increments of the configuration variables

\[
\hat{\eta}^s \cdot \left[\hat{q}^s + [K]\hat{p}^s \right]_{n+1}^{(i)} \approx 0 \quad \rightarrow \quad \hat{p}_{n+1}^{(i)} = (-[K]^{-1}\hat{q}^s)_{n+1}^{(i)} \quad (7.53)
\]

where the super and sub-scripts \((i)\) and \(n + 1\) corresponds to the iteration and time, respectively; as described in Chapter 6. If the material updating rule is preferred one simply obtains

\[
\hat{p}_{m}^{n+1} = (-[K]^{-1}\hat{q}^m)_{n+1}^{(i)}. \quad (7.54)
\]

Note that Eq. (7.53) is valid for both the static or dynamic cases. If the mechanical problem consists of a sequence of imposed/displacement steps or inertial terms are considered it is necessary to maintain fixed the value of the load amplification parameter \(\lambda\) of the external force term. Normally, the parameter \(\lambda\) is considered as other variable when control techniques are employed, e.g. arch–length methods. However, details are omitted here and it can be consulted in [85, 86].

Having obtained an iterative field \(\hat{p}_{n+1}^{(i)}\), the results of Chapter 6 are used for updating the configuration variables \((\hat{\varphi}, \Lambda) \in TC_t\), the related linear and angular velocity and acceleration, the strain and strain rate fields existing on each integration point (see Fig. 7.1). The present formulation makes use of uniformly reduced integration on the pure displacement and rotation weak form to avoid shear locking [138, 278], however, the inertial terms are integrated in exact manner. It remains to determine the stress field existing on each material point in the cross sections associated to integration points, this is done by means of an appropriated cross sectional analysis that will be explained in following.

7.7.1 Cross sectional analysis

The cross sectional analysis is carried out expanding each integration point on the beam axis in a set of integration points located on each fiber on cross section. In order to perform this operation, the beam cross section is meshed into a grid of quadrilaterals, each of them corresponding to a fiber oriented along the beam axis (see Fig. 7.2). The estimation of the average stress level existing on each quadrilateral is carried out by integrating the constitutive equations of the compounding materials of the composite associated to the corresponding quadrilateral and applying the mixing rule as explained in §4.3. The geometry of each quadrilateral is described by means of normalized bi-dimensional shapes functions and several integration points can be specified in order to estimate more precisely the value of a given function according to a selected integration rule. In the case of the average value of the material form of the FPK stress vector acting on a quadrilateral we have

\[
\hat{P}_1^{m} = \frac{1}{A_c} \int_{A_c} \hat{P}_1^{m} dA_c = \frac{1}{A_c} \sum_{p=1}^{N_p} \sum_{q=1}^{N_q} \hat{P}_1^{m}(y_p, z_q) J_{pq} W_{pq} \quad (7.55)
\]
Figure 7.1: Iterative Newton–Raphson scheme (spatial form).

where A_c is the area of the quadrilateral, N_p and N_q are the number of integration points in the two directions of the normalized geometry of the quadrilateral, $P_{1}^{m}(y_p, z_q)$ is the value of the FPK stress vector existing on a integration point with coordinates (y_p, z_q) with respect to the reference beam axis, which is obtained from the corresponding material strain vector ε_n using the constitutive laws and the mixing rule, $J_{p,q}$ is the Jacobian of the transformation between normalized coordinates and cross sectional coordinates and W_{pq} are the weighting factors.

The coefficients of the tangent constitutive tensors can be estimated in an analogous manner as in Eq. (7.55) but replacing $P_{1}^{m}(y_p, z_q)$ by $\bar{C}_{\text{int}}^{m}(y_p, z_q)$ i.e.

$$\bar{C}_{\text{int}}^{m} = \frac{1}{A_c} \int_{A_c} \bar{C}_{\text{int}}^{m} dA_c = \frac{1}{A_c} \sum_{p=1}^{N_p} \sum_{q=1}^{N_q} \bar{C}_{\text{int}}^{m}(y_p, z_q) J_{p,q} W_{pq}.$$

(7.56)
Finally, having obtained the stress level on each quadrilateral, the cross sectional forces and moments are obtained by means of the discrete form of Eqs. (3.94a) and (3.94b) as

\[
\hat{n}^m = \sum_{k=1}^{N_{\text{fiber}}} (A_c)_k (\hat{P}_1^m)_k \quad (7.57a)
\]

\[
\hat{m}^m = \sum_{k=1}^{N_{\text{fiber}}} (A_c)_k \hat{\ell}_k \times (\hat{P}_1^m)_k \quad (7.57b)
\]

were \(N_{\text{fiber}}\) is the number of quadrilaterals of the beam cross section, \((A_c)_k\) is the area of the \(k\) quadrilateral, \((\hat{P}_1^m)_k\) is the average value of the material form of the FPK stress vector and \(\hat{\ell}_k = (0, y_k, z_k)\) are the coordinates of the gravity center of the \(k\)th quadrilateral with respect to the local beam reference frame.

By applying the same procedure as in Eqs. (7.57a) and (7.57b), we have that the material form of the reduced tangential tensors of Eqs. (4.53a) and (4.53b) are numerically estimated as

\[
\bar{C}_{mn}^{\text{nt}} = \sum_{k=1}^{N_{\text{fiber}}} (A_c)_k (\bar{C}_{mn}^{\text{nt}})_k \quad (7.58a)
\]

\[
\bar{C}_{nm}^{\text{nt}} = - \sum_{k=1}^{N_{\text{fiber}}} (A_c)_k (\bar{C}_{nm}^{\text{nt}})_k (y_k \bar{E}_2 + z_k \bar{E}_3) \quad (7.58b)
\]

\[
\bar{C}_{mn}^{\text{nt}} = \sum_{k=1}^{N_{\text{fiber}}} (A_c)_k \hat{\ell}_k (\bar{C}_{mn}^{\text{nt}})_k \quad (7.58c)
\]

\[
\bar{C}_{mm}^{\text{nt}} = - \sum_{k=1}^{N_{\text{fiber}}} (A_c)_k \hat{\ell}_k (\bar{C}_{mm}^{\text{nt}})_k (y_k \bar{E}_2 + z_k \bar{E}_3) \quad (7.58d)
\]
where \(\tilde{\ell}_k \) is the skew-symmetric tensor obtained from \(\hat{\ell}_k \) and \((\mathbf{C}^{\text{int}})_k \) is the material form of the tangent constitutive tensor for the composite material of the \(k^{th} \) quadrilateral. Analogously, having obtained the values of the viscous tangent constitutive tensors \(\bar{\eta}^{ss} \), at each fiber, the reduced constitutive tensor \(\bar{\Upsilon}^{ss} \) is obtained as [203]

\[
\bar{\Upsilon}^{ss}_{nn} = \sum_{k=1}^{N_{\text{fiber}}} (A_c)_k(\bar{\eta}^{ss})_k
\]

\[
(7.59a)
\]

\[
\bar{\Upsilon}^{ss}_{nm} = -\sum_{k=1}^{N_{\text{fiber}}} (A_c)_k(\bar{\eta}^{ss})_k(y_k \tilde{E}_2 + z_k \tilde{E}_3)
\]

\[
(7.59b)
\]

\[
\bar{\Upsilon}^{ss}_{mn} = \sum_{k=1}^{N_{\text{fiber}}} (A_c)_k \tilde{\ell}_k(\bar{\eta}^{ss})_k
\]

\[
(7.59c)
\]

\[
\bar{\Upsilon}^{ss}_{mm} = -\sum_{k=1}^{N_{\text{fiber}}} (A_c)_k \tilde{\ell}_k(\bar{\eta}^{ss})_k(y_k \tilde{E}_2 + z_k \tilde{E}_3)
\]

\[
(7.59d)
\]

From the point of view of the numerical implementations, in a given loading step and iteration of the global Newton–Raphson scheme, two additional integration loops are required for the cross sectional analysis:

(i) The first one is a loop over the quadrilaterals (or equivalently fibers). In this loop, having obtained the material form of the reduced strain measures \(\Gamma_n \) and \(\Omega_n \) (or equivalently \(\bar{\Omega}_n \)) and their time derivatives \(\dot{\Gamma}_n \) and \(\dot{\Omega}_n \), the strain measure \(\hat{\mathbf{\varepsilon}}_n \) and the strain rate measure \(\hat{\mathbf{S}}_n \) are calculated according to the updating procedure of §6.1.4 and they are imposed for each simple material associated to the composite of a given fiber.

(ii) The second loop runs over each simple material associated to the composite of the quadrilateral. In this case, the FPK stress vector, \(\hat{\mathbf{P}}_1 \), and the tangent constitutive relations, \(\mathbf{C}^{\text{int}} \) and \(\bar{\eta}^{ms} \), are calculated for each component according to their specific constitutive equations; the behavior of the composite is recovered with the help of the mixing theory, summarized in Eqs. (4.48) to (4.46b).

(iii) The integration procedure carried out over the fibers allows to obtain the cross sectional forces and moments and the reduced tangential tensors.

Fig. 7.3 shows the flow chart of the cross sectional analysis procedure for a cross section with \(N_{\text{fiber}} \) fibers and \(k \) simple components associated to each fiber. Finally, the discrete version of the spatial form of the reduced forces and moments, \(\hat{n} = \Lambda \hat{m}^m \) and \(\hat{m} = \Lambda \hat{m}^m \), and sectional tangent stiffness tensors \(\mathbf{C}^{\text{st}}_{ij} = \Lambda \mathbf{C}^{\text{int}}_{ij} \Lambda^T \) and \(\bar{\Upsilon}^{\text{st}}_{ij} = \Lambda \bar{\Upsilon}^{\text{int}}_{ij} \Lambda^T \) \((i, j \in \{n, m\})\) are calculated [203, 205].

This method avoids the formulation of constitutive laws at cross sectional level. As it has been previously explained, the sectional behavior is obtained as the weighted sum of the contribution of the fibers, conversely to other works which develop global sectional integration methods [312, 329]. Material nonlinearity, such as degradation or plasticity, is captured by means of the constitutive laws of the simple materials at each quadrilateral.
7.7. Iterative Newton–Raphson scheme

The nonlinear relation between the reduced strain measures and cross sectional forces and moments are obtained from Eq. (7.57b). Each section is associated to the volume of a part of the beam and, therefore, constitutive nonlinearity at beam element level is captured through the sectional analysis.

General shapes for cross sections can be analyzed by means of the proposed integration method. However, two limitations have to be considered:

(i) Mechanical problems involving large deformations out of the cross sectional plane can not be reproduced due to the planarity of the cross sections assumed in the kinematical assumptions.

(ii) Mechanical equilibrium at element level does not implies mechanical equilibrium among fibers in the inelastic range due to the fact that the present beam model solves the constitutive equations for each fiber independently of the behavior of the contiguous ones.

If materials presenting softening are associated to the fibers, the strain localization phenomenon can occur on specific integration points on the beam for certain loading levels [16, 18, 228, 230]. Softening behavior of fibers imply the induction of a softer response at cross sectional level and, in this manner, the strain localization induced at material point level is translated to the cross sectional force-displacement relationships. In general, the structural response becomes dependent on the mesh size. In this work, the mesh independent response of the structure is obtained regularizating the energy dissipated on each fiber and limiting this value to the specific fracture energy of the material. Details about
the regularization process can be consulted in §4. However, other alternative procedures based on considering strong discontinuities on the generalized displacement field of the beam can be consulted in [17, 16, 18].

7.7.1.a Shear correction factors

As it has been above highlighted, the kinematics assumptions limit the quality of the description obtained for the cross sectional strain field mainly due to the fact that the shears strains are estimated in an average sense. Other limitations derived from the kinematic assumptions are related to the estimation of out of plane components of the strain field at material point level i.e. $\varepsilon_{n22}, \varepsilon_{n33}, \varepsilon_{n23}$ which are equal to zero [237]; Therefore, the their stress counterparts are also equal to zero, even in the nonlinear range.

In this work some additional hypothesis are made to improve the strain field at cross sectional level. Having obtained the mean shear strains at material point level $\bar{\varepsilon}_{n12}^m(S, \xi_3)$ and $\bar{\varepsilon}_{n13}^m(S, \xi_3)$, where the over-head bar symbol is used to empathize that we are referring to the average shear strains, then we proceed to correct them using the Jourawsky’s stress distribution [24] according to

$$
\varepsilon_{n12}(S, \xi_3) = \bar{\varepsilon}_{n12}(S, \xi_3) A_2^*(\frac{\mathcal{L}_2(\xi_2)}{I_{22} b(\xi_2)}) \quad \varepsilon_{n13}(S, \xi_3) = \bar{\varepsilon}_{n13}(S, \xi_3) A_3^*(\frac{\mathcal{L}_3(\xi_3)}{I_{23} b(\xi_3)})
$$

(7.60)

where $A_2^* = \chi_2 A_{00}$ and $A_3^* = \chi_3 A_{00}$ are the reduced cross sections of A, χ_2 and χ_3 are the shear stress distribution factors [123], $b(\xi_2)$ and $b(\xi_3)$ are width and thickness of the cross section, I_{22} and I_{33} are the inertia moments and $\mathcal{L}_2(\xi_2)$ and $\mathcal{L}_3(\xi_3)$ are the statical moments with respect to the neutral axis of the upper portion and left portion of the cross section, respectively.

The proposed procedure does not provide an exact solution for the shear components of the strain tensor but assures an important improvement with respect to the mean values. It is worth to note that Jourawsky correction works well fundamentally for the case of close solid sections and in the linear elastic range, what is exactly the opposite case to what happen in large nonlinear incursion of the material or in the case of thin walled sections.

Additional improvements can be done in determining a more exact shear strain distribution at cross sectional level, e.g. in Refs. [285, 117, 115] coupled torsional warping functions have been included in the large strain/displacement kinematics of the rods allowing to obtain the complete large strain tensor but with the cost of adding degrees of freedom in the formulation and a secondary finite element problem have to be solved to verify sectional equilibrium. Some works have been dedicated to specific sectional shapes deducing warping functions and shear correction factors, e.g. for thin walled sections see Ref. [216]. Other authors [312] have concentrated in developing efficient procedures for analyzing curved and twisted rods with general cross sectional shapes based on the derivation of a general equations for three-dimensional solids with appropriated boundary conditions for deducing enhanced warping functions and shear correction factors.
Chapter 8

Numerical Examples

The previously described geometric and constitutive nonlinear formulation for beams has been implemented in a FEM computer code. In this section several numerical examples illustrating the capacities of the model and the versatility of the proposed damage index are presented.

8.1 Validation examples: elastic case

8.1.1 Unrolling and rerolling of a circular beam

This validation example considers the unrolling and rerolling of the elastic circular cantilever beam shown in Fig. 8.1. This example has been reported by Kapania and Li in Ref. [167] where four node initially curved FE elements are used. The case of an initially straight cantilever beam has also been reproduced in [138]. The initially circular beam has a radius $R = \frac{5}{\pi}$, unitary square cross sectional area and the following properties for the material: elastic modulus $E = 1200$ and Poisson coefficient $\nu = 0.0$. The FE mesh consist of ten equally spaced, quadratic, initially curved elements. An unitary bending moment M is applied at the free end. Four loading steps are applied, each of them with a moment increment $\Delta M = 10\pi$. The convergence tolerance is 1×10^{-7}. The deformed configurations of the beam are shown in Fig. 8.1. The displacements of the free end for an applied moment of 10π are 6.365 in the vertical direction and -0.001 in the horizontal direction. For an applied moment of 20π, the mentioned values are 0.003 and 9.998, respectively, and are very close to those given in [167]. The number of iterations to reach the convergence in the first and second loading steps are 18 and 22, respectively.
8.1. Validation examples: elastic case

8.1.2 Flexible beam in helicoidal motion

The example corresponds to the validation of the proposed formulation for the elastic case. For comparative purposes, an example of Ref. [143] has been reproduced here. It corresponds to the helicoidal motion of a straight beam constrained to slide and rotate along the vertical axil Z of Figure 8.2. A constant vertical load and torque is applied during 2.5 s as indicated in the same Figure. Due to the fact that it is a purely elastic example, no cross sectional integration is required and the mechanical properties are taken from [143] as: $EA = GA = 10^4$, $EI = GJ = 10^3$, $Ap = 1.0$ and $Jp = \text{Diag}[20, 10, 10]$, where E and G are the Young and shear elastic modulus and A, I, J, Ap and Jp are the cross sectional area, the second moment of inertia, the torsional inertia, the beam mass and the inertial dyadic per unit of length, respectively. Ten linear beam elements and a time–step size $\Delta t=0.5$ s were used in the numerical simulations. The results of the numerical simulations are presented in Fig. 8.3 which are in good agreement with those given in [143] for the three components of the displacement of the free end of the beam.
8.2 Nonlinear static examples

8.2.1 Mesh independent response of a composite cantilever beam

The RC cantilever beam shown in Fig. 8.16 is used to study if, regularizing the dissipated energy at constitutive level, it is possible to obtain a mesh independent response when including softening materials. Forty increments of imposed displacements were applied in the \(Y \) direction to obtain the capacity curve of the beam. Four meshes of 10, 20, 40 and 80 quadratic elements with the Gauss integration rule were considered in the simulations. The beam cross section was meshed into 20 equally spaced layers. The steel bars were included as a part of the composite material with a volumetric fraction corresponding to their contributing area to the total area of the layer where they are located. The mechanical properties of the concrete and steel are summarized in Table 8.2, where \(E \) and \(\nu \) are the elastic modulus and Poisson coefficient, respectively; \(G_f \) is the fracture energy, \(f_c \) is the ultimate compression limit and \(n \) is the ratio of the compression to the tension yielding limits, according to Eq. 4.11c. Fig. 8.17 shows the capacity curve relating the vertical reaction with the displacement of the free end. It is possible to see that the numerical responses converge to that corresponding to the model with the greater number of elements. Further information can be obtained from the evolution of the local

Table 8.1: Mechanical properties

<table>
<thead>
<tr>
<th></th>
<th>(E)</th>
<th>(\nu)</th>
<th>(f_c)</th>
<th>(n)</th>
<th>(G_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>21000</td>
<td>0.20</td>
<td>25</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Steel</td>
<td>200000</td>
<td>0.15</td>
<td>500</td>
<td>1</td>
<td>500</td>
</tr>
</tbody>
</table>

Figure 8.3: Displacements time history response of the free end of the beam.

Figure 8.4: RC cantilever beam.
8.2. Nonlinear static examples

Figure 8.5: Vertical reaction versus tip displacement.

damage index at cross sectional level, which is shown in Fig. 8.6 for the 4 meshes and the loading steps 10, 25 and 40. In all the cases, strain localization occurs in the first element but, in the case of the mesh with 10 elements, localization occurs before than in the other cases and a worse redistribution of the damage is obtained, what can explain the differences observed in Fig. 8.17. Finally, Fig. 8.18 shows the evolution of the global damage index which allows to appreciate the mesh independent response of the structure.

Figure 8.6: Evolution of the local cross sectional damage index: Strain localization. The symbols D and l are the damage index and the length of the beam, respectively.
8.2. Nonlinear static examples

8.2.2 Framed dome

The elastic and plastic mechanical behavior of framed domes has been studied in several works. For example, in Ref. [94] domes formed by trusses are studied; in [245] initially straight beam elements are used to study the elastic-plastic behavior of domes including isotropic and kinematic hardening; in [216] a co-rotational formulation for beam elements with lumped plasticity is presented; and in [304] a plastic hinge formulation assuming small strains and the Euler–Bernoulli hypothesis is employed for studying the nonlinear behavior of domes including the mechanical buckling and post critical loading paths.

In this example, the nonlinear mechanical behavior of the framed dome shown in Fig. 8.8 is studied with the objective of validating the proposed formulation in the inelastic range. The linear elastic properties of the material are: elastic modulus 20700 MNm$^{-2}$ and Poisson’s coefficient 0.17. Three constitutive relations are employed: (1) Linear elastic; (2) Perfect plasticity ($G_f = 1 \times 10^{10}$ Nm$^{-2}$) with associated Von Mises yield criterion and an elastic limit of $f_c = 80$ Nm$^{-2}$; and (3) Damage model with equal tensile and compression limits, $n = 1$, a fracture energy of $G_{f,c} = 50$ Nm$^{-2}$ and the same elastic limit as in case (2). Three elements with two Gauss integration points are used for each
8.2. Nonlinear static examples

structural member. A vertical point load of $P_0 = 123.8$ N acting on the apex of the dome is applied and the displacement control technique is used in the simulations. Fig. 8.9 shows the deflection of the vertical apex in function of the loading factor $\lambda = P_t/P_0$ (P_t is the current applied load) for the three constitutive relations. It is possible to see in Figure 8.9 a good agreement with the results given by Park and Lee in Ref. [245] for the stable branch of the elastic loading factor–displacement responses. When comparing both results for the elastic plastic case, it is possible to see a good agreement for the elastic limit of the structure; however, when deformation grows, the differences can reach 30% for the predicted value of the load carrying capacity of the dome. Moreover, the curve corresponding to the damage model has been added to Fig. 8.9. In both cases, when inelastic constitutive relations are employed, the curve of the global structural response shows a snap–through which couples constitutive and geometric effects.

![Figure 8.9: Loading factor-displacement curve of the vertical apex of the dome.](image)

8.2.3 Nonlinear response of a forty–five degree cantilever bend

This example performs the coupled geometrically and constitutive nonlinear analysis of a cantilever bend placed in the horizontal X-Y plane, with a vertical load F applied at the free end, as shown in Fig. 8.10. The radius of the bend has 100 mm with unitary cross section. The linear elastic case of this example involves large 3D rotations and an initially curved geometry; therefore, it has been considered in several works as a good validation test [138, 167, 278]. The mechanical properties for the elastic case are an elastic modulus of 1×10^7 Nmm$^{-2}$ and a shear modulus of 5×10^6 Nmm$^{-2}$. Four quadratic initially curved elements are used in the FE discretization with two Gauss integration points per element. Solutions are obtained by using thirty equal load increments of 100 N. The history of the tip displacements is shown in Fig. 8.11. The tip displacements for an applied load of 600 N are: $U_1=13.56$ mm, $U_2=-23.81$ mm and $U_3=53.51$ mm (see Fig. 8.10) which are values close to those obtained by other authors [167]. The coupled geometric and constitutive nonlinear response of the structure was obtained for three materials:
8.2. Nonlinear static examples

Figure 8.10: Initial geometry and some examples of the deformed configurations for the linear elastic case of the 45° cantilever bend.

Figure 8.11: Different components of the tip displacement (linear case).

(i) Elastic plastic with Von Mises yield criterion, associated flow rule, a fracture energy of $G_f = 1 \times 10^{10}$ Nmm$^{-2}$, and a tension to compression ratio $n = 1$.

(ii) Degrading material with $n = 1$ and $G_f = 5 \times 10^4$ Nmm$^{-2}$.

(iii) A composite formed by equal parts of the materials (i) and (ii). In all the cases, the elastic limit is taken $f_c = 7 \times 10^4$ Nmm$^{-2}$.

The beam cross section was meshed into a grid of 10×10 quadrilaterals with one integration point per fiber. A set of 35 imposed displacements of 2 mm was applied. The convergence tolerance was taken equal to 10^{-4} for residual forces and displacements. Fig. 8.12 shows the results obtained from the numerical simulations for tip displacements superposed to the elastic response. It is possible to observe in this figure that:

(1) The elastic plastic case converges to a fixed value of 274 N for the vertical reaction after the redistribution of the damage has occurred along the beam length, which
can be considered the final stage in the formation of a plastic hinge in the structure.

(2) In the case of the degrading material, the analyze were stopped in the loading step 29 due to lack of convergency with an evident loss in the load carrying capacity.

(3) The response of the composite materials show two phases: the first one corresponds to the degradation of the damaging phase; during the second one the vertical reaction is stabilized in a value equal to 112 N, which is due to the mechanical response of the plastic phase.

In all the cases, a great amount of iterations were required to obtain convergence (>50 in the softening phase). However, in the case of the material (ii) the analyze were finalized after 300 iterations due to the fact that the development of axial forces in the deformed configuration literally cuts the beam for vertical displacements beyond 57 mm.

8.2.4 Nonlinear analysis of a right angle frame

The right angle frame of Fig. 8.13 is subjected to a concentrated out of plane load \(P = 0.3 \) N acting on the middle of the span of one of the two members of length \(L = 100 \) mm. Forty equally sized loading steps have been used. Each member is modeled using four quadratic elements with two Gauss integration points. The square beam cross sections with a side length \(a = 3 \) mm are meshed into a grid of \(4 \times 4 \) quadrilaterals with four integration points per fiber. The convergence tolerance is taken as \(1 \times 10^{-4} \).

The constitutive and geometric nonlinear response of the frame is computed for four different materials with the same elastic modulus \(E = 720 \text{ Nmm}^{-2} \), Poisson coefficient \(\nu = 0.3 \) and yielding threshold \(f_c = 1 \text{ Nmm}^{-2} \). The other characteristics of the materials are:

(i) Associated Von Mises plasticity with a compression to tension ratio \(n = 1 \) and fracture energy \(G_f = 1 \times 10^5 \text{ Nmm}^{-2} \).
(ii) Damage model with \(n = 2, G_f = 0.1 \text{ Nmm}^{-2} \).

(iii) Composite with a 20\% of (i) and 80\% of (ii).

(iv) A composite with a 10\% of (i) a 80\% of (ii) and a 10\% of a material having only linear elastic properties.

Fig. 8.14 shows a comparison between the results obtained for the applied force versus the vertical deflection of the point \(A \) (see Figure 8.13) for the material (i) and the results given in Refs. [245, 274]. The results shown in Fig. 8.14 are normalized considering that \(I \) is the inertia of the square cross section and \(M_0 = a^3 f_c / 6 \). A good agreement with the results obtained in the mentioned references is obtained.

Fig. 8.15 shows the load deflection curve of the point \(A \) for the four considered materials. It is possible to appreciate that in the case of the material (iii), after the damaging phase of the composite has been degraded, the response of the structure is purely plastic. In the
case of the material (iv), in the large displacements range of the response, the elastic phase dominates the mechanical behavior. Fig. 8.15 shows the evolution of the global damage index for the four materials. It is worth to note that the damage index corresponding to material (iii) grows faster than the others, but, when the plastic phase dominates the response (approx. loading step 32), the highest damage index is associated to the material (ii). In the large displacements range, the smallest values of global damage index corresponds to the material (iv) due to the effect of the elastic component.

![Figure 8.15: (a): Load deflection curves. (b): Global damage indices.](image)

8.3 Nonlinear dynamic examples

8.3.1 Visco elastic right angle cantilever beam

The right angle cantilever beam shown in Fig. 8.16a is dynamically loaded by an out of plane concentrated force of 250 N at the elbow. The shape and duration of the applied load is show in the same figure. The total duration of the analysis is 4.5 s, which includes the period of time when the load is being applied and the following free vibration of the system. The time step is 0.03 s. The mechanical properties are: an elastic modulus of 5.0×10^4 Nmm$^{-2}$, a Poisson coefficient of 0.2 and a mass density of 0.1 Kgmm$^{-3}$. Three quadratic elements with two Gauss integration points have been used for each structural member. The cross section is meshed into a equally spaced 8×8 quadrilaterals equipped with one integration point. Several deformed shapes of the system are show in Figure 8.16b for the undamped elastic case. It is interesting to note that the motion of the system involves large torsion and bending and the magnitude of the displacements is of the same order as the dimensions of the initial geometry. Three values for the viscosity $\eta =0.01$, 0.03 and 0.04 s are used in the numerical simulations, along with the visco elastic constitutive law, in order to highlight the effects of the damping on the behavior of the
8.3. Nonlinear dynamic examples

Figure 8.16: Right angle frame. (a): A concentrated out of plane load is applied on the elbow node. (b): Deformed configurations for different time steps for the case of the undamped system.

Figs. 8.17a and 8.17b show the time history of the displacement of the tip and the elbow in Y direction for the undamped system and for the three values of the viscosity. It is possible to see from these figures that increasing values of the viscosity contributes to decrease the maximum displacements of the system during the nonlinear oscillations.

Figure 8.17: Displacement time history responses in the Y direction. (a): Tip. (b): Elbow.

Viscosity also contributes to dissipate the high frequency content in the response, what can be seen due to the fact that increasing values of the parameter η imply smoother time history responses. Finally, a more significative appreciation of the effects of viscosity can be obtained from Fig. 8.18, where the time history of the displacements of the tip in the
8.3. Nonlinear dynamic examples

Y – Z plane is shown. It is possible to see in this figure, that the increment of the value of \(\eta \) diminishes the amplitude of the motion of the mechanical system.

![Tip displacements time history response in the Y-Z plane.](image)

Figure 8.18: Tip displacements time history response in the Y-Z plane.

8.3.2 Near resonance response of a composite cantilever beam

This example studies the cantilever beam subjected to a sinusoidal base acceleration shown in Fig. 8.19. Different constitutive behaviors for the material are considered:

(i) Visco elastic with different viscosity values.

(ii) Visco damage model.

(iii) Composite material with two simple constituents: a visco damage phase and a rate independent plastic phase, both of them with a volumetric fraction of 50%.

The elastic properties of the three materials are the same, excepting the fracture energy (see Table 8.2). The beam has been modeled using 20 quadratic elements and a reduced integration scheme is used in order to avoid shear locking [285]; the beam cross section has been meshed into a grid of 8×8 quadrilaterals with four integration points in each of them. A linear modal analysis of the beam model gives a fundamental period of 1.77 s and the second and third modes have periods of 0.27 and 0.099 s, respectively. The dynamic

<table>
<thead>
<tr>
<th>Material Type</th>
<th>(E) (Mpa)</th>
<th>(\nu)</th>
<th>(f_c) (Mpa)</th>
<th>(n)</th>
<th>(G_f) (Nmm(^{-2}))</th>
<th>(\rho_0) (Kgmm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate dependent</td>
<td>(2.5 \times 10^4)</td>
<td>0.20</td>
<td>25</td>
<td>1</td>
<td>25</td>
<td>(2.4 \times 10^{-9})</td>
</tr>
<tr>
<td>Rate independent</td>
<td>(2.5 \times 10^4)</td>
<td>0.15</td>
<td>500</td>
<td>1</td>
<td>5000</td>
<td>(2.4 \times 10^{-9})</td>
</tr>
</tbody>
</table>
nonlinear response of the beam is obtained for a sinusoidal excitation with a frequency of 1.75 s aimed to induce near–resonance effects in the first elastic mode. The time step is 0.03 s. Three values for viscosity have been considered: 0.0, 0.01, 0.025 s. Fig. 8.20 shows the displacement time history of the top node in the horizontal and vertical directions. Important reductions in the amplitude of the oscillations are obtained as the viscosity is increased. For the value of $\eta = 0.025$ s almost all the second order effects are suppressed due to reductions of the dynamic amplification of the response. Vertical displacements are reduced from 400 mm for the undamped case to 12 mm.

As it has been mentioned, due to the change of configuration of the structure near the resonance, the displacements in the vertical direction are amplified and, therefore, axial forces with high frequency content appear in the response. As stated in Ref. [142], the suppression of high frequency content becomes a desirable feature of a nonlinear time stepping scheme. In the present formulation, the reduction of the contribution of the higher modes to the response is obtained by adding viscous mechanisms to the constitutive laws. In Figure 8.21, the beam structure is subjected to a sinusoidal base acceleration record with a period of 0.1 s acting during 2.5 s followed by a free vibration of 2.5 s. The time step is 0.005 s. The horizontal displacement response of the top node of the system is depicted in Fig. 8.21a where it is possible to see that the a coupled response corresponding to the first and third modes dominates the structural behavior. Amplification of the third mode is observed. It is also possible to appreciate in this figure that increments in the values of the viscosity ($\eta = 0.000, 0.001, 0.005$ s) have the effect of reducing mainly the vibration associated to the higher modes. This result is in good agreement with the solution proposed in [142] in the sense that dissipative mechanisms, for time stepping schemes, based on the strain rate or velocity contributes to eliminate the high frequency content in the response. Fig. 8.21b shows the temporal evolution of the energy dissipation which is a scalar quantity calculated from Eq. (4.29) at constitutive level and then integrating over the volume of the structure. It is possible to see that higher values of η implies higher dissipation rates and the stabilization of the response is achieved before.

Finally, the cantilever beam is subjected to a sinusoidal base acceleration with a period of
1.75 s and a duration of 35 s in order to induce near–resonance response. The time step is 0.03 s. The dynamic response was obtained for three constitutive options: the first one corresponds to the visco damage model with $\eta = 0.001$ s, the second one is the elastic plastic model, where the energy dissipation is obtained by displacement dependent (no viscous) mechanisms and the third one is a composite material with a 50% of the first material and a 50% of the second one.

Fig. 8.22a compares the response for the viscous damage model with the undamped elastic case. It is possible to see that the change of the mechanical properties of the material due to the progressive damage induces stiffness degradation, changing the instantaneous dynamical properties of the structure. In this case, the period of the structure is increased due to the fact that the damage auto decouples the structural response from resonance. Dissipation due to damage is added to the viscous one and, therefore, extra energy dissipation contributes to reduce the dynamic response. Fig. 8.22b shows comparative results for the time history of the three constitutive behaviors. It is worth noting that, in the case of the composite material, when most of the material corresponding to the visco damage model has been degraded in the softening zone [203], the response of the structure is controlled by the plastic behavior. After a degrading phase between the 3 and 13 s the response of the composite coincides with that corresponding to the purely plastic model. Finally, Figs. 8.3.2a and 8.3.2b show the evolution of the global damage indices and dissipated energy for the three different constitutive options.
8.3. Nonlinear dynamic examples

Figure 8.21: (a): High frequency content suppression. (b): Energy dissipation.

Figure 8.22: Coupled geometric and constitutive nonlinear dynamic responses. (a): Undamped elastic response compared with a visco damage constitutive model. (b): Visco damage, plastic and composite responses.
8.3. Nonlinear dynamic examples

Figure 8.23: (a): Evolution of the global damage index during the dynamic response. (b): Evolution of the energy dissipation.
8.3.3 Nonlinear vibration of a spatially curved structure

The 3D structure shown in Fig. 8.24 is an open ring located in the \(X-Y\) plane, which has a fixed end and the another one is connected to a straight column lying on the \(X-Z\) plane. Two loads are applied on the points \(A\) and \(B\) in the \(X\) and \(Z\) directions respectively. The shape and duration of the loading is given in the same figure. The loading step is 0.01 s. The mechanical properties of the materials are: \(E = 5 \times 10^4\, \text{Nmm}^{-2}\), \(\nu = 0.0\), \(G_f = 1000\, \text{Nmm}^{-2}\), \(n = 1\), \(\rho_0 = 1 \times 10^{-8}\, \text{Kgmm}^{-3}\) and \(f_c = 8\, \text{Mpa}\). Three cases are studied:

(i) Elastic case.
(ii) Visco damage model with \(\eta=0.004\) s.
(iii) Rate independent plasticity with \(G_f = 1 \times 10^7\, \text{Nmm}^{-2}\).

The same threshold limit is used for the models (ii) and (iii). Twenty quadratic, initially curved elements are used for the ring and ten quadratic elements for the column considering two Gauss integration points. The beam cross section is meshed into a \(8\times8\) grid of equally spaced quadrilaterals with one integration point per fiber. Due to the directions of the applied loads and the development of inertial forces, each member of the structure is subjected to a complex state of internal stresses including torsion, flexion extension and shearing. Figs. 8.25 and 8.26 show the nonlinear time history responses for the three components of the displacement of the points \(A\) and \(B\) of Fig. 8.24. It is worth to note that the displacements of the systems with inelastic behavior are greater than the elastic case due to the fact that the initial loading induces degradation and plasticity and the structure needs to develop more displacement for finding a configuration stable with the new loading state. In the plastic case the structure finally vibrates about a configuration which includes permanent deformation as it can be evidenced from the \(Z\) component of both figures.
8.3. Nonlinear dynamic examples

Figure 8.25: Displacement time history response of the node A.

Figure 8.26: Displacement time history response of the node B.
8.4 Reinforced concrete structures

8.4.1 Experimental–numerical comparative study of a scaled RC building model

The first example corresponds to the comparison between the numerical simulation obtained by means of the proposed formulation and the experimental data obtained by Lu and reported in reference [183] for the seismic analysis of a scaled model (1:5.5) of a benchmark regular bare frame (BFR). The structure was designed for a ductility class medium in accordance with the Eurocode 8 [96] with a peak ground acceleration of 0.3\(g\) and a soil profile A. Details about loads, geometry, material properties and distribution of steel reinforcements can be consulted in the same publication. In the experimental program, the structure was subjected to several scaled versions of the N–S component of the El Centro 1940 earthquake record.

Four quadratic elements with two Gauss integration points were used for each beam and column. Cross sections where meshed into a grid of 20 equally spaced layers. Longitudinal steel reinforcements were included in the external layers as part of a composite material. The fracture energy of the damage model used for concrete was modified to take into account the confining effect of transversal stirrups [203]. A tension to compression ration of 10 was used for concrete and 1 for steel. In the numerical simulations, the model is subjected to a push–over analysis. Static forces derived from the inertial contribution of the masses are applied at the floor levels considering an inverted triangular distribution. A relationship between the measured base shear and the top lateral displacement is given in Ref. [183] for each seismic record. This curve is compared in Fig. 8.27 with the capacity curve obtained by using the numerical push–over analysis.

![Figure 8.27: Comparison between numerical and experimental push–over analyze: Capacity curves.](image)

...
It is possible to see that the push–over analysis gives a good approximation for the global maximum response and, therefore, it constitutes a suitable numerical procedure for estimating the expected nonlinear properties of structures subjected lo seismic actions. In the same figure, it is possible to appreciate that in both, the numerical simulation and the experimental cases, the characteristic values of the structure; that is, global ductility level, elastic limit and over–strength, are similar. Fig. 8.28 shows a comparison between

Figure 8.28: Damage. (a): Experimental: Map of fissures. (b): Numerical: Cross sectional damage index.

the distribution of cross sectional damage predicted numerically and the map of fissures obtained after the application of several shaking table tests. In this case, the proposed damage index along with the geometric and constitutive formulation used for beams is able to reproduce the general failure mechanism of the structure where dissipation is mainly concentrated in the beam elements.

8.4.2 Study of a RC plane frame

The precise characterization of the nonlinear behavior of RC framed structures has important applications in earthquake engineering. A great amount of effort has been focused on studying the capacity of structures, frequently defined in terms of a set of applied horizontal forces and the corresponding lateral displacements. These curves allow to estimate several global parameters such as ductility, over-strength, yielding and collapse loads, interstory drifts and other derived damage characteristics [99, 169]. A static characterization of the response is preferred due to the fact that a nonlinear time history analysis is more expensive in computational time. In spite that capacity curves are widely accepted as valid substitutes of time history analysis, the question about if cyclic or increasing loads
paths are more convenient to obtain the curves, stays still opened [99]. In this work the capacity curve of the RC structure described in Fig. 8.29 is obtained for two loading conditions: An increasing load and a cyclic load, both of them applied on the top floor. The RC frame is typical for an urban building, with a first floor higher than the others. The building was seismically designed according to the Eurocode 8, for firm soil, a base acceleration of $0.3g$ and a ductility reduction factor of 4 [96]. Both geometric and constitutive nonlinear behaviors are considered in the model, which is defined using 4 quadratic elements with two Gauss integration points for each beam or column. The mechanical properties of the materials are the same as those given in the Table 8.2 but the tensile fracture energy of the concrete takes values between 1.5 and 3.0 N-mm, corresponding to different steel ratios of the stirrups. The capacity curve is obtained by means of numerical simulations with load control on the horizontal displacement of the right top node of the structure. This method allows to advance beyond the conventional collapse point, on the softening branch of the capacity curve. The results are shown in Fig. 8.30, where it is possible to see that the curve defined by the increasing load test is the envelop of the maximum values of the results of the cyclic test. The global damage indices for both simulations are shown in Fig. 8.31. It is possible from this figure that, for the case of a cyclic action, the structure maintains low values of the damage index during more time than in the case of an increasing load. This result is in a good agreement with the well know result that pulse like actions are much more

Figure 8.29: RC planar frame details.
destructive than cyclic actions.

![Graph showing increasing loading versus cyclic loading.](image)

Figure 8.30: Increasing loading versus cyclic loading.

Finally, Fig. 8.32 shows the moment-curvature relationship for the elements converging to the joint A of Figure 8.29, for both increasing and cyclic loads. It is possible to see that most part of the energy dissipated in the beams during the cyclic loading. This observation is in agreement with the expected behavior of well designed frames, with weak beams and strong columns. The results for the increasing and cyclic load simulations of Fig. 8.32 allow to see the formation of a plastic hinge: the moment-curvature curve presents a highly nonlinear hysteretic behavior. The large incursion in the nonlinear range for the case of the increasing load can help to explain why the global damage index grows faster than for cyclic loads. The previously described geometric and constitutive nonlinear dynamic formulation for beams has been implemented in a FEM computer code. In this
section several numerical examples illustrating the capacities of the model for predicting the dynamic behavior of beam structures including rate dependent effects are presented.

8.4.3 Dynamic study of a RC beam structure

This example studies of the fully geometric and constitutive static and dynamic behavior of the RC beam structure shown in Fig. 8.33. The structure was seismically designed according to the Euro-code 8, for firm soil, a base acceleration of 0.4\(g\) and a ductility reduction factor of 6. The distribution of steel reinforcements are given in the same figure and Table 8.3. The precise analysis of the response allows to carry out a safer determination of the seismic design parameters, such as: damage, ductility, overstrength, collapse load, inter story drifts, energy dissipation capacity, etc. [99, 169]. The study of the time evolution of the local damage index throughout the structural elements provides relevant information about the structural zones where ductility demand and energy dissipation are concentrated. These results allow validating and improving the engineering design of buildings located in high seismic areas.

The model is developed using four quadratic elements with two Gauss integration points in each structural element. Most of the mechanical properties of the materials are given in Table 8.4. Each cross section is meshed into a grid of 8×8 quadrilaterals with one integration point by fiber. The tensile fracture energy of the concrete takes values between 3 and 6.0 Nmm\(^{-2}\), corresponding to different steel ratios of the stirrups. The mass density of the concrete of the beams is modified in order to consider the mass contribution of the dead and live loads acting at the corresponding floor level. A viscosity value of \(\eta = 0.001\) s has been supposed for the concrete. A linear modal analysis reveals that the periods of
the first four modal shapes are: 1.20, 0.36, 0.19 and 0.12 s, respectively.

Firstly, a static pushover test using the inverted triangular loading path is performed in order to obtain the characteristic capacity curve of the structure expressed in terms of the horizontal displacement of the left top corner node and the horizontal reaction on the supports. Even if capacity curves are widely accepted as valid substitutes of time history analysis, the question about if dynamic or increasing load paths are more convenient to obtain capacity curves, stays still opened [99]. Secondly, the structure is subjected to an increasing sinusoidal base acceleration of period 1.2 s for inducing a near to resonance response, with minimum and maximum values of acceleration of 50 and 200 mms\(^{-2}\), respectively. The time step is 0.04 s.

The capacity curve obtained by means of the pushover analysis and the hysteretic cycles in the dynamic case are superposed in Fig. 8.34, where it is possible to see that the capacity curve underestimate the real response of the the structure for the low amplitude
8.4. Reinforced concrete structures

Table 8.4: Mechanical Properties of the materials.

<table>
<thead>
<tr>
<th></th>
<th>E (Mpa)</th>
<th>ν</th>
<th>f_c (Mpa)</th>
<th>n</th>
<th>G_f (Nmm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>21000</td>
<td>0.20</td>
<td>25</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Steel</td>
<td>200000</td>
<td>0.15</td>
<td>500</td>
<td>1</td>
<td>500</td>
</tr>
</tbody>
</table>

hysteretic cycles. After an important degradation of the concrete has occurred, the hysteretic cycles are enclosed by the capacity curve. This fact justifies the employment of push-over response curves for predicting the seismic response of regular buildings, due to the fact that frequently, during a seismic action, the first movements contribute to the initial cracking of the concrete and, when the strongest vibrations have place, the response of the structure should be limited by the capacity curve case. The global ductility value, estimated from the capacity curve is about 6, in good agreement with the hypothesis of design.

![Horizontal displacements versus base reaction](image)

Figure 8.34: Horizontal displacements versus base reaction for the static pushover and the dynamic analysis.

The evolution of the local damage indices provides more precise information about the ductility demand and energy dissipation demand for the principal structural members. Fig. 8.35a shows the evolution of the local damage index for the static case. It is possible to see that the nonlinear behavior is concentrated mainly in the beam elements of the first three floors and in the base columns. This result is in good agreement with the design guidelines included in most of the modern seismic codes, that is, the building was designed with weak–beams and strong–columns aiming to dissipate the energy without affecting the global stability of the structure. Moreover, the concentration of damage at the base of the columns indicate that these members should be provided with extra reinforcements.
in order to obtain large inelastic incursions without brittle failures. The diagram of Fig. 8.35a shows the evolution of the damage index corresponding to the static case while Fig. 8.35b shows the the corresponding to the dynamic case. It is possible to see that the failure mechanisms are similar with energy dissipation concentrated in the beams and in the base of the columns.

Figure 8.35: Evolution of the local damage indices. (a): Pushover analysis. (b): Dynamic case.

It is worth to note that even although the fiber model allows to predict complex nonlinear structural responses in both, static and dynamic cases, the numerical cost of the cross sectional analysis can be significants when compared with the lumped nonlinear models. In this case, a typical cross section meshed into a grid of 8×8 quadrilaterals with 3 materials requires solving $3 \times 8 \times 8$ constitutive equations. After that, a cross sectional integration procedure is required in order to obtain the reduced forces and tangential tensors. In
contrast, only one integration procedure is carried out for lumped models.

8.4.4 Seismic response of a precast RC building with EDDs

The nonlinear seismic response of a typical precast RC industrial building shown in Fig. 8.36 is studied. The building has a bay width of 24 m and 12 m of inter–axes length. The story height is 12 m. The concrete of the structure is H-35, (35 MPa, ultimate compression), with an elastic modulus of 290,000 MPa. It has been assumed a Poisson coefficient of $\nu = 0.2$, a tension/compression relation of 10 and a fracture energy of $g_f = 1$ N/mm$^{-2}$. The ultimate tensile stress for the steel is 510 MPa with $\nu = 0.15$, $g_f = 500$ N/mm$^{-2}$ and elastic modulus of 200000 MPa. This figure also shows some details of the steel reinforcement of the cross sections. The dimensions of the columns are 60x60 cm2. The beam has an initial high of 40 cm on the supports and 140 cm in the middle of the span. The permanent loads considered are 1000 N/m2 and the weight of upper half of the closing walls with 225,000 N. The input acceleration is the same as in the example of §8.4.1.

![Figure 8.36: Description of the structure.](image)

The building is meshed using 8 quadratic elements with two Gauss integration points for the resulting beam and column. The cross sectional grid of fibers is shown in Fig. 8.37. One integration point is used for each quadrilateral. The EDD was simulated by means of employing the previously described model reproducing a purely plastic dissipative mechanism. The properties of the device were designed for yielding with an axial force of 200,000 N and for a relative displacement between the two ending nodes of 1.2 mm. Hardening or viscous effects were not considered. The length of the devices was of 3.1 m. First, a set of numerical static pushover analysis are performed considering the following cases:

1. The bare frame under small displacements assumption.
2. The bare frame in finite deformation.
3. The frame with EDDs and small deformation.
4. Idem as (iii) but with finite deformation.

The purpose is to establish clearly the importance of considering second order effect coupled with inelasticity in the study of flexible structures.
8.4. Reinforced concrete structures

Figure 8.37: Model of the precast industrial frame with energy dissipating devices and meshes of the beam cross sections.

Figure 8.38a shows the capacity curves obtained for the four mentioned cases. In this figure it is possible to see that for both, the controlled and uncontrolled cases, the small strain assumption overestimate the real load carrying capacity of the structure, due to the fact that the vertical load derived from the weight comprise the columns contributing to control the cracking and degradation due to the lateral loading. In the case of finite deformation, the so called $P-\Delta$ [309] (second order) effects are taken into account and an anticipated strength degradation is observed for displacements over 60 mm which is a lateral displacement level expectable under strong seismic excitations. Additionally, the incorporation of EDDs increases the stiffness and the yielding point (at global level) of the structure without affecting the global ductility. Is is worth to note that the softening behavior observed for the finite deformation model is not captured in the cases (i) and (iii).

Figure 8.38b presents the evolution of the global damage index for the cases (i)–(iv). Here it is possible to appreciate that the global damage index grows quickly for the cases when finite deformation is considered and the benefits of adding EDDs are not visible due to
the fact that the pushover analysis does not take into account energy dissipation criteria. On another hand, the results of the numerical simulations in the dynamic range allow seeing that the employment of plastic EDDs contributes to improve the seismic behavior of the structure for the case of the employed acceleration record. Figure 8.39 shows the hysteretic cycles obtained from the lateral displacement of the upper beam–column joint and the horizontal reaction (base shear) in the columns for the structure with and without devices. It is possible to appreciate that the non-controlled structure (bare frame) presents greater lateral displacements and more structural damage, (greater hysteretic area than for the controlled case). Figure 8.39 shows the hysteretic cycles obtained in the EDD, evidencing that part of the dissipated energy is concentrated in the controlling devices, as expected. Figure 8.40 shows the time history response of the horizontal displacement, velocity and acceleration of the upper beam–column joint for the uncontrolled and the controlled case. A reduction of approximately 65.5% is obtained for the maximum lateral displacement when compared with the bare frame. Acceleration and velocity are controlled in the same way, but only 37.9 and 26.9% of reduction is obtained. A possible explanation for the limited effectiveness of the EDD is that the devices only contribute to increase the ductility of the beam–column joint without alleviating the base shear demand on the columns due to the dimensions of the device and its location in the structure. By other hand, joints are critical points in precast structures and therefore, the employment of EDDs combined with a careful design of the columns can help to improve their seismic behavior.

Figure 8.39: (a): Base shear–displacement relationship. (b): Evolution of the global damage index.
8.4. Reinforced concrete structures

![Diagram](image_url)

Figure 8.40: Time history responses of the top beam–column joint. (a): Horizontal displacement. (b): Velocity. (c): Acceleration.
Chapter 9

Conclusions and further research

In this chapter conclusions about the results obtained in the formulation and the numerical implementation of a rod model able to consider the fully geometric and constitutive nonlinearity as well as the local irregularities described in §?? are described and discussed in section §9.1; section §9.2 is dedicated to the statement of new lines of research related to the different topics covered in this thesis.

9.1 Conclusions

In this section a detailed response to the partial objectives declared in the list of §1.2 is given. Particularly, is possible to see that in what regard to

(I) The theoretical objectives

(I.1) In §3 a deep study and a theoretical analysis of the continuum based theory of rods capable of undergoing large displacements and rotations under the Reissner–Simo hypothesis has been performed. In the present case, an initially curved and unstressed rod is considered as the reference configuration. A detailed description of the kinematic assumptions is carried out in the framework of the configurational description of the mechanics. The equations of the motion are deduced from the local form of the linear and angular balance conditions and integrating over the rod’s volume. An appropriated (weak) form for the numerical implementations is deduced for the nonlinear functional corresponding to virtual work principle. A discussion about the deduction of reduced constitutive relations considering hyperelastic materials. Therefore, the objective (i.1) is widely covered in this chapter.

(I.2) After defining translational and rotational strain vectors and calculating the deformation gradient tensor, in §3.2 explicit expressions for the material, spatial and co–rotational versions strain measure and for the objective measure of the strain rate acting on each material point of the cross section, in terms of the variables defining the deformation map, its derivatives and the geometry of the beam cross section are given. The conjugated stress measures existing at material point level are developed and power balance condition is used to
deduce the stress measure energetically conjugated to the cross sectional strain measures. In this case, the objective (i.2) is fulfilled.

(I.3) The objective (i.3) of §1.2 is fulfilled in Chapter 4 which has been devoted to the development of rate dependent and independent inelastic constitutive laws for simple material associated to points on the cross sections, in terms of the First Piola Kirchhoff stress tensor and the corresponding energetically conjugated strain measure. Two types of nonlinear constitutive models for simple materials are included: the damage and plasticity models are considered in a manner consistent with the kinematics of the rod model and the laws thermodynamics for adiabatic processes. Rate dependent behavior and viscosity is included by means of a Maxwell model.

(I.4) In the same chapter, it has been highlighted the fact that material points on the cross section are considered as formed by a composite material i.e. a homogeneous mixture of different components, each of them with its own constitutive law. The composite’s behavior is obtained by means of an appropriated version of mixing theory which considers the kinematic assumptions of the present rod theory. The mechanical response of the composite is obtained supposing a rheological model where all the components work in parallel. Those results provide a response to the objectives declared in (i.4).

(I.5) Additionally, in §4.4 a continuum version of the cross sectional analysis has been developed including explicit expressions for the stress resultant and stress couples assuming planarity of the cross sections. Warping variables or iterative procedures for obtaining corrected strain fields are avoided in the present formulation. Consistent cross sectional tangential constitutive tensors are deduced including rate dependent inelasticity in composite materials which fulfills the objective (i.5).

(I.6) Objective (i.6) is covered in §4.5 where a continuum version of local and global damage indices able to describe the evolution of the remaining load carrying capacity of complex structures is developed. The proposed indices are based on the ratio existing between the inelastic stresses and their elastic counterparts.

(I.7) The correct (in a manner consistent with the geometry of the configurational manifold) linearization of the weak form of the nonlinear balance equations is carried out in §5 including the effects of the rate dependent inelasticity existing at material point level which leads to the consistent deduction of the mass and viscous tangent stiffness. The fact that the rotational part of the displacement field can be updated using two alternatively rules, the material and the spatial one, implies that two sets of linearized kinetics and kinematics quantities can be obtained, according to the updating rule chosen. By completeness, both set of linearized expressions are obtained in the sections of that chapter. The corresponding rate dependent and independent parts of the tangential stiffness were deduced and added to the loading and geometric terms. Therefore, objective (i.7) of the list of section §1.2 is fulfilled.

(II) Numerical objectives
(II.1) Objective (ii.1) claims about the need of disposing of numerical algorithms for
the integration of the constitutive laws for simple materials developed in §4, as
well as for the obtention of the mechanical behavior of composites. In the same
chapter, sections 4.2.2, 4.2.3 and 4.3 it is possible to find the corresponding
algorithms.

(II.2) In Chapter 6 the time discretization of the linearized version of the virtual
work principle is performed according to the Newmark’s method following the
procedures originally proposed in [280]. A time–stepping scheme consistent
with the kinematic assumptions made for the rod model i.e. able to manage
variables belonging to \(SO(3) \) and its tangent space is presented in §6.1.1. At
each time step the linearized problem is solved by means of an iterative scheme
until convergency is achieved. In §6.1.2 to §6.1.4 the corresponding (Eulerian)
updating iterative procedure for the kinetics and kinematics variables as well
as for the strain and strain rate measures is developed. The spatial and the
material updating rule for the rotational part of the motion are considered.
Taking into account the previous results it is possible to see that objective
(ii.2) is fulfilled.

(II.3) The development of an appropriated cross sectional analysis, consistent with
the kinematical hypothesis and based on the fiber discretization of the cross
section, is carried out in §7.7.1 as declared in (ii.4). Each fiber should have
associated a composite material. The developed procedure performs the calcu-
lation of reduced cross sectional forces and moments, the tangential stiffness
tensors and the damage indices at material point and cross sectional level. The
proposed method, even when inexact from the point of view of the elasticity
theory, gives a computationally convenient way of approximating the strain-
stress distribution in the section. Two additional integration loops, running on
the number of fibers and the number of simple components, are required (see
Fig. 7.3).

(II.4) Chapter 7 describes the spatial discretization used in the Galerkin finite ele-
ment approximation of the time discretization presented in §6 for the linearized
form of the virtual work equations. The resulting FE approach yields to a
system of nonlinear algebraic equations well suited for the application of the
Newton iterative method. Again, the main difficulty arises in the fact that the
spatial interpolation of the configuration variables should be consistent with
the nonlinear nature of \(C_i \) (see §3.1). The developed elements are based on
isoparametric interpolations of both the displacement and the incremental ro-
tation parameters. Considering that the material or spatial updating rule for
the rotations are equivalent, their corresponding interpolated iterative incre-
mental rotation vectors can be used to parameterize the rotational variables.
By completeness, both schemes are presented yielding to the corresponding
tangential matrices and unbalanced force vectors. In the practice, the numeri-
cal procedures based on the spatial form of the iterative incremental rotation
vector are preferred because it makes the expressions for the internal, exter-
nal and inertial vectors and the tangential matrices more concise and explicit.
The obtained inertial and viscous tangential matrices are consistent with the
Newmark updating procedure described in §6.

(II.5) Explicit expressions for the iterative Newton–Raphson scheme consistent with the Newmark’s updating scheme for the dynamic variables described in §6.1 is developed in §7.7 (see Fig. 7.1), therefore, objective (ii.6) is fulfilled.

(III) Practical objectives

(III.1) The numerical validation of the proposed formulation, in the static and dynamic cases, is performed throughout a set of examples considering linear elastic constitutive laws with initially straight and curved beams. See §8.1 were it is possible to appreciate a good agreement with results of existing literature.

(III.2) Additionally, the proposed formulation is validated throughout an extensive set of numerical examples (statics and dynamics) covering inelastic constitutive equations in §8.2. The results are compared with those provided in existing literature when possible (for the case of plasticity). In other cases new examples are presented, mainly in what regard to the study of the response of degrading composite structures in both the static and dynamic cases.

(III.3) The verification of the obtention of a mesh independent response for structures presenting softening materials is carried out in the example of §8.2.1. Mesh independency is obtained by means of the regularization of the energy dissipated at constitutive level considering the characteristic length of the volume associated to a specific integration point and the fracture energy of the materials. The same example includes details pertaining to the evolution of global and local damage indices. It is also possible to see that the proposed damage indices allow to identify the global load carrying capacity of the structure and the damage state of the different members. Considering (III.1) to (III.3), it is clear that objectives (iii.1) to (iii.3) are fulfilled.

(III.4) The ability of the proposed model for predicting the ultimate load, ductility and other relevant engineering parameters of real structures is verified in §8.4.1. In this example the response predicted numerically is compared with experimental results of experimental push–over analysis performed on a scaled model. It is possible to see the good approximation for the global maximum response and for the characteristic values of the structure; i.e. global ductility level, elastic limit and over–strength. Also, the comparison between the distribution of cross sectional damage predicted numerically and the map of fissures obtained after the application of several shaking table tests gives reasonably good results.

(III.5) The ability of the proposed damage indices for predicting the load carrying capacity of structures is verified from the conclusions given in (III.1) to (III.3), however, the most convincing results can be obtained from §8.4.1 to §??

(III.6) To study of the static and dynamic (even seismic) response of real two and three-dimensional precast and cast in place reinforced concrete structures is presented in the detailed examples of §8.4.2 to §?? comparing the results obtained when full nonlinearity is not considered in the numerical simulations. The presented results include the obtention of capacity curves (including the effects of cyclic static actions), the evolution of local and global damage indices,
9.1. Conclusions

The time history response of relevant degrees of freedom, the hysteretic cycles obtained from the action of dynamic loads, the seismic responses and localization and characterization of nonlinearities in framed elements (see Fig. 8.32).

9.1.1 Summary of conclusions

In summary, after reviewing the content of the chapters of this work, it is possible to confirm that it has been developed a formulation for rod structures able to consider in a coupled manner geometric and constitutive sources of nonlinearity in both the static and the dynamic ranges.

The proposed formulation is based on the geometrically exact 3D formulation for rods due to Reissner and Simo considering an initially curved reference configuration, which has been extended to include arbitrary distribution of composite materials in the cross sections. Each material point of the cross section is assumed to be composed of several simple materials with their own constitutive laws. Constitutive laws for the simple materials are based on thermodynamically consistent formulations allowing to obtain more realistic estimations of the energy dissipation in the nonlinear range. The simple mixing rule for composites is used for modeling complex material behaviors at material point level. Viscosity is included at the constitutive level by means of a thermodynamically consistent visco damage model developed in terms of the material description of the material form of the FPK stress vector.

A detailed cross sectional analysis, consistent with the kinematic hypothesis is also presented. From the numerical point of view, the cross sections are meshed into a grid of quadrilaterals, each of them corresponding to fibers directed along the axis of the beam. An additional integration loop, running on the number of fibers, is required to obtain the iterative cross sectional forces, moments and the tangential stiffness tensors. The proposed method, even when inexact from the point of view of the elasticity theory, gives a computationally convenient way of approximating the strain-stress distribution in the section. Warping variables or iterative procedures for obtaining corrected strain fields are avoided in the present formulation. The resulting formulation is well suited for studying the constitutive and geometric nonlinear behavior of framed structures in the static and dynamic cases.

A mesh independent response is obtained by means of the regularization of the energy dissipated at constitutive level considering the characteristic length of the volume associated to a specific integration point and the fracture energy of the materials. Local and global damage indices have been developed based on the ratio between the visco elastic and nonlinear stresses. The proposed damage indices allow estimating the evolution of the global load carrying capacity of the structure and the damage state of the different members during dynamic actions.

The linearization of the virtual work functional (the weak form of the momentum balance equations) is performed in a manner consistent with the kinematical hypothesis of the rod theory and rate dependent inelasticity. An explicit expression for the objective measure of the strain rate acting on each material point is deduced along with its linearized form. The procedure leads to the consistent deduction of the mass and viscous tangent components of the stiffness which are added to the material, geometric and loading dependent
terms. Both, the material and spatial updating rule for rotations are considered. Due to the fact that the deformation map and their related dynamical variables belong to $\mathbb{R}^3 \otimes SO(3)$, an appropriated version of Newmark's scheme is used and details about the numerical implementation of the iterative updating procedure of the involved variables are also addressed. The time discretization of the linearized equations is carried out consistently with the iterative Newmark's scheme.

The space discretization of the linearized problem is performed using the standard Galerkin FE approach. The resulting model is implemented in a displacement based FE code. A Newton–Raphson type of iterative scheme is used for the step-by-step solution of the discrete problem.

Several numerical examples have been included for the validation of the proposed formulation. The examples include elastic and inelastic finite deformation response of framed structures with initially straight and curved beams. Viscous mechanisms of dissipation are included at constitutive level. The verification of the obtention of a mesh independent response for structures presenting softening behavior is carried out. Comparisons with existing literature is performed for the case of plasticity and new results are presented for degrading and composite materials. The geometric and constitutive nonlinear dynamic response of several 2D and 3D structures was computed for different constitutive models including composites. Those examples show how the present formulation is able to capture different complex mechanical phenomena such as the uncoupling of the dynamic response from resonance due to inelastic incursions. Moreover, the present formulation which includes viscosity at material point level, suppress the high frequency content in the dynamic response which is a desirable characteristic of time stepping schemes.

The study of realistic flexible reinforced concrete framed structures subjected to static and dynamic actions is also carried out. The fully coupled constitutive and geometric behavior of the frames is compared for both cases. Detailed studies regarding to the evolution of local damage indices, energy dissipation and ductility demands were presented. Comparisons with experimental data are also provided. Those examples show how the present formulation is able to capture different complex mechanical phenomena such as the uncoupling of the dynamic response from resonance due to inelastic incursions. Other practical studies include the detailed study of seismic response of precast and cast in place concrete structures.

9.2 Further lines of research

Several lines of research can be opened from the results of the present work. A possible grouping of them is the following:

(i) **The extension of the Reissner–Simo theory for coupled thermic-mechanics problems.**

 In the present formulation the adiabatic and isothermal case of the constitutive equations at material point level have been considered (see §4). Therefore, thermally loaded problems are not covered and coupled geometric-thermic-mechanic effects are not allowed. At the author knowledge, only a few works have been considered this case (see e.g. Simmonds [275] for an approximated version of the theory), and
they are limited to theoretical developments in elastic range. In this manner, a possible contribution in further works can be given by the extension of the present formulation for including the full thermodynamical laws in the constitutive part of theory and the corresponding treatment in numerical simulations.

(ii) **Finite deformation models with enhanced kinematical assumptions.**

Several works have been devoted to the development of richer kinematics assumptions\(^1\) incorporated in geometrically exact rod models; see *e.g.* [285, 249] for the inclusion of warping in elastic materials, [250] for anisotropic materials, [276, 117, 115] for the case of plasticity with warping, among others. In any case, the reviewed works present one or more of the following limitations: (a) The out of plane component of the cross sectional displacement field is limited to the consideration of warping functions depending on the arch–length parameter. (b) Inelasticity is limited to plasticity. (c) A full 3D displacement field is added to the one derived from the plane assumption but the corresponding strain measures are simplified considering certain small strain assumptions. (d) General distribution of inelastic composite materials have not been considered.

Additional refinement in the displacement field can be obtained adding a general *distorting* 3D field \(\hat{u} = u_i \hat{t}_i \) on the plane assumption as

\[
\hat{x}(S, \xi_\beta, t) = \hat{x}(S, t) + \xi_\beta \hat{t}_\beta(S, t) + u_i(S, \xi_\beta) \hat{t}_i(S, t),
\]

(9.1) in stead of Eq. (3.22). The distorting field \(\hat{u} \) should be determined, even in the inelastic range, in a way such that the global equilibrium equations are fulfilled. In this case the deformation gradient \(\mathbf{F}_f \) is the sum of the one obtained from plane case and the corresponding derived from the distorting field as

\[
\mathbf{F}_f = \nabla x_i (\hat{x} + \hat{\mathbf{T}}) \otimes \hat{\mathbf{E}} + \nabla x_i (\hat{u}) \otimes \hat{\mathbf{E}} = \mathbf{F}_p + \mathbf{F}_d.
\]

(9.2)

Most of the theory for the plane case has been covered in the present work, therefore it remains opened to develop the same for the \(\mathbf{F}_d \) yielding to additional equilibrium equations at the reduced level, an enhanced virtual work principle and so on. The rest of the usual procedures for proposing a numerical method for solving the new problem (constructing the distorting parts of the strain and strain rate field, linearization, space an time discretization, etc.) should be also be provided.

The main advantage of using the hypothesis of Eq. (9.1) is that a full strain field can be obtained on each material point on the cross section and, therefore, a larger set of constitutive equations can be employed.

Inspired in the work of Bairan and Mari [21, 22], which is limited to small strain assumption, it is possible to guess that the field \(\hat{u} \) should be obtained by means of an appropriated cross sectional analysis enforcing the inter–fiber equilibrium through an iterative procedure. However, no attempts have been done in this line at the present.

\(^1\)In the sense of improving the cross sectional displacement field obtained with the plane cross section assumption.
(iv) **The extension of the present result to shell elements.**

Another type of structural element widely applied in several areas of engineering is the shell element. Geometrically exact models for shells (see [4, 148, 281, 282, 283] for the general theory; [59, 284] for the case of variable thickness; the inclusion of inelasticity can be reviewed in [289]; a shell’s formulation using drilling degrees of freedom can be consulted in [137, 290]; the development of time-stepping schemes in [60, 62, 61, 288], among a really large list of works) share with the present rod model the fact that both formulations produce a nonlinear configuration manifold involving the rotation manifold (or the two-sphere in the case of shells). Particularly, the so called shell formulation with drilling rotations has the same number of degrees of freedom as the rod model and, therefore, are well suited to be combined in a computer code able to simulate the behavior of one and two dimensional structural elements. Typical examples of such structures are inflatable structures shear wall buildings, aircrafts with stiffener among many others. An interesting possibility is given by the fact of extending the present formulation for composite materials to shell elements and combine them with rods for studying the previously described problems.
Appendix A

Introduction to finite rotations

The main aim of the present appendix is to pave the way for the work in the next chapters concerning to the development of a geometrically exact theory 3D rods involving finite deformation, where rotations are coupled with translations. The results here presented naturally impacts on the description of the general motion, and several fields in theoretical and applied mechanics, such as analytical mechanics, structural dynamics, multi-body dynamics, flight mechanics, and so on, have profited from the results provided by the mathematicians or have contributed to develop theories for the accurate description of rotational motion [175].

First, we review some basic concepts associated with large rotations that will be required in the formulation of the kinematic hypothesis of a finite deformation theory for rods. The term large or finite rotation is normally employed in continuous mechanics as opposite to small or infinitesimal rotation, which are a set of rotations that can be described as elements of a vector space. Finite rotations, or more precisely the elements of the non-commutative transformation group, are an extensive and complex topic of mathematics, therefore, only the concepts and formalisms which are strictly necessaries for this work will be reviewed. However, more extensive and detailed works about the mathematical theory of finite rotations can be found in Refs. [7, 8, 35] and on the application to beam, shell and flexible mechanism theories in [141, 139].

The outline of this appendix is as follows: firstly, the vector representation of a rotation is used to explain the noncommutative nature of general large rotations, which are classified as abstract elements of a noncommutative group isomorphic\footnote{A rigorous definition of isomorphisms is the context of topology can be consulted in [217].} to the orthogonal group of rotation tensors. Then a more formal definition of the rotation group in terms of differential manifolds is exposed, revealing a rich mathematical structure which corresponds to these of a Lie group under the usual matrix multiplication. Following, the so called spatial and material updating procedures for compound rotations is explained. A rigorous definition for the tangent space to the rotational manifold is presented in terms of the Lie algebra associated to the group of rotations. A rather detailed discussion about possible parameterizations of the rotational manifold is then described, addressing the practical advantages and limitations of using the vectorial ones. Finally, a configurational approach for describing large rotations in space is given along with the presentation of a set of operators relevant to the present theory.
A.1 Large non-commutative rotations

In Fig. A.1 it is possible to see that the result of applying a set of large rotations on a body depends on the order in which they are applied. In this example three rotations of magnitude \(\pi/2 \) are arranged as the components of the rotation vector \(\hat{\phi} = [\phi_{xx}, \phi_{yy}, \phi_{zz}] \) and then they are applied to a rigid box in two different orders, the final configuration of the box in general, will be different for each one of the options. Therefore, the three components of \(\hat{\phi} \) do not represent uniquely to a given spatial rotation. Hence, rotations can not be treated as vectors due to they component do not commute, as it has been seen in the previous example or alternatively in Refs. [159, 278].

The non–commutativity of the components of the rotation vector implies that finite rotations are not elements of a vectorial space. From an algebraic point of view, a rotation \(\beta \) is a linear map or operator from \(\mathbb{E}^3 \), the 3D Euclidean vector space, to itself; that is to say, when a rotation is applied on a vector, the result always is a new vector, conserving the original length [35].

Given the set \(\mathcal{R} = \{\beta : \mathbb{E}^3 \rightarrow \mathbb{E}^3 \mid \beta \) is a rotation operator\} composed by all the finite rotations, it is possible to define an inner composition \(\tilde{\otimes} \) called sum of rotations in the following way

\[
(\beta_a \tilde{\otimes} \beta_b)(\hat{x}) \in \mathbb{E}^3 = \beta_a(\beta_b(\hat{x})) \quad \forall \quad \beta_a, \beta_b \in \mathcal{R}, \quad \hat{x} \in \mathbb{E}^3 \quad (A.1)
\]

where \(\beta_a, \beta_b \in \mathcal{R} \), are two consecutive rotations applied on the vector \(\hat{x} \in \mathbb{E}^3 \), and \(\beta_a(\beta_b(\bullet)) \in \mathcal{R} \) is the equivalent or compound rotation applied on \(\hat{x} \). The set \(\mathcal{R} \) doted with the composition law \(\tilde{\otimes} \) posses the algebraic structure of non-commutative group (non–Abelian), which is formally defined [35] as

Definition A.1. Non-commutative group of rotations

The set \(\mathcal{R} \) equipped with the internal operation \(\tilde{\otimes} \) is a non-commutative group if it is such that:
The internal operation is associative, i.e. \(\beta_a \otimes (\beta_b \otimes \beta_c) = (\beta_a \otimes \beta_b) \otimes \beta_c \), \(\forall \beta_a, \beta_b, \beta_c \in \mathcal{R} \).

2. There is a unique element \(I \in \mathcal{R} \) called identity such that \(\beta_a \otimes I = I \otimes \beta_a = \beta_a \), \(\forall \beta_a \in \mathcal{R} \).

3. For each \(\beta_a \in \mathcal{R} \) there exist a unique element of \(\mathcal{R} \) called the inverse of \(\beta_a \) and denoted by \(\beta_a^{-1} \), such that \(\beta_a^{-1} \otimes \beta_a = \beta_a \otimes \beta_a^{-1} = I \).

4. The internal operation is non commutative i.e. \((\beta_a \otimes \beta_b)(\hat{x}) \neq (\beta_b \otimes \beta_a)(\hat{x}) \).

For a detailed discussion about transformation groups see Refs. [193, 192, 217].

The group \(\mathcal{R} \) is isomorphic to the set composed by all the real and orthogonal matrices of order 3, with determinant equal to 1. The demonstration of this last result can be found, for example, in Ref. [247]. This isomorphism allow to identify each finite rotation with the corresponding orthogonal rotation tensor belonging to the special orthogonal group \(SO(3) \) defined as

\[
L(\mathbb{E}^3) \supset SO(3) = \{ \Lambda \in M_3(3) \mid \Lambda^T \Lambda = \Lambda \Lambda^T = I; \ |\Lambda| = 1 \} \tag{A.2}
\]

where \(L(\mathbb{E}^3) \) is the space of linear transformations (or tensors) of \(\mathbb{E}^3 \), \(I \) is the identity matrix\(^2\), \(M_3(3) \) is the set composed by all the \(3 \times 3 \) matrices with real coefficients, \(\Lambda \) is a rotation tensor and \(|\bullet| = \text{Det}[\bullet] \) is the determinant operator. Therefore, \(SO(3) \) is the set of all \(3 \times 3 \) real orthogonal matrices with unit determinant. It is not difficult to see that \(SO(3) \) also have the structure of smooth differentiable manifold [95, 196], which is formally defined as

Definition A.2. Smooth n-manifolds

A smooth n–manifold or manifold modeled in \(\mathbb{R}^n \) is a set \(\mathcal{M} \) such that:

1. For each element \(P \in \mathcal{M} \) there is a subset \(\mathcal{U} \) of \(\mathcal{M} \) containing \(P \) and an one-to-one mapping called a chart or coordinate system, \(\{x^\alpha\} \), from \(\mathcal{U} \) onto an open set \(\mathcal{V} \in \mathbb{R}^n \); \(x^\alpha \) denote the components of this mapping (\(\alpha = 1, 2, \ldots, n \)).

2. If \(x^{\alpha} \) and \(\overline{x}^{\alpha} \) are two of such mappings, the change of coordinate functions \(\overline{x}^{\alpha}(x^1, \ldots, x^n) \) are \(C^\infty \) (i.e. it is continuously differentiable as many times as required).

The definition of smooth manifold requires explicit expressions for the charts \(\{x^{\alpha}\} \); in the case of the rotational manifold \(SO(3) \) this aspect will be addressed in a next section devoted to its parametrization. A more extensive treatment about differential manifolds can be consulted in Refs. [200, 196]. It is also possible to show that the differential manifold \(SO(3) \) under the usual matrix multiplication has the structure of a Lie group, which is defined as

\(^2\)Through the text the symbols \(I, I \) and \(i \) are used to denote the identity element on a given set or metric space.
Definition A.3. Lie groups

A Lie group is a smooth n–dimensional manifold M^n endowed with the following two smooth mappings:

$$
\mathcal{F}_\alpha : M^n \times M^n \rightarrow M^n \\
(x_1, x_2) \mapsto \mathcal{F}_\alpha(x_1, x_2) = x_1 \odot x_2 \quad \text{Multiplication.}
$$

where $x_1, x_2 \in M^n$, the symbol \times is used to denote pairing between elements and the symbol \odot is used to indicate an abstract operation (multiplication) between elements of the manifold M^n. The second smooth mapping is:

$$
\mathcal{F}_\nu : M^n \rightarrow M^n \\
x_1 \mapsto \mathcal{F}_\nu(x_1) = (x_1)^{-1} \quad \text{Construction of the inverse element.}
$$

And having marked point $e \in M^n$ which satisfies together with \mathcal{F}_α and \mathcal{F}_ν the relations:

1. $x_1 \odot (x_2 \odot x_3) = (x_1 \odot x_2) \odot x_3$.
2. $e \odot x_1 = x_1 \odot e = x$
3. $x \odot x^{-1} = x^{-1} \odot x = e \blacksquare$

Identifying x_i ($i = 1, 2, 3$) with rotation operators as defined in Eq. (A.2), the operator $\mathcal{F}_\alpha = \odot$ with the usual matrix multiplication and the inverse matrix operator with $\mathcal{F}_\nu = (\bullet)^{-1}$, it is straightforward to see that $SO(3)$ posses the structure of a Lie group [246, 302]. It is also worth to note the parallelism between the definition of Lie group and the non-commutative group of rotations as presented above. For a more rigorous study of Lie groups it is recommendable to consult Refs. [95, 196, 217].

Let us recall that all the elements of $SO(3)$ entails the fundamental properties $\Lambda^{-1} = \Lambda^T$ and $|\Lambda| = 1$. In the same manner, it is possible to identify the rotations $\beta_a, \beta_b, (\beta_a \tilde{\otimes} \beta_b)$ and $(\beta_b \tilde{\otimes} \beta_a) \in \mathcal{R}$ with the corresponding operators: $\Lambda_a, \Lambda_b, \Lambda_{ab}, \Lambda_{ba} \in SO(3)$.

As it has been explained, rotations can be defined by means of rotation operators; the components of a given rotation operator depend on the reference frame adopted. On one hand, if two consecutive rotations β_a and β_b, are composed to obtain $\beta_a \tilde{\otimes} \beta_b$, two situations can happen:

- In the first case, the components of the rotation tensors representing the rotation β_a and β_b, Λ_a and $\Lambda_b \in SO(3)$, respectively, can be directly expressed in terms of a fixed [7], usually called spatial, reference frame and, therefore, the description employed for rotations is called spatial description3.

 In this case, the vector $\hat{v}_c \in \mathbb{E}^3$ obtained by the application of a sequence of N rotations on a vector $\hat{v} \in \mathbb{E}^3$ can be seen as the result of the application of a compound rotation $\Lambda_c \in SO(3)$ obtained by the consecutive application of the rotation tensors

3Some authors [88, 159, 158, 160, 161] prefer to use the language of rigid-body dynamic employing the terms spatial and body attached coordinates in stead of material and spatial descriptions, respectively.
\[\Lambda_i \in SO(3) \ (i = 1 \ldots N) \] on the previous rotated vector, \(\hat{v}_c \), i.e.

\[\hat{v}_c = \Lambda_N(\cdots (\Lambda_i(\cdots (\Lambda_1(\hat{v})) \cdots)) \cdots) = \Lambda_N \cdots \Lambda_i \cdots \Lambda_1(\hat{v}) \in \mathbb{E}^3. \] \tag{A.3}

Therefore, the inverse multiplicative rule for rotation tensors is valid for the composition of rotations [247]. This is the typical case found in mechanics when a body attached frame is involved in describing the kinematics of material points [85] even when the components of the rotation tensors are given in a spatially fixed reference frame.

- In the second case, the rotation tensor \(\Lambda_a \), moves the reference frame and, therefore, the components of the rotation tensor \(\Lambda_b \) representing the second rotation are expressed in the new rotated, or updated, reference frame. If several rotations are applied, the reference frame is transformed in a rotating reference frame.

In this case, the direct multiplicative rule is valid for the composition of rotations, i.e.

\[\hat{v}_c = \Lambda_1(\cdots (\Lambda_i(\cdots (\Lambda_N(\hat{v})) \cdots)) \cdots) = \Lambda_1 \cdots \Lambda_i \cdots \Lambda_N(\hat{v}) \in \mathbb{E}^3. \] \tag{A.4}

Note that in Eq. (A.4) the components of each rotation tensor are referred to the corresponding updated reference frame. This kind of description of rotations is usually called material description and it is completely equivalent to the spatial one.

Identical results as those above explained can be reached by means of simple geometrical considerations; Fig. A.2 presents the result of applying two consecutive rotations \(\theta \) and \(\phi \) about the axis \(Z \) and \(X \) respectively. In Figure A.2a the axis of rotation are fixed and the sequence of rotations is defined as: \(\theta \rightarrow \phi \), first a rotation a rotation about \(Z \) is applied, followed by a rotation about \(X \). On the contrary, in Fig. A.2b rotations are carried out in the inverse order, \(i.e. \phi \rightarrow \theta \). In this case the second rotation \(\theta \) is carried out about the updated axis \(Z' \) obtained after applying the rotation \(\phi \) about \(X \).

In both cases the resulting configuration is the same. Therefore, the composition of two or more rotations defined in terms of a spatially fixed reference frame is the same as these obtained applying the same sequence of rotations referred to a rotating frame but inverting the order of the composition. A more detailed introduction to the material and spatial descriptions of rotations and the related mathematical objects will be given in Section A.4.

A.2 Parametrization of the rotational manifold

Strictly, rotational motion can be regarded as the motion of particle within the nonlinear manifold \(SO(3) \), therefore, it can not be described trivially by using standard coordinates as those commonly employed for motions in a linear space. As it has been previously described, rotations have to be parameterized using suitable charts [217, 302], some time
A.2. Parametrization of the rotational manifold

called quasi–coordinates, which are inherently not global and/or non-singular [247]. Over the years, numerous techniques has been developed to cope with the description of rotational motion, following different approaches e.g. [247, 278, 302]. Among those we found the Cayley, or Gibbs, or Rodrigues parametrization [36]; the Milenkovic, or modified Rodrigues, or conformal rotation vector parametrization [215]; the Euler–Rodrigues, or unit quaternion parametrization [298], the Eulerian angles parametrization [114], (Euler angles are only one of several possible choices within this class, Cardan and Bryant angles being other choices); the Cayley–Klein parametrization [82]; the direction cosine parametrization [154]; and so on.

All these techniques show certain balance between advantages and drawbacks when compared each to other. Usually, both theoretical and computational issues can play a meaningful role in the choice, which is also influenced by the possible specific requirements of its application. According to Trainelli [302], within this somewhat unexpectedly large set, however, it is possible to draw a separation of the various techniques in two broad classes: the vectorial parameterizations, and the non-vectorial parameterizations.

The vectorial parameterizations feature a set of three or more parameters that define the cartesian components of a vector. This do not apply when dealing with non-vectorial techniques (e.g. Euler angles are three scalars that can not be understood as components of a geometric vector). Note that vector parameterizations can be minimal, i.e. are based on a smallest possible set of parameters, since the dimension of the SO(3) is three. Non-minimal parameterizations include the Euler-Rodrigues and the Cayley-klein parameterizations (four scalar parameters related by and algebraic constrain) and the director cosine parametrization (nine scalar parameters related by six algebraic constrains).

In following we briefly describe the several choices for the parametrization of the rotational manifold, although in this work a part of the kinematics of rod elements is described using rotation tensors described by a minimal vectorial parametrization. Firstly, an intuitive geometrical deduction of an explicit expression for the rotation tensor in terms of the cartesian components of a rotation vector throughout the well known Euler’s theorem [302] is presented and then its properties as well as other possible parameterizations are
A.2. Parametrization of the rotational manifold

A.2.1 The Euler’s theorem

The most used minimal vectorial parametrization of the rotation tensor is based by the fundamental theorem of Euler [302], which say: The general displacement of a rigid body or vector, with one point fixed is a rotation about some axis which passes through that point. A schematic representation of the theorem is shown in Fig. A.3 where \(\hat{e} \in \mathbb{R}^3 \) is the unit vector of the axis of rotation and \(\theta = (\hat{\theta} \cdot \hat{\theta})^{1/2} \in [0, 2\pi] \) is the magnitude of the rotation angle with respect to a reference configuration\(^4\). By this way, the notion of a rotation vector \(\hat{\theta} = \theta \hat{e}, \theta \hat{\hat{e}} \), introduced in Section A.1 for describing rotations\(^5\), is recovered.

Figure A.3: Rotation vector.

Whenever \(\theta = 0 \) the axis \(\hat{e} \) is not uniquely defined. Note that, since 2 scalar parameters are needed to represent a constat magnitude vector, such as \(\hat{e} \), a generic rotation can be described at least with 3 scalar parameters, i.e. the dimension of the manifold \(SO(3) \). Identical conclusions can be reached considering that the rotation tensor have nine independent components, which are reduced to three imposing the restriction associated to the manifold \(SO(3) \), i.e. \(\Lambda \Lambda^T = \mathbf{I} \) and \(\text{Det}[\Lambda] = 1 \). By means of the Euler’s theorem, the two quantities (\(\hat{e}, \theta \)) completely define the rotational displacement represented by the rotation tensor \(\Lambda \). Following geometrical reasonings from Fig. A.3 it is possible to see that

\[
\Delta \hat{e} = \Delta \hat{a} + \Delta \hat{b}
\]

where \(\Delta \hat{b} \) is orthogonal to \(\Delta \hat{a} \). The length of \(\Delta \hat{b} \) is given by \(\Delta \hat{b} = R \sin(\theta) \), so that

\[
\Delta \hat{b} = \frac{\Delta \hat{b}}{||\hat{r}_o \times \hat{e}||} (\hat{e} \times \hat{r}_o) = \frac{R \sin(\theta)}{||\hat{r}_o \times \hat{e}||} (\hat{e} \times \hat{r}_o).
\]

\(^4\)The two quantities (\(\hat{e}, \theta \)) are sometimes labeled as the principal axis of rotation and the principal angle of rotation, respectively [302].

\(^5\)The vector \(\hat{\theta} \) is some times called pseudo–vector.
A.2. Parametrization of the rotational manifold

But, $\|\hat{r}_o \times \hat{e}\| = \|\hat{r}_o\| \sin \alpha = R$, as it can be seen from Fig. A.3, so that Eq. (A.6) can be expressed as

$$\Delta \hat{b} = \sin(\theta)(\hat{e} \times \hat{r}_o) = \frac{\sin(\theta)}{\theta}(\hat{\theta} \times \hat{r}_o).$$ \hfill (A.7)

The vector $\Delta \hat{a}$ is orthogonal to both \hat{e} and $\Delta \hat{b}$. Hence:

$$\begin{align*}
\Delta \hat{a} &= \Delta a = \|\hat{e} \times \hat{r}_o\| = (\hat{e} \times (\hat{e} \times \hat{r}_o)) = (\hat{e} \times (\hat{e} \times \hat{r}_o)) = R(1 - \cos \theta) \\
\Delta \hat{a} &= R(1 - \cos \theta)(\hat{e} \times (\hat{e} \times \hat{r}_o)) = 1 - \cos \theta \theta^2(\hat{e} \times (\hat{e} \times \hat{r}_o)).
\end{align*}$$ \hfill (A.8)

Hence, from Eqs. (A.5), (A.7) and (A.8) we have

$$\hat{r}_n = \hat{r}_o + \Delta \hat{r} = \hat{r}_o + \sin(\theta)(\hat{e} \times \hat{r}_o) + R(1 - \cos \theta)(\hat{e} \times (\hat{e} \times \hat{r}_o)).$$ \hfill (A.9)

Considering that $\hat{\theta} \times \hat{r}_o = \tilde{\theta} \hat{r}_o$, where $\tilde{\theta}$ the skew–symmetric tensor obtained from $\hat{\theta}$, i.e. $\hat{\theta} \times \hat{v} = \mathbf{I}[\hat{\theta}]\hat{v} = \tilde{\theta} \hat{v}$, $\forall \hat{v} \in \mathbb{R}^3$, it is possible to recast Eq. (A.9) as

$$\hat{r}_n = \Lambda(\hat{\theta})\hat{r}_o$$ \hfill (A.10)

where the rotation matrix $\Lambda(\hat{\theta})$ is expressed according to the well known Rodrigues’s formula [247, 302, 86]), which relates the rotation vector $\hat{\theta}$ with the associated rotation tensor Λ in the following form:

$$\Lambda = \mathbf{I} + \frac{\sin \theta}{\theta} \hat{\theta} + \frac{(1 - \cos \theta)}{\theta^2} \hat{\theta} \hat{\theta} = \mathbf{I} + \sin \theta \hat{e} + (1 - \cos \theta)\hat{e} \hat{e}. $$ \hfill (A.11)

An alternative expression for Eq. (A.11) is

$$\Lambda = \cos \theta \mathbf{I} + \sin \theta \hat{e} + (1 - \cos \theta)(\hat{e} \otimes \hat{e})$$ \hfill (A.12)

since $(\otimes)^2 = \mathbf{I}, \forall \hat{e} \in \mathbb{R}^3$.

Note that the rotation corresponding to $(-\theta, \hat{e})$ is equivalent to that corresponding to $(\theta, -\hat{e})$, hence it is represented by the tensor $\Lambda^T = \Lambda^{-1}$. It follows that the rotation tensor Λ rotates \hat{e} on to itself, consequently,

$$\Lambda(\hat{e}, \theta)\hat{e} - \hat{e} = \Lambda(\hat{\theta})\hat{\theta} - \hat{\theta} = 0$$ \hfill (A.13)

so that \hat{e} is an eigenvector of Λ with positive unit eigenvalue. The other two eigenvectors and eigenvalues are easily determined using the orthogonality of Λ and considering that it is a real operator with determinant equal to the 1. All the roots of the characteristic polynomial have a modulus equal to the unity. The other two roots are imaginary and conjugated, and it is possible to write their values as, $\lambda_1 = 1$, $\lambda_2 = e^{i\theta}$ and $\lambda_3 = e^{-i\theta}$.

Having determined the roots, the general expression for the characteristic polynomial, φ,
of Λ is

$$\varphi(\Lambda) = \Lambda^3 - \alpha_\varphi \Lambda^2 + \alpha_\varphi \Lambda - I = 0$$ \hspace{1cm} (A.14)

where α_φ is the trace of Λ and it is equal to $(1 - \cos \theta)$ [247, 86]. Additionally, when two rotations Λ_a, Λ_b are composed to obtain $\Lambda = \Lambda_b \Lambda_a$, the quantities $(\theta, \dot{\theta}, \dot{\hat{e}})$ that are found applying Euler’s theorem for the composed rotation Λ are related to $(\theta_a, \dot{\theta}_a, \dot{\hat{e}}_a)$, $(\theta_b, \dot{\theta}_b, \dot{\hat{e}}_b)$, i.e. the corresponding to Λ_a and Λ_b by [302]

$$\cos \frac{\theta}{2} = \cos \frac{\theta_a}{2} \cos \frac{\theta_b}{2} - \sin \frac{\theta_a}{2} \sin \frac{\theta_b}{2} (\dot{\hat{e}}_a \cdot \dot{\hat{e}}_b)$$

$$\sin \frac{\theta}{2} \dot{\hat{e}} = \cos \frac{\theta_a}{2} \sin \frac{\theta_b}{2} (\dot{\hat{e}}_b) + \cos \frac{\theta_b}{2} \sin \frac{\theta_a}{2} (\dot{\hat{e}}_a) + \sin \frac{\theta_a}{2} \sin \frac{\theta_b}{2} (\dot{\hat{e}}_b \times \dot{\hat{e}}_a)$$ \hspace{1cm} (A.15)

A.2.2 Obtention the rotation pseudo–vector from rotation tensor

According to Eq. (A.11) and considering the symmetric part of the rotation tensor Λ [86]

$$\Lambda^{sym} = \frac{1}{2}(\Lambda - \Lambda^T) = \sin \theta \bar{\hat{e}} = \frac{\sin \theta}{\theta} \bar{\hat{e}}$$ \hspace{1cm} (A.16)

from which, knowing the skew–symmetric form of $\bar{\hat{e}}$, the terms $\dot{\hat{e}}$ or θ can be obtained via:

$$\sin \theta \dot{\hat{e}} = \frac{\sin \theta}{\theta} \frac{1}{2} \begin{bmatrix} \Lambda_{32} - \Lambda_{23} \\ \Lambda_{13} - \Lambda_{31} \\ \Lambda_{21} - \Lambda_{12} \end{bmatrix}.$$ \hspace{1cm} (A.17)

This equation can be used provided $0 < ||\bar{\hat{e}}|| < \pi$, but for outside of this range unicity is not ensured. A more accurate procedure for obtaining the pseudo-vector of rotation from the rotation tensor requires to employ a non minimal parametrization [86, 262, 263, 278] of the rotation as it will be discussed in the next sections.

A.2.3 Tangent space to the rotational manifold

Taking into account the orthogonality of Λ, i.e. $\Lambda \Lambda^T = \Lambda^T \Lambda = I$ and considering a variation6 of Λ, $\delta \Lambda$, we have

$$\delta(\Lambda \Lambda^T) = \delta \Lambda \Lambda^T + \Lambda \delta \Lambda^T = \bar{\Phi} + \bar{\Phi}^T = 0$$

$$\delta(\Lambda^T \Lambda) = \delta \Lambda^T \Lambda + \Lambda^T \delta \Lambda = \bar{\Phi}^T + \bar{\Phi} = 0.$$ \hspace{1cm} (A.18)

From Eq. (A.18) it is possible to deduce that the products $\delta \Lambda \Lambda^T$ and $\Lambda^T \delta \Lambda$ are skew–symmetric operators that will be denoted by $\bar{\Phi}$, $(\bar{\Phi}^T)$, and $\bar{\Phi}$, $(\bar{\Phi}^T)$, respectively. It is

6Observe that we have no defined explicit methods for calculating the linearized increments or the variations, however, for the purpose of introducing the main ideas about tangent spaces to $SO(3)$ it is sufficient to suppose that we can calculate $\delta \Lambda$. A detailed exposition about the calculus of variations on the rotational manifold is presented in next sections.
also possible to see that the variation of the rotation tensor is the product of one of this skew–symmetric tensors by the proper rotation tensor, according to

\[\delta \mathbf{\Lambda} = \tilde{\mathbf{\phi}} \mathbf{\Lambda} = \mathbf{\Lambda} \tilde{\mathbf{\Phi}}. \]

(A.19)

By other hand, if we take a point \(\mathbf{\Lambda}_a \in SO(3) \) and let \(\mathbf{\Lambda}(t) \) be any differentiable curve on \(SO(3) \) parameterized in terms of a real parameter \(t \in \mathbb{R} \), that passes through \(\mathbf{\Lambda}_a \) at \(t = 0 \); that is \(\mathbf{\Lambda}(0) = \mathbf{\Lambda}_a \), then the derivative with respect to \(t \), \((d/dt[\mathbf{\Lambda}])|_{t=0} \), is said to be a tangent vector to \(SO(3) \) at \(\mathbf{\Lambda}_a \). The set of all tangent vectors at \(\mathbf{\Lambda}_a \), denoted by \(T_{\mathbf{\Lambda}_a} SO(3) \), forms a vector space called tangent space to \(SO(3) \) at \(\mathbf{\Lambda}_a \); formally we have the following definitions:

Definition A.4. Tangent space

Let \(\mathcal{M} \subset \mathbb{R}^n \) be an open set (manifold) and let \(P \in \mathcal{M} \). The tangent space to \(\mathcal{M} \) at \(P \) is simply the vector space \(\mathbb{R}^n \) regarded as vectors emanating from \(P \); this tangent space is denoted \(T_P \mathcal{M} \) [196] (see Fig. A.4)

In the case of the rotational manifold, the tangent space at the identity \(\mathbf{\Lambda}_a = \mathbf{I} \) is given a special name, the Lie algebra of \(SO(3) \) and is denoted by \(so(3) \). It has several important properties and in following we present a more rigorous definition:

Definition A.5. Lie algebra

A Lie algebra \(\ell \) of the Lie group \(L \) (see §A.1) is a tangent vector space at the identity, \(T_1 L \), equipped with a bilinear, skew–symmetric brackets operator \([\cdot, \cdot]\) satisfying Jacobi’s identity [95, 217]. That is:

1. \([\mathbf{x}_a, [\mathbf{x}_b, \mathbf{x}_c]] + [\mathbf{x}_b, [\mathbf{x}_c, \mathbf{x}_a]] + [\mathbf{x}_c, [\mathbf{x}_a, \mathbf{x}_b]] = 0 \) \(\forall \mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c \in \ell \).

2. The skew–symmetry means that \([\mathbf{x}_a, \mathbf{x}_b] = -[\mathbf{x}_b, \mathbf{x}_a] \) \(\forall \mathbf{x}_a, \mathbf{x}_b \in \ell \).

Where the Lie brackets \([\cdot, \cdot]\) can be obtained by differentiating the Lie algebra adjoint transformation \(Ad_{G} \):

\[Ad_{G} : \ell \rightarrow \ell \]

\[\mathbf{x}_b \rightarrow Ad_{G}[\mathbf{x}_b] := G\mathbf{x}_b G^{-1} \]

where \(\ell \) is a Lie algebra, \(\mathbf{x}_b \in \ell \) and \(G \in L \) a Lie group. The differentiation is carried out with respect to \(G(\nu) \in L \) at the identity in the direction \(\mathbf{x}_a \in \ell \) such that \(G(\nu = 0) = \mathbf{I} \) and \(dG/d\nu|_{\nu=0} = \mathbf{x}_a \) where \(\nu \in \mathbb{R} \) is a parameter, giving:

\[[\mathbf{x}_a, \mathbf{x}_b] \triangleq \frac{d}{d\nu}[G\mathbf{x}_b G^{-1}]|_{\nu=0} = \left[(\frac{d}{d\nu}G)\mathbf{x}_b G^{-1} + G\mathbf{x}_b \frac{d}{d\nu}(G^{-1}) \right]|_{\nu=0} = \mathbf{x}_a \mathbf{x}_b - \mathbf{x}_b \mathbf{x}_a \quad \blacksquare \]

Taking into account the above definition it is possible to show that \(so(3) \) consist of the \(3 \times 3 \) skew–symmetric tensors. Differentiating both sides of \(\Lambda^T(t) \mathbf{\Lambda}(t) = \mathbf{I} \) and considering that \(\Lambda|_{t=0} = \mathbf{I} \) it follows that \((d/dt[\Lambda^T] \mathbf{\Lambda})|_{t=0} + (\Lambda^T d/dt[\mathbf{\Lambda}])|_{t=0} = 0 \), so that the tensor elements of \(so(3) \) have the form

\[\tilde{\Theta} \triangleq \begin{bmatrix} 0 & -\theta_3 & \theta_2 \\ \theta_3 & 0 & -\theta_1 \\ -\theta_2 & \theta_1 & 0 \end{bmatrix}. \]

(A.20)
A.2. Parametrization of the rotational manifold 215

Figure A.4: Tangent vector $\dot{X} \in T_X \mathcal{M}$ to the manifold \mathcal{M}.

Note that an element $\tilde{\theta} \in \mathfrak{so}(3)$ can be represented by a vector $\hat{\theta} \in \mathbb{R}^3$ by means of the isomorphism established by the operator $\Pi : \mathbb{R}^3 \to \mathfrak{so}(3)$ such that $\forall \hat{\theta} \in \mathbb{R}^3$ we have $\Pi[\hat{\theta}] = \tilde{\theta} \in T_I \text{SO}(3)$. Thus, the skew-symmetric $\tilde{\theta}$ belongs to the tangent space of the rotation manifold $\text{SO}(3)$, denoted by $T_{I\text{SO}(3)} = \mathfrak{so}(3)$, where the identity $I \in \text{SO}(3)$ represent a base point on the rotational manifold. The following important relationships between the skew-symmetric tensor $\tilde{\theta} \in \mathfrak{so}(3)$ associated to the rotation vector $\hat{\theta} \in \mathbb{R}^3$ are frequently found in the development of geometrically exact formulations for rods [217, 246, 302]

\begin{align}
\tilde{\theta}_1 \tilde{\theta}_2 &= \hat{\theta}_1 \times \hat{\theta}_2 \\
\tilde{\theta}_1 \hat{\theta}_2 &= \hat{\theta}_2 \otimes \hat{\theta}_1 - \hat{\theta}_1 \cdot \hat{\theta}_2 \\
\hat{\theta}_1 \hat{\theta}_2 &= -\hat{\theta}_2 \hat{\theta}_1 \\
\hat{\theta} \hat{\theta} &= \hat{\theta}^T \hat{\theta} \\
\tilde{\theta}^{n+2} &= -(\hat{\theta}^T \hat{\theta}) \tilde{\theta}^n \quad \text{(for } n \geq 1) \\
\Pi(\hat{\theta}_1 \hat{\theta}_2) &= \hat{\theta}_1 \hat{\theta}_2 - \hat{\theta}_2 \hat{\theta}_1 = \hat{\theta}_2 \otimes \hat{\theta}_1 - \hat{\theta}_1 \otimes \hat{\theta}_2 \tag{A.21f}
\end{align}

REMARK A.1. Taking into account the fact that $T_I \text{SO}(3) \approx \mathfrak{so}(3)$ possesses the formal structure of the Lie algebra of the Lie group $\text{SO}(3)$ it is possible to identify the corresponding adjoint map as follows: if Λ and $\tilde{\theta}$ are arbitrary elements of $\text{SO}(3)$ and $\mathfrak{so}(3)$, respectively; then $\Lambda \tilde{\theta} \Lambda^{-1}$ is the corresponding adjoint map [193] which is another element of $\mathfrak{so}(3)$ and the following identity can be established: $\Lambda \tilde{\theta} \Lambda^T = \Pi[\Lambda \hat{\theta}]$ ■

REMARK A.2. In view of the above results, considering appropriate smoothness assumptions [217] and taking into account Eqs. (A.19) and (A.21g), the derivative of $\Lambda(s)$ with respect to $s \in \mathbb{R}$ may be put in the well known form\(^7\) $\Lambda_s = \tilde{\omega}_s \Lambda$, where $\tilde{\omega}_s := \Lambda_s \Lambda^T \in \mathfrak{so}(3)$, which is termed the rotational vorticity or spin. Combining this with the Rodrigues’s formula of Eq. (A.11) and noting that $\dot{\hat{e}} \cdot \hat{e} = 0$ since \hat{e} is a constant magnitude vector, the following expression is obtained

\begin{equation}
\tilde{\omega}_s = \theta_s \dot{\hat{e}} + [\sin \theta \hat{e} + (1 - \cos \theta) \hat{e}][\dot{\hat{e}}] \tag{A.22}
\end{equation}

where $\tilde{\omega}$ is expressed in terms of $(\theta, \dot{\theta}, \hat{e})$ and their derivatives ■

\(^7\)Here $(\bullet)_s$ (’comma’s) is used to denote partial differentiation of (\bullet) with respect to $s \in \mathbb{R}$.

A.2. Parametrization of the rotational manifold

A.2.4 The exponential form of the rotation tensor

The exponential form of the rotation tensor is based on the specialization of the exponential map [35, 86, 302] defined by the tensorial power series

$$ \exp[\bullet] := \sum_{k=0}^{\infty} \frac{(\bullet)^k}{k!} $$ \hspace{1cm} (A.23)

to the case of rotation,

$$ \exp[\bullet] : so(3) \approx T_1 SO(3) \rightarrow SO(3) \quad \tilde{\theta} \mapsto \Lambda(\tilde{\theta}) \equiv \exp[\tilde{\theta}] . $$ \hspace{1cm} (A.24)

That is to say that for any rotation vector $\hat{\theta} \in \mathbb{R}^3$, and hence any skew-symmetric tensor $\tilde{\theta} \in so(3)$, we get the rotation tensor $\Lambda(\hat{\theta}) = \exp[] \circ \Pi \circ \hat{\theta}$. For these reasons, the exponential parametrization of rotation and the associated rotation vector, appears as the most direct representation among all possible vectorial parameterizations which are discussed in following sections, and it is also addressed as the natural or canonical parametrization for $SO(3)$. The Rodrigues’s formula is recovered from Eq. (A.23) taking into consideration the recursive property of the cross product:

$$ \tilde{\theta}^{2m-a} = (-1)^{m-1}\theta^{2(m-1)}\tilde{\theta}^a $$ \hspace{1cm} (A.25)

for any $m \in \mathbb{N}$ and $a \in \{1, 2\}$. Using the previous result we get

$$ \exp[\tilde{\theta}] = I + \sum_{m=1}^{\infty} \frac{(-1)^{m-1}\theta^{2(m-1)}}{(2m-1)!} \tilde{\theta} + \sum_{m=1}^{\infty} \frac{(-1)^{m-1}\theta^{2(m-1)}}{2m!} \tilde{\theta}^2 $$ \hspace{1cm} (A.26)

and, therefore, Eq. (A.11) is recovered after recognition of the power expansions in terms of those for $\sin(\theta)$ and $\cos(\theta)$. Given a rotation tensor Λ, the corresponding rotation vector $\hat{\theta}$ can be recovered by means of using the inverse formula

$$ \hat{\theta} := \text{axial}[\log(\Lambda)] $$ \hspace{1cm} (A.27)

where the logarithmic function is defined by the tensorial power series

$$ \log[\bullet] : SO(3) \rightarrow T_1 SO(3) \approx \mathbb{R}^3 \quad \Lambda(\hat{\theta}) \mapsto \log[\Lambda] = \tilde{\theta} \approx \hat{\theta} \in \mathbb{R}^3 $$ \hspace{1cm} (A.28)

$$ \log[\bullet] := -\sum_{k=0}^{\infty} \frac{1}{k!} (I - \bullet)^k . $$ \hspace{1cm} (A.29)

Note that, when applied to rotations, the $\exp[\bullet]$ and $\log[\bullet]$ maps are not one-to-one, therefore a restriction over all possible (∞) determinations of $\hat{\theta}$ for a given Λ must be imposed. This is accomplished selecting the principal value of $\hat{\theta}$, i.e. the single vector within all possible solutions of Eq. (A.25) that has a magnitude in $[0, 2\pi)$.

A.2.5 Differential map associated to \(\exp[\bullet] \)

The exponential map has associated the following differential map defined by tensorial power series [302],

\[
dexp[\bullet] := \sum_{k=0}^{\infty} \frac{\bullet^k}{(k + 1)!}.
\] (A.30)

The exponential map and its associated differential map enjoy remarkable properties, valid beyond the particular application to rotations presented here. Among those we recall:

\[
\exp[\bullet] = dexp[\bullet]dexp[-\bullet]^{-1} = dexp[-\bullet]^{-1}dexp[\bullet]
\]

\[
dexp[\bullet] = I + \bullet dexp[\bullet] = I + dexp[\bullet] \bullet
\] (A.31)

the second property of Eq. (A.31) expresses the symbolical definition of the associated differential map as the derivative of the exponential map in the neighborhood of the identity, i.e.

\[
dexp[\bullet]^{sym} \equiv \exp[\bullet] - I \cdot \bullet.
\] (A.32)

The differential tensor associated to \(\Lambda(\hat{\theta}) \) is denoted \(D_\Lambda = dexp[\hat{\theta}] \). A finite form formula similar to Eq. (A.11) for \(\Lambda \) holds for the differential tensor

\[
D_\Lambda = I + \alpha_1 \hat{\theta} + \alpha_2 \hat{\theta}^2
\] (A.33)

where the scalar coefficients \(\alpha_1 \) and \(\alpha_2 \), depending evenly on \(\theta \), are given by

\[
\alpha_1 := \frac{(1 - \cos \theta)}{\theta_2} = \frac{1}{2} \frac{\sin(\theta/2)}{(\theta/2)^2}
\] (A.34a)

\[
\alpha_2 := \frac{(\theta - \sin \theta)}{\theta_3}.
\] (A.34b)

It is worth noting that \(\text{Det}(D_\Lambda) = 2\alpha_1 = \sin^2(\theta/2)/((\theta/2)^2) \), so that \(D_\Lambda \) is singular at \(\theta = \pi \), while for \(\theta = 0 \) we get \(D_\Lambda = \Lambda(\hat{\theta}) = I \). The associated differential map relates the derivatives of the rotation vector with respect to a given scalar parameter \(s \in \mathbb{R} \), \(\hat{\theta}_s \), with the corresponding skew–symmetric tensor \(\hat{\omega}_s \) depending on \(\hat{\omega}_s \) is given by

\[
\hat{\omega}_s = D_\Lambda \hat{\omega}_s = dexp(-\hat{\theta}) \hat{\omega}_s \in \mathbb{R}^3
\] (A.35)

as can easily verified from Eq. (A.22). The inverse of the associated differential map can be expressed as the tensorial power series

\[
D_\Lambda^{-1} = I + \frac{1}{2} \hat{\theta} + \frac{1}{\theta^2} \left(1 - \frac{1}{2} \frac{\sin \theta/\theta}{(1 - \cos \theta)/\theta^2} \right) \hat{\theta}^2 = I - \frac{1}{2} \hat{\theta} + \frac{1}{\theta^2} \left(1 - \frac{\theta/2}{\tan(\theta/2)} \right) \hat{\theta}^2.
\] (A.36)

For a detailed deduction of Eqs. (A.33), (A.34a) and (A.34b) see [302].
A.2.6 General minimal vectorial parametrization

The previously presented Rodrigues’s formula provides a vectorial parametrization of the rotation tensor that is minimal in the sense that it is characterized by a minimal set of three parameters, which can be arranged as the pair \((p, \hat{e})\). In a more general case, this kind of vectorial minimal parametrization consists of the pair \((p, \hat{e})\) [302], where \(p = p(\theta)\) is the generating function of the parametrization. The generating function must be an odd function of the rotation angle \(\theta = |\hat{\theta}|\) and must to present the limit behavior: \(\lim_{\theta \to 0} p(\theta)/\theta = k\), where \(k \in \mathbb{R}\) is a constant called normalization factor of the parametrization. The parameters are used to construct the rotation parameter vector \(\dot{p} = p\dot{e} \in \mathbb{R}\). We denote the vectorial parametrization map of rotation as

\[
\text{rot}[\dot{\bullet}] : \mathbb{R}^3 \to SO(3)
\]

\[
\Pi[\dot{p}] = \ddot{p} \iff \text{rot}[\ddot{p}] = \Lambda(\dot{p}).
\]

(A.37)

Thus, given a rotation parameter vector \(\dot{p} \in \mathbb{R}^3\) and its associated skew–symmetric tensor \(\ddot{p} \in so(3)\), we get a rotation tensor by \(\Lambda = \text{rot}[\ddot{p}]\). The explicit expression of the vectorial parametrization map is easily obtained from the Euler-Rodrigues formula, Eq. (A.11), as

\[
\Lambda = I + P_1 \ddot{p} + P_2 \dddot{p}^2
\]

(A.38)

where the scalar coefficients \(P_1\) and \(P_2\), depending evenly on \(\theta\), read \(P_1(\theta) := \sin(\theta)/(p(\theta))^2\) and \(P_2(\theta) := 1 - \cos(\theta)/(p(\theta))^2\) \((p = |\ddot{p}|)\). We remark\(^8\) that Eq. (A.38) holds also for the case \(\ddot{p} = 0\), yielding \(\Lambda = I\). The eigenvalues \(\lambda_{1,2}(\Lambda)\) are written in terms of \(P_1\) and \(P_2\) as

\[
\lambda_{1,2}(\Lambda) = (1 - p^2 P_2) \pm ipP_1
\]

(A.39)

and \(\text{Det}[\Lambda] = |\Lambda| = (1 - p^2 P_2)^2 + (pP_1)^2 = 1\).

As seen with the exponential parametrization, it is possible to associate a differential map \(\text{drot} : so(3) \mapsto \mathcal{L}(\mathbb{R}^3)\) to the minimal vectorial parametrization map such that, symbolically,

\[
\text{drot}[\dot{\bullet}] \overset{\text{sym}}{=} \frac{\text{rot}[\dot{\bullet}] - I}{\bullet}
\]

(A.40)

and the following properties are satisfied:

\[
\text{rot}[\dot{\bullet}] = \text{drot}[\dot{\bullet}] \text{drot}[-\dot{\bullet}]^{-1} = \text{drot}[-\dot{\bullet}]^{-1} \text{drot}[\dot{\bullet}]
\]

\[
\text{rot}[\dot{\bullet}] = I + (\dot{\bullet}) \text{drot}[\dot{\bullet}] = I + \text{drot}[\dot{\bullet}] (\dot{\bullet})
\]

(A.41)

in complete analogy with the exponential map. The explicit expression for the associated differential map is

\[
H = \mu I + H_1 \ddot{p} + H_2 \dddot{p}^2
\]

(A.42)

\(^8\)An alternative expression of the vectorial parametrization map [302] is: \(\Lambda = I + [\gamma I + \frac{1}{2} \nu \ddot{p}] \nu \ddot{p}\), where the scalar coefficients \(\gamma\) and \(\nu\), depending evenly on \(\theta\), are defined as: \(\gamma(\theta) := \cos(\theta)/2\), \(\nu(\theta) := 2 \sin(\theta)/p(\theta)^2\). Clearly, \(\gamma = P_1/\sqrt{2P_2}\), \(\nu = \sqrt{2P_2}\) and \(\text{Det}[\Lambda] = (1 - (\nu p)^2/2 + \gamma^2(\nu p)^2 = 1\).
The coefficients μ, H_1 and H_2, depending evenly on θ, are defined as $\mu(\theta) = \frac{1}{p'(\theta)}$, $H_1(\theta) = \frac{1 - \cos \theta}{p(\theta)^2}$ and $H_2(\theta) = \frac{\mu(\theta)p(\theta) - \sin \theta}{p(\theta)^3}$. With $p' := dp/d\theta$. Note that $H_1 = P_2$ and that $H_2 = (\mu - P_1)/p^2$.

The associated differential map relates the derivative $\hat{\omega}_s$ ($s \in \mathbb{R}$) of the rotation parameter vector with the spin $\tilde{\omega}_s$ as $\hat{\omega}_s = \text{drot}(\hat{p})\hat{\omega}_s$. The inverse of the associated differential tensor may be expressed as

$$H^{-1} = \frac{1}{\mu}I - \frac{1}{2}\tilde{p} + \frac{1}{p^3} \left(\frac{1}{\mu} - \frac{1}{2} \frac{P_1}{P_2} \right)p^2$$

(A.43)

Table A.1 show a summarization of the more commonly used minimal vectorial parameterizations.

<table>
<thead>
<tr>
<th>Parametrization</th>
<th>$p(\theta)$</th>
<th>$\Lambda(\hat{p})$ ($\hat{p} = p(\theta)\hat{e}$)</th>
<th>$H(\hat{p})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>θ</td>
<td>\mathbf{I}</td>
<td>\mathbf{I}</td>
</tr>
<tr>
<td>Linear</td>
<td>$\sin(\theta)$</td>
<td>$\mathbf{I} + \frac{\sin(\theta)}{p(\theta)}\hat{p}$</td>
<td>$\mathbf{I} + \frac{1 - \cos \theta}{p(\theta)^2}p$</td>
</tr>
<tr>
<td>Cayley/Gibbs/Rodrigues</td>
<td>$2k \tan(\frac{\theta}{2})$</td>
<td>$\mathbf{I} + \frac{\sin(\theta)}{p(\theta)}\hat{p}$</td>
<td>$\mathbf{I} + \frac{1 - \cos \theta}{p(\theta)^2}p$</td>
</tr>
<tr>
<td>Wiener/Milenkovic</td>
<td>$4k \tan(\frac{\theta}{4})$</td>
<td>$\mathbf{I} + \frac{\sin(\theta)}{p(\theta)}\hat{p}$</td>
<td>$\mathbf{I} + \frac{1 - \cos \theta}{p(\theta)^2}p$</td>
</tr>
<tr>
<td>Reduced Euler-Rodrigues</td>
<td>$2k \sin(\frac{\theta}{2})$</td>
<td>$\mathbf{I} + \frac{\sin(\theta)}{p(\theta)}\hat{p}$</td>
<td>$\mathbf{I} + \frac{1 - \cos \theta}{p(\theta)^2}p$</td>
</tr>
</tbody>
</table>

A.2.7 Non–minimal vectorial parameterizations: quaternions

The minimal parameterizations show some limitations that stem from the use of pseudo–vectors, for example all those associated with the sine generating function has certain advantages but it is non-unique for angles greater than π, other of them became the rotation tensor or its differential map rank deficient for certain values of θ [247, 280, 86]. The problem can be overcame if four parameters, commonly called normalized quaternion or Euler parameters, are employed for parameterizing the rotation. With such a process in mind, it is possible to re-express Eq. (A.11) using half-angles so that:

$$\Lambda = (\cos^2(\theta/2) - \sin^2(\theta/2))\mathbf{I} + 2\cos(\theta/2)\sin(\theta/2)\tilde{\theta} + 2\sin^2(\theta/2)\hat{e} \otimes \hat{e}. \quad (A.44)$$

In deriving Eq. (A.44) it has been made use of the half-angle formulae, but also the relationship $\tilde{e}e = e^2 = \hat{e} \otimes \hat{e} - \mathbf{I}$.

A unit quaternion is now defined using four Euler parameters, q_0–q_3, so that:

$$\hat{q}_q = \cos(\theta/2) + \sin(\theta/2)\hat{e} = \begin{bmatrix} \hat{q}_0 \\ \hat{q}_1 \\ \hat{q}_2 \\ \hat{q}_3 \end{bmatrix} = \begin{bmatrix} \sin(\frac{\theta}{2})\hat{e} \\ \cos(\frac{\theta}{2}) \end{bmatrix} = \begin{bmatrix} \frac{\psi}{2} \\ \cos(\frac{\theta}{2}) \end{bmatrix} \quad (A.45)$$

where $\hat{\psi}$ is the reduced Euler Rodrigues pseudo–vector, see Table A.1, with $k = 1/2$. From Eq. (A.45), the length of \hat{q} is clearly unity with $\hat{q}_q \cdot \hat{q}_q = q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$.

A.2. Parametrization of the rotational manifold

Substituting from Eq. (A.45) into (A.44) leads to the relationship:

\[
\Lambda(q_0 \hat{q}) = (q_0^2 - \hat{q} \cdot \hat{q}) I + 2 q \otimes \hat{q} + 2 q_0 \tilde{q} = 2 \begin{bmatrix}
q_0^2 + q_1^2 - 1/2 & q_1 q_2 - q_3 q_0 & q_1 q_3 + q_2 q_0 \\
q_2 q_1 + q_3 q_0 & q_0^2 + q_2^2 - 1/2 & q_2 q_3 - q_1 q_0 \\
q_3 q_1 - q_2 q_0 & q_3 q_2 + q_1 q_0 & q_0^2 + q_3^2 - 1/2
\end{bmatrix}
\]

(A.46)

REMARK A.3. The quaternion compound rotation is given by \(\hat{q}_{ab} = \hat{q}_b \hat{q}_a\), where \(\hat{q}_b \hat{q}_a\) involves the quaternion product whereby:

\[
\hat{b} \hat{a} = a_0 b_0 - \hat{a} \cdot \hat{b} + a_0 \hat{b} + b_0 \hat{a} - \hat{a} \times \hat{b}
\]

which is non-commutative because the inverse product is

\[
\hat{a} \hat{b} = a_0 b_0 - \hat{a} \cdot \hat{b} + a_0 \hat{b} + b_0 \hat{a} + \hat{a} \times \hat{b}
\]

\(\forall\) quaternion \(\hat{a}\) and \(\hat{b} \in \mathbb{R}^4\). Analogous expressions can be obtained for \(\Lambda\) in terms of quaternion and other pseudo–vectors [86].

A.2.7.a Normalized quaternion from the rotation tensor

A general procedure for obtaining the rotation vector from the rotation tensor involves the computation of the Euler parameters, \(q_0 - q_3\). This can achieved via algebraic manipulations on the component of \(\Lambda\) as expressed in Eq. (A.46). The Spurrier's algorithm [86, 280], which can be simply checked by working with the components for Eq. (A.46), involves:

\[
a = \max \left[\text{Tr}[\Lambda], \Lambda_{11}, \Lambda_{22}, \Lambda_{33} \right]
\]

(A.47a)

where \(\text{Tr}[\bullet] = \sum_i (\bullet)_{ii}\) is the trace operator\(^9\) and

\[
\text{if } a = \text{Tr}(\Lambda) \rightarrow \left\{ \begin{array}{l}
q_0 = \frac{1}{2} \left(1 + a \right)^{1/2} \\
q_i = (\Lambda_{kj} - \Lambda_{jk})/4q_0; \quad i = 1, 3 \\
q_i = \left(\frac{1}{2} a + \frac{1}{4} \left[1 - \text{Tr}[\Lambda] \right] \right)
\end{array} \right.
\]

(A.47b)

\[
\text{else if } a = \Lambda_{ii} \rightarrow \left\{ \begin{array}{l}
q_0 = \frac{1}{4} (\Lambda_{kj} - \Lambda_{jk})/q_i \\
q_l = \frac{1}{4} (\Lambda_{ll} + \Lambda_{ll})/q_i; \quad l = j, k
\end{array} \right.
\]

with \(i, j, k\) as the cyclic combination of 1, 2, 3.

Allowing for the definition of \(q_0 - q_3\) in Eq. (A.45), Eq. (A.47b) coincide with the earlier relationship for \(\hat{e}\) (or \(\hat{\theta}\)) in Eq. (A.17). Having obtained \(q_0 - q_3\) for rotations of magnitude less than \(\pi\), the tangent scaled pseudo vector can be obtained from: \(2 \tan(\theta/2) \hat{e} = \frac{2}{q_0} \hat{q}\) (see Table A.1).

\(^9\)A more elaborated definition for the trace operator will be presented in the next sections.
A.3 Configurational description of motion

In this section a brief introduction to the configurational approach for the description of the motion of bodies is presented. The minimal amount of concepts is introduced to show a general framework of the theory. In the next sections the concepts here presented will be expanded for the case of motions involving large rotations. Some previous knowledge in differential geometry and continuous mechanics is required and, therefore, only a few preliminary concepts about tensors on manifolds will be addressed. Details about the configurational approach to the dynamics of bodies in the context of differential manifolds can be reviewed in Refs. [193, 196].

A.3.1 Preliminaries

In this section some preliminaries for an appropriate description of motion in terms of differentiable manifolds is given. Let to consider the set \(\{x^j\} \) denoting a curvilinear coordinate system defined on an open subset of \(\mathbb{R}^3 \), \(\{z^i\} \) and \(\{\hat{l}_i\} \) denoting the (canonical) Cartesian coordinate systems of \(\mathbb{R}^3 \) and the corresponding unit basis vectors, respectively; it is possible to see the \(z^i \) as function of \(x^j \) and vice-versa. Then, the following entities can be defined:

Definition A.6. Curvilinear basis vector

The curvilinear coordinate basis vector \(\hat{g}_j \) corresponding to \(x^j \) are defined by:

\[
\hat{g}_j = \frac{\partial z^i}{\partial x^j} \hat{l}_i, \quad (i = 1, \ldots, 3)
\]

and are tangent to the coordinate curves obtained from \(x^j \). The dual basis \(\hat{g}_j^* \) is defined by \(\hat{g}_j^* \cdot \hat{g}_k = \delta_{jk} \). These two basis are said to be the dual each of the other □

Definition A.7. Metric tensor

The metric tensor \(g_{jk} \) is defined as

\[
g_{jk} = \frac{\partial z^i}{\partial x^j} \frac{\partial z^p}{\partial x^k} \delta_{ip}
\]

and let \(g^* = g^{-1} \) denote the inverse tensor of \(g \) then \(\hat{g}_j^* = g \hat{g}_j \) □

Commonly, the vector \(\hat{g}_j \) are called co-variant vectors and \(\hat{g}_j^* \) contra-variant vectors or simply vectors. For more details about co-variant vectors consult [95, 196, 200, 217]. Let suppose that all the vector spaces considered in the study are equipped with a metric tensor. Therefore, all the involved spaces are metric vector spaces and all the finite-dimensional manifolds are Riemannian manifolds that are embedded in the Euclidean space. Additionally, we may identify a dual vector space by its primary vector space.

Definition A.8. Co-vector space

The co-vector space \(\mathcal{V}^* \) of the vector space \(\mathcal{V} \) is defined by the space of linear maps \(\mathcal{V} \to \mathbb{R} \),
i.e. \(V^* := \mathcal{L}(V, \mathbb{R}) \). These linear maps are represented by the dot product defined as

\[
(\bullet \cdot \bullet) : V^* \times V \to \mathbb{R} \\
(f^*, \hat{a}) \mapsto \hat{f}^* \cdot \hat{a} \in \mathbb{R}
\]
(A.48)

which is bilinear and well defined, i.e. if \(\hat{f}^* \in V^* \) is fixed and \(\hat{f}^* \cdot \hat{a} = 0 \ \forall \ \hat{a} \in V \), then \(\hat{a} = 0 \). Conversely, if \(\hat{a} \in V \) is fixed and \(\hat{f}^* \cdot \hat{a} = 0 \ \forall \ \hat{f}^* \in V^* \), then \(\hat{f} = 0 \). Note that the co–vector space is also a vector space satisfying the vector space properties. A vector and its co–vector spaces are canonically isomorphic i.e. \(V \approx V^* \)

Definition A.9. Adjoint operator

Let \(F \in \mathcal{L}(V, W) \) be a linear operator between the vector spaces \(V \to W \). The adjoint operator \(F^* \equiv \text{Ad}[F] \in \mathcal{L}(V^*, W^*) \) is defined with the aid of the dot product as

\[
(F^* \hat{w}^*) \cdot \hat{a} = \hat{w}^* \cdot (F \hat{a}) \in \mathbb{R}, \quad \forall \ \hat{a} \in V, \ \hat{w}^* \in W^*
\]
(A.49)

where the first dot product is on the vector space \(V \) and the second one on the vector space \(W \), see Fig. A.5. The adjoint operator is also called a dual operator.

![Figure A.5: Domains and ranges for the operator F and its adjoint operator F*](image)

Definition A.10. Inverse operator

If the operator \(F \) is a linear bijection, \(F \in \mathcal{L}(V, W) \), the inverse operator \(F^{-1} \in \mathcal{L}(W, V) \) exist and is unique. The inverse operator is defined by means of the formulas \(I = F^{-1}F \) and \(i = FF^{-1} \), where \(I \in \mathcal{L}(V, V) \) is the identity on \(V \), and \(i \in \mathcal{L}(W, W) \) is the identity on \(W \). The inverse of the adjoint operator \(F^* \in \mathcal{L}(V^*, W^*) \) is defined similarly as \(i^* = F^{-*}F^* \) and \(I^* = F^*F^{-*} \), where \(i^* \in \mathcal{L}(W^*, W^*) \) is the identity on \(W^* \), and \(I^* \in \mathcal{L}(V^*, V^*) \) is the identity on \(V^* \). Note that an inverse adjoint operator is an operator \(F^{-*} \in \mathcal{L}(V^*, W^*) \).

Let the pairs \((V, G)\) and \((W, g)\) indicate metric vector spaces equipped with the metric tensor \(G \in \mathcal{L}(V, V^*) \) and \(g \in \mathcal{L}(W, W^*) \). Metric tensor are used for measuring distances and deformation, which, in general, is not possible without introducing a metric. Since manifolds are embedded in the Euclidean space we could choose metric tensor as the identity elements. This can be achieved by identifying the metric tensor spaces \((V, G)\) and \((W, g)\) with the Euclidean vector space.
Definition A.11. *Inner product*

The *inner product* for a metric vector space \((\mathcal{V}, \mathbf{G})\) is defined by

\[
\langle \cdot, \cdot \rangle_{\mathbf{G}} : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}
\]

\[
(\hat{a}, \hat{b}) \mapsto \langle \hat{a}, \hat{b} \rangle_{\mathbf{G}} := \hat{a} \cdot \hat{b} = \hat{a}^* \cdot \hat{b}
\]
(A.50)

where for simplicity the co–vector \(\hat{\mathbf{G}} \hat{a} = \hat{G}_{ij} a^j\) is often denoted by \(\hat{a}^*\).

Definition A.12. *Transpose operator*

The *transpose operator* of the tensor operator \(\mathbf{F} \in \mathcal{L}(\mathcal{V}, \mathcal{W})\), denoted \(\mathbf{F}^T\), is formally defined via the inner product as

\[
\langle \mathbf{F}^T \hat{\mathbf{w}}, \hat{\mathbf{v}} \rangle = \langle \hat{\mathbf{w}}, \mathbf{F} \hat{\mathbf{v}} \rangle \quad \forall \ \hat{\mathbf{w}} \in \mathcal{W}, \ \hat{\mathbf{v}} \in \mathcal{V}.
\]
(A.51)

Hence, the transpose operator is a mapping \(\mathbf{F}^T \in \mathcal{L}(\mathcal{W}, \mathcal{V})\).

After the definition of the inner product, we found a relation between the transpose \(\mathbf{F}^T\) and the adjoint operator \(\mathbf{F}^*\), yielding \(\mathbf{F}^T = \mathbf{G}^{-1} \mathbf{F}^* \mathbf{g}\). Note that the transpose operator depends on metric tensors on contrary to the adjoint operator and that in the case when \(\mathbf{G} = I\) and \(\mathbf{g} = i\) both operators are the same.

Definition A.13. *Tensor product*

The *tensor product* between the vector \(\hat{a} \in \mathcal{V}\) and the co–vector \(\hat{f}^* \in \mathcal{W}^*\) is defined employing the dot product by

\[
(\hat{a} \otimes \hat{f}^*) \cdot \hat{w} = (\hat{f}^* \cdot \hat{w})\hat{a} \in \mathcal{V} \quad \forall \ \hat{w} \in \mathcal{W}
\]
(A.52)

where the tensor \(\hat{a} \otimes \hat{f}^*\) belongs to the tensor space produced by \(\mathcal{V}\) and \(\mathcal{W}^*\), i.e. \(\hat{a} \otimes \hat{f}^* \in \mathcal{V} \otimes \mathcal{W}^* = \mathcal{L}(\mathcal{W}, \mathcal{V})\).

The tensor product is a linear mapping for each member separately and, therefore, a bilinear operator. The tensor is called a two–point tensor if it is defined on two different vector spaces.

Definition A.14. *General two–point tensor space*

The *general two–point tensor space* \(\mathfrak{F}\) can be denoted by

\[
\mathfrak{F} := \mathcal{V} \otimes \cdots \otimes \mathcal{V} \otimes \mathcal{V}^* \otimes \cdots \otimes \mathcal{V}^* \otimes \mathcal{W} \otimes \cdots \otimes \mathcal{W} \otimes \mathcal{W}^* \otimes \cdots \otimes \mathcal{W}^*
\]

that is a space of \(r\)-fold on the vector space \(\mathcal{V}\), \(s\)-fold on the vector space \(\mathcal{V}^*\), \(t\)-fold on the vector space \(\mathcal{W}\) and \(u\)-fold on the vector space \(\mathcal{W}^*\). This can be shortly denoted by the tensor space \(\mathfrak{F}(r, s, t, u)\).

Permutation of vector spaces is allowed\(^{10}\). The tensor space is a vector space itself by satisfying all vector space properties \([217]\). The vectors can be considered as first

\(^{10}\)The notation \(\mathfrak{F}(1, 0, 0, 1)\) could mean the tensor spaces \(\mathcal{V} \otimes \mathcal{W}^*\) or \(\mathcal{W}^* \otimes \mathcal{V}\).
order tensors and both of them can be characterized by studying if they are elements of corresponding vector or tensor spaces, respectively. A general tensor is defined as an element of a tensor space, thus the two-point tensor T of the tensor space $\mathfrak{F}(r, s, t, u)$ is the following multi-linear mapping:

$$T : \left(\mathcal{V}^* \times \cdots \times \mathcal{V}^* \times \mathcal{V} \times \cdots \times \mathcal{V} \times \mathcal{W}^* \times \cdots \times \mathcal{W}^* \times \mathcal{W} \times \cdots \times \mathcal{W} \right) \rightarrow \mathbb{R}. $$

The two-point tensor T is an element of the two-point tensor space such that it assigns a tensor for its two-point domain.

Definition A.15. Trace operator

The trace of the tensor, $\text{Tr} \in \mathcal{L}(\mathcal{V}^* \times \mathcal{V}^*, \mathbb{R})$ of the one point tensor $\hat{f}^* \otimes \hat{a} \in \mathcal{V}^* \times \mathcal{V}$ is a scalar-valued linear operator defined via the dot product

$$\text{Tr}(\hat{f}^* \otimes \hat{a}) = \hat{f}^* \cdot \hat{a} \in \mathbb{R} \quad (A.53)$$

Also the trace operation for the tensor on $\mathcal{V} \times \mathcal{V}^*$ can be applied noting $\mathcal{V} = \mathcal{V}^{**}$, but it is not defined for two-point tensors \blacksquare

An useful property of the trace operator is

$$\text{Tr}[T^iT_2] = \text{Tr}[T_1T^iT_2] \quad (A.54)$$

for any pair of second order Cartesian tensors T_1 and T_2.

Definition A.16. Double-dot product

The double-dot product of the tensors $\hat{f}^* \otimes \hat{t}^* \in \mathcal{V}^* \otimes \mathcal{W}^*$ and $\hat{v} \otimes \hat{w} \in \mathcal{V} \otimes \mathcal{W}$ is defined via the ordinary dot product as

$$(\hat{f}^* \otimes \hat{t}^*) : (\hat{v} \otimes \hat{w}) := (\hat{f}^* \cdot \hat{v})_V \cdot (\hat{t}^* \cdot \hat{w})_W \in \mathbb{R} \quad (A.55)$$

where the subscripts indicate the vector space of the corresponding dot product. Therefore, the double-dot product is mapping $\mathcal{L}(\mathcal{V}^* \times \mathcal{W}^* \times \mathcal{V} \times \mathcal{W}, \mathbb{R})$ that is a four order operator \blacksquare

Finally, a general tensor not necessarily can be represented by the by the tensor product of vectors, e.g. $\hat{f} \otimes \hat{a}$, frequently tensors are given as a set of components defined on certain basis vector of the tensor space. Let $\{\hat{G}_i\}$ be an ordered basis for the vector space \mathcal{V} and let $\{\hat{g}_i\}$ be an ordered basis for the vector space \mathcal{W}, then we may present a general two-order two-point tensor $T \in \mathcal{V} \otimes \mathcal{V}$ by the linear combination of the basis vector, namely

$$T = T_{ij} \hat{G}_i \otimes \hat{g}_j \quad (A.56)$$

where $\hat{G}_i \otimes \hat{g}_j \in \mathcal{V} \otimes \mathcal{W}$ corresponds to the basis vector of the tensor with coefficients $T_{ij} \in \mathbb{R}$. The coefficient matrix $[T_{ij}] \in \mathbb{R}^{3 \times 3}$ is called the component matrix of the tensor T with respect to the bases $\{\hat{G}_i\}$ and $\{\hat{g}_i\}$. Higher order tensors are represented in a similar way $[217, 196]$. In order to represent tensors in co-vector spaces it is necessary to define their bases.
Definition A.17. Dual bases

The dual bases \(\{ \hat{G}^i \} \) and \(\{ \hat{g}^*_i \} \) on the co-vector spaces \(V^* \) and \(W^* \) are defined by the formulas

\[
\hat{G}^i \cdot \hat{G}_j = \delta_{ij}, \quad \hat{g}^*_i \cdot \hat{g}_j = \delta_{ij}
\]

then the tensor \(T \in V \otimes W^* \) may be represented by \(T = T_{ij} \hat{G}^i \otimes \hat{g}^*_j \).

A.3.2 Current and initial reference placements

Let \(\chi_t : B \to \mathbb{R}^3 \) be a smooth time-dependent embedding of the material body \(B \) into Euclidean space \(\mathbb{R}^3 \). For each fixed time \(t \in \mathbb{R}^+ \), the mapping \(\chi(t, \cdot) \) is defined as the current placement of the body \(B \) along with the current place vector \(\hat{x} \) of a body-point, namely

\[
B_t \subset \mathbb{R}^3 := \chi(\hat{X}, t), \quad \hat{x} := \chi(\hat{X}, t), \quad \forall \hat{X} \in B.
\]

The initial reference placement \(B_0 \) is defined as the special case of the current placement \(B_t \) by setting \(t = 0 \), giving

\[
\mathcal{B}_0 := \chi(B, t = 0), \quad \hat{X} := \chi(\hat{X}, t = 0) \quad \forall \hat{X} \in B
\]

where \(\hat{X} \) is an initial reference place vector. Since the initial reference placement \(B_0 \) is unaffected by observation transformation (see e.g. Ogden [227]), it is possible to call vectors and tensors defined on the initial reference placement \(B_0 \) as material quantities. For example, the reference place \(\hat{X} \) is called material place vector, and \(B_0 \) the material placement of the body. Sometimes the material description is named a referential or Lagrangian description, and occasionally, some distinction has been accomplished between the phrases. Contrary to the material placement \(B_0 \), the current placement \(B_t \) and vectors and tensors defined on it are concerned in the observation transformation. Vectors and...
tensors defined on the current placement \mathcal{B}_t are called spatial quantities, e.g. a current place vector \hat{x} is also named as a spatial place vector, and \mathcal{B}_t as a spatial placement. A spatial description is sometimes called a Eulerian description.

In this work the terms material and spatial will be applied for placements, vectors, tensors, fields, spaces and descriptions. A geometric interpretation of the material body \mathcal{B}, the material placement \mathcal{B}_0, and the spatial placement \mathcal{B}_t, as well as for material/spatial vectors is given in Fig. A.611.

Fig. A.6 shows that a body–point $\hat{X} \in \mathcal{B}$, which is represented by a vector-valued mapping $\hat{x} := \chi(\hat{X})$, assigns a material vector \hat{A} on the material placement \mathcal{B}_0, where \hat{X} corresponds to the base point12 of manifold. Correspondingly, the body–point $\hat{X} \in \mathcal{B}$, which is represented by the mapping $\hat{x} = \chi(\hat{X})$, assigns the spatial vector \hat{a} on the spatial placement \mathcal{B}_t. The spatial vector belongs to the tangent space of the spatial placement \mathcal{B}_t, i.e. $\hat{a} \in T_\mathcal{B} \mathcal{B}_t$, where \hat{x} represents a base point of on the manifold \mathcal{B}_t.

Defining $\mathcal{V} := T_\hat{X} \mathcal{B}_0$ and $\mathcal{W} := T_\mathcal{X} \mathcal{B}_t$ it is possible to construct multi–linear two–point operators, (or tensors), \mathbf{T} at the body point $\hat{X} \in \mathcal{B}$, with mappings $\hat{X} = \chi_0(\hat{X})$ and $\hat{x} = \chi(\hat{X})$ as:

$$
\mathbf{T} : T^*\chi \mathcal{B}_0 \times \ldots \times T^\chi \mathcal{B}_0 \times \ldots \times T^\chi \mathcal{B}_t \times \ldots \times T \mathcal{B}_t \rightarrow \mathbb{R}
$$

$$(\hat{X}^{*,1}, \ldots, \hat{X}^{*,n}, \hat{X}_1, \ldots, \hat{X}_n, \hat{x}^{*,1}, \ldots, \hat{x}^{*,n}, \ldots, \hat{x}_1, \ldots, \hat{x}_n) \mapsto \mathbf{T}(\hat{X}^{*,1}, \ldots, \hat{x}_1) \in \mathbb{R}$$

where $T^\chi \mathcal{B}_0$ and $T \mathcal{B}_t$ are the co–vector tangent spaces13 for the (vector) tangent spaces $T_\hat{X} \mathcal{B}_0$ and $T_\mathcal{X} \mathcal{B}_t$, respectively. The multi-linear operator \mathbf{T} is an element of multi-linear operators denoted as $\mathbf{T} \in \mathcal{L}(T^*\chi \mathcal{B}_0 \times \ldots \times T^\chi \mathcal{B}_0 \times \ldots \times T^\chi \mathcal{B}_t \times \ldots \times T \mathcal{B}_t, \mathbb{R})$ (An extensive revision for tensorial calculus on manifolds can be found in [201]). Usually, the coefficients of tensor operators are described in the bases (see Eq. A.57) associated to the vector and co–vector spaces over they act. In the configurational description of continuous mechanics frequently appear this kind of mathematical objects.

It is possible to associate a symmetric positive-definite metric tensor to each vector or co–vector space, constructed from the corresponding vector bases. Let pairs $(\mathcal{V}, \mathcal{G})$ and $(\mathcal{W}, \mathbf{g})$ indicate metric vector spaces in the material and spatial configurations, with material metric tensor, (seen as bi-linear operator), $\mathcal{G} \in \mathcal{L}(\mathcal{V}, \mathcal{V}^*)$ and the spatial metric tensor $\mathbf{g} \in (\mathcal{W}, \mathcal{W}^*)$. Metric tensors are used to measure distances and strains. A canonical representation for the metric tensor in material and spatial configurations is given by the identity $\mathbf{I} \in \mathbb{R}^3$, this metric tensor result of describing the points by means of Euclidean 3D coordinates.

Considering the previous content, in following formal definitions for the linear form corresponding to the virtual work principle is given in the context of differential calculus on finite and infinite–dimensional manifolds.

Definition A.18. Virtual work on finite–dimensional manifolds

11Note that placements, likewise place vectors, should be regarded as mappings, not the image of these maps, according to [193].

12A base point is a point of the manifold where a tangent space is induced.

13The co–vector space \mathcal{V}^* of the vector space \mathcal{V}, is bilinear and positive definite. The elements of co–vector space is said to be perpendicular to elements of the vector space [193, 201, 217].
A.4 Configurational description of compound rotations

The virtual work on the tangent point bundle $T\mathcal{B}_0$ at fixed time $t = t_0$ and at the place vector $\hat{x}_0 := \hat{x}(t_0) \in \mathcal{B}_0$ is defined as a linear form by

$$G_\gamma (\hat{x}_0, \delta \hat{x}) := \hat{f}^* \cdot \delta \hat{x} \quad (A.60)$$

where $\delta \hat{x} \in T_\mathcal{E}_0 \mathcal{B}$ is the virtual displacement and the force vector $\hat{f}^*(t_0, \hat{x}_0) \in T^*_{\hat{x}} \mathcal{B}_0$ belongs to the co–tangent point–space.\[14\]

In the case that the considered manifold is subjected to holonomic constraints, i.e. a constrained manifold, $\delta \hat{x} \in T_\mathcal{E}_0 \mathcal{B}_0$ occupies the subspace of \mathbb{R}^n which is the tangent space at the base point \hat{x}_0 with dimension $d < n$ [192] (see Fig. A.7).

By the other hand, forces can be classified, according to the Newtonian mechanics, into external and inertial forces when it has the general form $-m \ddot{\hat{x}}$, where m is a constant called mass. Inertial force may be regarded as an effective force, indeed, if an external force is acting on a particle, which is otherwise free, then the inertial force may be regarded as the reaction force, hence the force equilibrium in the dynamical sense is achieved in this mechanical system.\[14\]

Definition A.19. Virtual work on infinite–dimensional manifold

The virtual work on the tangent field bundle $T_\mathcal{E}_0 \mathcal{C}_0$ at the fixed time $t = t_0$ and the place field $\hat{x}_0 := \hat{x}(t_0) \in \mathcal{C}_0$ is defined as an integral over the domain of the body \mathcal{B}

$$G_\gamma (\hat{x}_0, \delta \hat{x}) := \int_{\mathcal{B}} \hat{f}^* \cdot \delta \hat{x} dV \quad (A.61)$$

where the virtual displacement field $\delta \hat{x} \in T_\mathcal{E} \mathcal{C}_0$ and the force field $\hat{f}^* = \hat{f}(t_0, \hat{x}_0) \in T^*_{\hat{x}} \mathcal{C}_0$ which belongs to the co–tangent field space. The tangent field space $T_\mathcal{E}_0 \mathcal{C}_0$ is defined in Eq. (A.84). Similarly as in the finite–dimensional case, the same classification of forces can be done.\[15\]

A.4 Configurational description of compound rotations

As it has been introduced in §A.1 a compound rotation can be defined by two different way, nevertheless, equivalent ways: the material description, and the spatial description.\[15\]

In view of that, in this section we perform a more formal description of compound rotations in terms of the configurational description of the rotational motion [194, 193].

To this end, let $\{\hat{E}_i\}$ and $\{\hat{e}_i\}$ be two spatially fixed (inertial) reference coordinate systems identified with the material and spatial coordinate system, respectively. Given two

\[14\] Another way to classify forces is used in Lagrangian mechanics where forces are separated into constraint and applied forces. Constraint forces can be verified with the aid of the virtual work since they are workless. Then we may note that constraint forces occupy $\hat{f}^{con} \in T^*_{\hat{x}} \mathcal{B}_0$ that is orthogonal to $T_{\hat{x}} \mathcal{B}_0$ via duality pairing. Hence, we may neglect the constraint forces in the virtual work forms [192].

\[15\] A extensive introduction to the configurational approach of continuous mechanics can be reviewed in [201, 297].
A.4. Configurational description of compound rotations

Figure A.7: Geometric representation of the virtual work principle on the manifold \mathcal{M} with tangent space $T_\mathcal{M}M$ at the base point \hat{x}; (\hat{x}_0: place vector, \hat{f}: force co–vector, $\delta\hat{x}$: virtual displacement, δW: virtual work).

rotation vectors described these reference systems, i.e. $\hat{\Psi} = \Psi_i \hat{E}_i$ for material frame and $\hat{\psi} = \psi_i \hat{e}_i$ for spatial frame, it is possible to obtain $\Lambda \in SO(3)$ by means of applying the exponential mapping as

$$\Lambda = \exp[\tilde{\Psi}] = \exp[\tilde{\psi}] \quad (A.62)$$

with $\tilde{\Psi}$ and $\tilde{\psi}$ being the skew–symmetric tensors obtained from $\hat{\Psi}$ and $\hat{\psi}$, respectively. In this manner, the rotation tensor Λ is parameterized in the material or spatial description, although when the rotation tensor itself can be regarded as a two point operator [192]. If following, if a rotation increment is applied it is possible to obtain the new compound rotation according to Eq. (A.3), and employing Eq. (A.26) it is possible to define the material and spatial descriptions of the compound rotation as described below.

A.4.1 Material description of the compound rotation

Given a material incremental rotation vector, $\hat{\Theta} = \Theta_i \hat{E}_i$, the new compound rotation tensor, Λ_c, is defined by means of the left translation mapping defined as an operator with base point in $\Lambda \in SO(3)$ and described by

$$\text{left}_\Lambda(\bullet) : SO(3) \rightarrow SO(3)$$

$$\exp[\tilde{\Theta}] \mapsto \Lambda_c = \Lambda \exp[\tilde{\Theta}] = \Lambda \Lambda_n^{\text{mat}} \quad (A.63)$$

where $\tilde{\Theta} \in so(3)$ is the skew–symmetric tensor obtained from $\hat{\Theta}$ and $\Lambda_n^{\text{mat}} = \exp[\tilde{\Theta}]$ is the material form of the incremental rotation operator. It is worth to note that the left translation map is defined as acting on an element of $so(3)$ but the final updating procedure requires the specification of a point Λ on the rotational manifold $SO(3)$. This description is called material since the incremental rotation operator acts on a material vector space.

REMARK A.4. Note that the updating rule of Eq. (A.63) can be identified with the material updating rule of §A.1.
A.4.2 Spatial description of the compound rotation

Given a spatial incremental rotation vector, \(\hat{\theta} = \theta \hat{e}_i \), the description of the new compound rotation tensor, \(\Lambda_c \), can be defined by means of the right translation mapping, with base point in \(\Lambda \in SO(3) \), defined as

\[
\text{right}_\Lambda(\bullet) : SO(3) \rightarrow SO(3) \quad \exp[\tilde{\theta}] \mapsto \Lambda_c = \exp[\tilde{\theta}]\Lambda = \Lambda_{\text{spa}}^n \Lambda \quad (A.64)
\]

where \(\tilde{\theta} \in so(3) \) is the skew–symmetric tensor obtained from \(\hat{\theta} \) and \(\Lambda_{\text{spa}}^n = \exp[\tilde{\theta}] \) is the spatial form of the incremental rotation operator. The right translation map is also defined as acting on an element of \(so(3) \) but the final updating procedure requires the specification of a point \(\Lambda \) on the rotational manifold \(SO(3) \). This description is called spatial since the incremental rotation operator acts on a spatial vector space.

REMARK A.5. Note that the updating rule of Eq. (A.64) can be identified with the spatial updating rule of §A.1

The material and spatial descriptions of the incremental rotation tensor, generically designed as \(\Lambda_n \) omitting the super-scripts mat and spa, and the incremental rotation vectors and skew–symmetric tensors are related by [192, 278]

\[
\begin{align*}
\hat{\theta} &= \Lambda \hat{\Theta} \quad (A.65a) \\
\tilde{\theta} &= \Lambda \tilde{\Theta} \Lambda^T \quad (A.65b) \\
\Lambda_{n}^{\text{spa}} &= \Lambda \Lambda_{n}^{\text{mat}} \Lambda^T \quad (A.65c)
\end{align*}
\]

where the first relation, Eq. (A.65a), is called a Lie algebra adjoint transformation\(^{16}\) on the Euclidean space with the vectors cross product as the Lie algebra \((\mathbb{R}^3, \times \cdot)\), the second relation of Eq. (A.65b) is the Lie Algebra adjoint transformation on \(so(3) \), \(\text{Ad}_\Lambda(\tilde{\Theta}) = \Lambda \tilde{\Theta} \Lambda^T \); and the last relation, Eq. (A.65c), is an inner automorphism that is an isomorphism onto itself, [193, 191].

REMARK A.6. At it has be shown in §A.2.3 \(\exp[\tilde{\Theta}] \in SO(3) \), with \(\tilde{\Theta} \) being the skew–symmetric tensor obtained from \(\hat{\Theta} \in \mathbb{R}^3 \) that belongs to the tangential space of \(SO(3) \) at the identity on \(SO(3) \); i.e. \(\tilde{\Theta} \in so(3) \approx T_I SO(3) \)

A.4.3 Material tangent space to \(SO(3) \)

Taking the directional (Fréchet) derivative of the compound rotation, i.e. differentiating the perturbed configuration of the material form of the compound rotation \(\Lambda \exp[\nu \tilde{\Theta}] \) with respect to the scalar parameter \(\nu \) and setting \(\nu = 0 \), yields to the material tangent space to \(SO(3) \) at the base point \(\Lambda \), which is formally defined as [193]

\[
T_{\Lambda}^{\text{mat}} SO(3) := \{ \tilde{\Theta}_\Lambda := (\Lambda, \tilde{\Theta}) \mid \Lambda \in SO(3), \tilde{\Theta} \in so(3) \} \quad (A.66)
\]

\(^{16}\)This concept has been defined in Remark A.1 (pp. 215) of the §A.2.3.
where an element of the material tangent space $\tilde{\Theta}_\Lambda \in T^\text{mat}_\Lambda SO(3)$ is a skew–symmetric tensor, i.e. $\tilde{\Theta} \in so(3)$. The notation $(\Lambda, \tilde{\Theta})$ is used for indicating the pair formed by the rotation tensor Λ and the skew–symmetric tensor $\tilde{\Theta}$, representing the material tangent tensor, at the base point $\Lambda \in SO(3)$ [193]. See Fig. A.8. For simplicity it is possible to omit the base point Λ by denoting $\tilde{\Theta}_\Lambda \in T^\text{mat}_\Lambda SO(3)$ if there is no danger of confusion.

A.4.3.a Spatial tangent space to $SO(3)$

Respectively, the *spatial tangent space* on the rotation manifold $SO(3)$, at any base point Λ, can be defined as

$$T^\text{spa}_\Lambda SO(3) := \{ \tilde{\theta}_\Lambda := (\Lambda, \tilde{\theta}) | \Lambda \in SO(3), \tilde{\theta} \in so(3) \}$$ \hfill (A.67)

By analogy with the material case, an element of the spatial tangent space $\tilde{\theta}_\Lambda \in T^\text{spa}_\Lambda SO(3)$ is a skew–symmetric tensor belonging to $so(3)$. Again, omitting the base point Λ, it is possible to write $\tilde{\theta}_\Lambda \in T^\text{spa}_\Lambda SO(3)$.

REMARK A.7. The elements of the Lie group $SO(3)$ can be alternatively defined as linear operators $\Lambda \in \mathfrak{L}(\mathbb{R}^3, \mathbb{R}^3)$ providing another interpretation for a rotation, i.e. it is an adjoint transformation between the material and spatial tangent spaces, see Eqs. (A.65a) to (A.65c). Additionally, a rotational motion induces a rotation operator, since the rotation operator maps the material place vector $\hat{X} \in B_0$ to the spatial place vector $\hat{x} \in B_t$ by means of the transformation $\hat{x}(t) = \Lambda(t)\hat{X}$, i.e. $\Lambda \in \mathfrak{L}(B_0, B_t)$. More generally, rotation operators transform material vectors into spatial vectors, that is $\Lambda \in \mathfrak{L}(T^*_\hat{X}B_0, T^*_\hat{x}B_t)$.

![Figure A.8](image_url) Figure A.8: Geometric representation of the tangent spaces on the rotational manifold $SO(3)$. (a): Material. (b): Spatial.

A.4.4 Incremental additive rotation vectors

Consider a rotation tensor $\Lambda_0 \in SO(3)$ which can be indistinctly parameterized (minimally) by using the spatial or material vectors $\psi = \psi_i \hat{e}_i$ and $\Psi = \Psi_i \hat{E}_i$, respectively; i.e. we have $\Lambda_0 = \exp[\psi] = \exp[\Psi]$.

\[\text{Figure A.8: Geometric representation of the tangent spaces on the rotational manifold } SO(3). \text{ (a): Material. (b): Spatial.}\]
A.4. Configurational description of compound rotations

A.4.4.a Spatial description

Consider a spatial incremental rotation of magnitude \(\delta \theta \) which is applied on \(\Lambda_0 \). The increment of rotation is described by the (spatial) incremental rotation vector \(\hat{\delta} \theta = \delta \theta \hat{e}_i \) and the corresponding incremental rotation tensor can be determined using Eqs. (A.11), (A.12) or its equivalent exponential form \(\Lambda_\theta = \exp[\hat{\delta} \theta] \). Then we obtain the compound or updated rotation \(\Lambda = \Lambda_\theta \Lambda_0 \in SO(3) \), which is the result of two consecutive rotations parameterized by \(\hat{\psi} \) and \(\delta \hat{\theta} \), respectively [180].

Consider now the new compound rotation vector \(\hat{\psi} + \delta \hat{\psi} \) which parameterizes \(\Lambda \), with \(\delta \hat{\psi} \) the additive increment of the rotation vector \(\hat{\psi} \); in general we have

\[
\exp[\hat{\psi} + \delta \hat{\psi}] \neq \exp[\hat{\psi} + \delta \hat{\psi}] = \exp[\hat{\theta}] \exp[\hat{\psi}].
\]

(A.68)

It is possible to see that \(\delta \tilde{\psi} \) is the linear additive increment of \(\tilde{\psi} \) because they belong to the same tangent space \(T_{\psi}^{\text{spa}} SO(3) \), in contrast with \(\delta \tilde{\theta} \in T_{\exp[\hat{\psi}]}^{\text{spa}} SO(3) \). One can observe that, because of \(\delta \tilde{\theta} \) being skew–symmetric, the spatial form of the linearized increment or admissible variation of the rotation tensor, \(\delta \Lambda \), is no longer orthogonal. In fact, \(\delta \tilde{\theta} \) belongs to the tangential space of the rotation tensor \(\Lambda \in SO(3) \).

The linearized relation between \(\delta \hat{\theta} \) and \(\delta \hat{\psi} \) is obtained as follows: construct a perturbed configuration of \(\Lambda \) depending on a scalar parameter \(\epsilon \in \mathbb{R}^3 \) as

\[
\Lambda_\epsilon = \Lambda_\epsilon(\epsilon \hat{\theta} \Lambda_0(\tilde{\psi})) = \exp[\epsilon \hat{\theta}] \Lambda_0(\tilde{\psi}) = \exp[\hat{\psi} + \epsilon \hat{\psi}] \]

(A.69)

considering the fact that \(\exp[\tilde{\psi}]^{-1} = \exp[-\tilde{\psi}] \) one obtains

\[
\exp[\epsilon \hat{\theta}] = \exp[\hat{\psi} + \epsilon \hat{\psi}] \exp[-\tilde{\psi}].
\]

(A.70)

Taking the derivative of Eq. (A.70) with respect to \(\epsilon \) and setting \(\epsilon = 0 \), it is possible, using the Rodrigues’s formula, obtain the linearized relation between the incremental rotation vector \(\delta \hat{\theta} \) and the increment of the rotation vector, \(\delta \hat{\psi} \), [138, 142, 280] as

\[
\delta \hat{\theta} = D \Lambda_\epsilon \cdot \delta \hat{\psi} = \left. \frac{d}{d\epsilon} \left[\exp[\epsilon \hat{\theta}] \right] \right|_{\epsilon=0} \]

(A.71a)

\[
= \left. \frac{d}{d\epsilon} \left[\exp[\tilde{\psi} + \epsilon \hat{\psi}] \exp[-\tilde{\psi}] \right] \right|_{\epsilon=0} = T_{\theta \psi} \delta \hat{\psi}
\]

(A.71b)

where the spatial tangential transformation tensor \(T_{\theta \psi} \) is given by

\[
T_{\theta \psi} = T_{\theta \psi}(\hat{\psi}) = \frac{\sin \psi}{\psi} \mathbf{I} + \frac{1 - \cos \psi}{\psi^2} \hat{\psi} + \frac{\psi - \sin \psi}{\psi^3} \hat{\psi} \otimes \hat{\psi}
\]

(A.72)

with determinant\(^{17}\) \(\text{Det}[T_{\theta \psi}] = 2(1 - \cos \psi)/\psi^2 \). Therefore, \(\delta \hat{\psi} \neq \delta \hat{\theta} \) for general 3D rotations unless \(\delta \hat{\theta} \) and \(\delta \hat{\psi} \) are coaxial. Besides, when \(\psi = 2k\pi \) for \(k \in \mathbb{N} \), \(T_{\theta \psi} \) becomes rank deficient, which may imply problems in the numerical implementations.

\(^{17}\)For a detailed deduction of the tensors \(T_{\theta \psi} \) and \(T_{\psi \theta} \) see Refs. [83, 138, 142, 280].
Also it is possible to define the inverse transformation [180, 138, 280]
\[
\delta \hat{\psi} = T_{\psi \theta} \delta \hat{\theta} \tag{A.73}
\]
where
\[
T_{\psi \theta} = T_{\psi \theta}(\hat{\psi}) = \frac{\psi/2}{\tan(\psi/2)} I - \frac{1}{2} \hat{\psi} + \frac{1}{\psi^2} \left[1 - \frac{\psi/2}{\tan(\psi/2)} \right] \hat{\psi} \otimes \hat{\psi}. \tag{A.74}
\]
To avoid the singularity due to the use of the rotation vector to parameterize the rotation
tensor, a re-scaling remedy is available [142, 141] as follows: when \(\theta > \pi \) is identified:
\[
\psi^* = \psi - 2n\pi i \psi \tag{A.75}
\]
where \(n = \text{int}[(\psi + \pi)/2\pi] \), the number of full–cycle rotations. This remedy makes sure
\(\psi^* \in [-\pi, \pi] \) and therefore overcome the singularity.

REMARK A.8. Note that the transformation \(T_{\theta \psi} \) has an effect on the base points,
changing the base point from \(I \) to \(\exp(\tilde{\psi}) \). The tangential transformation \(T_{\theta \psi}(\hat{\psi}), \Lambda(\hat{\psi}) \)
and the skew–symmetric tensor \(\tilde{\psi} \) have the same eigenvectors. Hence, \(T_{\theta \psi}(\hat{\psi}), \Lambda(\hat{\psi}) \)
and \(\tilde{\psi} \) are commutative [138].

A.4.4.b Material description

Analogously as for the case of spatial description, if we start from the material description
of the compound rotation tensor \(\Lambda = \exp[\tilde{\Psi} + \delta \tilde{\Psi}] = \exp[\tilde{\Psi}]\exp(\delta \tilde{\Theta}) \), it is possible to
see that \(\tilde{\Psi} \) and its linear increment \(\delta \tilde{\Psi} \) belong to the same tangent space of rotation,
\(i.e. \ T_{\text{mat}}^{\text{SO}(3)} \). However\(^{18} \), the skew–symmetric
tensor \(\delta \tilde{\Theta} \) belongs \(T_{\exp[\tilde{\Psi}]}^{\text{mat}} \text{SO}(3) \) and therefore, in general we have
\[
\exp[\tilde{\Psi}]\exp[\delta \tilde{\Theta}] = \exp[\tilde{\Psi} + \delta \tilde{\Psi}] \neq \exp[\tilde{\Psi} + \delta \tilde{\Theta}]
\]
due to that both tangent tensors belong to different linear spaces. It is worth to note that
\(\tilde{\Psi} = \Psi_i \hat{E}_i, \delta \tilde{\Psi} = \delta \Psi_i \hat{E}_i \) and \(\delta \tilde{\Theta} = \delta \Theta_i \hat{E}_i \) are the material axial vectors obtained from \(\tilde{\Psi}, \delta \tilde{\Psi} \) and \(\delta \tilde{\Theta} \), respectively.
Therefore, in an analogous manner as for the spatial case, constructing a perturbed con-
figuration on \(\Lambda_0 \), the following result is obtained
\[
\exp[\varepsilon \delta \tilde{\Theta}] = \exp[-\tilde{\Psi}]\exp[\tilde{\Psi} + \varepsilon \delta \tilde{\Psi}]. \tag{A.76}
\]
Taking the derivative of Eq. (A.76) with respect to \(\varepsilon \) and setting \(\varepsilon = 0 \), it is possible, using
the Rodrigues’s formula, obtain the linearized relation between the incremental rotation
\(^{18} \)Here the symbol \(\delta \) is used to denote a rather small or linearized increment.
A.4. Configurational description of compound rotations

vector \(\delta \hat{\Theta} \) and the linearized increment of the rotation vector, \(\delta \hat{\Psi} \), [138, 142, 280] as

\[
\delta \hat{\Theta} = D\Lambda_{\varepsilon} : \delta \hat{\Psi} = \frac{d}{d\varepsilon} \left[\exp[\varepsilon \delta \tilde{\Theta}] \right]_{\varepsilon=0}
\]

(A.77a)

\[
= \frac{d}{d\varepsilon} \left[\exp[-\tilde{\Psi}]\exp[\varepsilon \delta \hat{\Psi}] \right]_{\varepsilon=0} = T_{\Theta\Psi} \delta \hat{\Psi}
\]

(A.77b)

where \(T_{\Theta\Psi}(\hat{\Psi}) \) defines the material tangential transformation tensor and the following identity holds

\[
\delta \hat{\Theta} = T_{\Theta\Psi} \delta \hat{\Psi} = T_{\Theta\Psi}^{T} \delta \hat{\Psi}.
\]

(A.78)

Then, \(T_{\Theta\Psi}(\hat{\Psi}) \) is a linear mapping between the material tangent spaces \(T_{\text{mat}}^{I} \rightarrow T_{\text{exp}(\tilde{\Psi})}^{\text{mat}} \).

On other hand, it is also valid that

\[
\delta \hat{\Psi} = T_{\Psi\Theta} \delta \hat{\Theta} = T_{\Psi\Theta}^{-1} \delta \hat{\Theta} = T_{\theta\psi}^{-T} \delta \hat{\Theta}.
\]

(A.79)

Additionally, considering \(\delta \hat{\Psi} = I \delta \hat{\psi} \) and \(\delta \hat{\Theta} = \Lambda \delta \hat{\Theta} \) one obtains that

\[
T_{\Theta\Psi} = \Lambda^{T} T_{\theta\psi} \quad \text{and} \quad T_{\Psi\Theta} = T_{\theta\psi}^{-1} \Lambda = T_{\psi\Theta} \Lambda.
\]

REMARK A.9. Note that the transformation \(T_{\Theta\Psi} \) has an effect on the base points, changing the base point from \(I \) to \(\exp(\tilde{\Psi}) \). It is worth also noting that the tangential transformation \(T_{\Theta\Psi}(\hat{\Psi}) \), the corresponding rotation tensor \(\Lambda(\hat{\Psi}) \) and the skew–symmetric tensor \(\tilde{\Psi} \) have the same eigenvectors. Hence, \(T_{\Theta\Psi}(\hat{\Psi}), \Lambda(\hat{\Psi}) \) and \(\tilde{\Psi} \) are commutative [138].

A.4.5 Vector spaces on the rotational manifold

A.4.5.a Material vector space

According to the previous results, it is possible to define the material vector space on the rotation manifold at the base point \(\Lambda \) as

\[
T_{\Lambda}^{\text{mat}} := \{ \hat{\Theta}_{\Lambda} := (\hat{\Psi}, \hat{\Theta}) | \Lambda = \exp[\tilde{\Psi}] \in SO(3), \hat{\Theta} \in \mathbb{R}^{3} \}
\]

(A.80)

where an element of the material vector space is \(\hat{\Theta}_{\Lambda} \in T_{\Lambda}^{\text{mat}} \), which is an affine space with the rotation vector \(\hat{\Psi} \) as a base point and the incremental rotation vector \(\hat{\Theta} \) as a tangent vector.

Hence, the tangential transformation \(T_{\Theta\Psi} \) is a mapping \(T_{\Theta\Psi} : T_{I}^{\text{mat}} \rightarrow T_{\Lambda}^{\text{mat}} \). The elements of this material vector space can be added by the parallelogram law only if they occupy the same affine space, i.e. if their associated skew–symmetric tensors belongs to the same tangent space of the rotation manifold, [193]. The definition of Eq. (A.80) gives a practical notation for sorting rotation vectors in different tangent spaces.
A.4.5.b Spatial vector space

By analogy with the material case, the spatial vector space on the rotation manifold at any point \(\Lambda \) is defined as

\[
T_{\Lambda}^{\text{spa}} := \{ \hat{\theta}_\Lambda := (\hat{\psi}, \hat{\theta}) | \Lambda = \exp(\tilde{\psi}) \in SO(3), \hat{\theta} \in \mathbb{R}^3 \}
\] (A.81)

An element of the spatial vector space is \(\hat{\theta}_\Lambda \in T_{\Lambda}^{\text{spa}} \) and the tangential operator \(T_{\psi \theta} : T_{\Lambda}^{\text{spa}} \rightarrow T_{\Lambda}^{\text{spa}} \) is the transposed as in the material form, Eq. (A.78).

The spatial and material vector spaces are related by the rotation tensor as given in Eq. (A.65a), from which follows that with the base point \(I \in SO(3), (\hat{\Psi} \in T_{I}^{\text{mat}}) \)

\[
\hat{\psi}_I = I \hat{\Psi}_I \rightarrow \hat{\psi}_I = \hat{\Psi}_I
\] (A.82)

where '=' denotes the canonical isomorphism between the spatial and material vector spaces. The identity \(I \) maps between the vector fields \(T_{I}^{\text{mat}} \rightarrow T_{I}^{\text{spa}} \). Now the relation between spatial and material vectors can be given as \((\hat{\psi}, \hat{\theta}) = (I \hat{\Psi}, \Lambda \hat{\Theta}) \), where \(\hat{\psi} \) and \(\hat{\Psi} \) represent the base point in the spatial and material vector spaces, respectively.

This notation can be written more compactly as \(\hat{\theta}_\Lambda = \Lambda \hat{\Theta}_\Lambda \), called the push-forward\(^{19}\) of \(\hat{\Theta}_\Lambda \) by \(\Lambda \), where the rotation tensor should be considered as a mapping between the material and spatial vector spaces of rotation, \(\Lambda : T_{I}^{\text{mat}} \rightarrow T_{I}^{\text{spa}} \), see Fig. A.9. A push-forward operator maps a material vector space into a spatial vector space. It makes sense since rotation operator is a two-point tensor. Note that the push-forward operator \(\Lambda \) has no influence on the base point of the rotation manifold, another push-forward for rotation tensors is \(\hat{\theta}_\Lambda = \Lambda \hat{\Theta}_\Lambda \Lambda^T \) is a mapping between the material and spatial tangent spaces of rotation \(\Lambda(\bullet) \Lambda^T : T_{\Lambda}^{\text{mat}} SO(3) \rightarrow T_{\Lambda}^{\text{spa}} SO(3) \). Fig. (A.9) shows a scheme of the connections between spatial and material configurations.

![Figure A.9: Commutative diagrams. (a): Configurational description of vectors. (b): Corresponding vector spaces.](image_url)

A.5 Variation, Lie derivative and Lie variation

In previous sections definitions for manifolds and tangent spaces have been given for the finite-dimensional case i.e. any element of the tangent space can be constructed by means

19Detailed formalism about pullback and push–forward operator will be given in the next sections.
of a combination of a finite number of elements called basis. By contrast, the placement field of continuous mechanics takes values in a Hilbert space which is formally defined as

\textbf{Definition A.20. Hilbert space}

A Hilbert space is a complete inner-product space, and here specially a complete infinite-dimensional inner-product vector-valued function space. For a detailed presentation of functional analysis in continuous mechanics see [196, 200].

In a Hilbert space chart parametrization maps vector-values functions into vector–valued functions. The placement field needs an infinite number of basis functions in order to present an arbitrary placement field on continuum, yielding infinite–dimensional manifolds.

In this section a definition for variation, Lie derivative and Lie variation in the context of the configurational approach of continuous mechanics will be given, i.e. for manifolds modeled in infinite-dimensional Hilbert spaces, called field manifolds. The concepts of pullback and push–forward operators are essential for the understanding of Lie derivative and variation [196, 200, 192]. Some previous definitions are required:

\textbf{Definition A.21. Fréchet derivative and differential}

The Fréchet derivative of the vector \(\hat{f} : \mathcal{H} \subset \mathcal{H}_1 \rightarrow \mathcal{H}_2 \) at fixed \(\hat{x} \in \mathcal{H} \), with \(\mathcal{H}, \mathcal{H}_1 \) and \(\mathcal{H}_2 \) being Hilbert spaces, is defined as the following continuous linear operator:

\[
D \hat{f}(\hat{x}) : \mathcal{H}_1 \rightarrow \mathcal{H}_2 \quad \text{such that} \quad \hat{f}(\hat{x} + \hat{u}) - \hat{f}(\hat{x}) = D \hat{f}(\hat{x}) \cdot \hat{u} + r(\hat{x}, \hat{u})
\]

where the remainder obeys the condition \(\lim_{\hat{u} \to 0} \frac{\|r(\hat{x}, \hat{u})\|_{\mathcal{H}_2}}{\|\hat{u}\|_{\mathcal{H}_1}} = 0 \). \(D \hat{f}(\hat{x}) \) is called Fréchet differential. A vector is called Fréchet differentiable if its Fréchet derivative exists. The derivative is also a linearized form.

\textbf{Definition A.22. Gâteaux differential}

The Gâteaux differential of the vector \(\hat{f} : \mathcal{H} \subset \mathcal{H}_1 \rightarrow \mathcal{H}_2 \) at fixed \(\hat{x} \in \mathcal{H} \) (\(\beta \in \mathbb{R} \)) is defined as the limit:

\[
D \hat{f}(\hat{x}) \cdot \hat{u} := \lim_{\beta \to 0} \frac{\hat{f}(\hat{x} + \beta \hat{u}) - \hat{f}(\hat{x})}{\beta} = \frac{d\hat{f}(\hat{x} + \beta \hat{u})}{d\beta} \bigg|_{\beta = 0}
\]

where the limit is to be interpreted in the norm of \(\mathcal{H}_2 \).

The formula of the present definition is a practical and simple way to compute the directional derivative that is the term \(D \hat{f}(\hat{x}) \cdot \hat{u} \) where \(\hat{u} \in \mathcal{H}_1 \) indicates the direction.

\textbf{Definition A.23. Field manifold}

A infinite–dimensional field manifold is a set \(C \) of a Hilbert space \(\mathcal{H}_1 \), \((C \subset \mathcal{H}_1) \), is defined as a infinite–dimensional manifold in analogous way that for the finite–dimensional case, excepting that the points \(x \in C \) are vector valued fields and it can depend also on time \(t \in \mathbb{R}^+ \). A manifold at a fixed time \(t = t_0 \) is denoted by \(C_0 \).

\textbf{Definition A.24. Tangent field bundle}
A tangent field bundle is a virtual displacement field \(\delta \hat{x} \) at any place field \(\hat{x} \in C_0 \) and for a fixed time \(t = t_0 \) is defined as

\[
TC_{t_0} := \{ (\hat{x}, \delta \hat{x}) \in H_1 \times H_1 \mid \hat{x} \in C_{t_0}, D_{\hat{x}}h(t_0, \hat{x}) \cdot \delta \hat{x} = 0, D_{\hat{x}}h \text{ is surjection} \} \quad (A.83)
\]

where \(D_{\hat{x}}h \) is the Fréchet partial derivative of any kind of holonomic constrain with respect to \(\hat{x} \) at \(t = t_0 \). □

Definition A.25. Tangent field space
For a fixed time \(t = t_0 \), a tangent field space at the base point \(\hat{x}_0 \in C_0 \) is defined as

\[
T_{\hat{x}_0}C := \{ \delta \hat{x} \in H_1 \mid (\hat{x}_0, \delta \hat{x}) \in TC_{t_0} \}
\]

where \(TC_{t_0} \) is the tangent field bundle □

Definition A.26. Velocity field space
A velocity field space is closely related with the tangent field space and is defined by formula

\[
T_{\hat{x}}C := \{ \dot{\hat{x}} \in H_1 \mid (\hat{x}, \dot{\hat{x}}) \in TC \}
\]

where now time is free, not fixed, like in the virtual displacement. The velocity field that is an element of the velocity field–space is also denoted by \(\dot{\hat{v}} := \dot{\hat{x}} \in T_{\hat{x}}C \) □

A.5.1 Variation operator

The variation operator \(\delta \) is defined as the special case of Fréchet differential at fixed \(t = t_0 \) by

\[
\delta h(t_0, \hat{x}, \dot{\hat{x}}) := D_{\hat{x}}h(t_0, \hat{x}, \dot{\hat{x}}) \cdot \delta \hat{x} + D_{\dot{\hat{x}}}h(t_0, \hat{x}, \dot{\hat{x}}) \cdot \delta \dot{\hat{x}}\quad \text{\((A.86) \)}
\]

where \(\dot{\hat{x}} \in C_{t_0} \) is a place field, \(\delta \hat{x} \in T_{\hat{x}_0}C \) is a virtual displacement field, \(\dot{\hat{v}} \in T_{\hat{x}}C \) is a velocity field, and \(\delta \dot{\hat{x}} := \delta \dot{\hat{x}} \in T_{\hat{x}_0}C \) is a virtual velocity filed. Moreover, \(D_{\hat{x}}, D_{\dot{\hat{x}}} \) are the Fréchet partial derivative with respect to place and velocity, respectively.

A.5.2 Pullback operator

Let the operator \(\mathcal{R} : T_\hat{x}B_0 \mapsto T_\hat{x}B \) be an invertible linear mapping between the tangent spaces of material and spatial manifolds. The material manifold is denoted by \(B_0 \) and the spatial manifold by \(B \). Moreover, let \(\{ \hat{g}_i \} \) and \(\{ \hat{G}_i \} \) be the bases for the spatial and material tangent spaces \(T_\hat{x}B_0 \) and \(T_\hat{x}B \), respectively, and let \(\{ \hat{g}_i^* \} \) and \(\{ \hat{G}_i^* \} \) be the corresponding dual bases for the spatial and material cotangent spaces \(T_\hat{x}^*B_0 \) and \(T_\hat{x}^*B \).

The pullback operator by \(\mathcal{R} \in \mathcal{L}(T_\hat{x}B_0, T_\hat{x}B) \) for the spatial vector \(\hat{a} = a^i \hat{g}_i \in T_\hat{x}B \) is defined by

\[
\mathcal{R}^{-1}(\hat{a}) := a^i (\mathcal{R}^{-1} \cdot \hat{g}_i) \in T_\hat{x}B_0
\]

where \(\mathcal{R}^{-1} \in \mathcal{L}(T_\hat{x}B, T_\hat{x}B_0) \) is the inverse of the operator \(\mathcal{R} \).

The pullback operator by \(\mathcal{R} \in \mathcal{L}(T_\hat{x}B_0, T_\hat{x}B) \) for the spatial co–vector \(\hat{f}^* = f^i \hat{g}_i^* \in T_\hat{x}^*B \)
is defined by

\[\mathcal{R}(\hat{f}^*) := f_i^*(\mathcal{R}^*\hat{g}_i^*) \in T^*_X B_0 \] \hspace{1cm} (A.88)

where \(\mathcal{R}^* \in \mathcal{L}(T^*_X B, T^*_X B_0) \) is the adjoint operator of \(\mathcal{R} \) (see Def. A.9 in pp. 222). The definition for pullback operator for vectors or co-vectors is different. A pullback operator maps spatial vector into material vectors, and spatial co-vectors into material co-vectors, therefore, it is possible to see the pullback operator as a materializer operator.

A.5.3 Push forward operator

The push forward operator by \(\mathcal{R} \in \mathcal{L}(T_X B_0, T_B) \) for the material vector \(\hat{A} = A^i \hat{G}_i \in T_X B_0 \) is defined by

\[\mathcal{R}(\hat{A}) := A^i(\mathcal{R}\hat{G}_i) \in T_B. \] \hspace{1cm} (A.89)

The push forward operator by the isomorphism \(\mathcal{R} \in \mathcal{L}(T_X B_0, T_B) \) for the material co-vector \(\hat{F}^* = F_i^* \hat{G}_i^* \in T^*_X B_0 \) is defined by

\[\mathcal{R}(\hat{F}^*) := F_i^*(\mathcal{R}^*\hat{G}_i^*) \in T^*_B \] \hspace{1cm} (A.90)

where \(\mathcal{R}^* \in \mathcal{L}(T^*_X B_0, T^*_B) \) is the inverse of \(\mathcal{R}^* \).

If the operator \(\mathcal{R} \) is invertible between the material and spatial tangent spaces, \(\mathcal{R} \in \mathcal{L}(T_X B_0, T_B) \), then its adjoint, its inverse and the inverse of the adjoint operators are \(\mathcal{R}^* \in \mathcal{L}(T^*_B, T^*_X B_0) \), \(\mathcal{R}^{-1} \in \mathcal{L}(T_B, T_X B_0) \) and \(\mathcal{R}^{-*} \in \mathcal{L}(T_X B_0, T^*_B) \), respectively.

Clearly the push forward operator is different for the case of vectors or co-vectors. The push forward operator maps the material (co)vectors into the spatial (co)vectors. The pullback or push forward operators for higher order tensor are defined such as the pullback or push forward operator for each basis vector separately.

For example, the push forward of the second order tensor \(\mathcal{G} \in \mathcal{L}(T_X B_0, T_X B_0) \), the material form of the metric tensor, by the isomorphism \(\mathcal{F} \in \mathcal{L}(T_X B_0, T_B) \), the deformation gradient [196], is

\[
\mathcal{F}(\mathcal{G}) = \mathcal{F}(\mathcal{G}_{ij} \hat{G}_i^* \otimes \hat{G}_j^*) \\
= \mathcal{G}_{ij}(\mathcal{F}^{-*}\hat{G}_i^*) \otimes (\mathcal{F}^{-*}\hat{G}_j^*) = \mathcal{F}^{-*}\mathcal{G}\mathcal{F}^{-1} \in \mathcal{L}(T_X B_0, T_B) \] \hspace{1cm} (A.91)

where the identity \(\hat{a} \otimes \mathcal{F}\hat{b} = (\hat{a} \otimes \mathcal{F}\hat{b})^T \), \(\forall \hat{b} \in T_X B_0 \), has been used. The resulting spatial tensor \(\mathcal{F}^{-*}\mathcal{G}\mathcal{F}^{-1} \) corresponds to the Cauchy deformation tensor often denoted by \(\mathcal{C}^{[20]} \).

\[^{20} \text{If the tensor are expressed in the Euclidean space then the metric } \mathcal{G} = \mathcal{I}, \text{ and the adjoint operator is identified with the transpose of the gradient tensor, } \mathcal{F}^{-*} = \mathcal{F}^{-T}, \text{ yielding to } \mathcal{C} = \mathcal{F}^{-T}\mathcal{F}^{-1}. \]
A.5.4 Lie derivative

The Lie derivative $L_{\mathcal{R}}(c)$ of the general tensor $c(\eta) \in C$ with respect to the isomorphic mapping $\mathcal{R}(\eta) \in \mathcal{L}(T_xB_0, T_0B)$ and the parameter $\eta \in \mathbb{R}$ is defined by

$$L_{\mathcal{R}}(c) := \mathcal{R}(\frac{d}{d\eta} \left[\mathcal{R}(c(\eta)) \right]) \quad (A.92)$$

The pullback operator \mathcal{R} materializes the spatial components of the general tensor c. It is well known that the derivative of an objective material tensor is an objective tensor [227], therefore, if the pulled back tensor is objective, its derivative in the material configuration will be as well. The push–forward operator \mathcal{R} is considered as the inverse of the pullback operation where the resulting Lie derivative tensor $L_{\mathcal{R}}(c)$ belongs to the same tensor space C as the original c.

A.5.5 Lie variation

The Lie variation $\delta_{\mathcal{R}}(c)$ of a general tensor $c \in C$ with respect to the isomorphic mapping $\mathcal{R} \in \mathcal{L}(T_xB_0, T_0B)$ is defined by

$$\delta_{\mathcal{R}}(c) := \mathcal{R}(\delta[\mathcal{R}(c(\eta))]) \quad (A.93)$$

where the variation operator correspond to these given in Eq. (A.86), which is accomplished at the fixed time $t = t_0$. As for the case of the Lie derivative, the Lie variation is an objective quantity if the original tensor is objective. The definition of Lie variation is connected with a virtual displacement [192]. This last affirmation can be seen by writing the Lie variation with the aid of the Gâteaux differential at the point (\hat{x}, \hat{v}) at fixed time $t = t_0$

$$\delta_{\mathcal{R}}(c) = \mathcal{R} \left[\frac{d(\mathcal{R}(c))}{d\eta} \right]_{\eta=0} \quad (A.94)$$

where the tensor $c(t_0, \dot{x} + \eta \delta \dot{x}, \dot{v} + \eta \delta \dot{v})$ and the operator $\mathcal{R}(t_0, \dot{x} + \eta \delta \dot{x}, \dot{v} + \eta \delta \dot{v})$ depends on the virtual displacement $\delta \dot{x}$ and the virtual velocity $\delta \dot{v}$\footnote{Note that the virtual displacement belongs to the tangent point-space $T_{x_0}M$ in the finite–dimensional case and to the tangent field–space $T_{x_0}C$ in the infinite–dimensional case.}. An important result in rod theory is the calculation of the Lie variation of the deformation gradient, (two–point tensor), $F = F_{ij} \hat{g}_i \otimes \hat{G}^j \in T_0B \times T_0B$, by the rotation operator $\Lambda \in T_xB_0 \times T_0B$, which reads

$$\delta \Lambda F = \Lambda \left[\delta(\Lambda^{-1} F) \right] = \Lambda(\delta(\Lambda^T F)) = \Lambda(\delta \Lambda^T F + \Lambda^T \delta F) = \delta F + \Lambda \delta \Lambda^T F. \quad (A.95)$$
The variation of the rotation operator using both, the material and spatial updating rules are

\[\delta_{\Lambda} = \frac{d}{d\eta} \Lambda \exp[\eta \delta \tilde{\Theta}] \bigg|_{\eta=0} = \Lambda \delta \tilde{\Theta} \tag{A.96a} \]

\[\delta_{\Lambda} = \frac{d}{d\eta} \exp[\eta \delta \tilde{\Theta}] \Lambda \bigg|_{\eta=0} = \delta \tilde{\Theta} \Lambda, \tag{A.96b} \]

respectively; hence the term \(\Lambda \delta_{\Lambda} T \) in Eq. (A.95) is equal to \(-\delta \tilde{\Theta} \) in both descriptions because \(\delta \tilde{\Theta} = \Lambda \delta \tilde{\Theta} \Lambda^T \). Finally, the Lie variation of the deformation tensor \(F \) with respect to the rotation operator \(\Lambda \) is written as

\[\delta_{\Lambda} F = \delta F - \delta \tilde{\Theta} F \in (T_2 B \otimes T_\chi^* B_0) \tag{A.97} \]

which is a co-rotational operator, (see Refs. [277, 180] for a physical interpretation of co-rotated magnitudes). Although the spatial virtual rotation tensor \(\delta \tilde{\Theta} \Lambda \in T_{\text{spa}}^\text{spa} SO(3) \), i.e. it occupies a spatial tangent space, it is also an element of the tensor–space \((T_2 B \otimes T_\chi^* B_0) \).

A.5.6 Co–rotated derivatives

In this section an important result related to the derivatives of spatial vectors described in a moving frame induced by rotational motion will be presented. The co–rotated derivative of a vector described in the moving reference frame will be deduced. This kind of derivative will be latter employed in formulation of a geometrically exact theory for rods.

Let suppose two spatially fixed axes \(\{ \hat{E}_i \} \) employed to describe the material configuration of a body, \(B_0 \), and \(\{ \hat{e}_i \} \) to describe the spatial configuration at time \(t \) of the body during motion \(B_t \). Additionally, let suppose a spatial moving axis \(\{ \hat{t}_i \} \) obtained by means of the operation of a two–point rotation tensor \(\Lambda = [\Lambda_{ij}] \hat{e}_i \otimes \hat{E}_j \) acting on the material reference frame, according to: \(\hat{t}_i = \Lambda_{ij} \hat{E}_j \). Note that the induced moving frame correspond to the push–forward by the rotation tensor of the material reference frame to the spatial placement.

Any spatial vector \(\hat{v} \) belonging to the tangent space of \(B_t \) at \(\dot{x}(\hat{X}, t) \) can be described in any of the two spatial reference frames, \(\{ \hat{e}_i \} \) or \(\{ \hat{t}_i \} \), according to \(\hat{v} = \hat{v}_i \hat{t}_i = \hat{v}_i \Lambda \hat{E}_i = \Lambda \hat{V} \) and \(\dot{v} = v_i \dot{e}_i \).

It is interesting to note that the components of the spatial vector \(\hat{v} \) expressed in the moving frame \(\{ \hat{t}_i \} \) are identical to the components of the material vector, \(\hat{V} \) obtained by its pullback to the (material) reference configuration \(\{ \hat{E}_i \} \),

\[\hat{V} = \Lambda^T \hat{v} = \hat{v}_i \Lambda \hat{E}_i = \hat{v}_i \hat{E}_i. \tag{A.98} \]

Let suppose that the spatial vector and the rotation tensor are implicitly parameterized in terms of \(S \in \mathbb{R} \), i.e. \(\hat{v} = \hat{v}(S) \) and \(\Lambda = \Lambda(S) \). Taking the derivative of \(\hat{v} \) with respect
S we have [196, 180]

\[
\hat{v},_S = \Lambda, S \hat{v} + \Lambda (\hat{v},_S) = (\Lambda, S \Lambda^T)(\Lambda \hat{v}) + \Lambda (\Lambda^T \hat{v}),_S
\]

\[
= \tilde{\omega}_\Lambda \hat{v} + \Lambda (\Lambda^T \hat{v}),_S
\]

(A.99)

It is worth to note that in the deduction of Eq. (A.99) the pullback by \(\Lambda \) of the spatial vector \(\hat{v} \) has been performed and the definition of angular velocity \(\tilde{\omega}_\Lambda \) (see §A.5.7) has been used considering the derivative with respect to the scalar parameter \(S \). From Eq. (A.99) it is possible to define the following derivative:

Definition A.27. Co–rotated derivative

The co–rotated derivative of the spatial vector \(\hat{v} (S) \) \((S \in \mathbb{R})\) with respect to the scalar parameter \(S \) as the following operator:

\[
(\nabla \bullet)_S : T_x B_t \rightarrow T_x B_t
\]

\[
\hat{v} \mapsto \hat{v},_S \equiv \Lambda \hat{V},_S \equiv \hat{v},_S - \tilde{\omega}_\Lambda \hat{v} \equiv \hat{v},_S - \tilde{\omega}_\Lambda \times \hat{v}
\]

(A.100)

The definition of the co–rotated derivative implies that it is a particular case of the Lie derivative applied to a spatial vector described in a rotating frame and the corresponding pullback/push forward operations are performed by the same rotation tensor as these that define the moving frame \(\{ \hat{t}_i \} \).

Additionally, Eq. (A.100) gives a new explicit expression for this particular Lie derivative:

\[
\hat{v},_S \equiv L_\Lambda (\hat{v}) = \hat{v},_S - \tilde{\omega}_\Lambda \times \hat{v}
\]

(A.101)

The physical meaning of co–rotated derivative is that the derivative of a spatial object is taken by an observer fixed in the moving frame, only on the components referred to the corresponding moving frame. An observed who stays still in the fixed spatial frame needs to pullback the object to the material form \(\hat{v} = \Lambda^T \hat{v} \) to perform the usual derivative operation and then push forward to the spatial form \(\Lambda \hat{v},_S \). Equivalently, the observer needs to subtract the spin effect \(\tilde{\omega}_\Lambda \times \hat{v} \) from the usual derivative \(\hat{v},_S \) to have the same objective observation as by the observer fixed in the moving frame [277, 180].

On other hand, for any spatial second order tensor \(T = T_{ij} \hat{t}_i \otimes \hat{t}_j \) that defines a transformation, \(\hat{v}'' = T \hat{v}' \) between vectors \(\hat{v}' = \hat{v}',_j \in T_x B_{t'} \) at any time \(t' \) and \(\hat{v}'' = \hat{v}'',_i \in T_x B_{t''} \) at any time \(t'' \) associated with the rotation tensors \(\Lambda' = \hat{t}'_i \otimes \hat{E}_i \in SO(3) \) and \(\Lambda'' = \hat{t}''_i \otimes \hat{E}_i \in SO(3) \) of the same material point and the corresponding material objects \(\hat{v}', \hat{v}'' \) and \(T \), one may define the corresponding co–rotated derivative as

\[
(\nabla \bullet)_S : (T_x B_{t''} \times T_x^*, B_{t'}) \rightarrow (T_x B_{t''} \times T_x^*, B_{t'})
\]

\[
\overline{T} (\hat{v}'',_i \otimes \hat{v}''),_j \mapsto \overline{T},_S
\]
where
\[
\bar{T}_{i,j,S} = \bar{T}_{i,j';S} \equiv \Lambda''[(\Lambda')'\mathbf{T}\Lambda'], S(\Lambda')^T = \Lambda''\bar{T}_{i,j} + (\bar{\omega}'_{\Lambda}^T \mathbf{T} - \mathbf{T}\bar{\omega}'_{\Lambda})
\]
(A.102)

In analogous manner as in the case of vectors the co-rotated derivative of a second order tensor can be rewritten as
\[
\nabla T_{i,j;S} = L_{\Lambda''}(\mathbf{T}) = \mathbf{T}_{i,j;S} + (\bar{\omega}'_{\Lambda}^T \mathbf{T} - \mathbf{T}\bar{\omega}'_{\Lambda})
\]
(A.103)

And the chain rule holds for the co-rotated derivative operation [180]:
\[
\nabla \hat{v}_{i,j;S} = \nabla T_{i,j;S} \hat{v} + \mathbf{T} \nabla \hat{v}_{i,j;S}.
\]
(A.104)

A.5.7 Configurational description of variations and derivatives

Supposing that the orientation tensor \(\Lambda \in SO(3) \) is given in term of one independent variable \(x \in \mathbb{R} \), and following analogous procedures as those described in Eqs. (A.71a) and (A.77a), we can consider the linearized increments \(\delta_x \Lambda^{22} \) which allow to obtain
\[
\begin{align*}
\delta_x (\Lambda\Lambda^T) &= \delta_x \Lambda\Lambda^T + \Lambda\delta_x \Lambda^T = \delta\bar{w}_x + \delta\bar{w}_x^T = \delta_x \mathbf{I} = 0 \quad \text{(A.105a)} \\
\delta_x (\Lambda^T\Lambda) &= \delta_x \Lambda^T\Lambda + \Lambda^T\delta_x \Lambda = \delta\bar{W}_x + \delta\bar{W}_x^T = \delta_x \mathbf{I} = 0 \quad \text{(A.105b)}
\end{align*}
\]

where the skew-symmetric tensors \(\delta\bar{w}_x \in T_{\Lambda}^{\text{spa}} SO(3) \) and \(\delta\bar{W}_x \in T_{\Lambda}^{\text{mat}} SO(3) \) are some times called the spin tensors [278, 180]. The following relationships are also valid
\[
\begin{align*}
\bar{w}_{\delta x} &\equiv \Lambda \bar{W}_{\delta x} \Lambda^T, \\
\bar{W}_{\delta x} &\equiv \Lambda^T \bar{w}_{\delta x} \Lambda.
\end{align*}
\]
(A.106)

The associated material and spatial axial vectors are: \(\delta\bar{W}_x \in T_{\Lambda}^{\text{mat}} \) and \(\delta\bar{w}_x \in T_{\Lambda}^{\text{spa}} \) respectively.

A.5.7.a Derivatives

If instead of the linearized form the derivative form is calculated, it is possible to obtain
\[
\begin{align*}
\tilde{\Omega}_x &\equiv \Lambda^T \Lambda x \in T_{\Lambda}^{\text{mat}} SO(3) \quad \text{(A.107a)} \\
\tilde{\omega}_x &\equiv \Lambda x \Lambda^T = \Lambda \tilde{\Omega}_x \Lambda^T \in T_{\Lambda}^{\text{spa}} SO(3) \quad \text{(A.107b)}
\end{align*}
\]

which are also called spin tensors as \(x \) varies [277, 142], associated with the following material and spatial axial vectors
\[
\begin{align*}
\bar{\omega}_x &\equiv \bar{\omega}_x \bar{t}_j \in T_{\Lambda}^{\text{spa}} \quad \text{(A.108a)} \\
\bar{\Omega}_x &\equiv \bar{\Omega}_x \bar{t}_j \in T_{\Lambda}^{\text{mat}}. \quad \text{(A.108b)}
\end{align*}
\]

\(^{22}\)The subscript \(x \) is used to highlight that the linearized increment in \(\Lambda \) is due to a linear increment in \(x \in \mathbb{R} \).
By other hand, considering the spatial updating of the compound rotation defined in Eq. (A.64) $\Lambda = \Lambda_n \Lambda_0$ and using the chain rule of partial derivatives, we have

$$\Lambda_{ix} = \Lambda_{nix} \Lambda_0 + \Lambda_n \Lambda_{0ix} \tag{A.109}$$

Therefore, the spatial form of the spin tensor as x varies is described by

$$\tilde{\omega}_x = \Lambda_{ix} \Lambda^T = \Lambda_{nix} \Lambda_0 \Lambda^T + \Lambda_n \Lambda_{0ix} \Lambda^T$$

$$= \Lambda_{nix} \Lambda^T_n + \Lambda_n \Lambda_{0ix} \Lambda^T_0 \Lambda_n$$

$$\tilde{\omega}_nx = \Lambda_{nx} \Lambda^T_n \in so(3)$$

where the skew–symmetric tensor $\tilde{\omega}_{nx} = \Lambda_{nix} \Lambda^T_n \in T_{\Lambda_n}^{spa} SO(3)$ is spatial description of the incremental spin tensor. The corresponding material description of the incremental spin tensor is obtained by means of applying the pullback operator by the rotation tensor Λ to the spatial description of the incremental spin tensor according to

$$\tilde{\Omega}_{nx} = \Lambda [\tilde{\omega}_{nx}] = \Lambda^T \tilde{\omega}_{nx} \Lambda = \Lambda^T [\tilde{\omega}_x - \Lambda_n \tilde{\omega}_0x \Lambda_n] \Lambda$$

$$= \Lambda^T \tilde{\omega}_{nx} \Lambda^T_0 \Lambda_0$$

$$\in T_{\Lambda_n}^{mat} SO(3)$$

The associated axial vectors are $\tilde{\omega}_{nx} \in T_{\Lambda_n}^{spa} \approx \mathbb{R}^3$ for the spatial description and $\tilde{\Omega}_{nx} \in T_{\Lambda_n}^{mat} \approx \mathbb{R}^3$ for the material description. Additionally, the following spatial and material forms are obtained

$$\tilde{\omega}_{0x} = \Lambda_0 \tilde{\omega}_0x \in T_{\Lambda_0}^{spa} SO(3)$$

$$\tilde{\Omega}_{0x} = \Lambda_0^T \tilde{\omega}_0x \Lambda_0 = \Lambda_0^T \tilde{\omega}_0x \Lambda_0 \in T_{\Lambda_0}^{mat} SO(3)$$

Eq. (A.111) implies that the spatial spin tensors cannot be obtained by a simple addition of an incremental spin relative to the previous configuration; It is necessary to align the spin of the previous configuration to the current one by applying the corresponding relative rigid–body rotation. A similar effect has to be accounted for constructing an additive rule for the axial vector associated to Eq. (A.111) i.e.

$$\tilde{\omega}_x = \tilde{\omega}_{nx} + \Lambda_n \tilde{\omega}_{0x} \in T_{\Lambda}^{spa} \approx \mathbb{R}^3.$$ \hspace{1cm} (A.114)

It is straightforward to confirm that a simple addition for spin tensors and the corresponding axial vectors can be performed in the material form according to:

$$\tilde{\Omega}_x = \tilde{\Omega}_{nx} + \tilde{\Omega}_{0x} \in T_{\Lambda}^{mat} SO(3)$$

$$\hat{\Omega}_x = \hat{\Omega}_{nx} + \hat{\Omega}_{0x} \in T_{\Lambda}^{mat} \approx \mathbb{R}^3$$

$$\in T_{\Lambda}^{mat} \approx \mathbb{R}^3$$
If the material description is preferred, i.e. \(\boldsymbol{\Lambda} = \Lambda_0 \Lambda^m \), we obtain the following results:

\[
\begin{align*}
\hat{\omega}_x &= \Lambda_{0,x} \Lambda^T = [\Lambda_{0,x} \Lambda_0^m + \Lambda_0 \Lambda_{0,x}^m] \Lambda_0^{mT} \Lambda_0^T \\
&= \Lambda_{0,x} \Lambda_0^T + \Lambda_0 \Lambda_{0,x}^m \Lambda_0^{mT} \Lambda_0^T \\
&= \hat{\omega}_{0x} + \Lambda_0 \hat{\omega}_{nx}^m \Lambda_0^{T} \in T_{\Lambda}^{\text{spa}} SO(3) \\
\hat{\Omega}_x &= \Lambda [\hat{\omega}_x] = \Lambda^T \hat{\omega}_x \Lambda \\
&= \Lambda_0^m \Lambda_0^T [\Lambda_{0,x} \Lambda_0^m + \Lambda_0 \Lambda_{0,x}^m] \Lambda_0^m \Lambda_0^m \\
&= \Lambda_0^m \hat{\Omega}_{0x}^m \Lambda_0^m + \hat{\Omega}_{nx}^m \in T_{\Lambda}^{\text{mat}} SO(3)
\end{align*}
\]

(A.117a)

where \(\hat{\Omega}_{0x} = \Lambda_0^m \Lambda_{0,x} \in T_{\Lambda}^{\text{mat}} SO(3) \), \(\hat{\omega}_{0x} = \Lambda_{0,x} \Lambda_0^m \in T_{\Lambda}^{\text{spa}} SO(3) \), \(\hat{\Omega}_{nx}^m = \Lambda_0^m \Lambda_{0,x}^m \in T_{\Lambda}^{\text{spa}} SO(3) \) with their corresponding axial vectors: \(\hat{\omega}_{x} \in T_{\Lambda}^{\text{mat}} \), \(\hat{\Omega}_{x} \in T_{\Lambda}^{\text{mat}} \), \(\hat{\omega}_{0x} \in T_{\Lambda}^{\text{spa}} \), \(\hat{\Omega}_{0x}^m \in T_{\Lambda}^{\text{mat}} \), \(\hat{\omega}_{nx}^m \in T_{\Lambda}^{\text{spa}} \), which are related by

\[
\begin{align*}
\hat{\omega}_x &= \hat{\omega}_{0x} + \Lambda_0 \hat{\omega}_{nx}^m \\
\hat{\Omega}_x &= \Lambda_0^m \hat{\Omega}_{0x}^m + \hat{\Omega}_{nx}^m \in T_{\Lambda}^{\text{mat}} SO(3)
\end{align*}
\]

(A.117b)

\(\hat{\omega}_x = \hat{\omega}_{0x} + \Lambda_0 \hat{\omega}_{nx}^m \), \(\hat{\Omega}_x = \Lambda_0^m \hat{\Omega}_{0x}^m + \hat{\Omega}_{nx}^m \) are equivalent to those obtained in Eqs. (A.117a)–(A.116) replacing \(\Lambda_0^m = \Lambda^T \Lambda_0 \Lambda \).

Remark A.10. Results obtained in Eqs. (A.117a), (A.117b), (A.117c) and (A.117d) are completely equivalent to those obtained in Eqs. (A.107a)–(A.116) replacing \(\Lambda_0^m = \Lambda^T \Lambda_0 \Lambda \).

Corresponding material and spatial angular vectors are given in terms of total rotation vector

\[
\begin{align*}
\hat{\Omega}_\Lambda &= T(\hat{\Psi}) \hat{\Psi}, \quad \hat{\Omega} \in T_{\Lambda}^{\text{mat}}, \quad \hat{\Psi} \in T_{\Lambda}^{\text{mat}} \\
\hat{\omega}_\Lambda &= T(\hat{\psi}) \hat{\psi}, \quad \hat{\omega} \in T_{\Lambda}^{\text{spa}}, \quad \hat{\psi} \in T_{\Lambda}^{\text{spa}}
\end{align*}
\]

(A.118a)

(A.118b)

The time derivative of the material/spatial angular velocity tensor or vector is known as material/spatial angular acceleration tensor or vector respectively, and is given by

\[
\begin{align*}
\hat{\bar{A}}_\Lambda &= \hat{\dot{\Omega}}_\Lambda, \quad \hat{\bar{A}}_\Lambda \in T_{\Lambda}^{\text{mat}} SO(3) \\
\hat{\dot{A}}_\Lambda &= \hat{\dot{\Omega}}_\Lambda, \quad \hat{\dot{A}}_\Lambda \in T_{\Lambda}^{\text{mat}} \\
\hat{\bar{\alpha}}_\Lambda &= \hat{\dot{\omega}}_\Lambda, \quad \hat{\bar{\alpha}}_\Lambda \in T_{\Lambda}^{\text{spa}} SO(3) \\
\hat{\dot{\alpha}}_\Lambda &= \hat{\dot{\omega}}_\Lambda, \quad \hat{\dot{\alpha}}_\Lambda \in T_{\Lambda}^{\text{spa}}
\end{align*}
\]

(A.119)

where \(\hat{\dot{A}}_\Lambda \) and \(\hat{\dot{\alpha}}_\Lambda \) are the material and spatial angular acceleration vector at the base point \(\Lambda \in SO(3) \).

It is worth to note that the material incremental rotation vector \(\hat{\dot{\Theta}}_\Lambda \), the angular velocity vector \(\hat{\dot{\Omega}}_\Lambda \) and the material angular acceleration vector \(\hat{\dot{\alpha}}_\Lambda \) belong to the same vector space on the rotation manifold, i.e. \(\hat{\dot{\Theta}}_\Lambda, \hat{\dot{\Omega}}_\Lambda, \hat{\dot{\alpha}}_\Lambda \in T_{\Lambda}^{\text{mat}} \) with the base point \(\Lambda = \exp(\hat{\Psi}) \).

As the time, \(t \), changes, these vectors occupy different tangent spaces because the rotation operator depends on time, namely \(\Lambda = \Lambda(t) \), therefore, the base point is moving permanently. Vector quantities of this type are known in mechanics as spin vectors. Spin vectors are rather tricky in numerical sense as they occupy a distinct vector space on the
manifold. Correspondingly, the spatial spin vectors are $\hat{\theta}_\Lambda$, $\hat{\omega}_\Lambda$, $\hat{\alpha}_\Lambda \in T^\text{spa}_\Lambda$.

Angular velocity and acceleration vectors and time derivatives of total rotation vector are related by

$$\hat{A}_\Lambda = T \cdot \ddot{\Psi} + T \cdot \dot{\Psi}, \quad \hat{A}_\Lambda \in T^\text{mat}_\Lambda; \quad \dot{\Psi}, \ddot{\Psi} \in T^\text{mat}_\Lambda$$

$$\hat{\alpha}_\Lambda = T^T \cdot \dddot{\psi} + T^T \cdot \ddot{\psi}, \quad \hat{\alpha}_\Lambda \in T^\text{spa}_\Lambda; \quad \dot{\psi}, \ddot{\psi} \in T^\text{spa}_\Lambda$$

where the tangential transformation depends on the total rotation vector and the rotation operator is $\Lambda = \exp(\hat{\Psi}) = \exp(\hat{\psi})$. The deduction of the time derivative of the tangential transformation, $T(\bullet)$, involves a large and tedious algebraic work and it can be found in [193, 261] and references therein, its final expression is

$$T(\dot{\hat{\Psi}}, \dddot{\hat{\Psi}}) = c_1 (\dot{\Psi} \cdot \dot{\hat{\Psi}}) I - c_2 (\dot{\Psi} \cdot \dot{\hat{\Psi}}) \hat{\Psi} + c_3 (\dot{\Psi} \cdot \dot{\hat{\Psi}}) \hat{\Psi} \otimes \hat{\Psi}$$

$$+ c_4 (\dot{\hat{\Psi}} \cdot \dot{\hat{\Psi}}) \dot{\hat{\Psi}} + c_5 (\dot{\hat{\Psi}} \otimes \dot{\hat{\Psi}} + \dddot{\hat{\Psi}} \otimes \dot{\hat{\Psi}})$$

(A.120)

where the coefficients c_i, ($\Psi = |\hat{\Psi}|$), are

$$c_1 := \frac{\Psi \cos \Psi - \sin \Psi}{\Psi^3}; \quad c_2 := \frac{\Psi \sin \Psi + 2 \cos \Psi - 2}{\Psi^4};$$

$$c_3 := \frac{3 \sin \Psi - 2 \Psi - \Psi \cos \Psi}{\Psi^5}; \quad c_4 := \frac{\cos \Psi - 1}{\Psi^2}; \quad c_5 := \frac{\Psi - \sin \Psi}{\Psi^3}$$

(A.121)
Appendix B

Additional results

In this appendix some additional rather extensive results that were excluded from the main body of the text for facilitating the reading are given.

B.1 Reduced linear-elastic constitutive relations

In this appendix the explicit expressions for the coefficients of the reduced linear-elastic constitutive relations for rod cross sections composed of not necessarily homogeneous nor isotropic hyperelastic materials are provided.

Considering that \(\hat{n}^m = C_{nn}^{me} \hat{\xi}_n + C_{nm}^{me} \hat{\Omega}_n \) and \(\hat{m}^m = C_{nn}^{me} \hat{\xi}_n + C_{nm}^{me} \hat{\Omega}_n \) in the material form and Eq. (3.162) we have [180]:

\[
\begin{align*}
C_{nnij}^{me} &= C_{ij}^{me0} \hat{A}^s \\
C_{nmi1}^{me} &= C_{i3}^{me0} \hat{S}_3^s - C_{i2}^{me0} \hat{S}_2^s \\
C_{nm1j}^{me} &= C_{3j}^{me0} \hat{S}_3^s - C_{2j}^{me0} \hat{S}_2^s \\
C_{nm2i}^{me} &= C_{i1}^{me0} \hat{S}_1^s \\
C_{mn2j}^{me} &= C_{1j}^{me0} \hat{S}_1^s \\
C_{nm3i}^{me} &= -C_{i1}^{me0} \hat{S}_3^s \\
C_{nm3j}^{me} &= -C_{1j}^{me0} \hat{S}_3^s \\
C_{mm11}^{me} &= C_{22}^{me0} \hat{I}_2^s + C_{33}^{me0} \hat{I}_3^s - (C_{23}^{me0} \hat{I}_2^s + C_{32}^{me0} \hat{I}_3^s) \\
C_{mm22}^{me} &= C_{11}^{me0} \hat{I}_2^s \\
C_{mm33}^{me} &= C_{11}^{me0} \hat{I}_3^s \\
C_{mm12}^{me} &= C_{31}^{me0} \hat{I}_3^s - C_{21}^{me0} \hat{I}_2^s \\
C_{mm21}^{me} &= C_{13}^{me0} \hat{I}_3^s - C_{12}^{me0} \hat{I}_2^s \\
C_{mm13}^{me} &= C_{21}^{me0} \hat{I}_2^s - C_{31}^{me0} \hat{I}_3^s \\
C_{mm31}^{me} &= C_{12}^{me0} \hat{I}_2^s - C_{13}^{me0} \hat{I}_3^s \\
C_{mm23}^{me} &= -C_{11}^{me0} \hat{I}_3^s \\
C_{mm32}^{me} &= -C_{11}^{me0} \hat{I}_3^s
\end{align*}
\]
with,

\[\tilde{A}_* = \int_A g_0^{-1} \bar{\alpha} d\xi_2 d\xi_3 \] \hspace{1cm} (B.2a)

\[\tilde{S}_2^* = \int_A g_0^{-1} \bar{\alpha} \xi_3 d\xi_2 d\xi_3 \] \hspace{1cm} (B.2b)

\[\tilde{S}_3^* = \int_A g_0^{-1} \bar{\alpha} \xi_2 d\xi_2 d\xi_3 \] \hspace{1cm} (B.2c)

\[\tilde{I}_{22}^* = \int_A g_0^{-1} \bar{\alpha} (\xi_3)^2 d\xi_2 d\xi_3 \] \hspace{1cm} (B.2d)

\[\tilde{I}_{33}^* = \int_A g_0^{-1} \bar{\alpha} (\xi_2)^2 d\xi_2 d\xi_3 \] \hspace{1cm} (B.2e)

\[\tilde{I}_{23}^* = \tilde{I}_{32}^* = \int_A g_0^{-1} \bar{\alpha} \xi_2 \xi_3 d\xi_2 d\xi_3. \] \hspace{1cm} (B.2f)

Note that the reduced elasticity constants have an overall symmetry for any hyperelastic material due to the fact that \(C_{ij}^{me0} = C_{ji}^{me0} \). For other materials the symmetry may not hold because of non-existence of the strain energy functional of Eq. (3.149). In general, the coupling exist, such as stretch-bending coupling, stretch-torsion coupling and torsion-bending coupling, etc.

On the other hand, we may align the rod reference curve so that \(\tilde{S}_2^* = \tilde{S}_3^* = 0 \). This means that the cross section elasticity centroid line does not coincide with the mass centroid line for a general curved rod even though the rod material is homogeneous because the initial curvature correction term \(g_0 \) appears as the numerator in the integrals of the inertia constants while it appears as the denominator for the elasticity constants.

The coefficients in the case of the spatial form of the constitutive tensors are the same as given in Eqs. (B.1a) to (B.2f) due to the fact that material tensors have the same components in the material frame as their co–rotated counterparts in \(\{\hat{t}_i \otimes \hat{t}_j\} \).
Bibliography

[154] Innocenti C, Paganelli D. Determining the 3×3 rotation matrices that satisfy three linear equations in the direction cosines, Advances in Robot Kinematics Mechanisms and Motion, Springer (2006).

