
Articulated Models for Human

Motion Analysis

Ph.D. Thesis Dissertation

by
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Summary

Human motion analysis is as a broad area of computer vision that has strongly attracted

the interest of researchers in the last decades. Motion analysis covers topics such as

human motion tracking and estimation, action and behavior recognition or segmentation

of human motion. All these fields are challenging due to different reasons, but mostly

because of viewing perspectives, clutter and the imprecise semantics of actions and

human motion.

The computer vision community has addressed human motion analysis from several per-

spectives. Earlier approaches often relied on articulated human body models represented

in the three-dimensional world. However, due to the traditionally high difficulty and cost

of estimating such an articulated structure from video, research has focus on the devel-

opment of human motion analysis approaches relying on low-level features. Although

obtaining impressive results in several tasks, low-level features are typically conditioned

by appearance and viewpoint, thus making difficult their application on different scenar-

ios. Nonetheless, the increase in computational power, the massive availability of data

and the irruption of consumer-depth cameras is changing the scenario, and with that

change human motion analysis through articulated models can be reconsidered.

Analyzing and understanding of human motion through 3-dimensional information is

still a crucial issue in order to obtain richer models of dynamics and behavior. In that

sense, articulated models of the human body offer a compact and view-invariant repre-

sentation of motion that can be used to leverage motion analysis. In this dissertation,

we present several approaches for motion analysis. In particular, we address the problem

of pose inference, action recognition and temporal clustering of human motion. Artic-

ulated models are the leitmotiv in all the presented approaches. Firstly, we address

pose inference by formulating a layered analysis-by-synthesis framework where models

are used to generate hypothesis that are matched against video. Based on the same ar-

ticulated representation upon which models are built, we propose an action recognition

framework. Actions are seen as time-series observed through the articulated model and

generated by underlying dynamical systems that we hypothesize that are generating the

time-series. Such an hypothesis is used in order to develop recognition methods based

on time-delay embeddings, which are analysis tools that do not make assumptions on

the form of the form of the underlying dynamical system. Finally, we propose a method

to cluster human motion sequences into distinct behaviors, without a priori knowledge

of the number of actions in the sequence. Our approach relies on the articulated model

representation in order to learn a distance metric from pose data. This metric aims at

capturing semantics from labeled data in order to cluster unseen motion sequences into

meaningful behaviors. The proposed approaches are evaluated using publicly available

datasets in order to objectively measure our contributions.





Resum

L’anàlisi del moviment humà és una àrea de visió per computador que, en les últimes

dècades, ha atret l’interès de la comunitat cient́ıfica. L’anàlisi de moviment inclou temes

com el seguiment del cos humà, el reconeixement d’accions i patrons de comportament,

o la segmentació del moviment humà. Tots aquests camps suposen un repte a causa de

diferents raons, però especialment a la perspectiva de captura de les escenes a analitzar i

també a l’absència d’una semàntica precisa associada a les accions i el moviment humà.

La comunitat de visió per computador ha abordat l’anàlisi del moviment humà des de

diverses perspectives. Els primers enfocaments es basen en models articulats del cos

humà. Aquests models representen el cos com una estructura esqueletal tridimensional.

No obstant, a causa de la dificultat i el cost computacional de l’estimació d’aquesta

estructura articulada a partir de v́ıdeo, la investigació s’ha anat enfocant, en els últims

anys, cap a l’anàlisi de moviment humà basat en caracteŕıstiques de baix nivell. Malgrat

obtenir resultats impressionants en diverses tasques, les caracteŕıstiques de baix nivell

estan normalment condicionades per l’aparença i punt de vista, cosa que fa dif́ıcil la

seva aplicació en diferents escenaris. Avui dia, l’augment de la potència de càlcul, la

disponibilitat massiva de dades i la irrupció de les càmares de profunditat de baix cost

han proporcionat un escenari que permet reconsiderar l’anàlisi de moviment humà a

través de models articulats.

L’anàlisi i comprensió del moviment humà a través de la informació tridimensional

segueix sent un enfocament crucial per obtenir millors models dinàmics al voltant del

moviment del cos humà. Per això, els models articulats del cos humà, que ofereixen

una representació compacta i invariant al punt de vista de la captura, són una eina per

potenciar l’anàlisi de moviment. En aquesta tesi, es presenten diversos enfocaments per

a l’anàlisi de moviment. En particular, s’aborda el problema de l’estimació de pose, el

reconeixement d’accions i el clustering temporal del moviment humà. Els models artic-

ulats són el leitmotiv en tots els plantejaments presentats. En primer lloc, plantegem

l’estimació de pose mitjançant la formulació d’una mètode jeràrquic d’anàlisi per śıntesi

en què els models s’utilitzen per generar hipòtesis que es contrasten amb v́ıdeo. Fent

servir la mateixa representació articulada del cos humà, es proposa una formulació del

moviment humà per al reconeixement d’accions. La nostra hipòtesi és que les accions

formen un conjunt de sistemes dinàmics subjacents que generen observacions en forma de

sèries temporals. Aquestes sèries temporals són observades a través del model articulat.

Aquesta hipòtesi s’utilitza amb la finalitat de desenvolupar mètodes de reconeixement

basats en time-delay embeddings, una eina d’anàlisi de sèries temporals que no fa suposi-

cions sobre la forma del sistema dinàmic subjacent. Finalment, es proposa un mètode

per segmentar seqüències de moviment del cos humà en diferents comportaments o ac-

cions, sense necessitar un coneixement a priori del nombre d’accions en la seqüència. El

nostre enfocament utilitza els models articulats del cos humà per aprendre una distància

mètrica. Aquesta mètrica té com a objectiu capturar la semàntica impĺıcita de les an-

otacions que es puguin trobar en altres bases de dades que continguin seqüències de

moviment. Amb la finalitat de mesurar objectivament les nostres contribucions, els

mètodes proposats són avaluats utilitzant bases de dades públiques.
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1
Introduction

Human motion analysis is as a broad area of computer vision that has strongly attracted

the interest of researchers in the last decades. Motion analysis covers topics such as hu-

man motion tracking and estimation, action and behavior recognition or segmentation of

human motion. All these fields are challenging due to different reasons, but mostly be-

cause of viewing perspectives, clutter and the imprecise semantics of actions and human

motion. In spite of that, the wide range of applications in several areas and disciplines,

such as animation, gaming, data indexing and retrieval, surveillance or biomechanics,

to name a few, have pushed researchers forward to develop systems facing with these

challenges.

The computer vision community has addressed human motion analysis from several per-

spectives. Earlier approaches tend to rely on models of the human body that contained

real-world magnitudes such as 3D positions. Markerless motion capture approaches are

possibly one of the most salient examples of approaches that deal with human pose

estimation and motion analysis by means of real-world magnitudes, represented by an

articulated model. However, estimating 3D magnitudes from images is a highly chal-

lenging problem in most cases. This limitation has led to the development of human

motion analysis approaches relying on low-level features. Although obtaining impressive

results in several tasks, low-level features are typically conditioned by appearance and

viewpoint, thus making difficult their application on different scenarios. Hence, it seems

1



1. Introduction 2

that the understanding of human motion through 3-dimensional information is still a

crucial issue in order to obtain richer models of dynamics and behavior.

1.1 A look into the past

Understanding the movement of humans, both in terms of how it is generated and how

it is interpreted, has been of interest in several disciplines, such as science or arts. This

interest goes back very far in history. Classical antiquity can be regarded as the seed

period for the most sounding technical contributions for human motion understanding.

In this period, we can find works that expose mathematical models and studies for human

poses and motion for different activities [KT08]. These works were usually reflected

through arts, especially in the case of sculpture, where artists looked for a highly realistic

representation of motion through a single static frame.

Renaissance continued these trends. The sketches and works of Leonardo Da Vinci (1452-

1519) contained studies about human body and motion. He actually coined the term

kinematic trees, referring to the kinematic chains that model the underlying structure

of the human body, and that allow to represent human poses by means of articulated

models. It is worth mentioning that the artistic currents of the Renaissance also focused

on the thorough development of the perspective as a tool for representing scenes in a

single frame or picture. Therefore, artists of that time were actually concerned about

the representation of the 3-dimensional world and its relationship to the appropriate

representation of human pose and its motion.

Later on, Giovanni Alfonso Borelli (1608-1679) contributed to human motion under-

standing with studies that applied mechanics to analyze motion for biological purposes.

His main contribution was a leap between qualitative observational studies to quantita-

tive measurements of motion. Such a work is considered to be crucial for the birth of

biomechanics [KT08].

After Borelli, the most notable contributions to the understanding of human motion

are found in the XIX century. These contributions came along with revolutionary

technical advancements in capturing devices, and more specifically the chronophotogra-

phy. Etienne-Jules Marey (1830-1904) is one of the best representatives of the use of

chronophotography for the study of motion. He actually invented a system that can

be considered the first marker-based motion capture system 1.1. Inspired by the work

of Marey, Muybridge developed a system to record fast motion with several cameras.

He also invented a system to display the recorded images, hence he was influential in

the development of the cinematography. He used these technical contributions to make
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Figure 1.1: The system developed by Etienne-Jules Marey in order to capture human
motion [Mar94]

locomotion studies of humans. The images recorded during these studies have been used

in modern computer vision publications [BM98].

The origins of computer-based human gait analysis are probably found in the work of

Gunnar Johansson [Joh73]. He studied gait by recording humans having a set of light

displays attached to actor’s limbs. The resulting configuration is rather similar to the

one employed in modern marker-based motion capture systems.

1.2 Recent Years and Future Perspectives

The availability of cameras and the proliferation of the processing power of modern com-

puters has paved the way to the development of computer vision technologies for the

understanding of human motion. Motion understanding, action recognition and pose

estimation are central problems in computer vision, computer graphics and image pro-

cessing. However, in most cases, the historical link between perspective and human body

modeling has been broken due to the inherent complexity of the problem of estimating 3D

information from images. Consequently, a large number of approaches towards human

motion and behavior understanding have focused on the dynamical analysis of low-level

and appearance-based features. However, recent technological advances have changed

the scenario. Firstly, the constant increase in computational power allows researches

to deal with large-scale vision problems. At the same time, this computational power,

along with global communication, has produced a massive amount of data that can be

used in research in order to produce better models of vision. Finally the recent release

of consumer-depth cameras, probably led by the Microsoft’s Kinect device [Kin] is a

solution to some of the chronic problems of vision in order to estimate the human pose.
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All these advances are pushing forward the historical paradigm of motion understand-

ing: the human body is represented by an underlying skeletal model comprising joints

linked by bones and this model can be properly represented (estimated) through per-

spective representation. Hence, there is a promising near future for approaches relying

on articulated body models.

1.3 The role of articulated models in the understanding of

human motion

In this thesis, we investigate the potential of articulated body models for human motion

analysis and understanding. We refer to motion analysis in a wide sense and our work

ranges from pose inference to discovery of action categories in a human motion sequence.

Articulated models are a sketch of the human body and its movement. Compared to low-

level features, articulated models can efficiently represent complex poses and motion with

a relatively low number of parameters or dimensions. Models are a tool for representing

prior knowledge about the body structure. They also define a splitting of feature vectors

into global rotations and translations and local joint rotations. This splitting helps in

easily representing poses and motion independently of a viewpoint. Skeletal models

allow also computing symmetric configurations, which may be of help in order to learn

patterns of motion that can be performed with left or right limbs.

All these features are exploited in this thesis in order to provide a human motion un-

derstanding framework robust to view-point and appearance changes. The following

sections describe our research on several fields of human motion understanding through

the use of articulated body models.

1.4 Contribution

This thesis focuses on the use of articulated models for the analysis of human motion from

multiple views or eventually with range sensors. Human motion analysis is performed

in three different levels with the following contributions:

1. 3D Pose estimation : Estimating the human pose is crucial for further motion

and behavior analysis. In this thesis, we mainly focus on inferring pose from

multiple views. To this end, we adopt an approach whose central element is a

human body model governed by an articulated skeletal model. Our contributions

are:
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• A layered particle filtering approach that generalizes existing approaches of

the state-of-the-art.

• A detector-driven hierarchical particle filter, that is designed within our lay-

ered framework, providing state-of-the-art performance without learning mo-

tion models.

• A method to detect 3D body parts from multiple views.

• An approximate partitioning of the observations, which are images in multiple

views or range images. Such partitioning helps in improving the observation

model and provides a more accurate and faster pose inference.

2. Action Recognition : Given labeled sequences of poses, represented by means of

an articulated model, our aim is to recognize actions performed in new sequences.

To this end, we propose a principled approach towards the characterization of

action sequences as time series. Our contributions in this field are:

• A novel approach towards exploiting time-delay embeddings. Time-delay

embeddings are a principled method to reconstruct dynamical systems from

data. Our approach consists in taking advantage of the geometry and topol-

ogy of these systems in order to perform action recognition. For this reason,

we propose reconstructing several dynamical systems in the same space in

order to be compared.

• A distance between reconstructed phase spaces, that takes ideas from dy-

namic programming in order to find a topologically suitable alignment be-

tween phase-space trajectories. We use this distance with two classification

strategies in order to recognize actions from human motion sequences.

• An action classification method based on constructing codebooks with delay

vectors. The classification approach is inspired in the popular bag-of-words

model, but in this thesis words implicitly encode dynamical information.

• An efficient random forest approach to classify actions in the phase space

reconstructed by time-delay embeddings.

3. Temporal Clustering of Human Motion : We are given unseen motion se-

quences containing a set of actions. Assuming that we have a set of examples

whose labels do not appear in the unseen actions, but are related to some ex-

tent, we would like to cluster the unseen sequences into different behaviors. This

problem can be formulated as a weakly supervised temporal clustering of motion

sequence. Our contributions are the following:

• An approach to learn what makes some actions different from others by means

of metric learning. The novelty of this approach is that the ultimate goal is
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to apply the learned metric to unseen data, containing possibly unseen action

categories. Hence, we expect the metric to gather some semantics in order to

quantize unseen motion sequences into meaningful motion primitives. To this

end, we propose a set of constraints specifically suited for articulated models.

• A framework that combines metric learning and hierarchical Dirichlet pro-

cesses in order to cluster motion sequences into actions or behaviors. Our

approach has the advantage that can be used across datasets without provid-

ing the number of clusters or actions.

An in-depth list of the contributions of this thesis, including related references of journal

papers, international conference publications, contributions to projects and submitted

publications is detailed in the conclusions chapter.

1.5 Thesis Organization

The thesis is structured as follows:

• Chapter 2 provides an overview of the state-of-the-art in pose estimation, human

motion and behavior understanding.

• Chapter 3 is devoted to pose inference. In this chapter, we present our layered

approach to the model-based pose inference problem.

• Chapter 4 presents the human action recognition problem as the analysis of artic-

ulated motion as a set of time series. We describe principled approaches to the

analysis of such time series in order to classify human actions.

• Chapter 5 deals with the problem of identifying distinct human behaviors in motion

sequences. Differently from Chapter 4, models for specific actions, learned from

labeled data, cannot be used, since one has to deal with unseen actions or strong

stylistic changes. Furthermore, the approach presented in this chapter is shown to

work reliably across datasets.

• Chapter 6 draws the conclusions of this dissertation.



2
State of the Art

In the recent years, human motion understanding from video streams has become a

foremost issue in computer vision and image processing. Human motion understanding

is itself a broad area comprising pose inference, action recognition, motion segmentation

and other related fields. These fields have been traditionally tackled with tools and

methods that work independently on each problem. For that matter, in the following

we present state-of-the-art approaches that address the problems covered in this disser-

tation: pose inference, action recognition and segmentation of human motion motion

into distinct and semantically meaningful behaviors.

2.1 Pose Inference

In this dissertation we focus on 3D pose inference from video, that is, the automated

estimation of the configuration of a three-dimensional articulated model that represents

the underlying structure the human body. Even addressed by analyzing multiple views,

the problem of pose inference is often ill-posed due to spatial ambiguities, mainly caused

by self-occlusions. In addition, in realistic conditions, the variability in individuals’

appearance and background clutter make the estimation much more difficult.

7
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Approaches addressing pose inference can be split into 2 main categories: example-based

and model-based.

Example-based pose inference methods aim at finding a direct mapping between the fea-

ture space and the 3D pose space. One of the earliest attempts to example-based pose

inference was the nonlinear regression against shape descriptors automatically obtained

from silhouettes in monocular images [AT06]. Similarly, Elgammal and Lee [EL04] pro-

posed a nonlinear mapping from silhouettes in multiple views to 3D poses. Using Locally

Linear Embedding [RS00] and Isomap [TSL00], they embed the silhouette information

in a low-dimensional space while keeping some degree of the geometrical structure of

the manifold. By connecting the points in the manifold, they reveal motion trajectories

that are view-dependent. From these view dependent manifolds, they learn a mapping

in order to infer the 3D pose parameters. Howe et. al. [How04] proposed a direct silhou-

ette lookup based Chamfer distance to select candidate poses. Because pose to image

is a many-to-one mapping, some temporal constraints are added in order to improve

the pose inference. Gaussian Processes Latent Variable Models [Law04] and Gaussian

Process Latent Dynamical Models [WFH05] are another kind of mappings that involve

a latent low-dimensional space that is mapped onto the input space. These approaches

have been used for human body tracking of a priori modeled actions [UFF06]. More

recently, a solution to the problem of having to learn a huge number of poses has been

proposed in [UD08]. This technique is based on a local mixture of Gaussian processes,

where locality is defined based on both appearance and pose. The mixture components

are defined online in very small neighborhoods, so learning and inference is extremely

efficient.

On the contrary, model-based approaches make use of the kinematic constraints imposed

by an articulated model. These constraints range from simple limitations such as the

arm is connected to the shoulder to more precise constraints such as the elbow angle is

in the interval [−π, 0]. Similarly to other graphical models used in different computer

vision problems, articulated body models act as a prior of the structure and motion

of the human body and hence have the role to make pose inference from video more

tractable. If the articulated model is fleshed with some shape model (volumetric primi-

tives or a polygonal mesh representing the human body), then body models act also as

priors for the appearance of the human body. We further categorize model-based ap-

proaches depending on whether the model is used implicitly to represent some kinematic

constraints, or it used explicitly, thus also representing the human body shape.

When implicitly used, the human body model is used a graphical model in order to

formulate the pose estimation problem. Some authors perform inference on this graphical
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model by means of Belief Propagation [Mac03]. Sigal et al. [SBR+04] proposed a loose-

limbed model of people in order to infer poses with a belief propagation method. More

recently, Bernier et. al [BCMCB09] have proposed a nonparametric belief propagation

method for upper-body tracking with stereo images. In [BKSS10], Bergthold et al.

propose a graphical model framework with application to 3D pose estimation. Their

modeling framework implicitly represents a skeletal model comprising a set of joints,

although they formalize kinematic constraints through a fully connected graph.

Approaches using a human body model explicitly fall in the category of analysis-by-

synthesis, since the modeling framework serves to generate pose hypothesis that are rep-

resented by human shaped models. Withing analysis-by-synthesis approaches, stochas-

tic sampling, and more concretely particle filters (PF) [AMG+02] [IB98] have become

predominant methods due to their ability to deal with non-linear and non-Gaussian

processes. Nevertheless, the large number of degrees of freedom that can be found in

an articulated body model makes the body tracking problem a high-dimensional state-

space problem. Particle Filters are a good approach for tracking in low dimensional

spaces, but they become inefficient in high-dimensional problems, because they require

a number of particles that grows exponentially with the number of dimensions. For that

matter, a number of variants addressing the curse of dimensionality have been proposed

[DBR00, DR05, HWG07, GRBS10, BB09, BJB12]. For a more in-depth analysis of

these approaches, we refer the reader to Chapter 3.

2.2 Action Recognition

In computer vision, a human action can be described as a simple motion pattern usually

lasting a short period of time and typically executed by a single person[TCSU08].

Earlier approaches to human action recognition relied on three-dimensional articulated

models and kinematic features [CB95, PR00, BCMS01]. These approaches were gradu-

ally abandoned due to the difficulty of estimating 3D poses from video. Human action

recognition methods relying on low-level features emerged as a promising alternative.

These methods provide accurate results using descriptors than can be easily computed

from video. In this dissertation we use the term model-free to denote these approaches.

One of the earliest attempts of model-free action recognition are the motion templates

proposed by Bobick and Davies [BD01]. By gathering a temporal sequence of motion

areas computed with human silhouettes, they were able to recognize several actions. The

original proposal is view dependent as it relies on silhouettes extracted from a single
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view. The idea of extending these temporal templates to volumetric reconstructions

[WBR07, CFCP06] proved to be feasible.

Following the success of interest point detectors for image registration and object de-

tection, Laptev et al. propose the Space-Time Interest Points (STIP) [LL03]. Similarly,

Dollar et al. [DRCB05] introduce sparse spatio-temporal interest points for action recog-

nition. Both approaches succeed in obtaining informative points in order to compute

features for action recognition from low-resolution videos. Niebles et al. [NWFf06]

use STIPs to build a bag-of-words model of actions in video. More recent approaches

[LMS+, KG10] also rely on STIPs in order to compute video descriptors such as 3D-

SIFT [SAS07], HOG3D [KMS08], extended SURF [WTvG08] or local trinary patterns

[YW09]. Alternatively, Jhuang et al. [JSWP07] propose spatio-temporal filtering of

videos. This approach has been described as a model of the visual cortex. More re-

cently, extracting dense trajectories from video has been shown to outperform sparse

spatio-temporal interest points [WKSL11]. For a deeper analysis of model-free methods,

we refer the reader to [TCSU08, Pop10].

In the recent years, the computer vision community has made much progress in 3D pose

inference methods. The reasons of such a progress are the increase of computational

power, the massive availability of video and motion capture data and the evolution of

capturing devices, and more specifically consumer depth cameras [Kin, Xti]. All these

elements configure a suitable scenario to reconsider the earlier model-based approaches

for human action recognition.

Model-based approaches are able to tackle the problem of view-dependency whenever

the model can be represented in the 3-dimensional world in a view-invariant manner

[PC06]. This is the case of virtual skeleton representations, where motion sequences can

be easily represented independently of the overall rotation and translation parameters.

Within model-based approaches, this dissertation is related to the analysis of time series

and the underlying dynamical systems that describe the motion of joints in a human

model. Pavlovic and Rehg [PR00] infer the kinematics of walking and running to model

dynamical systems that can be used to recognize both actions. With similar kinematic

features, Bisacco et al. [BCMS01] classify human gaits by defining a distance in the space

of dynamical systems. Campbell and Bobick [CB95] represent human motion using joint

angles to construct curves in a phase space. They are able to segment fundamental steps

in ballet dance. Lv et al. [LNL05], infer human actions by representing them as a set of

weighted channels consisting in the temporal evolution of 3D joint coordinates. Raptis et

al. [RBS07] compare time series by considering a time warping model that accounts for

the intrinsic characteristics of an underlying dynamical system. More recently, Raptis et

al. [RWS10], have proposed a method to model human actions as a linear time-invariant
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dynamical model of relatively small order that generates multivariate time series in the

form of joint angle dynamics along time.

Some authors focus on dimensionality reduction methods to deal with the action recog-

nition problem by embedding input feature spaces into low-dimensional spaces. Dimen-

sionality reduction methods have been widely applied also in the field of model-free

action recognition [CWSS07, WS07, BR07], due to the high dimensionality of many

image features. However, when one deals with actions and time series, keeping the

geometric structure of input spaces is often not sufficient, and there is a need for con-

straining embedding techniques to cope with the underlying dynamics. Lewandowski

et al. [LMdRMN10], propose Temporal Laplacian Eigenmaps to embed time series of

motion capture data and video data, obtaining good results on both human motion

reconstruction and action recognition.

A recent approach by Yao et al. [YGvG12] presented a coupled markerless motion

capture [GYvG10] and action recognition [YGFvG11] system. This work shows the

feasibility of model-based action recognition, and its superior performance in front of

low-level features. The work by Guerra-Filho and Aloimonos [GFA12] is related to action

recognition, but they give one step further by analyzing the underlying grammars of

human motion that define actions. Their work is based on the analysis of mocap data,

and thus, of articulated models.

2.3 Segmentation of Motion into Behaviors

Although begin a challenging problem, in posing action recognition a direct relation

between the perception of motion and semantics is established: action labels are given for

each action sequence. Although intra-class variations can make this link rather elusive, a

more challenging problem to be solved is that of finding semantically meaningful action

categories from videos or motion sequences. This problem implies that precise labeling of

actions is not given. For that reason it is a very difficult problem, that is even challenging

for humans: given a motion sequence or a video, different people might perceive different

action categories.

In order to efficiently annotate actions in large collections of video or mocap data,

some researchers have focused on unsupervised segmentation and clustering of human

actions. Niebles et al. [NWFf06] propose a bag-of-words model based on STIPs (see

previous section) in order to model human motion in video. Using probabilistic Latent

Semantic Analysis (pLSA) they find different action categories in videos. As far as

mocap data is concerned, Barbic et al. [BSP+04] propose a change detection algorithm
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that provides accurate segmentation results, but that is unable to cluster the temporal

segments into the different behaviors. Ozay et al. [OSC08] overcome this problem by

modeling the first three principal components of the data as an autoregressive model.

The coefficients of the model are then clustered with k-means. Similarly, the Aligned

Cluster Analysis (ACA) proposed by Zhou et al. [ZDH08] extends the k-means concept

to cluster time series. They show that ACA can accurately find different behaviors

in sequences of video and mocap data. However, both [OSC08] [ZDH08] require to

manually set the number of clusters (actions) k. In [RWS10], this limitation is tackled

by using a spike-train driven dynamical model that can detect motion transitions and

clusters them into different behaviors, without having to manually set the number of

clusters k. Recent approaches such as [KOSS11][KBvGF10] have proposed variants and

extensions of hierarchical Dirichlet processes (HDP) [TJBB06] in order to find activities

using optical flow features mainly. In [FSJW08], HDPs are used as a prior for HMM

parameters in order to cluster time series data into distinct behaviors. This latter

approach is applied to synthetic data, stock indices and dancing honeybee data.



3
Layered Pose Inference

3.1 Introduction

Pose inference from video data, also known as markerless motion capture or, in other

words, being able to automatically estimate the human pose and its motion, is a problem

that has attracted the interest of the computer vision community in the last decades.

Among its wide range of applications, we emphasize its potential for action recognition

[HTTM11], a problem of motion understanding with which we deal in Chapter 4.

In this chapter, we present a layered framework for pose estimation from multiple views

or range data. The proposed layered framework is initially derived as a solution for well-

known problems of state-space dimensionality when using particle filters. We show that

this framework is in fact a generalization of existing particle filtering methods that take

into account the curse of dimensionality. However, we allow an increased flexibility in

the definition of layers that allows, for instance, multiple passes on state-space variables.

In addition, in the absence of actual likelihood functions for pose estimation, we relate

particle filtering to optimization by means of cost functions. This relation, already

established in other works, leads us to combine particle filtering (understood as a global

stochastic optimization method) with local optimization in order to refine the posterior

mean estimate.

13
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We start by introducing particle filtering in order to extend it to a layered filtering

scheme. Once layered particle filtering has been presented, we show how to instantiate

such a framework in order to implement existing particle filtering approaches towards

motion capture. We then advocate the use of hierarchically organized layers (according

to the implicit hierarchical structure of the articulated model). This choice is moti-

vated using graphical models, but is also shown to outperform other strategies in several

experiments. More importantly, hierarchical layers are convenient in order to define a

novel propagation approach that employs body part detectors. Not only propagation

can be efficiently improved in a hierarchically layered particle filter, but also the obser-

vation model. We propose a simple yet effective method to approximately partition the

observations in order increase the efficiency and accuracy of pose inference. All these

contributions are thoroughly evaluated in publicly available datasets and compared with

the state-of-the-art.

3.2 Related Work

Pose inference has been addressed from several perspectives. Approaches towards pose

inference can be split into two big categories, depending on the use of a human body

model. If no model is used, then we refer to example based inference methods. Such

approaches aim at learning a mapping between the image space and the pose space

[AT06, LE10, UD08]. On the other hand, model-based approaches make an implicit

or explicit use of a human body model, a kinematic structure comprising joints linked

by edges [DBR00, GRS08, GRBS10, BB09]. The work presented in this thesis belongs

to the second group, and more specifically, it makes an explicit use of a human body

modeling framework for analysis-by-synthesis inference of pose. This sort of approaches

are usually employed in multi-camera scenarios or with range data.

Despite recent advances, pose inference from multiple views is still a challenging problem

in realistic scenarios, where a few views are usually available. Some authors employ a

model-based approach in combination with variants of particle filter algorithms in order

to efficiently estimate the pose [GRBS10, BB09]. Although achieving an impressive

performance on some standard datasets, they usually rely on weak prior models that

fail to predict complex motion. For that matter, learning motion models has been

proposed as a solution to enrich such prior models . Some approaches rely on prior

models built on low-dimensional pose spaces and manifolds. Such spaces can be obtained

by linear dimensionality reduction techniques [SBF00, SBS02, UFHF05] or non-linear

dimensionality reduction techniques [JKMvG09, LTSY10, GYvG10]. Other prior models

are based on probabilistic latent variable models [WFH08, TSFH10]. The problem with



3. Layered Pose Inference 15

these approaches is the lack of scalability when a large number of motion patterns need to

be tracked or the poor generalization in front of unseen motion categories. Alternatively,

one can rely on input video cues in order to improve prior models. This latter approach

can be addressed by detecting body parts on images [SNH10]. Body part detectors are

also the basis for part-based graphical models. In [BKSS10], Bergthold et al. propose

a graphical model framework with application to 3D pose estimation. Unary potentials

can be seen as the response of body part detectors based on several features. However,

even some existing approaches successfully deal with 3D pose estimation with body

part detectors, employing image cues and body part detectors is frequently overlooked

in multiple view pose estimation due to the difficulty of robustly fusing detections in

several views.

The layered framework presented in this dissertation has some similarities to the par-

titioned approach proposed by Bandouch et al. [BEB08, BB09, BJB12]. In agreement

with their work, we experimentally found that hierarchical layers are more convenient

that exploring the whole state-space with meta-heuristics such as simulated annealing

[DBR00]. Differently to the approaches by Bandouch et al., we propose not limit the

layers to partitions, but to include any subset that holds a hierarchical ordering with

respect to the structure of the articulated model. We also propose different propaga-

tion and observation models for hierarchical layers, and we advocate the use of local

optimization for pose refinement.

3.3 Approach Overview

The pose inference problem can be understood as estimating the positions of body

joints in a skeletal model representing the human body. Provided that we implicitly

aim at estimating the configuration of a set of joints with a particular topology, we

adopt an analysis-by-synthesis approach whose central element is a human body model

comprising an articulated structure that consists in the target joints linked by segments

that represent human bones. These bones effectively represent the topology of the target

joints and, as we will detail later on this chapter, establish an implicit hierarchical

relation between them.

This schematic representation of the human body pose allows using the twists and ex-

ponential map formulation [BM98] to parameterize human poses as a global translation

and rotation and a set of joint rotations. So, in the end, every joint position is de-

termined by these pose variables and the bone lengths. In general, bone lengths are

unknown and fall in the category of anthropometric variables. These variables are out
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a b c

Figure 3.1: Body modeling framework (a) Skeletal Model (b) Mesh Model (c) Wired
Mesh model and underlying skeletal model

of the scope of this dissertation, but their estimation has been studied more in depth by

Marcel Alcoverro in [ACP10].

Provided that we aim at estimating the configuration of such a model from video, we

need some sort of modeling framework allowing us to measure the discrepancy between

what we see in images and hypothesis produced by our skeletal model (See Figs 3.1a).

Such a requirement is fulfilled by a shape model usually implemented by means of

simple yet efficient sets of volumetric primitives, or more sophisticated polygonal meshes

representing the shape of the body (See Figs 3.1b, c).

Two scenarios are of interest in our work: multi-camera settings, where several cameras

are placed in a wide baseline setup, and single view settings, with a range sensor [Kin,

Xti, Pri], though in this chapter (and in the dissertation in general) we make emphasis

on the multi-camera setup.

3.4 Pose Estimation with Layered Particle Filters

Pose estimation can be formulated as a tracking problem that involves estimating the

state of pose variables through time. State-space models with non-linear and non-

Gaussian transitions are a widely used approach. However, these models lead to ana-

lytically intractable statistics that require sub-optimal estimation algorithms. To this

end, Monte Carlo methods approximate probability density functions by means of a set

of weighted samples. Particle Filters (PFs) [AMG+02] are a particular Monte Carlo

method especially tailored to sequences of noisy measurements.

However, regular PF methods usually suffer from the curse of dimensionality: the state

space of human model variables is of high dimensionality, thus the number of required

particles usually grows exponentially. This problem has led to a generic set of methods

that we term Layered Particle Filters, since these methods behave as PFs with a refine-

ment procedure based on layers. In the following, we introduce the basic notions for
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Particle Filtering to afterwards present the concept of Layered Particle Filters. Then,

we describe two well-known variants of PFs, the Annealed Particle Filter [DBR00] and

several Hierarchical Particle Filters [MH03, HWG07, DD09, BB09], and we show that

both are covered by the Layered Particle Filter formalism.

3.4.1 Particle Filters

The tracking problem (and thus the pose estimation problem) can be defined by means

of a state-space model. Consider a sequence of states over time xt constituting the

dynamic process. From this sequence, one can recursively find the new state as follows:

xt = ft(xt−1,vt−1) (3.1)

where vt−1 is the process noise and ft : Rnx × Rnv → Rnx is a possibly non-linear state

transition function; nx, nv are the dimensions of the state vector and the noise of the

dynamic process respectively. As a common Bayesian problem, xt is a hidden variable

producing observations or measurements:

zt = ht(xt,nt) (3.2)

where nt is the observation noise and ht : Rnx×Rnn → Rzx is a possibly non-linear state

transition function; nz, nn are the dimensions of the observation vector and the noise of

the observation process respectively.

These two equations constitute the Gauss-Markov state-space model that has been

adopted to a great extent in tracking problems. The objective of such model is to

recursively estimate the degree of belief that a state xt is being produced given a col-

lection of observations z1:t up to time t, i.e, to infer the posterior probability density

function (pdf) p(xt|z1:t). Note that an initialization p(x0|z0) ≡ p(x0) must be available

to recursively estimate the posterior. Then p(xt|z1:t) may be obtained by prediction and

update. Given the previous posterior p(xt−1|z1:t−1), prediction is performed by means

of the Chapman-Kolmogorov equation:

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (3.3)

where p(xt|xt−1) is the state transition prior of a Markov process, which is a commonly

adopted assumption for tracking. This probabilistic model is built according to the

knowledge of the dynamical process given in equation 3.1.
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The update step is the Bayesian computation of the posterior:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(3.4)

where the normalizing constant is obtained by the total probability theorem:

p(zt|z1:t−1) =

∫
p(zt|xt)p(xt|z1:t−1)dxt (3.5)

Prediction and update are the formulation to find the optimal recursive Bayes solution

for the tracking problem. However, the statistics of a non-linear non-Gaussian process

are analytically intractable and therefore we cannot compute the integrals involved in

the optimal solution.

A way to deal with complex distributions is by drawing Monte Carlo samples of them

[LC98]. Hence, a criterion describing the “goodness” of a sample set is needed:

Definition A random variable x drawn from a distribution q is said to be properly

weighted by a weighting function w(x) with respect to the distribution p if for any

integrable function h:

Eq{h(x)w(x)} = Ep{h(x)}

A set of random draws and weights (xi, wi), i = 1...Ns is properly weighted with

respect to p if

lim
Ns→∞

∑Ns
i=1 h(xi)wi∑Ns

i=1w
i

= Ep{h(x)}

for any integrable function h.

According to this definition, a pdf is approximated by discrete distribution of samples

with probability proportional to the weights. Following this spirit, Particle Filters (PF)

[AMG+02] are designed as recursive Bayesian estimators to approximate the posterior

density p(xt|zt) by means of a set of Ns weighted samples or particles. Given a Bayesian

recursive estimation problem with Markov state transitions:

p(x0:t|z1:t) =
p(z1:t|xt)p(xt|xt−1)

p(zt|z1:t−1)
p(x0:t−1|z1:t−1) (3.6)
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we want to draw a set of properly weighted samples from the posterior. This set can be

formulated as follows:

p(x0:t|z1:t) ≈
Ns∑
i

witδ(xt − xit) (3.7)

where wit is the weight associated to the i-th particle. This discrete approximation of the

posterior requires the evaluation of weights. This is done by means of the importance

sampling principle [DGA00], with a pdf q(x0:t|z1:t) from which we generate samples that

can be evaluated with the posterior (up to proportionality). Applying the importance

sampling principle in Eq. 3.6:

wit ∝
p(xi0:t|z1:t)

q(xi0:t|z1:t)
(3.8)

wit ∝
p(z1:t|xit)p(xit|xit−1)

p(zt|z1:t−1)q(xi0:t|z1:t)
p(xi0:t−1|z1:t−1)

and choosing this importance distribution in a way that factors appropriately, we have:

wit ∝
p(z1:t|xit)p(xit|xit−1)p(xi0:t−1|z1:t−1)

p(zt|z1:t−1)q(xit|xi0:t−1, zt)q(x
i
0:t−1|z1:t−1)

(3.9)

wit ∝ wit−1

p(z1:t|xit)p(xit|xit−1)

q(xit|xi0:t−1, zt)p(zt|z1:t−1)

Moreover, if we apply the Markov assumption, the expression is simplified regarding

the fact that observations and current state only depend on the previous time instant.

Therefore, the PF is a sequential propagation of the importance weights.

A major problem affects the PF. After several iterations the majority of the particles

have negligible weights and, as a consequence, the estimation efficiency decays. An

effective measure for the particle degeneracy is the survival rate [LC98] given by:

α =
1

Ns

Ns∑
i=1

(wit)
2

(3.10)

In order to avoid this effect, there are two main strategies that can be combined. The

first is the choice of the importance distribution. This is crucial since the samples drawn
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from q() must be properly weighted with respect to the posterior. It has been shown in

[DGA00] that q(xt|xit−1, zt) = p(xt|xit−1, zt) is optimal in terms of variance of the true

weights, i.e., the weights obtained by sampling directly the posterior. However, this

optimal importance distribution is not always a possible choice.

The second technique consists in resampling the particle set. After likelihood evaluation

a new particle set must be drawn from the posterior estimation, hence particles with

higher weights are reproduced with higher probability. Once the new set has been drawn

all the weights are set to 1
Ns

, leading to a uniformly weighted sample set concentrated

around the higher probability zones of the estimated posterior. Resampling is usually

applied when the survival rate of the sample set is below a threshold.

The PF estimate should be computed before resampling, because resampling introduces

additional random variation. As in Bayesian estimation, there are several options to

produce an estimation by means of a significant point of the state-space. Posterior

mean, maximum a posteriori or median are valid strategies. Since it is optimal in terms

of mean squared error and provides a reduction of the noise introduced when sampling

the distributions, the most common option is to use the Monte Carlo approximation of

the posterior mean:

x̂t =

Ns∑
i=1

witx
i
t (3.11)

The Sampling Importance Resampling (SIR) Particle Filter proposed by Gordon et. al

[GSS93] is a method commonly used in computer vision problems. It is characterized

by applying resampling at every iteration and by defining the importance distribution

as the prior or prediction density p(xit|xit−1). By substituting this importance density in

3.9:

wit ∝ wit−1

p(z1:t|xit)p(xit|xit−1)

p(xit|xit−1)p(zt|zi1:t−1)
(3.12)

wit ∝ p(z1:t|xit)

Hence, the computation of weights only depends on the likelihood. Consequently, the

design of the particle filter is basically a problem of finding an appropriate likelihood

function. Since a real likelihood will not be available, we will define likelihood functions

as a monotonic decreasing mapping of a cost function. This mapping will be, to some

extent, a connection between the filtering and the optimization worlds [GRBS10].
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A particular advantage of the SIR PF is that we can easily sample xit ∼ p(xit|xit−1) by

first generating a noise sample vit (according to the noise distribution of our system) and

then setting xit = ft(x
i
t−1,v

i
t). The major drawback is that we generate samples without

any insight about the observations, thus making the algorithm sensitive to outliers and

possibly inefficient. The SIR PF is summarized in 1.

Algorithm 1: SIR Particle Filter

1 Resample particles with replacement {xit−1, w
i
t−1} → {xit, 1

Ns
}

2 Propagate particles by applying a Gaussian diffusion xit = xit +N (0,Σ)
3 Evaluate particles with the likelihood function wit ∝ p(zt|xit)

4 Normalize weights so that

Ns∑
i=1

wit = 1

5 Compute the posterior mean estimate x̂t =
∑Ns

i=1 witx
i
t

3.4.2 Layered Particle Filters

One of the main problems of PFs is the curse of dimensionality: the number of particles

needed to efficiently estimate the posterior grows exponentially with the dimensions of

the state vector. In pose estimation and tracking, this state space vector is usually of

high dimension, meaning that PFs introduced so far are inefficient.

A commonly adopted solution is to divide the filtering in layers. A layered filtering

implies performing several PF runs (resampling, propagation and likelihood evaluation)

in the same time instant t. In this thesis, we adopt the term Layered Particle Filtering

to denote those particle filters with a layered structure. As we will show in the following

sections, this terminology covers several well-known algorithms in the state-of-the-art

and generalizes them by means of a unique conceptual formulation of the algorithm.

Moreover, such a formulation has a direct translation on the implementation of such a

particle filter.

Without loss of generality, the following formulation of a layered particle filter will be

introduced as an extension of the SIR PF: in each layer, the proposal distribution will

produce importance weights directly proportional to the likelihood function and resam-

pling will be performed after every layer. These assumptions yield an easier formulation

and a simpler way of sampling the posterior distribution.

Before formally describing the Layered Particle Filters, let us introduce some notation

that will be employed throughout the chapter. Let us denote x = {x1, x2, · · · , xnx}
the state-space vector (the same notation employed during the introduction of particle

filters) and xn the one-dimensional variables comprising such a vector. Let us define a
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{xit−1,L−1, w
i
t−1,L−1} {xit,0, wit,0} · · · {xit,L−2, w

i
t,L−2}

R R · · · R

xit,0 ∼ N (xit,0,Σ0) xit,1 ∼ N (xit,1,Σ1) · · · xit,L−1 ∼ N (xit,L−1,ΣL−1)

Evaluate wit,0 Evaluate wit,1 · · · Evaluate wit,L−1

Estimate x̂t

t+ 1

Figure 3.2: Layered Particle Filter scheme with Gaussian diffusion in the propagation
step.

set of L layers, where the tuple {xit,l, wit,l} denotes particles and weights in the l-th layer.

xit,l denotes the filtering state of the particles in the layer l, thus actually containing all

the one-dimensional variables xn. This filtering state might imply that only a subset of

the variables have been filtered up to layer l. Consequently, let χl = {xχ1 , · · · , xχnχ}
denote a subset of x. Such a subset is associated to the l-th layer, meaning that one-

dimensional variables comprising it are incorporated to the filtering process in this layer.

Note that these subsets can include all the one-dimensional variables (χl = x), or even

the empty set (χl = ∅) - implying that layer l might not incorporate new variables to

the filtering-. Anyhow, subsets must hold:

x =
⋃
l

χl (3.13)

In the Layered Particle Filter, resampling, propagation and likelihood evaluation are

conditioned to some extent to the characteristics of each layer l (see Fig. 3.2).

Likelihood functions in each layer can be conditioned to the subset χl in such a way that

one might efficiently explore the state space. Formally, the importance weights in each

layer l can be formulated as follows:
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wit,l ∝
p(z1:t|xit,l)p(xit,l|xit,l−1)

q(xit,l|xit,l−1, z1:t)
for l > 0 (3.14)

wit,0 ∝
p(z1:t|xit,0)p(xit,0|xit−1,L−1)

q(xit,0|xit−1,L−1, z1:t)
for l = 0 (3.15)

where the numerator contains the product of the likelihood and the prior, and the de-

nominator contains the proposal distribution. Note that we have assumed Markovian

state transitions, resampling in every layer and that the proposal distribution q() fac-

torizes such that we can perform sequential importance sampling within layers.

The propagation step can be changed from layer to layer, but usually focuses only on the

variables in χ. Throughout this chapter, we will present several propagation strategies

rooted on Gaussian diffusion, as well as a data-driven approach that aims at constructing

proposal distributions relying on cues obtained from images.

Similarly, we restrict resampling to variables that have been already filtered (see Algo-

rithm 2). By doing so, the sample set is able to retain some diversity on dimensions of

the state space for which neither dynamics nor observations have been introduced yet

in the filtering process.

Algorithm 2: Layered Resampling

1 Initialize the CDF: cdf0 = 0
2 for i = 1 . . . Ns do
3 cdfi = cdfi−1 + wit,l
4 end
5 Start at the bottom of the CDF: i = 1
6 Draw a starting point: u0 ∼ U[0,N−1

s ]

7 for j = 1 . . . Ns do
8 Move along the CDF: uj = u0 +N−1

s (j − 1)
9 while uj < ci do

10 i = i+ 1
11 end

12 Assign variables up to layer l: xjt,l ← xit,l
13 Assign weight: wjt,l = N−1

s

14 end

Layered Particle Filters usually tackle the curse of dimensionality by sampling from a

distribution that is a relaxed version of the posterior. This usually makes the filter to

end up drawing particles only on modes of the posterior with higher probability. As

particles concentrate on high probability zones of the posterior, the PF becomes more
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p(z1:t|xit)

p(z1:t|xit,0)

p(z1:t|xit,1)

p(z1:t|xit,2)

{xit,
1
Ns
}

{xit, wit}

{xit,0,
1
Ns
}

{xit,0, wit,0}
{xit,1,

1
Ns
}

{xit,1, wit,1}
{xit,2,

1
Ns
}

{xit,2, wit,2}
{xit+1,0,

1
Ns
}

(a) (b)

Figure 3.3: (a) Particle Filter. (b) Annealed Particle Filter.

suited for optimization, since this phenomenon yields a degenerate estimation of the

posterior in multimodal distributions.

3.4.3 Annealed Particle Filter

The Annealed Particle Filter (APF) [DBR00] is a Layered particle Filter that transforms

the likelihood function by using concepts of simulated annealing, which is inspired in

the behavior of atoms in a metal under the effect of controlled heating and slow cool-

ing. Provided that we have some possibly multimodal and peaky likelihood function

p(z1:t|xit), the idea is to generate a series of auxiliary likelihood functions p(z1:t|xit,l)
that are smoothed versions of p(z1:t|xit). For l = 0, the smoothest function is employed,

thus emphasizing on global features (low resolution). As l grows, the series of functions

slowly converges to p(z1:t|xit), thus moving from global features to local features (or

higher resolution) (see Fig. 3.3).

The most usual way of obtaining such a series of functions is by setting:

p(z1:t|xit,l) = p(z1:t|xit)β(l) (3.16)
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where 0 < β(l) ≤ 1 is a monotonic increasing function that determines the annealing

rate (as l grows, β(l) grows, producing more peaky functions). The series of likelihood

functions causes the filter to drive its particles towards higher modes of the posterior (see

Fig. 3.3), thus producing a degenerate estimation of the distribution, that makes the

APF unreliable in filtering problems. To overcome this limitation, Gall et al. [GPS+07]

propose a broader class of APFs termed Interactive Simulated Annealing (ISA) that

perform selection of particles during resampling, thus allowing that a fraction of particles

with low weights might survive.

There is not an analytical way to find a suitable β(l) for a given problem, hence its

behavior is set empirically. Deutscher et al. [DBR00] proposed an adaptive method

based on the survival rate. They assume that after a layer, a fixed percentage of particles

must survive to achieve a proper annealing behavior and thus an adequate concentration

of particles near a global maximum. Equivalently, given a target survival rate αtarget,

the following equality must be achieved:

α(β(l)) = αtarget (3.17)

1

Ns

Ns∑
i=1

(p(z1:t|xit,l)β(l))2

= αtarget

Hence, Deutscher et al. find the actual values of α(β(l)) by solving Equation 3.17. This

equation can be efficiently solved by storing the importance weights and then finding the

values of β(l) by an iterative optimization algorithm. Although adaptive, this method

depends on a likelihood function that will be usually approximated using some cost

function. This function might change dramatically from time to time, occasionally

causing the adaptation of β to concentrate particles on a very reduced region of the

state space. This phenomenon, related to the term over-annealing [CF10], might cause

important drifts in tracking. Some other authors have studied the behavior of the APF

when using more “controlled” β(l) functions. Gall et al. [GPS+07] use several series for

β(l) (geometric, logarithmic and polynomial ) and they conclude that the best behavior

for their experiments is achieved by the logarithmic scheme.

The problem of finding a suitable β(l) is linked to the problem of setting an adequate

propagation scheme for particles. In this thesis, we have adopted from the beginning

a Gaussian diffusion scheme, as it is broadly used in the literature. Since annealing

starts by exploring the state space globally and ends sampling locally, the variance of

the Gaussian diffusion scheme must be in accordance with this behavior, thus must be
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progressively reduced as l grows. A good choice for the variances of the multivariate

Gaussian used during the diffusion is the following:

Σl =


(νlσ1)2 0

(νlσ2)2

. . .

0 (νlσnx)2

 (3.18)

where ν < 1 is a decay rate. The resulting covariance matrix causes particles to concen-

trate while the APF reaches more detailed layers (higher β). Deutscher et al. intuitively

link this decay with the target survival rate of their adaptive annealing scheme: they

choose αtarget = ν = 0.5. However, this choice has limitations, as it depends on the

initial variance of each parameter and uses a fixed decay. A scheme termed adaptive

Gaussian diffusion, that will be detailed in section 3.5.1, is often employed to overcome

the mentioned limitations.

A second look at the APF, from the viewpoint of our Layered Particle Filter formalism,

reveals that all the variables are introduced in the first layer of the algorithm. One

can also see how particles are effectively drawn in APF by looking at Equation 3.14,

taking into account that particles are resampled, propagated with Gaussian diffusion and

directly evaluated with a smoothed likelihood function: the proposal for every layer is

the predictive or prior distribution employed in that layer, but since we have resampled

particles coming from the preceding layer, we can understand the APF process as layered

filtering with proposal distributions influenced by smoothed versions of the posterior.

Algorithm 3: Annealed Particle Filter

1 Start in l = 0 at time t
2 Resample particles with replacement {xit−1,L−1, w

i
t−1,L−1} → {xit,0,

1
Ns
}

3 Propagate particles by applying a Gaussian diffusion xit,0 = xit,0 +N (0,Σ0)

4 Evaluate particles with the likelihood function wit,0 ∝ p(zt|xit,0)β0

5 Normalize weights so that

Ns∑
i=1

wit,0 = 1

6 for l = 1, ..., L− 1 do
7 Resample particles with replacement {xit,l−1, w

i
t,l−1} → {xit,l,

1
Ns
}

8 Propagate particles by applying a Gaussian diffusion xit,l = xit,l +N (0,Σl)

9 Evaluate particles with the likelihood function wit,l ∝ p(zt|xit,l)βl

10 Normalize weights so that

Ns∑
i=1

wit,l = 1

11 end

12 Compute the posterior mean estimate x̂t =
∑Ns

i=1 wit,L−1x
i
t,L−1
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3.4.4 Hierarchical Particle Filters

Instead of tackling the curse of dimensionality by using concepts of simulated annealing,

one can organize the filtering in layers working with a partition of the state vector x.

The most generic case of state space partitioning is proposed in Partitioned Sampling

[MI00], where x is split into several subsets of lower dimensionality than the original

state space. To successfully deal with the estimation problem, two conditions must be

met. First, each subset must have an adequate predictive or prior distribution in order

to properly propagate particles. Second, the likelihood function employed in a subset

must be peaked around the same region of the posterior restricted to that subset. These

two elements ensure efficient propagation and evaluation steps for Partitioned Sampling.

In pose estimation and motion capture, and particularly in analysis-by-synthesis tech-

niques that employ an articulated body model, an implicit hierarchy between variables

of the state space exists (see Fig. 3.4. Hence, suitable partitions are naturally found by

following this hierarchy. This is the seminal idea of Hierarchical Particle Filters (HPF)

that can be considered a particular case of Partitioned Sampling with a hierarchical

partition of the state space.

We have introduced pose estimation as the problem of estimating the location of human

body joints. In our approach, these joints are part of an articulated model and the posi-

tions are defined, according to kinematic chain framework [BM98], by a global rotation,

a global translation, joint rotations and bone elongations. Both joint positions and these

variables defining them are hierarchically organized in the articulated model: the skele-

ton is a tree whose root node contains the global variables and the siblings grow defining

the kinematic chains or, equivalently, the extremities (arms, legs and neck-head). From

this viewpoint, we can realize that the articulated model has the form a Kinematic Tree

[BC08] that shows us the natural organization of human body joints in a simple hier-

archy. The Kinematic Tree can be used to translate our intuition about the relation

between joints and body parts in the human body to probabilistic formulations. Let

us consider the model in Fig. 3.4. Let the tree associated to the model be the graph

K(X , E) where the nodes X are the joint positions and the edges E represent the skeleton

bones. Now suppose that our problem simply depends on estimating the joint distribu-

tion of joint positions, p(ro, rneck, rhead, rright shoulder, · · · , rleft hip, rleft knee, rleft ankle)
(observations are discarded for the sake of simplicity). In such a graphical formulation,

the joint distribution of the set of joint positions can be factorized in a way that the

problem is efficiently tackled. For simplicity, let us focus only on the factorization of the

joint distribution of the upper body:
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z
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y

a b

Figure 3.4: (a) Articulated 3d model. (b) Equivalent tree representation.

p(ro, rneck, rhead, rright shoulder, rright elbow, rright wrist, rleft shoulder, rleft elbow, rleft wrist) =

p(ro)p(rneck|ro)p(rhead|rneck)p(rright shoulder|ro)p(rright elbow|rright shoulder)

p(rright wrist|rright elbow)p(rleft shoulder|ro)p(rleft elbow|rleft shoulder)p(rleft wrist|rleft elbow)

(3.19)

Therefore, if the model variables are hierarchically organized according to K(X , E), prob-

abilistic graph theory says that an efficient manner of tackling the pose estimation prob-

lem is by estimating variables with conditional probabilities such as in equation 3.19.

Even if observations are introduced in the model, this factorization can be considered.

After all, a benefit from having a graphical model of the body is that a high-dimensional

distribution can be compactly represented by means of factorization. In the context of

Layered Particle Filters, this reasoning can be taken into account by designing subsets

χ0, ..., χL−1 following a topological ordering relative to K(X , E). However differently

from state-of-the-art HPFs, we consider more generic hierarchies by allowing layers not

only defined from partitions, i.e, our layered PFs allow subsets with non-empty inter-

section and thus can perform multiple filtering passes on variables.

Since we initially consider Gaussian diffusion within our Layered Particle Filtering

framework, a convenient design of the covariance matrix is required. Algorithm 4

presents a method for defining suitable covariances. As in the APF, some decay factor

to variables, but in this case, hierarchical subsets are taken into account.

Algorithm 5 summarizes the HPF using these covariances. Since they belong to the class

of Layered Particle Filters, APF (Algorithm 3) and HPF algorithms are practically

identical, except for the likelihood evaluation. One might think that covariances are
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Algorithm 4: Compute Σl

1 For new variables in χl, σ
′2
n = σ2

n

2 For any variable included in a subset χl′ , with l′ < l, σ
′2
n = (νl−l

′
σn)2, where ν < 1 is a

decay rate.
3 For any variable included in a subset χl′ , with l′ > l, σ

′2
n = 0

also different, but they are produced by the same algorithm (in the APF, it suffices with

defining a first layer with a subset χ0 including all the variables in x).

Therefore, having a look at well-know PF reveals the importance of the Layered Particle

Filter framework. APF and HPF are particular cases of the Layered Particle Filter, but

not only from a theoretical point of view: it worths implementing a Layered Particle

Filter because then one can simply change parameters to have an APF or a HPF, or

even a mixture between both.

Algorithm 5: Hierarchical Particle Filter

1 Start in l = 0 at time t
2 Resample particles with replacement {xit−1,L−1, w

i
t−1,L−1} → {xit,0,

1
Ns
}

3 Propagate particles by applying a Gaussian diffusion xit,0 = xit,0 +N (0,Σ0)

4 Evaluate particles with the likelihood function wit,0 ∝ p(zt|xit,0)

5 Normalize weights so that

Ns∑
i=1

wit,0 = 1

6 for l = 1, ..., L− 1 do
7 Resample particles with replacement {xit,l−1, w

i
t,l−1} → {xit,l,

1
Ns
}

8 Propagate particles by applying a Gaussian diffusion xit,l = xit,l +N (0,Σl)

9 Evaluate particles with the likelihood function wit,l ∝ p(zt|xit,l)

10 Normalize weights so that

Ns∑
i=1

wit,l = 1

11 end

12 Compute the posterior mean estimate x̂t =
∑Ns

i=1 wit,L−1x
i
t,L−1

3.4.5 Layered Optimization

Some authors tackle the pose estimation problem by means of local optimization tech-

niques. These techniques might not yield accurate results with commonly used like-

lihood models, since these models are highly non-linear and multimodal. Due to this

multimodality, local optimization techniques usually get stuck in local maxima of the

likelihood function. Nonetheless, if a good initial point is provided, local optimization

methods can provide accurate estimates. As an example, Gall et al. [GRBS10] use local

optimization to refine the estimates provided by Interacting Simulated Annealing (ISA),
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{xit−1,L−1, w
i
t−1,L−1} {xit,0, wit,0} · · · {xit,L−2, w

i
t,L−2}

R R · · · R

xit,0 ∼ N (xit,0,Σ0) xit,1 ∼ N (xit,1,Σ1) · · · xit,L−1 ∼ N (xit,L−1,ΣL−1)

Evaluate wit,0 Evaluate wit,1 · · · Evaluate wit,L−1

Mean x̂t

Local Optimization x̃t

t+ 1

Figure 3.5: Layered Optimization Framework as a simple extension of the Layered
Particle Filtering scheme.

a generalization of the APF that has the form of a Layered Particle Filter with a special

resampling mechanism.

The behavior of local optimization techniques with good initial points motivates the

inclusion of an optimization step as an additional layer. According to the duality between

filtering and optimization (remarked in Section 3.4.1 and in [GRBS10]), one can view

the layered particle filtering with the additional local optimization of the posterior mean

as a layered optimization method, where in the first layers we rely on stochastic particle-

based optimization while the last layer provides local optimization.

In general, local optimization may be considered in a Layered Particle Filter by ex-

tending the diagram in Fig. 3.2 with local optimization based on the posterior mean

estimated by the Layered Particle Filter (see Fig. 3.5). For this local optimization step,

we employ the method of conjugate directions proposed by Powell [Pow64].

3.5 Improving Propagation

As presented throughout the chapter, our choice for the proposal distribution in every

layer is to draw samples from the prior. The simplest form of prior is a Gaussian.
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However, this strategy presents a main drawback: particles are drawn blindly with

respect to data.

In this section, we present several strategies to overcome the blindness problem to differ-

ent extents. We start reviewing adaptive diffusion [DR05], a state-of-the-art method for

improving the propagation step of APFs. Next, we propose a method to overcome the

particle blindness problem: a data-driven layered particle filter with hierarchical layers.

3.5.1 Adaptive Diffusion

Adaptive diffusion [DR05, GRBS10] covers a set of methods where particles are drawn

from a distribution with covariance matrix computed from data. We particularize this

approach for a multivariate Gaussian distribution whose covariance matrix is the sample

covariance matrix:

Σ =
α

Ns − 1

(
ρI +

Ns∑
i=1

(xit,l − µx)(xit,l − µx)T )

)
(3.20)

where α is a scaling factor, ρ is a small positive scalar that acts as a regularizer and µx

is the sample mean. In this way, the amount of drift applied to each variable depends

on the particle population. Variables with more uncertainty will be propagated further,

while lower uncertainty will cause variables to concentrate around specific values. Due

to this selective propagation, adaptive diffusion has been described as a soft partitioning

of the state space [DR05].

Although solving to some extent the problems related to manually setting variable covari-

ances or learning them from data containing specific actions, adaptive diffusion depends

on the robustness of the observation model and its performance is strongly conditioned

by α.

In the following we present an approach that addresses these issues.

3.5.2 Detector-Driven Hierarchical Particle Filters

In the preceding sections, we have presented methods that take into account the particle

population in order to draw particles. However, these methods assume that the set of

particles in a given layer l carries enough information in order to extract statistics about

which variables should be propagated with more uncertainty. This assumption becomes

a problem with multimodal distributions, since a number of particles will get stuck on

secondary modes (or local minima of the cost function).
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In this section, we adopt a different approach. Rather than relying on the particle set, we

introduce cues extracted from input images to build an appropriate data-driven proposal

distribution that may reduce the blindness of the particle set. Not only that; these cues

will, in general, cause the proposal to draw more particles closer to the global minimum

or true mode. We achieve this goal by estimating the 3D locations of a set of body parts

and incorporating these cues into the Layered Particle Filter framework.

In this thesis, we advocate the use of detectors in combination with LPFs with hierar-

chical layers. On the one hand, we empirically concluded that instantiations of Layered

Particle Filters containing hierarchically organized layers outperformed APF strategies.

This superior performance is especially evident in the estimation of arm and leg poses.

On the other hand, having layers where we only estimate one body extremity at a time

seems a more convenient way of tackling the pose estimation problem, since the prob-

lem of finding poses that match a possibly high number of detections will be split into

a hierarchical search of body part poses matching specific detections.

In the literature, body part detectors are widely used in human motion analysis [SNH10],

and recently have been proposed as a method for full body pose estimation [SFC+11].

Nonetheless, this last approach requires massive training and, even more important,

relies on the fact that range data has much less appearance variability than color and

luminance data. Then, it makes sense to point towards a hybrid way of tackling the

problem, a mixture between top-down and bottom-up estimation of the human pose.

Throughout this section, when speaking about body parts, we will restrict ourselves

to extremities (head, hands and feet). Two main reasons motivate such a restriction.

First, it is usually simpler to estimate the location of extremities that other joints, such

as knees of elbows. Second, our framework for incorporating body part detections is

valid for any body part, but, since it relies on Inverse Kinematics (IK), it is actually

more effective if we consider only end-effectors or extremities.

In our work, we consider the general case where we have a weakly specialized body

part detector, i.e., a detector that can fire positive detections for several body parts.

For instance, a skin detector will provide, in general, detections for both hands and

head. In this scenario, propagation comprises two main steps: detection assignment and

particle generation. Let us consider a LPF where end-effectors (head, hands and feet)

are in different layers. In order to determine if any candidate location represents an

extremity location, we rely on the pose x̂t−1 estimated on the previous frame. Let F be

the forward kinematics operator [HP11] such that y′l = F (xit,l) gives the joint location

of the end-effector associated to l-th layer.
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In order to infer the best candidate for each end-effector, we formulate an optimal

assignment problem. Let D ∈ RN×M be the matrix gathering the distances between the

N target end-effectors and the M point candidates and let Υ = {Υ1, . . . ,ΥI} denote the

vector of maximum distance assignments (each Υn models both the expected movement

and the size of a specific end-effector). Assignments are noted as an assignment matrix

P ∈ {0, 1}M×N such that each row contains at most a 1 indicating to which end-effector

is the candidate assigned. We consider that an assignment is valid if it exists at least

one detected point that satisfies a maximum assignment constraint Υi. In that case, the

problem has a non-trivial solution (P 6= 0) and is formulated as :

min
P

tr(DP)

1TMP1N
(3.21)

s. t. diag(DP) � Υ

s. t. P ∈ {0, 1}M×N is a valid assignment matrix

where tr(DP) denotes the trace of the matrix resulting of the product between distances

and assignments, diag(DP) denotes the vector formed with the diagonal elements of the

same matrix, and 1N is a vector of ones of length N . The inequality constraint is

formulated as a component-wise inequality between two vectors. Hence, we aim at

minimizing the overall distance between candidates and end-effectors while maximizing

the number of assignments (subject to the maximum distance constraint). In practice,

we solve this problem for the human body end-effectors by iteratively assigning pairs

with minimum distance until a minimum of Eq. 3.21 is attained. As a result of this

assignment, we obtain a maximum of one end-effector detection gt,l per layer. If gt,l

exists for layer l, then we formulate the distribution of the pose given gt,l as:

log p(xit,l|gt,l,xit,l−1) ,

− 1

2
(gt,l − F (xit,l))Σ

−1
ε (gt,l − F (xit,l))

− λ

2
‖xit,l − xit,l−1‖2 (3.22)

+
N∑
n=1

logU[an,bn](x[n]) + C

The first term models the error between an extremity detection and the end-effector

position in the model obtained by forward kinematics. The second term is a smoothing

constraint, forcing xit,l to be close to xit,l−1. The last terms are the kinematic constraints,
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formulated as a product of uniform distributions [HP11], and a constant. For brevity, in

Equation 3.22 we have omitted the case that expresses this distribution when going from

t−1 to t. If one minimizes Equation 3.22 (by taking derivatives with respect to xit,l), we

obtain the pose with maximum probability given a body part location or, equivalently,

an IK solution for xit,l. Since minimizing Equation 3.22 is equivalent to finding an IK

solution and, consequently, a sample with high probability, we can efficiently sample

from this distribution. Sampling starts by solving the IK problem with the swing twist

formulation [Kal08]. Then, we generate additional samples by random rotations around

the swivel axis. This is an efficient way to easily get a number of samples in the typical set

of the modes of the distribution in Equation 3.22, because all of them are solutions to the

unconstrained IK problem. Furthermore, in this way we generate particles with highly

correlated variations between shoulder rotations, which are difficult to generate by simply

propagating the corresponding Euler angles. Samples drawn from this distribution are

called IK particles.

Using this distribution we define a new proposal for our LPF. Since end-effector detec-

tions are prone to errors, or might simply be missing, we combine the distribution of

Equation 3.22 with Gaussian diffusion, thus obtaining the following proposal distribu-

tion:

q(xit,l|gt,l,xit,l−1) , αN (xit,l−1,Σχl) (3.23)

+(1− α)p(xit,l|gt,l,xit,l−1)

where parameter α controls the importance of each mixture component, i.e., whether it

is more likely to sample with Gaussian diffusion (regular particles) or IK particles. This

parameter considers the error rate of the extremity detections. Instead of estimating such

an error rate offline, we propose an online approximation of the detection accuracy by

using the IK survival rate, i.e., the estimated ratio of IK particles that will be resampled

after likelihood evaluation. Whenever this rate is above 0.5, we mutate a small fraction

of regular particles into IK particles. On the contrary, when the rate is lower, IK particles

are transformed into regular particles. We constrain the algorithm to keep a minimum

of 25% of particles of one kind.

In the end, we obtain an approximated method to map 3D end-effector locations into

modes of the Layered Particle Filter prior distributions in specific layers. These propos-

als confer our method a hybrid bottom-up and top-down nature. Since the method is

based on the re-interpretation of a distribution by means of IK, it is also valid if addi-

tional locations (such as elbows or knees) are provided-as mentioned at the beginning of
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the section-. However, if additional body part detections are prone to errors, then their

incorporation into the proposed framework becomes inefficient.

Note that we have formulated the new proposal considering detectors that provide 3D

positions. While in the case of range data it is rather easy to obtain such a position, it

is not trivial to detect 3D body parts from multiple views. In the following section, we

propose a method to address the problem of body part detection in multiple views.

3.5.3 3D Body Part Detection in Multiple Views

We present a method for 3D localization of body parts from multiple views. In this

work, we focus on body extremities (hands, head and feet), as they are usually easier

to detect and provide sufficient information to estimate the pose variables related to a

kinematic chain. Our method takes advantage of 3D information to deal with occlusions

and visibility issues, hence we can robustly fuse the outcomes of one or several image-

based detectors working in different views. To achieve such a goal, we first obtain a

set of points on the surface of the human body. Second, we compute the probability of

each surface point to be an extremity, using the detections on multiple views. Then, the

surface points are filtered using a threshold and clustering technique in order to obtain

the most likely extremity locations.

The choice of the image-based detectors affects not only the performance, but how the

probabilities in each surface point should be treated. We demonstrate and exemplify the

method using a simple yet effective image-based skin detector [JR99] (see Fig. 3.5.3).

Note that, in any case, more sophisticated body part detectors can be used.

3.5.3.1 Probability Surface

To robustly fuse detections in multiple views, we employ a set of points q with associated

normals n̂q lying on the surface of the human body. A suitable set Q comprising such

oriented points can be estimated in a two-step fashion by reconstructing a 3D volume and

then computing normals on the volume surface. Alternatively, we opt for the method of

Salvador et al. [SSC10] that jointly estimates surface points and normals.

Then, we compute the visibility factor ηc(q), a value representing the visibility of each

oriented point q with respect to the camera c:

ηc(q) =

−ẑc · n̂q, if q is visible

0, otherwise
(3.24)
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Figure 3.6: Mapping 2D detections to 3D world

We determine if q is visible from camera c by means of a standard z-buffering test.

This visibility factor serves to estimate the probability that a surface point q is repre-

senting an extremity:

Prob(q) =
C∑
c=1

ηc(q)T (proj c(q)) (3.25)

where C is the total number of cameras, proj c(q) ∈ R2 are the pixel coordinates resulting

from the projection of the surface point q in camera c, and T (proj c(q)) is the probability

that the pixel at proj c(q) is representing an extremity according to an image-based
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q

n̂q

ẑ1

ẑ2
ẑ3

ẑ4

ẑ5

Figure 3.7: Visibility example for a surface point q (best viewed in color). The best
oriented cameras are green whereas the red cameras have few or null visibility

detector. Note that the visibility factor has to be normalized, so
∑C

c=1 ηc(w) = 1. We

show an example in Figure 3.7.

Due to the visibility factor, the proposed method effectively handles occlusions and

inconsistencies of the visual cones computed directly from detections in multiple views.

Moreover, since only the best oriented cameras determine the probabilities of the surface

points, our method can infer a 3D extremity location even if it is reliably detected only

in a few views. In addition, as the probabilities of surface points are computed from

detections inside the silhouettes, all false positives outside them are not taken into

account.

3.5.3.2 Filtering

The filtering step aims at estimating candidate 3D locations of the detected extremities

and it is analogous to finding relevant modes of the probability distribution lying on the

surface manifold Q . We start by computing the subset Q′ of likely surface points:

Q′ = { q ∈ Q | Prob(q) ≥ Γ } (3.26)

where 0 ≤ Γ ≤ 1 is a threshold.

Then, we cluster the points in Q′ using an efficient method [Rus09] based on a kd-

tree representation [FBF77]. The parameters of the clustering method are distance

tolerance, ϑtol, and the minimum and maximum cluster size, ϑmin and ϑmax, respectively.

These parameters are very suitable for our problem, since they can be set by using

anthropometric proportions. Finally, cluster centroids are taken as candidates for 3D

extremity locations. We illustrate the process in Figure 3.8.
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(a) (b) (c)

Figure 3.8: Filtering process (best viewed in color). Probability values are represented
with the red channel (a) Probability surface. (b) Probability surface after the threshold.

(c) Cluster centroids (cyan crosses)

3.6 Likelihood Evaluation and Approximate Partitioning

of Observations

In computer vision problems, we are not usually able to have access to a real likelihood

function. For this reason, the evaluation of the likelihood of a particle is performed by

means of an approximation. Let us define a cost function Cf (xit,l, z1:t) that measures

the error of rendering the body model according to parameters xit,l with respect to some

feature f obtained from images z1:t. Valid and commonly used features f are foreground

silhouettes, edges, color, etc.

In this thesis, we do not aim at exploring a great variety of features and how they

behave when applied to motion capture. Instead, we investigate the behavior of layered

estimators provided simple features that can be obtained from different sensors. In

particular, we focus on two features that can be obtained from different sensors. When

working with multiple cameras, we use foreground silhouettes. On the contrary, if range

cameras are employed, we work with a combination of foreground and depth.

3.6.1 Foreground XOR

Silhouettes in multiple views are commonly used in several pose estimation and body

tracking approaches [DBR00, BB09, SBB10]. These silhouettes are usually obtained by

background subtraction techniques [Pic04] where one usually builds a color model of

the scene when objects of interest are not present. These color models can be pixel-

wise [WADP97, SG00] or region-wise [SWFS03, KH09]. A widely adopted method

for background subtraction is the Running Gaussian Average [WADP97], an adaptive
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pixel-wise Gaussian model in the RGB space. Additionally, shadow suppression methods

[XLP05] are introduced to improve the foreground extraction results provided by this

technique.

Foreground silhouettes can be compared with the projection of the human body model.

Hence, a cost function Cf (xt,l, z1:t) can be designed for silhouettes. Deutscher et al.

[DBR00] initially proposed a cost that only takes into account the number of projected

model points that fall inside the silhouette. Given a pose and anthropometric parame-

ters, this cost function measures how well is the model explained given a silhouette, but

does not help in measuring to which extent the silhouette is correctly explained by the

current model. For this reason, a cost function defined upon the XOR between both

the model and the silhouette will have a better behavior, since it takes into account

the exact overlap between model and silhouettes. The XOR-based construction of a

function that measures the error of projecting the model onto a silhouette is called by

some authors as bi-directional cost [SBB10]. Let Sv be the silhouette in the v-th view

and Mv be the projection of the outer shape of the body model in the corresponding

views. Then, the pixel-wise XOR cost between pose and anthropometric parameters xit,l

and a set of images z1:t can be expressed as:

Cfg(x
i
t,l, z1:t) =

∑
v

1

C(Sv)
XOR(Mi

v,Sv) (3.27)

where XOR denotes the number of non-zero pixel values after a pixel-wise XOR,Mi
v is

the projection of the human body model and C(Sv) is the number of foreground pixels

of the silhouette on the v-th view.

In addition, a pixel-wise cost such as the XOR can be efficiently computed by using a

GPU implementation of the XOR. Algorithm 6 provides pseudo-code detailing how an

XOR can be computed in parallel for many pixels and views using OpenGL routines.

3.6.2 Depth SSD

In recent years, range sensors have proliferated to an extent that the computer vision

community has produced a notable number of contributions that are based on depth

data. Among the most remarkable areas of application, markerless motion capture

stands on its own, since it becomes more feasible to implement methods for pose estima-

tion with robustness against lighting conditions, appearance changes and self-occlusions.

Most of these methods usually rely on a cost function that aims at measuring how well

a pose fits on the observed data. These data could be whether the depth map [SM10]
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(a) (b)

(c) (d)

Figure 3.9: XOR Cost function. (a) Input image. (b) Foreground Silhouette (a). (c)
Body model (overlaid on the image). (d) XOR result.

Algorithm 6: Silhouette XOR

1 Load silhouettes as GPU textures using alpha channel.;
2 foreach camera c do
3 Enable writing only in the bit plane c of the stencil buffer.;
4 Set the stencil test to pass always. The stencil operation is set to replace the buffer

values by 1 on the bit plane c.;
5 Set the camera projection matrix with the parameters of camera c. Render the

model.;
6 Enable the alpha test. Set the stencil test such that it is passed when the buffer bit

value equals 1. Set the stencil operation such that it replaces the stencil bit value
by 0 when it is 1.;

7 Set an orthographic projection matrix. Bind the texture associated to camera c
and render a quadrilateral polygon of image size.;

8 end
9 Transfer the stencil buffer from GPU to CPU.;

or a 3D point cloud [LAaKR10]. Depth-based cost functions are defined as the dis-

tance between data points to the closest body model points, in a sort of Hausdorff

metric [HKKR93]. This usually implies finding a nearest neighbor and then computing

distances between points.

Our choice for the cost function with range data is to use the depth map. This choice
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is motivated by the implementation efficiency. First, the problem is tackled in a lower-

dimensional search space, since we can work in 2-dimensional image coordinates. Second,

we can take advantage of image coordinates also when trying to assign nearest neighbors:

we simply consider that projected model pixels must match with data pixel locations,

thus the assignment is straightforward (we omit nearest neighbor search). Finally, we

consider a GPU design of the cost function, and using images (even of they are of floating

point values) is usually easier and less expensive in terms of memory usage than using

3D point clouds.

The cost function is defined in terms of a Sum of Squared Differences (SSD) between

data and the model. To do so, we render compute the body model configuration after

setting the pose and anthropometric parameters xit,l and we render this model using

Z-buffering methods (OpenGL depth buffer). This rendering step is performed with the

same camera parameters of the range sensor, so we end up having a synthetic depth

image Md produced by our body model that has the same image support U than the

data depth map D:

Cd(x
i
t,l, z1:t) =

1

U

U∑
u

‖D(u)−Md(u)‖2 (3.28)

Although its use is not shown in this chapter, we refer to this cost function later in this

section. For a more in-depth application of this cost function in our layered framework,

see Appendix B.

3.6.3 Collision

A very important issue when working with human body models aiming at pose estima-

tion is to avoid interpenetration of limbs. The interpenetration avoidance, together with

the hard kinematic constraints defined in the skeletal model, implies a reduction of the

search space so that the pose estimation problem can be tackled more efficiently.

Setting interpenetration restrictions is equivalent to quantifying collision depth. This is

easier to handle if we define a set of spheres approximating the shape of the different

limbs and then compute the distances between sphere centers.

These spheres reduce the problem of quantifying the collision depth to computing the

distances between sphere centers. If we define a set of pairs of potentially colliding limbs

L, the evaluation of the collision depth ζ is approximated as follows:
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a

b

Figure 3.10: Examples where only a small region of the images may be relevant
for specific state-space variables. a: Only a small region of the image is representing
the target player. Overlapping the model projection onto the pixels enclosed by the
bounding box yields error masks like the one shown on the rightmost, thus avoiding
severe errors due to false positives. b: Pixels in the marked region are expected to be
relevant for estimating the right arm pose. Note that errors due to leg configurations

will not affect if pixels on the rightmost mask are used.

ζ =
∑
{i,j}∈L

∑
k∈Sphi

∑
l∈Sphj

dk,lu(dk,l − rk,l) (3.29)

dk,l = ‖ck − cl‖ (3.30)

rk,l = rk + rl (3.31)

where {i, j} are the indices of the potentially colliding limbs, Sphi denotes the set of

spheres approximating the shape of the i-th limb (k and l are use to denote the respective

spheres within these sets), u() is the Heaviside function and rk and ck are the radius

and the center of the k-th sphere.

3.6.4 Approximate Partitioning of Observations

Let us recall that in section 3.4.4, we have presented the sampling strategy of standard

HPFs as a particular case of Partitioned Sampling. Even in the more general formulation

of LPFs, any sampling procedure dealing with subspaces of the state-space (such as

Partitioned Sampling) requires a set of likelihood functions, one per subset, that must

be properly peaked around the same region of the posterior restricted to the subset
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[MI00]. In practice, this requirement is difficult to fulfill with observation models based

on silhouettes or depth due to several reasons. First, in a wide base-line multi-camera

scenario, the appearance of humans in distinct views may change considerably, causing

the ratio between the number of pixels representing the human shape and the total

number of pixels in an image to change drastically between views. Furthermore, this

might be a reason for possible spurious detections of foreground objects to have more

impact on the likelihood function (Fig. 3.10a). In the case of human body, silhouettes

and depth are rather incomplete as evidence; it is difficult to ensure that a body part is

being matched with a set of pixels that constitute the actual representation (or a very

good approximation) of that body part (Fig. 3.10b). This phenomenon is especially

remarkable when self-occlusions between body parts occur.

In existing HPFs[BB09], a common solution is to render the body parts that are affected

by variables being sampled in a subset or hierarchical level and the preceding ones. Our

proposal is to go one step further by defining approximate partitions of the silhouettes or

depth data. Our approach is inspired by the windowing proposed in [TCMS03] for par-

allel optimization architectures aiming at pose estimation. Differently from [TCMS03],

we aim not only at a faster but at more accurate likelihood evaluation. Furthermore,

our approach is applied to particle filtering methods.

The goal is to restrict the cost function to image regions that are likely to represent

the body parts being affected by variables in a given hierarchical layer. By doing so,

we reduce the impact of pixels that are not providing meaningful information about

variables in the hierarchical layer of interest. For that purpose, we define a set of binary

hidden variables Ψ associated to each pixel in every available view. If a hidden variable

takes value 1, the associated pixel is taken into account for the computation of the cost

function Cf (xt,l, z1:t). Otherwise, the pixel is discarded. Due to their binary nature,

hidden variables define partitions on the image domain. We use these hidden variables

to restrict the pixel domain in the cost functions Cf (xt,l, z1:t) to a set of pixels with an

expected relevance for the body part associated to variables in the l-th subset. In the

following, we explain how these variables are introduced in the likelihood model, and

how are they computed.

Let us recall that we have a human body model that provides us the necessary infor-

mation to compute joint positions from state-space variables, and that we have also a

set of projective transformations pv, given by the camera calibration, that map points

in R3 onto each view v. We illustrate the concept with a vector formulation of the XOR

cost function (see Equation 3.27). Let us express foreground images in multiple views

as the vectors Zv ∈ {0, 1}WvHv , i.e., foreground images of width Wv and height Hv are

gathered in a set of vectors. We drop the layer and time indices for simplicity. Given
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particle xit,l, projective transformations pv and a body model, we can draw the vectors

Xv ∈ {0, 1}WvHv , i.e., we project the body model onto multiple views and we construct

a vector out of the obtained images. Then, the cost function in Equation 3.27 can be

expressed as:

Cfg(x
i
t,l, z1:t) =

∑
v

1T |Zv −Xv|
1TZv

(3.32)

where 1 is a vector of ones of length WvHv. This vector reflects the use of all the pixels

in Z in order to compute the likelihood of a pose. Our approach substitutes this vector

by a more informative set of hidden variables, gathered in a vector ψv,l,t. For the sake

of readability, we drop the time and layer subindices of the hidden variables and we

re-formulate the cost:

Cfg(x
i
t,l, z1:t) =

∑
v

ψTv |Zv −Xv|
ψTv Zv

(3.33)

Now the question is how to compute the hidden variables. We discard learning them

from data, as we should learn them for many different views and poses, thus rendering

a huge learning problem (probably prone to overfitting). Instead, we adopt a simple yet

efficient spatial criterion. Since we know the projective transformation and we have a

body model, we can compute how far is a pixel from any projected joint. Consequently,

we can define partitions based on the proximity to body parts that are being filtered in

a layer.

For a given hierarchical subset l, we have a set of particles xit,l and associated importance

weights wit,l. Using this information and the fact that we have already filtered the parent

variables (variables for subsets 0 to l − 1), we compute hidden variables Ψl as follows:

1. Compute the sample mean x̂t,l−1 =
∑Ns

i=1w
i
t,l−1x

i
t,l−1 and obtain the 3D position

of the joints in the l-th subset, say Yl.

2. Compute a 3D Bounding Box centered at the mean joint location µYl and with

fixed sizes proportional to the estimated anthropometric sizes of parts involved

in the l-th subset. Compute a 2D Bounding Box on each image enclosing the

projected 3D Bounding Box corners.

3. Set ψ = 1 for pixels inside the 2D Bounding Box and ψ = 0 otherwise.
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Figure 3.11: Examples of the approximate projection of bounding boxes for different
layers. Top row: Bounding boxes for legs’ layers. Bottom row: Bounding boxes for left

arm layers

Restricting these partitions to have the form of bounding boxes in every view makes

the algorithm computationally simple, suitable for GPU processing and allows avoiding

explicit 3D reconstructions of the data.

The proposed partition can be computed for range data. Equations 3.32 and 3.32 can

be reformulated to express the SSD cost function of Eq. 3.28.

Note that the proposed partitioning method does not solve the problem of self-occlusions

between body parts, but in some sense, alleviates it. Suppose that the arm is being

occluded in one view by the torso. One must take into account that, when using silhou-

ettes, views behaving in such a way are not informative and should have a low impact

on the likelihood measurement. Since the proposed partitioning will often manage to

block errors originated by unrelated body parts, such as legs or the other arm, the final

likelihood will be, in general, better defined in the presence of occlusions.

An important consideration of the proposed likelihood measurement is the fact that

particle weights may reflect the posterior distribution of a subset χl rather than the

whole state-space. This is due to the local nature of the measurement on the partition

domain. To overcome this issue, we add an additional layer at the end of the HPF

algorithm, in which we simply re-evaluate the weights of the particles using a bounding

box that encloses the whole body model.

3.6.5 Refinement Layer

In the preceding section, we have noted that an additional layer evaluating the whole

state vector helps in finding a pose estimate (through posterior mean) with less estima-

tion error. In case we are using body part detectors for enhancing the propagation step
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3.5.2, we can utilize these detections to refine the final pose estimation. For that mat-

ter, a set of extremity detections are introduced in the evaluation step of an additional

layer. We use the whole set of available detections in order to detect possible misassign-

ments occurred after solving the assignment problem in Equation 3.21. We denote this

whole set of detections as g̃t = {γ1
t , .., γ

u
t , ..., γ

U
t }. We add a new cost function taking

into account the distance between detections and the model end-effectors. This cost is

computed as:

Cdd(x
i
t,l, z1:t) =

1

U

U∑
u=1

min
k
‖ γut − Fk(xit,l) ‖ (3.34)

where Fk is the forward kinematic operator on the k-th kinematic chain of the articulated

model. The objective of this cost is to measure how well matched detections gt are

explained by the pose xit,l. This cost is combined with the cost function of Equation

3.27:

Crf (xit,l, z1:t) = Cfg(x
i
t,l, z1:t) + κCdd(x

i
t,l, z1:t) (3.35)

where Cfg(x
i
t,l, z1:t) is the foreground cost evaluating the whole silhouette and κ is a

scaling factor. κ is chosen to balance the importance of both cost terms. In general,

adding the cost Cdd in the likelihood approximation of a refinement layer provides more

accurate results in terms of end-effector positioning. Furthermore, it has the ability to

filter particles representing poses with mismatched end-effector positions.

The refinement layer implies a re-weighting of all the particles according to an improved

observation model, and does not involve any propagation step, since we do not want to

add noise to particles that have been drawn after layered filtering. If no detections are

found at time instant t, κ is set to 0.

3.7 Experimental Results

In order to objectively evaluate the performance of the proposed framework, we conduct

experiments on several publicly available datasets. In all these datasets, we employ

a skeletal model with 23 DOF and a deformable mesh model obtained by meshing

a visual hull reconstruction. The mesh is attached to the skeletal model by means

of automatic rigging [BP07]. Since we do not aim at evaluating the impact of the

modeling framework, but to compare the estimators, we use a single model in all the

trials. However, in order to adapt the same model to different subjects, we automatically
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estimate suitable anthropometric parameters at the beginning of each sequence. We

perform such a estimation by using the same LPF framework presented in this thesis,

but applied to anthropometric variables. This work, involving automatic estimation of

anthropometric parameters of skeletal models, has been developed in more depth by

Marcel Alcoverro in [ACP10].

3.7.1 HumanEva

We evaluate the Layered Particle Filtering framework with several experiments on the

HumanEva II dataset [SBB10]. This dataset contains two sequences recorded by 4

calibrated cameras with resolution 640x490 at 60 fps. The two sequences belong to

two different subjects, namely S2 and S4. The ground truth has been obtained with a

marker-based motion capture system and it is synchronized with the video data. Using

the online evaluation system [SBB10], we measure the absolute 3D error of the estimated

joint positions and we report the mean and standard deviation over all the computed

frames. As stated by the dataset authors [SBB10], frames 298-335 in S4 sequence are

corrupted, and hence are not used for reporting results.

Since markers for motion capture data are placed on the subjects, and we estimate

joint positions as bone joints, we register marker positions on the mesh surface at the

beginning of each sequence (see Fig. 3.12). Specifically, we employ frame 2 of both

sequences in order to perform this registration (marker positions are available for a few

initial frames). By doing so, we reduce the constant error caused by the actual distance

between joint positions and marker positions. This is only a partial reduction since after

registration the error is 4 cm approximately for both subjects. In addition, by registering

the markers to mesh vertices, we slightly increase the standard deviation of the error.

In spite of these registration errors, the overall results are better with the registration

process.

In our first experiment, we start by evaluating the performance of using hierarchical

layers versus the APF. To test the annealing-based strategies, we instantiate the LPF

with an annealed particle filter using Gaussian diffusion (APF) and using adaptive diffu-

sion (APF-AD). Additionally, following the layered optimization approach, we perform

a local optimization step in conjunction with the APF-AD (APF-AD+LocalOpt). For

the hierarchical strategy, we instantiate our LPF with 7 hierarchical layers defined as

follows:

• Layer 0 Global translation and rotation

• Layer 1 Upper legs
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Figure 3.12: Marker registration process (best viewed in color). Top: Ground truth
markers represented by colored spheres. Bottom: Detail of the registered markers. A
registered marker is the vertex with minimum distance to a given ground truth marker.

These vertices are drawn with a colored cube.

• Layer 2 Lower legs

• Layer 3 Upper right arm

• Layer 4 Upper left arm

• Layer 5 Lower right arm

• Layer 6 Lower left arm

We use these layers for layered filtering (HPF) or with an additional local optimization

step (HPF+LocalOpt). We also evaluate the Approximate Partitioning of Observations

(APO) with this hierarchical configuration of layers (APO-HPF) and within the layered

optimization framework (APO-HPF+LocalOpt). Notice that, compared to existing hier-

archical sampling and hierarchical particle filtering strategies, the proposed APO-HPF

includes a new layer where the likelihood function given the complete state vector is

evaluated.

For the HPFs, we use 500 particles per layer. On the other hand, as it is reported

that simulated annealing benefits from more and finer iterations [GRBS10] (or layers for

APFs), we employ APFs with 14 layers and 250 particles per layer. Finally, we use 437
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Method S2 Error (mm) S4 Error (mm) Time (sec./frame)

APF 99.2± 22.1 104.4± 25.7 20
APF-AD 78.3± 15.3 78.5± 23.2 21

APF-AD + Local Opt. 81.6± 25.7 83.5± 29.2 37
HPF 75.6± 12.8 74.5± 19.3 21

HPF + Local Opt. 69.6± 10.7 58.7± 15.4 37
APO-HPF 74.7± 12.8 72.5± 14.1 14

APO-HPF + Local Opt. 71.4± 8.9 61.7± 8.3 30

Table 3.1: Pose inference results on the HumanEva-II dataset.

particles per layer in the APO-HPF setups, as it uses an extra layer in order to evaluate

the global likelihood. Notice that in all the cases we perform a total of 3500 evaluations

of the likelihood function.

Mean and standard deviation of the 3D error are provided in Table 3.1. We also report

the computational efficiency of the algorithms in seconds per frame. The computational

time has been obtained in an Intel 2.40GHz CPU with 4GB RAM. The employed machine

is equipped with an NVIDIA GeForce GTX 295 GPU. In spite of the available graphics

hardware, our implementation is a single threaded C++ program with some OpenGL

routines needed to render the mesh and to compute the cost function as described in

Section 3.6.1.

The obtained results show that LPFs with hierarchical layers consistently outperform

annealing-based strategies. Probably, the most significant figure is the performance

obtained with local optimization in combination with the APF. A reported, the use of

local optimization with APFs not only does not improve the results, but delivers a worse

accuracy. This result indicates that annealing strategies do not efficiently explore the

state-space. From an estimation viewpoint, this means that the APF delivers a highly

degenerated posterior. Likewise, from an optimization viewpoint, annealing does not

succeed in providing a global optimum of the cost function employed in this dissertation.

Contrarily, local optimization is highly beneficial when used with hierarchical layers,

which provide accurate initialization poses for local optimization.

Although expected, we experimentally verified that adaptive diffusion improves the accu-

racy of the APF. However, differently from [GRBS10], we obtained a better performance

by setting α = 0.2. Although we employ a different observation model, solely based on

silhouettes, we also noted that if α is not properly set, the performance of adaptive

diffusion dramatically decays.

The APO-HPF does not provide a substantial gain in accuracy, in fact the mean error

is slightly higher with respect to the HPF when using local optimization. Because there

is some bias when registering the markers to the ground truth, we argue that standard
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Method S2 error S4 error Time Frames

[SBB10] 83± 7 78± 15 1 250 Full
[HWG11] 173 144 10 Full
[GRBS10] 38± 9 32± 5 124 Full
[CFCP11] 58± 31 62± 34 - Full
[BJB12] - 58± 13 11 2 Full
[PVW10] 107± 8 92± 21 36 -380
[CMG+10] 78± 10 80± 13 - -150
[RRR09] 75 82 - Full
[YGvG12] 42± 9 42± 13 4 Full

APF-AD 78± 15 79± 23 21 Full
HPF+LocalOpt. 70± 11 59± 15 37 Full

APO-HPF+LocalOpt. 71± 9 62± 8 30 Full

Table 3.2: Comparison to the state-of-the-art for HumanEva II. The methods are
often not directly comparable since they rely on different assumptions. Different body
models are used, some methods rely on motion models and some even stress the robust-
ness against low frame-rates. Mean 3D error (in mm), standard deviation (in mm) and
computational time (in seconds per frame) are provided (whenever reported by authors
in their original works). If results are not provided for the full S2 and S4 sequences, we
provide a comment on the column Frames. All the provided methods employ 4 cameras

in order to infer the human pose.

deviation becomes a highly important indicator of the consistency of the tracking algo-

rithm (whenever the mean 3D error is sufficiently low). In that sense, and compared to

the rest of approaches, combining APO-HPF with Local Optimization delivers the lower

standard deviation while keeping a sufficiently low mean 3D error. Later in this section,

when comparing our results to the state-of-the-art, we discuss the 3D error bias issue in

more depth.

Apart from the presented quantitative results, Figs. 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18

provide some qualitative results for different approaches and both subjects S2 and S4.

Regarding the computational efficiency of the presented approaches, we found that in the

HumanEva-II dataset, using the approximate partitioning of observations as proposed

does not yield a much faster method, since the projection of the bounding boxes is rather

big in all the views. However, in other setups, we have experienced a much higher gain

(up to twice the speed) and with the 2D bounding boxes we can compute more likelihood

evaluations in parallel with the same GPU memory (see Appendix B for examples with

range data).

In Table 3.2, we provide a comparison with state-of-the-art methods that reported results

on the HumanEva II dataset. Our approximate partitioning of observations in LPFs with

hierarchical layers compares favorably to the majority of state-of-the-art approaches both

in accuracy and computational performance.

The ISA approach by Gall et al. [GRBS10] and the variation using action priors

[YGvG12] are the only approaches that deliver a substantially better performance in
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terms of mean of the 3D error. However, [GRBS10] is much slower than our approach

(more than 3 times slower) and [YGvG12] relies on strong priors obtained by motion

models of actions embedded in specific manifolds. Furthermore, both approaches are

based on the ISA framework, which is, in essence, a simulated annealing-based approach

to drive particles towards the global minimum of the cost function. Hence, these ap-

proaches could benefit from our APO with hierarchical layers. We also observe two

competing approaches. On the one hand, [BJB12] delivers a similar accuracy with in-

creased computational efficiency thanks to self-learned motion models. Interestingly, this

approach has a similar philosophy based on hierarchical partitions combined with an-

nealed particle filters. On the other hand, the scalable models proposed in [CFCP11] are

reported to provide a competitive accuracy in terms of mean error. However, standard

deviation associated to these errors is much larger than in our approach (> 30mm). This

deviation matches some important errors observed by visual inspection of the tracking

results 3. Visually, our approach delivers a better performance. This last observation

around means and standard deviations of the error in the HumanEva II dataset yields to

a discussion previously raised in [BJB12]. We observe that the error rarely goes below

5 cm during all the sequence (except for the first frame, where the markers have been

registered). This actually means that the 3D errors is not without bias. This bias can be

caused by measurement errors of the mocap and by the impossibility to perfectly locate

the ground truth markers on the estimated model. In such case, the standard deviation

becomes a very good indicator of the quality of the tracking. Observe that [SBB10],

[GRBS10], [YGvG12], [BJB12] and our hierarchical approaches deliver not only lower

mean error than other state-of-the-art methods, but also a substantially lower standard

deviation. But most importantly, note that only [GRBS10] and our APO-HPF with local

optimization approach deliver a consistently and substantially lower deviation in both

sequences. In particular, we are able to deliver deviations below 1 cm, which indicates

that our method consistently tracks the subject’s limbs throughout the sequence.

3.7.2 DD-HPF in IXMAS

Since most of the presented filtering strategies succeed in tracking arms and legs in the

HumanEva II dataset, we conduct experiments on the IXMAS dataset [Inr06]. The

aim of these experiments is to provide a better evaluation of the data-driven strategy

presented in this thesis. The IXMAS dataset was recorded for action recognition and

hence it does not contain pose ground truth. For this reason, we manually annotate

1Average over the results provided in [SBB10]
2Average between the full and low-variance mode, considering the 40% of time the algorithm can be

accelerated, according to the authors.
3Visual results are reported in the online version of [CFCP11]
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Figure 3.13: APF + Adaptive Diffusion + Local Optimization results for Subject S2
on the HumanEva II dataset.

Figure 3.14: HPF + Local Optimization results for Subject S2 on the HumanEva II
dataset.

the hands, head and feet of different sequences belonging to 6 different subjects. In

particular, we are interested in the evaluation of the performance of our method for

actions involving arm movements (i.e crossing arms, hand waving, punching, etc.), so we

skip actions not involving relevant arms motion such as walking or turning. Annotations

are performed in 1 of every 5 frames3.

We compare our detector driven method with two state-of-the-art Layered Particle Fil-

ters: the APF and the HPF. In particular, we evaluate our method with (DD HPF+)

3For annotations and related data check https://imatge.upc.edu/∼marcel/ddhpf.html
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Figure 3.15: APO-HPF results for Subject S2 on the HumanEva II dataset.

Figure 3.16: APF + Adaptive Diffusion + Local Optimization results for Subject S4
on the HumanEva II dataset.

and without (DD HPF) the refinement layer. In order to perform the comparative, the

APF is run with 14 layers and 250 particles per layer, HPF and DD HPF are run using 7

layers and 500 particles per layer, and the DD HPF+ is run with a maximum of 8 layers

(7+ refinement layer) and 500 particles per layer (recall that if no detections are found

in a frame, the refinement layer is discarded). The 7 layers contain the variables related

to torso (and head), left leg, right leg, left shoulder, right shoulder, left elbow and right

elbow respectively. Since adding the refinement layer generally implies computing more

particle weights, we also provide results for a DD HPF+ using a total of 6 layers (5 +

refinement layer) and 500 particles per layer. Using 5 layers implies filtering shoulder



3. Layered Pose Inference 54

Figure 3.17: HPF + Local Optimization results for Subject S4 on the HumanEva II
dataset.

Figure 3.18: APO-HPF results for Subject S4 on the HumanEva II dataset.

and elbow variables of one arm in the same layer.

Provided that in IXMAS dataset all the subjects have their hands uncovered, we employ

the skin detector proposed by Jones and Rehg [JR99]. Despite of its simplicity, skin

detection turns out to be a very effective approach towards tracking arm motion in this

dataset. Recall that the detector driven framework can be applied to more sophisticated

detectors.

We compute the mean and standard deviation of the 3D error using all available ground

truth data. Results are shown in Table 3.3.
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Sequence (Frames) APF HPF DD HPF DD HPF+ DD HPF+ (5+1)

Alba 1 (53-350) 23.86 ±14.79 14.38±7.31 11.68±5.73 10.32±6.02 11.73±7.37
Alba 1 (658-1120) 17.13 ±7.93 11.84±6.87 10.86±6.03 9.37±5.82 10.38±7.96
Chiara 3 (29-292) 16.05 ±7.14 13.89±8.12 10.87±6.40 9.85±4.43 10.08±5.93
Chiara 3 (576-955) 19.16 ±10.16 11.29±5.81 8.36±5.88 6.76±3.22 7.98 ±5.89
Julien 1 (47-315) 18.30 ±8.37 15.18±7.21 13.86±6.85 13.30±6.85 12.09±7.46
Julien 1 (596-957) 26.01 ±14.70 11.85±6.06 9.43±3.63 7.87±2.73 7.57±3.35
Daniel 2 (15-306) 20.13 ±10.52 16.69±11.41 14.24±10.09 11.94±8.49 11.74 ±7.16

Daniel 2 (631-1119) 16.92 ±8.35 10.22±3.74 7.29±3.33 6.73±2.53 11.00 ±8.35
Srikumar 1 (43-368) 20.06 ±10.48 15.77±9.84 14.20±11.22 14.58±12.14 15.59 ±16.56

Srikumar 1 (704-1035) 18.59 ±10.23 13.60±9.99 13.46±8.47 10.62±5.59 12.07 ±8.87
Amel 1 (51-385) 20.30 ±9.32 16.00±8.02 16.76±8.47 14.40±6.11 15.08 ±5.88

Amel 1 (796-1295) 22.97 ±8.05 13.07±7.07 11.55±5.79 11.40±6.90 11.35 ±5.99

Table 3.3: Comparative results between the state-of-the-art methods and our pro-
posals in the IXMAS dataset. We provide mean 3D error (and standard deviation) in

centimeters. Bold figures highlight the result of the best method for each sequence.
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Figure 3.19: 3D pose error at every 5 frames for the HPF, DD HPF and DD HPF+

for the IXMAS dataset (a) frames (53-350) of sequence alba1 (b) frames (631-1119) of
sequence daniel2 . 7 layers and 500 particles have been used in the HPF and DD HPF

whereas 8 layers and 500 particles per layer have been used in the DD HPF+.
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The proposed framework consistently outperforms both the APF and HPF. Apart from

reporting a better accuracy in terms of mean error, the standard deviation is consis-

tently reduced, thus reflecting the stability gain and the increased robustness in front of

tracking failures. Experimental results show the effectiveness of the proposed DD HPF

in reducing the blindness of the prior. In Figure 3.20, we provide a visual example for a

fast arm action (action 6) and we compare the outcomes of the best state-of-the-art PF,

the HPF, with the DD HPF . As we can see, the HPF gets lost whereas the DD HPF

perfectly tracks the arm. The experimental validation also shows the impact of the re-

finement layer, which is able to filter erroneous particles originated by weaknesses of the

silhouette-based observation model and erroneous classifications of extremities. Even

when using less particle evaluations, the proposed method outperforms the state-of-the-

art approaches.

HPF

DD HPF

Figure 3.20: Tracking example of subject 3 “punching”action (set 2) for the HPF
and DD HPF using 7 layers and 500 particles per layer for both schemes.

3.8 Conclusions

In this chapter, we introduced a generic layered framework for human pose estimation.

Human pose estimation problem is formulated as a non-linear non-Gaussian tracking

problem. With such a formulation, we rely on particle filters in order to estimate the

pose as the sample mean of a posterior distribution. In order to efficiently tackle the
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curse of dimensionality, we advocate the use of a layered framework that generalizes ex-

isting PF algorithms. Under such a generalization we propose two major improvements.

On the one hand, we propose a detector-driven propagation approach that incorporates

3D body part detections into the filtering formalism. Second, we develop an approxi-

mate partitioning of the input data that results in a faster and more accurate filtering

approach. Our experiments in the publicly available Human Eva II and IXMAS datasets

show the effectiveness of our approach.





4
Action Recognition with Nonlinear Dynamical

Systems

4.1 Introduction

The recognition of human actions from video is a challenging problem with multiple ap-

plications in several fields, such as human-computer interaction, surveillance or gaming,

to name a few. In the computer vision literature, the term action commonly denotes a

simple motion pattern usually involving one subject [TCSU08]. Although such a term

bounds the problem to some extent, human actions admit further taxonomies, depend-

ing on the kind of motion, on the stylistic performance and on the context, making the

recognition problem elusive.

In recent years, computer vision researchers working on human action recognition have

focused mainly on low-level features obtained from pixels [JSWP07, WS07, WKSL11].

These features usually encode information on appearance, hence the performance of

systems relying on such features commonly suffers from changes in view-point, clutter

or clothing. In earlier works, the problem of recognizing human actions was posed as one

of modeling the dynamics of observed variables [CB95, PR00, BCMS01]. In such works,

researchers usually relied on human pose and articulated motion estimates as an efficient

way to encode motion. This kind of approaches are a minority compared to those working

59
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with low-level features, since the problem of estimating human poses is also a challenging

one with a traditionally higher cost. The previous chapter was devoted to bridge the

gap between the low-level world (pixels) and the articulated model representation. In

this chapter, we use the dynamics of articulated models of the human body in order to

recognize actions, similarly to what earlier approaches pursued. Apart from the work

in pose inference presented in this thesis, recent advances in human motion capture

[SFC+11, GRBS10, BJB12] give extra motivation to the approach of this dissertation,

i.e., to reconsider the analysis of human actions through pose estimates.

The approach followed in this chapter consists in modeling human actions by an un-

derlying dynamical system. We exploit the theory of nonlinear dynamical systems and,

more specifically, time-delay embeddings to model the dynamics of human actions using

a set of parameters resulting from input data. Time-delay embeddings do not make as-

sumptions on the form of the dynamical system, they basically employ input time-series

to reconstruct a higher-dimensional Euclidean space that characterizes the underlying

dynamical system topologically and geometrically. Consequently, we do not force any

mathematical structure to the data, but we rather let the data speak by itself. We

present a framework to exploit this principled modeling approach in computer vision.

The idea is to build a link between the physics of dynamical systems with the semantics

of action classes.

In this chapter, we focus on the recognition of actions using mocap data instead and

pose estimates in order to analyze the potential of our approach. Furthermore, we show

the feasibility of analyzing actions as time series obtained from low-level features.

4.2 Related Work

Some recent approaches on human action recognition have focused on modeling hu-

man actions as time-series and underlying dynamical systems. An early approach by

Pavlovic and Rehg [PR00] infers the kinematics of walking and running to model dy-

namical systems that can be used to recognize both actions. With similar kinematic

features, Bisacco et al. [BCMS01] classify human gaits by defining a distance in the

space of dynamical systems. Campbell and Bobick [CB95] represent human motion

using joint angles to construct curves in a phase space. Their approach is able to seg-

ment fundamental steps in ballet dance. Lv et al. [LNL05] recognize human actions

by representing them as a set of weighted channels consisting in the temporal evolution

of 3D joint coordinates. Raptis et al. [RWS10] propose a method to model human ac-

tions as a linear time-invariant dynamical model of relatively small order that generates

multivariate time series in the form of joint angle dynamics along time.
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Some authors focus on dimensionality reduction methods to deal with the action recog-

nition problem by embedding input feature spaces into low-dimensional spaces. Di-

mensionality reduction methods have been widely applied with low-level and appear-

ance features [CWSS07][WS07][BR07], due to the high dimensionality of these features.

However, when one deals with actions and time series, keeping the geometric structure

of input spaces is often not sufficient, and there is a need for constraining embedding

techniques to cope with the underlying dynamics. Lewandowski et al. [LMdRMN10],

propose a Temporal Laplacian Eigenmaps to embed time series of motion capture data

and video data, obtaining good results on both human motion reconstruction and ac-

tion recognition. Similarly, Wang et al. [WFH08] constrain manifold learning to be

dynamically consistent with the input space.

Some recent approaches aim at overcoming modeling limitations produced by assump-

tions made on the dynamical model. Li et. al [LAM+11] model actions as the output of

an unknown dynamical system using the distance between principal angles of subspaces

representing different action classes. With the same objective, Ali et al. [ABS07] pro-

pose to exploit the theory of chaotic systems to recognize human actions. They embed

one-dimensional time-series, each of which being the evolution of a joint coordinate, in

an m-dimensional phase space. Using metric and dynamical invariants of the recon-

structed phase space, they recognize actions using MoCap data and video data. In a

recent work, Basharat and Shah [BS09] extend the embedding of univariate signals to

multivariate analysis in order to synthesize human motion and dynamic textures. The

approaches presented in this thesis are based on this latter sort of nonlinear dynamical

models [KS04], and more specifically on time-delay embeddings.

4.3 Body Model as a View-Invariant Action Representa-

tion

In the proposed approach, human actions are seen from a dynamical systems perspective,

hence requiring a time-varying signal as input data. This actually implies that many

different features could be employed. In this paper, we focus on using an articulated

body model for human action recognition, as one can then represent human actions

in a view-invariant manner [PC06]. With this modeling framework, and provided that

bone elongations are fixed, human pose is represented by a set of kinematic features: a

translation r ∈ R3, a global rotation φ ∈ R3 and a set of joint angle rotations θi ∈ R.

Each joint can have up to 3 associated rotations, depending on its degrees of freedom,

and these rotations are independent of the global translation and rotation. Using this
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Figure 4.1: Example of articulated human body model and its local coordinate axes

representation, one can alternatively represent the pose as a set of joint positions pj ∈
R3.

Due to the independence of joint rotations with respect to global variables, we can

represent human motion in a view invariant manner by discarding those model variables

whose evolution along time does not characterize the type of action. For instance,

when humans walk they can go in several directions. These directions are represented

by the global orientation (rotation along z axis in Fig. 4.1) and the translation in

the transverse plane (xy in Fig. 4.1). By discarding these variables, which are global

variables, one can effectively represent walking motion as if humans where in a treadmill,

thus achieving invariance to the directions of walking, which, equivalently, means view-

invariance. However, not every global variable will be meaningless, in the sense of

view-dependence, for action recognition. And, similarly, not all the available rotations

and positions will provide characteristic information of an action. For that matter,

methods involving feature selection or feature weighting will be necessary in order to

discard irrelevant variables.

For the rest of the chapter, we consider that we have a motion sequence represented by an

articulated skeleton whose pose changes along time. Consequently, at every time instant

t, we will be able to compute the composite feature vector {r, φ, θ1, . . . , θK ,p1, . . . ,pP }.
This composite vector is a high-dimensional feature vector and its components can be

seen as 1-dimensional time series. Throughout the chapter, we will label each of these

1-dimensional components with superindex ξ. Formally, this view of the articulated

model variables at time t is noted as:

{z1(t), . . . zξ(t), . . . , zΞ(t)} (4.1)

and the time series of one variable are noted as:

zξ = {zξ(1), . . . zξ(t), . . . , zξ(T )} (4.2)
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4.4 Action Recognition in the Phase-Space

In this section we present a framework where human actions are modeled by an under-

lying dynamical system. We exploit the theory of nonlinear dynamical systems and,

more specifically, time-delay embeddings to model the dynamics of human actions using

a set of parameters resulting from input data. Compared to other approaches [RWS10],

time-delay embeddings do not make assumptions on the form of the dynamical system,

they basically employ input time-series to reconstruct a higher-dimensional Euclidean

space that characterizes the underlying dynamical system topologically and geometri-

cally. We then assume that a human action class is a realization of a set of reconstructed

dynamical systems, and that such realization will visit the same regions of the recon-

structed spaces. Under this assumption, we propose several methods to measure the

geometric and topological similarities in the reconstructed spaces such that actions can

be effectively recognized.

In the following, we describe the proposed approach. We start by detailing the time-delay

embedding methodology employed in this thesis in order to reconstruct the phase-spaces

of each 1-dimensional time series. Then, we present several classification approaches that

exploit the proposed embedding.

4.4.1 Time-Delay Embedding

Let us define the underlying dynamical system of a human part or model variable motion

ξ as the possibly nonlinear map f : Rm → Rm that describes the temporal evolution of

the state variables xξ(t) = [xξ1(t), xξ2(t), . . . , xξm(t)] ∈ Rm. As the state space variables

evolve, they generate one-dimensional observables zξ(t) that constitute the action time

series of interest. These time series are a temporally ordered collection of part locations

or variables evolving in time. Using zξ(t), we want to characterize the underlying system

f by reconstructing an m-dimensional space where time series are unfolded.

To reconstruct this space, we rely on the theorem by Takens [Tak81], that provides the-

oretical justification for reconstructing state spaces using simple time-delay embeddings:

x̂ξ(t) = [zξ(t), zξ(t+ τ), . . . , zξ(t+ (m− 1)τ)] (4.3)

where x̂ξ(t) is a delay-vector (a point in the reconstructed space), m is the embedding

dimension and τ is the embedding delay. This reconstructed space, also called phase

space, is a metric space. According to [Tak81], for a sufficiently large m, this space is an

homeomorphism of the true dynamical system that generated the time series. Hence,
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Figure 4.2: Determining the embedding delay and a suitable embedding dimension
for a joint angle scalar time series. (a) Mutual information of the series and its delayed
version. The first minimum is used as the optimal embedding delay. (b) E1 measure,
obtained by Cao’s method [Cao97]. Suitable embedding dimensions are found when
the E1 measure starts converging to a stable, high value. In the example, m = 4 is a

sufficient embedding dimension.

by stacking sets of m temporally equispaced samples of the input scalar time series we

are able to map the input series onto meaningful sets of delay-vectors.

While dimension is important from a theoretical viewpoint, the embedding delay τ

has shown to be of relevance from a practical viewpoint: low delays might reconstruct

spaces with improperly unfolded time series due to high correlated samples, while high

delays might cause a loss of information about the initial state. We first determine the

embedding delay using the mutual information method [FS86] and then we employ the

estimated delay to find the appropriate embedding dimension using the method by Cao

[Cao97]. We detail both methods for completeness.

Embedding delay The idea behind the method for inferring the embedding delay is

that an appropriate embedding delay must minimize the dependency between the delay-

vector coordinates, so that the time series data gets effectively unfolded in a higher

dimensional space. Although one could employ zeros of the autocorrelation function in

order to analyze the dependency between samples z(t) and z(t+τ), the method in [FS86]

shows that relying on the mutual information is a better criterion. The optimal delay is

obtained by taking the first minimum of the mutual information (MI) function between

the original time series and a delayed version of the same time series (see Algorithm

7 and Fig. 4.2a). This MI-based method for finding a suitable embedding delay has

also the interesting property of providing, to some extent, temporal invariance. In other

words, if the same action is performed at a different speed, the first minimum of the MI

will be displaced accordingly.

Embedding dimension Several methods for computing a suitable embedding di-

mension with experimental data rely on the false nearest neighbors idea formulated by
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Algorithm 7: Embedding Delay

1 zξ = {zξ(0), ..., zξ(T − 1)} : Time series obtained from the variable ξ

2 Normalize zξ between 0 and 1
3 Set minMI = C � 1
4 for τ = 1 . . .max τ do
5 zξτ = {zξ(τ), ..., zξ((T − 1 + τ) mod (T ))} : Delayed time series

6 I(τ) = −
∑

zξ
∑

zξτ
p(zξ, zξτ ) log

p(zξ,zξτ )

p(zξ)p(zξτ )

7 if I(τ) < minMI
8 then
9 minMI = I(τ)

10 end
11 else
12 break
13 end

14 end
15 τopt = τ
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Figure 4.3: Examples of reconstructed 3-D spaces. Hip rotations for sit, run and walk
action instances of the FutureLight dataset [Fut].

Kennel et al. [KBA92]. They observed that the phase space of a dynamical system folds

and unfolds smoothly as dimensions vary. Hence, two points that are sufficiently close in

a given m-dimensional reconstructed phase space, should keep close in m+1 dimensions.

As a sufficient embedding dimension is reached, the number of false nearest neighbors

(points that are nearest neighbors in m dimensions but not in m+ 1 dimensions) should

be negligible. Based on this seminal idea, Cao [Cao97] proposed an improved method

for finding a sufficient embedding dimension (see Algorithm 8 and Fig. 4.2b) that over-

comes the limitations of the original method by Kennel et al. [KBA92] when dealing

with short-term experimental data.

Once both the embedding delay and the embedding dimension have been estimated, the

reconstructed space takes the following form:

X̂ξ =


zξ(0) zξ(τ) · · · zξ((m− 1)τ)

...

zξ(t) zξ(t+ τ) · · · zξ(t+ (m− 1)τ)
...

 (4.4)
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Algorithm 8: Embedding Dimension

1 x̂ξm(i) =
[
zξ(i) zξ(i+ τ) · · · zξ(i+ (m− 1)τ)

]
: Reconstructed delay-vector in m

dimensions
2 N : Number of points in time series zξ

3 for m = 1 . . .M do
4 for i = 0 · · ·N − 1−mτ do
5 Find the Nearest Neighbor x̂ξ(j)

6 a(i,m) =
‖x̂ξm+1(i)−x̂

ξ
m+1(j)‖

‖x̂ξm(i)−x̂ξm(j)‖
7 end

8 E(m) = 1
N−mτ

∑N−1−mτ
i=0 a(i,m)

9 if m ≥ 2 then
10 E1(m− 1) = E(m)/E(m− 1)
11 end
12 if m ≥ 3 then
13 if ‖E1(m− 1)− E1(m− 2)‖ < th then
14 break
15 end

16 end

17 end
18 mopt = m− 1

where each row of the matrix X̂ξ is a delay-vector. The reconstructed space X̂ξ (see Fig.

4.3) can be used to compute chaotic invariants [ABS07] for human action recognition.

In this thesis, however, we present a different analysis of the reconstructions and how

this analysis helps in recognizing human actions.

Note that time-delay embeddings are performed separately for each 1-dimensional time

series. The reason for embedding univariate time series is motivated by several reasons.

First, human actions may be characterized by a few relevant motion patterns taking place

in specific parts. For instance, motion and pose patterns taking place in the arm are

expected to be more relevant for the class raise hand than for the class kick. Under this

assumption, we expect a classifier to have more chances of removing irrelevant motion

patterns if we separately embed univariate time series than if we couple all together in

the input space before computing the embedding. This intuitive reasoning matches the

empirical findings by Raptis et al. [RWS08]. They report that the performance of an

action recognition method based on time series analysis is better when the action models

are built from univariate time series. Second, coupling time-series in the input space

may yield an dramatical increase in the dimensionality of the feature space, as many

combinations might be possible and useful. And third, an extension proposed by Cao et

al. [CMJ98] considers the possibility of coupling embedded uni-dimensional time-series

in a joint space. Yet simple, this extension has proved to be effective for the prediction

of multivariate time series [BS09].
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Figure 4.4: Minimum Common Embedding dimension. Example of averaged E1
measure [Cao97]. In this example, m = 5 can be considered the minimum common

embedding dimension, since E1 has almost settled down to its upper bound.

4.4.2 Minimum Common Embedding Dimension

Differently to a few existing methods of the state-of-the-art [ABS07, BS09], we propose

to view the embedded spaces as a unique Euclidean space where all the time series are

unfolded. Consequently, we need to find the dimensionality of such space. According to

Takens’ theorem [Tak81], the dynamical system can be embedded in an Euclidean space

with dimension larger than twice of the system attractor. This means that there is not a

unique embedding dimension, but a minimum sufficient embedding dimension, that can

be found by empirical methods such as the already described Cao method [Cao97]. For

that matter, a minimum common embedding dimension between a set of time series zξ

must exist. This minimum common embedding dimension is the minimum dimension

for which the whole set of time series gets effectively unfolded.

The minimum common embedding dimension will be employed in order to embed new

unseen motion sequences, and hence can be found by means of cross-validation on train-

ing data. Alternatively, we propose to use a false nearest neighbor method on all the

available training data in order to find the minimum common embedding dimension.

In order to estimate the minimum common embedding dimension from training data,

we use Cao’s method in all the available motion sequence. In order to correctly unfold

the data from a single dynamical system, nearest neighbors are computed within each

motion sequence. In this way, we avoid mixing embedded points coming from motion

sequences that might have been generated by a different dynamical system. By averag-

ing the E1 measure for each embedding dimension we estimate the unfolding rate of the

delay-vectors (see Fig. 4.4). The minimum common embedding dimension is the value

of m such that the E1 measure settles down, getting close enough to an upper bound

(usually close to 1). In practice, we select M by thresholding the rate of change of the E1

measure when moving from m to m+ 1 (see Algorithm 8). Whenever E1(m+ 1) > 0.9,

we check if E1(m+ 1)− E(m) is below 0.1.
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By using a common embedding space, we facilitate the use of Euclidean metrics on

the reconstructed spaces, which at the same time pave the way to the development of

recognition methods based on these metrics. Another advantage is that we do not need

to estimate the embedding dimension in test time. Furthermore, a common embed-

ding dimension opens the possibility to use features relating two model variables in the

embedded space, similarly to what relational features [MRC05] do in the input space.

4.4.3 Recognition by Trajectory Matching in Phase-Spaces

The first proposed recognition method is based on comparing the set of reconstructed

phase portraits of a target action (each one obtained from univariate time series) with

a set of phase portraits from representative templates. In order to perform such a

comparison, we propose a distance between two reconstructed phase portraits X̂ξ
a and

X̂ξ
b.

We use the map f(x(t))→ x(t+1) to refer to the underlying dynamical system associated

to some model variable and f̂(xa(n))→ xa(n+ 1) xa ∈ X̂ξ
a to the system representing

the evolution in the phase portrait X̂ξ
a reconstructed with the model time series (we use

n instead of t to denote that we have a sampled signal). From this notation we introduce

the nonlinear time evolution operator f̂n such that:

f̂0 = identity (4.5)

f̂1 = f̂ (4.6)

f̂nf̂ s = f̂n+s (4.7)

Due to the nature of human motion, we assume that f is smooth. We also assume that

important topological characteristics of the underlying dynamics are reflected on the

trajectories of the reconstructed phase portraits (Fig. 4.3), in spite of the fact that the

data employed is a sampled version of a continuous signal.

Our proposal for the distance between reconstructed phase portraits relies on these

properties and it is inspired on DTW [BC96]. The underlying idea is to traverse one

phase portrait X̂ξ
a and look for the nearest neighbor at each time instant in another

phase portrait X̂ξ
b . If the portraits have been generated by similar motion (and possibly

by the same action) nearest neighbors should be in closer distances along the respective

reconstructed phase portraits. Nearest neighbor retrieval is, therefore, restricted in

such a way that the temporal ordering is preserved. This is equivalent to measuring
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the prediction error of points in X̂ξ
a given X̂ξ

b . Algorithm 9 describes the proposed

computation of the distance between two reconstructed phase portraits of some body

model variable. The proposed distance is posed as a prediction error, but can be seen as

an efficient alignment between two phase-space trajectories of (possibly) different length.

We experimentally compared our algorithm with a more exhaustive search for phase-

space trajectory alignment, and we found that the proposed distance provides better

classification results.

Algorithm 9: d( X̂ξ
a , X̂ξ

b )

1 Start at xa(0) ∈ X̂ξ
a

2 xbl = xb(0)
3 d = ‖xa(0)− xb(0)‖2
4 n = 1
5 while xa(n) 6= xa(0) do

6 l = argmin
k

‖xa(n)− f̂kb (xbl))‖2 s. t. 0 ≤ k < δ.

7 d = d+ ‖xa(n)− f̂ lb(xbl))‖2

8 xbl = f̂ lb(xbl)
9 n = n+ 1

10 end
11 d = d/n

The search for nearest neighbors is restricted by δ to the near future of the phase

portrait. This variable aims at compensating for the different lengths of the available

action samples. Note that while the distance performs a one-pass traversal through X̂ξ
a,

we allow f̂b to go from the last reconstructed state space point to the first one. This is

clearly necessary for periodic or quasi-periodic human motion, such as walking. Note

also that the distance between X̂ξ
a and X̂ξ

b is, in general, different from the distance

between X̂ξ
b and X̂ξ

a. Hence, in order to have a true metric, we define the final distance

between two phase portraits as:

e(X̂ξ
a, X̂

ξ
b) =

d(X̂ξ
a, X̂

ξ
b) + d(X̂ξ

b , X̂
ξ
a)

2
(4.8)

4.4.4 Training and Recognition

Suppose we are given a labeled training data set Y = {(Z1, y1), · · · , (ZQ, yQ)} consisting

in multivariate time series Zi = {z1
i , · · · , z

ξ
i , · · · , zΞ

i } representing an action instance with

label yi. We propose two approaches that employ the trajectory matching framework to

classify actions from these time series. The first one employs Support Vector Machines

(SVMs) [Vap95] and averages the distances between each model variable ξ. The second

one assumes that only a subset of model variables are relevant and consists in learning
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the importance of each variable to efficiently fuse their trajectory similarities in test

time.

The first step, common to both methods, is to find minimum common embedding di-

mension m in order to embed the training data Y into a common phase-space X =

{X̂1
1, . . . , X̂

ξ
1, . . . , X̂

ξ
Q, . . . ,

ˆ̂X
Ξ

Q} ∈ Rm.

SVM Approach: We define a feature vector gathering the degree of similarity be-

tween all the available training samples. To this end, we define the similarity in terms

of the distance between the reconstructed phase spaces for each variable ξ. That is,

we compute the proposed distance (see Section 4.4.3) between the reconstructed phase

space of each available pair of examples , namely X̂ξ
i and X̂ξ

j . The similarity between i

and j is then given by the average of all the similarities between joint angle trajectories:

sij =
1

Nξ

∑
ξ

exp
(
−e(X̂ξ

i , X̂
ξ
j)
)

(4.9)

In this way, for each training sequence i we have an associated feature vector gathering

all the similarities with respect to the Q available training sequences, {si1, . . . , siQ}, and

each test sequence ρ has an associated feature vector {sρ1, . . . , sρQ}. We train a RBF-

SVM with the Q training vectors, in order to perform the subsequent classification of

test vectors.

Weighted Approach: Human actions are not necessarily characterized by full body

motion. Clearly, understanding the action raise hand does not require knowledge of the

motion of legs. Even in the case of having full body motion, it might happen that some

parts are more important for understanding a human action. Motivated by the potential

saliency of different body parts in different actions, we use training data to learn a set

of weights reflecting the importance of the motion of different body model variables in

each action class.

Due to the independence of the variables in the model-based representation of human

actions, we propose a strategy that performs fusion of the similarity scores obtained in

each model variable ξ. We aim at maximizing the classification accuracy by weighting

each one of the variables ξ based on their discriminative power on the training data.

For this reason, we first classify each training sample using the nearest neighbor, based

on the distance e(X̂ξ
i , X̂

ξ
j), i 6= j. Using the training data false positive, false negative

(misses) and true positive classifications for the action class label y in each model variable
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ξ (fpYξ=y, fnYξ=y and tpYξ=y respectively), we define the weights for each variable ξ and

action y as:

wYξ=y ∝
tpYξ=y

fpYξ=y + fnYξ=y + tpYξ=y
(4.10)

To classify a test action based on the set of reconstructed phase portraits X̂ξ
ρ, we nor-

malize the weights wYξ=y such that
∑

wYξ=y = 1, and we fuse the similarity scores with

respect to the training samples :

ŷ = argmax
y∈Y

∑
ξ

wYξ=yexp
(
−e(X̂ξ

ρ, X̂
ξ
i,Yξ=y

)
)

(4.11)

The proposed strategy takes advantage of training data to learn the variable model

weights in a discriminative manner, i.e., the importance of each model variable depends

on the extent to which its motion pattern in a given action differs from motion patterns

in other actions.

4.4.5 Recognition by Bag of Delay-Vectors model

When matching trajectories, a basic problem arises: if a huge number of templates is

required, one has to compute the distance between phase portraits for each training

sample in the template dataset. Hence, finding an alternative way of exploiting the

embedded space, without requiring exhaustive distance computation is of interest for

many test scenarios.

To overcome exhaustive distance computations, we formulate two basic assumptions.

First, human actions are driven by dynamical systems that exhibit some transient be-

havior, hence state space points will eventually lie on an attracting set. Second, since

time-delay embeddings reconstruct spaces that are homeomorphisms of an underlying

dynamical system, these attracting sets will be approximately represented by recon-

structions with experimental data. These assumptions are also taken into account for

the trajectory matching in phase spaces. However, here we relax the conditions and

we do not formulate any requirement on the topology. As before, in order to jointly

characterize and compare the attracting sets for all the actions, we propose to find a

common embedding space for the time series. After mapping the input data onto a

common higher-dimensional space, we use histograms of reconstructed delay-vectors to

geometrically characterize attracting sets. This histogram-based approach, termed Bag
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Figure 4.5: Bag of Delay-Vectors concept (best viewed in color). (a) 3-D embedding
for knee rotation time-series obtained with run(blue) and walk(red) action classes and
(b) clustered delay-vectors. Attracting sets for each motion are represented by different

sets of clusters.

of Delay-Vectors (BoDV), requires clustering delay-vectors and choosing a representative

point, that will act as a word (see Fig. 4.5).

Suppose we are given a labeled training data set Y = {(Z1, y1), · · · , (ZQ, yQ)} consisting

in multivariate time series Zi = {z1
i , · · · , z

ξ
i , · · · , zΞ

i } representing an action instance with

label yi. We first find the minimum common embedding dimension for the training data.

Note that this only applies for the embedding dimension, but not for the embedding

delay, which is computed for each univariate time series following the MI method [FS86].

After applying the appropriate time-delay embedding for all the available time series of

a part or variable ξ = j, delay-vectors belonging to a specific model variable or part

motion Xξ=j can be represented in the same space X ξ=j = {X̂ξ=j
1 , · · · , ˆ̂X

ξ=j

Q } ∈ Rm.

We cluster the delay-vectors in each part-specific space X̂ ξ=j and we compute histograms

associated to each Xξ=j
i obtained from input time series zξ=j . Finally, a feature vector

for an instance (Zi, yi) is obtained by stacking the Ξ part-specific histograms belonging

to the same action instance.

Provided that the feature vectors are high-dimensional BoDV models, we employ a

supervised SVM approach [Vap95] with χ2-kernel. We train multi-class SVM models

with the stacked BoDV built on the training data set. To classify human actions, we

embed the test action sequences, we quantize the delay-vectors and we construct an

appropriate feature vector by stacking histograms computed with the quantized delay-

vectors.

We left out the details of the clustering step, which is an important element of our ap-

proach. For the sake of simplicity, we employ k-means clustering, which a priori suffices

to obtain a geometric characterization of the reconstructed space. Nonetheless, k-means

is not an optimal clustering method for delay-vectors, whose attracting sets might not

be properly explained by spherical clusters. Moreover, if time series are not properly

unfolded by time-delay embeddings, one might seriously damage the statistical relation
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between the clusters and the input time series [KL03]. Alternatively, we use a hierar-

chical agglomerative clustering approach [War63]. Since clusters are not represented by

its mean, but by the point population, we select k clusters and we model the delay-

vector distribution in each cluster by a Gaussian distribution. In this way, we expect to

obtain a more accurate geometric characterization of attracting sets. Quantization of

test vectors is performed by finding the most probable cluster and then using the mean

delay-vector as a word.

4.5 Forests in the Phase Space

The use of codebooks of delay-vectors is a more efficient way of handling time series data

from multiple model variables. Nonetheless, the clustering step becomes crucial in order

to geometrically characterize the phase-space. As discussed in the previous section,

clustering methods such as k-means clustering may not provide accurate results for

delay-vectors. Furthermore, clustering methods employed so far are fully unsupervised,

hence the result might not yield a discriminative enough codebook for action recognition.

Another issue, shared by trajectory matching and BoDV, is the fact that we do not

exploit the common embedded space as the phase-space of the multivariate time series

comprising the evolution of the variables in the whole articulated model [BS09].

We address these issues by proposing a novel action recognition framework that performs

a supervised partition of the joint phase-space. Provided that the joint phase-space is a

highly dimensional Euclidean space, we use random forests [Bre01] in order to find the

partitions that, given some training data, provide the best separation of action classes.

Our approach relies on multivariate phase space reconstruction. So far, we have used

time-delay embeddings with univariate time series, where each series captures the tem-

poral evolution of a model variable ξ. In order to embed multivariate time series, Cao et

al. [CMJ98] proposed a practical extension consisting in stacking together the embedded

phase spaces of separate univariate time series:

X̂(t) =



z1(t) · · · zξ(t+ τ1) · · · zξ(t+ (m− 1)τ1)
...

zξ(t) · · · zξ(t+ τξ) · · · zξ(t+ (m− 1)τξ)
...

zΞ(t) · · · zΞ(t+ τΞ) · · · zΞ(t+ (m− 1)τΞ)


(4.12)
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Contrarily to other approaches [CMJ98, BS09], we employ this extension making use

of the minimum common embedding dimension m proposed in this dissertation. This

choice allows us to use relational features [MRC05] in the embedded space.

With the proposed embedding, the training data in the embedded space is noted as

Y = {(X̂1, y1), · · · , (X̂Q, yQ)} where X̂i are the embedded multivariate time series of the

i-th human motion sequence and yi is the action label corresponding to the sequence.

For the sake of completeness, in the following we provide a detailed description of random

forests. Random forests [Bre01] are an ensemble of m decision trees, which are binary

trees. Nodes n in each tree have a learned probability distribution pn(y|X̂, t) that reflects

how likely is a class y given a time instant t and the features X̂ (in this case, delay-

vectors in the common phase space reconstructed from multivariate time series). These

probability distributions are learned by recursively branching left or right down the tree,

according to some node-specific weak classifier, until some stopping criteria are met and

thus a leaf node is reached. Weak classifiers associated to each node are binary functions

of feature vectors obtained from the reconstructed phase space X̂. The robustness of

forests is based on the combination of several decision trees. Usually, one performs this

combination by averaging the distributions over the leaf nodes {l1, · · · , lM} reached in

all the M trees:

p(y|X̂, t) =
1

M

M∑
m=1

plm(y|X̂, t) (4.13)

Each tree is trained separately with a small subset of the training data obtained by

sampling with replacement. Learning is based on the recursive splitting of training data

into left L and right R subsets, according to some binary test f and a threshold θ. The

binary test is a function of the feature vectors obtained from each training example.

In the particular case of the classification of temporal events, training examples are

obtained from patches of a given duration centered at given time instants.

At each node, a test f and a threshold θ are randomly generated, and the one that

maximizes some criteria is selected. We employ the information gain as a test selection

criterion:

∆IG = − |L|
|L|+ |R|

H(L)− |R|
|L|+ |R|

H(R) (4.14)

where | | denotes the number of elements of the subset and H() is the Shannon entropy

of the classes in a subset. The process continues until a maximum depth D is reached

or the information gain cannot be further maximized.



4. Action Recognition with Nonlinear Dynamical Systems 75

The outcome of this training process is an ensemble of decision trees, each of which

defines a partition of the feature space that aims at maximizing the separation of classes.

In test time, an input patch is tested down each decision tree until it achieves the

respective leafs. Class probabilities from the leafs are averaged, obtaining the probability

distribution p(y|X̂, t). This probability distribution constitutes a vote, where the vote

strength is given by the probability of each individual class y. The averaging of the class

probabilities in each one of the reached leafs assures better generalization thanks to the

maximum-margin classification achieved by random forests [CSK12].

We propose a family of binary tests in order to classify actions in the phase space. These

binary tests aim at computing relational figures between delay-vectors of a given patch

centered at time t. In fact, and thanks to the multivariate phase-space reconstruction,

our proposed binary tests can deal with the input space and admit combinations of

Euclidean spaces of different dimensionality.

According to the representation of the phase-space in Eq. 4.12, the reconstructed phase-

space, using the multivariate extension, can be seen as a tensor whose first mode is the

temporal dimension, the second mode is the variable ξ (rows in Eq. 4.12) and the third

mode is the coordinate of the delay-vector (columns in Eq. 4.12). If we let χ denote

the third dimension of the tensor, we then can access any variable by combinations of

(ξ, χ). The most interesting case, however, is that allowing us to recover delay-vectors

of the phase space and scalars or vectors from the input space. For instance, we can

deal with the set of joint angles in R and its corresponding phase space of common

embedding dimension m (note that here the dimension of the Euclidean space refers to

the space where points lie, rather than to the length of the feature vector). In such a

case, X̂(t, :, 1) is the column vector gathering the input space, i.e, joint angles at time

t. Similarly, X̂(t, ξ, 1 : m) gives us the delay-vector for the (one-dimensional) input

variable ξ at time t, but X̂(t, ξ, 1 : m−2) gives a lower-dimensional reconstructed space.

Anyhow, the tensor representation and the indicator variables, which are not merely

scalars, but can be, as we have illustrated, arrays of values, allow us to define multiple

features in different spaces using one single phase space reconstruction. Consequently,

we randomly sample binary tests as follows:

fθ(t1, t2, ξ1, ξ2, χ, X̂) = ‖X̂(t2, ξ2, χ)− X̂(t1, ξ1, χ)‖2 (4.15)

where t1, t2 are time offsets constrained to be within the input patch.

The proposed test exploits the simplest form of relational features [MRC05]: distances

between feature points or delay-vectors. However, since the features might be taken

from the phase space, we are in fact relating the dynamics of body parts or features.
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The proposed test is a very generic form of the binary tests employed for random forests

in the phase space. In practice, we do not explore all the combinations of χ. We limit

our random forests to sample from the input space (χ = 1) and the embedded space

(χ = 1 : m). Also, ξ is conditionally dependent on the input space and on the value of

χ. For instance, if we deal with joint positions in R3 and given χ = 1, values of ξ are

constrained to be multiples of 3, the input space dimensionality.

Note also that finding optimal embedding delays τξ may provide, to some extent, tem-

poral invariance within the extracted patches. Although time indices t1 and t2 are not

subject to any temporal invariant transformation, delay-vectors contain temporally eq-

uispaced coordinates according to τξ. Consequently, the Euclidean distance between two

delay-vectors will give an idea of the similarity of dynamics almost independently of the

speed of execution.

In test time, a set of patches, with a given length L frames and centered at a given time

instant t are provided to the forest. It has been shown [SJC08, GYR+11] that dense

sampling of test patches yields more accuracy. A common practice is to measure the

density in terms of patch overlap. Consequently, test patches must sampled at rather

close time instants in order to guarantee a sufficient overlap. As a rule of thumb, we

will sample at intervals of (L− 1)/2 frames. After testing down each patch, the random

forest casts a vote at time t for each action class. These votes have an associated class

probability. Class probabilities are aggregated using a Parzen estimator with Gaussian

kernel K. For each action class, we perform the following aggregation:

p(y|X̂) =
∑
s

p(y|X̂, ts)K(t− ts) (4.16)

The result of this aggregation is depicted in Figure 4.6 for an example where 5 action

classes are considered. Note that the random forests casts votes in the phase-space,

and not in the input space, hence the temporal dimension (represented by the width of

the image in Fig. 4.6) has T − (m − 1)τmax samples, where T is the length of the test

motion sequence and τmax is the larger embedding delay found in the input time series

corresponding to the test motion sequence.

4.6 Experimental Results

In order to evaluate our approach to action recognition, in this section we conduct

several experiments and we report the obtained results. This section is structured as

follows. First, we conduct experiments on a publicly available motion capture dataset.
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Figure 4.6: Aggregation of votes in the random forest framework. In this example, 5
action classes are considered. The width of the image represents the temporal dimen-
sion, whereas the height is divided into 5 intervals where the aggregated votes for each
class are represented. At the beginning of the sequence, the forest casts votes for class
3. By the end, class 2 is voted. Note: Blurring along vertical axis is caused during the

upsampling performed for visualization purposes.

In these experiments we analyze actions employing articulated models, which is the core

of this dissertation. Next, we present experimental results on a publicly available video

dataset. Despite being out of the scope of this thesis, we aim to show that the proposed

framework works also for data not coming from articulated models. Finally, we show

results on a multi-view video dataset, where we combine pose inference and the proposed

action recognition framework.

4.6.1 Future Light Dataset

The motion capture dataset provided by FutureLight (FL) [Fut] contains a total of 158

sequences of 5 action classes: dance, jump, run, sit and walk. This is a challenging dataset

for two reasons. First, actions have important intra-class variability. For instance, run

and walk actions are performed at different speeds, present variations in arm swinging,

and include stops and turnings. Similarly, jump class sequences involve jumping in place

or while walking. Second, the dataset contains somewhat ambiguous action instances.

As an example, dance sequences contain 4 walk-style dance moves that are similar to

walking. A good description of this dataset, illustrated with some samples, can be found

in [ABS07].

Analysis of Articulated Model Variables As described in Section 4.3, we can

use joint angles and joint positions in order to construct a composite feature vector for

human action recognition. Such a feature vector will be in general of high dimensionality

and some of the methods presented in this dissertation might not effectively handle this

dimensionality. For that matter, and in order to assess the information encoded by

several features, we conduct experiments measuring the importance of features obtained

in an articulated human body model. Let us recall that, in any case, we will represent
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Figure 4.7: Frequency (number of times) of selection of joint angles.

joint positions in a view-invariant manner, according to what we exposed in Section 4.3.

That is, before computing the joint positions, we discard the global orientation and the

translation in the XY plane.

To objectively measure the importance of joint angles and joint positions, we employ

the random forest approach presented in Section 4.5. Note that the objective of this

experiment is not to evaluate the classification accuracy, but to measure which features

are picked more frequently. For that matter, we train a random forests of 10 trees and

maximum depth 15. We employ 500 random binary tests and, for each test, we sample 10

random thresholds. Tests are constrained to pick whether joint angles or joint positions.

Embeddings are discarded for the moment. Their relevance for action recognition is

evaluated experimentally later on. Having the trained forest, we analyze which features

have been selected more frequently.

Our results show that joint angles are picked more frequently, although it is not a vast

majority of times. Specifically, joint angles are picked in 55% of the branching nodes.

Figures 4.7 and 4.8 show the number of times each joint is selected when it is represented

in terms of rotations or as a 3D position. Provided that joint angles are picked more

often, we analyze each axis separately (see Fig. 4.9) The results provided by this analysis

show that, in general, most of the relevance is carried by a single rotation axis.

Trajectory Matching Based on the previously presented results on articulated

model variable selection, we employ a total of 27 variables including relevant joint rota-

tions from 8 joints from legs and and arms (according to Fig. 4.7), 2 global rotations and

normalized translation in the vertical axis. With this data we obtain 27 reconstructed
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Figure 4.8: Frequency (number of times) of selection of joint positions.

Figure 4.9: Frequency (number of times) of selection of angular features. Axis rota-
tions are depicted separately.

spaces per action sequence. Classification performance is evaluated using leave-one-out

cross-validation, as has been done by other authors working in action recognition with

this dataset [ABS07, RWS10, RWS08]. We report the overall classification accuracy

(in terms of number of correctly classified sequences out of the total number of se-

quences) and the average classification accuracy (in terms of the average classification

accuracy per class). Provided that in the Future Light classes are unbalanced (jump has

14 sequences while walk has 48), we should only provide average accuracy over classes.

However, some authors reported the overall performance, hence we include both metrics.

Confusion matrices and classification results are shown in Table 4.1. Overall and aver-

age classification accuracies (93.08% and 88.67% for the SVM classification and 93.67%

and 91.09% for the weighted approach) validate the performance of reconstructed phase
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Dance Jump Run Sit Walk

Dance 29 2 0 0 0
Jump 0 11 1 0 2
Run 1 1 25 0 3
Sit 0 0 0 35 0

Walk 0 0 0 0 48

Dance Jump Run Sit Walk

Dance 28 2 0 1 0
Jump 0 8 4 0 2
Run 0 1 28 0 1
Sit 0 0 0 35 0

Walk 0 0 0 0 48

Table 4.1: Confusion Matrices in the Future Light dataset for the Trajectory Matching
in Phase Spaces. Left: weighted approach (overall and average classification accuracies
are 93.67% and 91.09% respectively). Right: SVM approach (overall and average clas-
sification accuracies are 93.08% and 88.76% respectively). In both cases the embedding

dimension m = 5 and δ=10.

portraits and the proposed distance for the action recognition task. The comparison

between the weighted and SVM classification approaches reveals that the latter is prone

to overfitting. This overfitting is caused by the unbalance between class jump and other

classes. Provided that the proposed approach deals with each sequence as an exam-

ple and therefore class jump, having a reduced number of examples, obtains a poor

classification accuracy. This clearly reduces the average classification accuracy on this

dataset.

Using the same model variables, we evaluate the recognition rate as a function of the

embedding dimension (Fig. 4.10). In the case of m = 1 we perform DTW [BC96] using

a window to constrain the warping to near time instants of the evaluated sample. In

this way, the computation time is dramatically reduced. As expected, the recognition

rate generally improves as the embedding dimension m grows, although we obtain a

surprisingly high accuracy by just employing m = 2. If we look at the E1 measure

computed using the Cao’s false nearest neighbor method on the overall FL dataset, we

see that at m = 5 the E1 measure starts settling down to a convergence value, whereas

the slope is reduced by m = 3. This average behavior is correlated with the overall

recognition performance. A remarkable increase of E1 (i.e., reductions of false nearest

neighbors) usually matches an increase in the accuracy. For embedding dimensions

larger than 7, the finite duration of sequences becomes a practical limitation, and the

accuracy decays.

The proposed action recognition system is mainly implemented in MATLAB, except for

some routines that have been implemented in C/C++. In the Future Light dataset,

action recognition (in test time) takes an average of 500 ms per mocap frame in an Intel

2.4GHz CPU with 4GB of RAM (both SVM and weighted strategies take approximately

the same time, since most of the computational effort is devoted to computing the

distances between phase portraits). However, our approach can be further optimized by

computing distances to templates in parallel or using a tree efficient organization of the

training trajectories.
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Figure 4.10: Analysis of the overall recognition rate and the embedding dimensions in
the Future Light dataset (a) Recognition rate as a function of the embedding dimension.
(b) E1 measure [Cao97] to determine the Minimum Common Embedding dimension of

the whole Future Light dataset.

BoDV As in the trajectory matching experiments, and based on the analysis of

articulated model variables, we select a subset of 27 skeleton variables, thus obtaining

27 reconstructed spaces per action sequence.

In the experiments, we test several parameters such as embedding dimensions and

number of words. Classification performance is evaluated using leave-one-out cross-

validation, as reported in previous approaches [ABS07][RWS10][RWS08]. We also com-

pare k-means and hierarchical clustering approaches withing the BoDV framework. The

hierarchical clustering implementation used in this thesis employs a pre-computation

of the distances between data points in order to speed-up the clustering. Since this

implementation requires a considerable amount of memory, we downsample the time-

series to 4:1 ratio. Provided that mocap data is recorded at 120Hz and that consecutive

samples are strongly correlated, the downsampling should not considerably affect the

performance of the BoDV.

Confusion matrices and overall and average recognition accuracy (see experiments with

trajectory matching for details) are reported in Table 4.2. We also show the performance

of the BoDV model with hierarchical clustering for several embedding dimensions and

number or words (Fig. 4.11). We report an average recognition performance of 94.05%

by embedding the time series in a 5-dimensional space, 32 words and optimal delay

embedding provided by the mutual information method. Comparative results between

clustering methods show that hierarchical clustering outperforms k-means thanks to a

more accurate geometric characterization (achieved even at lower frame rates). We also

observe that the number of words is a critical parameter for BoDV. A large number of

words yields a bad performance. This behavior was expected to some extent, since we

deal with time series of each model variable isolatedly, and in the Future Light dataset

there are a total of 5 action classes and 158 examples. Consequently, and since we stack

the histograms obtained in the reconstructed spaces of each of this variables, the feature

vectors are of a huge dimensionality if the number of words is relatively high. Apart
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Figure 4.11: Overall classification results in the FL dataset with BoDV and hierar-
chical clustering (a) for a fixed number of words (32) and varying embedding dimension

and (b) for a fixed embedding dimension (m = 5) and varying number of words.

Dance Jump Run Sit Walk

Dance 28 1 0 0 2
Jump 0 10 2 0 2
Run 0 0 28 0 2
Sit 0 0 0 35 0

Walk 0 0 0 0 48

Dance Jump Run Sit Walk

Dance 31 0 0 0 0
Jump 1 11 1 0 1
Run 0 0 30 0 0
Sit 0 0 0 35 0

Walk 0 0 3 0 44

Table 4.2: Confusion Matrices in the Future Light dataset for the BoDV approach.
Left: k-means clustering with m = 5 and nw = 16 (overall and average classification
accuracies are 94.30% and 91.02% respectively). Right: hierarchical clustering approach
with m = 5 and nw = 32 (overall and average classification accuracies are 95.57% and
94.05% respectively). In both cases we present the parameter set providing the best

accuracy.

from dimensionality issues, we observe that we do not even reach 32 words in some cases

where the time series are embedded in compact sets of delay-vectors. This means that

forcing a large number of words produces not only a very high dimensional feature space,

but also unnecessarily sparse feature vectors for which learning becomes hard.

Similarly to trajectory matching results presented previously, the overall classification

accuracy is correlated with the E1 measure of the overall Future Light dataset. In

this case, we only show the performance for dimensions 1 to 6, since larger embedding

dimensions are not practical due to finite length of the time series, and result in a worse

performance.

The BoDV action recognition approach is mainly implemented in MATLAB, except

for some routines that have been implemented in C/C++. Action recognition (in test

time) takes an average of 1.3 ms per mocap frame in an Intel 2.4GHz CPU with 4GB

of RAM (similarly to trajectory matching, the two quantization methods required by

the k-means or hierarchical clustering approach require approximately the same time).

Hence, compared to trajectory matching, BoDV is two orders of magnitude faster in test

time, reaching real-time performance.
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Random Forests in the Phase Space Differently to the previous approaches,

random forests can efficiently handle high dimensional spaces. In addition, despite the

relatively low number of sequences of the Future Light dataset, the proposed random

forest approach works locally with patches of a given length and consequently, we can

randomly sample a number of patches from each training sequence. For these reasons,

the binary tests proposed in Equation 4.15 are sampled using the following combinations

of randomly sampled indicator variables:

• A number of joint angles in R can be used for computing the binary test setting

χ = 1 and sampling ξ ∼ U[1,K], where U is a uniform probability distribution

between 1 and K, the number of joint angles considered for action recognition.

• A number of joint positions in R3 can be used in the binary tests by setting χ = 1

and using ξ = K + 1 + 3ξ′ where ξ′ ∼ U[0,P−1]. Here P is the number of joint

positions of the articulated model.

• Binary tests using the phase space reconstructed from the multivariate time series

comprising joint angles and positions. These embedded features are obtained by

setting χ = 1 : m and by ξ ∼ U[K+3P+1,Ξ] (recall that Ξ denotes the number of

univariate time-series resulting from the articulated model).

In order to randomly sample the binary tests according to the described combinations,

we define a new integer indicator variable ν uniformly distributed between 1 and 3. Its

objective is to select between the three presented modes, prior to sampling from any of

them.

Using the described random tests, we train forests of 10 trees and maximum depth

10. We employ patches of 25 frames. These patches are randomly sampled from the

available training sequences. As in the previous experiments, we follow a leave-one-out

cross-validation approach. Following the rule of thumb described in Section 4.5, we

sample test patches at every 12th frame. Each patch is tested with the learned forest

and votes with some associated probability are casted. Class probabilities are aggregated

using a Parzen estimator with a Gaussian kernel. A sequence is then labeled with the

action class having the larger probability in the majority of the available frames. If two

or more actions have the same number of frames with maximum probability, then the

sum of the per frame probabilities is taken into account in order to decide for one single

class. Recall that, the number of frames considered in test time is that of the embedded

data X̂ (see Section 4.5).

Using a common embedding dimension m = 5, we report and overall recognition ac-

curacy 96.83% and an average recognition accuracy of 96.18% (see experiments with
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Dance Jump Run Sit Walk

Dance 30 0 0 0 1
Jump 0 13 1 0 0
Run 0 0 28 0 2
Sit 0 0 0 35 0

Walk 0 0 1 0 47

Table 4.3: Confusion Matrices in the Future Light dataset for the random forest
approach with m = 5. Overall and average classification accuracies are 96.83% and

96.18% respectively.

trajectory matching for details on these two metrics). The corresponding confusion ma-

trix is reported in Table 4.3. The confusions are in general understandable due to the

fact that some of the action sequences of this dataset are fairly ambiguous. Interestingly,

in several of the reported confusions, our approach votes, at some point of the sequence,

for the true class. For instance, in the confusion between jump (true action class) and

run (predicted action class), 24% of the frames receive votes for the true action class

jump. Similarly, in the misclassified walk sequence our forest periodically votes for the

correct motion class.

We evaluate the random forest approach for different embedding dimensions. Results are

shown in Fig. 4.12. Similarly to the previous approaches, we observe that an appropriate

embedding dimension yields better performance. Independently of the classification ap-

proach and the features employed, the classification accuracy grows with the embedding

dimension, until an upper bound is reached. This upper bound is mostly due to practi-

cal constraints: time series have a finite duration, hence one cannot indefinitely increase

the embedding dimension without losing some information. Nevertheless, the most im-

portant outcome is that employing time-delay embeddings improves the performance

over only using the input feature space. In fact, the random forest training reveals the

importance of delay-vectors in the classification of actions. We observe that embedded

features are picked 71% of the time, while angles and joint positions are chosen 17% and

12% of the time respectively. Using an embedding of m = 5, we provide an overview of

the joints selected by the forest when working in the embedded space. We basically visit

all the leafs from all the trees and we associate the joints that have been selected in the

parent nodes. In this analysis, we do not make distinctions between rotations, positions

or coordinates; we simply take into account if the joint has been selected in the binary

test. Figures 4.13, 4.14, 4.15, 4.16 and 4.17 show the outcome of such an analysis. In

general, no joint seems to be a very specific trait of any of the actions of the Future Light

dataset. This is indeed caused by the locomotion segments present in all the actions

of this dataset. For this reason, differences in the motion of specific joints tend to be

the discriminative characteristic of actions. For instance, rotations and positions of the

right hand are frequently selected to classify all the actions. This actually indicates that
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Figure 4.12: Analysis of the average recognition rate and the embedding dimensions
in the Future Light dataset (a) Recognition rate of the random forest approach as
a function of the embedding dimension. (b) E1 measure [Cao97] to determine the

Minimum Common Embedding dimension of the whole Future Light dataset.

Figure 4.13: Frequency (% of times) of selection of joints for DANCE action.

the random forest finds distinctive motion patterns in the phase spaces associated to the

right hand joint.

As far as computational performance is regarded, the proposed random forest approach

is faster than the preceding methods. While time-delay embedding code is implemented

in MATLAB, random forest are implemented in C++, with no optimization efforts. In

test time, we estimate an average of 1 ms per mocap frame in an Intel 2.4GHz CPU with

4GB of RAM. Consequently, the random forest approach is faster and more accurate

than the preceding methods.

Comparison to the State-of-the-Art We summarize the obtained results in com-

parison to existing state-of-the-art methods evaluated in the FutureLight dataset (see

Fig. 4.18). In particular, we compare our methods with spike-train driven dynamical
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Figure 4.14: Frequency (% of times) of selection of joints for JUMP action.

Figure 4.15: Frequency (% of times) of selection of joints for RUNS action.

models [RWS10], chaotic invariants [ABS07] and flexible dictionaries for action classifi-

cation [RWS08]. Note that the results reported in [ABS07] use only 155 sequences of

the FL dataset, hence overall and average classification results might not be directly

comparable. The methods proposed in this dissertation outperform most of the existing

approaches [RWS10, ABS07]. Compared to our random forests, only the flexible dictio-

naries method by Raptis et al. [RWS08] delivers a slightly better performance in the

FutureLight dataset. This slightly improved performance is due to robustness against

the strong intra-class variations present in the FutureLight dataset. As stated at the

beginning of this section, the intra-class variations of this dataset yield, in some cases,
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Figure 4.16: Frequency (% of times) of selection of joints for SIT action.

Figure 4.17: Frequency (% of times) of selection of joints for WALK action.

fairly ambiguous sequences. This ambiguity makes some of the misclassifications of our

approach understandable, as for instance, one of the misclassified jump sequences starts

by the actor running in place (and our approach votes for run at the beginning of this

sequence). Another important characteristic of our approach, in comparison to [RWS08],

is that we do not require numerical derivatives (which might be prone to errors in the

presence of noise) and we deliver a competitive performance even at a lower frame rate.

Notice that, in addition, the time-delay embedding framework can be also used in order

to synthesize motion [BS09].
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Method FL Overall FL Average

Spike Train Driven Dynamical Models [RWS10] 83.63% 86.07%
Chaotic Invariants [ABS07] 89.68% 90.20%

Flexible dictionaries + BoW [RWS08] 97.47% 97.40%
Flexible dictionaries + String Matching [RWS08] 98.10% 98.03%

Trajectory Matching (SVM Approach) 93.08% 88.76%
Trajectory Matching (Weighted Approach) 93.67% 91.09%

BoDV (k-means clustering, m = 5, 16 words) 94.30% 91.02%
BoDV (hierarchical clustering, m = 5, 32 words) 95.57% 94.05%

Random Forest in Phase Space (m = 5) 96.83% 96.18%

Figure 4.18: Comparative results for the FutureLight dataset. Overall and average
classification accuracies are reported

Trajectory matching is most negatively affected by such intra-class variations. This

approach makes a comparison that is rather exhaustive, in the sense that all points

of the available trajectories in the phase-space are matched. Therefore, our trajectory

matching method presents limitations in coping with significant performance differences

between the same action class. However, this approach presents the advantage of working

with a relatively reduced number of training examples in comparison to the codebook

based approaches. In Section 4.6.3 we conduct several experiments with markerless

motion capture that evaluate the reliability against reduced number of training samples.

The comparative performance of the method by Ali et al. [ABS07] and our methods is

relevant, since they use chaotic invariants and time-delay embeddings. The accuracy of

our algorithms on this data is consistently better. On the one hand, and considering the

accuracy reported in [ABS07], this proves that methods using time-delay embeddings

perform well in recognizing human actions from MoCap data. On the other hand, we

show that geometric and topological analysis on a common embedding or phase-space

consistently outperform the chaotic invariants analysis when using MoCap data, and

in particular, allow using powerful classification methods, such as random forests, in

order to provide a much improved action recognition performance. Finally, apart from

the improved recognition performance, avoiding chaotic invariants allows our method

to perform well for short term actions, as we show in experiments with video data (see

next Section ).

4.6.2 Weizmann Dataset

The Weizmann dataset [GBS+07] consists of 90 low-resolution videos of nine actors

performing 10 different actions: bend, jack (jumping jack), jump (jumping forward on

two legs), pjump (jumping in-place on two legs), skip, side(galloping sideways), run, walk,

wave1 (wave one hand) and wave2 (waving two hands). These videos are recorded from

the same viewpoint. The dataset also provides background subtracted human silhouettes
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Figure 4.19: Features obtained in the Weizmann dataset (best viewed in color). Red
lines represent the quadrants. Green lines depict the width and height of the silhouette
in each quadrant, as well as the medial height. Blue lines are the top and bottom of

the silhouette, used to compute the silhouette height.

in order to perform action recognition. The evaluation protocol mostly employed on this

dataset is leave-one-out cross-validation.

Although state-of-the-art approaches have saturated the performance on this dataset, it

is still a popular benchmark dataset often included in action recognition publications.

Moreover, the chaotic invariants approach proposed in [ABS07] is evaluated on this

video dataset. This fact makes the evaluation on the Weizmann dataset relevant for

comparison against an approach already relying on time-delay embeddings.

Features We propose to use a set of simple features similar to the ones proposed

in [RWS08] for the same dataset. We start by aligning the silhouettes such that the

centroids occupy the same pixel in the middle of the image. In order to compute some

pose-like variables, we divide the aligned foreground silhouette into 4 quadrants and we

compute the width and height of the foreground pixels within each quadrant. Addition-

ally, we compute the silhouette height and width, and the medial height, i.e., distance

between top and bottom foreground points along the the vertical axis. In total, we have

11 features that approximately represent the human pose in the given view (see Fig.

4.19).
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Figure 4.20: Analysis of the average (per class) recognition rate and the embedding
dimensions in the Weizmann dataset (a) Recognition rate as a function of the embedding
dimension. (b) E1 measure [Cao97] to determine the Minimum Common Embedding

dimension of the Weizmann dataset.

Trajectory Matching We use the described features and their associated time se-

ries in order to reconstruct 11 phase spaces. We first compute the minimum common

embedding dimension. According to the criteria presented in Section 4.4.2, we find that

a dimension of m = 4 suffices in order to recognize actions in the phase space (see

Fig. 4.20b). We then apply the SVM and weighted trajectory matching approaches

with parameter δ = 5. As in the experimental results with mocap data, we verify the

impact of the embedding dimension in the recognition accuracy. The classification ac-

curacy as a function of the embedding dimension is shown in Figure 4.20. While the

SVM approach performs well, with an average recognition accuracy of 92.2% for m = 4,

the weighted approach fails to fuse the importance of each variable and delivers a poor

73.3% of average recognition accuracy. Our hypothesis around this poor performance

is that weighted learning approach is rather simple method that builds on the concept

of body parts, which in the Future Light dataset can be approximately represented by

joint rotations. In the Weizmann dataset, the proposed features do not represent body

parts as precisely as joint rotations do and that is a caveat for the weighted approach.

Confusion matrices for both trajectory matching approaches are shown in Fig. 4.21.

The reason of such a poor behavior is found on the weak reliability of a 1-NN classifier

on this dataset. Recall that the weight of each variable is learned from a 1-NN classifier,

and that the classification is based also on a weighted 1-NN.

Bag of Delay-Vectors The delay-vectors lying in each of the 11 reconstructed phase-

spaces are clustered in order to compute the words for the BoDV approach. As in the

case of mocap data, we evaluate several embedding dimensions, several number of words

and the two proposed clustering schemes. Results for the best working number of words

(nw = 16) are depicted in Figure 4.22. We report an average classification accuracy

of 88.9% for the BoDV with nw = 16, m = 3 and hierarchical clustering (confusion

matrices are shown in Fig. 4.23).
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Figure 4.21: Confusion matrices in the Weizmann dataset for (a) trajectory matching
and weighted approach (b) trajectory matching and SVM approach.
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Figure 4.22: Analysis of the average (per class) recognition rate and the embedding
dimensions in the Weizmann dataset (a) Recognition rate as a function of the embedding
dimension. (b) E1 measure [Cao97] to determine the Minimum Common Embedding

dimension of the Weizmann dataset.

The lower performance obtained by BoDV in this dataset is attributed to two main

reasons. Firstly, the nature of the input features, which are not real pose features,

but approximations. Secondly, the shorter length of the available sequences, which

yield a substantially lower number of samples to create the BoDV models for action

recognition. This second reason is supported by the fact that the best performance

is achieved with a lower embedding dimension (a lower dimension implies more delay-

vectors). These reasons indicate that BoDV, which only rely on the geometry of the

reconstructed phase-space, do not generalize as well as trajectory matching.

Random Forests in the Phase Space Similarly to the mocap data experiments,

the binary tests proposed are sampled using combinations of randomly sampled indicator

variables. In the case of the Weizmann dataset, we propose the following:
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Figure 4.23: Confusion matrices in the Weizmann dataset for (a) BoDV with k-means
(b) BoDV with hierarchical clustering

• Input features in R can be used for computing the binary test by setting χ = 1

and sampling ξ ∼ U[1,K], where U is a uniform probability distribution between 1

and K = 11, the number of input features considered for action recognition.

• Binary tests using the phase space reconstructed from the multivariate time series

comprising the input features. These embedded features are obtained by setting

χ = 1 : m and by sampling ξ ∼ U[K+1,Ξ].

We define the integer indicator variable ν uniformly distributed between 1 and 2, in

order to randomly select one of the presented modalities.

Using the described random tests, we train forests of 10 trees and maximum depth 8.

We employ patches of 5 frames. These patches are randomly sampled from the available

training sequences. According to Section 4.5, we sample test patches every 2 frames.

Each patch is tested with the learned forest and casted votes are aggregated. A sequence

is then labeled with the action class having the larger probability in the majority of the

available frames. As in the case of mocap data, if two or more actions have the same

number of frames with maximum probability, then the sum of the per frame probabilities

is taken into account in order to decide for one single class.

Results as a function of the embedding dimension are depicted in Fig. 4.24. We report

an accuracy of 97.8% for m = 4. The confusion matrix obtained in that case is shown

in Fig. 4.25.

Comparison to the State-of-the-Art We compare the obtained results with ex-

isting state-of-the-art approaches working on the Weizmann dataset. We compare the

results in terms of mean per class accuracy, i.e., the average of classification accuracies
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Figure 4.24: Analysis of the average (per class) recognition rate and the embedding
dimensions in the Weizmann dataset (a) Recognition rate as a function of the embedding
dimension. (b) E1 measure [Cao97] to determine the Minimum Common Embedding

dimension of the Weizmann dataset.
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Figure 4.25: Confusion matrix in the Weizmann dataset for the random forest ap-
proach.

in each class (see Fig. 4.26). All the reported state-of-the-art results have been obtained

from the authors’ original publications. However, some approaches present some minor

differences in the evaluation methodology. Specifically, half of the approaches are tested

on a previous version of the Weizmann dataset comprising 9 actions (skip is missing in

this reduced set).

Our random forest approach in the phase space delivers state-of-the-art performance,

even when the employed features are rather simplistic. We obtain the same accuracy that

[GYR+11], despite their Hough forest is trained and tested with ground truth tracks.

If these ground truth tracks are not used in test time, they report a 95.6% accuracy on

this dataset. The comparison with [ABS07] and [WOS11] is, as in the case of mocap

data, particularly interesting, because they use chaotic invariants computed from time-

delay embedded time series. While the BoDV and trajectory matching approaches are

outperformed by chaotic invariants in this dataset, we obtain a 5% improvement with

the random forest approach.

1Results reported by authors using the 9 action Weizmann dataset
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Method Accuracy

Chaotic Invariants [ABS07] 92.6% 1

Chaotic Invariants + Trajectories [WOS11] 92.8% 1

Flexible dictionaries + BoW [RWS08] 95.1% 1

Flexible dictionaries + String Matching [RWS08] 100% 1

Bag of Snippets [SvG08] 100% 1

Ommer et al. [OMB09] 97.2% 1

Prototype Tree [JLD12] 100%
Hough Forest [GYR+11] 97.8%

Trajectory Matching (SVM Approach) 92.2%
Trajectory Matching (Weighted Approach) 73.3%

BoDV (k-means clustering, m = 4, 16 words) 85.6%
BoDV (hierarchical clustering, m = 3, 16 words) 88.9%

Random Forest in Phase Space (m = 4) 97.8%

Figure 4.26: Comparative results for the Weizmann dataset. Average classification
accuracies per class are reported

4.6.3 Multi-view Video dataset

Finally, we present results on a more realistic scenario, where we combine pose esti-

mation and action recognition. To this end, we record several sequences involving four

actors performing several actions. This test scenario is intended to simulate a smart

environment where each user interacts with the room through 4 calibrated cameras lo-

cated at the ceiling corners (see Fig. 4.27). In this context, intra-class variations of the

actions performed are not as relevant as in the case of the Future Light dataset, because

in this dataset many actions serve as commands, and are executed in a somewhat pre-

cise manner. In spite of that, some stylistic variations exist, especially between actors.

We employ 7 minutes of video data containing the following actions: walk, raise hand,

crouch, wave hand, bounce (an arm movement similar to bouncing a ball), jump, clap,

kick, sit and stand up. Actions involving a single arm or leg motion are performed with

the right limb. Except for walk, all the actions last a few seconds (typically between

1 and 4 seconds). Short observations make difficult to robustly estimate the optimal

delay embedding by means of the mutual information. Even if one can find a suitable

embedding delay such that time series get effectively unfolded in the phase-space, the

limited duration of the actions will produce reconstructed phase portraits with a few

points in several cases, making unfeasible to apply chaotic invariants reliably unless

some re-sampling is performed [ABS07]. Concatenation of sequences has been proposed

also as a possible solution, but in some actions concatenation may produce jumps that

would violate the continuity of the dynamics. The metric distance that we propose in

this paper does not require a very good quality of the reconstructed phase portraits,

since we are analyzing the trajectories in the phase space. Since the estimated time

delays and the embedding dimensions allow having at least 15 reconstructed points in

the worst case, we do not perform any up-sampling nor concatenation.
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Figure 4.27: Multi-view data-set samples. Top row: The four available viewpoints
during walk action. Bottom row: Kick, jump, sit and bounce samples.

To track the actors, we employ a Layered Particle Filter with hierarchical layers (see

Chapter 3). Although the state vector strictly comprises pose and anthropometric vari-

ables, we simplify the problem by computing anthropometric variables only once at the

beginning of each subject’s sequence [ACP10]. The variables in the pose vector are split

into 7 layers, each of which represents global and torso variables, arms and legs. Each

layer employs 500 particles.

Once the pose is estimated, we use 19 variables, since our model is simpler than the one

resulting from marker-based motion capture in [Fut]. We estimate an average tracking

error of 15 cm for all the considered data, although errors occur especially in some

arm motions (clapping), in fast motion (kick, jump) and in crouching actions, where

the tracker makes important errors in estimating the legs’ pose. In spite of that, the

tracking provides an approximate representation of the motion involved in each action

(see Fig. 4.28).

For evaluation, we employ a total of 192 tracking instances from all the action classes (8

are discarded due to tracking failures caused mainly by foreground segmentation errors).

We split the data into two sets containing 2/3 and 1/3 of the tracking instances, which

are used for training and testing respectively. We repeat this procedure 10 times to

obtain the average performance.

Trajectory Matching To evaluate the classification performance, we divide the data

into several training and testing sets. Training sets contain 2/3 of the available data

while test sets contain the remaining 1/3. We repeat this procedure 10 times with ran-

dom partitions of the data for both the SVM and weighted approaches. Using these

training sets we find that m = 3 is the minimum common embedding dimension. In

all the experiments we use parameter δ = 5. The classification results as a function of

the embedding dimension are shown in Fig. 4.29. We report an average accuracy of
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Figure 4.28: Selected tracking samples.
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Figure 4.29: Analysis of the overall recognition rate and the embedding dimensions
in the Multi-View dataset (a) Recognition rate of the trajectory matching approaches
as a function of the embedding dimension. (b) E1 measure [Cao97] to determine the

Minimum Common Embedding dimension of the Multi-View dataset.

93.5% for m = 3 and the SVM approach. The proposed trajectory matching shows an

excellent performance for action classification from markerless motion capture data. In

contrast to the FL dataset experiments, we observe that the SVM classification consis-

tently outperforms the weighted approach. A look at the confusion matrices (Fig. 4.30)

reveals that our approach delivers an excellent accuracy with action categories involving

large motions. Majority of misclassifications occur in action classes involving single arm

motions, especially for raise hand and wave hand, and for class jump, which is mainly

confused with some crouch and sit sequences due to the initial leg flexion before the

jump starts.

In comparison to the SVM classification approach, the training method based on model

variable fusion shows a lower performance with actions involving a single arm motion.

We have observed that in these actions, right shoulder rotations get heavily weighted
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Figure 4.30: Confusion matrices in the Multi-View dataset for (a) trajectory matching
and weighted approach (b) trajectory matching and SVM approach.

during training phase. Specifically, the actions raise hand and wave hand have high

weights on x and y axes of rotation in the shoulder joint (in our model, the z rotation

axis is defined along the upper arm), as it is a salient feature in the dataset. In the

case of wave hand and bounce, right elbow joint is weighted over the mean, because

the pattern in this joint is particular of these two actions. However, in action bounce,

the shoulder’s y-axis, a differential trait from wave hand, has no importance. This is

actually because it is differential with respect to wave hand, but it is very similar to

many other actions in the dataset. Similarly, elbow rotation in action raise hand, as

a differential trait versus wave hand and bounce, is not significantly weighted during

training for the same reason. To summarize, the weighted approach is able to focus on

distinct human model variables in an automated manner, with effective results when

large motion takes place in the performance of an action. However, weighting model

variables in a discriminative manner considering them isolatedly has limitations with a

single arm motion.

Provided that trajectory matching is rather exhaustive, and works on the basis of nearest

neighbor search, we test the impact of the training set size, by varying the amount

of training and testing data. Specifically, we test with training sets of 2/3, 1/2 and

1/3 of the available data, while the rest is left for testing. The average classification

accuracy reported in this experiment is shown in Table 4.4. We highlight the notably

high performance delivered by these approaches even when 1/3 of the data is used for

training.

In a final experiment, we use the action sequences of 3 actors for training and the

remaining for testing. In this way, we evaluate the performance of the algorithm under

stylistic variations. In this last experiment, the average recognition rate is 84.3% with

the SVM classification and 82.2% with the weighted approach, confirming that the
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Training set size SVM Weighted

2/3 93.5 90.4
1/2 91.8 88.8
1/3 86.2 83.9

Table 4.4: Average classification accuracy for the Multi-View dataset using Trajectory
Matching (embedding dimensionm = 3 and parameter δ = 5). The first column denotes

the amount of training data used in the random folds.

dense matching of trajectories in the phase space is sensitive to some stylistic variations,

although still providing a remarkable accuracy. In overall, the proposed method has a

promising performance with multi-view video data in spite of some important tracking

errors.

Using 2/3 of the data for training, our action recognition method takes an average of

0.3 s per frame in an Intel 2.4GHz CPU with 4GB of RAM (in test time, given the

estimated poses).

Bag of Delay Vectors Following the evaluation procedure of the trajectory matching

approach, we randomly split the data into training and testing sets containing 2/3 and

1/3 of the data respectively. We then apply the BoDV model to classify the test data.

Average classification results are reported in Fig. 4.31. The best reported performance

is 89.7%, and it is achieved with hierarchical clustering, m = 3 and nw = 32.

Interestingly, the k-means clustering delivers a surprisingly good classification accuracy

for the single arm actions (raise hand, wave hand, bounce), with only a few confusions

among these classes. However, this approach delivers a poor performance with sit and

stand actions. Contrarily, the BoDV with hierarchical clustering behaves similarly to

the trajectory matching approach, where single arm actions are confused more often.

The BoDV model delivers a lower classification accuracy than the trajectory matching

approaches, even when using more training data. We hypothesize that the lower perfor-

mance is mainly because BoDV performs a more simplistic analysis of the phase space:

topology is completely overlooked. Additionally, the clustering methods employed in

this dissertation might not be appropriate to handle delay-vectors obtained from noisy

time series.

Random Forests in the Phase Space We follow the same evaluation protocol of the

preceding experiments, consisting in generating random folds by splitting the data into

2/3 for training and 1/3 for testing. Differently from the mocap experiments of Section

4.6.1, we only employ joint angles for this experiment. Hence, the definition of the tests
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Figure 4.31: Average classification results in the Multi-View dataset. Accuracy is
plotted as a function of the embedding dimension m (each curve represents a different
number of words nw) (a) BoDV with k-means. (b) BoDV with hierarchical clustering
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Figure 4.32: Confusion matrices in the Multi-View dataset for (a) BoDV with k-
means (b) BoDV with hierarchical clustering. In both cases m = 4 and nw = 32

is similar to the one presented for the Weizmann dataset (see Section 4.6.2), but instead

of using generic features, here the input space comprises the set of joint angles and the

embedded space contains the delay-vectors obtained from multivariate time series. For

evaluation, we follow the same protocol described in the previous experiments on this

dataset. We sample patches having a length of 5 frames, and we train a forest of 10

trees with maximum depth 8. We perform 5000 random tests in each branching node

(500 parameter sets and 10 thresholds per parameter set). Provided that we work with

segmented action sequences, the classify a sequence with the action having more votes.

Results as a function of the embedding dimension are shown in Fig. 4.33. We report

an average classification accuracy of 91.5% with the an embedding dimension of m = 3.

This classification accuracy is slightly lower than the trajectory matching approach

using SVM classification, but it is obtained much faster in test time. Similarly to the

preceding experiments presented in this chapter, we observe a strong correlation between

the performance and the E1 measure used to find the minimum common embedding
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Figure 4.33: Analysis of the overall recognition rate and the embedding dimensions
in the Multi-View dataset (a) Recognition rate of the random forest approach as a func-
tion of the embedding dimension. (b) E1 measure [Cao97] to determine the Minimum

Common Embedding dimension of the Multi-View dataset.
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Figure 4.34: Confusion matrix in the Multi-View dataset for the random forest ap-
proach with m = 3

dimension. Furthermore, in this dataset, employing phase-space reconstructions yields

around 3% gain in performance with respect to the input feature space.

A confusion matrix is shown in Fig. 4.34. As in the previous cases, most of the confusions

are produced for arm actions involving a waving pattern, bounce, wave hand, wave hand

and raise hand and also between jump and sit, since the initial phase of the jump has

some similarities, in terms of pose, with the sitting motion.

4.7 Conclusions

We have presented a novel framework for action recognition based on time-delay em-

beddings. Although similar to a few existing approaches in the theoretical background,

our approach differs in how the reconstructed space is interpreted and treated in or-

der to model human actions. Our approach exploits both geometrical and topological

structure of the embedded phase-space by means of a novel trajectory matching algo-

rithm. On the other hand, we exploit the geometrical structure of the reconstructed
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space by grouping delay-vectors in geometric loci. These loci can be obtained by clus-

tering methods, and hence loci become a quantization of the reconstructed phase space.

This quantization can be efficiently exploited using analogy of the popular bag-of-words

model. Although efficient, several clustering methods fail to deliver an accurate and

discriminative representation of the geometric loci of delay-vectors. For that matter, we

propose a novel random forest approach that deals with reconstructed phase spaces of

multivariate time series. Our experimental results show that these approaches achieve

state-of-the-art performance on human action recognition problems involving articulated

structures. Moreover, we outperform previous approaches using time-delay embeddings.

We also conducted experiments with low-level features, obtaining a competitive per-

formance. These results indicate that, although conceived for articulated models, the

framework proposed in this chapter is suitable for generic time series mining.





5
Using Poses for Temporal Clustering of Human

Actions

5.1 Introduction

In the previous chapter we have dealt with the problem of action recognition. In action

recognition, there is usually a clear link between the perceived scene and the semantics,

and that link is given by a single action label associated to an action example. However,

understanding actions by analyzing motion in scenes is generally a more challenging

problem, because a motion sequence needs to be segmented into behaviors.

The automated segmentation of a human motion sequence into plausible and seman-

tically meaningful human behaviors is a central problem in computer vision and in

computer graphics. Addressing this problem from the perspective of human poses

obtained by motion capture systems is becoming more relevant due to the prolifera-

tion of motion capture databases and recent advances in markerless motion capture

[GRBS10, BJB12, YGvG12, SFC+11]. Such an approach is not only interesting because

of the potential availability of data, but also because human poses have potential for

learning motion patterns that can be robustly employed across datasets and domains.

103
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Distance Metric

Actions

Figure 5.1: System Overview: Human motion sequences are clustered into different
actions using a learned distance metric. We use annotations available in a mocap
dataset to learn a distance metric that captures the semantic similarity between skeleton

motion.

Segmenting human motion into distinct actions is a highly challenging problem. From

the motion analysis perspective, segmentation is difficult due to large stylistic variations,

temporal scaling, changes in physical appearance, irregularity in the periodicity of human

motions and the huge number of actions and their combinations. From a semantic

viewpoint, segmentation is inherently elusive and difficult because in the vast majority

of cases it is not clear when a set of poses describes an action. For instance, punching

with the left hand and punching with right hand can be different actions, but it might

be also regarded as punching or even more general as boxing.

In this chapter, we propose to learn what makes a sequence of poses different from

others such that it should be annotated as an action, as illustrated in Fig. 5.1. To

this end, we make use of already annotated motion capture datasets and formulate

action segmentation as a weakly supervised temporal clustering problem for an unknown

number of clusters. Since publicly available datasets might contain different motions and

action labels than the test sequences, we can not use the annotation directly for action

segmentation. Instead, we use the annotations to learn a distance metric for skeleton

motion using relative comparisons in the form of samples of the same action are more

similar than they are to a different action. This is very intuitive since the sequences of a

single database are usually labeled based on a semantic similarity. The learned distance

metric is then used to cluster the test sequences. To this end, we employ a hierarchical

Dirichlet process that also estimates the number of clusters.

The main advantage of our method is that it can be used for unseen actions and across

datasets as we will show in our experiments.
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5.2 Related Work

Metric learning from pose data has been mainly proposed in the computer graphics com-

munity in order to learn human-like perceptual similarities between poses [TLKS08]. The

learned distance metric is then applied to the task of finding suitable transitions and

content-based pose retrieval [CZXL09, CZN+11, WB03]. Metric learning has proven to

be also useful in recognizing actions from video. Tran and Sorokin [TS08] extract silhou-

ette and optical flow features from videos and they use them in conjunction with Large

Margin Nearest Neighbors (LMNN) [WS09] to learn a metric that properly separates

different action classes. More recently, Kliper-Gross et al. [KGHW11] have proposed a

metric learning approach for one-shot learning of actions in videos.

In order to efficiently annotate actions in large collections of video or mocap data, some

researchers have focused on unsupervised segmentation and clustering of human actions.

Barbic et al. [BSP+04] propose a change detection algorithm for mocap data. They

provide accurate results, but their method is not able to cluster the temporal segments

into the different behaviors. Ozay et al. [OSC08] overcome the clustering problem by

modeling the first three principal components of the data as an autoregressive model.

The coefficients of the model are then clustered with k-means. Similarly, the Aligned

Cluster Analysis (ACA) proposed by Zhou et al. [ZDH08] extends the k-means concept

to cluster time series. They show that ACA can accurately find different behaviors in

sequences of mocap data. However, [OSC08] [ZDH08] are limited by having to manually

set the number of clusters (actions) k. In [RWS10], this limitation is tackled by using a

spike-train driven dynamical model that can detect motion transitions and clusters them

into different behaviors, without having to manually set the number of clusters k. As

far as video data is concerned, approaches such as [KOSS11][KBvGF10] have proposed

variants and extensions of hierarchical Dirichlet processes (HDP) [TJBB06] in order to

find activities using optical flow features mainly. In [FSJW08], HDPs are used as a prior

for HMM parameters in order to cluster time series data into distinct behaviors. This

latter approach is applied to synthetic data, stock indices and dancing honeybee data.

5.3 Proposed Approach

We aim at a temporal clustering of human actions in which one can provide some

knowledge learned from data. The training data might be from a different database

containing actions that are not relevant for the testing data. To meet these requirements,

we learn a distance metric from pose-based features, and we use this metric to cluster

pose feature vectors (Section 5.3.2) as illustrated in Fig. 5.3a). The outcome of such a
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Figure 5.2: Detailed overview of our approach. A set of pose-based features are
extracted using 14 relevant joints (marked with red spheres). These features are subse-
quently clustered into primitives using a metric (A) learned on related action sequences.
In order to infer the different actions in a sequence, we first group the primitives using
a sliding window. Then, we provide the resulting sets of primitives to a hierarchical

Dirichlet process.

clustering is then provided to a hierarchical Dirichlet process (HDP) in order to obtain

the different activities of a motion capture sequence (Section 5.3.3). This strategy allows

us to cluster motion sequences into different behaviors without knowing the exact number

and types of actions in a test sequence.

5.3.1 Pose-based Features

The features employed in this paper are a rather simple yet efficient way of exploiting

the pose information. We start by removing the orientation and translation of the input

poses, in order to set them in a reference system that will allow an invariant comparison

between action sequences. From these rotation and translation invariant poses, we obtain

a set of 14 relevant joint positions {q1, . . . ,q14} that can be easily obtained in different

datasets [BSP+04]; see Fig. 5.2. These joint positions are used to compute the following

feature vector:

x = {q1, . . . ,q14, q̇1, . . . , q̇14, q̈1, . . . , q̈14} (5.1)

where q̇ and q̈ denote joint velocity and acceleration respectively (derivatives are com-

puted by time differences). In practice, we subsample mocap data (recorded at 120Hz)

at 30 Hz.

5.3.2 Learning a metric for pose-based features

Given a set of feature vectors {x1, . . . ,xN} in RD, we aim at learning a positive semi-

definite matrix A such that the distance

dA(xi,xj) = (xi − xj)
TA(xi − xj) (5.2)
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satisfies a set of constraints defined in terms of relative comparisons of the form “xi

is closer to xj than to xk”. Using action labels, we can formulate these constraints

in terms of similarity and dissimilarity between triplets of feature vectors. Under such

constraints, we learn the matrix A employing Information-Theoretic Metric Learning

(ITML) [DKJ+07]. ITML finds a suitable matrix A by formulating the problem in terms

of how similar is A to a given distance parameterized by A0 (typically, the identity or

the sample covariance). Provided that (5.2) is a Mahalanobis distance, one can treat

the problem as the similarity of two Gaussian distributions parameterized by A and A0

respectively. That leads to an information theoretic objective in terms of the Kullback-

Leibler divergence between both Gaussians. This divergence can be expressed as a

LogDet divergence [DKJ+07], thus yielding the following optimization problem:

minimize
A,ξ

Dld(A,A0) + λDld(diag(ξ),diag(c)) (5.3)

s. t. δ(i,j)(ξ(i,j) − tr(A(xi − xj)(xi − xj)
T ) ≥ 0

A � 0, ξ ≥ 0

where Dld is the LogDet divergence, c is the vector of constraints, ξ is a vector of

slack variables (initialized to c and constrained to be component-wise non-negative)

that guarantees the existence of a solution and λ is a parameter controlling the tradeoff

between satisfying the constraints and minimizing the similarity between distances.

In order to learn the metric (5.2) for the pose features (5.1), we have to define the

constraints dA(xi,xj) ≤ c(i,j) or dA(xi,xj) ≥ c(i,j) for a pair of feature vectors xi and

xj . Since for each feature xi we have only an action label yi, we define the constraints

based on triplets of points (xi,xj ,xk) with class labels (yi, yj , yk), where feature vectors

with the same label should be closer to each other than to feature vectors with different

labels. Using δ(i,j) ∈ {−1, 1} as similarity indicator (5.3), i.e., dA(xi,xj) ≤ c(i,j) if

δ(i,j) = 1 and dA(xi,xj) ≥ c(i,j) otherwise, we formulate the following constraints:

yi = yj = yk δ(i,j) = 1 dA(xi,xj) ≤ max(d(xi,xj), d(xi,xk), d(xj ,xk))

yi = yj ∧ yj 6= yk δ(i,j) = 1 dA(xi,xj) ≤ min(d(xi,xk), d(xj ,xk))

yi 6= yj ∧ yi = yk δ(i,j) = −1 dA(xi,xj) ≥ d(xi,xk)

yj 6= yi ∧ yj = yk δ(i,j) = −1 dA(xi,xj) ≥ d(xj ,xk)

yi 6= yj 6= yk δ(i,j) = −1 dA(xi,xj) ≥ min(d(xi,xj), d(xi,xk), d(xj ,xk))

The values on the right hand side of the inequalities, c(i,j), are defined on the Euclidean

distances d( ) between the features xi, xj , and xk. When the features have the same

or completely different labels, the distance is constrained to be less or greater than

the Euclidean distances, respectively. When only two features have the same label, the
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distance is constrained to be less than the Euclidean distances of the feature vector pairs

with different labels.

For learning the metric, we randomly draw the triplets for generating the constraints

from the training set. Furthermore, we estimate the tradeoff parameter λ by means of

cross-validation, where our goal is to cluster pose-based features into a set of K prim-

itives. To this end, we rely on a hierarchical clustering algorithm [War63] to overcome

the dependency on the initial point. We set a sufficiently high K (typically ranging from

16 to 64 clusters) and we find λ by minimizing the purity of the clusters obtained in

cross-validation:

C(λ) = 1− 1

K

K∑
k=1

1

nk
maxy(n

y
k) (5.4)

where nk is the number of feature vectors in the cluster k, and maxy(n
y
k) denotes the

number of feature vectors of the class y appearing most frequently. Note that the de-

pendence on λ comes from the fact that such parameter influences the resulting clusters.

Learning a metric from the proposed pose-based features can be seen as a data-driven

transferring of implicit semantic distances derived from the class labels. In order to re-

duce the bias towards certain performance styles and to keep some temporal constraints,

we investigate two additional variants of the pose-based metric learning framework.

Symmetry Unbiasing In order to reduce the bias towards action examples per-

formed exclusively with right or left limbs, we mirror the poses. For instance, if we

learn the metric with examples of raising right hand, we mirror the pose-based feature

vectors in order to represent raising left hand and we assign the same action label (raising

hand) to all these examples.

Temporal Alignment Two motion sequences of the same action class can be aligned

by dynamic time warping [SC78]. Then, if under such alignment, a feature vector xi

from one sequence matches another feature vector xj from the other sequence, we say

that they are aligned. If two feature vectors xi and xj belonging to the same action class

are aligned, they should be more similar than a third feature vector xk of the same class

that is not aligned with xi and xj . Therefore, for any randomly drawn triplet xi,xj ,xk

such that yi = yj = yk, we define the following inequalities:
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Figure 5.3: Detail of the hierarchical Dirichlet process.

i, j, k aligned δ(i,j) = 1 dA(xi,xj) ≤ max(d(xi,xj), d(xi,xk), d(xj ,xk))

i, j aligned δ(i,j) = 1 dA(xi,xj) ≤ min(d(xi,xk), d(xj ,xk))

i, k aligned δ(i,j) = −1 dA(xi,xj) ≥ d(xi,xk)

j, k aligned δ(i,j) = −1 dA(xi,xj) ≥ d(xj ,xk)

i, j !aligned δ(i,j) = −1 dA(xi,xj) ≥ max(d(xi,xk), d(xj ,xk))

i, j, k !aligned δ(i,j) = −1 dA(xi,xj) ≥ min(d(xi,xj), d(xi,xk), d(xj ,xk))

where a pair of indices followed by aligned denotes a unique aligned pair within the

triplet (!aligned expresses the contrary, the unique unaligned pair in the triplet) and

three indices followed by aligned indicate that all the samples are aligned (a !aligned

triplet means that any sample is aligned). These constraints replace the initial constraint

for the case yi = yj = yk, which was fulfilled from the beginning.

5.3.3 Discovering Actions

Given a sequence of pose-based feature vectors X = {x0, . . . ,xt, . . . ,xT } , we address the

problem of inferring the performed actions as a temporal clustering problem in which we

rely on weak supervision to learn semantic similarity in the form of a metric. Contrarily

to other approaches [ZDH08], we want to address the temporal clustering problem for

an unknown number of clusters or actions. For that matter, we rely on a hierarchical

Dirichlet process (HDP) [TJBB06].
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The HDP (see Fig. 5.3) is a nonparametric Bayesian model for clustering problems

involving groups of data. We assume that we have J groups of data, each of which has

nj data points (xj1 . . .xjnj ). Data points in each group are modeled with a mixture

model and are assumed to be exchangeable. If we denote (Θ,B) a measurable space and

G0 a probability measure on that space, then the HDP is a distribution over random

probability measures on (Θ,B). This set of measures comprises a probability measure

Gj per data group and a global probability measure G0. The global probability measure

G0 is distributed according to a Dirichlet process with base probability measure H and

concentration parameter γ (also know as inverse variance). Each Gj is conditionally

independent given G0 with distribution Gj ∼ DP(α0, G0). The described model allows

different groups to have different characteristics, represented by mixture models with

different mixing proportions, HDPs also allow statistical strength by sharing mixture

components among groups. Finally, each data point xji is associated with a factor φji,

with distributions given by F (φji) and Gj respectively. The complete model (Fig. 5.3)

is given by:

G0|γ,H ∼ DP(γ,H) Gj |α0, G0 ∼ DP(α0, G0)

φji|Gj ∼ Gj xji|φji ∼ F (φji) (5.5)

In order to express the input feature vectors X as appropriate grouped data, we cluster X
into primitives and then we employ sliding windows of a given length and overlap in order

to obtain J groups of primitives from an input motion sequence. Hence, two clustering

levels are considered. The low-level clustering aims at quantizing the feature vectors

into K primitives, such that discrete data can be provided to the HDP. The low-level

clustering is performed by combining a hierarchical clustering algorithm (see Section

5.3.2) with the learned metric A. In contrast, the high-level clustering is the temporal

clustering of the different actions. Using a topic modeling metaphor (see Fig. 5.3), low-

level clustering is the step of computing words while the high-level clustering consists

in finding the topics within a sequence. Actions are hence understood as co-occurring

words in specific segments or groups (Gj) of the sequence (G0). The implications of

such a model are two-fold. First, we assume that the quantized feature vectors follow

a multinomial probability distribution within each action and, consequently, temporal

ordering is ignored. Second, the low-level clustering step is crucial, since producing

better words will produce better clustering results.

In order to cluster the motion sequence into different actions, we employ an efficient

Gibbs sampler for HDP mixture models [TJBB06]. This sampler is based on the Chinese
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Restaurant Franchise (CRF) representation. Suppose nj customers (corresponding to

φji) at a Chinese restaurant with an unbounded number of tables. The first customer

sits at the first table, while the subsequent customers sit in an occupied table with a

probability proportional to the number of customers already sitting around that table.

Contrarily, they sit in the next unoccupied table with probability proportional to α0. If

a customer i sat at table t, we have the following conditional distribution:

tji|tj1, . . . , tji−1, α0 ∼
∑
t

njt∑
t′ njt′ + α0

δt +
α0∑

t′ njt′ + α0
δnewt (5.6)

where njt is the number of customers sitting at table t. Once the customers have sat

down, the result is a partition φj1, . . . , φjnj . The generative process employed in order to

draw the partition is known as the Chinese Restaurant Process (CRP) [TJBB06], and it

is used to sample from a Dirichlet process. Now, in order to extend this process towards

sampling a HDP, we associate a table t with a factor ψjt drawn from G0. By assigning

φij = ψjtji independently for each group j we marginalize out Gj . Since factors ψjt are

drawn from a DP (γ,H), we apply again the CRP. Using similar nomenclature, now a

customer associated with ψjt sits at a table kjt according to the following distribution:

kjt|k11, . . . , k1n1 , k21, . . . , kjt−1, γ ∼
∑
k

mk∑
k′mk′ + γ

δk +
γ∑

k′mk′ + γ
δnewk (5.7)

where mk is the number of customers at the top level restaurant.

Finally, a table kjt is associated with a draw θk from H yielding the assignment ψjt =

θkjt . This completes the generative process for the φji, where G0 and Gj are integrated

out.

To compute temporal segments, we employ a sliding window of a given length and

overlap. Using validation sets of mocap data, we found that a window of 7-15 frames and

1/2 of overlap worked well. Similarly, we found that values for concentration parameters

in the range of 0.5 to 1.0 for γ and between 1 to 2 for α0 (see Fig. 5.3) provided

good results. The base probability measure H (see Fig. 5.3) is a symmetric Dirichlet

distribution of parameter 0.5 [TJBB06].
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5.4 Experimental results

5.4.1 Experimental Setup

We conduct several experiments on two publicly available mocap datasets to show the

effectiveness of our method. The first dataset is the CMU mocap dataset [Car]. This

dataset contains a huge collection of motions performed by 144 subjects. Sequences

include examples of one action as well as complex activities involving a combination

of simple actions. One of the main drawbacks of this dataset is that the labeling of

sequences is rather imprecise and the availability of action examples is biased towards

locomotion mainly. The second dataset is the HDM05 dataset [HDM]. The HDM05

dataset contains more than three hours of motion capture data, involving more than 70

motion classes in 10 to 50 realizations executed by various actors.

In our experiments, we employ the following training sets:

CMU Sequences from several subjects containing examples of walk, jump, run, boxing,

drinking, lean forward to reach, bend and kicking a ball actions. Examples of actions such

as boxing and jump present a number of punching and jumping styles and variations.

HDM05 Sequences from the 4 available subjects containing examples of walk, run,

grab, kick, clap, jog, punch, hop actions. These examples are taken from the cut se-

quences, and contain a huge variation of styles. For instance, action clap involves clap-

ping in front of the torso and above head.

The testing sets are the following:

CMU Sequences 1 to 14 of subject 86 as in [ZDH08].

HDM05 We generate 10 long sequences by concatenating cut sequences not included

in the training set.

5.4.2 Evaluation Metrics

Manually annotating different actions in a human motion sequence is a difficult task.

Annotators have to precisely determine motion transitions and action labels. Without a

specific guidance, the annotation variability for a dataset would make action labels use-

less. This also renders the evaluation a challenging task, since it is difficult to objectively

determine the goodness of an approach given some labels with a potential annotation

bias. We therefore employ several evaluation metrics to measure the accuracy of our

approach.
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M1 M2 M3 Error k

A CMU HDM05 I CMU HDM05 I CMU HDM05 I CMU HDM05 I

Normal 82.7 88.1 78.4 84.3 89.9 79.8 61.6 70.2 66.1 3.3 2.5 1.4
Mirror 88.0 90.3 78.4 89.7 92.2 79.8 67.4 70.5 66.1 2.9 2.8 1.4

Mirror+Align 86.9 89.5 78.4 88.5 91.3 79.8 67.2 69.4 66.1 3 2.8 1.4

Table 5.1: Clustering results for the HDM05 concatenated sequences. For each one
of the proposed metrics, we show the results when learning a metric on the CMU and
HDM05 datasets and when using the Euclidean distance (I). See Section 5.4.2 for the

definition of the evaluation metrics.

M1 M2 M3 Error k

A CMU HDM05 I CMU HDM05 I CMU HDM05 I CMU HDM05 I

Normal 87.3 89.5 88.5 88.2 90.5 89.4 73.9 82.2 80.6 3.1 2.5 2.5
Mirror 88.8 90.9 88.5 90.0 91.9 89.4 77.0 80.4 80.6 2.8 3.1 2.5

Mirror+Align 89.5 90.5 88.5 90.5 91.5 89.4 78.2 81.2 80.6 3.1 3.1 2.5

Table 5.2: Clustering results for the CMU sequences (14 sequences of subject 86).
For each one of the proposed metrics, we show the results when learning a metric on
the CMU and HDM05 datasets and when using the Euclidean distance (I). See Section

5.4.2 for the definition of the evaluation metrics.

Firstly, we use the same metric as [RWS10], that does not penalize oversegmentation as

far as the estimated labels consistently match different actions. Since in [RWS10] the

transitions are not evaluated, we use two versions of this evaluation metric. The first

version (M1) evaluates all the frames, whereas the second version (M2) does not take

into account the frames around ground truth transitions (we simply remove 0.2 seconds

around the transition). The third evaluation metric (M3) is that of [ZDH08] applied

to the case where the number of found clusters may differ from the ground truth. We

compute the best label assignments for the number of clusters provided by the ground

truth, hence under- and oversegmentation are strongly penalized. Finally, we provide

the average error in the estimated number of clusters (Error k).

5.4.3 Experiments and Discussion

We learn different metrics employing the two training sets described in the previous

section. Specifically, we learn metrics on the CMU and HDM05 training sets and we

cross-test each of them on both the HDM05 and CMU test sets. Note that in learning

a metric with CMU data, we use less labels than in the CMU test data (actions such

as stretching, basketball dribble or climbing a ladder are not present in the training

examples). Additionally, we investigate the impact of mirroring and alignment. In all the

experiments, we employ a sliding window of 15 frames with 1/2 overlap and 21 primitives

or words. We test with two sets of HDP concentration parameters, γ = 0.7, α0 = 1 and

γ = 1, α0 = 2. We provide the average performance over these two sets of parameters.

Results are shown in Tables 5.1 and 5.2.
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Method Known k? Accuracy

ACA [ZDH08] Yes 92.1% 1

SAR [OSC08] No 72.3% 2

STS [RWS10] No 90.9% 2

Our HDP-E No 89.4%
Our HDP-ACMU No 90.5%
Our HDP-AHDM05 No 91.9%

Table 5.3: Comparison to state-of-the-art approaches on the CMU dataset. HDP-
E stands for hierarchical Dirichlet process using Euclidean distance for feature-vector
clustering while HDP-AZ means that feature-vector clustering is performed with the
metric learned with Z data. Note that methods are not directly comparable since they

rely on different assumptions.

The performance on the HDM05 cut sequences (Table 5.1) shows that using a metric

to cluster the feature vectors boosts the performance of the HDP temporal clustering.

Best performance is achieved when using a metric learned on the HDM05 dataset. Such

an outcome was expected, since action labels are the same as in the test data. Interest-

ingly, using a metric learned with CMU data outperforms the Euclidean distance on the

HDM05 test sequences. In both cases, we observe that, although the rest of the metrics

show a superior performance, the error in the estimated number of clusters is higher

when using a learned metric. However, the clusters provided by using the Euclidean

distance also imply a higher number of mismatches between cluster labels and ground

truth labels. When using the Euclidean clustering, actions such as walk and jog often

get merged together into the same cluster. Such errors cause the number of estimated

clusters to be closer to the ground truth, but several of the obtained clusters are lacking

semantic meaning, as rather different labels get merged. On the contrary, although over-

segmenting some actions into different stylistic performances, using the learned metric

generally provides semantically meaningful clustering of motion into different behaviors.

Results on the CMU sequences of subject 86 confirm that using a metric provides better

temporal clustering results. Interestingly, the best performance is achieved by learning a

metric on the HDM05 dataset (see Table 5.2). This result yields two conclusions. First,

the learned metric provides a good performance across datasets. Second, the benefits

of learning a metric for temporal clustering of actions not only depend on the extent to

which the training data could potentially explain the test data, but also on the labeling

precision of the training examples.

Clustering results for the CMU test sequences are provided in Fig. 5.4. Using a learned

distance metric for clustering the pose-based feature vectors involves a more semantically

meaningful clustering of motion into actions. This can be clearly observed in sequences 1

1Computed using the software provided by [ZDH11]
2As reported in [RWS10]
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to 9 and 11, where a number of noisy transitions are clustered as distinct behaviors when

using the Euclidean distance. The exception to this performance is found in sequences

12 and 13. In these sequences, the metric learned from the HDM05 dataset helps in

clustering action walk (red label in sequence 12 and 13 of Fig. 5.4) from the rest of

the actions, but the examples employed in learning the metric do not help in achieving

a semantically correct clustering of classes such as sweeping and dragging, and hence

transitions between such actions, or even phases of the same action, are clustered as

different behaviors.

When comparing the performance using mirroring and alignment constraints in Tables

5.1 and 5.2, we see that mirroring the poses improves the performance. The alignment

improves the results only for training and testing on CMU; otherwise the performance de-

grades. This indicates that the alignment is only beneficial when the training sequences

are not precisely segmented and labeled as it is the case for the CMU sequences.

In Table 5.3 we provide a comparison between state-of-the-art approaches for temporal

clustering of human actions. In this comparison, we report the results using metric M2,

since is the most similar to that employed to evaluate [OSC08] and [RWS10]. Note that

the results provided by [RWS10] are computed on a subset of sequences (1-3 and 5-6)

for subject 86, which are easier to segment than the other sequences (see Fig. 5.4). In

spite of that, we report a better overall performance. We also show that our approach

is a compelling alternative to ACA, since we can obtain accurate clustering results by

resorting to action examples from other datasets instead of requiring the exact number

of clusters.

5.5 Conclusions

In this chapter, we have presented an approach for temporal clustering of human be-

haviors. The method is based on learning a metric from pose-based features, such that

the semantics of action labeling are learned in the form of a distance. Our experimental

results have shown that the learned metrics improve the clustering results even across

datasets and do not require that the actions of the test sequences are present in the

training data. The benefit of the learned metric, however, depends on the similarity of

the poses in the training and test set, but also on the labeling precision of the train-

ing examples. While this needs to be addressed in the future, the proposed approach,

which exploits publicly available mocap datasets for temporal clustering, is a compelling

alternative to unsupervised methods.
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Figure 5.4: Temporal clustering of the 14 subject’s 86 CMU sequences (best viewed
in color). In each caption (top row) Ground Truth Labels (obtained from [ZDH11]),
(mid row) temporal clustering with HDP and (bottom row) temporal clustering with
HDP + metric learned with HDM05 data. The mocap sequences can be viewed at

http://mocap.cs.cmu.edu/search.php?subjectnumber=86.

http://mocap.cs.cmu.edu/search.php?subjectnumber=86


6
Conclusions

We conclude this dissertation on the use of articulated models for human motion analysis

and behavior understanding by drawing the contributions of our work. The objective

in this thesis has been to analyze a methodology employed in the analysis of human

motion with a long tradition in science, arts or biomechanics, but with somewhat lack of

popularity in computer vision in recent years. Our premise was that the rapid progress

and cost reduction of capture devices, along with the massive availability of data, would

raise again interest on this kind of analysis based on articulated models. For that

matter, we contributed to this analysis with several algorithms for pose inference, action

recognition and motion segmentation based on articulated models.

6.1 Contributions

1. 3D Pose estimation : Estimating the human pose is a crucial step for employing

articulated models for motion and behavior analysis. In this thesis, we focused on

analysis-by-synthesis approaches for 3D pose estimation from multiple views or

range data. This means that an articulated model is also necessary to generate

hypothesis that will be matched with image observations. In this thesis, we use

articulated models to reflect the prior knowledge about the underlying body struc-

ture and its motion, but also to formulate the pose estimation problem in terms of
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a hierarchical relation between pose variables. Furthermore, used in conjunction

with shape models, we can avoid extensive learning of discriminative features in

order to locate every part of the body. Although this approach has shown to be

feasible for depth data [SFC+11], it is still a huge learning problem for color images

and more specifically for color images in multiple views. Our contributions to all

the above-mentioned problems and challenges are summarized as follows:

• We propose a layered particle filtering approach that generalizes existing ap-

proaches of the state-of-the-art. This layered framework exploits the implicit

hierarchy of articulated structures in order to perform efficient pose inference.

Our generalization allows to perform hierarchical filtering with multiple passes

on several state-space variables, which is beneficial for pose variables, but also

for anthropometric variables. This formulation can be easily brought to an

implementation allowing for flexible configurations of layers. In a pose estima-

tion context, our layered particle filtering can be seen as a layered stochastic

optimization method. For that purpose, we propose combinations of stochas-

tic optimization with local optimization methods for pose refinement.

• Although detecting body parts from multiple views is a hard problem in gen-

eral, we can still benefit from body part detectors, even if only a few parts can

be detected. For that matter, we proposed a detector-driven layered particle

filter providing state-of-the-art performance without learning motion models.

We contribute with a method to robustly fuse detections in multiple views in

order to obtain 3D body part detections. In our detector-driven algorithm,

the articulated model is used in conjunction with inverse kinematics in order

to draw poses from end-effectors.

• We proposed an approximate partitioning of the observations, which are im-

ages in multiple views or range images. Such partitioning helps in improving

the observation model and provides a more accurate and faster pose inference.

Publications: The following publications in international conferences are related

to the abovementioned topics [LMAPC11a, LMAPC11b, ALMCP11, ALMPC11,

NLMAC12]. During this thesis, we have also produced a number of technical

reports related to motion capture for European project ACTIBIO [FP7].

2. Action Recognition : This problem is posed as inferring the label of a human

motion sequence given some labeled training examples. In this thesis, we address

such problem by means of articulated models. To this end, we have first analyzed

the view-invariance properties of such a representation, and we analyze sets of

variables that can be used for motion analysis. Then, we have proposed the use

of time-delay embeddings towards the characterization of action sequences, since
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human motion can be seen as set of multivariate time series. Our contributions to

these topic are the following:

• A novel approach towards exploiting time-delay embeddings. Time-delay

embeddings are a principled method to reconstruct dynamical systems from

data. Our approach consists in taking advantage of the geometry and topol-

ogy of these systems in order to perform action recognition. or this reason, we

propose reconstructing several dynamical systems in the same space in order

to be compared. Compared to [ABS07], we do not rely on chaotic invariants,

which are sensitive to noise and short-time observations.

• A distance between reconstructed phase spaces, that takes ideas from dy-

namic programming in order to find a topologically suitable alignment be-

tween phase-space trajectories. We use this distance with two classification

strategies in order to recognize actions from human motion sequences.

• An action classification method based on constructing codebooks with delay

vectors. The classification approach is inspired in the popular bag-of-words

model, but in this thesis words implicitly encode dynamical information.

• A random forest approach that exploits joint mulivariate time-delay embed-

dings. The proposed algorithm is accurate and efficient, and delivers state-

of-the-art performance in several action recognition datasets.

Publications: The result of this work has been published in [LMC12b].

3. Temporal Clustering of Human Motion : The huge amount of available

human motion sequences and video action sequences makes sometimes unfeasible

to apply classification approaches to infer actions. This infeasibility is due to the

existence of possibly unseen or new action categories or rather different styles and

variations in the performance of the same action. Therefore, the challenge is to

obtain a set of behaviors with weak supervision. For that matter, we formulated

the problem as a weakly supervised temporal clustering of human motion. Under

such a formulation, we would like a system to be able to learn what makes an

action different from another in a rather semantic manner. Our ultimate goal is

that such information can be used even if the exact labels employed in learning

are not present in the test data. In addressing this problem, we have made the

following contributions:

• An approach to learn what makes some actions different from others by means

of metric learning. The novelty of this approach is that the ultimate goal is

to apply the learned metric to unseen data, containing possibly unseen action

categories. Hence, we expect the metric to gather some semantics in order to
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quantize unseen motion sequences into meaningful motion primitives. To this

end, we propose a set of constraints specifically suited for articulated models.

• A framework that combines metric learning and hierarchical Dirichlet pro-

cesses in order to cluster motion sequences into actions or behaviors. Our

approach has the advantage that can be used across datasets without pro-

viding the number of clusters or actions. Our experiments show that we

can successfully clustering motion into actions across datasets. We have also

shown that our approach is a compelling alternative to existing unsupervised

methods [RWS10, ZDH08, ZDH11].

Publications: The result of this work has been published in [LMCvGL12].

6.1.1 Side Contributions

Apart from the abovementioned work, during the period of elaboration of this thesis,

we have contributed to other fields with several algorithms and systems that have been

reported in papers and reports:

• Virtual view appearance representation for human motion analysis in

multi-view environments: In order to overcome the view dependency problem

in action recognition from multiple-views, we proposed a novel virtual view gener-

ation relying on visual hull reconstructions. Although being only an approximate

representation of the human shape, such a method allows having a set of constant

perspectives of an action. In contrast to training from the original views, this new

set of views allows a reduction of the number of training examples, since actions

are seen from the same perspectives. This work was accepted in an international

conference [LMCFC10].

• Gesture recognition from depth data : The recent arrival of consumer depth

cameras has attracted the interest of the computer vision community towards de-

veloping algorithms and methods for scene understanding from depth data. This

data has the intrinsic advantage of easily coping with the chronic problem of nor-

mal imagery: illumination. Due to these reasons, and in the context of European

Project Fascinate [Eur], we have developed gesture recognition technologies. On

the one hand, we targeted still gestures, as they have an enormous potential for

interaction (they are easy to perform by users, require less physical effort) and

we can formulate the problem in terms of object recognition. We advocate the

use of class-specific random forests in combination with an efficient boosting ap-

proach in order to robustly locate such gestures in range images. Our approach
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does not require segmentation of the input data and it works in real-time. Our

results, both with offline and online data, show that the proposed approach is very

robust to false positives while providing a fluid gesture-based interaction. When

deployed on a live demo, our system runs in real-time for 4-5 gestures without

using GPU implementations of random forests (which might yield super real-time

performance). On the other hand, we have collaborated in the development of a

real-time hand gesture and fingertip localization system. The underlying idea is to

bring the successful trackpad paradigm to touchless interaction. This hand-based

system has been also deployed in several live demos, and has been applied to dif-

ferent applications, including gaming and educational applications. The result of

this work has been published in [LMC12a] and [SALM+ss].

6.2 Future Work

Although the methods presented in this thesis have provided good results in real prob-

lems of vision, there are still some lines of research that can be followed taking our work

as a starting or reference point.

We have formulated pose estimation as a tracking problem. This means that an initial

pose is needed. Furthermore, appropriate anthropometric proportions are required in

order to have a good likelihood approximation. Despite providing a data-driven frame-

work for tracking, that could potentially be used for the initialization of a body model,

robust initialization is an open problem in many situations. In spite of that, our layered

filtering framework has been used for the estimation of good initial poses and anthropo-

metric profiles given a coarse estimation of the initial values for these unknowns. This

research line has been addressed more in depth by Marcel Alcoverro in [ACP10] and in

his thesis.

The main issue in 3D pose inference is that we have presented algorithms for multiple

views or range data, i.e, situations where 3D can be estimated thanks to the technology

behind the sensor or the sensor network. However, 3D estimation from single images

or monocular videos is still an open problem. Therefore, the development of robust

3D pose estimation for single images and moving cameras is an exciting problem that

can be tackled also using some articulated modeling framework. In order to tackle this

problem, the use of body part detectors, in a similar way as proposed in this thesis,

seems a promising line. However, the main challenge would be to map 2D information

to the 3D world coordinate system from this kind of imagery. For moving cameras,

Structure-from-Motion methods [DSTT00] provide a solid basis for 3D estimation, hence

the framework proposed in this thesis can find application to moving cameras.
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Regarding action recognition, we have investigated methods solely relying on articulated

model features. However, in many cases actions are strongly conditioned and defined

by the context. Context comprises the physical scenario, objects, other people and also

the temporal ordering of actions. Research on methods and features exploiting context

is a promising and interesting line. During the development of this thesis, we briefly

investigated features that related an articulated model with the context. This research

is still not finished, but some preliminary results pointed out that context information

can help in improving the results of a baseline action recognition system.

As far as temporal clustering of human actions is concerned, our results show that

metrics help in understanding actions from articulated model features. Furthermore,

these results show that metrics learned in a dataset can be straightforwardly used in a

new dataset. However, we have also seen that the actions in the two datasets must be

related to some extent, and that metrics must be learned on datasets having accurate

and precise labeling of actions. We have also seen limitations of the ITML framework

in learning metrics in really high-dimensional feature spaces. Due to all these reasons,

we think that research on low-rank metric learning approaches for human body model

features could provide even more powerful results to the weakly supervised temporal

clustering framework proposed in this thesis.

Finally, considering the strong relation between weakly supervised action clustering and

action recognition, we consider that research on a joint probabilistic model for both

action recognition (for known action labels) and segmentation of temporal clustering (in

known actions and different unknown actions) would be useful for finding behaviors in

motion sequences. Although hierarchical Dirichlet processes are really good for finding

behaviors, they are based on assumptions that may not apply for all the actions (for

instance, temporal order is overlooked). Additionally, our belief that a joint model

would be useful is motivated by the fact that annotating actions is a elusive task, often

dependent on the context. Therefore, it becomes extremely challenging for a machine

to perform this task without some basic guidance. However, once this basic guidance is

provided, an algorithm should not be only capable of clustering different behaviors but

also annotating them according to known labels.



A
Twists and Exponential Maps

In this appendix, we review some fundamental mathematical concepts involving articu-

lated models. We start by overviewing the characteristics of a kinematic chain structure

to then detail the mathematical framework employed in order to generate human poses

by means of articulated models.

A.1 Kinematic Chain Framework

The design of a model-based motion capture system implies implementing explicitly the

prior knowledge about the body pose configurations. The body modelling framework

must accomplish several requirements:

• Provide a simple and compact representation of the possible body poses.

The relationship between body part locations and the body parameters must be

simple and unique, while keeping a relatively low number of body parameters.

• Capability of incorporating motion constraints. Constraints can be set at

the tracking level, but it is desirable that the body model incorporates the majority

of them, thus leading to a more efficient tracking scheme.
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The kinematic chain framework satisfies both requirements. Every 3D part location

can be easily determined by the product of the twists affecting the motion of that

point and most of the problem constraints are incorporated by means of hard kinematic

restrictions.

In the following, we present twists and exponential map formula for kinematic chain

framework and we introduce its application in an articulated human body model.

A.2 Twists and the Exponential Map Formulation

A kinematic chain [Par94] is an assembly of joints with several degrees of freedom (DOF),

connecting rigid segments. Let SE(3) be the Euclidean group of rigid body motions and

SO(3) the group of 3x3 proper rotation matrices. Both groups are Lie groups thus

presenting an associated Lie algebra [Hal03].

Let us consider the rotation of one segment with respect a single DOF of a joint to which

the segment is connected. To this end, we model this DOF as a rotation axis and we

consider two elements on it: a unit vector ω ∈ R3 and a point q ∈ R3. Assuming unitary

velocity of rotation, the velocity ṗ of a point p on a rigid object about the rotation axis

is determined by:

ṗ = ω × (p− q) (A.1)

If we re-write the above expression in homogeneous coordinates we obtain the SE(3) Lie

algebra ξ̂:

[
ṗ

0

]
=

[
ω̂ −ω × q

0 0

][
p

1

]
= ξ̂

[
p

1

]
(A.2)

ṗ = ξ̂p

where p =
[
p 1

]T
is the point p in homogeneous coordinates and ω̂ is the Lie algebra

of SO(3):

ω̂ =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (A.3)
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Hence, Lie algebra of SE(3) is representing a twist. The solution for the differential

equation in homogeneous coordinates A.2 leads to the connection between the Lie algebra

and the Lie group:

p(θ) = eξ̂θp(0) (A.4)

Any element ξ̂ of the Lie algebra can be mapped to its corresponding rigid body motion

by means of an exponential. Hence, the above solution shows the transformation from

an initial location of the point to the current location after rotating θ radians, by means

of the exponential map associated to the twist ξ̂.

For an open kinematic chain with n axes of rotation, this formulation provides an inter-

esting property. Let θ = [θ1 . . . θn]:

gP (θ) = eξ̂1θ1 ....eξ̂nθngP (0) (A.5)

where gP (θ) is the transformation from the rotations θ to the 3D locations of the chain

points. This property allows us to compute the 3D location of every point in the chain

by means of a product of the exponential maps associated to previous joints in the chain

and a reference configuration gP (0). Moreover, this product is independent of the order

in which it is computed.

An interesting property of Lie groups is that the exponential of its matricial elements

is the matrix exponential. Therefore, we can compute the elements of an exponential

mapping matrix by means of Taylor expansions, i.e, exp(ξ̂) = I + ξ̂ + ξ̂2

2! + . . .. As a

consequence we can develop the terms of the mapping as follows:

• Let ‖ω̂‖ = 1 where ‖ · ‖ is the Euclidean norm. Then, for any θ ∈ R

R = eω̂θ = I + sin θω̂ + (1− cos θ)ω̂2 (A.6)

• Let ‖ω̂‖ = 1 and v = −ω × q. Then, for any θ ∈ R

exp

([
ω̂ v

0 0

]
θ

)
=

[
R t

0 1

]
(A.7)

where

t =
(
θI + (1− cos θ)ω̂ + (θ − sin θ)ω̂2

)
v (A.8)
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Note that if the rotation axes ω are aligned with the world coordinate system, the

rotation matrices are very easy to find, because they will correspond to an x, y or z

rotation matrix. Since this choice verifies ω̂2 = I − ωωT and ω̂ω̂2 = −ω̂, we obtain the

following result:

M =

[
R t

0 1

]
=

[
eω̂θ −(1− cos θ)ω̂2q− sin θω̂q

0 1

]
(A.9)

where M ∈ SE(3) is used to denote the exponential map.



B
Real-Time Upper Body Tracking with Online

Initialization using Layered Particle Filters on

Range Data

In this appendix, we detail how we brought our layered particle filtering framework to

a real-time upper body tracking system. In order to achieve real-time performance, we

propose a GPU implementation of the evaluation step of our LPF. This evaluation step

takes advantage of the high paralellization of a particle filter and the efficiency of our

approximated partitioning of observations approach.

B.1 GPU implementation

Based on existing GPU implementations for PF algorithms aiming at articulated track-

ing [CCPM09], we propose an implementation of the APO-HPF approach presented in

Chapter 3 for human body tracking with range data. Specifically, we opt for implement-

ing the likelihood evaluation using OpenCL [TNI+09] with OpenGL interoperability.

The reason for such a combination is to take advantage of a general purpose program-

ming language as OpenCL and the rendering capabilities of OpenGL.
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We start at the first layer or partition of the HPF with the torso particles. In this layer,

we compute a squared 2D bounding box containing the upper-body. This bounding box

is computed by approximating the projection of a 3D box that encloses the upper-body.

However, we constrain the projected bounding box to be of a specific size, since the

GPU implementation benefits from using bounding boxes having sizes being powers of

2. Our first approximate partitioning of the image covers approximately 1/4 of the image

resolution and it is centered at the projection of the estimated body model centroid in

the previous frame. For each particle, we render the model directly to a depth texture

and then we use Quad primitives to map the pixels enclosed by the 2D bounding box

to a bigger RGBA texture that we call the mosaic texture. The objective of this latter

texture is to gather all the particle tiles that must be evaluated in one layer (see Fig.

B.2). After mapping a particle onto its corresponding tile on the mosaic texture, we

load the bounding box offset onto GPU global memory. We repeat this procedure until

the mosaic texture is filled, yielding the maximum number of particles per layer.

We efficiently share the mosaic texture with OpenCL through its interoperability mech-

anisms, and we compute the pixel-wise depth and XOR costs (see Chapter 3 Sections

3.6.1 and 3.5.2). The OpenCL implementation uses different threads to perform these

two costs, so that pixels are processed in parallel. Specifically, each thread looks for the

corresponding pixel in the input depth map using its position in the mosaic texture and

the offset previously loaded onto global memory. In this way, we compute both depth

and XOR costs with one single read of the texture. The results of both costs and the

evaluated pixels are stored in global memory (see Fig. B.2). After obtaining the pixel-

wise differences, we perform a modified 2D sum-reduction on OpenCL. This version of

the well-known sum-reduction is constrained to provide the cost of every particle instead

of the sum of all the pixel values.

The described method is repeated in the remaining arm layers, with appropriate bound-

ing boxes (see Fig. B.1).

B.2 Detector-Driven Filtering

We apply the detector-driven layered particle filtering approach presented in Chapter 3

Section 3.5.2 in order to incorporate body part detections in order to generate better

particles. Our targeted body parts are, in this case, hands and head.

In order to detect the upper-body end-effectors we employ a filtering strategy based

on [ALMPC11]. The key idea is to retrieve a set of salient geodesic extrema of the

depth map on a per frame basis. This method starts by defining a graph G = (V,E)
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Figure B.1: Examples of 2D Bounding Boxes for both right and left arms (overlaid
on the input depth data). Only foreground depth pixels enclosed in the respective

bounding boxes are used to evaluate the likelihood of each arm particles.

Figure B.2: GPU computation of likelihoods. Top Row: Result of the pixel-wise
sum of squared differences between depth maps on the mosaic textures for the 3 layers
involved in the hierarchical evaluation of the likelihood (torso, right arm and left arm).
These distance maps are stored in global memory to compute the final particle cost.
Bottom Row: Right arm depth cost tiles in detail and input depth data with overlaid

final estimation.

where the vertices V are the depth pixels and edges E are defined using 8-connectivity

neighborhoods constrained by a maximum distance dthr: if a neighbor pixel represents

a point that is farther away than dthr in 3D world coordinates, the edge between both

vertices is discarded. We then need to define a source point in order to obtain an

approximate geodesic map on the human body surface. We choose the closest pixel to

the center of mass of the masked depth information as source point. In fact, we find

more convenient to lower the center of mass in order to obtain better geodesic extrema

detection. Finally, we filter the geodesic map using a Component Tree and the strategies

proposed in [ALMPC11] to obtain the 3 most prominent geodesic extrema, that are likely

to accurately represent head and hands location.

These geodesic extrema constitute a set of candidates for hands and head locations at
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each time instant t. Provided that the head location is, to a great extent, a result of

rigid motion of the torso, we only consider geodesic extrema in the propagation of arm

particles.

B.3 Online Initialization

Automated initialization of a body tracker and, specifically, a particle filter-based mark-

erless motion capture system is a challenging problem but also a desired feature for such

a technology, as the online usability of the algorithm gets boosted. We propose using

the geodesic extrema detection (see Section B.2) and the swing twist IK method [Kal08]

under some assumptions to initialize the pose as well as to provide an estimate of the

anthropometric profile of the user in terms of bone elongations.

Pose Initialization The assumptions for pose initialization are that the human may

stand approximately with his or her back in vertical position, staring in front of the

camera, and that right and left hands will be visible to the range sensor. Under such

assumptions, whenever three reliable geodesic extrema are detected, we classify them as

head, right arm or left arm by tracking the geodesic path that leads to the corresponding

geodesic extrema. If the geodesic map has been properly computed, the direction of the

paths leading to end-effectors remains similar in the neighborhood of the source point:

left hand to the north-east and right hand to the north-west (considering a non-mirrored

image) and head is reached through the middle path, usually to the north (see Fig. B.3).

Then, we can label the 3 end-effectors depending on the extent to which the geodesic

path directions match the fork pattern (see Fig. B.3). To match such a pattern, we

compute the slope of each path in the neighborhood of the source point. We then check

that the relative slope between each pair of paths is within a given interval. To measure

the relative slope, we check that the cosinus of the difference angles between each pair

of paths is within the interval [0.5, 0.9].

If the geodesic path analysis yields a location for head, right and left hands (namely g0)

then a pose configuration is computed as follows:

1. Translate the model to match the head

2. Compute arm poses by means of IK
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a

source

head
left armright arm

b

Figure B.3: Extrema identification during pose initialization: a) Example of the fork
pattern produced by geodesic paths in the neighborhood of the source point. b) The
fork pattern is matched by checking that the cosinus of the angles between paths are

in a given interval; then we can identify the three key end-effectors

3. Measure the probability of each computed pose with the following expression

log p(x0|g0, z0) ,

− 1

2
(g0 − F (x0))Σ−1

ε (gt − F (x0)) (B.1)

+

N∑
n=1

logU[an,bn](x[n]) + C

− (λ′1cd(D0,x0) + λ′2cf (D0,x0) + λ′3cp(x0))

4. If p(x0|g0, z0) > th, where th is some threshold, accept the initial pose.

where the first term measures the probability of the three end-effector locations and

the last term measures the likelihood of the initial pose by means of a sum of squared

differences cost function (see Chapter 3 Section 3.6.2). We dropped the layer subindex

l, meaning that this expression is calculated for the three partitions. In practice, we

average the costs of all the three partitions to obtain the initial probability.

Anthropometric Initialization For anthropometric estimation we assume the same

for back inclination and also that, at some point, the target’s upper arms will be ap-

proximately pointing towards the floor. When this situation happens, we trigger two

measurements.

The first one is devoted to estimating the shoulder breadth. This measurement consists

in analyzing the derivative of the summation of foreground pixels in each image row.

Under the assumptions above, shoulders are found in rows closer to the first prominent

local maximum of this derivative (see Fig. B.4). Using this information, we extract
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Figure B.4: Shoulder breadth estimation: Derivatives of the silhouette width along
the vertical axis of the depth image are used to locate the approximate shoulder posi-
tions during initialization. Plotted curves, starting at the head top location, show the
first prominent local maxima of the derivative for 3 different users. Shoulder pixels are

located in the neighborhood of this first prominent local maxima of the derivative.

a b

Figure B.5: Points with high curvature along the projected geodesic path are marked
with a red-cross. a) Correct detections below both shoulders b) Spurious detections
near wrists. These detections are automatically rejected due to the proximity to the

end-effectors.

several points from the leftmost and rightmost pixels of the rows around this maximum

to compute an approximation of the shoulder breadth.

The second measurement concerns the arm length and is computed through the analysis

of the geodesic path lengths. In order to remove parts of the path located in the torso,

we use second derivatives to analyze the curvature of the projection of the geodesic path

on the image (see Fig. B.5). Points with high curvature located between 25% and 50%

of the path length (in real world units and starting from the source point) usually fall

right below the shoulder joint, allowing us to use the resting path length as arm length

measurement. If the arm length obtained by this method is within an interval of possible

human arm lengths, the measurement is collected as valid. The total arm length is split

into upper and forearm based on anthropometric studies [nas].

In both cases, we perform anthropometric measurements during a short period of time.

We perform outlier rejection by analyzing the variance of the collected measurements to

finally provide the bone elongations needed to approximately fit the upper body model

to the user.
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Tile Size Device 64x3 256x3 1024x3

64x64 NVIDIA Quadro FX 3700 11.2 3.3 0.9
64x64 NVIDIA GeForce GTX 295 13.2 4.5 1.3

128x128 NVIDIA Quadro FX 3700 3.1 1.6 0.5
128x128 NVIDIA GeForce GTX 295 3.9 2.2 0.8
256x256 NVIDIA Quadro FX 3700 0.8 0.1 -
256x256 NVIDIA GeForce GTX 295 1.0 0.2 0.1

Table B.1: Computational performance of the complete system (in frames per second)
as a function of the number of particles (x3 layers) and the size of the tiles for different
hardware platforms. The size of the tiles is proportional to the image resolution (e.g. a
64x64 tile is for 160x120 depth maps). Mosaic textures of 8192x8192 are not supported

by the NVIDIA Quadro FX 3700.

The proposed method for estimating the anthropometric profile of the user barely re-

lies on the model and the estimated pose. As a consequence, the robustness of the

anthropometric estimates increases, because it is not affected by pose estimation errors.

B.4 Experimental Results

To validate our algorithm, we have conducted several experiments with range data

recorded with a Kinect (640x480 pixels, 30fps). We consider two different scenarios

where upper body motion is involved: desktop (Fig. B.6) and workplace (Fig. B.7). In

desktop, users are sitting down in front of a table, while in workplace are standing up.

Desktop sequences involve 5 users performing several actions such as motion of one arm,

picking a phone, or drawing some figure with both hands. These sequences comprise

almost 4 minutes of data. Workplace sequences contain approximately 1 minute and a

half of challenging motions performed by 2 subjects.

We pick several subsequences from this data and we manually annotate pixels belonging

to joint positions. We perform these annotations in 1 of every 10 frames, obtaining

around 470 annotated frames and more than 4700 frames to evaluate.

In the first experiment, we evaluate the computational performance of the implemented

system in two different hardware platforms: both CPUs are Intel 2.80GHz, 4GB RAM,

but different GPUs are installed (see Table B.1). Although we have only optimized the

likelihood computation, the system runs online in a laptop with an ATI Mobility Radeon

HD5800; to reach the online performance, we use a total of 192 particles and 160x120

depth maps (the original data at 1/16 resolution). With this configuration, we obtain a

satisfactory performance for several upper body actions.

In the second experiment, we run our system offline with the recorded sequences in order

to compare our results with the recently released PrimeSense body tracker for Kinect,
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Figure B.6: Tracking results in desktop upper-body sequences recorded with Kinect.
256 particles per layer are used.

Figure B.7: Tracking results in workplace upper-body sequences recorded with
Kinect. 256 particles per layer are used.

which is accessible thanks to the OpenNI middleware [Pri]. This tracker requires a spe-

cific initial pose (hands up) called the calibration pose. In order to perform a comparison

between both methods, all the annotated sequences have been recorded with this cal-

ibration pose. Nonetheless, since our method incorporates automated initialization of

pose and anthropometrics, we can successfully launch our tracker without requiring such

a specific pose. In these experiments, we use 256 particles in each hierarchical layer and

depth maps of 160x120 pixels, yielding close to real-time performance.
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Figure B.8: Success rate comparative between PrimeSense tracker and our method.
Errors have been computed in 640x480 images.

Figure B.9: Right hand error (pixels) for the PrimeSense tracker and our method in
a sequence where PrimeSense tracker has several misses. Errors have been computed

in 640x480 images.

Using the available annotations, we measure the accuracy/precision of both systems by

means of a success rate: given a distance in pixels, we count the percentage of joints that

have been tracked with an error below this distance. In the annotated sequences, hands

are visible all the time, hence both algorithms should be able to provide estimates

for the upper body joints. Since PrimeSense tracker may not provide joint locations

that considers unreliable, we consider these cases as misses. The results, measured in

640x480 frames, are shown in Fig. B.8. Our system shows a remarkable precision,

although being less accurate than the PrimeSense tracker, that relies on accurate part
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detectors. However, we have observed that, while for a long tracking period and fast

motions, the PrimeSense tracker outperforms our method, there are some cases, with

limb self-occlusions, in which our method has a better performance. Specifically, when

shoulders are occluded or a hand is partially occluded, the PrimeSense tracker can fail

(see Fig. B.9). These cases are more frequent in the desktop scenario, showing that

the upper body tracking task is a difficult problem due to important occlusions of the

lower body. In our method, the use of a body model and hierarchical layers helps in

overcoming these cases. In overall, the PrimeSense method presents a mean tracking

error of 20.74 pixels (excluding misses) while ours has an error of 28.95 pixels. The mean

initialization error of our method is 33.31 pixels.
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