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Introduction

The Four Color Theorem
1s the tip of the icebery,
the thin end of the wedge,

and the fist cuckoo of spring.
W.T. TUTTE

Starting with the four-color problem, the theory of graph coloring has existed for more
than 150 years. It deals with the fundamental problem of partitioning a set of objects into
classes according to certain rules. Historically, graph coloring involved finding the mini-
mum number of colors to be assigned to the vertices of a graph so that adjacent vertices
would have different colors. From this modest beginning, the theory has become central
in discrete mathematics, with many contemporary generalizations and applications.

Even if many deep and interesting results in graph coloring theory have been obtained
during the last century, there are many easily formulated interesting problems left. A
very good illustration is the book devoted to unsolved graph coloring problems by T.R.
Jensen and B. Toft [31]. For a general exposition of the subject, including proofs of several
classical theorems, a good reference is the book on extremal graph theory by Bollobés [9].

In this thesis, our particular interest is in two very active areas of research which have
emerged from coloring problems: Graph Homomorphism Theory and Arithmetic Ramsey
Theory:

e The study of graph homomorphisms began in the early sixties in the framework
of algebra and category theory; it was pioneered by G. Sabidussi [55], and by Z.
Hedrlin and A. Pultr [26]. Homomorphism theory concerns the study of classes of
combinatorial structures under natural morphisms. These include classes of graphs,
oriented graphs, posets, digraphs or general relational structures. The chromatic
number of a simple graph GG can be stated, in this context, as the smallest complete
graph to which G admits a homomorphism. Thus, graph homomorphism theory
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has been extensively studied as a generalization of colorings. An excellent reference
on the subject is the book by Hell and Nesetiil [28].

e Ramsey theory can be described as the study of the preservation of properties under
set partitions; in other words, Ramsey theory studies the existence of particular color
patterns in colored structures. Starting with the Theorems of Ramsey, Hilbert,
Schur and van der Waerden, the theory has been developed as a wide and beautiful
area of combinatorics, in which a great variety of techniques are used from many
branches of mathematics. Many of the classical results in the area are arithmetic
versions of the theory and we are interested in this particular branch of Ramsey
theory. Good references in the area are the books of Langman and Robertson [37]
and Adhikari [1].

This thesis is organized in two parts. The first part deals with the study of homo-
morphisms in the class of colored mixed graphs, and in the second part we study some
Ramsey and anti-Ramsey results in finite groups.

Part I: In this part of the thesis, our particular aim is to study homomorphisms
of colored mized graphs, which are graphs with vertices linked by both colored arcs and
colored edges. The chromatic number of such a graph G is defined as the smallest order of
a colored mixed graph H such that there exists a (color preserving) homomorphism from
G to H. The colored mized chromatic number of a simple graph G (respect. of a family of
simple graphs F) is then defined as the maximum of the chromatic numbers taken over
all the possible colored mixed graphs having G (respect. a graph in F) as underlying
graph; we give some formal definitions in Section 2. These notions were introduced by
Nesetiil and Raspaud [43] as a common generalization of the notion of homomorphisms of
edge-colored graphs, and the notion of oriented colorings (see e.g. [4] and [60] respectively).

Most of the work related to the study of homomorphisms as a generalization of col-
orings has been done in the context of oriented graphs (which is a particular case of
colored mixed graphs). The notion of oriented coloring was first introduced by Cour-
celle [16] in 1994. Since then, the oriented chromatic number of several families of
graphs has been extensively studied. We specially recommend a wonderful survey by
Sopena [60] on this topic. We mention here some of the most important families of
graphs that have been studied: graphs with bounded degree [36, 59], graphs with bounded
tree—width [48, 59], graphs with bounded acyclic chromatic number [36, 47, 53], planar
graphs [11, 12, 13, 14, 44, 46, 50, 53, 61|, outerplanar graphs [44, 52|, grids [22, 63], Halin
graphs [29], graphs subdivisions [68], and graphs with given excess [62].

Concerning homomorphisms of colored mixed graphs, as far as we know, the only
published work was the one by Nesetfil and Raspaud in 2000 [43]. In this paper, the
authors gave an upper bound of the colored mixed chromatic number of graphs with
bounded acyclic chromatic number. By means of this result, they obtain an upper bound
for the colored mixed chromatic number of planar graphs. Both results are a common



generalization of the corresponding ones of Raspaud and Sopena [53] (for oriented graphs)
and, Alon and Marshall [4] (for edge-colored graphs). They also gave the exact colored
mixed chromatic number of the family of trees. In this thesis we present all this results
with its proofs for the benefit of the reader. We also present our contributions in the area,
which are the following:

1. We prove that the colored mixed chromatic number of trees given in [43], is reached
by the much simpler family of paths (Theorem 3.2). By means of this result we give
new lower bounds for the colored mixed chromatic number of outerplanar graphs
and planar graphs (Theorem 6.2).

2. We show that the upper bound of the colored mixed chromatic number of graphs
with acyclic chromatic number at most &, given in [43], is tight for every £ > 3
(Theorem 4.2).

3. By means of the upper bound of the colored mixed chromatic number of graphs with
bounded acyclic chromatic number given in [43], we provide an upper bound of the
colored mixed chromatic number of partial k-trees (Theorem 5.1). Then we show
that this upper bound has the correct order of magnitude on 2n + m, where n is
the number of colors in the arcs and m the number of colors in the edges (Theorem
5.2).

4. In particular, for 2—edge colored graphs, we obtain the precise colored mixed chro-
matic number of partial k—trees for £ = 2 and 3; additionally, we improve the general
upper bound for the colored mixed chromatic number of partial 2—trees in the cases
of mixed graphs and 2-arc colored oriented graphs (Theorem 5.3).

5. For planar graphs, the main term in the lower bound of the colored mixed chromatic
number is (2n +m)?3, while the main term in the upper bound is (2n +m)* (Corol-
lary 6.2); for partial 2—trees and outerplanar graphs (which are special subclasses
of planar graphs), the main term in both lower and upper bounds of the colored
mixed chromatic number is (2n + m)? (Corollary 6.1). We prove that, if the girth
is sufficiently large, the colored mixed chromatic number of these three classes of

graphs becomes linear on 2n + m (Theorem 7.5).

6. In fact, we prove a kind of (4n + 2m + 1)—color theorem for sparse colored mixed
planar graphs (Theorem 7.5-1); that is, we give the precise colored mixed chromatic
number of planar graphs for suitable sufficiently large girths.

7. Concerning the particular case of 2—edge colored graphs, we give the complete clas-
sification on the colored mixed chromatic number of outerplanar graphs and partial
2-trees with a given girth (Theorems 8.1 and 8.2); we also obtain upper bounds
for the colored mixed chromatic number of planar graphs with given girth (Theo-
rem 8.3).



8. The class of bipartite 2—-edge colored graphs is closely related to the one of bipar-
tite oriented graphs. We make this statement precise and discuss the relationship
between cores and dualities in the two categories.

Most of these results have been published (or accepted for publication) in:

e R. Fabila-Monroy, D. Flores, C. Huemer, A. Montejano. Lower bounds for the
colored mixed chromatic number of some clases of graphs, Comment. Math. Univ.
Carolin. vol. 49(4) (2008) 637-645.

e A. Montejano, P. Ochem, A. Pinlou, A. Raspaud, E. Sopena. Homomorphisms of
2-edge colored graphs, Discrete Applied Mathematics. to appear (2009).

e A. Montejano, A. Pinlou, E. Sopena. Chromatic number of sparse colored mixed
planar graphs, Furopean Conference on Combinatorics, Graph Theory and Applica-
tions (EuroComb 2009), submitted.

Part IT: This part of the thesis is related to arithmetic Ramsey theory, which concerns
the study of the existence of color patterns in every coloring of sets of integers. In
Chapter 10, we present three classical theorems that became the starting point of an area
that is still very active today: Schur’s theorem, which states that for every k, if n is
sufficiently large, then every k—coloring of {1, ...,n} contains a monochromatic solution of
the equation x + y = z; van der Waerden’s theorem, which states that for every k and ¢,
if n is sufficiently large, then every k—coloring of {1,...,n} contains a t—term arithmetic
progression; and Rado’s theorem, which is a generalization of Schur’s theorem, concerning
monochromatic solutions of systems of linear equations with integers coefficients.

Our interest lies not only on monochromatic structures. but also on the existence of
rainbow (hetero-chromatic) structures in colored universes. The study of the existence of
rainbow structures falls into the anti—Ramsey theory initiated by Erdds, Simonovits and
S6s [21]. Arithmetic versions of this theory where initiated by Jungié¢ et al. [32], where the
authors study the existence of rainbow 3—term arithmetic progressions in colorings of inte-
ger intervals and cyclic groups; those results are thought as the first rainbow counterparts
of clasical theorems in Ramsey theory. In Chapter 10, we give a historical overview of the
so called rainbow Ramsey theory, which studies the the existence of rainbow structures,
under certain density conditions on the colorings.

Our particular interest in this work is on the study of the existence and enumeration
of colored structures (mainly monochromatic or rainbow structures) in colorings of finite
groups. The structures under consideration can be described as solutions of systems of
equations in the group, the main examples being arithmetic progressions and Schur triples.
Our contributions in the area, are the following:



. We describe the structure of those 3—colorings of abelian groups of odd order, which
has no 3-term arithmetic progressions with its members having pairwise distinct
colors (Theorem 11.1).

. By means of the structural description in Theorem 11.1, we confirm a conjecture of
Jungic et al. on the size of the smallest chromatic class of such colorings in cyclic
groups (Corollary 11.1).

. We present a counting lemma which gives a relationship between the number of
vectors with some specific color patterns and the cardinalities of the color classes,
for r—colorings in orthogonal arrays OA(d, k) (Lemma 12.1). This result is a general
formulation of the basic combinatorial counting argument used in [15].

. For 3—colorings in orthogonal arrays OA(d,d — 1), we obtain a slight generalization
of a result by Balandrau [8] (Corollary 12.1).

. The set of Schur triples in a finite group form an orthogonal array OA(3,2). The
same is true for 3—term arithmetic progressions if the order of the group is relatively
prime with 6. For r—colorings in orthogonal arrays O(3,2), we get a nice relationship
between monochromatic and rainbow vectors depending only on the cardinality of
the color classes (Theorem 12.3).

. For 2—colorings in orthogonal arrays OA(3,2), we do not have rainbow triples, so
that Theorem 12.3 gives a formula for the total number of monochromatic triples
in terms of the cardinalities of the color classes; by minimizing that formula we get
the minimum number of monochromatic triples in an orthogonal array O A(3,2) for
any 2-coloring (Corollary 12.2).

. In the case of 3-colorings in orthogonal arrays OA(3,2), Theorem 12.3 has a nice
interpretation in terms of the variance (Corollary 12.3).

. In Sections 12.3.1 and 12.3.2 we collect some specific applications of our results,
including the study of monochromatic and rainbow Schur triples and arithmetic
progressions in finite groups.

Most of these results have been published (or accepted for publication) in:

e A. Montejano, O. Serra, Rainbow—free three colorings in abelian groups, Furopean
Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009),
submitted.

e A. Montejano, O. Serra, Color patterns in orthogonal arrays, The 2009 British

Combinatorial Conference, submitted.
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Chapter 1

Preliminaries

In this section we give the concepts and terminology of Graph Theory that we will use to
develop our work. We proceed with the tedious but essential sequence of definitions.

1.1 Graphs

A graph is a pair of disjoint finite sets (V, E) such that F is a subset of the set V(?) of
unordered pairs of distinct elements of V' (we have neither multiple edges nor loops). The
set V' is the set of vertices and F is the set of edges; if G is a graph, then V = V(G) is the
vertex set of G, and F = E(G) is the edge set of G. Usually, when there is any danger of
confusion, graphs are called simple graphs.

Let G = (V, E) be a (simple) graph. An edge {u,v} in F(G) is said to join the vertices
u and v and is denoted by uv; thus uv and vu mean exactly the same edge. If uv € E(G)
then we say that u and v are adjacent vertices. We say that two edges are adjacent if they
have exactly one common vertex. A set of vertices in G is called independent if not two
elements of it are adjacent. Analogously, a set of mutually not adjacent edges is called
independent, and if it contains all vertices of G is called a perfect matching. A graph G
is called a bipartite graph, with bipartition V(G) = Vi U V,, Vi N Vy = ), if every edge
in GG joints a vertex in V; with a vertex in V5; thus Vi and V5 are independent sets. The
complement of G is the graph G = (V, V) — E); hence, two vertices are adjacent in G, if
and only if they are not adjacent in G. Two graphs are isomorphic if there is a one-to-one
correspondence between their vertex sets that preserves adjacency.

The set of vertices adjacent to a vertex u in G, the neighbourhood of u, is denoted
by N(u). The degree of u is d(u) = |N(u)|. The minimal degree of the vertices of G
is denoted by 6(G) and the maximal degree by A(G). The order of G is the number
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16 CHAPTER 1. PRELIMINARIES

of vertices |V(G)|. A graph of order n and (%) edges is called a complete graph and is
denoted by K,. We say that G' = (V', E') is a subgraph of G, if V! C V and E' C E;
if G' contains all edges of G that join two vertices in V', then G’ is said to be subgraph
induced by V' and is denoted by G[V’]. A maximal complete subgraph of G is called a
cliqgue of G; a clique of order k is called a k—clique.

A path is a graph P, with V(P) = {ug, u1, ..., ux} and E(P) = {ugu1, u1s, ..., U1 -
The vertices ug and uy, are called the end-vertices and k = |E(P)| is the length of P. A walk
W in a graph is an alternating sequence of vertices and edges say ug, €1, U1, €2, ..., €, U
where e; = u;_qu;, 0 < i < k. If a walk is such that ug = u;, then is called a closed walk.
A closed walk with & > 3, and all vertices u;, 1 < i < k — 1, distinct from each other
and ug, then the walk is said to be a cycle and is usually denoted by Cy. If a cycle in G
contains all vertices of G, then the cycle is said to be a Hamiltonian cycle. In accordance
with the terminology above, the length of a cycle is the number of its edges. The girth
of a graph is the length of it shortest cycle. A graph is said to be sparse if its girth is
hight enough according to the context. A graph is connected if for every pair of distinct
vertices v and v, there is a path from u to v. Unless it is explicit states otherwise, in this
work we consider only connected graphs.

Let us now introduce some well-know graph classes, which are the ones that we mainly
study in this work.

Trees:- A tree is a connected graph without any cycle. All trees are bipartite graphs. It
is not difficult to argue that a tree of order at least 2, contains at least two vertices of
degree 1. A vertex of degree 1 is usually called a leaf. Paths are the trees with exactly
two leafs. A tree in which all the vertices except one are leafs is called a star.

Planar graphs:- A graph is planar if it can be drawn in the plane without edge crossing.
A plane graph is a particular planar embedding of a planar graph. We will refer to the
regions defined by a plane graph as it faces, and the unbounded region will be call the
outerface. The following is a contribution of Leonhard Euler to graph theory, namely
Euler’s formula: if a connected plane graph has n vertices, m edges, and f faces, then:

n—m+f=2

Outerplanar graphs:- A graph is outerplanar if it has a planar embedding such that
every vertex belongs to the outerface.

Partial k—trees:- The notion of k-tree can be defined as follows: the complete graph
K}, is a k-tree; if G is a k—tree then the graph G’ obtained by G by adding a new vertex
linked with every vertex of a k—clique subgraph of G is a k—tree and there are no further
k—trees. By construction, every k—tree distinct to K} has a vertex v of degree k whose
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neighbourhood is a k—clique subgraph of GG, and whose deletion leads to another k—tree.
The notion of a 1-tree corresponds to the usual notion of a tree. A partial k-tree is a
subgraph of some k-tree. The class of outerplanar graphs is strictly contained in the class
of partial 2—trees.

1.2 Colorings

A partition of a set X, is a set of subsets X7, ..., X}, such that Uf:l X;=Xand X;nX; =0
for every i # j. A coloring corresponds to a partition of some objects in a graph (such as
vertices, edges, etc.) into color classes according to certain rules.

For instance, a proper k-coloring of a simple graph G is a partition of V(&) into k
subsets, V1, V5, ...V}, called color classes, such that no two adjacent vertices belong to the
same color class; in other words, the color classes are independent sets of vertices. If G
admits a proper k—coloring, then we say that G is k—colorable. The chromatic number
X(G), is then defined as the smallest integer k such that G is k—colorable.

For a simple graph G, x(G) > 2 if and only if G has an edge; and x(G) = 2 if and only
if G is a bipartite graph with at least one edge. The most famous results in graph colorings
is the Four color theorem [5, 6] which states that all planar graphs are 4—colorable.

In this work we will consider another variant of coloring named acyclic colorings. An
acyclic k—coloring of a simple graph G is a proper k—coloring of G in which every cycle uses
at least three colors. The acyclic chromatic number, x,(G), is then the minimum integer
k such that G’ admits an acyclic k£ coloring. In analogy with the Four color theorem, it
has been proved [10] that every planar graph admits an acyclic 5—coloring, and that there
are planar graphs which cannot be acyclically 4—colored.

1.3 Homomorphisms

Homomorphisms are mappings of the vertices that preserve adjacency. Formally, let G
and H be two simple graphs, a homomorphism of G to H, writing as h : G — H, is a
mapping h : V(G) — V(H) such that h(u)h(v) € E(H) whenever uv € E(G). If h is
a homomorphism of G to H, then the graph with vertices h(v), v € V(G), and edges
h(u)h(v), wv € E(G), is called the homomorphic image of G under h, and denoted by
h(G); note that h(G) is a subgraph of H. Let us see some simple facts which are direct
consequence of these definitions. Recall that P, = ug, ..., u;, is the path of length k£, and
C}. denotes a cycle of length £.
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e A mapping h : V(FP;) — V(G) is a homomorphism of Py to G if and only if the
sequence h(ug), h(uz), ..., h(uy) is a walk in G.

e A mapping h : V(Cy) — V(G) is a homomorphism of C to G if and only if the
sequence h(ug), h(ug), ..., h(ug) is a closed walk in G.

Thus homomorphisms maps paths into walks, and cycles into closed walks. In partic-
ular the homomorphic image of an odd cycle contains a shorter odd cycle.

There is a close relation between homomorphisms and graph colorings. A proper k-
coloring of G' can be equivalently regarded as a homomorphism h of G to the complete
graph K} on k vertices. To see that, let V(Ky) = {vy, v, ..., v}, then we can associate
V; = h™'(v;). Thus, homomorphisms h : G — K} are precisely the proper k—colorings of
G.

If a graph G admits a proper k—coloring we say that G is k—colorable; in the same
way, if there is a homomorphism of G to H we say that G is H —colorable. The chromatic
number x(G), defined as the smallest integer k such that G is k—colorable, corresponds
then to the smallest |H| such that G is H—colorable; note that such a graph H must be
complete, else we could find a smaller graph H’ such that H — H' and hence G — H'.



Chapter 2

Basic definitions and notation

Now we focus on the concepts and terminology concerning colored mized graphs which
is our main object to study. We begin with some formal definitions and useful notation
to handle colored mixed graphs. Then we define colored homomorphisms which are the
natural morphisms in this class of objects. Finally we define the colored mized chromatic
number of a simple graph.

2.1 Colored mixed graphs

An oriented graph is an orientation of a simple graph, obtained by assigning to every edge
one of the two possible orientations. An oriented edge is called an are, and is denoted by
(u,v), meaning that the orientation goes from u to v. The set of arcs of an oriented graph
G is denoted by A(G). A mized graph is obtained from a simple graph, by assigning to
some edges one of the two possible orientations; hence, a mized graph G is usually denoted
by an ordered triple G = (V, A, E), where V = V(G) (resp. A = A(G), E = E(Q)) is
the set of vertices (resp. arcs, edges) of G. Simple graphs and oriented graphs are special
cases of mixed graphs.

Definition 2.1 An (n,m)-colored mixed graph is a mized graph G = (V, A, E), to-
gether with partitions A = Ay U---UA, and E = E,U---UE,, where A; (resp. E;)
consists of the set of arcs (resp. edges) colored by color i.

In Figures 2.2 and 2.3 you can see examples of (3, 2)—colored mixed graphs.

Observe that a (1,1)-colored mixed graph is just a mixed graph. When n = 0 we
adopt the convention that there are no arcs, and when m = 0 we adopt the convention

19



20 CHAPTER 2. BASIC DEFINITIONS AND NOTATION

n+2 2n
2n+1

2n+2

Figure 2.1: The 2n 4+ m different types.

that there are no edges. In particular, a (0, 1)-colored mixed graph is a simple graph,
and a (1,0)-colored mixed graph is an oriented graph. Sometimes we will refer to a
(0, m)-colored mixed graph as an m—edge colored graph, and similarly, we will refer to an
(n, 0)-colored mixed graph as an n—arc colored oriented graph.

The underlying graph of an (n, m)-colored mixed graph G, is the simple graph ob-
taining by forgetting the colors and orientations of the arcs and edges in G. We will use
all standard notions (order of a graph, independent set of vertices, planar graph, etc.)
in colored mixed graphs as for its underlaying graph; for instance, the girth of a colored
mixed graph is the girt of its underlying graph, or a colored mixed path is a colored mixed
graph for which its underlying graph is a path.

Let G be a colored mixed graph. We say that a pair of vertices u,v € V(G) are
adjacent vertices in G, if either there is an arc or an edge (of any color) between them. In
the context of colored mixed graphs, many times we have to be more precise and specify
the type adjacency between two vertices, thus we give a formal definition below.

For any vertex u of an (n, m)-colored mixed graph G, let N;"(u) (resp. N; (u)) be the
set of all vertices in G adjacent from (resp. adjacent to) u by an arc of color 7; similarly
let N?(u) be the set of all vertices in G connected with u by an edge of color 7. Note
that the total number of possible edges and arcs, incident to u, of a particular color and
orientation, is 2n+m; label these possibilities from 1 to 2n+m as it is shown in Figure 2.1.
According to this we use the following notation:

N/ (u) for1<i<nm
Ni(u) =4 Ni_pyw) forn+1<i<2n
N&Qn) (u) for2n+1<i<2n+m
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6 2
?\ 6 5 6 5
1 4 1 4
—_—
2 3 9 3

Figure 2.2: A colored homomorphism.

Definition 2.2 Let (u,v) be an ordered pair of adjacent vertices in an (n,m)-colored
mized graph G. We say that (u,v) has type i € {1,...2n + m}, writing t(u,v) = i, if
v € N;(u).

For X € V(G), we will use N;(X) := [J,cx Ni(u).

2.2 Colored homomorphisms

Colored homomorphisms are mappings between vertex sets of colored mixed graphs that
preserve the adjacency type. Thus a colored homomorphism maps edges to edges and
arcs to arcs preserving directions and colors. More precisely:

Definition 2.3 Let G and H be two (n,m)-colored mized graphs. A colored homo-
morphism of G to H is a mapping h: V(G) — V(H) satisfying:

(i) (u,v) € A;(G) implies (h(u), h(v)) € Ai(H) for every i € {1,...n}, and

(i) wv € E;(G) implies h(u)h(v) € E;(H) for every i € {1,...m}.

In other words, a colored homomorphism h of G to H satisfies t(u,v) = t(h(u), h(v))
for every ordered pair (u,v) of adjacent vertices in G. In Figure 2.2 you can see an
example of a colored homomorphism.

The existence of a colored homomorphism from G to H is denoted by G — H, and
G -» H means there is no such homomorphism. The class of graphs G and H will be
usually clear from the context.
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By following the classical context of homomorphisms as a generalization of colorings,
for G and H colored mixed graphs, we say that G is H-colorable if G — H, and the
vertices of H are called the colors. According to this view, an admissible k—coloring of a
colored mixed graph G is defined as follows.

Definition 2.4 An admissible k—coloring of a colored mized graph G is a partition
of V(G) into k independent sets (called the color classes) such that no two adjacent
vertices belong to the same color class and, there are only edges of the same color, or only
arcs with the same orientation and the same color, between any pair of color classes.

An admissible k—coloring of an (n,m)-colored mixed graphs G can be also stated as a
mapping f from V(G) to a set of k colors such that:

(i) f(u) # f(v) whenever (u,v) is an adjacent pair,and
f

(ii) f(u) # f(x) whenever (u,v) and (z,y) are both adjacent pairs with t(u, v) # t(z,y),
and f(v) = f(y)-

To finish this section we shall make the following:

Remark 2.1 If the colored mized star S depicted in Figure 2.1, is contained in some
colored mized graph G, then every vertex of S must be assigned distinct colors in any
admissible coloring of G, the same is true for any colored mized star subgraph of S.

Hence, colored homomorphisms of colored mixed graphs ”preserves” stars in which
every leaf has a different type; homomorphisms preserving other configurations have been
considered in [45].

2.3 The colored mixed chromatic number

Given a colored mixed graph G, our purpose is to find the smallest number of vertices of
a colored mixed graph H such that G is H-colorable. The colored chromatic number of a
colored mixed graph G, is the smallest k£ such that G admits an admissible £—coloring.

For instance, the colored chromatic number of the (3,2)-colored mixed graph showed
in Figure 2.3, is four (one can easily find a colored homomorphism from that graph to a
(3,2)-colored mixed graph of order 4 and it is clear that there is impossible to do it so
for a (3, 2)—colored mixed graph of order 3).

Now we are ready to define the colored mixed chromatic number of a simple graph.
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1 4 16— <@ 4
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2 3 2 3

Figure 2.3: A (3,2)-colored mixed graph with chromatic number 4.

Definition 2.5 For a simple graph G, the (n, m)—colored mixzed chromatic number
of G, denoted by X(n.m)(G), is the mazimum of the colored chromatic numbers taken over
all the possible (n,m)-colored mized graphs having as underlying graph G.

We shall note that x(o,1) is the ordinary chromatic number, and x(1,) is the oriented
chromatic number. It is clear that for every simple graph G, x(,11(G) < xa1,0(G). In
general, for the (n, m)-colored mixed chromatic number we have the following relation.

Proposition 2.1 For every graph G, X(nm+1)(G) < X(n11,m)(G)...((ARREGLAR))

Proof:- For every (n+ 1, m)—colored mixed graph G, lets denote by G’ the (n, m+1)-
colored mixed graph obtained from G by replacing all arcs of color n 4+ 1 with edges of
color m+ 1. Observe that, a homomorphism from a (n + 1, m)—colored mixed graph G to
another (n + 1, m)—colored mixed graph H, is always a homomorphism from G’ to H'. O

As a consequence of the above Proposition we can observe that, for a fixed number of
colors in arcs and edges, the relations are:

X0, (G) < x1,6-1)(G) < x2k-2)(G)... < X0y (G)

Now, we will define the colored mized chromatic number of a family of simple graphs,
which is our main object to study.

Definition 2.6 For a finite or infinite family F of simple graphs, the (n, m)—colored
mized chromatic number of F, denoted by X(n,m)(F), is the (possible infinite) maxi-
mum of the (n, m)-colored mized chromatic numbers of its members.
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3 4 3

Figure 2.4: Bipartite (0, 2)—colored mixed graphs with chromatic number 4 and 5 respec-
tively.

The most natural question to consider in this framework is whether or not a given
family of graphs has a finite colored mixed chromatic number. When the answer is
affirmative, we say that the family is colorable. For a colorable family of graphs, we
are interested in determining or bounding its colored mixed chromatic number. Next we
see an example of a family of simple graphs for which the ordinary chromatic number
is bounded, while the (n,m)-colored mixed chromatic number is unbounded for every

(n,m) # (0,1).

Example 2.1 Let B be the class of simple bipartite graphs. Certainly x0q1)(B) = 2, but
X(nm)(B) = o0 for every (n,m) # (0,1); that is, for every k > 0 there is a bipartite
graph By, with X(nm)(Bk) > k when (n,m) # (0,1). For instance, consider the bipartite
graph By, obtained from the complete graph K by replacing every edge by a 2-path; if
(n,m) # (0,1), we can color and/or orient the edges of By, in such a way that the original
vertices get distinct colors in any admissible coloring.

To illustrate this example, in Figure 2.4 you can see a bipartite graph with (0,2)-
colored mixed chromatic number 4, and a bipartite graph with (0, 2)—colored mixed chro-
matic number 5. In this way, we can construct for every k > 0 a bipartite graph B, with

X(0,2)(Br) > k.

At this point we should leave some things clear. For a family of simple graphs F:

® X(nm)(F) = k means that every colored mixed graph for which its underlying graph
is in F, admits an admissible k'—coloring for a k' < k; and there exist at least one
member of F with colored mixed chromatic number precisely k.

® X(nm)(F) =k does not means that there exist an (n, m)-colored mixed graph H of
order k, such that every (n, m)—colored mixed graph with its underlying graph in
F,is H—colorable.
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Figure 2.5: All non isomorphic (0,2)-colored mixed graphs for which their underlying
graphs are in Gs.

Definition 2.7 An (n,m)-colored mized graph U is said to be F—universal, if every
(n, m)—colored mized graph for which its underlying graph is in F, admits a colored ho-
momorphism to U.

Thus, the smallest colored mixed graph H which is F—universal (if it exist) may be of
order strictly greater than x(, m)(F). Let us see an example to illustrate this situation.

Example 2.2 Let k be an integer smaller than 2n +m + 1 and let Gy be the family of
connected (simple) graphs of order k. Obviously X(n,m)(Gr) < k, and since there are graphs
in Gy, with colored mized chromatic number precisely k (recall Remark 2.1) then we have
Xonm)(G) = k. However, if (n,m) # (0,1), clearly there is non (n,m)-colored mized
graph of order k which is Gy—universal (such a colored mized graph should contain all
complete colored mized graphs of order k as subgraphs).

To illustrate this example, fix (n,m) = (0,2) and k = 3. In Figure 2.5 you can see all
non isomorphic (0, 2)—colored mixed graphs for which their underlying graphs are in Gs.
Clearly there is non (0, 2)-colored mixed graph of order 3 which is Gz—universal.

Nevertheless, to find universal colored mixed graphs is a good strategy to bound the
colored mixed chromatic number. In fact, most of the results concerning upper bounds
on the oriented chromatic number of some special families of graphs, have been obtained
by exhibiting universal graphs.

A family F is say to be optimally colorable if there exist a graph H of order x(;m)(F)
which is F—-universal. The following Proposition provides a sufficient condition to a
colorable family of graphs to be optimal. We say that a family of graphs F is complete if
for every two graphs GGy and G5 in F, there exist a graph G5 € F containing G; and G5
as subgraphs.

Proposition 2.2 FEvery complete family of graphs F which is colorable its optimal col-
orable.

Proof.  Since F is colorable, then x(, ) (F) is finite, and thus every graph G € F is
H;~colorable where H; is a color graph of order X(,m)(F). Suppose F is not optimally
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colorable. Then, let {H;,...H;}, | > 2, be a minimal set of color graphs such that every
graph G € F is H,;—colorable for some ¢ € {1,...,l} (such a finite set exist since the
number of color graphs of order X(n,m)(F) is finite). By the minimality of [, for every H;,
1 < < there exist G; € F such that G - H for every H € {Hy,...H;} \ {H;}. Since F
is complete there exist a graphs G* in F which contains all G;’s, 1 < ¢ < [. The graph
G* is H;—colorable for some i € {1,...,1}, a contradiction. O



Chapter 3

Paths and trees

3.1 Introduction

Probably T, the class of trees, is the most simple (but interesting) family to study its
chromatic number. In the case of simple graphs, it is well-known that x1)(7) = 2;
since an edge require 2 colors, and every tree admits a homomorphism to K, (i.e. K is
T —universal). In the context of oriented graphs, we have x(1,0)(7) = 3; since the direct

path on 3 vertices require 3 colors, and it is not difficult to argue that 83, the circuit on
three vertices, is 7 —universal.

In the general context of colored mixed graphs, Nesetiil and Raspaud [43] provided,
for every value of (n,m), the (n, m)-colored mixed chromatic number of 7. Instead of

3

the original statement we present here the following which is equivalent.

Theorem 3.1 (Nesetfil, Raspaud, [43]) X(nm)(T) =2n+m + €, where e =1 form
odd or m =0, and € = 2 for m > 0.

To prove the upper bound, the authors exhibited an (n,m)-colored mixed graph of
order 2n + m + 1 which is 7T—universal when m odd or m = 0, and an (n, m)—colored
mixed graph of order 2n + m + 2 which is 7—universal when m is positive and even. We
will present these graphs in Section 3.2 and prove that they are universal.

On the other hand, to prove the lower bound of Theorem 3.1, the authors constructed,
for m odd or m = 0, an (n, m)—colored mixed tree with chromatic number 2n-+m-1, and,
for m positive and even, an (n, m)-colored mixed tree with chromatic number 2n +m + 2.
As we will see in Section 3.2, both examples have maximum degree 2n+m. This suggests
the question of whether this upper bound for the colored mixed chromatic number of
trees, can be improved within a simpler class of trees.

27
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We succeeded to prove that the colored mixed chromatic number of trees given in
Theorem 3.1, is reached by the much simpler family of paths. Thus, the colored mixed
chromatic number of £, the class of paths, is the same as for the class of trees. In other
words, there are paths with colored mixed chromatic number as large as the highest
colored mixed chromatic number of a tree.

Theorem 3.2 x(m)(L) = 2n+ m + ¢, where e =1 for m odd or m =0, and € = 2 for
m > 0 even.

In Section 3.3 we will prove Theorem 3.2 by constructing an (n,m)-colored mixed
path with chromatic number 2n +m + 1 if m is odd or m = 0, and an (n, m)-colored
mixed path with chromatic number 2n + m + 2 if m is positive and even.

3.2 The colored mixed chromatic number of trees

In this section we prove Theorem 3.1. We first prove the upper bound. Next we describe
an (n, m)-colored mixed graph of order 2n 4+ m + ¢ which is 7 —universal (recall e = 1 for
m odd or m = 0, and € = 2 for m > 0 even).

e We will define the target graph Kopimie. It is a complete (n,m)-colored mixed
graph, whose underlying graph is the complete graph Ky, .. and his colored edges
and colored arcs are given as follows. It is well known that the set of edges of
Kopimi1 (resp. Kopimy2) can be decomposed into n+ 2L (resp. n+2) Hamiltonian
cycles and one perfect matching. Thus, we orient and color the edges in order to
obtain, a monochromatic Hamiltonian circuit for each color i € {1,...n} and one
perfect matching for each color i € {1,...m}.

In Figure 3.1 you can see these target graphs for some values of (n, m). We shall note
that, in the cases when ¢ = 1 we use all edges, while in the cases when ¢ = 2 there is a
matching which is not used.

Proposition 3.1 The (n,m)—colored mized graph Kop mc is T —universal.

Proof.  Note that the complete (n, m)—colored mixed graph Koy e is such that each
vertex is incident to one arc of each type (orientation and color) and with one edge of
each color. Hence, for any colored mixed tree T', there is a colored homomorphism from
T to Kopymye: we use a depth first search of T' from any root of T'; map the root into any
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(0,1) (0,2) (1,1)

(1,0)

(2,0)

Figure 3.1: The target graph Ky, e Which is universal for the family of trees.

AT

(0,1) (1,0) 0.2) (1.1

e

(2,0) (1,2)

(1.2)

Figure 3.2: A colored mixed tree with highest chromatic number.
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vertex of Koy imie, then each new vertex v can be mapped according to the type of the
adjacency between v and another already visited vertex. O

Now we prove the lower bound. We construct an (n,m)-colored mixed tree with
chromatic number at least 2n + m + €.

e When m is odd or m = 0, consider the (n, m)-colored mixed star S with 2n+m+1
vertices in which every leaf has a different type (see Figure 2.1). When m is positive
and even, consider the tree S* constructed from the star S as follows. Take 2n 4+ m
copies of S named Sy, ..., Sap1m and, for each i € {1,...,2n+m}, let v; be the vertex
of S; such that the adjacency from the central vertex of S; to v; is of type i; we
identify these 2n 4+ m vertices v;’s in order to obtain S*.

In Figure 3.2 you can see the trees S and S* for some values of (n,m). We shall note
that, in all cases the maximum degree is 2n + m.

Proposition 3.2 The (n, m)-colored mized tree S (resp. S*) has chromatic number at
least 2n +m+1 (resp. 2n+m + 2).

Proof. By Remark 2.1, every vertex of S must be assigned distinct colors in any
admissible coloring, hence S has chromatic number 2n + m + 1. To see that S* has
chromatic number at least 2n + m + 2 suppose first that S* — H for some (n, m)—colored
mixed graph H of order 2n 4+ m + 1. By Remark 2.1, every vertex of S* which has degree
at leas two, must be assigned distinct colors, hence all vertices of H necessarily are such
that there is exactly one edge/arc of each type incident to it. Now consider the subgraph
of H induced by the edges of one color (recall we are in case m > 0), this graph should
be a perfect matching which is impossible since H has odd order. O

This conclude the prove of Theorem 3.1.

3.3 The colored mixed chromatic number of paths

In this section we prove Theorem 3.2. We will construct an (n,m)-colored mixed path
with chromatic number 2n + m + ¢, where e = 1 if m is odd or m =0, and € = 2 if m is
positive and even. This colored mixed path is going to be the concatenation of many other
colored mixed paths, one for each (n, m)-colored mixed complete graph on (2n+m+¢)—1
vertices.

Consider a fixed (n, m)-colored mixed complete graph H on (2n+m + €) — 1 vertices.
We will construct an (n, m)-colored mixed path L such that L - H. Since the number
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of (n,m)-colored mixed complete graphs of fixed order is finite, the concatenation of all
such paths cannot be mapped onto any (n,m)-colored mixed complete graph of that size.
Thus we get an (n, m)-colored mixed path with chromatic number 2n + m + e.

In order to construct the path L such that L —-» H, where H is a fixed complete

(n, m)-colored mixed graph on (2n + m + €) — 1 vertices, the key idea is to find:

1. A sequence of types: ti,...,t. where t; € {1,...,2n+ m} and,

2. A sequence of subsets Xo, X1,..., X, of V(H), with the following properties:

i) X; = N, (X; 1) for every i € {1,...,r} and,
iii) X, = 0.

This allows us to define L. Indeed, define L := vy, vy, ..., v, where t(v;_1,v;) = t;. Now,
for every homomorphism from L to H, the first vertex of L must be mapped onto a vertex
of Xy = V(H), the second vertex onto a vertex of X and so on. Since X, is the empty
set, no such homomorphism can exist. To find the sequence of types and subsets with
the properties defined above, we split the proof into two cases according to the value of
€. Before that, we prove a simple but useful counting lemma.

Lemma 3.1 Let X be a subset of vertices of a complete (n,m)-colored mized graph H.
Then,

e IN(X)| < X[(IV(H)| - 1)

Proof.  Consider the bipartite (n, m)-colored mixed graph By defined as follows. The set
of vertices is the disjoint union of a copy of X and a copy of V(H). We add every edge or
arc (z,v) € X x V(H), with the same color and orientation as (z,v) in H (thus the only
edges we don’t have in By are the ones for which = and v correspond to the same vertex in
H). Denote by E;(Bx) the set of arcs or edges from X to V(H) of type i. Observe that the
total number of edges in By is | X |(|V(H)|—1). Then 2™ |Ei(Bx)| = |X|(|V (H)|-1).
The result follows since |N;(X)| < |E;(Bx)| for every i € {1,...,2n+ m}. O

Case 1. e =1 (m odd or m = 0)

Let H be a complete (n, m)-colored mixed graph on 2n + m vertices. We start with
Xo = V(H). By means of Lemma 3.2, we are able to find a strictly decreasing sequence
of subsets |Xo| > |Xi| > ... > |X,| and a sequence of types ti,...t, such that X; =
N, (X;_1). Since in every step the size of the subset decreases, eventually we get X, = ().
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Lemma 3.2 For any subset of vertices X of a complete (n, m)-colored mized graph on
2n + m wvertices, there exists i € {1,...,2n 4+ m} such that |N;(X)| < |X].

Proof. By Lemma 3.1, we have S |N;(X)| < |X|(2n + m — 1), and the result
follows. O

Case 2. ¢ =2 (m > 0 even)

Let H be a complete (n, m)-colored mixed graph on 2n +m + 1 vertices. In this case
we can not apply Lemma 3.2 to construct a strictly decreasing sequence of subsets as in
Case 1. Instead, by means of Lemma 3.3 below, we can guarantee that if we can not
decrease, then all neighborhoods have the same size.

Lemma 3.3 For any subset of vertices X of a complete (n, m)-colored mized graph on
2n +m + 1 vertices, either there exists i € {1,...,2n +m} such that |[N;(X)| < |X]| or
IN:{(X)| = |X]| forallie{l,...,2n+ m}.

Proof. By Lemma 3.1 we obtain "™ | N;(X)| < | X|(2n + m) and the result follows.
O

Now more work is required. Suppose X C V(H) is such that |N;(X)| = |X| for all
i €{l,...,2n+m}. In Lemma 3.5 we show that in at most three steps we can reduce
the size of the subset. In order to prove it, we need the next Lemma.

Lemma 3.4 In any (n,m)-colored mized complete graph on 2n + m + 1 vertices with
m > 0 even, there exists a vertex incident to at least 2 edges of the same type.

Proof.  Any vertex v of H has degree 2n + m. If v is not incident to an edge of a
particular type, then v would be the desired vertex (being 2n+m types in total). Assume
that every vertex is incident to exactly one edge of every type. Then any color class of
edges would induce a perfect matching of H. This is a contradiction since H has an odd
number of vertices. O

Lemma 3.5 If a subset of vertices X of a complete (n, m)-colored mized graph on 2n +
m + 1 vertices with m > 0 even is such that |N;(X)| = |X| for all i € {1,...,2n+ m},
then there exist j, k,l € {1,...,2n+m} such that |N,(Ny(N;(X)))| < |X].

Proof. By Lemma 3.4, there exists a vertex u € V(H) incident to at least two edges of
type k € {1,...,2n+m}. Since H is a complete (n, m)-colored mixed graph, u € N;(X)
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for some j € {1,...,2n+m}. By hypothesis, |N;(X)| = |X|. We may assume that N;(X)
is such that |V;(N;(X))| = |[N;(X)| for every i € {1,...,2n+m}, otherwise by Lemma 3.3
we are done. Then we have |N,(N,(X))| = |N;(X)| = |X|. Name Y := N,(N,;(X)). We
will use the bipartite graph By, defined as in the proof of Lemma 3.1. By construction,
there are two vertices v,w € Y with a common k-neighbor (u). Therefore |Ny(Y)| <
|Ex(By)|. We suppose |Ni(Y)| = |Y| (otherwise by Lemma 3.3 we are done). Thus we
have |Y| < |Ei(By)|, and the result follows since S_7°F™ |Ey(By)| = |Y|(2n 4 m). O

This conclude the prove of Theorem 3.2.
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Chapter 4

Graphs with bounded acyclic
chromatic number

4.1 Introduction

As we said before, most of the work related to the study of homomorphisms as a gener-
alization of colorings has been done in the context of oriented graphs. One of the first
problems considered in this framework was to characterize the families of graphs hav-
ing bounded oriented chromatic number. In 1994, Raspaud and Sopena [53] proved that
families of graphs with bounded acyclic chromatic number have also bounded oriented
chromatic number. A few years later, in 1996, Alon and Marshall [4] provide the anal-
ogous result for edge—colored graphs. In 2000, Nesetiil and Raspaud [43] came with the
notion of colored mixed graphs and proved the result which unify and generalize these
two former results (Theorem 4.1 below).

Recall that the acyclic chromatic number of a simple graph G, is the smallest number
of colors needed in an acyclic coloring, which is a proper vertex coloring satisfying that
every cycle receives at least three colors. We denote by Aj the family of graphs with
acyclic chromatic number at most k.

Theorem 4.1 (Nesetfil, Raspaud, [43]) X(nm)(Ar) < k(2n +m)FL.

We found interesting to include in this thesis the proof of Theorem 4.1, since it is a
refinement of the technique used in [53] for oriented graphs, and the technique used in [4]
for edge—colored graphs; thus we prove Theorem 4.1 in Section 4.2.

In the same paper [43] the authors proved that the main term in the bound of The-
orem 4.1 is, in a sense, best possible. They show, for all (n,m) # (0,1), a graph with
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acyclic chromatic number at most k, and colored mixed chromatic number greater than
(2n +m)* ! + k — 1. It is an interest problem then, to ask if the bound given in Theo-
rem 4.1 is tight in particular cases; for instance one can consider particular values of k or
particular values of n and m.

Example 4.1 In the case of simple graphs (n,m) = (0,1) the bound of Theorem /.1 is
tight. Recall that the colored mixzed chromatic number in this case is just the ordinary
chromatic number. Thus the statement says that, if a simple graph has acyclic chromatic
number at most k, then it has chromatic number at most k (triviality). Since there are
simple graphs with acyclic chromatic number at most k and chromatic number k, then the
bound is tight; for instance consider the complete graph of order k for which x.(Ky) =

X(Ky) = k.

Example 4.2 Consider now the case when k = 2. Then Theorem 4.1 states X(mm)(AQ) <
4dn + 2m. Note that the family of graphs with acyclic chromatic number at most 2, is in
fact the family of trees, for which we know that the colored mized chromatic number is
2n + m + € (Theorem 3.1). Then is not difficult to see that the upper bound given in
Theorem 4.1 for k = 2 is tight in the cases of simple graphs (n,m) = (0,1), and 2-edge
colored graphs (n,m) = (0,2).

The techniques used to prove Theorem 4.1 suggested that may be for k£ > 3, the bound
is not tight. However, Ochem [47] surprisingly proved that the bound in Theorem 4.1 is
tight for every k& > 3 in the class of oriented graphs: (n,m) = (1,0). He constructed
an oriented graph for which the acyclic chromatic number of the underlying graph is at
most k and its oriented chromatic number is £2*~!, which is the corresponding value of
the bound in this case.

In Section 4.3 we extend Ochem’s construction to show an (n, m)—colored mixed graph
for which the acyclic chromatic number of the underlying graph is at most k£ and its
chromatic number is k(2n+m)*~!. By means of this result we prove that the upper bound
given in Theorem 4.1 is still tight for every k¥ > 3 in the more general class of (n.m)-
colored mixed graphs for every (n,m) # (0, 1); since the same is true for (n,m) = (0, 1)
(Example 4.1) we get the following result.

Theorem 4.2 For every k > 3 and every m > 0 and n > 0, X(nm)(Ax) = k(2n +m)*L.

4.2 A universal colored mixed graph for A;

In this section we prove Theorem 4.1. We will construct a target graph H on k(2n-+m)*!
vertices which is A,—universal.
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R oK

(2,0) (1,2)

Figure 4.1: The colored mixed graph Koy 2n+m, Which is 7—universal, with the extra
property that preserves the bipartition of trees.

We first define a colored mixed graph Ky, 41, 2n4m, Which is 7—universal, with the
extra property that preserves the bipartition of trees (according to the fact that a tree is
a bipartite graph).

e We will define the target graph Konim2ntm. It is a (n, m)-colored mixed complete
bipartite graph, whose underlying graph is the complete bipartite graph Koy m 2ntm
and his colored edges and colored arcs are given as follows. It is well known that the
set of edges of Koy im 2ntm can be decomposed into % Hamiltonian cycles and
one perfect matching if m is odd, or 22+™ Hamiltonian cycles if m is even. Thus, we
orient and color the edges in order to obtain a monochromatic Hamiltonian circuit

for each color i € {1,...n} and one perfect matching for each color i € {1,...m}.

In Figure 4.1 you can see these target graphs for some values of (n, m). We will denote
V(’C2n+m72n+m> =UUW with U = {ul, ey u2n+m} and W = {wl, ceny w2n+m}.

Proposition 4.1 Let T be any (n,m)—colored mized tree and Vi, Vo be any bipartition
of its set of vertices into stable sets. Then there exist a colored homomorphism from T to
Kontmont+m Which maps Vi into U and Vy into W.

Proof.  Notice that Kopymon+m is such that each vertex is incident to one arc of each
type (orientation and color) and with one edge of each color. Hence, we can use a similar
argument as in the proof of Proposition 3.1. We can use a depth first search, by mapping
the root into any vertex of the correct stable set. ad

By means of Koy, 4m.2n1m we define the target graph H on k(2n+m)*~! vertices which

is Aj—universal.

e The target graph H has the following set of vertices:
V(H)=A{(i;,a1,a9, ..., a;—1, @i+1, ..., ax) } where i € {1,....k} and



38 CHAPTER 4. GRAPHS WITH BOUNDED ACYCLIC CHROMATIC NUMBER

2:22) (221 @12 @11) G (312 321 (3:22)

Figure 4.2: A (0,2)—colored mixed graph on 12 vertices which is A3—universal.
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a€{l,...2n+m}, L e {1,....k}\ {i}.
For 1 <i < j <k, two vertices of H, (i;, a1, a9, ..., 4;i_1, Ai11, ..., a) and

(7;,b1,b2, ..., bi—1,bis1, ..., by ) are linked by an edge or an arc with the direction and
the color according to the one linking v € U and w € W where v = a; and w = b;.

In Figure 4.2 you can see this target graph for (n,m) = (0,2) and k = 3.
Proposition 4.2 H is Ap—universal.

Proof. Let G be an (n, m)—colored mixed graph for which its underlying graph is in Ay.
We define a colored homomorphism from G to H. Let Vi, ..., V} be the color classes of an
acyclic coloring of G. For any i and j with 1 <i < j <k, G[V; UVj], the induced graph
by Vi UVj is a forest. Hence, by Proposition 4.1 there exist a colored homomorphism
¢;; which maps V; (resp. Vj) into U (resp. W). We define the colored homomorphism
f G — H as follows. Let v be a vertex of G; then v € V; for some i € {1,...,k}.
The image of v will be f(v) = (i;¢14(v), ..., cix(v)). The constraints of coloration and
orientation is satisfied. Indeed, if v € V;, w € V}, and the type t(u, w) = t in G; then, by
definition of I, the type t(f(u), f(w)) =t in H. O

Since the number of vertices of H is exactly k(2n + m)*~!, we conclude the proof of
Theorem 4.1.

4.3 Extending Ochem’s construction

In this Section prove Theorem 4.2. We construct, for every k > 3, a simple graph G(k)
with acyclic chromatic number at most k and (n,m)-colored mixed chromatic number
k(2n +m)*=! when (n,m) # (0,1).

e We now define the graph G(k). Consider B the complete bipartite graph with
independent sets U = {u1, ..., Ugpinr—1} and W = {wy, ..., wp_1}. Take k disjoint
copies By, Bs,...By of B with their respective stable sets labeled Uy, Us, ..U, and
Wi, Wy, ..Wy. For each pair of subscripts 1 < i < j < k and each pair of vertices
(x,y) € U; x Uj, we add an extra vertex z = z;;(z,y), connected to x and y (see
Figure 4.3).

Proposition 4.3 For every k > 3, G(k) € Ay.
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,,,,,,,,,,,,,,,,,,,,,,

Figure 4.3: The simple graph G(k) with acyclic chromatic number at most k and (n, m)—
colored mixed chromatic number k(2n + m)*F=1.
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W, W,

Figure 4.4: How to color the bipartite graph B, example for £ = 3 and (n,m) = (0, 3).

Proof.  We acyclically color G(k) as follows. Every vertex in U; gets color i and all
vertices in WW; get pairwise distinct colors in {1,2...k}\{i}. Thus every cycle in each copy
of B gets at least three different colors. For each pair (z,y) € U; x U; we color the extra
vertex z;;(x,y) by any color in {1,2...k}\{¢, j}, so that every cycle involving extra vertices
has at least three colors and the resulting coloring is proper (see Figure 4.3). O

Proposition 4.4 For every k > 3, X(nm)(G(k)) = k(2n 4+ m)*1, when (n,m) # (0,1).

Proof. 'We color and orient the edges of each copy of B in such a way that the vertices
of U necessarily get distinct colors in every admissible coloring. This can be done since
there are (2m +n)*~! different vectors of length k — 1 with entries in {1,...2n+m}. Thus
we can color and orient the edges of B in order to have the sequences of types of vertices
in U pairwise distinct, that is: for every pair of different vertices u;, u; € U, we have:

(t(ui, wl), t(u,», wg)...t(ui, wk_l)) 7& (t(u]', U)l), t(uj7 wg)...t(u]-, wk_l)).

In Figure 4.4 you can see an example with £ = 3 and (n,m) = (0, 3).

Now we color and orient the edges connecting the extra vertices, in such a way that
t(x, z) # t(y, z) (recall that (n,m) # (0,1).) By construction, the vertices in U; UUs...UUj,
get pairwise distinct images. Since |UF_, U;| = k(2m + n)*~! then x(um)(G(k)) > k(2n +
m)FL. O

Hence, for every k > 3, we get a graph G(k) € Ay, with x(um)(G(k)) = k(2n + m)*~!
when (n,m) # (0,1). This conclude the proof of Theorem 4.2, since Example 4.1 provides
the result for (n,m) = (0,1).



Chapter 5

Partial k—trees

5.1 Introduction

Up to now we have studied the colored mixed chromatic number of paths, trees and
graphs with bounded acyclic chromatic number. In this Section we study the colored
mixed chromatic number of the class of graphs with bounded treewidth, or partial k-
trees. This is a very important class of graphs from the algorithmic point of view, since
many problems that are NP-hard for general graphs become polynomial or linear time
solvable when restricted to graphs with bounded treewidth.

Recall that a k-tree is a simple graph obtained from the complete graph Kj by re-
peatedly inserting new vertices linked to all vertices of an existing clique of order k. A
partial k-tree is a subgraph of some k-tree. It is not difficult to see that every partial
k-tree has acyclic chromatic number at most (k + 1): starting with a proper k—coloring
of the complete graph K, every newly inserted vertex has exactly k& neighbors and can
be thus colored using a (k + 1)-th color; moreover, this coloring is clearly acyclic since
all the neighbors of a newly inserted vertex have pairwise distinct colors. Therefore, by
Theorem 4.1 we get the following upper bound for the class 7% of partial k-trees.

Theorem 5.1 X(m)(T*) < (k+1)(2n + m)*.

Concerning the class of partial k—trees we are not able to get the precise colored mixed
chromatic number as for the classes of paths (Theorem 3.2), trees (Theorem 3.1) or graphs
with bounded acyclic chromatic number (Theorem 4.2). Instead we prove that the upper
bound given in Theorem 5.1 has the correct order of magnitude on (2n + m), that is:

Theorem 5.2 X(,,m)(T*) = ©((2n + m)¥)

41
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In order to prove Theorem 5.2, we will exhibit in Section 5.2 partial k—trees with
colored mixed chromatic number greater than (2n+m)* (see Propositions 5.1 and 5.2 for
precisely statcments).

It is natural to try to improve the bound given in Theorem 5.1, by exhibiting universal
graphs in particular cases: particular values of n and m, or particular values of k.

To prove that a target graph is universal for some family we need ”useful” properties.
Concerning the family of partial k—trees, in the context of oriented graphs, Sopena [59]
described a property named property Py. In Section 5.3 we generalize this property to
the more general context of colored mixed graphs, and prove several results.

In particular we exhibit a 2-edge colored graph on 9 vertices with property P, and
a 2—edge colored graph on 20 vertices with property Ps; both of these target graphs are
optimal by the lower bounds given in Section 5.2. Additionally, we construct a mixed
graph on 21 vertices and a 2—-arc colored oriented graph on 28 vertices, both with with
property Ps; these target graphs improve the upper bound given in Theorem 5.1 when
k = 2, in the cases (n,m) = (1,1) and (n,m) = (2,0). With these target graphs we
obtain the following result.

Theorem 5.3 Let T2 (resp. T?3) be the class of partial 2—trees (resp. partial 3—trees),

then

(T2

2. X(O,Q)(T3

3. X(1,1)(T2
(T?) <2

1. X(O,Q 9
20.

IN

)
)
) < 21.
)

0

4. X(2,0

5.2 Constructions for lower bounds

In this Section we will construct partial k—trees with colored mixed chromatic number
greater than (2n + m)*. The key idea to do it, is to generalize a construction proposed
by Sopena [59]; we shall note that if we take (n,m) = (1,0) in Proposition 5.1 below,
we obtain 2% + 2k-1 4 22

-—— which is precisely 2¥*! — 1 the bound given in Theorem 3.9
of [59].

1

Proposition 5.1 Let e =1 for m odd or m = 0, and € = 2 for m > 0 even. For every
kE>1,m >0 and n > 0, there are partial k—trees with (n, m)—colored mized chromatic
number at least:
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(2n+m)F—1-1

(2n + m)k +e(2n + m)k_l + Cntm 1

When m is positive and even, and k > 3, we can improve this lower bound by one.
This will allow us to get a tight bound for the (0,2)-colored mixed chromatic number of
partial 3—trees in Theorem 8.

Proposition 5.2 Let ¢ =1 for m odd or m =0, and € = 2 for m > 0 even. For every
k > 3 and every n > 0 and m > 0 even, there are partial k—trees with (n,m)-colored
mized chromatic number at least:

(2n+m)k—1-1

(2n+m)—1 + 1.

(2n+m)* +2(2n +m)F! +

To make the writing easier, let:

(2n4+m)*—1-1
(2n+m)—1 °

a(x) = (2n+m)® +e(2n+m)* ' +

Thus Proposition 5.1 states that there are partial k—trees with colored mixed chromatic

number at least a(k) for every k > 1, m > 0 and n > 0; and Proposition 5.2 states that

for £ > 3 and m > 0 even, there are partial k—trees with (n, m)—colored mixed chromatic
number at least a(k) + 1.

In order to prove Proposition 5.1, we will use the following construction and the exact
colored mixed chromatic number of trees.

e Let G be an (n, m)-colored mixed graph.

Define G" as the (n, m)-colored mixed graph obtained by taking {G1, G2, ...G2nm},
2n +m disjoint copies of G, and adding a new vertex u adjacent to all other vertices
in such a way that, for every v € G}, the type t(u,v) =i (see Figure 5.1).

Let G* be defined inductively by G° = G and for every k > 1, G* = (GF~1Y'.

The vertex u is called the central vertex of G'. By construction, in every H—coloring
of G*, all vertices in G¥~! get distinct colors from those assigned to the vertices in Gf‘l
when i # j. Moreover the central vertex u most be assigned a distinct color from those
assigned to all other vertices. Thus we have the next:

Remark 5.1 For every (n,m)—colored mized graph G and every k > 1, x(G*) > (2n +
m)x(GF1) + 1.
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Figure 5.1: Given G we construct G’ with higher chromatic number.

Proof of Proposition 5.1:- To prove our result we proceed by induction on k. For
k = 1, Theorem 3.1 provided us an (n,m)-colored mixed tree with chromatic number
a(1) = 2n +m + e. Suppose now that the result holds up to (k — 1) and let T*=) be an
(n, m)-colored mixed partial (kK — 1)-tree with chromatic number at least a(k — 1). By
Remark 5.1, T% = (T®*=1)" has chromatic number at least (2n +m)a(k — 1) + 1, which is
precisely a(k). It remains to show that T* is a partial k—tree; we can verify this by taking
k" =k —1 in the next Proposition proved in [59]. O

Proposition 5.3 (Proposition 3.2 in [59]) Let T} be a partial k—tree, X = (x1,xo, ...xx)
a k—clique subgraph of T\ and Ty a partial k'~tree (k' < k). The graph T3 obtained from
11 and T by adding edges from every vertex of Ty to vertices x1,Ta, ...Ty 1S also a partial
k—tree.

Now let us prove Proposition 5.2; the basic fact that we use to do it, is the following:
Remark 5.2 For m even and k > 3, both a(k — 1) and a(k) are odd numbers.

We ask m to be positive in the sentence of Proposition 5.2, since in our proof we use
the subgraph induced by the edges of one color. For m > 0 even and k& = 2, our proof
fails since a(1) is an even number (in fact, the statement of Proposition 5.2 is not true
for £ = 2; in Section 5.3 we will show a (0,2)-colored mixed graph on a(2) = 9 vertices
which is universal for the family of partial 2-trees). For m odd, our proof fails since a(k)
is even when k is odd, while a(k) is odd when £ is even.
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The construction that we will use to prove Proposition 5.2 is the following.

e Let T* be the (n, m)-colored mixed partial k—tree constructed in the proof of Propo-
sition 5.1.

Define (T*)" as the (n, m)—colored mixed graph obtained from a copy of 7%, namely
T¥, by gluing on each vertex v € V(T¥) a new copy of T* by its central vertex.

Observe (T*)" is a partial k—tree.

Proof of Proposition 5.2:- To prove our result, we will show that there are no
homomorphisms from (7%)" to any (n, m)-colored mixed complete graph of order a(k).
Suppose to the contrary that (T*)" is C—colorable for some (n, m)—colored mixed complete
graph C of order a(k). Recall that T* is such that x(nm) (%) = a(k) and since every vertex
in T¥ is a central vertex of a copy of T*, necessarily C' is such that for every vertex v € C
and every type i € {1,...,2n + m} it happens that |N;(v)] > a(k — 1). Since C has
a(k) vertices of degree a(k) —1 = (2n + m)a(k), then actually |N;(v)| = a(k — 1) for
every i € {1,...,2n + m}. In particular, look at the subgraph induced by the edges of
one color (recall m > 0); this graph is a(k — 1)-regular and has a(k) vertices, which is
a contradiction, since in any graph the number of vertices of odd degree is even, and by
Remark 5.2 both a(k — 1) and a(k) are odd numbers. O

5.3 The property P,

In this Section we will prove Theorem 5.3.

As we said before, to get upper bound for the colored mixed chromatic number, one
often tries to find a universal graph. To prove that a target graph is universal we need
7useful” properties. Concerning the class of partial k—trees, in the context of oriented
graphs, Sopena [59] described a property named property P,. We generalize this definition
to colored mixed graphs.

A pattern @ = qiqo...qx, of length k is a (non-empty) word in {1,...,2n + m}*. Let
S = {wvy, ..., ux } be a sequence of k vertices in a colored mixed graph G. A vertex u € V(G)
is said to be a Q—neighbor of S if t(u,v;) = ¢; for every i.

Definition 5.1 We say that a colored mized graph G satisfies property Py for some
k> 0, if for every sequence S = {vy, ..., v, } which induce an n—clique subgraph of G, with
1 <n <k, and every pattern Q = q1qo...q, of length n, there exist a Q—neighbor of S.
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The next Proposition is a natural generalization of Theorem 3.4 in [59].

Proposition 5.4 Every colored mized graph G satisfying property P, is universal for T*.

Proof.  Let G be a colored mixed graph satisfying property P,. We will prove that
every colored mixed k-tree T}, admits a homomorphism to G (observe that it suffices to
consider the case of k—trees, since partial k—trees are subgraphs of k—trees). We proceed
by induction on p, the number of vertices of T. If p = k then T} is a complete colored
mixed graph. By definition, if G satisfies property Py then G contains as a subgraph all
complete colored mixed graphs. Let T be a colored mixed k—tree with p 4+ 1 vertices.
Since there exist a vertex v in T with degree k£ whose deletion leads to another k-tree,
the induction hypothesis ensures that 7 — v admits a homomorphism to G. Since G has
property Pr we can extend that homomorphism to a homomorphism from T to G. O

We shall notice that for k£ = 1, a k—tree is a usual tree, and a colored mixed graph with
property Pi, is a colored mixed graph in which each vertex is incident with at least one
arc of each type (color and orientation) and at least one edge of each color. In Section 3
we gave the colored mixed chromatic number of trees (Theorem 3.1); the upper bound
was proved by exhibiting an (n, m)—colored mixed graph with property Py on 2n+m + €
vertices; by the lower bound, it follows that this target graph is actually the smallest
colored mixed graph with property P;.

For k = 2,3,4 and 5, in the context of oriented graphs, some target graphs with
property Py have been found which improves the upper bound given in Theorem 5.1:

e The circulant tournament on 7 vertices @ R7, constructed by the non—zero quadratic
residues, has property P, and is optimal since there are oriented partial 2—trees with
oriented chromatic number 7 [59].

e The Tromp graph Tr(QR;) on 16 vertices, has property P; and is optimal since
there are oriented partial 3—trees with oriented chromatic number 16 [59] (see the
Tromp construction in Section 5.3.2).

e There exist oriented graphs with property Pj for £ = 4 and 5, having respectively
40 and 96 vertices (these graphs are not known to be optimal) [2].

In order to prove our Theorem 5.3, we will next exhibit a 2—edge colored graph on
9 (resp. 20) vertices with property P, (resp. Ps); these target graphs are optimal by
the lower bounds given in Proposition 5.1 and Proposition 5.2 respectively. We also will
exhibit a mixed graph on 21 vertices and a 2-arc colored oriented graph on 28 vertices,
both with property P»; we can verify that these graphs improve the general upper bound
given in Theorem 5.1, however we were not able to prove (or disprove) that they are
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Wi

Wa

Figure 5.2: The graph C30C5 induced from one color in Tg.

optimal. To fine a colored mixed graph with property P; in the cases (n,m) = (1,1)
and (n,m) = (2,0) which improves the general upper bound given in Theorem 5.1 is a
challenging problem.

Now we proceed to define our target graphs.

5.3.1 A 2—edge colored graph on 9 vertices with property P

We define such a target graph Ty, by means of the graph C30C5 depicted in Figure 5.2.
Observe this graph is self complementary (i.e. isomorphic to its complement graph).

Thus, the complete graph of 9 vertices can be decomposed into two edge disjoint copies
of CgDC3.

e The 2-edge colored graph Tj, is the complete 2-edge colored graph on 9 vertices,
where the edges of each color induce an isomorphic copy of C50Cs5.

Proposition 5.5 The 2-edge colored graph Ty has property Ps.

Proof.  First observe that each vertex in Ty has a neighbor of each color. Now, we must
show that for every edge (u,v) in Ty, and every pattern {t;,to} with ¢; € {1,2}, there
exist a vertex w € V(Ty) such that ¢(w,u) = t; and t(w,v) = t,. By the symmetry
of Ty is enough to verify this condition for the edge (u,v) in Figure 5.2. Observe that
{t(w;,u), t(w;,v)} where 1 < i < 4 correspond to the 4 patterns {t1,¢,} with ¢; € {1,2}.
O

5.3.2 A 2—edge colored graph on 20 vertices with property P;

We define such a target graph by means of the so called Tromp construction proposed by
Tromp [65]; this construction was already used to bound the oriented chromatic number
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Figure 5.3: The (0,2)-colored mixed Tromp graph ¢r(G).

of partial 3—trees [59].

Let G be a 2-edge colored graph G = (V(G), E1(G), F9(G)), and G’ be an isomorphic
copy of G. The Tromp 2-edge colored graph Tr(G) = (V(Tr(G)), E1(Tr(Q)), Eo(Tr(G)))
has 2|V(G)| + 2 vertices, and is defined as follows:

V(Tr(G)) =V(G)UV(G) U{x,2'};
for every u € V(Q), uz,v's" € E1(Tr(G)) and v'z,uz’ € Ey(Tr(G));

for every uv € E;(G), uwv,u'v' € E;(Tr(G)) and v'v,uv’ € E3 ;(Tr(Q)).

Figure 5.3 illustrates the construction of Tr(G).

e The 2-edge colored graph we consider, is the 2-edge colored graph on 20 vertices
TQO =Tr (Tg)

Proposition 5.6 The 2—edge colored graph Ty has property Ps.

Proof. We must show that for every triangle [u1,us, u3] in Ty, and every pattern
(t1,t2,t3) with ¢; € {1,2}, there exist a vertex v € V(Ty) such that t(v,u;) = t; for each
i € {1,2,3}. Let the vertex set V(Ty) = V(To)UV (T3)U{z,2'} = {1,2,3,4,5,6,7,8,9}U
(1,2,3,4,5,6,7,8,9YU {z,2'}.

By the symmetry of Ty it is not difficult to verify that is sufficient to consider the
following four cases:
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(1) Suppose that uy, us, us € V(Ty). Is enough to consider the triangles [1,2, 3], [1, 2, 4],
[1,2,5] and [L,2,6].

(2) Suppose uy,us € V(Ty) and uz € V(73). Is enough to consider the triangles [1, 2, 3'],
[1,2,4, [1,2,5] and [1, 2, 6"].

(3) Suppose uy,us € V(Ty) and uz € {z,2'}. Is enough to consider the triangles [1, 2, x]
and [1,2,2].

(4) Finally suppose u; € V(Ty) uy € V(Tj) and uz € {z,2'}. Is enough to consider the
triangles [1,2’, 2] and [1,2', 2'].

The table below gives, for each case mentioned below and each pattern (¢, ts,¢3), the
required vertex v.

| [[123]][124][[125]][126][[123"]][124'][[125"]|[126"] [ [12][[122"][[12'2]][12'2"]]
(L,1,| 2| 2 2| o 6’ 3 31 9 3 6’ 4 5
(1,1,2)| 6| 3| 3| 9 2| o I Y 3l Y 4
(1,2,0)| 5| 7| 5| 4] 4 5| 7| 5| 4 ¥ 3l ¢
(1,22) 4f 5| 7| 5 5| 7 5 4 5| 4] ¢ 3
2,0 4| 5 7 5 5 7| 4| 4 5 4 6| 3
(2,1,2)
(2,2,1)
(2,2,2)

8

012 5 7| | 4 | s 7| s « 5 3 6
22,1 6| 3 3 9 x x x x 6 3 5 4
22,2 xl x| x| =z 6| 3 3 9 3 6 4 5

5.3.3 A mixed graph on 21 vertices with property P,

A circulant graph G = G(n;cy,...,cq) has V(G) = {0,1,...,n — 1} and (x,y) € A(G) if
and only if y = 2 4+ ¢; (mod n) for some i, 1 < i < d. If n is a prime number of the form
4k + 3 and the ¢;’s are the non—zero quadratic residues of n, then d = |(n — 1)/2| and
G = QR(n; ¢, ..., cq) is a tournament.

We define our mixed graph on 21 vertices T5;, by means of the circulant tournament
QR(7;1,2,4). Tt is not difficult to prove that this graph is arc transitive and has property
Ps.

e The mixed graph Ty, is obtained by taking three copies of QR(7;1,2,4), named
Q1, Q2 and Q4. For each i € {1,2,4}, we replace in @); the arcs of the form (z,y),
y = x +1i (mod 7), with simple edges (see Figure 5.4). Then, for distinct i, j, k €
{1,2,4}, we put an arc or an edge from z € QR; to y € Q; if the corresponding arc
or edge is in Q.
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Figure 5.5: Construction for the mixed graph T5;.

Figure 5.5 illustrates this construction.

Proposition 5.7 The mized graph Ty has property Ps.

Proof. We use a program to confirm that for every edge (u,v) in Ty, and every pattern
{t1,t2} with t; € {1,2}, there exist a vertex w € V(Ty) such that t(w,u) = t; and
t(w,v) = to. O

5.3.4 A 2-arc colored oriented graph on 28 vertices with prop-
erty P

We define such a target graph Tbg, by means of the circulant tournament QR(7;1,2,4).
First consider the edge—coloring of K, (with vertices a, b, ¢ and d) given by:
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Figure 5.6: Construction for the 2—arc colored oriented graph Ts;.

c(ab) = ¢(ed) =1, ¢(ad) = ¢(be) = 2, c(ac) = ¢(bd) = 4

e The 2-arc colored oriented graph Tsg, is obtained by taking four copies of QR(7; 1,2, 4),
named @, Qp, Q. and Qg; all arcs in this four copies are of color 1. Then, for dis-
tinct j,k € {a,b,c,d}, we put an arc from = € Q; to y € Q) if the corresponding
arc is in QR(7;1,2,4); if y = z + ¢ (¢; is the generator 1, 2 or 4) and c(jk) = ¢;,
then the arc is of color 1, otherwise is of color 2.

Figure 5.6 illustrates this construction.
Proposition 5.8 The 2—-arc colored oriented graph Tog has property Ps.

Proof. We use a program to confirm that for every edge (u,v) in Tog, and every pattern
{t1,t2} with ¢; € {1,2}, there exist a vertex w € V(Tys) such that t(w,u) = t; and
t(w,v) = to. O
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Chapter 6

Planar and outerplanar graphs

6.1 Introduction

Certainly the most important family to study its chromatic number is the family of planar
graphs. In the context of simple graphs, it took more than a hundred years to prove that
every planar graph has chromatic number at most four. There is no doubt that the four
color conjecture was the most famous problem in graph theory until it was solved in 1976
by Appel and Haken [5, 6].

In 1979, Borodin [10] proved a remarkable result showing that every planar graph has
acyclic chromatic number at most five. This result together with Theorem 4.1 (the upper
bound of the colored mixed chromatic number in terms of the acyclic chromatic number)
give us an upper bound of the colored mixed chromatic number of P, the family of planar
graphs.

Theorem 6.1 (Nesetfil, Raspaud, [43]) X(um)(P) < 5(2n + m)™.

This is the best known upper bound even for oriented graphs where the corresponding
value is 80. In 1997 an oriented planar graph with oriented chromatic number at least 16
has been constructed [61]; this gap between the upper and the lower bound in the class
of oriented graphs has not been reduced up to now. Therefore, to improve any of these
bounds is an important challenge in the framework.

In the context of edge—colored graphs, Alon and Marshall [4] define a class of planar
graphs, named triangular graphs, for which the (0, m)—colored mixed chromatic number
is at least m3 + 3. It is not difficult to generalize the argument they used, to establish the
following lower bound in the more general context of colored mixed graphs:

93
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Xm)(P) > (2n 4+ m)® 4 3. (6.1)

In Section 6.2 we present the class of triangular graphs, and prove the lower bound
given in (6.1). This was the best known lower bound for the colored mixed chromatic
number of P [43]. However, we improve it (see Theorem 6.2 below) by means of the
colored mixed chromatic number of the class of paths (Theorem 3.2); we also provide (by
means of Theorem 3.2) a lower bound for the colored mixed chromatic number of O, the
class of outerplanar graphs. We will prove the following Theorem in section Section 6.3.

Theorem 6.2 Let e =1 for m odd or m =0, and ¢ = 2 for m > 0 even, then:

L Xem)(O) > (2n+m)? + e(2n+ m) + 1.
2. Xtnmy(P) > (2n+m)> +€e2n+m)? + 2n+m) + ¢
Since the class of outerplanar graphs is strictly included in the class of partial 2-trees,

by Theorem 5.1 we get: X(nm)(O) < 3(2n + m)?, thus by Theorem 6.2 we obtain the
following:

Corollary 6.1 x(;.,)(0) = O((2n+ m)?)

Concerning the class of planar graphs, it is widely believed that the real value of the
oriented chromatic number x(; )(P), is closer to the known lower bound than the upper
one. In the context of colored mixed graphs, by means of Theorems 6.1 and Theorem 6.2,
we have:

Corollary 6.2 Q((2n+m)?) < x(m (P) < O((2n+m)*)

If we are not able to improve the known bonds for the colored mixed chromatic number
of the class of planar graphs, at least to determine the asymptotic behavior is an interesting
problem.

6.2 The class of triangular graphs

We define the class of triangular graphs A, which is a class of simple planar graphs,
inductively defined as follows:
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e The simple graph C3 (a triangle) is in A.

If G is in A, then the graph obtained by adding a new vertex adjacent to the three
vertex of an existing face of G, is also in A.

By a simple counting argument we will show the next:
Proposition 6.1 x(,m)(A) > (2n + m)?® + 3.

Proof.  Note that since A C P, by Theorem 6.1 A is colorable. Since A is a complete
family of graphs, then by Proposition 2.2 in Section 2, A is optimally colorable. That is,
there exist a A—universal graph of order x(, m)(A).

Now, let A, ;) be the class of colored mixed graphs having as underlying graph a
graph in A. Let H be a colored mixed graph which is universal for A, ,,). We suppose
for contradiction that |H| < (2n+m)® + 3. Let Hy be the underlying simple graph of H.
For each G € A let h(G) be the set of homomorphisms from G to Hy, and ¢(H) be the set
of (n, m)-colored mixed graphs for which the underlying graphs is G. We shall note that
each h € h(@) induces a unique G* € ¢(G) for which h is also a colored homomorphism
(from G* to H). This gave a mapping h(G) — ¢(H) which, by assumption, is onto. We
thus have:

|c(G)] < [R(G)]. (6.2)

Now construct the graph G' € A by subdividing a face of G. A homomorphism
in h(G) can be extended to G’ in at most (2n + m)®> — 1 ways (the image of the new
vertex must differ from that of its three neighbors and |H| < (2n + m)? + 3) so that,
|h(G")| < (2n+m)® — 1|h(G)|. On the other hand, each of the three new edges in G’ can
be oriented and/or colored in 2n + m ways, so that |¢(G')| < (2n +m)?*|c¢(G)]. Hence, by
repeatedly subdividing, we obtain a graph G” € A for which [¢(G")| > |h(G")|, contrary
to (6.2).

6.3 The lower bound giving by means of colored mixed
paths

In this Section we will prove Theorem 6.2. We will use the constructions described in
Section 5.2 in order to exhibit outerplanar and planar graphs with the require colored
mixed chromatic number. Recall € = 1 for m odd or m = 0, and € = 2 for m > 0 even.
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Proof of Theorem 6.2(1):- Observe that if G is a path then G’ is an outerplanar
graph. Thus, starting with an (n, m)-colored mixed path with chromatic number at least
2n+m+e€ (provided by Theorem 3.2), we get (according to Remark 5.1) an (n, m)-colored
mixed outerplanar graph with chromatic number at least (2n+m)(2n+m +€) + 1 which
is precisely (2n 4+ m)? + €¢(2n +m) + 1. O

Proof of Theorem 6.2(2):- Observe that if G is a outerplanar graph then G’ is
a planar graph. Thus, starting with an (n,m)-colored mixed outerplanar graph with
chromatic number at least (2n + m)? + ¢(2n + m) + 1 (provided by Theorem 6.2(1)),
we get (according to Remark 5.1) an (n, m)—colored mixed planar graph with chromatic
number at least (2n 4+ m)((2n + m)? + €(2n + m) + 1) + 1 which is:

(2n +m)® + €(2n +m)* + (2n +m) + 1. (6.3)

Now look that, for k = 3 and m > 0 even, the partial 3—tree (T?)” constructed in the
proof of Proposition 5.2 is also a planar graph; thus we improve by one the bound in (6.3)
when m > 0 even, and obtain the require bound. O



Chapter 7

Sparse planar graphs

7.1 Introduction

Before the 4—color theorem (every simple planar graph is 4-colorable) was proved in 1976
by Appel and Haken [5, 6], Grotzsch [24] proves in 1959 his celebrated 3—color theorem:
every simple triangle—free planar graph is 3—colorable. Since the complete graph K, is
a planar graph with chromatic number 4, and odd cycles have chromatic number 3, we
have the following classification.

Theorem 7.1 Let P, be the class of planar graphs with girth at least g, then:

1. x(0,1)(Ps) =4 (Appel, Haken [5, 6], 1976).
2. X(0,1)(Py) = 3 for every g > 4 (Grétzsch [24], 1959).

Motivated by this result, Nesetiil, Raspaud and Sopena [44] propose the so-called Girth
Problem for oriented planar graphs. In the general context of colored mixed graphs, the
problem is the following.

The Girth Problem: Determine the quantity X(nm)(P,) for every g > 2.

The Girth Problem is then completely solved for simple graphs. In the oriented case,
it appears that The Girth Problem is much harder and presently seemingly hard to solve.
Certainly, it is shown that the oriented chromatic number of planar graphs can be signif-
icantly lowered under a high girth assumption, but a lot of work still remains to be done,
in order to completely solve the problem. Next we summarize what is known.

o7
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Theorem 7.2 Let P, be the class of planar graphs with girth at least g, then:

1. x(1,0)(Ps) < 80 (Raspau, Sopena [53] 1994).

(Ps) <
2. x(1,0)(Ps) < 47 (Borodin, Tvanova [12] 2005).
(1,0y(Ps) < 16 (Pinlou [50] 2008).
4. Xa,0(Ps) < 11 (Borodin, Kostochka, Nesetril, Raspaud, Sopena [14] 1999).
5. X0,0(Pr) <7 (Borodin, Ivanova [11] 2005).
6. X(1,0(P11) <6 (Pinlou [51] 2006).
(

7. xX(1,0/(Py) =5 for every g > 14 (Nesetril, Raspaud, Sopena [44] 1997,
Borodin, Kostochka, Nesetril, Raspaud, Sopena [14] 1999).

Restricted to outerplanar graphs (still in the oriented case), Pinlou and Sopena gave
the complete classification of the oriented chromatic number of outerplanar graphs with
a given girth.

Theorem 7.3 Let O, be the class of outerplanar graphs with girth at least g, then:

1. x1,0(03) =T (Sopena [59] 1997).
2. x(1,0)(O4) = 6 (Pinlou, Sopena [52] 2006).
3. x1,0(0,) =5 for every g > 5 (Pinlou, Sopena [52] 2006).

Concerning partial 2—trees (which is also a subclass of planar graphs which strictly

contains outerplanar graphs), Ochem and Pinlou [48] recently gave the analogous classi-
fication.

Theorem 7.4 Let 7;2 be the class of partial 2—trees with girth at least g, then:

1. xa,0(T2) =T for 3 < g <4 (Sopena [59] 1997, Pinlou, Sopena [52] 2006).
2. xa,0(T;7) =6 for 5 < g <6 (Ochem, Pinlou [{8] 2007).

3. xa0(T;7) =5 for every g > 7 (Ochem, Pinlou [48] 2007).
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To summarize, The Girth Problem for planar graphs in the oriented case, is solved
when restricted to certain subclasses (outerplanar graphs and partial 2-trees) and for
planar graphs with girth ¢ > 14 (Theorem 7.2-7).

We shall note that the condition ¢ > 14 in Theorem 7.2-7, may not be the best possible,
since no planar graph with girth 13 and oriented chromatic number strictly greater than
5 is known. Nevertheless, this has not been improved up to now. Just, concerning lower
bounds, it is shown a planar graph with girth 7 and oriented chromatic number strictly
grater that 5 [44]; thus the gap between girths 8 and 13 provides a challenge.

Even so, the authors in [44] viewed Theorem 7.2.7 as yet another 5—color Theorem for
high girth (sparse) oriented planar graphs. In this paper, following this view, we prove a
(4n + 2m + 1)—color Theorem for high girth (n, m)—colored mixed planar graphs. In fact
we give the colored mixed chromatic number of P,, 7 and O,, for a suitable sufficiently
large girth in each case. The following is our main result.

Theorem 7.5 Let Py, 7;2 and Oy be the classes of planar graphs, partial 2—trees, and
outerplanar graphs with girth at least g respectively. Then:

1. X(nm)(Py) = 2(2n +m) + 1 for every g > 20n + 10m — 4.
2. X(n,m)(,];z) =2(2n+m)+ 1 for every g > 8n +4m — 1.

3. Xmm)(Og) = 2(2n 4+ m) + 1 for every g > 4n+ 2m + 3, where 3 =0 if n =0, and
[ =1 otherwise.

In the previous Section we give general upper and lower bounds for the colored mixed
chromatic number of planar graphs, outerplanar graphs and partial 2-trees (see Theo-
rems 5.1, 6.1 and 6.2). We shall note that, for the class of planar graphs, the main term
in the lower bound is (2n + m)® while the main term in the upper bound is (2n + m)*;
concerning partial 2—trees and outerplanar graphs, the main term in both lower and upper
bounds is (2n + m)?. However, Theorem 7.5 states that, if the girth is sufficiently large,
the colored mixed chromatic number of these three classes of graphs becomes linear on
2n +m.

Most of the techniques used to prove the upper bounds in Theorem 7.2, substantially
use the property that every planar graph with large girth, contains either a vertex with
degree one or a long path whose internal vertices have degree two. Motivated by this
fact, Hell, Kostochka, Raspaud and Sopena [27], introduced the concept of nice digraph
and nice edge colored multigraph. We adapt this concept to the context of colored mixed
graphs. In Section 7.2 we give the appropriate definitions and describe the target graphs
that we will use to show the upper bounds, in Section 7.3. Finally, in Section 7.4 we prove
the lower bounds by constructing, for every g > 2, a colored mixed outerplanar graph
with girth g and chromatic number 2(2n +m) + 1.
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7.2 Nice colored mixed graphs

In this Section we give the definition of a k—nice and k—quasi—nice colored mixed graph
and, after seen some examples, we will define the target graph which allows us to prove
Theorem 7.5.

We will use the following notation. The degree of a vertex w is denoted by d(u) and
the minimum degree of a graph is denoted by 6(G). A k-verter is a vertex of degree
k, and a k-path is a path P = wug,u; ... u, of length k (i.e. formed by k edges), with
2 end-vertices (ug and ug) and k — 1 internal vertices (all u;’s with 1 < i < k—1). A
(k,2)-path in a graph G, is a k-path in which all internal vertices have degree 2. A pattern
Q = q1¢z...qx of length k is a (non-empty) word in {1,...,2n + m}*. A Q-walk is a walk
W = ug, uy, ..., u such that for every 1 < i < k the type t(u; 1, u;) = ¢;. For X C V(G)
we denote by Ngo(X) the set of all vertices v € V(G) such that there is a Q-walk going
from some vertex u € X to v. If Q = ¢ is a pattern of length one, we write N, (X); we
also use Ng(u) instead of Ng({u}).

Definition 7.1 An (n, m)—colored mized graph G is k—nice (resp. k—quasi—nice) if for
every pair of vertices v,w € V(G) allowing (resp. not allowing) v = w , and for each
(n, m)—colored mized path Py = ug,u1, ..., ur, of length k, there exist a homomorphism h
from Py to G such that h(ug) = v and h(uy) = w.

In other words, an (n, m)—colored mixed graph G is k—nice (resp. k—quasi-nice), if for
every pattern Q of length k£ and every vertex u € V(G) we have Ng(u) = V(G). (resp.

V(G) \{u} € No(u)).

Since colored mixed graphs have neither loops nor multiple edges or arcs, then there
are neither 1-nice nor 2-nice colored mixed graphs. Also, the only possibility to have a
l—quasi—nice colored mixed graph is when (n,m) = (0,1) (actually, just complete simple
graphs are 1-quasi-nice).

Notice that, for every k > 2, a k—quasi—nice colored mixed graph is also (k + 1)-nice;
and, for every k > 3, a k—nice colored mixed graph is also k—quasi—nice. Hence, if a
colored mixed graph is 2—quasi—nice it is also 3—nice and, for every k > 3 we have:

k-nice = k-quasi-nice = (k + 1)-nice

Thus, the strongest assumption in this context, is to have a 2—quasi—nice colored mixed
graph. Let us see some examples of nice and quasi—nice colored mixed graphs:
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Figure 7.1: The oriented target graphs 77(1,0), T5(1,0) and 75(1,0) which are 2-quasi-
nice, 3—nice and 4-nice respectively.

H & o

Figure 7.2: The graphs induced by one color of the target graphs T4(0,2), 73(0,2) and
T5(0,2), which are 2-quasi-nice, 3-nice, and 3-quasi-—nice respectively.

e In the oriented case, the target graphs depicted in Figure 7.1 were used in the
literature to bound the oriented chromatic number of the families of outerplanar
graphs and partial 2-trees with given girth ([59, 52, 48]); it was proved that 75(1,0)
(resp. T5(1,0), T5(1,0)) is 2—quasi—nice (resp. 3-nice, 4-nice).

e In the case of 2—edge colored graphs, the analogous target graphs are the following.
Observe that the graphs depicted in Figure 8.1 are all self complementary (i.e.
isomorphic to their complements). Thus, let Ty(0,2) (resp. 7%(0,2), 75(0,2)) be
the complete (0, 2)—colored mixed graph on 9 (resp. 8, 5) vertices where the edges
of each color induces an isomorphic copy of the first (resp. second, third) graph in
Figure 8.1. It appears that Ty(0,2) (resp. T3(0,2), T5(0,2)) is 2-quasi-nice (resp.
3-nice, 3-quasi—nice); we will prove these claims in Propositions 7.1, 8.2 and 7.2
respectively. Then, we will use these target graphs in Section 8, to bound the
oriented chromatic number of the families of outerplanar graphs and partial 2—trees

with given girth.

Observe that in both cases the colored mixed graphs which are 2—quasi-—nice have also
property Ps; this is always the case since:
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1 2 1 2 1 2
6 % 3 6 N 3 6 % 3
5 4 5 4 5 4
Figure 7.3: Standard path decomposition of Kg.

Proposition 7.1 A colored mixzed graph is 2—quasi-—nice if and only if satisfies property
Py.

Proof. Recall that, by definition, a colored mixed graph G satisfies property P; if both
of the following conditions holds:

(i) for every vertex v € V(G) and every type t € {1,...,2n + m}, there exist a vertex
u € V(G) such that t(u,v) = t.

(ii) for every ordered pair of adjacent vertices (v1,v9) in G, and every sequence of types
{t1,t2}, there exist u € V(G) such that u is adjacent to both v; and vy with
t(u, Ul) = tl and t(u, ’UQ) = tQ.

Thus clearly, a colored mixed graph G satisfying property Ps, is such that for every
pair of different vertices vy,v, € V(G), and every colored mixed path P = wugujuy of
length 2, there is a homomorphism A from P to G such that h(ug) = vy and h(uz) = vs.
On the other hand, if G is 2—quasi—nice then clearly satisfies conditions (i) and (ii). O

Next we describe an (n, m)—colored mixed graph Ty, om 1 := Tani2my1(n, m) of order
4n 4 2m + 1 which is (4n + 2m)-nice and (2m — 1)—quasi-nice when n = 0.

We will use the following (standard) decomposition of the complete graph Koy, into
k edge disjoint Hamiltonian cycles. Place 2k vertices on a regular 2k-gon numbered
cyclically vy, vs,...,v9; and a vertex vy in its center. The set of edges parallel to vyvq
together with the set of edges parallel to vq, v, form a hamiltonian path on the vertices of
the polygon (see Figure 7.3) and, together with the edges vov; and vyy1vp, a hamiltonian
cycle, call it Hy. By rotating this hamiltonian cycle by an angle of jm/k we obtain a
hamiltonian cycle H; and Hy, Hs, ..., H; form an edge decomposition of Ky;1;. Denote
by 7 the permutation with v, fixed and shifting cyclically the vertices vy, ..., v, so that
7/ is an automorphism which sends H; to H;.
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Figure 7.4: The target graph Ty, om 1 for (n,m) = (1, 1) which is universal for the family
of sparse planar graphs.

We now define the target graph Ty, 2m-1. It is a complete (n, m)—colored mixed graph,
whose underlying graph is the complete graph Ky, ;om11, and its colored edges and colored
arcs are given as follows.

e Let Hy, H,,...,Hypp, be the decomposition of Ky, 0,1 into hamiltonian cycles
as described above. For i = 1,...2n, the arcs of H; are colored by color [i/2], and
orient the cycles Hq, Ho, ..., Ho, as to obtain hamiltonian oriented cycles with the
edge vov; oriented from vy to v;. For i = 2n +1,...,2n + m the edges of H; are
colored 7 — 2n.

Thus we obtain 2 monochromatic Hamiltonian circuits for each colori € {1,...n} and
one monochromatic Hamiltonian cycle for each color i € {1,...m}. In Figure 7.4 you can
see this target graph for (n,m) = (1,1). Note that each vertex in Ty, om 1 is incident
with two arcs of each type (orientation and color) and with two edges of each color.

In order to prove that Ty, om1 i (4n + 2m)—nice, we will use the following Lemma.

Lemma 7.1 Let X be a subset of V(Tupiomy1). For every type t € {1,...,2n + m} we
have
|N,(X)| > min{|X]| + 1,4n + 2m + 1}.

Proof.  Let M = 4n + 2m + 1. If |X| = M then clearly |N,(X)| = M for every
te{l,...,2n+m}. If | X| < M then, consider first the case when ¢ € {2n+1,...,2n+m}
(i.e. t corresponds to a colored edge), then N;(X) is the neighborhood of X in the subgraph
spanned by the edges of color £ — 2n in T);. Since this subgraph is a cycle of length M,
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then we have |Ny;(X)| > | X|+1. Suppose now that ¢ corresponds to an oriented type. The
subgraph spanned by the arcs colored by t is isomorphic to H; U H,. Since each of H; and
H, is a hamiltonian directed cycle, | Ny, (X)| = | X|, i = 1,2. By the construction of the
decomposition, Hs is obtained from H; by cyclically rotating the vertices vy, va, ..., v
and leaving vy fixed. Therefore we could only have Ny, (X) = Ng,(X) if both sets equal
{vo}, which is not the case for any subset X. Therefore |N;(X)| = |Ng, (X) U Np,(X)| =

Now we are ready to prove that Ty, 9m 1 is (4n + 2m)-nice. In fact, we will prove a
stronger statement.
Lemma 7.2 For every positive integer k, every pattern Q of length k, and every vertex
v in V(Tapiomei1), we have
|INo(v)| > min{k + 1,4n +2m + 1}.
Proof. The proof proceeds by induction on k. Let M =4n+2m+ 1. If £ = 1 the result

follows from Lemma 7.1. Now let Q = ¢1¢s...qx_1qx be a pattern of length £ < M, and
let @ = qigo...qr—1. By Lemma 7.1 and the induction hypothesis,

[No(v)]| = [Ng (No/(0))] = min{|Ng (v)| + 1, M} > min{|Q| + 1, M}
Similarly, if £ = M then |[Ng(v)| > |Ng/(v)| = M. O
As a consequence of Lemma 7.2 we obtain the following,

Proposition 7.2 The (n, m)-colored mized graph Tipiom+1 is (4n-+2m)—nice, and more-
over, is (2m — 1) —quasi-—nice when n = 0.

Proof. We can see that Ty, 1 om 1 18 (4n+2m)-nice by taking & = (4n+2m) in Lemma 7.2.
To see that Ty, 1om 1 is (2m — 1)—quasi—nice for n = 0, observe that for every pattern Q of
length 2m — 1, and every vertex v in V(T%,,11), |[No(v)| > 2m by Lemma 7.2. Moreover,
v ¢ Ng(v) since @ has odd length and thus Ng(v) = V(Ton1) \ {v}. O

7.3 The upper bounds

Now we prove the upper bounds of Theorem 11.1. More precisely, we prove that ev-
ery (n,m)-colored mixed planar graph, outerplanar graph, or partial 2-tree, with the
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required girth, admits a homomorphism to Ty, 19,11 We will use the following proposi-
tions which have already been used to bound the oriented chromatic number of planar
graphs, outerplanar graphs and partial 2-trees with given girth.

Proposition 7.3 ([44]) Every planar graph with girth g, contains either a 1-vertex or
a (%4, 2)-path.

Proposition 7.4 ([48]) Every partial 2—tree with girth g, contains either a 1-vertex or
a ([£],2)-path.

Proposition 7.5 ([52]) Every outerplanar graph with girth g, contains either a 1-vertex
or a (¢ —1,2)-path, for some ¢ > g, in which the end-vertices is an adjacent pair.

Our claim is a direct consequence of Proposition 7.2 and Lemma 7.3 below. An
(n, m)-colored mixed graph U is said to be F-universal, if every (n,m)-colored mixed
graph whose underlying graph is in F, admits a colored homomorphism to U.

Lemma 7.3 .

1. If H is a k-nice colored mized graph, then H is Ps,_4—universal (resp. T _ -
universal).

2. If H is a k—quasi—nice colored mized graph, then H is Ok —universal

Proof.

1. Let H be a k-nice (n, m)-colored mixed graph. We prove that every (n, m)-colored
mixed planar graph (resp. partial 2-tree) with girth at least 5k — 4 (resp. 2k — 1)
admits a homomorphism to H. Note that is sufficient to consider the case ¢ = 5k —4
(resp. g = 2k — 1), since P, ; C P, for every g. Let G be a minimal (with respect
to the number of vertices) counter-example. We show that G contains neither a
1-vertex, nor a (k, 2)-path.

e Suppose that G contains a 1-vertex u. By the minimality of G, the graph
G' = G\ {u}, admits a homomorphism h to H. Since H is nice, every vertex
in H has at least one neighbor of every type. Thus h can be extended to G.

e Suppose that G contains a (k, 2)-path P = u,v; ... v,_1, w. By the minimality
of G, the graph G' = G \ {v1, vs...v5_1} admits a homomorphism to H. Since
H is k—nice, this homomorphism can be extended to G.
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We thus get a contradiction by Proposition 7.3 (resp. Proposition 7.4).

2. Let H be a k—quasi-nice (n, m)-colored mixed graph. We prove that every (n, m)—
colored mixed outerplanar graph with girth at least k41 admits a homomorphism to
H. Note that it is sufficient to consider the case g = k+1, since Oy C O, for every
g. Let G be a minimal (with respect to the number of vertices) counter—example.
We show that G contains neither a 1-vertex, nor a (k,2)-path whose end-vertices
are adjacent.

e Suppose that GG contains a 1-vertex u. By the minimality of G, the graph
G' = G\ {u}, admits a homomorphism h to H. Since H is quasi—nice, every
vertex in H has at least one neighbor of every type. Thus h can be extended

to G.

e Suppose that G contains a (k,2)-path P = u,v;...v,_1,w such that u and
w are adjacent. By the minimality of G, the graph G' = G \ {v1,v9...05 1}
admits a homomorphism h to H. Since u and w are adjacent, then h(u) # h(w).
Hence, since H is k—quasi—nice, h can be extended to G.

We thus get a contradiction by Proposition 7.5.

7.4 The lower bounds

Now we prove the lower bounds of Theorem 11.1. We will construct, for every ¢ > 3, an
(n, m)-colored mixed outerplanar graph Oy(n,m) with girth g which has no homomor-
phism to any (n, m)-colored mixed graph on 4n + 2m vertices. Since O C T2 C P, this
will complete the proof.

For each pattern Q = ¢1¢s...qx of length k we consider the (n,m)-colored mixed path
Py(Q) = g, uy, ..., ux of length k£ such that for every 1 < i < k the type t(u; 1,u;) = ;.
We now define the colored mixed outerplanar graph O,(n, m).

e For each of the (2n4m)L%- distinct patterns of length |£], we take two copies P, P’
of Plaj(Q;). 1 <i<(2n+m) 15). We identify all the 2(2n-+m)5- initial ue-vertices,
and connect (with an edge or an arc of an arbitrary color) the two end u| g -vertices
of each pair of Pj4)(Q;). The graph obtained in this way is Oy(n,m) if g is odd.
For even g we glue a cycle of length ¢ to an arbitrary vertex.

Figure 7.5 shows this outerplanar colored mixed graph for (n,m) = (1,1) and g = 4
and 5.
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G4(1,1) Gs(1,1)

Figure 7.5: Examples of the outerplanar graph O,(n, m) with girth ¢ and colored mixed
chromatic number 4n 4 2m + 1.

Now we prove that O,4(n, m) admits no homomorphism to any (n, m)-colored mixed
graph H on 4n + 2m vertices. Let v be the vertex of O,4(n,m) with maximum degree
(the central vertex). Suppose that there exists a homomorphism h : Oy4(n,m) — H and
h(v) = u. Observe that every vertex in H has degree at most 4n + 2m — 1; hence, for
every vertex x € V(H) there exists a type t(z) € {1, ..., 2n +m} such that [Ny, (z)| < 1.
Let @ be the walk in H starting in uy = u = h(v) obtained by selecting the unique
t(u;)-neighbour w;;, of ;. Either @) is a finite path (if for some w;, t(u;) is such that
| Niqu) (u3)] = 0), or @ contains a cycle (if for some u;, Ny,,)(u;) = u; for some j < 7). If
Q is a finite path of length < [£], then there is a pair of paths P, P in Oy(n, m) which

cannot be mapped into H. If @ is a finite path of length > |£] or @ contains a cycle,
then there is a pair of paths P, P’ in Oy(n,m), so that h must map each of P and P’ into
@, but then the adjacent end-vertices of P and P’ must be mapped to the same vertex,

a contradiction.
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Chapter 8

The case of 2—edge colored graphs

8.1 Introduction

In this Section we focus on the class of 2-edge colored graphs which are (0,2)-colored
mixed graphs. We mainly study three particular classes of graphs: planar graphs, out-
erplanar graphs and partial 2-trees. Indeed, we give the complete classification on the
(0,2)-colored mixed chromatic number of outerplanar graphs and partial 2-trees with
a given girth; we also obtain upper bounds for the colored mixed chromatic number of
planar graphs with given girth.

We shall note that a complexity result of Edwards and McDiarmid [20] on the harmo-
nious chromatic number implies that to find the (0, 2)-colored mixed chromatic number
of a graph is, in general, an NP—complete problem.

Our results in this Section are the following.

Theorem 8.1 Let O, be the class of outerplanar graphs with girth at least g, then:

1. X(O’Q)(Og) =0.

2. X(0.2)(Oy) =5 for every g > 4.
Theorem 8.2 Let 7;2 be the class of partial 2—trees with girth at least g, then:

1. x02(T) =9.
2. X((),Q)(EZ) =8 for4 < g<5.

69
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3. X©2)(T2) =5 for every g > 6.

Theorem 8.3 Let P, be the class of planar graphs with girth at least g, then:

In Section 8.3 we describe the target graphs that we will use to prove our results. We
will use the so called method of reducible configurations and discharging procedure used
in particular by Appel an Haken [5] in their proof of the four color theorem, and proposed
by Borodin et al. [14] to bound the oriented chromatic number of sparse planar graphs.
In Section 8.2 we will explain in general this method and Sections 8.4, 8.5 and 8.6 are
devoted to the proofs of Theorems 8.1, 8.2 and 8.3 respectively.

8.2 Reducible configuration and discharging proce-
dure

In order to prove Theorems 8.2 and 8.3 we will use the so called method of reducible
configurations and discharging procedure. Next we will explain this method in general.

Suppose that we want to prove: G € C = G — H, where C is a graph class and H is
a suitable target graph with ”useful” properties. The method of reducible configurations
is the following:

1. Define a partial order < that extends the subgraph partial order.

2. Consider a potential counter—example G € C with G -» H which is minimal with
this property according to <. Then, every G’ < G satisfies G' — H.

3. Provide a "small” set S of forbidden configurations (i.e. a set of configurations that
G can not contain due to its minimality property). To show that C' € S, we suppose
that G contains C, and find a suitable proper subgraph G’ of G such that, by the
"useful” properties of the target graph H, every H—coloring of G’ can be extended
to an H—coloring of (G. This is a contradiction since G’ suppose to be H—colorable
but not G.
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4. Show that no counter—example exist since every graph in C contains at least one
configuration in S.

There are several ways to do this last step. We now present the discharging procedure
proposed by Borodin et al. in [14] and used in some other papers [46, 50] to bound
the oriented colored chromatic number of planar graphs with given girth. It involve the
following auxiliary graph parameter.

The average degree of a simple graph G, denoted by ad(G), is defined as twice the

number of edges over the number of vertices (ad(G) = QI“f((GG))II)

degree of a simple graph G, denoted by mad(G), is then defined as the maximum of the
averages degrees taken over all subgraphs of G:

. The mazimum average

mad(G) = maxycg{ad(H)}

Assume that the graph class C is such that G € C if and only if mad(G) < q. We assign
to every vertex v of G an initial charge equal to its degree d(v), and define a discharging
procedure which specifies some transfer of values among the vertices in G keeping the sum
of all the values constant. Then we show that if the discharging procedure is applied to
a graph G avoiding the configurations in S, then the final charge d*(v) of every vertex in
G is greater than ¢. This shows that every graph in C contains at least one configuration
in S, and thus no potential counter—example exist.

In Sections 8.5 and 8.6 we will use the following:

Drawing conventions: In all the figures depicting forbidden configurations, all
neighbors of ”"white” vertices are drawn, while ”black” vertices may have other neigh-
bors in the graph. Also, two or more ”black” vertices may coincide in a single vertex,
provided that they do not share a common ”white” neighbor.

Languages conventions: Let H be any target graph, recall that the vertices of H
will be called the colors. Suppose that we want to construct a homomorphism h of a given
graph G to H and let u, v be two vertices of G to be colored. We will say that y allows
k colors for x if for any choice of the color of y we have at least k choices for coloring z.
Similarly, we will say that y forbids k colors for x if for any choice of the color of y we
have at least n — k choices for coloring z.

Notation: The degree of a vertex u is denoted by d(u) and the minimum degree
of a graph is denoted by §(G). A k-vertex (respect. a “k-verter) is a vertex of degree
k, (respect. at least k). A k-path is a path P = wg,u;...u, of length k£ (i.e. formed
by k edges), with 2 end-vertices (up and uy) and k — 1 internal vertices (all u;’s with
1<i<k—1). A (k,2)-path in a graph G, is a k—path in which all internal vertices have



72 CHAPTER 8. THE CASE OF 2-EDGE COLORED GRAPHS

2

1 3 1 2

0 3

1
5
2
& 7 4
6 4 3

7 8 9

Figure 8.1: The graphs induced by one color of the (0, 2)—colored mixed target graphs Ty,
Tg and T5.

degree 2. A pattern Q = q1¢o...qx of length k is a (non-empty) word in {1,2}*. If G is a
2—edge colored graph, a Q-neighbor of a sequence S = {vy,..., v} of vertices in G, is a
vertex u in G such that uv; € E,,(G) for every i.

8.3 The target graphs

The target graphs T5, 1g, Ty, 119 and Ty that we will use to prove Theorems 8.1, 8.2
and 8.4 are the following. Observe that the graphs depicted in Figure 8.1 are all self
complementary (i.e. isomorphic to their complements).

e Let Ty (resp. Tg, T5) be the complete (0,2)-colored mixed graph on 9 (resp. 8, 5)
vertices where the edges of each color induces an isomorphic copy of the first (resp.
second, third) graph in Figure 8.1.

e Let Ty, = Tr(Ts) and Tyy = Tr(Ty) be the Tromp graphs obtained from 75 and
Ty respectively (see Figure 8.2 to recall the Tromp construction described in Sec-
tion 5.3.2).

Remark 8.1 The target graphs T, Ty, T1s and Toy are vertex transitive.

In previous sections, we shown that some of this target graphs have ”useful” properties.
Here we recall these properties and prove some others that we need to proceed with our
proofs.
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Figure 8.2: The (0,2)-colored mixed Tromp graph ¢r(G).

Let G be a (0, 2)—colored mixed graph and P = ug, uy, ..., ux be a (0,2)-mixed k—path.
For u € V(G) we denote by:

Np(G,u) ={v € G:3h: P— G with h(ug) = u and h(uy) = v}

Definition 8.1 We say that G is k—nice (resp. k—quasi—nice) if for every k—path P,
and every vertex u € V(G), we have Np(G,u) =V (G) (resp. V(G) \ {u} C Np(G,u)).

Note that this definition is equivalent to Definition 7.1 in Section 7. Hence, if a 2—edge
colored graph is 2—quasi—nice it is also 3—nice and, for every k > 3 we have:

k-nice = k—quasi-nice = (k + 1)-nice

A pattern Q = qiqo...q, of length k is a (non-empty) word in {1,2}¥. Let S =
{v1,...,v} be a sequence of k vertices in a (0,2)-colored mixed graph G. A vertex
u € V(G) is said to be a Q-neighbor of S if (u,v;) € E,(G) for every i.

Definition 8.2 We say that a colored mized graph G satisfies property P, if for every
sequence S = {vy, ..., v} which induce a k—clique subgraph of G, and every pattern Q =
41G2-.-qx of length k, there exist n Q-neighbors of S.

Note that property Py, differs from property Py (given in Section 5.3) by requiring n
Q-neighbors instead of one. Hence, property Py is precisely property Py, and property
P, ,, implies that the graph is 2-quasi—nice.
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2,345 2,3.4.8
12345

Figure 8.3: Vertices of T5 reachable from vertex 1 by each k—path with 1 < k < 3.

Proposition 8.1 The target graph Ty satisfies the following properties:

1. It has property P, 5.
2. For every vertex u and for every (2,2)-path P, |Np(Ts,u)| > 3.

3. It is 3—quasi—nice.

Proof.  Since Ty is vertex transitive is sufficient to prove the statement for vertex 1.
In Figure 8.3 are shown the vertices in T reachable from 1 by each (0, 2)—colored mixed
k-path with 1 < k < 3. O

Proposition 8.2 The target graph Ty satisfies the following properties:

1. It has property P 3.
2. For every vertex u and for every (2,2)-path P, V(Tg)\{u,u+4 (mod)8} C Np(Tg,u).

3. It 18 3—nice.

Proof.  Observe that there are two kinds of vertices in Tg, the odd vertices {1, 3,5, 7}, and
the even vertices {2,4,6,8}. It is not difficult to check that for every two odd (respect.
even) vertices u and v, there exist an automorphism of Ty that maps u to v. Thus is
sufficient to prove the statement for vertices 1 and 2. In Figure 8.4 (a) (respect. (b)) are
shown the vertices in Ty reachable from 1 (respect. 2) by each (0, 2)-colored mixed k-path
with 1 < k < 3. O
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{0..73\ {0}
{0..7} {0..73\ {4} {0..7}\ {5}

{0..7} {0...7}
(a) (b)

Figure 8.4: Vertices of Tg reachable from vertices 0 and 1 by each k—path with 1 < k£ < 3.

Proposition 8.3 The target graph Ty satisfies the following properties:

1. It has property P 4.

2. It has property Py (it is 2—quasi—nice).

Proof. To check property P4 is trivial. Property P»; is equivalent to property P,
described in Section 5.3. In Proposition 5.5 it was proved that Ty has property Ps. O

Proposition 8.4 The target graph 115 satisfies the following properties:

1. It has property P 5.

2. It has property Pso (in particular it is 2—quasi-nice).

Proof.  'To check property P, 5 is trivial. Since T}, is vertex transitive, to show that it has
property Ps o, is enough to check that for every sequence S = (z,i), i € V(T5) UV (T}),
and every pattern Q = (g1, ¢2), there exist at least two Q-neighbors of S. However, there
exist an obvious automorphism h : V(T15) — V(T13) that fixes = and 2’ (i.e. h(z) =2
and h(z') = z') with orbits (1,2,3,4,5) and (1',2,3,4',5"). Therefore, we only need
to consider the sequences (z,1) and (x,1"). The table below gives, for each the two
Q-neighbors. O
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| [ (1) [ (2,1 |
OO 25] L3
12) | 34| 45
2,1) || 34" | 4,5
2,2) || 25| 1%

Proposition 8.5 The target graph Tsy satisfies the following properties:

1. It has property P .
2. It has property P54 (in particular it is 2—quasi-nice).

3. It has property Ps ;.

Proof. To check property P, is trivial. Property P is equivalent to property P
described in Section 5.3. In Proposition 5.6 it was proved that T5y has property P;. Since
Ty is vertex transitive, to show that it has property P4, is enough to check that for
every sequence S = (x,1), 1 € V(Ty) UV (Ty), and every pattern @ = (q1, ¢2), there exist
at least four Q-neighbors of S. The table below gives, for each sequence S = (z,4) and

each pattern @, the four @—neighbors of S. O
L @) @] &3] @9 @3] @6] @7 @8] (9]
(1,1)]|12;3;4;71; 3;5;8(1;2;6;9(1; 5;6; 7(2;4; 6;8(3;4;5;9(|1;4;8;9(2;5;7;9(3;6; 7; 8
(1,2)]|5;6;8;94;6;7,9(4;5;7;8(2;3;8;9(1;3;7;9(1;2; 7;8|2;3;5;6(1; 3;4;6(1;2;4; 5
(2,1)]|5;6;8;94;6;7,9(4;5;7;8(2;3;8;9(1;3;7;9(1;2;7;8|2;3;5;6(1;3;4;6(1;2;4; 5
(2,2)112;3;4;71;3;5;8(1;2;6;9(1;5;6; 7(2;4;6;8(3;4;5;9|1;4;8;9|2;5;7;9(3;6; 7; 8

O

8.4 Outerplanar graphs

Proof of Theorem 8.1-1. Since Ty has property P, (Proposition 8.3-2), Proposi-
tion 5.4 in Section 5.3, ensures that every 2—edge colored partial 2—tree is Ty—colorable
(Theorem 5.3-1). Then we get the upper bound, since outerplanar graphs form a strict
subclass of partial 2-trees. The lower bound is obtained by exhibiting an outerplanar
2-edge colored graph with colored mixed chromatic number 9. Such a graph is obtained
by taking (n,m) = (0,2) in Proposition 5.1 (Section 5.3); in Figure 8.5 you can see this
outerplanar 2—edge colored graph. O
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Figure 8.5: An outerplanar 2-edge colored graph with colored mixed chromatic number
9.

Figure 8.6: Outerplanar 2—edge colored graph with girth 6 and 7 and colored mixed
chromatic number 5.

Proof of Theorem 8.1-2. It can be proved that every 2—-edge colored outerplanar
graph with girth at least 4 is Ts—colorable (upper bound of Theorem 7.5-3 in Section 7 by
taking (n,m) = (0,2)). Also, for every g > 4, there is a 2-edge colored outerplanar graph
with girth ¢ and colored mixed chromatic number at least 5 (lower bound of Theorem 7.5~
3 in Section 7 by taking (n,m) = (0,2)); in Figure 8.6 you can see this outerplanar 2—edge
colored graph for ¢ =6 and 7. O

8.5 Partial 2—trees

Proof of Theorem 8.3—1. This is precisely Theorem 5.3—1 in Section 5. It was
proved since Ty has property P, thus every 2—edge colored partial 2—tree is Ty—colorable;
the lower bound is obtained since an outerplanar graph is a partial 2-tree (see Figure 8.5).
O
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In order to prove Theorem 8.3-2 and Theorem 8.3-3 we will use the following structural
Lemma recently given by Ochem an Pinlou [48] as a generalization of a previous result
proposed by Lih, Wang, and Zhu [39]. For a graph G with girth at least g and a vertex
v € V(G), we denote:

S¢(v) = {u € V(G),d(u) > 3, such that
there exist a unique (k, 2)-path linking u and v,

or u and v are the end points of at least a ([£],2)-path}.

Then, we denote DS (v) = |SF (v)|

Lemma 8.1 ([48]) Let G be a partial 2—tree with girth g such that 6(G) > 2. Then, one
of the following holds:

1. there exist a ([%] +1,2)-path;

2. there exist a >3-vertex v such that D (v) < 2.

Proof of Theorem 8.3—2. We show that every 2—-edge colored partial 2—tree with
girth at leas 4 admits a Tg—coloring. Note that is sufficient to consider the case g = 4. Let
G be a minimal (with respect to order) counter—example. In order to get a contradiction
by Lemma 8.1, we show that G contains neither a <1-vertex, nor a (3,2)-path, nor a
Z3—vertex v such that D{(v) < 2.

(1) Suppose that G contains a <1-vertex v. The case d(v) = 0 is trivial. Suppose that
d(v) = 1. Due to the minimality of G the graph G' = G \ {v} admits a Tg—coloring
h. By Property P, 5 (Proposition 8.2-1), h can be extended to a Ty—coloring of G.

(2) Suppose that G contains a (3,2)-path Py = u, vy, v, w. Due to the minimality of
G the graph G' = G \ {v1, v2} admits a Tg—coloring h. Since Ty is 3-nice (Proposi-
tion 8.2-3), then A can be extended to a Tg—coloring of G.

(3) Suppose that G contains Z3-vertex v such that D§(v) = 1. Then S¢(v) = {w} and
since G does not contain a (3, 2)—path, there exist at least three (2, 2)-paths linking v
and w (see Figure 8.7). Due to the minimality of G the graph G' = G\ {v, u1, ..., ux}
admits a Tz—coloring h. We then set h(v) # h(w) and h(v) # h(w) + 4 (mod) 8,
hence Proposition 8.2-2 ensures that h can be extended to a Tg—coloring of G.
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Figure 8.8: A Z3-vertex v such that D§(v) = 2.

(4) Suppose that G contains ~3-vertex v such that D (v) = 2. Then S (v) = {w, w'}.

Suppose first that for w or w’, say w, there is a unique (k,2)-path linking v and
w. In this case since G does not contain a (3, 2)-path, the edge vw is the only path
linking v and w; then since d(v) > 3, there are at least two (2, 2)-paths linking v and
w' (see Figure 8.8-(a)). Due to the minimality of G the graph G' = G\ {v, uy, ..., ux }
admits a Tg—coloring h. By Property P, 3 (Proposition 8.2-1), w allows three colors
for v, while w' forbids only two color for v, named h(w') and h(w') +4 (mod) 8 (by
Proposition 8.2-2). Then h can be extended to a Tg—coloring of G.

Suppose now that there exist at least a (2, 2)-paths linking v and w (resp. w'), see
Figure 8.8-(b). Due to the minimality of G the graph G’ = G\{v, uy, ..., up, v}, ..., u}, }
admits a Tg—coloring h. By Proposition 8.2-2, w and w' each forbids two color for v.
We thus have four available colors for v and thus h can be extended to a Tg—coloring

of GG.

To complete the proof of Theorem 8.3-2, we construct a 2—edge colored partial 2—tree
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X

Figure 8.9: The family Gy, t > 0, of series—parallel graphs of girth 5.

with girth 5 and colored mixed chromatic number 8. Let us construct the family Gy,
t > 0, of series—parallel graphs of girth 5, inductively as follows:

e (5, consist in two non—adjacent vertices v and .

e (G441 consist in two non—-adjacent vertices u and z joined by the eight possible (3, 2)—
paths of the form [u, v;, w;, z], 1 < i < 8; and eight copies of Gy, named G, ..., G¥,
such that vertex u of Gy is identify with the vertex u of every G¢, 1 <i < 8, and
each vertex w; of Gy, is identify with the vertex x of Gi, 1< <8.

Figure 8.9 illustrates this construction.

Consider a complete 2—edge colored graph T,, of order n. We define a family M,, ¢t > 0,
of boolean square matrices of order n as follows:
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e For 1 <i<j<n, Mi,j]is 1 (resp. 0) if there exist (resp. not exist) a T,,~coloring
of G4 such that its vertex u gets color ¢ and its vertex x gets color j.

If there exist ¢ > 0 and 1 < i < n such that M,[i, j] is 0 for every 1 < j < n, then T,
is not universal. We use a program to rule out target graphs on 5, 6 and 7 vertices, in
that order (we can start with 5 by Theorem 8.1-(2)). Since every potential target graph
less that n has been previously rule out, there exist a partial 2—tree W, with girth 5 and
Xo0,2(W) = n. Now, if we identify each vertex of W with the vertex u of a copy of Gy, the
vertex x of some copy of GG; attached to a vertex of 1" colored by ¢ can not be colored.

Our program runs over every complete 2—edge colored graphs by increasing the number
of vertices. All entries of the matrix M, are 1, and then, depending on T,,, we compute
iteratively M,y from M, until every entry of some column of some M, is all 0.

O

Before continue, we shall note that, by taking (n,m) = (0,2) in Theorem 7.5-2, we
obtain XO,Q(TgQ) = 5 for every ¢ > 7. Here we improve that result by showing that
Xo0.2(7;) = 5 for every g > 6.

Proof of Theorem 8.3—-3. We show that every 2—edge colored partial 2—-tree with
girth at leas 6 admits a Ts—coloring. Note that is sufficient to consider the case g = 6. Let
G be a minimal (with respect to order) counter-example. In order to get a contradiction
by Lemma 8.1, we show that G contains neither a <l-vertex, nor a (4,2)-path, nor a
23-vertex v such that D§(v) < 2.

(1) Suppose that G contains a <1-vertex v. The case d(v) = 0 is trivial. Suppose that
d(v) = 1. Due to the minimality of G the graph G' = G \ {v} admits a T5—coloring
h. By Property P; o (Proposition 8.1-1), h can be extended to a Ts—coloring of G.

(2) Suppose that G contains a (4, 2)-path Py = u, vy, v, v3, w. Due to the minimality
of G the graph G' = G'\ {v1, v, v3} admits a Ts—coloring h. Since T; is 3—quasi-nice
(Proposition 8.1-3) it is also 4-nice, then h can be extended to a Tz—coloring of G.

(3) Suppose that G contains Z3-vertex v such that D (v) = 1. Then S§(v) = {w}
and since G does not contain a (4,2)—path, there exist at least three (3,2)-paths
linking v and w (see Figure 8.10). Due to the minimality of G the graph G’ =
G\ {v,uy,...,;ug, u}, ..., u}, } admits a Ts—coloring h. We then set h(v) # h(w), and
since T5 is 3-quasi-nice (Proposition 8.1-3) then h can be extended to a 75-coloring

of G.

(4) Suppose that G contains ~3-vertex v such that DS (v) = 2. Then S§(v) = {w,w'}.

Suppose first that for w or w', say w, there exist a unique (k,2)-path linking u
and v (since G does not contain a (3,2)-path, then £ =1 or £ = 2). Then since
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(a) (b)

Figure 8.11: A Z3-vertex v such that D§ (v) = 2.

d(v) > 3, there are at least two (3,2)-paths linking v and w’ (see Figure 8.11-(a)).
Due to the minimality of G the graph G' = G \ {v,u1, ..., ug, ul, ..., u}} admits a
Ts—coloring h. By Proposition 8.1-1 and 2, w allows at leat two colors for v, while
w' forbids only one color for v, named h(w’) (by Proposition 8.1-3). Then h can be
extended to a T5—coloring of G.

Suppose now that there exist at least a (3,2)—path linking v and w (resp. w'), see
Figure 8.11—-(b). Due to the minimality of G the graph G’ = G\{v, uy, ..., ug, v}, ..., uj }
admits a Ts—coloring h. By Proposition 8.1-3, w and w’ each forbids one color for v.
We thus have three available colors for v and thus h can be extended to a T5—coloring
of G.
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8.6 Planar graphs

The proof of Theorem 8.3 involve an auxiliary graph parameter named the maximum

average degree. The average degree of a simple graph G, denoted by ad(G), is defined as
twice the number of edges over the number of vertices (ad(G) = ﬁ@(g))‘}
average degree of a simple graph G, denoted by mad(G), is then defined as the maximum
of the averages degrees taken over all subgraphs of G: mad(G) = maxyce{ad(H)}. The
maximum average degree and the girth of a planar graph are linked by the following

relation.

). The mazimum

29
g—2

Proposition 8.6 Let G be a planar graph with girth g. Then mad(G) <
Proof. Observe that, if G has girth at least ¢ then the number of faces of GG is at most

2| E(G)] ) 2|E(G) 29|E(G)| 2
== By Euler’s formula we then get o S 29+(372)|E(G) and thus mad(G) < 9792 O

Hence Theorem 8.3 can be deduced from the previous Proposition and the following:

Theorem 8.4 Let G be a (0,2)-colored mized graph.

1. If mad(G) < £, then x(0,2)(G) < 20.

2. If mad(G) < 3, then x0.2)(G) < 12.

3. If mad(G) < % then x(0,2)(G) < 8.

4. If mad(G) < % and G does not contain a triangle whose edges are of the same type,
then X(0,2)(G) < 5 and moreover this bound is tight.

Next we prove Theorem 8.4 by using the method of reducible configuration and dis-
charging procedure explained in Section 8.2. For simplicity, we start with maximum
average degree less than % until maximum average degree less than %

W~

8.6.1 Graphs with maximum average degree less than

We will prove that every triangle—free 2—edge colored graph with maximum average degree
less than g admits a Ts—coloring.

We shall note that the statement is not true if we permit triangles whose edges are of
the same type. Indeed, for every fixed odd n > 7, we provide a 2—edge colored graph G
(containing triangles whose edges are of the same type) with mad(G) which tends to 2 as
n tends to infinity, and colored mixed chromatic number 6 (see Figure 8.12)
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Figure 8.12: A 2-edge colored graph G with mad(G) which tends to 2 as n tends to
infinity, containing triangles whose edges are of the same type and x(,2)(G) = 6.

Lemma 8.2 A minimal (with respect to order) counter—example to Theorem 8./—4 does
not contain the following configurations.

Proof. Let G be a minimal (with respect to order) 2—edge colored graph with mad(G) <

1. A Sl-verter.
2. A (4,2)—path.

3. The configuration in Figure 8.13.

wl~

and girt(G) > 3 which does not admit a Ts—coloring.

1. Suppose that G contains a <1-vertex v. The case d(v) = 0 is trivial. Suppose that

d(v) = 1. Due to the minimality of G the graph G’ = G \ {v} admits a T5—coloring
h. By Property P; o (Proposition 8.1-1), h can be extended to a T5—coloring of G.

. Suppose that G contains a (4, 2)-path Py = u, vy, v, v3, w. Due to the minimality

of G the graph G' = G\ {v1, v2, v3} admits a Ts—coloring h. Since T5 is 3—quasi-nice
(Proposition 8.1-3), it is also 4-nice. Hence, h can be extended to a Ts—coloring of

G.

. Suppose that G' contains the configuration in Figure 8.13. Due to the minimality

of G the graph G' = G\ {z,uy1,v1,v9, w1, ws} admits a Ts—coloring h. Since G is
3—quasi—nice (Proposition 8.1-3), each v and w forbids one color for z. By Propo-
sition 8.1-2, u forbids two colors for . Then we have at least one color for x and
thus h can be extended to a Ts—coloring of G.

O

Proof of Theorem 8.4—4. Let G be an hypothetical minimal (with respect to order)

2-edge colored graph with mad(G) < I and and girt(G) > 3 which does not admit a 75~
coloring. A weak 2—vertex is a 2-vertex adjacent to a 2—vertex, while a strong 2-vertex is
a 2-vertex not adjacent to a 2-vertex. The discharging rules (R1) and (R2) are defined
as follows.
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Vy Vs

w, W

Figure 8.13: Unavoidable configuration for mad(G) <

Wi~

1

(R1) Each Z3-vertex gives 5 to each adjacent weak 2-vertex.

(R2) Each Z3-vertex gives

¢ to each adjacent strong 2-vertex.

Let v be a k—vertex. By Lemma 8.2-1, k > 2.

e If kL =2 and v is strong, then it receives é from each of its two neighbors of degree

at least three. If v is weak, Lemma8.2-2 ensures that v is adjacent to a Z3-vertex,
thus it receives 1. In both cases we have d*(v) = L.
e If k = 3, then by Lemma 8.2-3 (and since girt(G) > 3), v gives at most max{2 x

$,2x 4+ £,3x ¢t} =2 Hence, d*(v) >3- 2=1

e If k > 4, then v gives at most £ and hence d*(v) > k — & >

Wi~

Then, for all v € V(G), d*(v) > I ones the discharging is completed, that shows that
mad(G) > £, a contradiction. O

8.6.2 Graphs with maximum average degree less than 3

wl

Here we prove that every 2—edge colored graph with maximum average degree less than
% admits a Tg—coloring.

Lemma 8.3 A minimal (with respect to order) counter—example to Theorem 8.4-3 does
not contain the following configurations.

1. A Sl-verter.

2. A (3,2)—path.
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Vi

wW.

Figure 8.14: Unavoidable configuration for mad(G) <

w|oo

3. The configuration in Figure 8.14.

Proof. Let G be a minimal (with respect to order) 2-edge colored graph with mad(G) < §
which does not admit a Tz—coloring.

1. Suppose that G contains a <1-vertex v. The case d(v) = 0 is trivial. Suppose that
d(v) = 1. Due to the minimality of G the graph G’ = G\ {v} admits a Ty—coloring h.
Property P, 3 (Proposition 8.2-1) ensures that h can be extended to a Tg—coloring
of G.

2. Suppose that G contains a (3,2)-path Py = u, vy, vs, w. Due to the minimality of
G the graph G’ = G\ {vy, v2} admits a Ty—coloring h. Since Ty is 3-nice (Proposi-
tion 8.2-3), then A can be extended to a Tg—coloring of G.

3. Suppose that G contains the configuration in Figure 8.14. Due to the minimality
of G the graph G' = G\ {z,v1,w;} admits a Tg—coloring h. By Property P 3, u
allows three colors for x, while each of v and w forbids only one color for x (by
Proposition 8.2-2). Then h can be extended to a Tg—coloring of G.

O

Proof of Theorem 8.4-3. Let G be an hypothetical minimal (with respect to
order) 2-edge colored graph with mad(G) < $ which does not admit a Tg—coloring. The
discharging rule is the following

(R) Each Z3-vertex gives 1 to each adjacent 2-vertex.

Let v be a k—vertex. By Lemma 8.3-1, k > 2.

o If £ = 2, then by Lemma&8.3-2 v has two neighbors of degree at leas 3, thus it

. 1 * _ 8
receives 2 x z, hence d*(v) = 3.
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1<n<4

(a) (b)
Figure 8.15: Unavoidable configurations for mad(G) < 3.

e If £ = 3, then by Lemma 8.2-2 and 3, v has at most one neighbor of degree 2.
Therefore, v gives at most 5 and hence d*(v) > &.

>

Wl
w]oo

and hence d*(v) > k —

Wl

e If k > 4, then v gives at most

ones the discharging is completed, that shows that
O

wloo

Then, for all v € V(G), d*(v) >
mad(G) > £, a contradiction.

8.6.3 Graphs with maximum average degree less than 3

Now we prove that every 2-edge colored graph with maximum average degree less than 3
admits a T1,—coloring.

Lemma 8.4 A minimal (with respect to order) counter—example to Theorem 8.4-2 does
not contain the following configurations.

1. A <1-vertes.

2. The configuration in Figure 8.15(a).

3. The configuration in Figure 8.15(b).

Proof. Let G be a minimal (with respect to order) 2—edge colored graph with mad(G) < 3
which does not admit a Tjs—coloring.
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1. Suppose that G contains a S1-vertex v. The case d(v) = 0 is trivial. Suppose

that d(v) = 1. Due to the minimality of G the graph G' = G\ {v} admits a 775~
coloring h. Property P ; (Proposition 8.4-1) ensures that h can be extended to a
T',—coloring of G.

. Suppose that G contains the configuration in Figure 8.15 (a). Due to the minimality

of G the graph G' = G\ {z, v}, ..., v, } admits a T1o—coloring h. By Property P 5, u
allows five colors for x, while each of vy, ..., v, forbids only one color for x (since G
is 2—quasi—nice, Proposition 8.4-2). Then h can be extended to a Tj5—coloring of G.

. Suppose that G contains the configuration in Figure 8.15 (b). Due to the mini-

mality of G the graph G’ = G\ {z,u,} admits a T1,—coloring h. By property P,
(Proposition 8.4-2), u and v allows one color from x which is distinct from h(u).
Then, since T}, is 2—quasi—nice, h can be extended to a Tis—coloring of G.

O

Proof of Theorem 8.4-2. Let G be an hypothetical minimal (with respect to

order) 2—edge colored graph with mad(G) < 3 which does not admit a 73o—coloring. The
discharging rule is the following

(R) Each Z3-vertex gives 1 to each adjacent 2-vertex.

Let v be a k—vertex. By Lemma 8.4-1, k > 2.

If £ = 2, then by Lemmag&8.4-2 with n = 1, v has two neighbors of degree at leas 3,

thus it receives 2 x 1, hence d*(v) = 3.

If £ = 3, then by Lemma 8.4-2 with n = 1 and Lemma 8.4-3, v has not neighbors
of degree 2. Hence, d*(v) = d(v) = 3.

If 4 <k <5, then by Lemma 8.4-2 for n = 1,3 and 4, v has at most k — 2 neighbors

of degree 2. Hence, d*(v) > k — 52 > 3.

If k > 6, then v gives at most £ and hence d*(v) > k— £ > 3.

Then, for all v € V(G), d*(v) > 3 ones the discharging is completed, that shows that

mad(G) > 3, a contradiction. O

8.6.4 Graphs with maximum average degree less than =

10

Next we prove that every 2—edge colored graph with maximum average degree less than

10
3

admits a Tpy—coloring. In this case we need ...
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1<n<8

u,

(a) (b) (c)

Figure 8.16: Unavoidable configurations for mad(G) < .

Let us define the partial order <. Let n3(G) be the number of <3-vertices in G. for
any two graphs G| and G5, we have G; < G if and only if at least one of the following

conditions holds:
e (7, is a proper subgraph of Gs.
[ ] Tlg(Gl) < n3(G2).

Note that this partial order is well-defined, since if GGy is a proper subgraph of G,
then n3(G1) < n3(Gs). So < is a partial linear extension of the subgraph poset.

Lemma 8.5 A minimal counter—example (according to <) to to Theorem 8.4—1 does not
contain the following configurations.

1. A S1-vertex.

2. The configuration in Figure 8.16 (a).
3. The configuration in Figure 8.16 (b).
4. The configuration in Figure 8.16 (c).

Proof.  Let G be a minimal (with respect to <) 2-edge colored graph with mad(G) < &
which does not admit a Tyy—coloring.

1. Suppose that G contains a <1-vertex v. The case d(v) = 0 is trivial. Suppose
that d(v) = 1. Due to the minimality of G the graph G’ = G\ {v} admits a Ty~

coloring h. Property P; ¢ (Proposition 8.5-1) ensures that h can be extended to a
Tsy—coloring of G.
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2. Suppose that G contains the configuration in Figure 8.16 (a). Due to the minimality

of G the graph G' = G\ {z,v], ..., v}, } admits a Ty—coloring h. By Property P 9, u
allows nine colors for z, while each of vy, ..., v, forbids only one color for = (since G
is 2—quasi—nice, Proposition 8.5-2). Then h can be extended to a T5—coloring of G.

. Suppose that G contains the configuration in Figure 8.16 (b). Due to the minimality

of G the graph G' = G \ {z,v],...,v),} admits a Thy—coloring h. By property P, 4
(Proposition 8.5-2), u; and uy allows one color from z which is distinct from h(v,,)
for 1 < n < 3. Then, since Ty is 2-quasi-nice, h can be extended to a T5y—coloring
of G.

. Suppose that G contains the configuration in Figure 8.16 (c¢). Since G contains

neither a 1-vertex, neither the configuration in Figure 8.16 (b) for n = 1, uy, us and
uz are Z3-vertices. Let G’ be the graph obtained from G\ {z} by adding, for every
1 <i<j <3, a(22)path joining u; to u; in such a way that its type is the same
type of the path u;, z,u; in G. We have G' < G since n3(G') = n3(G) — 1, and one
can check that mad(G’) < 2. Any Ty—coloring of G' induces a coloring of G \ {z}
that can be extended to a Th—coloring of G by property Ps; (Proposition 8.5-3).

O

Proof of Theorem 8.4-1. Let G be an hypothetical minimal (with respect to <)

2-edge colored graph with mad(G) < % which does not admit a Ty—coloring. The
discharging rule is the following

(R) Each Z4-vertex gives 2 to each adjacent 2-vertex.

Let v be a k—vertex. By Lemma 8.5-1 and 4, £ > 2 and k = 3.

If k£ = 2, then by Lemma8.5-2 with n = 1, v has two neighbors of degree at leas 3,

thus it receives 2 x 2, hence d*(v) = .
If 4 <k <5, then by Lemma 8.5-3, v has at most k — 3 neighbors of degree 2.
Hence, d*(v) > k — @ > %.

If6 < k <9, then by Lemma 8.5-4, v has at most & — 2 neighbors of degree 2.
Hence, d*(v) > k — @ > 10

If k > 10, then v gives at most 2 and hence d*(v) > k — 2 > 10,

Then, for all v € V(G), d*(v) > % ones the discharging is completed, that shows that

mad(G) > 4, a contradiction. O



Chapter 9

The class of bipartite 2—edge colored
graphs

9.1 Motivation

The constraint satisfaction problem with template H (CSP—-H) is the question whether,
for a given structure G, there is an homomorphism from G to H. Here structure can
mean anything we like: graphs, directed graphs, edge colored graphs or more general any
relational system.

Definition 9.1 A general relational system S is a finite set of vertices V(S) together
with a finite set of relations R;(S), i € I, where R;(S) is a k;—ary relation on V(S). The
type of S is the set of integers {k;:i € I}.

A binary relational systems is a general relational systems in which k; = 2 for every
i € I. A digraph G is a binary relational system with only one binary relation F(G). The
elements (u, v) of E(G) are called the arcs of G. A simple graph G is a digraph in witch the
binary relation F(G) is symmetric and irreflexive (no loops allowed). Symmetric binary
relations are more conveniently viewed as undirected edges. Oriented graphs are obtained
from simple graphs by assigning to each (undirected) edge only one of the two possible
orientations, and 2-edge colored graphs are obtained from simple graphs by assigning to
each (undirected) edge only one of 2 possible colors. Thus a 2—-edge colored graph G is
a binary relational systems with two symmetric irreflexive relations (colors) E(G) and

By(G).

Definition 9.2 A homomorphism from a general relational system S to a general

91
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relational system T of the same type, is a mapping h : V(S) — V(T) such that, if
(v1,v2,...05,) € R;(S) then (h(vy), h(va),...0{(v,)) € Ri(T) for all i € I.

We denote the class of digraphs by D, the class of simple graphs by G, the oriented one
by E and the 2-edge colored class by G. Tn each case the existence of a homomorphism
from object G to object H is denoted by G — H, and G -» H means there is no such
homomorphism.

The dichotomy conjecture states that CSP—H is always either P or NP-complete. The
dichotomy conjecture is true for undirected graphs and it is not known for digraphs.
The role of digraphs is central for dichotomy because they form a complete class for
this problem. That is, the general dichotomy conjecture can be reduced to the class of
digraphs, which means that every CSP-T with T a general relational system, is polynomial
equivalent to some CSP—H for a suitable digraph H. We can find proofs of these results
in [28].

There are simple classes of digraphs which are complete for dichotomy, for example
some special subclass of acyclic oriented graphs with 5 levels. We include in Section 9.1.1
a proof of this fact. By following the same technique, we will also show a subclass of
bipartite 2—edge colored graphs which is complete for dichotomy. This result gave us a
good reason to study the class of bipartite 2—edge colored graphs.

The class of bipartite 2—edge colored graphs is closely related to the one of bipartite
oriented graphs. We make this statement precise in Section 9.2 and discuss the relationship
between cores and dualities in the two categories.

9.1.1 Two classes complete for dichotomy

As we have said before, it is known [28] that the class of digraphs is complete for dichotomy,
that is:

Theorem 9.1 [28] Fvery CSP-T with T' a general relational system, is polynomial equiv-
alent to some CSP-H for a suitable digraph H.

We can further sharpen Theorem 9.1 by means of the following construction.

Let J be a fixed graph with two specified vertices a, b. For any digraph H we denote
by H * (J,a,b) the graph obtained from H by replacing each arc (x,y) € E(H) by an
isomorphic copy J(4) of J, identifying x with a and y with b; it is assumed that all copies
Jz,y) are pairwise vertex disjoint. The graph H * (J,a,b) is said to arise from H by the
replacement operation with respect to the replacement graph (J,a,b).
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We say that a replacement graph (J, a,b) is strong, if for any irreflexive digraph H
and any homomorphism h : J — H * (J,a,b) the homomorphic image h(J) is contained
in some copy J(z)-

A graph J is rigid if the only homomorphism from J to J is the identity.

Proposition 9.1 If J is both rigid and strong, then for any two irreflexive digraphs G,
H without isolated vertices, G — H if and only if G x (J,a,b) — H = (J,a,b).

Proof.  Let h be a homomorphism from G to H. Since G has not isolated vertices,
V(G = (J,a,b)) = E(G) x V(J)/.. were [(z,y),b] « [(y, w), a: and ([(z,y), ], [(w, 2).d]) €
E(Gx(J,a,b)) if and only if (z,y) = (w, z) and (¢, d) € E(J). Define h* from G * (J, a, b)
to H * (J,a,b) as follows, h*([(x,y), c]) = [(h(z), h(y)),c]. It is easy to argue that h* is a
homomorphism. Now let g be a homomorphism from G * (J,a,b) to H * (J, a,b) we will
define a homomorphism f from G to H such that f* = g. Since J is strong, each copy
Jizy) of G % (J,a,b) maps to a copy Jiu.) of H * (J,a,b). Since .J is rigid, this mapping
is such that for every ¢ € J, g([(z,y),c]) = [(v,v),¢|. Let f be the restriction of g to the
vertices [(x,y),c] where ¢ = a or ¢ = b, then f is a homomorphism from G to H and

ff=g. O

Define D(J,a,b) = {H = (J,a,b) : H € D}. A consequence of Theorem 9.1 and
Proposition 9.1 is the next.

Corollary 9.1 If J is both rigid and strong, the class D(J, a,b) is complete for dichotomy.

We say a digraph G is acyclic if it does not contain a direct cycle. The algebraic length
of a digraph G is the minimal £ such that there exist a homomorphism from G to Py
(the directed path of length k). The algebraic length is the number of levels in a ”leveled”
drawing of G.

By using Corollary 9.1 we next show a subclass of acyclic oriented graphs with five
levels, complete for dichotomy. This is the class D(Z, a,b) for Z the graph in Figure 9.1.

Proposition 9.2 The class D(Z,a,b) is complete for dichotomy.

Proof.  According to Corollary 9.1 we have to show that Z is both rigid and strong. We
first prove Z is rigid. Let (Z, z,y) be the subpath of Z with initial vertex x and terminal
vertex y. The zig-zag Z; is defined as follows: Z), = (Z,a,d), Zo = (Z,b, f), Z3 = (Z, g, €),
Zy = (Z,c,e). We can deduce that Z is rigid from the next two facts. A homomorphism
from Z to Z must preserve the levels and, Z, — Z if and only if &' < k.
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| I\

5 \,

Figure 9.1: The strong and rigid acyclic oriented graph Z with five levels.

d c c
'X){XXX} — . b
a b
d

Figure 9.2: A strong and rigid bipartite 2-edge colored graph Z'.

Now we prove 7 is strong. Let H be any digraph, and h any homomorphism from 7
to H * (Z,a,b). Is enough to observe that any subgraph of H x (Z,a,b), isomorphic to

3, correspond to some (Z, a,d) in Z,, for some (z,y) € E(H). O

Another example of complete class for dichotomy is given by the bipartite 2—edge
colored graph 7' described in Figure 9.2.

Proposition 9.3 The class D(Z', a,b) is complete for dichotomy.

Proof.  According to Corollary 9.1 we have to show that Z’ is both rigid and strong.
We first prove Z' is rigid. Let (Z’,z,y) be the subpath of Z’ with initial vertex x and
terminal vertex y. Observe that for any homomorphism h : 7/ — Z', the homomorphic
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Figure 9.3:

image h((Z',a,c)) must be (7', a,c). It is not difficult to argue that this force h to be the
identity.

Now we prove 7' is strong. Let H be any digraph, and h any homomorphism from 7’
to H * (Z',a,b). Is enough to observe that any subgraph of H x (Z,a,b), isomorphic to

(Z',a,c), correspond to some (Z',a,c) in Z,, for some (z,y) € E(H). O

Observe that the class D(Z', a,b) of bipartite 2-edge colored graphs is such that the
edges of one color form a matching.

9.2 The class of bipartite 2—edge colored graphs

Let ? be the class of all connected bipartite oriented graphs and B the class of all
connected bipartite 2—edge colored graphs. There is a close relation between this classes
that we want to understand.

The natural way to define a correspondence between B and B is the following:

e For every a €~§ with bipartition V(a) = 1/1(5)) U 1/2(8) consider the 2—-edge
colored graph G with the same set of vertices, and replace all arcs from Vi(G) to
Va(G) with edges of color 1, and all arcs from V5(G) to Vi (G) with edges of color 2.

There is a useful way to understand this correspondence by looking at the oriented
paths. For any oriented path = e,65...e, where e; € {+,—} (forward arcs and
backward arcs), the corresponding 2-edge colored path P = €1, C, ...c, where ¢; € {1,2}
is the following: choose ¢; and then take ¢, = cx_1 if ey, # ep_1 and ¢ # cp_1 if e = €5_1.

Example 9.1 Let ?n be the directed path of length n, then the corresponding ]3” 18 the
2—-edge colored path of length n with alternate colors, see Figure 9.3.
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A

f.l’ A

/\

."’J \

/ I"\
NW \/\/\\ b
/ \ .;"'If "\.

{ \. 7

/ g’ *\

Figure 9.4:

Example 9.2 Let 7 be the directed path in Figure 9.1, then the corresponding path 7 is
the 2—edge colored path in Figure 9.4.

There is an ambiguity in this correspondence and that is a problem if we want to
preserve homomorphisms, as it is shown in Figure 9.5.

A homomorphism h from a bipartite graph G to a bipartite graph H, preserve the
bipartition. That is, if the bipartitions are V(G) = V1(G) U V,(G) and V(H) = Vi (H) U
Vo(H), then h has two possibilities, either h(V1(G)) C Vi(H) and h(V2(G)) C Vo(H), or
h(V1(G)) C Vo(H) and h(V2(G)) C Vi(H). For the first case we say h is of type 1, and for
the second case we say h is of type 2.

Consider the followings categories 73)2 and B,.

e An object in BZ (respectively in By) is (3, Vi, Va) (respectively (G; V4, Va)) where
cB (respectively G € B) and V(G) = V1(G) U V5(G) is the bipartition. Homo-
morphisms in B, and By are homomorphisms of type 1.

Now we can define ¢ : ?2 — B, as follows. Given (3, Vi, V) € Eg define ¢(3; Vi, V) =
(G; V1, V4) as the 2-edge colored graph with ‘/;(8) = V,(G), i € {1,2}, obtained from
by replacing all arcs from V; to V5 with edges of color 1 and all arcs from V5 to V; with
edges of color 2.

Proposition 9.4 Let ¢ : ?3)2 - B, defined as above, then (8;1/1,%) — (ﬁ;Vl,VQ) if
and only if $((G: Vi, Va)) = ((H; Vi, V).
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Figure 9.5:

Proof.  Let h be a homomorphism from (ﬁ;Vl,VQ) to (3;v1,v2) in Eg. Since h :
V(G) — V(H) is a homomorphism of type 1, all arcs from V;(G) to V5(G) are mapped
into arcs from Vi(H) to V5(H) and all arcs from V5(G) to Vi(G) are mapped into arcs
from V5(H) to Vi(H). By definition V(G) = V(¢(G)) and V(H) = V(¢(H)). Consider
the same mapping h from V (¢(G)) to V(¢(H)), clearly h is a homomorphism in B,. The
same argument shows that ¢(G) — ¢(H) implies G — H. O

By means of this result we will prove in Section 9.2.1, that cores in B are the same
than cores in B.

We now define another two categori:s B)* and B* and state the analogous of Proposi-
tion 9.4. For every 8 S B, denote by G the oriented graph obtained from <_by reversing
all his arrows. Let «~ denotes the relation & « H if and only if He {8, G}.

o Let B = B/w The objects in B* are the equivalence classes {8, 5} We will
denote an object in B by [3]

We define a homomorphism from [8] to [ﬁ] in B*asa mapping h : V(a) - V(ﬁ)
such that h is either an homomorphism from 8 to H, or h is a homomorphism from
to

It is important to note that homomorphisms in B compose: if [6]%% [ﬁ] and
[ﬁ] — [?} theng[é] — [?] These happen because d s H implies G — H and
— H implies G — H.
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For every G e g denote by G* the 2 -edge colored graph obtained from G by exchanch-
ing the colors. Let, «~ denotes the relation G «~ H if and only if H € {G, G*}.

e Consider B* = B/... The objects in B* are the equivalence classes {G, G*}. We will
denote an object in B* by [G].
We define a homomorphism from [G] to [H] in B* as a mapping h: V(G) — V(H)

such that A is either a homomorphism from G to H, or h is a homomorphism from
G to H*.

Naturally homomorphisms in B* also compose.

Now we can define T : B* —» B* as follows. Given G ¢ B take an arc (u,v) € E(@)

and define t(u,v)(a) as the 2-edge colored graph obtained from G by replacing all arcs
from V,, to V, with red edges and all arcs from V,, to V,, with blue edges (here V,, is the
stable set containing u and Vj, is the stable set containing v). Observe that for any other

arc (u',v') € E(a), we have [t(, ) ( 8 [t(u (G )] since, if v’ € V,, then t(“’”)<8<l:
o )(8), and otherwise tu% 8) t(ur o) )* Observe also [t(w)(ﬁ)]f [t (G)].
Define then T'([G']) = [tuw)(G)] for any (u,v) € E(B) and set T([a]) =[G].

Proposition 9.5 Let T : E* — B* defined as above, then [8} — [ﬁ] if and only if
T[C) — TH].

Proof. By definition [3] - [ﬁ] implies G5 Ho d > E without lost of generality

suppose the first and let 7 be a homomorphism from 8 to ﬁ If h is of type 1, then
G — H (also G* — H*). If h is of type 2, then G — H* (also G* — H). An argument

similar shows that T[a] — T[ﬁ] implies [8] — [ﬁ] O

9.2.1 Cores of bipartite 2—edge colored graphs

Let H be a subgraph of G. A retraction of G to H is a homomorphism r such that
r(v) = v for all v € V(H). If there is a retraction of G to H we say that G retracts to H.
A core is an object which does not retract to a proper subgraph.

An immediate consequence of Proposition 9.4 is that, cores in B are the same than
cores in 5. More precisely we have the next proposition.

Proposition 9.6 6 S a core in g, if and only if qﬁ(a) is a core in B.
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Proof.  Suppose ¢(8) is a core and & is not. Consider 7 the retraction from & to c(a)7
the core of G. Clearly r is of type 1. It follows from proposition 4 that r is a retraction
from ¢(G) to ¢(c(G)) which is a contradiction. The argue is similar if we suppose G is
a core and ¢(G') is not. O

9.2.2 Duality results in the class of bipartite 2-edge colored
graphs

We say that a pair of digraphs (F, H) is a simple duality pair in D (or H is a dual of F
in D) if every G € D satisfies:
G —» H if and only if F' — G.

It follows from the definition that a dual is unique up to homomorphic equivalence, so
we refer to the core of H as the dual of F'.

A typical simple duality pair in D is the next.

Example 9.3 Let ?n 18 the transitive tournament with n vertices and ?n 18 the directed
path of length n, then (?n, ?n) is a simple duality pair in D.
We can find a proof of this in [28].

More generally, we say that ({Fy, I, ...Fy}, H) have finite duality in D, or H is dual
of {Fy, Fy,...F,} in D, if for all G € D the following holds:

G - H if and only if F; — G for some i € {1,...t}.

Are there simple duality pairs in B? Does P, (the 2-edge colored path whit alternate
colors) has a dual in B? Are there finite duality in B?

In order to answer this questions, consider ﬁ n = ?n X 82 (vlhere 82 is the directed
cycle of length 2. Observe ﬁnibipartite and, since 82 = (5 and ?n = ?n, also
BT\ = BT, . Recall T[BT,] = [BT..

Proposition 9.7 For n even, (ﬁn,ﬁn) 18 a simple duality pair in B and for n odd,
({P., P}, BT,,) has finite duality in B.

Proof.  The prove proceeds in three steps. First we prove that (?n, ﬁ ») is a simple
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duality pair in B. Second we establish that ([?n] [ﬁn]) is a simple duality pair in B
and, using proposition 1, we translate these to B*. Finally we develop the statement.

For the first step we use the followings facts. For any digraphs G and H:

1. (GxH)—Galso (Gx H)— H.
2. X -G and X — H implies X — (G x H).

Claim, for every G € B) the following holds: G - ﬁ » if and only if ? G. If

G - BT, then, since G — C'y, we conclude from 2) that G - . We know ?n is the

dual of ?n in D, then ?n — G. Conversely, let ?n — G and suppose G — B?m then
n = lﬁn, by 1) these implies ?n — T',, which is a contradiction.

Now we know ?n,ﬁ is a simple duality pair in B but since 3 % and
3771 E’n, we conclude ([?n] [ﬁn]) is a simple duality pair in g By proposition 1
we have ([P,], [BT ]) is a simple duality pair in B*.

We know BT, = ETZ and, for n even also P, = ﬁ; but for n odd P, # ﬁ;. Then,
for n even, (P,, BT,) is a simple duality pair and for n odd ({P,, P;}, BT}) has finite
duality in B. O

9.3 Finite dualities in Dy.

In the previous section (first step of the proof of Proposition 7) we found a simple duality
pair in 5, from a simple duality pair in D. More pre(:lsely, from (?n, ?n) which is a

simple duahty pair in D, we proved that (?n, (? X 02)) is a simple duality pair in
Can we do the same for all duality pairs in D?

We answer this question in a more general way.

The class l? is the class of all digraphs which are homomorphic to Cg That is,
B={GeD:G = Cy). Define Dy = {G €D: G — H).

Proposition 9.8 If ({F1, F,, ...Fi}, D) has finite duality in D, then ({Fy, Fy, ...Fi}, (D X
H)) has finite duality in Dy.

Proof.

We use the followings facts. For any digraphs G and H:
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1. (Gx H)— Galso (Gx H) — H.
2. X -G and X — H implies X — (G x H).

Claim, for every G € Dy the following holds:
G -+ (D x H) if and only if F; — G for some i € {1,...t}.

It G - (D x H) then, since G — H, we conclude from 2) that G - D. We know
D is the dual of {F, F5,...F}} in D, then F; — G for some i € {1,...t}. Conversely, let
F, — G (for some i € {1,...t}) and suppose G — (D x H), then F; — (D x H). By 1)
these implies F; — D which is a contradiction. O
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