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Chapter 1 INTRODUCTION

The study of the electromagnetic phenomena along the last two centuries has brought
about outstanding contributions for the human progress. The electromagnetism represents
still now, at the beginning of the third millenium, a very important research area. The
radiation pattern of particular types of antennas -for example, fractal or microstrip-, the
analysis of the effect of the cellular communications on human beings or the detection of
buried mines represent specific examples of the wide variety of problems of great interest
nowadays.

The study of such a variety of problems relies on the application of the Maxwell equations,
which rule all the electromagnetic behaviour. Since the analytical solution can only be
obtained for very particular cases of canonical forms -such as spheres, spheroids or infinite
cylinders-, in general, to tackle the analysis of an arbitrary problem, one makes use of the
numerical methods. The discretization of electromagnetic integral equations by the Method
of Moments -MoM- [3] [36], henceforth integral MoM, excels as a powerful and reliable
tool for analysing bodies composed of locally homogeneous regions -penetrable or
conducting- immerse in a wide and nearly uniform medium -typically the ground or the
free-space-. These integral methods result from the surface equivalence theorem, which
allows in general two different formulations, the Electric Field Integral Equation (EFIE)
and the Magnetic Field Integral Equation (MFIE). For the case of penetrable bodies, the
Poggio, Miller, Chang, Harrington and Wu (PMCHW) [7][8][31] formulation can also be
employed -it results from the subtraction of the EFFE and MFIE at both sides of the
surfaces-.

The Method of Moments is based on the full expansion of the physical magnitudes, field
and current, over the interface surfaces between the regions. In consequence, the solution
of the problem is obtained through the inversion of a full-matrix, which, for electrically
large problems, requires excessive memory resources and computation time. That is why
the MoM is widely considered a brute-force method. The expansion of the magnitudes is
carried out through the discretization of the surface; that is, patches spreading over the
interface. The set of patches expanding the -electric or magnetic- fields and currents are
respectively called Weighting and Expanding functions.

The most outstanding contribution of this dissertation Thesis -Chapters 6, 7 and 8- is the
study of the appropriate conditions to develop correctly the 3D operators EFIE, MFIE -PeC
and dielectric- and PMCHW so as to yield accurate results for any structure. Since the
discretization implies a break on the continuity properties of the physical magnitudes, the
valid 3D-operators must ensure the physical electromagnetic requirements in the
discretized surface. In mathematical terms, these requirements set the rank -field- and
domain -current- spaces, which essentially require the enforcement of the continuity across
the edges of either the tangential or the normal component of the expanded magnitudes.
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The first half of this dissertation Thesis -Chapters 3, 4 and 5- tackles the development of
the MoM applied to problems with bodies with symmetry of revolution -BoR-. Since in
this case the physical magnitudes present an azimuthal periodicity, they can be expressed
as a Fourier series. The orthogonality between the different modes enables to obtain
separately each azimuthal mode of the solution. It is thus only required to spread the
patches along the generating arc of the bodies for each mode, which is very advantageous
because the electromagnetic analysis can be carried out indeed for dimensionally large
problems. In Chapter 3, a well-known PeC-EFIE BoR [12] formulation is developed.
Accordingly, PeC-MFIE and PMCHW formulations are developed from scratch, which
represent an original contribution of this dissertation Thesis. Furthermore, it is commented
in detail and corrected to some extent the numerical error associated to the fastest-varying
part of the PeC-MFIE BoR operator. The BoR-codes are particularly useful in modelling
the electromagnetic behaviour of buried mines, which very often show revolution
symmetry.

In Chapter 6, the valid integral MoM approaches for the case of an arbitrary perfectly
conducting -PeC- body are justified, which becomes a singular contribution of this work. It
is thus recommended the use of the divergence-conforming and of the curl-conforming
functions respectively in the development of the PeC-EFIE and the PeC-MFIE operators.
Low-order sets over triangular facets, RWG [28] and unxRWG [35], -belonging
respectively to these two fundamental groups- are chosen to develop the PeC-operators:
PeC-EFIE(AWG) and PeC-MFÍE(tinxRWG). Furthermore, it is reasoned theoretically the
inherent misbehaviour in the PeC-MFIE in case the current expansion relies on a
divergence-conforming set. The accurate computation of the impedance terms for each
operator is also presented in detail. It is particularly interesting the precise computation of
the operator PeC-MFIE(Mnx/?WG), which is an original contribution of this work.

In Chapter 7, a heuristic correction for the misbehaviour of PeC-MFIE(/?WG) is provided,
which stands for an original contribution of this dissertation Thesis. The better behaviour
of PeC-EFIE(WG) and PeC-MHE(unxRWG) is confirmed with examples. In view of the
results, it is reasoned the suitability of PeC-EFIE(/?WG) for the analysis of physical
polyhedrons, which makes PeC-MFIE(«nx/?WG) excel as a more appropriate operator for
curved bodies. A procedure for improving the performance of PeC-EFIE(/?WG) for
coarsely meshed spheres is given, which represents another original contribution of this
Thesis.

In Chapter 8, the operators that agree with the electromagnetic requirements for an
arbitrary penetrable body are presented: EFIE [15], PMCHW [25] and MFIE - dual
operator to EFIE and new contribution of this work-. Since the same low-order sets are
used to expand the currents, it is shown their compatibility with the combination of the
right PeC-operators. In the dielectric case, in addition to the required continuity of the
magnitudes across the edges at each region, the fields at both sides of the surface must
satisfy the interface continuity, which is ignored in the conducting case -the fields are null
inside the conductor-. The impossibility of meeting both continuity requirements at the
same time justifies the apparition of inherent and different errors in the dual EFIE-MFIE
and in PMCHW. The dual EFIE-MFIE focus on ensuring the continuity of the electric-
magnetic field across the edges separately on each medium meanwhile the PMCHW
operator ensures the interface continuity of the fields. It is thoroughly reasoned and
confirmed with examples the suitability of PMCHW for problems with only penetrable
regions. It is also shown and discussed in detail the robustness of EFIE-MFIE since its
behaviour is appropriate for electrically not too small structures with perfectly conducting
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or penetrable regions. All this theoretical analysis constitutes an original contribution of
this dissertation Thesis.

At the end of Chapter 8 the analysis of composite structures is presented, which is very
useful for the case of microstrip antennas. These cases are considered as a group of disjoint
bodies with null distances of separation. It is recommended the use of EFCE-MFIE since,
unlike PMCHW, they can ensure the continuous transition to zero of a distance of
separation increasingly small.

In Chapter 9, efficient methods -EE-MEI [53] and MLFMM [45]- relying on the 3D-
operators of Chapters 6 and 8 are presented. The development of the PeC 3D IE-MEI
cannot maintain the advantages present in the 2D case since the harmonic métrons are not
valid in the 3D general case. A new and original contribution of this work is a set of
métrons that ensures little discontinuity of the current across the edges. It is confirmed with
examples how these métrons, so-called quasi-continuous, reduce the number of required
coefficients per row for a certain current error. However, these métrons must be dismissed
in practice since they must be pre-computed for each body and involve an extra
multiplying matrix in the process of search of the coefficients.

With regard to the dielectric MLFMM implementation, it is reasoned the suitability of the
dual EFIE and MFIE operators since they provide a lower condition number than PMCHW
and because their low-order misbehaviour disappears for electrically large dielectric
bodies. The dielectric MLFMM EFIE-MFIE operators are thus developed from an existing
PeC-MLFMM package. Some examples of penetrable spheres with moderate electrical
dimensions are shown and commented.
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Chapter 2 INTEGRAL METHOD OF
MOMENTS

2.1 MAXWELL EQUATIONS

The electromagnetic differential equations that rule all the electromagnetic phenomena
stand for

] + - (2.1)
di

-f- (2.2)
3f

V - d = « (2.3)

V-£ = 0 (2.4)

V - 7 + ̂  = 0 (2.5)
at

where e(r,i) , h(r,t) are the electric and magnetic fields, b ( f , t ) , d(r,t), the electric

and magnetic flux densities and j (r, t), a (r, í), the electric current and charge densities.

The field expressions (2.1), (2.2), (2.3) and (2.4) form the widely-known Maxwell
equations. The application of the Stokes theorem on (2.1) and (2.2) results in the Ampère
and Faraday's expressions; similarly, the divergence theorems in (2.3) and (2.4) yield the
Gauss law. The expression in (2.5) is the continuity equation, which allows for the charge
conservation principle.

Whenever the sources are harmonic time- varying, the original magnitudes become

(2.6)

where <j(F), J ( r ) , H (r), E (r), B ( r ) , D ( r ) are complex quantities under which the

Maxwell equations become
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(2.7)

(2.8)

V-D = a (2.9)

V-5 = 0 (2.10)

V-J + jû)V=Q (2.11)

where CO corresponds to the angular frequency. This system must not be considered a
particular case since any temporal dependence can be expanded in terms of its spectral
coefficients. In general, the solution can be obtained for each spectral frequency
component according to the Fourier Transform

/ ( r )=J ](r,t)e-J°*dt e(7}a(7,t}e-ia*dt (2.12)

and one can recompose the time domain solution through the inverse Fourier transform.
All the formulation presented along this dissertation Thesis has been developed in the
frequency domain but one can readily pass to the time domain by means of the
correspondences yíü<-»3( )/9/and -co2 <-»82( )/3f2 .

Some of the equations above can be derived from others. This is the case of the continuity
equation, that results from the application of the divergence operator V • in (2.7) and from
the further substitution in (2.9). One can similarly obtain (2.10) from (2.8). So, as a matter
of fact, with three independent expressions one can unambiguously determine any
electromagnetic problem: (2.7), (2.8) -curl dependent- and (2.1 1) -the continuity equation-.

The above-presented expression for the Maxwell equations allows only for electric
sources, p and J, because these are the only sources that have physical sense.

Nonetheless, one can also theoretically define magnetic sources, v(r) and M (r). These

fictitious sources are used for simplifying the computation of the electromagnetic fields
due to more complicated electric distributions. Therefore, the expressions in (2.8), (2.10)
and (2. 1 1) now become

= -M-jcoB (2.13)

V-B=V (2.14)

V-M + jca/v=0 (2.15)
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2.2 LINEAR, HOMOGENEOUS AND ISOTRO PIC MEDIA

In case the medium being the vacuum, the flux densities and the fields are related through
the constants e0 and fj.0 , the so-called electric permittivity and the magnetic permeability

constants

(2.16)

where e0 = (1 /(36w)) • 1(T9 F/m and /¿0 = 4n • 1(T7 H/m .

One can thus equivalently express the Maxwell equations as

(2.17)

(2.18)

V-Ê=— (2.19)
eo

(2.20)

which are the equations adopted to rule the electromagnetic behaviour in the free-space -as
required in the scattering problems- since its electromagnetic characteristics are very close
to those of the vacuum.

If we define two systems of equations with no electric or magnetic sources, the resulting
fields are related -as one may have foreseen in advance by viewing the dual symmetry in
the Maxwell equations-. Particularly, for the vacuum, the expression that transforms the
field magnitudes of both dual problems, 1, electric - M =0-, and 2, magnetic - J =0-, is

£2=-7?o#i H2=—El (2.21)

and the compatibility between the sources yields

v=770cr M=TIQJ (2.22)

where 7]0 = ^]/J,0 /e0 is the so-called impedance in the vacuum.

In general, a medium is linear whenever the flux densities and the fields can be related
through a first order approximation. In homogeneous media, the approximating parameters
are uniform throughout the space. An isotropie medium behaves equally for the three
vector components, whereby the parameters are scalars. The vacuum stands for an
outstanding example of isotropie, linear and homogeneous medium. Some other examples
of linear, homogeneous and isotropie media are presented right away and result in ruling
equations analogous to those above-shown for the vacuum.
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2.2.1 Lossless dielectric

The internal structure of the dielectric media is in general modelled in terms of a
distribution of electric dipoles that are induced by the external field. These induced dipoles
in turn create an electric field that opposes the original electric field -see Fig. 2.1-.

Fig. 2.1 Induced dipoles in a dielectric body

The electric induction, from the superposition of both influences, becomes now

(2.23)

where the first addend allows for the vacuum influence and P(r}, the polarisation vector,

is defined as P = d p / d v , where p ( r ) stands for the dielectric dipolar moment. The

insertion of (2.23) in (2.17) and (2.19), yields

V x H = Jf + jcoP + jcos0E (2.24)

„ - < T , - V - P
V-£ = — f- - (2.25)

eo

where -V • P can be formally interpreted as the induced charge density. The free sources
<jf , J f represent the real excitation of the problem, irrespective of the particular

characteristics of the medium. They are called free to point out their independent origin
from the charges throughout the dielectric, induced by the external field.

In general, one can empirically find a closed relation between the polarisation vector and
the electric field. For the specific case of a linear, isotropie and homogeneous medium, it
accomplishes

P = £0%eE (2.26)
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where %f, the electric susceptibility, is constant, scalar and non dependent on the field
intensity. The introduction of (2.26) in (2.24) and (2.25) yields

(2.27)

T-7 - OfV - E = — — ¿ — - (2.28)

By comparing (2.17) and (2.19) with (2.27) and (2.28), one remarks about the presence of
an extra multiplying factor that is only due to the dielectric characteristics. Hence, through
the definition e = £0er , with £r = l + %e being the so-called relative electric permittivity,
one can accordingly apply the vacuum equations to the dielectric case as

V-E=^L (2.29)
e

VxH=Jf+j(oeÊ (2.30)

The fact of xe being positive for all the cases confirms that the dipoles induce an electric

field with opposite sense to Ë , which unavoidably forces er to be bigger than one.

2.2.2 Magnetised lossless medium

One can analogously analyse the magnetised bodies as a distribution of magnetic dipoles,
which, for a linear, isotropie and homogeneous medium, lead to the permeability constants
\i and ¡j.r. According to the internal physical origin of the magnetic behaviour, there can
be different magnetised bodies, such as paramagnetic, diamagnetic or ferromagnetic.
However, since the aim of the presented Thesis is to study the scattering due to penetrable
-dielectric- bodies, it is always assumed ¿xr = 1. In any case, any magnetised medium could
be analysed as well through the same formulation by setting iir properly. The expressions
in (2.18) and (2.20) in this case become

Vx¿ = -M, — jCüflH (2.31)

V - # = — (2.32)

2.2.3 Dielectric lossy medium with conductivity ac

This section allows for those media with the presence of conduction current Jc, which is

related with E through the conductivity parameter <rc, that is assumed constant,

Jc = GCE (2.33)

The Ampere law, (2.30), now stands for
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VxH =Jf+Jc + jû)eÉ = Jf+(<Jc + jcos)É (2.34)

from where one assesses the goodness in working in the frequency space since all the
medium dependence can be confined in an equivalent or effective relative permittivity er ef

that is complex and frequency dependent

a
£r.«=£r-J-~- (2.35)

which enables the expression in (2.34) to be rewritten as in (2.30)

fe (2.36)

The imaginary part from (2.35) accounts for the losses inherent to the conduction current
because it results in an attenuating factor for the propagating waves.

A particular an extremely important case is that for which ac = °°, widely known as

perfectly conducting (PeC). In a PeC body, free current flows along the body surface, E is
null inside the body and is normal to the outer side of the surface, which involves that no
losses are assumed.

2.3 BOUNDARY CONDITIONS

As shown so far, the Maxwell equations are a set of differential equations that rule over
determined portion of the space. So as to let the solution well-defined one has to provide
also the conditions over the bordering surface around the volume where the differential
equations rule. These are the so-called boundary conditions.

In case the problem rules the whole space, the boundary conditions are set in the infinite,
S„, and compel the electromagnetic fields to be zero -as one can well intuitively foresee-.
These are the so-called Sommerfeld radiation conditions.

__—r-r-rrr1"—"T^>,x,••;••,. , x^$. . ° .,', .f^ „>, o *'^--»^__
r^~^r7^* >-\ •• , < > ->1-; N ''.v'";^ v K>;'-'- A ̂  " -ï* >," " ' ' •/*'-" ,%'v>^TT>v

^ti^B^ • ;N'_" ,^,"^; ' ; 'j\-.-A-X ,\*'. «'> | ""'V '' 0> .byÌÌT>'-r,- '"•-'., 1 ' ^<v'

T~T 7^ / \AE2, D2 ¿SIM/

Fig. 2.2 Interface between two media
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In general, the boundary conditions that rule the transition between two different media are
-see Fig. 2.2-

=Jf (2.37)

=-^/ (2.38)

=tf/ (2.39)

^/ (2.40)

where ñ stands for the unitary normal vector to the surface directed from the medium 2 to
the medium 1 and J ¡ (r) , a ¡ (r) and Mf (r), v } (r)are the surface electric and magnetic

free sources ' that lie throughout S¡ , the interface surface.

2.4 DIFFERENTIAL OPERATORS. WAVE EQ u ATIONS

The application of Vx into the curl-dependent equations, (2.30) and (2.31), of an arbitrary
linear, homogeneous and isotropie medium yields

(2.41)

V(V-E)-V2E=-VxM-jcoßVxH (2.42)

which, in view of (2.29) and (2.32), become the È and H and wave equations

2 (2.43)

They render solutions of wave nature with propagation velocity of c = l/^///£ . For

harmonic time-varying sources one defines besides k = co / c = cù^Jlle , the wave number,
which accomplishes k = 2n/h, where A is the spatial wavelength. These differential
equations are generally appropriate to obtain the solution without exciting sources; for
instance, the wave-guide or cavity modes, or in the free-space, under a cartesian coordinate
system, the plane waves.

2.5 INTEGRAL OPERATORS. GREEN'S FUNCTION

When dealing with an electromagnetic problem it is also possible to develop an integral
formulation completely equivalent to the wave equations. It is firstly convenient to tackle

1 In this dissertation Thesis, the currents J , M and the charge densities O , V will be indistinctly named
so, regardless their origin, volumetric or superficial. Here, unlike the precedent sections, the currents and
the charge densities are superficial.
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the study through the superposition of the formulation for each of the dual problems: 1 -

M = o ,v = 0- and 2 -7 = 0,cr = 0-.

E2(M)

From the differential expression of the magnetic Gauss law (2.10), assuming v =0, for a
linear, homogeneous and isotropie medium one can infer

H}=— VxA (2.45)

by resorting to V- (Vx( )) = 0, where A(r) stands for the electric vector potential. The

insertion of (2.45) in the differential expression of the Faraday's law, (2.8), assuming
M = 0 , yields

0 (2.46)

from where, since V x (V • ( )) = 0 , one can accordingly state

ë1=-VO-;û)A (2.47)

where O (r ) is the electric scalar potential.

By introducing (2.45) and (2.47) in the other, electric source dependent, Maxwell
equations, we get to the closed expressions in terms of the scalar and vector potentials;

V2A + affieA = -/x7 + V ( V • A + jcope® ) (2.48)

V20 = -— -jcu(V-A) (2.49)
e v '

In addition, the Lorentz condition, compatible with the continuity equation, stands for

VÄ + ./ö),U£O=0 (2.50)

which, when applied in (2.48) and in (2.49), leads to the so-called Helmholtz equations

V2A + k2Ä = -ßJ V2<D+¿2O = -— (2.51)
£

which, as (2.43), are wave equations too. These equations are uncoupled, which means that
the potential functions A(r) , O(r) represent respectively the separate response for each

of the source magnitudes 7(r)andp(r) .
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The Green's function G(r,r ' ) is the solution of the differential equation in (2.51) under a

point-source excitation; that is,

V2G(r,r')-k2G(r,rl) = -8(r-r>) (2.52)

where r ' is the point where the point-source is placed.

According to the second scalar Green's theorem,

> (2.53)
i on _

which, in view of (2.51) and (2.52), can be expressed as

, , -G(r,r'F^kS' (2.54)
an an J

where V stands for the volume of the medium, 5 is the enclosing surface and r ', r denote
respectively the source and field domains. G(r,r ' ) , which must be known beforehand, is

key to obtain the solution for any arbitrary source excitation and enables the transformation
of the original differential operators into an equivalent integral expression. In general, the
surface integral in (2.54) is non-null and allows for the boundary conditions.

It is not easy to obtain G(r,r ') for any medium and its corresponding boundary

conditions. For the particular case of the medium being linear, homogeneous and isotropie
over the whole space, one can obtain the analytical expression for G(r,r ') , the well-

known free-space Green's function,

(2.55),

being R = \r-r'|. Moreover, as in this case the enclosing surface is in the infinite, where

according to the Sommerfeld radiation condition the fields must be null, the expression for
<&(r) becomes

(2,6)

and so does accordingly the vector potential function A since it is ruled by the same
operator

„-/»I'-'l -
(2.57)
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The solutions for £, (7) and /f, (7), (2.45) and (2.47), are straightforward from the two

previous expressions, which represent a convolution integral of the Green's function with
the sources.

One can equivalently reach the previous expressions for the electromagnetic fields E2, H2

of the dual problem -7=0, cr = 0-. The potential functions in this case are defined as

e-
J*l?-?1 v(r')

= JÏÏ, -. -, V JdV ' (2.58)jjj 4n r-r \ LLV

-jof-n
(2'59)

where ^(r) and F(r) stand respectively for the magnetic scalar and vector potentials.

The expressions for the fields accordingly yield

£2=--VxF (2.60)
s

H2=-VV-j(oF (2.61)

which confirm the field and source transformations between both problems presented in
(2.21) and (2.22) for the vacuum; indeed,

~ / - \ - í M ^ - / - \
E2 (M ) = -riH, — =-//, (M ) (2.62)

\*l )

where 77 stands for the medium impedance.

Therefore, the final expressions for E and H come from the addition of the solution for
both the dual problems, as shown in (2.44),

Ê(j,M} = -V^-jœA-~VxF
F

, (2.63)
H(J,M) =—VxÄ-VT-7'c

2.6 EQUIVALENCE THEOREM

The equivalence theorem allows to solve an electromagnetic problem by means of an
equivalent problem where some new electric and magnetic currents -Jei/, Metf- are defined

so as to enable the use of the free-space integral expressions of (2.63). The equivalent
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problem renders the same field solution as the real problem because the boundary
conditions are compelled to be the same.

In scattering problems, one defines the scattered fields, E5, Hs, as the fields radiated by
the equivalent currents, and the incident fields, E' and H1, as the fields already existing
before placing the scatterer. Nonetheless, one must never consider a body under the
incidence of an external field a radiating structure. The equivalent currents are fictitious
and the only real currents that appear in the body are induced by the external action. One
must understand the scattered fields as the necessary field contribution to make suitable the
original E' and H' to the change of boundary conditions imposed by the body.

(2.64)

2.6. 1 Volume equivalence

The group of equivalent sources JcqV (r), Meí¡¡v (r) are spread throughout the volume of

the original problem. Assuming £=e( r ) and ß=jn(r), the curl-dependent Maxwell

equations become

(2.65)

V x E = -M, - jcûft (r}H (2.66)

Through the smart substitution,

(2.67)

(2.68)

the expressions in (2.65) and (2.66) convert into the more manageable, free-space,
equivalent equations

V XH = Js + Jeqy + jcû£0ë (2.69)

VxE = -Ms-Metiy-jco/ii0H (2.70)

where one sees how the equivalent sources make up for the change of medium.

This procedure is actually only used for inhomogeneous bodies since it involves to spread
the unknown inside the volume of the body. The following technique, on the other hand,
allows for the definition of the unknowns over the interface surfaces.

2.6.2 Surface equivalence

A more advantageous expression of the equivalence theorem can be developed whenever
the electromagnetic problem consists of a structure composed of locally linear,
homogeneous and isotropie media. This approach is suitable for a very wide range of
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scattering or antenna problems, which are normally modelled by the piecewise
composition of penetrable and PeC patches.

The equivalent problem is defined through the superposition of simpler problems -
corresponding to each region- that extend the validity of the electromagnetic constants to
the whole space so as to allow the use of the expressions (2.56), (2.57) and (2.63). The
definition of electric and magnetic equivalent sources along the interface surfaces is
required.

2.6.2.1 Single PeC body

According to the particular characteristics of the conductors, the field inside the body is
known beforehand to be null -see Fig. 2.3-. Only the field contribution outside the
scattering structure has to be hence considered (the electric and magnetic constants,
required to develop the operators, stand for £0, ¿/0, r¡0).

ï?' ü'E'H
{#

\v^ /

'«'} Jí/
///
>// /

I/^<
7%>«« /^

4'"/
7 re 5,~

{¿ll·l}=0

e0.^o

~..
\~ -— '̂ 'd'""̂ .

""^^xX

V\

1U 1\\
ií!

,,4j

[Ê = ES +E'\H =

Fig. 2.3 Theorem of surface equivalence on a single PeC-body

Boundary conditions

The electric equivalent current is defined along the outer face S* of the interface
surface as

J.=n+xH (2.71)

which coincides with the boundary condition since the fields of the equivalent problem
are assumed null inside the body. The unitary vector normal to 5, n+ points at the
volume where the problem is defined, as shown in Fig. 2.3.

The magnetic field boundary condition for the real problem is
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J,=n+xH
TeS? (2.72)

because the fields inside the PeC bodies are null.

The conditions (2.71) (2.72) are the same, which lets thus the problem correctly posed
in the equivalent problem. One should not let be misunderstood by the fact of existing
currents of the same value Jet/ and J f along S1/" in both problems. Although both are

free currents Jet¡ is a radiating current inside an infinite medium of constants £0, ß0,

whereas Jf is a non-radiating current, that appears along the interface of a conducting

body.

The electric boundary condition for PeC bodies is trivial

= 0 (2.73)

That is why no magnetic equivalent source is to be defined.

4 Definition of the equations

By forcing the magnitudes, with the help of (2.64), to accomplish the magnetic field
and the electric field boundary conditions, one renders two different equations to solve
the problem

-+ fri 7 -+ fr S f "í \\n x H f^=Je¡¡-n x H (•/«, )|?es. (2.74)

-/T x E1' =¿+*Fs(J Í C2-75)

which are respectively the Magnetic Field Integral Equation (MFIE) and the Electric
Field Integral Equation (EHE).

Some authors [15] have proposed to set the boundary conditions in the interior side of
the surface 57, where the fields are to be null. The ruling boundary equations in this
case result in

fTxH =0

which lead the MFIE and the EFIE to

n~xH'

n'xE'

\reS7
=0 (2.76)

(2.77)

(2.78)
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The EFIE and the MFIE are fully determined in any case since these PeC operators,

EpeC = Es (Jei¡), HpcC = HS (Jeq), whose integral expression lies in (2.45) and

(2.47)2, are univocally dependent on the Green's function in the free-space.

From (2.45) (2.47) (2.56) (2.57) (2.5), they can be developed in detail as

Hs
PeC=Vx

. s
= -¡¡Ja,(r')xVG(r,r')dSt (2.79)

=VV

(2.80)

o s

The correct development of the operators EPeC, Hs
P is crucial since all the laterPeC

operators -see (2.111)- derive from them. Particularly, avoiding any thorough insight
into the integration method, which will be later provided, one must pay special
attention on the singularity - r ' — > f - of the integrands.

Fig. 2.4 Integration of the singularity over Sa

As shown in Fig. 2.4, the integration of the singularity necessarily involves the
integration over an area tending to zero around the field point f : E\

s.-»o
The result of the integration due to the rest of the domain is called the Cauchy
Principal Value and can be effectuated through the appropriate analytical or numerical
techniques: Es

peC H peC . The integral expressions of MFIE -(2.74) (2.77)- and

EFIE -(2.75) (2.78)- can be separated in terms of these partial contributions as

2 Although the integration is initially presented over a volume, in this case, due to the superficial nature of the
sources, the integration must be done over a surface
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n* x H PcC = n± x Hs
PeC + n± x Hs

pe (2.

PV±

Furthermore, as it is well-known [4] [5], the integration of the singularity can be
analytically solved for G(r,r ') and VG(f,r ')

I imÍG(r,r ' )JS ' = 0

where QQ (r) is the portion of solid angle at both sides of S' -see Fig. 2.5-. These

values are related through the expression

For smooth-varying surfaces, which is normally the case, Q* = Q~ = In .

Fig. 2.5 Solid angle definition

±The development of ñ xHpei

obtained

±
Sa — >0

and n±x± peC ±
Sa — ? 0

, according to (2.83), is easily

t Jeíl(r<)¡¡G(r,r')dS>
J (2.85)

Jeí,(7}x\\VG(r,r>}dS> = ̂ 7,(r) (2.86)
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which, following (2.81) and (2.82), let the previous MFIE and EHE expressions for
r e S,4, (2.74) (2.75), as

ñ+xH'

ñ+xE'

PV*

TsS*
—n

(2.87)

(2.88)

The MFIE and EFffi expressions for re S¡ (2.77) and (2.78), accordingly substituted,
yield

PeC

(2.89)

(2.90)
PV

Allowing for the continuity of the incident fields and of the non-singular parts of the
integrands across the surface, one should also note that

PV*

H¡\ =H¡

PV" PV*
= EPfC PV"

\reS~
E' =E'

reS,+ (2.91)

In addition, resorting to (2.84) and to the fact that ñ+ =-ñ , one remarks that both
expressions for the EFIE and the MFIE are equal. Indeed, it can only be so since the
solution for Jet/ is unique. This confirms again the right assumption for the fields being

null at S,~. A formal advantageous aspect of the equations in (2.77) (2.78) is that one
can express them by leaving out the «cross product since they respond to a field
expression made equal to zero. Indeed, one can equivalently set the boundary
conditions, (2.76), as

f/fi =0 [E] =0
L JtarueS," L Jtan.reír (2.92)

and, accordingly, the MFIE and EFIE yield

=-\Ês(jeil}]
,ñ=¿7 L V ev/Jmn,r6S(-

(2.93)

(2.94)

which, though completely equal to the integral equations inferred from (2.71) and
(2.73), are formally more interesting since the field operator embraces completely the
unknown. The EFIE and MFIE formulations chosen to develop all the electromagnetic
operators along this dissertation Thesis are based on the (2.93) and (2.94).

The EFIE and MFIE integral equations are theoretically valid for any kind of surface
that encloses any arbitrary region. However, when the PeC-region has a shape in such
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a way that one dimension is minuscule compared with the other dimensions, such as
the strips, -see Fig. 2.6-, getting a precise value for the solution becomes difficult,
since the opposite geometry values tend to merge.

re 5,
§d«L

Fig. 2.6 Surface equivalence theorem simplification for strips

Due to the fact that ± = 0-see (2.85)- under the assumption for the width to

be null, Es is equal at re{S, IS2}, being {S,!^} each opposite portion of the

enclosing surface -see Fig. 2.6-, and can be expressed as the addition of the
contribution of the current from both sides: T , J*

(2.95)

«KW E{S,IS2}

It can be thus set as new current unknown the addition of the current at both sides -
Jn = ~j\q + J^ - because, in this case, the particular value for the current at each side is

irrelevant with regard to the construction of the fields. One can theoretically assign
this approach to the definition of an open surface with flowing current Jn, which,
though, has no physical significance.

On the other hand, one is unable to reproduce this simplification and improvement
with the MFIE expression because, as shown in (2.86), the term

2.6.2.2 Single penetrable body

The equivalence theorem proposes to divide the study into the superposition of two
equivalent problems, defined all over the free-space, each of which allows for the solution
inside their associated region, assuming the field zero in the rest of the space. Each
equivalent problem spreads the electromagnetic constants corresponding to each region all
over; in the original problem, in accordance with the sign convention adopted for PeC, e+ ,

H+ are assigned to the outer medium and e_, fj,_, to the inner medium -see Fig. 2.7-.
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£ t I T I
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•'• « "* ' --"'"ï »" », " v \

Fig. 2.7 Theorem of surface equivalence on a single penetrable body

Boundary conditions

In accordance with (2.37) and (2.38), the boundary conditions along 5. for the original

problem stand for

reí,
-H 0

FeS*
-E )=o

res,- /
(2-96)

because, with regard to the scattering problems with penetrable bodies, there must not
be free sources either inside the body or along the bordering surface S¡.

The equivalent currents are defined at both sides of the interface surface S¡

(2.97)
reS,

where H+ ,E+ and H ,É~ stand for the resulting field in each equivalent problem,
respectively corresponding to the medium constants e+, ß+ and e_, fi_.
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The previous expressions coincide with the boundary conditions along Sf in the

equivalent problem. The fields outside the corresponding region, H
Peí*

and E1

are assumed null -see Fig. 2.7-, which involves

, =0 f,
\reSf

=0 (2.98)

The resulting field is then straightforwardly obtained through the superposition of the
solution for both equivalent problems (2.97) (2.98);

H

Ë =E±

US*
= £

(2.99)

feS*

If the equivalent currents at both sides are related as

eq — •'eq (2.100)

the addition of the boundary conditions for each of the equivalent problems in (2.97),
taking into consideration (2.99), becomes equal to the real conditions (2.96). This
proves that the problem is equally defined in the equivalent and in the real problem
and that, consequently, the assumption for the fields outside the corresponding region
in the equivalent problem to be zero is correct.

4 Definition of the system equations

J*q ,M^ orJ~q,M~q -related through (2.100)- form indistinctly the unknowns of the

problem, which is solved by the introduction of (2,64) in the boundary conditions of
the original problem (2.96)3

(2.101)

(2.102)
TeS,

or in the boundary conditions corresponding to the equivalent problem (2.97)

(2.103)

(2.104)

(2.105)

3 As shown in detail later on, this operator is independent of setting the field point either in S f or in S¡

since that influence is cancelled in H —H and E —E . That is why it is adopted re S¡.
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(2.io6)
ÄJ

In all these equations, in accordance with the characteristics of the scattering
problems, the source of the incident field is assumed in the outer medium -see Fig.
2.7-. Through the choice of two of these equations, one can establish three
formulations to determine the unknowns Jfq , Mfq .

(2.101) and (2.102) is the explicit formulation for the Boundary equations, which are
better known all over the literature as PMCHW formulation since it was originally
developed by Poggio, Miller, Chang, Harrington and Wu [7][8][31]. This formulation
is consistent because the magnetic and the electric field boundary conditions are
directly enforced. Strictly speaking this approach must not be understood as the
decomposition into two equivalent problems, one for each region; indeed, this
approach does not compel any field to be null in any part of the medium. That is why
the equivalent currents do not appear explicitly in the field boundary conditions-
(2.101) and (2.102)-. They are of course implicitly assumed in the integral expression
of the fields.

(2.103) and (2.104) correspond to the EFIE and (2.105) and (2.106) represent the
MFIE in the dielectric case. The definition of these systems is consistent because from
the addition of each pair of equations, one accomplishes respectively the electric and
the magnetic field boundary conditions. The other boundary condition, though
explicitly not imposed, it is accomplished implicitly through the current definition.

The system of equations coming from the choice of (2.103) and (2.105) or (2.104) and
(2.106) is erroneous since none of the boundary conditions is accomplished. This
means that the electric and the magnetic fields are badly defined and hence the
assumption for the field to be zero outside the corresponding region cannot be
accomplished.

Some authors have suggested [15] to pose the integral equations by setting the
boundary conditions outside the corresponding region, (2.98); that is

ñ'xE'

I'9 Í(YÍ\resr \ "'' e<//|?esr ( ¿ . I I I I )

(2.108)

(2.109)

which, in analogous terms as expounded for the PeC case, correspond to the same
expressions of (2.103) (2.104) (2.105) (2.106).

The duality properties of the Maxwell equations enable Es~ (./*,, A/M and

Hs± (j^,Mfv) to be derived from the PeC-operators. Indeed, (2.44) and (2.62) lead to
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(M)

Hs (J,M)=.
(2.111)

2.6.2.3 Structure composed of PeC and Penetrable regions

This problem is solved through the application of the Equivalence theorem applied to each
of the interface regions -see Fig. 2.8-, in agreement with the simpler cases presented in
2.6.2.1 and 2.6.2.2 -see Fig. 2.3 and Fig. 2.7-. There must be, though, compatibility
between the Equivalence theorem approach chosen for each simple problem so as to let the
field consistently defined. Therefore, by applying the EFIE or the MFIE on each simple
problem one ensures respectively the electric or the magnetic field boundary condition
over all the interface surfaces of the structure. Similarly, the use of the PMCHW
formulation for each simpler problem ensures that both boundary conditions are
accomplished in the original problem. In this case, for the interfaces bordering on PeC
regions, the PMCHW derives indistinctly either in the EFIE or in the MFIE, which result
in the so-called E-PMCHW or H-PMCHW formulations.

£2*1*2
- 1 ,-M

\

Fig. 2.8 Equivalent problem f or a complex dielectric structure with three regions

Depending on the number of regions that shape the interface surfaces, one can sort out the
diffraction problems as:

* Two regions shaping the interface surfaces

A typical case is a group of disjoint objects -Fig. 2.9-. The equivalent problem
assigned to the outer region can be treated in an analogous way as with a single body
by placing some fictitious contours S:j to join together the whole set of bodies.
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Fig. 2.9 Equivalent problem for the outer region for two single bodies

One can hence consider the new equivalent structure as a unique body, with an
enclosing surface 5 = [J S¡ u [J 5/iInod(fiWH,. These arbitrary fictitious contours

U s.moda WH-I
contribute to the integral expressions since the currents placed at

i=\..N

each side cancel each other because of the continuity of the fields -see Fig. 2.9-.
Therefore, one can practically set S = [J S¡ and apply the study described in the

¡=\..N

sections 2.6.2.1 and 2.6.2.2 as though the surface was really closed.

Fig. 2.10 Dielectric body with three dielectric layers

Another important case is that of layered bodies -see Fig. 2.10 -. They represent, as a
matter of fact, the generalisation to several layers of the homogeneous case, which
involves only one layer. A very typical case is that of a conducting core surrounded by
a dielectric layer, so-called coatedPeC.
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More than two regions shaping the interface surfaces

This is a very general case that includes most of structures. A very important one is
that of patched or composite antennas, such as the microstrip antennas -see Fig. 2.11-,
which are very widely used.

dielectric slab

ground plane

Fig. 2.11 Microstrip patch antenna over a finite ground plane

2.7 RECIPROCITY THEOREM

For a linear and isotropie medium with two groups of sources J", M" and Jb, Mh, the
Reciprocity theorem relates the sources at one point with the fields produced by the other
sources in that point,

V

where V ' is a volume including all the sources.

(2.112) is an expression with much physical sense, because it is only accomplished
whenever the sources are physical and the fields are really electromagnetic. It will be
mentioned along this dissertation Thesis to bring up the physical essence associated to
some mathematical expressions.

2.8 NUMERICAL METHODS

One can exactly solve the Maxwell equations specifically for some canonical problems,
such as the electromagnetic diffraction along spheres, ellipsoids or infinite cylinders, or the
modal solutions for rectangular or cylindrical wave-guides. In these cases the application
of the boundary conditions is effectuated over surfaces with some constant coordinate
along which the wave equation is separable. For the large majority of problems, though,
one cannot achieve an analytical expression for the solution. It is hence required to
discretize the Maxwell equations -or other equations derived- so as to obtain a numerical
solution. The ordinary steps in any numerical technique can be briefly highlighted below
[5].
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2,8. 1 Analytical formulation of the Electromagnetic problem

Any of the ruling functional equations presented can be chosen to solve the
electromagnetic problem. According to the domain, the formulation can be time-dependent
or frequency-dependent. According to the nature of the operator, they can be differential,
such as the wave equations (section 2.4) or integral, such as the theorem of equivalence
(section 2.6). Particularly, this dissertation Thesis focuses on frequency domain integral
methods.

One can also adapt the Maxwell equations to electrically large enough problems by
modelling the electromagnetic behaviour through well-known high-frequency properties;
for example, the optical physics theory, appropriate for large smooth-varying surfaces, or
the use of predefined wires to model the radiation of zones bordering edges. These so-
called high-frequency methods, that provide for the lack of computational resources of the
ordinary lower-frequency techniques when increasing the electrical dimensions, are
beyond the scope of this study. The size of the examples analysed along this dissertation
Thesis, are on the order of the wavelength, inside the range commonly called the resonance
region.

2.8.2 Discretization of the problem
The discretization of the functional equations is required to transform the functional
domain into the numerical domain, which is manageable by computers. Therefore, one
turns the functional equations into algebraic equations of finite dimension; that is, a matrix.

The general expression for a functional equation can be

(2.113)

where X stands for the unknown and Y , the independent term, relies on the excitation of
the problem. According to the vector space theory, F and X belong respectively to the
rank and domain spaces of the operator 3 and have to be discretized to build the new
operator.

The domain magnitude for the differential operators, as shown in 2.4, is the field - Ê , H -.
The integral operators, as shown in 2.5, make use of the equivalent currents, which are in
any case univocally related with the currents and density charges be it in the surface
formulation - ñ x È , ñ • È , n x H , n • H - or in the volume formulation. Moreover, the
functional equation in (2.1 13) is built in accordance with the boundary conditions.

2.8.2.1 Discretization of the unknown

According to the nature of the problem, the unknown is expanded accordingly in terms of a
determined set of basis functions {*„}, the so-called Expanding Functions

a*x* (2.114)



Contribution to the Improvement of Integral Equation Methods for Penetrable Scatterers 38

For particular cases of well-definite domains where the shape of the current is known in
advance, one can define xa over the whole domain of the operator; for example, the use of

harmonic functions to expand the 0-variation on bodies with symmetry of revolution.

For an arbitrary domain, the expansion of xn is carried out over elementary portions, so-
called subdomains, which are interconnected to form the whole space. This work focuses
on low-order expansions, whereby the electrical dimensions of the subdomains must be
around A 710 at the most. Three wide groups of functions can be presented depending on
the part of the space where the unknown is expanded.

4 Node-based finite elements

From the unknown placed at each node of the domain -previously meshed-, one
interpolates the values, according to a predetermined rule (linear, parabolic), over the
whole space. Hence, the characteristics of the current are not locally fixed in advance;
on the contrary, the current and field properties rely merely on the use of an adequate
electromagnetic operator, which must provide them implicitly. The interpolating
subdomains, so-called elements, can be, depending on the shape of the domain, wire-
shaped, triangular, rectangular. In Fig. 2.12, linear and parabolic triangular node-based
finite elements are shown. In Chapter 6 it will be presented an improvement on the
computation of the RCS resorting to the definition of nodal parabolic elements.

parabolic _-•— linear
,O-. 4f^~^. * « » _

"
V

Fig. 2.12 Node-based finite elements on triangular facets

This approach embraces a very versatile group of functions; indeed, the characteristic
of the operator can be differential or integral, the formulation can be superficial or
volumetric and there are no constraints for the type of magnitude, field or current, to
expand.

With regard to the scope of this dissertation Thesis, surface integral operators, the
Finite elements version is the Boundary Elements Method; Marc S. Ingber and
Randolph H. Ott [22] have developed a PeC-MFIE formulation with J as interpolated
magnitude. Nuria Duffo [6] developed a formulation for dielectrics where the adopted
interpolated magnitudes are the fields Ê and H.
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Patch-based functions

The expansion of the current is carried out inside the subdomain; that is, the patch.
The magnitudes over the junctions between patches, such as wire-currents or linear
charges in a surface formulation4, cannot be thus expanded. The patch-based functions
are assumed zero over the junctions, which in any case is irrelevant with regard to the
construction of the integral operators. Indeed, for surface integral operators, the
excluded edges and vertices have null surface5. However, it is required through the
good definition of the operator to ensure the differential characteristics across the
junctions for the expanded physical magnitudes field and current. A thorough study
will be provided in Chapter 6 for the 3D PeC-operators. The patch-based functions are
chosen in this dissertation Thesis to develop the electromagnetic operators.

In 2D problems, or 3D problems with symmetry of revolution, the discretization is
carried out along one dimension, which is the generating arc of the infinite cylinder or
the body of revolution. The most used patches are pulses with rectangular or triangular
shape -see Fig. 2.13-. For 3D problems with flat surfaces, such as strips, one can use
2D rectangular pulses or roof-top functions [13] -see Fig. 2.13 -.

ID rectangular pulse

ID triangular pulse

roof-top

2D rectangular pulse

Fig. 2.13 Patch-based basis functions for problems afone or two dimensions

A very widespread set of functions is the Rao, Glisson and Wilton triangles [28], so-
called RWG -see Fig. 2.14-, which ensure the normal component of the expanded
magnitude to be continuous across the edges. The particular characteristics of RWG
are shown in Chapter 6 because they are used to expand the surface current over 3D
bodies. B. M. Kolundzija and B. D. Popovic have developed [14] expanding functions
relying on rectangular patches enforcing as well the continuity of the normal
component through the edges.

There are also patch-based functions that ensure the tangential component of the
expanded magnitude to be continuous across the edges. An example is presented in
Chapter 6, the unxRWG functions, called so in this work because they come from the
cross product of the normal vector to the surface with RWG.

4 planar currents or surface charge densities in volume formulations
5 Analogously, for volume formulations the junctions are surfaces, which present null volume.
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All these patch-based functions effectuate low-order expansions. For example, linear
for RWG, unxRWG or roof-top and constant for the rectangular pulses.

Fig. 2.14 RWG basis functions

In general, the patch-based functions ensure the charge throughout the surface to be
null through the local enforcement over a reduced part of the domain, whose size
depends on the simplicity of the chosen patch. That is, in 2D basis functions and in
unxRWG, the charge condition is accomplished over each patch, in RWG, over each
pair of triangles sharing an edge and for the Kolundzija's quadrangular functions, over
even bigger structures of patches.

It is very important to note that this group of functions is often presented in the
literature as Vector Finite elements [33][34][35]. They are named so because they turn
out better to simulate vector electromagnetic fields than the Node-based Finite
elements, which are suitable for modelling scalar quantities [34]. However, in this
work it has been preferred the name patch-based because it alludes explicitly the fact
that the magnitude can only be expanded over the patches but not over the junctions.

* Wire-based functions

In surface formulations, these functions undertake the expansion of the current only
over the edges, which is a portion of the space that the patch-based functions ignore.
This method has turned out appropriate to some extent for computing far-field
parameters but, when compared with the other methods, it becomes less accurate for
near-field magnitudes.

2.8.2.2 Discretization of the boundary conditions

In all problems regarding antenna radiation or scattering, one region must necessarily be
the free space. This involves that the solution inside this region must accomplish the
Sommerfeld radiation condition so that the fields propagating from the source to the
infinite conserve the total power of the wave front. The integral methods allow implicitly
for this fact since the Green's function accomplishes this condition. The differential
methods, though, as it is unfeasible the meshing of the whole outer space, have to provide
some special radiation boundary conditions throughout the end enclosing surface to make
up for the required truncation of the space.
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Furthermore, one has to apply the boundary conditions along the surface interfaces. Since
the boundary conditions can only be imposed exactly over canonical shapes, one has to
discretize the enclosing surfaces of the bodies. Being the modelling of solids a complex
area, one usually associates, for the sake of convenience, the discretization of the geometry
with the discretization of the unknown 2.8.2.1. However, in general terms it does not have
to be necessarily so; indeed, the node-based finite elements tools can be used to model the
enclosing surface and the unknown with a different order of interpolation, Ng and Nf

(J (2.115)

where the three cases, Ng=Nf, Ng>N{ and Ns<Nf, are possible and correspond

respectively to the isoparametric, superparametric and subparametric node-based finite
elements approaches.

One defines the residue, R(r), as the difference between the theoretical - Y ( f ) , (2.113)-

and the computed contribution YN - 3 (XN ) to the boundary conditions; that is,

R(r) = Y(7)-YN(f) (2.116)

where r e S . In general, the imposition of the boundary conditions can be approximately
undertaken over the model of the surface by forcing the residue to be null through the
inner-product with a set of functions, so-called Weighting functions, wm.

)-wmdS = Q m = l..M (2.111)
s

This sets the definition of the Weighted Residues Method, which is widely better known as
the Method of Moments (MoM) [3] [36]. The proper behaviour of this method relies much
on the right choice of wm. Since all the integral developments presented along this

dissertation Thesis focus on the MoM, a thorough insight is given in 2.9.

A particular approach, derived from the MoM by setting wm = 9 (r -/;,), is the point-

matching method, which imposes the boundary conditions exactly over a finite set of
points rm from the surface model. One can also assume point-matching whenever the MoM

field integration is numerically undertaken with one point.

2.8.3 The solution of the problem. Matrix inversion

Through the combination of the procedures presented in 2.8.2.1 and in 2.8.2.2, that
eventually rule the discretization of the domain and rank spaces of the operator 3 , one
turns the original functional equation in (2.113) into a matrix equation



Contribution to the Improvement of Integral Equation Methods for Penetrable Scatterers 42

where the normal case in a well-determined linear system yields N = M 6.

The problem must then be solved through the inversion of the matrix [Zmn ], which can be

in general routinely carried out through the well-known Gauss inverting techniques. Some
complementary methods must be taken into account, though, for some specific cases.

2.8.3.1 Iterative methods

Unlike the differential methods, which result in sparse matrices, the integral methods
always lead to full matrices. This represents a drawback since the inverting time is
dependent on the number of non-null elements per row N as t inv=O(N3). For big

matrices, the Gauss procedure becomes too demanding with regard to the computational
resources. In this case, one can alternatively reach [Ym ] through iterative techniques, which

lead to the solution more quickly for dimensionally big matrices. As it will be shown in
Chapter 9, one develops along with the iterative techniques efficient computational
methods for bodies with big enough electrical dimensions.

When [Zmn]is positive defined, one can apply the conjugate gradient method7, which

ensures the convergence. Another technique is the biconjugate gradient method, which,
although it does not ensure the convergence, it reaches a reasonable value with less steps of
iteration for any type of matrix.

2.8.3.2 Preconditioning

When CO is near a resonance frequency (ur of the cavity inside the scattering body, the
solution is not unique anymore since the solutions of the Maxwell equations without the
excitation appear. These solutions are exclusively dependent on the characteristics of the
geometry.

The consequent matricial system is ill-defined because [Zmn]is very close to be singular -it

is actually singular when (ù = (ûr-. Since [Z,„Jis very difficult to invert precisely -the

determinant of the matrix is very close to zero-, the computation of the matrix must be
effectuated with a very high precision, which, in practice, relies much on the numerical
precision of the computer for the real types. As the EFIE and the MFIE present different
resonance frequencies, one can theoretically solve this problem for each integral operator
by defining a new operator, so-called Combined Field Integral Equation (CFIE), coming
from the linear combination of the fundamental EFIE and MFIE.

The Bauer-Fike's theorem states that when solving Aa = b, the relative error at the input
and at the output, that may allow for some lack of precision, is related by

6 if M > N, the system is overdetermined and, in general, does not have an exact solution that makes the

residue zero; the Least squares solution renders a minimum value for j|/?|.
7 The conjugate gradient method can be applied by premultiplying the system by the transpose conjugate of
the matrix, which lets the resulting matrix positive defined.
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Aa
(2.119)

where K stands for the condition number

" (2.120)

In (2.119), one sees that Aa is small as long as K is small, from which it can be inferred
that the fact of fc being small is a sufficient condition to let the system well-defined. If, on
the contrary, K is high, one can not tell much about the value of àa since K represents a
high bound in (2.119). Hence, the condition number in any case can stand for a measure of
the ambiguity of the solution. A well-known consequence of this is the increase in the
number of steps for the inverting iterative algorithms to converge.

One can fasten the rate of convergence by improving the conditioning for a system
Aa = b . This is very often effectuated by multiplying the system by an appropriate matrix,
typically the inverse matrix of a matrix A that resembles A but that is easy to invert
because its condition number is lower

(2.121)

if A is a positive defined matrix, one can use the eigenvalues matrix as A. In general, one
obtains A by inserting smartly zeros in A. This tool, so-called preconditioning, is very
helpful to invert nearly singular systems or systems with a considerable value for the
condition number. The iterative inverting methods are usually programmed together with
this tool to improve the time of convergence.

2.9 METHOD OF MOMENTS

The MoM [3][36] is the ruling approach adopted along this dissertation Thesis to develop
the integral operators. As mentioned in 2.8.2.2, the expression for the matrix yields

n,m = L.N (2-122)
5

where wm, xn stand for the Weighting and Expanding functions and 3 is the integral

operator, typically HPeC or Es
peC, from which the rest of the operators derive. One can

equivalently express (2.122) as

,m = l..N (2.123)

where (,}=[( ) ( )dS stands for the well-known definition of the inner-product

associated to the square-integrable space.
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One can understand physically the matrix elements Zmn as the mutual impedance between

the elementary current distributions wm and xn .

2.9.1 Requirements for the expanding and weighting functions

The right choice of vvm and xn ensures the good behaviour of the system. The two
fundamental ruling properties are listed below [5].

1. {jc,,} must form a complete basis of the domain of the operator 3 . In this work, the

equivalent currents -J,M- are taken as domain magnitudes. Therefore, according to
the charge conservation principle throughout the surface of the scatterer, the expanding
functions must stand for

QT = Z <?« = S c J V ' *n<® = 0 (2.124)
n=l..N n=\..N S,

which can only be accomplished, irrespective of the current coefficients cn , by
enforcing Vn

-xdS = 0 (2.125)

which is thus required for the correct definition of the patch-based expanding functions.

2- {wm} must form a complete basis in the rank of the operator 3 [37][38]. A sufficient

condition for this is to form a complete basis along the domain of the adjoint operator
3" ; that is,

.,3 (*„ )) = (3" (wm ),*„) = fc.S- (wm ))* (2.126)

Of course, the worst choice for {w,,,} is that of being orthogonal to 3(3cn), which

causes Zmn = 0 .

The rank space of the integral operators are the electromagnetic fields, which have to
accomplish the boundary conditions. This will be used in Chapters 6 and 7 to confirm
and to dismiss the use of some particular MoM-operators.

Keeping in mind the aforementioned requirements, one can determine the conditions for
the good behaviour of the two widely spread MoM-formulations.

* Galerkin

It is characterised by the choice of the same set as Weighting and Expanding functions

w,=x, i = l..N (2.127)
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If the operator is self-adjoint - 3" = 3 - the above-presented condition 2 is
automatically accomplished as long as the expanding functions form a complete basis
of the domain of 3 . The resulting matrix in this case is hermitian

Zmn = (Jc.,3 ft)) = (3" ft),*,) = (x„,y ft))' = (*n,3 ft))' = Z,: (2.128)

Least squares (LSD)

The aim of the MoM is to make the residue zero

'i^(xn)l~° m = l..N (2.129)
\ n=I..AÍ /

Moreover, as it is well-known from the vector theory, the error is minimum if
R JL YN => R _L ]T c„3 (*„ ) => A JL 3 (in ). The LSQ approach defines the Weighting

n=l..AT

functions accordingly as

w, =3(jc;) i = l..N (2.130)

This approach is thus best because the previous condition 2 is accomplished by
definition. However, this technique is seldom used since it is normally very difficult to
obtain an analytical expression for the Weighting functions.

In view of (2.130), the LSQ weighting in (2.129) can be equivalently expressed as

(2.131)
I

which represents a Galerkin approach.

U,,,3flr- J cn3
a3(3cn)) = 0 m = l.JV

\ n=l..N I



Chapters METHOD OF MOMENTS ON
PEC BODIES OF REVOLUTION

3.1 INTRODUCTION

The problem of electromagnetic radiation and scattering due to bodies with rotational
symmetry was first treated by Mautz and Harrington [18]. They developed a MoM
technique by expanding the current as a Fourier series. Because of the orthogonality
between the modes, the matrix inversion could be effectuated independently for each
mode. Furthermore, since only the contour was discretized, the number of unknowns
decreased. As usual in MoM techniques, Mautz and Harrington used patch-based
expanding functions periodically expanded along the azimuth direction; that is, annuii.
They developed the EFIE operator for perfectly conducting -PeC- bodies.

Over the years, different authors have also worked in this subject in accordance with the
original Mautz and Harrington's idea. Te-Kao Wu and Leonard L. Tsai [31] and L.N.
Medgyesi-Mitschang and C. Eftimiu [19] [20] developed other formulations, such as
PMCHW (homogeneous dielectric bodies) and E-PMCHW (coated PeC bodies), according
to the original triangular-shaped expanding functions. In 1980, Wilton and Glisson [13]
obtained good results for PeC (EFIE) and Dielectric bodies (PMCHW) through the
substitution of the Mautz and Harrington's triangular patches by rectangular pulses. In
1990, Stephen D. Gedney and Raj Mittra [12] improved the previous techniques for PeC
bodies by using the rectangular pulse formulation from Wilton and Glisson and fast
integrating along the 0 direction by means of the Fast Fourier Transform (FFT).

The aim of this chapter has been firstly to implement the Gedney and Mittra's PeC-EFIE
formulation for bodies of revolution (BoR). Secondly, the PeC-MFIE operator has been
developed by assuming the general concepts presented over the years about the BoR PeC-
EFIE operator. So as to allow for a later extension to dielectrics, the conception of Gedney
and Mittra -FFT and recurrence formula- has been chosen to build the new PeC-MFIE
operator. At last, all the possible Dielectric formulations have been considered and, after
dismissing the EFIE and the MFIE, one has programmed the PMCHW operator -from the
combination of PeC-EFIE and PeC-MFIE- for homogeneous dielectric and coated PeC
bodies, consistent with the up-to-date literature. One has analysed in detail why the PeC-
MFIE operator, even considering the same aspects as with the PeC-EFIE operator, has
never worked with the MoM, techniques -to my knowledge, nothing has ever been
published-. In any case, some improvements are shown. The reach of validity of the
PMCHW operator has also been considered.
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3.1.1 Expanding functions

The key aspect in all the MoM-BoR formulation is the expansion of the current in terms of
the Fourier series. This enables the electromagnetic operator to be solved independently for
each mode. Thanks to the orthogonality of the expanding functions, the current coefficients
must only be computed along the generating arc for each mode -see Fig. 3.1-.

Fig. 3.1 Local coordinates over each segment along the generating arc

One can thus reach the solution for electrically bigger structures, which otherwise, through
the ordinary MoM approach -with a general 3D oriented discretization- might be
unfeasible with regard to the computation time and the memory resources. On the other
hand, in the BoR-MoM more accuracy on the electromagnetic operators is required.
Indeed, the source integration may be effectuated over annuii of considerable perimeter -
with bigger size than the wavelength- and a different matrix to be inverted appears for each
mode -the numeric conditions that rule their accuracy may not be the same-.

The current expansion in terms of the m modes yields:

m=+M

(3.1)
m--M

where /,„(/, 0) is discretized along the generating arc and expanded in terms of two

perpendicular components u, and «0 at any point of the surface.

j (3.2)
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where I'mj and lfn] stand for the current coefficients in í and </> for each mode and N,,N^,

the number of segments over the contour for both directions; b* and b'j determine the shape

of the expanding functions for both components on each segment along the generating arc.

3.1.2 Weighting functions

The weighting functions -inherent to the MoM- are analogously chosen because there is
also periodicity over 0 in the rank space. Therefore, through the discretization of the
generating contour and by azimuthally expanding the functions, the weighting functions
keep defined over each point of the geometry. Being p the mode number and q the arc
segment or body annulus considered, we have

=M/wl(í)e"'W q = l..N„ p = -M..M
(3.3)

where w* and w/ are the contour facets of the weighting functions. Since only first order

interpolating methods are considered, which is the scope in this dissertation Thesis, they
can be either rectangular, n(f, A, , A2) / p , or triangular, A(r, A, , A2) / p , patches:

lì - A , < r < A 2n(r,A,,A2)= ' . 2

U otherwise

— 0 < f < A
A, 2

(3.4)

)

O otherwise

•— - A , < f < 0

and A,, A2 denote the left and right half-lengths of the pulse.

3.1.3 Matrix elements

3.1.3.1 Impedance elements corresponding to (A I F) V x (A I F]

The application of the set of expanding functions of (3.1) in the vector potential operators
and the inner-product with the q annulus weighting function for any weighting-expanding
functions components pair combination ^),t}-^)',t<} can be ultimately expressed as
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m=+M

m=—M

/ .

Z

for all the chosen modes p e {- M..M).

In (AIF) -PeC-EFIE-, thè Kernel Kfat'/W) is the Green's function G. VX(ÂIF) -PeC-
MFIE- follows this structure but thé Kernel, also derived from the Green's function, is
more elaborate. Because of V x, the normal field unit vector un takes also part in the

field-source unit vector products; that is, ü^^ü^.^ must be considered in (3.5) for the

sake of generality.

3.1.3.2 Impedance elements corresponding to V(O I *F)

For the scalar potential terms, which appear in the PeC-EFIE operator, since the domain
magnitude is the surface charge density, the expression in (3.5) becomes

(3.6)
rm=+M

m=-M

which, by shifting properly field and source dependent magnitudes, yields

(3-f1

= JJ V'
(m=+M

dS'

£•('•*>

(3.7)

Through the indistinct equivalence s = (t\p<j>), s = (p<j> 1 1 ) , one can still arrange E^'^ by
.. „_, ,, ,. Ä 3G(j,jVJ,J') , . . . . . .

remarking on VG(s,.y/s.j )'", = ^ ^ and on the chain derivative rule:
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* E* arrangement:

ff 1
',f)=

JJ p
1 9(G(f,í'/0,0l)wí(Oe"'w) f f l

'
'.f

P 90 j j p - — — ' a0 dS

r* ~(~^) f f-
i JJ Q

The first term is zero because the function is In -periodic along

F (0 + In ) - F (0 ) = 0 . We then finally have,

E' arrangement for
or

j"p9(G(í,í'/0,<^')w'(í)c~~ ) |*(" 3(w (í)e~ )
£ (í' ,0' ) = l i í/5 — I I G(f,í 70,0 ') ¿/iS (3 ió)

'.0 ',0

The first term is zero because the function becomes zero at the pulse ends; hence,

(3.11)
Ul

',0

£'arrangement for B/(r)=nft-tí.,,2,A,/2,A,,/2)

„-MÏ

One can equivalently reach this expression by bringing up the Dirac's delta function,
that is physically more intuitive, and following (3.11) in an analogous way; in this
case, Jw^(í)/c?í = 5(í-Aï/2)-5(í + A ï/2), which accounts for the abrupt

transition, and the pulse value at the ends must be taken zero.

The introduction of the simplified mathematics for E*^ in (3.7) and the source divergence
computation yields, for the different field-source {f,0}-{f',0'} pairs combinations,
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~
p.13)

>JJ JjGír.f/í.f X(f (3.15)

m=-M

this modified formulation is more advantageous since the order of the Kernel diminishes;
one can thus achieve a better precision through the ordinary quadrature rules.

3.1.3.3 Modal matrices. Orthogonality

Let C(f,f70,f) be either {¿«{,^j£m](/,f70,f ) ín S-1-3-1 or G(í,í70,f ) in 3.1.3.2
then C(f,f70 ,</>') can be expanded, according to the azimuthal symmetry of the body,
through a Fourier series; that is,

(3.17)

where

C,(í,0 = (3.18)

are the Fourier coefficients.

By introducing the expression (3.17) in (3.5) or in (3.13), (3.14), (3.15), (3.16), which
T"? ^/fshow the same formal structure, results in

m=+M

(3.19)

m=-M j=l

Til

J e-
ì(*-'»dt JJ C, (i,

-x t,i'

f <1*'}(/1 )pp ' dt' dì

where, in accordance with (3.5) and (3.13), (3.14), (3.15), (3.16), «{'**(/) and ß]r*\f )

stand respectively for w{^}(t),dw^](t)/dt and b*'*\f),db]'*\f)ldf.

Because of the orthogonality of the harmonic-exponential functions in the [-it,it ] domain,
we have
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-k} (3.20)

which leads (3.19) to

» f f (3.21)

because only the addends corresponding to p = m = s e {- M.. M } are non zero. Therefore,
in view of (3.21), a unique linear system for each mode pe {-M. .M} can be defined
involving the t and 0 current components along the discretized generating arc. That is why
one has often considered the solution of the BoR problem for each mode as though it was
2D. Although roughly speaking one could consider it so somehow, BoR-MoM demands an
extra integration in terms of the £=(0-0') variable for computing the Cp Fourier

coefficients, which must be precise enough. Indeed, the numerical evaluation of the
impedance elements becomes quite difficult because of the complexity of the formulas and
usually represents the bottleneck of these techniques.

3.2 QUICK REVIEW OF THE EXISTING BoR-MoM TECHNIQUES

3.2. 1 PeC-EFIE by J. R. Mautz and R. F. Harrington [18]

In 1969, J. R. Mautz and R. F. Harrington developed the BoR-MoM PeC-EFIE operator by
taking into consideration the following aspects:

• Triangular patches for both components of the weighting and expanding sets

b^\t) = w**}(/) = — A(f - tn , A,, , A,1+1 ) (3.22)
Pn

' The computation of the Fourier coefficients is effectuated by a combination of
analytical and numerical techniques. The continuous part -m = 0- of all the harmonics
is analytically integrated meanwhile the rest of terms are numerically integrated. -

• The field integration is very efficiently accomplished by means of a Gaussian
quadrature rule.

3.2.2 PMCHW for homogeneous dielectrics or E-PMCHW for
completely coated PeC bodies.

From the original development of Mautz and Harrington for the PeC-EFIE case, several
authors assessed its generalization for the dielectric scattering problems by programming
the PMCHW operator.

In 1977, Te-Kao Wu and Leonard L.Tsai [31] attempted a PMCHW formulation by
assuming all the principles presented in 3.2.1. Furthermore, the integration of the more
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insidious term of the Cauchy principal value -dQ/dn-, that comes from V x ( A I F J , is
carried by finite-difference approximating the field-derivative of the scalar potential
(OIT), which can be source-integrated more easily. Results are presented for lossy
dielectric structures.

In 1979, L.N. Medgyesi-Mitschang and C.Eftimiu [19][20] extended the reach of the
PMCHW formulation to completely coated PeC Bodies by combining the PeC-EFIE
formulation, as presented by Mautz and Harrington, and a PMCHW formulation where the
V x (A I F ) integrating term is solved by source-integrating the whole d()/dn expression.

In 1989, Allen W. Glisson and Donald R. Wilton, though maintaining the criteria
expounded in 3.1.3 for developing the operators, presented a breakthrough on the BoR-
MoM methods. The weighting functions are imposed to be

,
2 2

(3.23)

which sets two collections of functions, along t and 0, regularly overlapped.

{<}

Z<r

,.'-•.if ~*-' rc--.....— % -i- • \ !f • *•

Fig. 3.2 Glisson and Wilton expanding functions choice

The expanding functions are accordingly set to -see Fig. 3.2-

(3.24)

which yields a different number of basis functions for each current component:
Nj = N, +l.In order to let the PeC-EFIE operator well-defined, the basis functions must
expand properly not only the current but also the surface charge density. One must then
check the good behaviour of the basis functions when applied into the surface divergence

operator-V(v)=(l/p)3(v')/a0 + 3(
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According to the MoM-BoR formulation, (l/p)3(v*)/o0 becomes perfectly defined since

the ^»-dependence does not affect the pulse ¿0(f) but e'm* . Therefore, the divergence
operator works perfectly no matter the kind of shape the pulses along the contour have.
That is why A. W. Glisson and D. R. Wilton decided to use the less complicated, in
computational terms, rectangular pulses.

However, one cannot force b' (í) to become rectangular pulses since 3(b')/3iin this case
would yield zero. As this is unacceptable for the proper expansion of the surface charge
density, the t component current components must have a first derivative non null. This is
fulfilled with the linear slope of the triangular patch, which renders a pulse-doublet charge
representation.

According to the characteristics of the PeC-EFIE operator, A.W. Glisson and D. R. Wilton
determined to turn the b' (í) triangles into half-length rectangles in the part of the PeC-
EFIE operator dependent on the vector potential

(3.25)

This change is perfectly consistent because of the much bigger importance of the scalar
potential gradient at near distances of the radiating source distribution. Indeed, from the
expression of the electric field radiated by any source surface distribution, we have

1 - í
4/re Js'

e-jkR

_ V / i^ \ / J I \ /J p dS' (3.26)

In the matrix diagonal elements, the so-called induced field (o=l / /? 2 ) dominates the
radiated field ( < x \ / R ) . In the off-diagonal terms, the vector potential contribution must
still have little effect and the result with triangular and rectangular pulses is to be alike
since their current moments are the same. So, in practice, it barely makes any difference to
replace the triangles by half-length rectangles inside the vector potential and it is even
much more advantageous in terms of programming.

3.2.3 Use of the FFT for the efficient Solution of the PeC-EFIE by
S. D. Gedney and R. Mittra.

In all the previous techniques, the inherent l/R singularity in the Green's function is
extracted as

cos(m^)- (3.27)

which is easily effectuated since the second integral is the complete elliptic integral of the
first kind.
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Through the same weighting and expanding set choice of Glisson and Wilton -see section
3.2.2-, S. D. Gedney and R. M. Mittra proposed to improve the efficiency on the numerical
computation of the first integral in (3.27) by extracting the singularity as

(3-28)

The first integral can be then evaluated via the EFT, more efficient than the previous
ordinary numerical techniques. The analytical computation of the second integral can be
carried out using a recursive relation from the analytical integrals form = 0, already
needed for the previous approaches, and m = 1 .

This approach has been programmed in this dissertation Thesis for the PeC-EFTE case as
described by Gedney and Mittra. Furthermore, the PeC-MFIE and the dielectric-PMCHW
-with more elaborate Kernels- have also been programmed providing the same criteria with
regard to the FFT faster computation and the recurrence relation for obtaining the higher
modes integrals.

3.3 MoM-BoR PEC-EFIE ACCORDING TO s. D. GEDNEY AND R.
MITTRA [12]

Let us consider a PeC-body of revolution placed in a homogeneous environment. The
electric field ¿can be expressed, according to the Surface Equivalence Theorem, as the
addition of the incident arbitrary electric field Ê' and the scattered electric field Es . The
boundary conditions on a PeC-scatterer require the tangential component of È to be zero
on the surface; that is,

|>(J)1
L V 'Jmn/eS*

The scattered field produced by the equivalent electric current source is

(3.30)

where the expressions of the vector and scalar potentials, A(r) and i>(r), stand for -see
section 2.5-

(3.31)

where

G(r,r')=- (3.32)
R
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is the free-space Green's function, and

R H? - r'l =\P2 + p'2-2pp'cos(0 -f )+ (z - z1)2]'' (3-33)

In view of the expressions (3.1), (3.2) and (3.24), the current expansion for this
formulation entitles to

m=+M í N,

/-I
J=1

(3.34)

and I'mj must be interpreted as the current intensity flowing in the tangential direction

because 2np is its section length. As shown in (3.25), the t current component in the
vector potential term is set to n(i;-,Aj-/2,A;-+1 IT). In this work, the results obtained with

this simplified choice have been compared with the original triangular pulse version for
different objects. This is very important because the PeC-EFIE BoR-operator is taken as
reference in Chapters 4 and 7 to test the behaviour respectively of the PeC-MFIE BoR-
operator and the 3D PeC-operators. For spheres or cylinders, the simpler rectangular pulse
version has been adopted -the performance of both approaches turns out to be almost
identical-. Only for the cone of Chapter 7 the original version with triangular pulses has
been preferred.

For building the operator one has to allow for the expressions in (3.5) and (3.13), (3.14),
(3.15), (3.16), which rule the vector and the scalar potential terms. The Kernel is the
Green's function in any case.

3.3.1 Extraction of the ^-singularity
The goodness of the Gedney and Mittra's approach relies on the efficient computation of
the Fourier coefficients, which, in view of (3.18), are

GM(f,f')=J-£gy<fM¿£ (3.35)

S. D. Gedney and R. Mittra propose to extract the singularity as follows

(3.36)

The first term is computed numerically with the FFT. <!>,„ is computed analytically.

A.sR(Ç) = R(-Ç) -for the Green's function is £-even symmetric- one can equivalently
write
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a, _ (3.37)

which can be simplified

cosi
lì

cos(m¿;)
7r"<= (3.38)

12

to which it follows that

4 "f2 cos(2mß>)=— _ v y /

A, Jo [l + /3,2 sin2 (p
(3.39)

where ß, =[(p-p'2)+(z-z'2)] , pY = 2 are ? an^ ?> dependent parameters that do

not interfere with the c> -angular integration.

It is advantageous an expansion of cos(2mc>) in terms of cosinus to even powers as

m+l

cos(2m<p)=]TvPt'"cosac> (3.40)

'2m-k\ 2m , .

where a = 2m-2(fc-l), Y™ =(-!)*"'l2"^2*"0/* and jk -
k-2 k-l

k-\

Thanks to the expansion in (3.40), the expression in (3.39) can be expressed in terms of
elementary integrals /„ as

* Jct(X-.m) (3.41)

where
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7t/2

Ç cos"ç

«<*••>= J n « 2 . 1 r2 d(p (3-42)
J M -4- fl/* sin rnß,2sin2<p]

and the analytical expressions for J0 nd 72 are -see Appendix A

A')) (3.43)
J

1/2

(3-44)

where ^( )andE( ) stand respectively for the complete elliptic integrals of first and
second kind.

These elementary integrals are convenient since, as shown in the Appendix A, one can
compute them fast through the recurrent relation Va > 4 , from the above-presented
analytical expressions for 70 and 72 ,

C3-45)

3.3.2 Limitations to the ^-singularity extraction

There are no theoretical restrictions for the validity of the previous recurrent formula.
However, when introduced into a computational code, some limitations, due to the finite
accuracy of the machine, may appear.

These restrictions derive from the multiplicative effect of (ß,~2 +2J and (ß~2 +l) that may
overflow the capacity of the computer -the condition number increases much- and thus
worsen the accuracy for big enough values of m. That is why it is recommended not to use
large values for ß~2 = R2 /4pp '. There must be an upper bound for A, and a lower bound

for p and p'. In all the examples tested in this work, it has been adopted p,p'> Q.I /I -as
Gedney and Mittra recommend- and /?, < 0.2/1.

On dimensionally large enough objects, whenever these limits are surpassed, not to use the
recurrence formula is irrelevant. Indeed, since either the field or the source annuii are far
enough or they present a rather small radius, they contribute poorly to the field radiation in
comparison to the rest of influences. However, on rather small objects, a lack of accuracy
may appear. In this case, the current error can be particularly evident on the points of the
generating arc near the axis (where p —» 0).
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3.3.3 Extraction of the t-singularity

The singularity extraction is completed with the precise integration along t. It is carried out
a Gaussian quadrature rule for the contour source segments contributions different to the
contour field segment.

When the field and source annuii coincide ( Rt —> 0, j3,2 —» °° ), the integration of the
singular terms of the integrand must be analytically undertaken since no numerical
quadrature rule can undertake an integration of such a high order. The numerical
integration for the lower order terms can be maintained.

With the goal of viewing the behaviour around the singularity for each mode, it is
obligatory a first insight into the elementary integrals -embracing the whole t' dependence
of the integrand- (4 / #, )/0 : and (4 / /?, )/2.

If we let/?,- ̂  0; that is, j82 -> °°, ßt /(l + 0,2 )"2 -> 1,

I IR, -> oo, K(P, /(l + A2)")-* K(l)=°° (3-46>

E( )is always finite regardless the input value. Besides, the complete elliptic integral of
the first kind K( ) can be well-approximated for input values close to one as

K(m)= ln(l - m) ; that is,

(3.47,

Hence, the highest order characteristic of both elementary integrals -outstanding when
A, approaching zero- is, in view of the expressions (3.41), (3.43) and (3.44),

(3.49)

In these two expressions one can assess that the singular behaviour of both integrals when
tending approaching very closely the field point is nearly equal.

Similarly, for the integrals with a > 4 , as set in (3.45),
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z« = -

= 2

a-1
'q-2
a-1

A2

la-2
'a-3'
a-1

(3.50)

La-4

For the particular case of a = 4, -taking into consideration that %0 = %2 -

y -*4~
a-3 2a-4-a

a-i (3.51)

and it can also be shown Va

/Ca ' ' ' %2 /Co (3.52)

which is reasonable since the order of the singularity must not change when increasing the
mode number. As a matter of fact, one could already realise about this on the singularity
extractions undertaken in 3.2.1 and in 3.2.2. In this case the analytical integration of the
singular term for all the modes does not depend on the mode number.

In Gedney and Mittra's technique, the singularity must be extracted for each mode but can
be quickly computed thanks to the recurrence relation along 0 and because the singular
behaviour in t is eventually the same for each mode.

So as to fast integrate the singular dependence of the integrand in the self-annulus
influence, Gedney and Mittra have analytically integrated the very fast ¿-varying part; that
is,

7 = —Ad r ii
[PP]

p'-»p +-*i (3.53)

which likewise eases the computation of (3.41)

m+l

(3.54)
*=i *=1

The integration of (3.53) along the generating arc, with 0 corresponding to the field point
and t_ , f+ being the distances from the segment ends to the field point -see Fig. 4.5-, leads
to

= 0) = cos ç =
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= lim- •

= lim- - |r' In t'-t'ï + [í1 In t'-t'ï

o

P
t+lnt+-(t + î+ (3.55)

where Gedney and Mittra have assumed the slow-varying terms in the self-contribution
constant in comparison to the singular part of the integrand.

at.

Fig. 3.3 Finer discretization over the segment for the computation of the self t-integral influence

When developing the PeC-EFIE code, the integration in (3.55) has been effectuated
slightly differently so as to assess the influence of the multiplying terms that are assumed
constant. As shown in Fig. 3.3, one has divided the contour segment into more little
segments so that the integral has been computed as the sum of the contributions coming
from each segment portion. The slow-varying multiplying terms are again assumed
constant and (3.55) is locally redone. This change, though little, has added some
complication to the code since the singular terms for each mode are not yet the same. In
any case, the results are very similar to those presented by Gedney and Mittra, which
shows that their assumption is precise enough.

This t singular integration is always needed no matter if the recurrent relation is applied or
not according to the restrictions shown in 3.3.2.

3.3.4 Impedance matrix

As explained in 3.1.3.3, the Gm (/,/') coefficients of (3.35), which derive from the Green's

function, represent the Fourier coefficients for the scalar potential terms. The Cm(t,t')

definition for the vector potential terms shows that Gm (t, t') needs to be modified with the

product of the field-source unit vector ï'ï{,^]M^·}j(/,íl/0-0l) combinations, which, by
adopting the sign criterion and the angles shown in Fig. 3.1 and Fig. 3.4, become



Contribution to the Improvement of Integral Equation Methods for Penetrable Scatterers 62

{M,M,.}=

sinacos^

sin a sin
sina'cos^'

sn a sn
cosa cosa'

= sin asin a' (cos0 cos0'+sin 0 sin 0')+ cosa cosa1

= sin a sin a' cos(0 - 0')+ cos a cosa'
= sin a sin a ' cos + cos a cos a'

(3.56)

sin a cos 0
sin a sin 0

cosa

— sin0

COS0

L ° (3.57)

= -sin a sin ($ -0 ') =-sin a sin

— sin0

COS0

0

sina'cos^'

sin a 'sin ^»'

cosa' (3.58)

= -sin a 'sin (0 - 0 ') = - sin a 'sin

COS0

0

COS01

0

(3.59)

Obtaining the Fourier coefficients Cm(t,t') from Gm(t,t'} and the previous expressions is

straightforward thanks to the finite expansion of sin¿; and cos£ in terms of the harmonic
series:

(3-6o)

and analogously

(3.61)
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The substitution of the terms cos£ or sin<^ in (3.56), (3.57), (3.58), (3.59) by (3.60) or
(3.61) leads to the complete vector potential development of (3.5). The matrix elements
become thus a combination of G,,,+I, Gm_, and Gm . They are thoroughly developed in [12].

U,

wz = —u„ sin a + cos au,
ûp = un cosa + ü, sino;

Fig. 3.4 Relation between the global cylindrical coordinates (p, z) and the local to the annulas (n, t)

The matrix form in (3.29) becomes

7->lK,
E1*J-* A

and the submatrices are even if Z ,m and odd if Z. ,"' ; that is,
=I,.T =i,.V '

™ m rj -in
Zj , — ¿j ,
==/,( =',(

™ m r -m

7 - 7 ~£**< -£0,f

7 m = -7 ~'

(3.62)

(3.63)

which is intuitively reasonable since the electromagnetic coupling is best when the electric
field and the electric current are parallel and null when they are perpendicular9.

3.3.5 Incident electric field expansion

The electric incident field presents the general form

E! = (3.64)

9 As mentioned in Chapter 2, the MoM matrix elements give a measure of the coupling between the
weighting functions and the electromagnetic field radiated by the expanding functions. In Chapter 6, it will
be provided a more elaborate description of this issue regarding the 3D integral operators.
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If it is assumed 0; = 0, which is irrelevant in the bodies with symmetry of revolution -the

current under a non null 0, incidence is obtained through the 0. shift of the resulting

current for 0; =0- , this expression, in accordance with the definition of the Bessel's

function 10, becomes

>0 (3.65)

The development of this expression is effectuated according to the definition of the
weighting functions in (3.24) and allowing for the fact that any incident direction can be

¿s Ä

constructed from the two perpendicular directions f 0 , 00.

El

ín'^n

U

Fig. 3.5 Electric field incidence on the plane defined by the generating arc of the body

In view of (3.56), (3.57), (3.58) and (3.59) and of the angular disposition of Fig. 3.5, the
expressions of the products of unit vector pairs stand for

{w,?0 ]• = sisin a cos o cos 0 - cos a sin a

= -coser sin

(3.66)

(3.67)

"(3.68)

(3.69)

As usual in the BoR developments, the orthogonality between the azimuthal modes lets the
weighting procedure independently defined for each mode pe{-M..M}.

10
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3.3.5.1 Tangential weighting:

E: p Â

"
K dt

which, in view of (3.66) and (3.67), leads to

l

f

I 2;

dt

dt

.
= £o J

,,-V

',+V

= £,° j

',-V2

*

í (sinacoso·ícos^-cosasincr/)e
;(n"/')!í^
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I 0 + 1 -if gAcosff,

;o since coscr,.(/+1J/)+1(Ä:psin(T/) + /"1y/,_1(Ä;psincT1.))^
J j¿

-InE,
'«+A,tl/2

•O j jkzco¡c cosasina¡jpJ (kpsina¡)dt
(3.73)

= -M..M, q = L.N

sincr (3-74)

3.3.5.2 Azimuthal weighting:

Similarly, when weighting along the azimuthal direction according to the regular
overlapping between the t and 0 functions commented in (3.23), the expression yields

E: .Ë: (3.75)

and, thanks to (3.68) and (3.69), we have

f

= £* J

r

= ̂ ° J

1C

/ï'''

J

U

/

(3.76)

(3.77)
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= E{ J ^"./„(fcpsincr,.) - sin0coscr/e·'("~ dt

= -7r£,° J e^
cosV

dt

(3.1

3.4 MOM-BOR PEC-MFIE
Let us consider a PeC body of revolution placed in a homogeneous environment. The
magnetic field H can be expressed -see Chapter 2- according to the Surface Equivalence
Theorem, as

\H(J)]
L \ 'J

=0
tan.reJ- lan.fe.T (an.r6S-

(3.80)V '

where S~ represents the side of the surface where the electromagnetic fields are null.

The scattered field, radiated by the equivalent electric sources, accomplishes

1 -

ß

As in (3.62) with PeC-EFIE, the form of the matrix becomes

(3.81)

Z .'" Z m \\l "=r,C =i,0' Li'

z '" z m r*_=0r =0.0' JL-*
m=-M.. (3.82)

where Z ? , , , f o l l o w s the general form in (3.21), with a more insidious Kernel dependent

on the curl of the integrand.

The expression of the Kernel for the local field coordinates {«,0, t} stands for

dt
A b +1
dnj p

(3.83)
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where, according to the sign assumption for the curl operator with regard to the unit
vectors, {/i,0,i} must accomplish, as shown in Fig. 3.1, ût =ûn xû^ . Furthermore, since

the weighting is carried out over the surface tangential directions, only the 0 and t

components of Vx A need to be computed. Each of the matrices in (3.82) is developed in
detail in the following sections with the expanding and weighting functions presented in
3.4.1.

As mentioned in Chapter 2, the PeC-MFIE integral operator has to be tackled by the right
development of two parts, which are the singularity integration [4] [5] and the Cauchy
principal value integration (PV). Both developments are carried out respectively in the
sections 3.4.2 and 3.4.3.

3.4. 1 Discussion about the proper choice of the set of basis
functions

Unlike the PeC-EFIE operator, there is no need for the PeC-MFIE operator to let the
expanding functions apt for the divergence operator by means of a triangular shape.
Therefore, the choice of rectangular pulses for the expanding functions, simpler with
regard to programming, should be appropriate:

This has been very important to ease the entire development of the PeC-MFIE operator,
which has been encoded from scratch following the original Gedney and Mittra's ideas for
the PeC-EFIE. With the aim of a later generalisation to Dielectrics compatible with the
Gedney and Mittra's PeC-EFIE, the most accurate PeC-MFIE version with the rectangular
pulses has also been adapted to a triangular shape.

For the sake of simplicity, the weighting functions have been chosen to be the same as the
expanding functions.

(3.85)

3.4.2 PeC-MFIE singularity integration

Being .B'''6^',^1)] =u,l,^,Jb'l>'\t')ejm^ 'any of the expanding functions, when

(p',(j)',t')— > (p,(j),t), one can state

(3.86)
sing.reS"

where Q0~,n~ stand for the solid angle value and the unitary vector normal, in S~ , where

the total electromagnetic fields are null.
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The impedance elements result from the inner product between (3.86) and the weighting
functions W* (t,$y = W (í,0) = Wr^iW^ (i)é~i!"1'. The integration of the singularity

must be only considered if the field and the source annuii coincide - s = q -, whereby this
contribution becomes

\ '/j+l/2 lit

}=^l-\\/ 4n J p Jp J ^ ^ " (3.87)

where r and v stand for the components of the weighting and the expanding functions.

The product (wr • (n~ x «v )) is constant along the 0 direction. Thanks to the orthogonality
between harmonic functions, (3.87) becomes expressible as

47T

Ur'n

J

v *

Vl'2 0

jit: "-„*n Xu ))
p

which takes part in the self-impedance terms

'«+1/2 . .

\^

'«+"2 A A- «

2 J p (3.89)
'<r"2

,q = l..N

One should remark now on the fact that since ñ is perpendicular to either u, or u^ -see

Fig. 3.1- u, • («~ x ü, ) = M^ • (n~ x M0 ) = 0 ; therefore,

"'?* =rz« IM
 =0

'•' Jsing L *•* Jsing (3.90)

Moreover, for z."!..' , zr1,. , the aforementioned cross product is maximum in
L '* Jsing L V,' Jsing

absolute value. Particularly, in view again of Fig. 3.1 and Fig. 3.4, we note that un =n~ is
chosen as general criterion when developing the operators. In accordance with
w, =«, ,Xi?0, assumed in (3.83) , we have u, -(«"xw^^l and ¿^ •(«"Xii /) = -l, which

lets the contributions due to the integration of the singularity as
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'«+1/2

rz» -}"•"
Idling

[z;vfL v".' Jsing

L¿O r i . r
2 J p ^ J

'í-1/2 V"

- ^"'T1*- r
2 (J p

«

//f
P

'2

'«+1/2

t[ ldt
' ,nP

n = -M.. + iV f , 4 = 1. JV

where it is assumed no~ = ITC .

Therefore, among the submatrices in (3.82), only Z"^,and Z™,, are affected by the

integration of the singularity. This is reasonable since the PeC-MFIE operator manages the
coupling between a magnetic and an electric source, which is maximum when they are
orthogonal. One can likewise notice that these terms, unlike those from 3.4.3, are
independent of the mode number.

3.4.3 PeC-MFIE Cauchy principal value raw development

3.4.3.1 Fundamental integrals

The application of the curl operator on the potential vector adds some complication in the
computation of the Fourier coefficients. Cm(t,t') -see (3.35)-, which represents the core of

all the PeC-EFIE submatrices, becomes also a fundamental integral for the PeC-MFIE.

The application of the curl operator brings about some other basic integrals, which are

(3.92)
00/H K )

and

(3.93)

both of which can be developed in accordance with the chain rule

e-jkR ÏIR (3.94)'
d(n\$) R ) BR( R

where

1 (3.95)
BR R R2 '
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* Km (t, í') development

aR/dn can be rewritten at the same time, according to the dependence of the n local
component with the co-planar global cylindrical components z and p , as

on I dz dn op dn \

In view of Fig. 3.4,

dz . dp— =-since, -L- = cos« (3.97)
dn dn

and each of the partial derivatives yield

dR _ z - z'
7^-7 ~ J?

(3.98)

op R

Hence, (3.94) is readily expressed as

'~'kR

R

Rm (t, í') development

oR

3.4.3.2 t-weighted submatrices: Z,";.=<í,Hs(0>;Z";.= <í,Hs(0)>

4 Analytical considerations

From the t dependent part in (3.83), we have

(3.99)

30 ~ R (3.100)

In this case (3.94) becomes

»-
(3,0,)
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[VxA]=l
P

94
30 3on 3an

(3.102)

which implicitly requires the expression of the unit vectors products pairs i^w,.

{«0M0.}, common to PeC-EFTE -see (3.58), (3.59)-, and those only related to PeC

MFIE; that is,

{"„",•}=

cos a cos 0
cos a sin 0

-since

sina'cos0'

sina'sin0'

cosa'
= cosasin a' (cos 0 cos 0'+sin <j) sin 0' ) - sin a cosa'
= cos a sin a' cos(0 - 0' ) - sin a cos a'
= cos a sin a' cos - sin a cos a'

(3.103)

cos a cos 0
cos a sin 0

-sin a

-sin0'

COS01

0

= cos a(- cos 0 sin 0 '+ sin 0 cos 0 ')

= cos a sin(0 - 0 ') = cos asin Ç

t current component term: Z"'t. = <f,Hs(f)>

The discretization of the operators yields

[z,

(3.104)

(3.105)
ffe.S',PV

which is partially undertaken for each of the addends in (3.102) in terms of the
fundamental integrals (3.35) and (3.92) and according to the rectangular shape of the
pulses so that

/feS'.PV

cosa
' 47T

ri+l/2 '«»"J

J i l
L 0

dt'dt
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Ti T IciV&tìna-tinSf
J O J J

cosa

p
'l-1/2 '«-1/2

sin g'cos g'T _1_ T rG,,l+,(í,O-G,,,-i(í,O
4n J p J 2ji ~ t i-

'i-l/2 '«-1/2

dt'dt

. ',+1/2 V""

— f f471 J J
'1-1/2 ',-l/J

. ',+1/2 Vi":--f f4?z; J J
',-1/2 '«-1/2

',+1/2

(-1/2

Ç dt'dt

dt'dt

1 r r f 3G(í,f ,£) .— —sin« si
4n J J J on

'i-l/2 '«-1/2 L

, 'i+l/2 '«+"
sin« f f

4 :̂ J J
t'dt

(3.106)

(3.107)

y.: ço
p
'1+1/2

j_
MP

=J_ f l f
4 :̂ J n J

',-1/2 Vl/2

- 'l+l/2 . Vl/2

= J_ f i f

4n J p J

',+ 1/2 '«+1/2

4n J p J
',-1/2 '«-1/2

,+1/2
cos asm a f 1

f oG(í»í'i— - -
J 3¿>

Jií
',-1/2 '«-1/2

rff'Jí

, f- ,\cosç -sinacosa )e ' dt
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'«+!/•> '«+1/2

sinacosa' f 1= cos a sin a1 T j_ T IX+.^O + K.-i^O'L, df _ sinacosa' T j_ ' f
47T J p J L 1 \ 4n J o J

'«-1/2 '«-1/2

2 t ',+ ,,

7J

'«-1/2 '«-1/2

'«+1/1

cosasina' f 1
(3.101

By adding the three previous expressions, we remark that (3.106) is cancelled by the
Gm depending part of (3.108), which leads to

'«+1/2 Vl'2

J + I / - E

cosasina f 1
P

'«-1/2 Vl/2

'«+1/2 Vl'2

sin a cosa f l
4n J p

'«-1/2 '«-1/2

(-1/2

("'l'T,

J 7,J [ "
1-1/2 '«-1/2

+1/2 . '«+l'2

í - í «J
J D J

(3.109)

= -M.. + M, q = l..N, s = 1.JV

4 ^> current component term: Z'"^. = <í,

ñ¡
H

(f)

(3.110)

can be expressed analogously by means of the three addends:

up n

'«+1/2

cosa f 1

T<=S-,PV

4n
J - J dt'dt
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Vl/2 Vl/2

cosa f 1

~AK Í Í J
Vl/2 Vl/

ÏÏÍ
Vl/2 '«-1/2

'i+l/2 Vl/2

cosa f 1

dt'dt

dt'dt
(3.111)

, 5 = 1..N

w'(í) 1

'l+l/2 Vi '2

- -Mi
4jt J J

Vl/2

Vl/2 V'"

= -— í í
An J J

(-1/2

Vl/2 Vi«

=—[ í4;r J J
'1-1/2 Vi/2

. 0

2 Vl/2

p(G{tyy})(r,?V
J 3«

3«

J on
-cos<¡

= 'TTfeí^
4?r J J

rfí'dí

dt'dt

dt'dt

(3.112)

, q = \..N, s =

wí(0 1
)

p ^p

. 'i+l/2 , '«+"2

- M M
47T fJ P j J

. Vl/2 . Vl/2

' í4n J p J

i 'T l 'T
47T J p J

Vl/2 Vl/2

coso

d(ua A (utrf (í1) /p1)) \

-te ^ ^"^
.1 ^

1 * . , , M . r*n*;/v ein ̂  .i-^í , ..., /»~^'"' i^/^*
J 30 90
0

J 30 C°-a-in^ j**

Vl/2 'otl/2 2^
' r 1 r r
' /^Cí í' ^\^oc^^-J'"l^^'!' ' ' i l i '- 'v1»* '^^ wujtji, «(j

Vl/2 Vl/2 °

rf/'dí
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COS«
'¡•un , '«*i'2

'»-1/2
P

„.+, a. í o-*,,,., an

cosa f l
-+I /2 V"2

HJ47T J p
'ï-"2 V"2

and the result of the addition yields

Y* i 'T'T,:".]'=-— |J/>v 8/r J J

dt'dt

(3.113)

j - J (3.114)

= \..N, s = l..

Field integration:

Both submatrices (3.109) and (3.114) are field integrated with one point at the middle
of the field segment s; that is,

+
cos a, Ai, sin a1

\ [̂ ,(f..O
J

'í-l/2

'(f-l/2

(3.115)

= \..N, s = \..N

qtlll

-^ J
fl*l/2

J
V" J

, q = \..N, s =

3.4.3.3 (^-weighted submatrices: Z0
m,.= <0,Hs(f)>;

4 Analytical considerations

The (j) dependent part in (3.83) is:

(3.117)
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The unit vectors pairs required are {«„«,.}, {«„«,,>.}, {",",•}> {«/¿v} "see (3.103),

(3.104), (3.56), (3.57)-.

t current component term: Z ,̂. =<$,Hs(0>

The discretization of the operator stands for

(3.118)

= -M.. + M, 4 = 1.JV, s = l..

which, in accordance with (3.117), can be computed step by step by means of the
addends

f - \ l ~

=zi'f"f
47T J J

'»-1/2 '«-1(2

— cos a sin a' '*F2 *T2 9

dt* dt

í í-J J ¿t9í

sin a cos a
47T

— cosasina'''^'2 '1

''T'T—íTccíJ ^ 9n ^
'»-1/2 '»-1/2 V °

p

sin a cos o:l '»+1/2 '«+1/2

4n

+1/2 '«+»:

'»-1/2 '«-1/2

(3.119)

and

9«
JreS'.PV

»-1/2',-1/2

í/í'í/í
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',-111 Vi/2

lie 8(G(?, t',E, )(sin a sin a' cos£, + cos « cos a' )) _,-
3rt

sin asina' I+r2 "+i
47T

+ •
cos o: cos o;

47T

and the total addition results in

•H'2Vr2

- J ¡Km(t,ndt'dt

\L
,„ -k,q -cosasina'''*f

8 :̂

sin a cos a

V/2

-II
Vi n

sinasincc'H'2 '*r

8?r , ,
'i-I/2 '»-I.

- ',+l/2 '»+1/Î

- J lKm(tJWdt
cosacos«

47t
'¡-¡n V"

current component term:

ÍZ'".Í'9 =-/ í?L 0,0 ' Jpv \ à

dt'dt

(3.120)

(3.121)

JrsS'.PV (3.122)

and again by dividing the development into two steps according to (3.117), we have

'j-l/2 '«-1/2

'reS-.PV

feraM^f.^«-«^



79 Method of moments on PeC-bodies of revolution

and

-cosa '7 l /2

J J f\
4n

'l-l/2 Vl/2

•cosa *T '+f'2

47T
Vi/2 Vi/2

Vl/2

'»-I/2

and the total addition yields

•' '

ein n í+r'-2J2- j
•*

'l+l/2 Vl/2

J |(

'i-l/2 Vl/2

2;

2;

TeS'.PV

wie 3n

'v+1/2 / T7- / . .1 \ -rr
f \ J\. I

J —

J

(3.123)

dí'dí

rfí'rfí

(3.124)

(3.125)

= -M.. + M,q=L.N, s = l..

Field integration:

The first 3 / 3í dependent term in the expressions (3.121) and (3.125) can be easily
simplified by means of the field integration since, in general,

', -)F
J —A=F(0|;;=F(íI)-F(/0)

3i
(3.126)

The second term of (3.121) and (3.125) is field-integrated through a field point in the
middle of the s field-segment, analogously to (3.115) and (3.116).
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Therefore, the expression of both submatrices Z™f. >Z^. stands for

\zm Ì'" =1^0,;' ipy
-cosassma '«+1/2

J« , í1 ) + Gm_, (íí+1/2, í
1

'iti

sin a, cos a '«+1/2

sin a Aí sin a' '«+1/2

Vi/2

cosarAívcosa'f/ '"T
4Ït

'«-I/I

'«+1/2

>m- J G. (*_,«,
'«-l'í

J(^,a.o-
(3.127)

m = -M.. + M, ç = Ì..N, s =

r m i,g _-cos«
L'W .W-

Vl/2f«
Vi '2

Aív sin i
%nj

'<r<n

, t' ) - Gm_, (ív+1/2 , í
1 ))¿í1

(3.128)

,q = l..N, s = \..N

The Ç-even or odd characteristic of the integrand prevails in m. Particularly, according to
the 2;-even property of the integrands in Km(t,t') and in Gm(t,t') and the ^-odd behaviour

of the integrand in Rm(t,t'), these fundamental integrals accomplish Km(t,t') = K _ m ( t , f } ,

G,,,(r,í') = G_m(í,í') andRm(t,t') = -R_m(î,î'). If we inspect the expressions of (3.115),

(3.116), (3.127), (3.128), one can easily infer

z ."=-z ;
=/,' =M (3.129)

which are antagonistic with the properties of the PeC-EFIE -see (3.63)- and are reasonable
because the electromagnetic coupling is best when the magnetic field and the electric
current are perpendicular and null when they are parallel.
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3.4.3.4 Extraction of the ^-singularity

By watching the submatrices expressions from (3.115), (3.116), (3.127), (3.128), one
realises that the fundamental terms from page 70 must be source-integrated along the t'
direction. As in 3.3.1 for the PeC-EFIE, the terms of highest order from PeC-MFIE must
be accurately integrated. It is thus required a precise analytic integration.

Meanwhile Gm(t,t'), present in (3.127) and (3.128), is managed as described 3.3.1 for the
PeC-EFIE, the extraction of the highest order addends for the other fundamental
terms Km(t,t') -(3.115), (3.116), (3.127), (3.128)- and R m ( t , f ) -(3.115), (3.116)- needs to

be effectuated.

Starting from the expressions

In -^ f -jkR \
K ft f\ r o g

• 3n \R (3-130)
- - T
R

lit -% / -jkR

" (3.131)

both of which contain in (e'~kR /^^(jkR + l) the high order dependence. This expression

allows the definition of a still more fundamental integration Tm (t, t'},

2

o V. '

from which Km (t, t') and R,,,(t,t'} can be derived in view of the properties from (3. 60) and

(3.61)

(3-133)

- v - ' - ^ 2j J

The Tm (t, t'} high-order terms when R —» O can be found thanks to the Taylor expansion,
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R3 R* 2 R 3

which sets perfectly the singularity extraction as

...= _

*

R1 2 R
L O

•J^+TÌnr* (3-135)
O

As in the approach of Gedney and Mittra for PeC-EFBE -page 56-, the first integral, with a
low order dependence on R, can be accomplished through the very efficient FFT, due to
the circular symmetry of the integrand. Nonetheless, the two other steep-varying terms
need to be analytically computed to make the singularity extraction feasible.

Meanwhile the recurrent computation on <E>m is well-known since it is the same used in the

PeC-EFIE, one should expect an analogous recurrent development for *¥m . Mr. Joaquim

Fortuny, with whom the author of this dissertation Thesis worked during a stage of three
months in the Joint Research Centre, has figured out a recurrent formulation analogous to
the one developed by Gedney and Mittra.

Indeed, because of the even symmetry of l/R3, Tm is expressible as

and in an analogous way to (3.39),

a/2 . .
n 4 f cos(2m<p)

t,n=-j J r 02 r
*, J

0 l + A2sin>

. .
cos(2m<p)

dff (3-137)

where Rl = [(p - p'2)+ (z - Z)\ * , 7?,2 = ^ are t and t' dependent parameters that do
RI

not interfere with the c> -angular integration.

According to the same cosinus expansion from (3.40), one can readily express

^.(^, (3-138)
Rl Í=l

where

n/2
cos cp ,d(P (3-139)

n/

f
= I

J
. H3/

sm2<j9j
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and the analytical expressions for N0 and N2 stand for -see Appendix B-

1
(3.140)

Na(km) are convenient since, as shown in the Appendix B, one can readily compute them

through the recurrent relation Va > 4 , from the above-presented analytical expressions for
N0 and N2

(3-142)

The limitations about the validity of this recurrent formulation are the same as those
expounded in 3.3.2 for the PeC-EFIE and /„.

3.4.3.5 Extraction of the f-singularity

The singularity extraction is completed with the precise integration along t. It is carried out
a Gaussian quadrature rule for the contributions of the contour source segments different to
the field segment -non singular terms-. When the field and source annuii coincide

(/?, —>0,j0,2 ->«>,/?1/(l + /31
2) — > 1 ) , an analytical integration of the singular terms of

the integrand must be undertaken.

The behaviour around the singularity (p —» p' ,z —» z')for each mode eventually depends,

through the recurrent expression in (3.142), on the elementary integrals (4/JR,')Af
0 and

(4/Rt')N2 when updated in the fundamental f-integrands present in (3.115), (3.116),

(3.127), (3.128):^,,,(f,O,/U'.O and G n ( r , f ) .

The highest-order characteristic of both elementary integrals -outstanding when
R¡ approaching zero-, is -see (3.47)-

v 2 = .
K pp'R?'

(3.144)
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In the following section, it is shown how the first term of (3.144) turns out to be not even
singular since the contribution of the rest of the terms makes up for the singularity of
ln(/?,). One can see hence that the singular behaviour of both expressions when tending

closely to the field point is the same for the second term of V2 -of considerable higher order

than ln(/?,)- and V0 . As p'= p is completely assumable inside a segment portion very

close to p , the highest order terms in (4/JR1
3)7V0and in(4/A,3)//2 accomplish

PR; (3.145)

which accordingly agrees with the singular terms in (4//?,)/0 and (4 / R} )72 becoming

coincident when 7?, —> 0.

Likewise, for the integrals with a > 4, in view of (3.142), we have

and since V0 =V2 , it can be shown Va

va=... = v 2=v 0 (3.147)

which makes sense since the order of the singularity must not change when increasing the
mode number.

The computation of vfm (Ri —> O) is then easily accomplished

¥-(*, -» 0) = 2XnVa =Vaf>;' =va Vm (3.148)
t=i t=i

which is analogous to (3.54).

The analysis of the behaviour of the i'-integrand in the proximity of the singularity for the
general expressions of the submatrices in (3.115), (3.116), (3.127), (3.128) requires the
thorough analysis of the expressions Gm(t,t'), Rm(t,t') andKm(t,t') when Rt ->0.

* Gm(t,t') in the vicinity of the singularity

Gm( / , / ' ) , G,,,., (t,t') and Gm+1(r,r') appear only in the expressions (3.127) and (3.128).

The behaviour of all these expressions when /?, —> 0 has already been analysed in
detail for the PeC-EFTE onerator. as shown in C3.53Ì. which leads to
i ne Denaviour or all tnese expressions wnen A, —> u nas airead]
detail for the PeC-EFIE operator, as shown in (3.53), which leads to

(3.149)
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When inserting this in the part of (3.127) depending on Gm, Gm+1 and Gm_,, taking for

granted the fact that for the self-annulus contribution s = q, we can infer

- cos ar sin ai 'a til 2

47T

sinavcosa'? '"+"2

'9-1/2

(3.150)

Likewise, the introduction of (3.149) in the proper part of (3.128) yields

-cosa.

STT; ''-»W)-*«)^1-»

*'-»',-1/2)-
Vi'2

= 0
(3.151)

Am (í, í1 ) in the vicinity of the singularity

The insertion of ¥„(/*, -> 0) in Rm(t,t') - (3.131) and (3.133) - also produces a zero

0) = - (3.,52)

4 AT„, (t, t' ) in the vicinity of the singularity

Of course the f'-integration must be completed by the terms expounded in (3.133), so
that the total expression of the integrand depending on Ym yields

(3.153)

which, when R¡ —>0 and considering (3.148), becomes

->0) = cosa + sina-(z-z')vc (3.154)
= cosa • - sin a • (z'-z)vc
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The key terms (p — p1) and (z — z ' ) enable va to be integrated along t' and account

for the cancellation of the singularity coming from In /?, in (3.144) when /?, —» 0.

The analytic integration of the products (p - p'^and (z - z')v0 along the generating

arc, with 0 corresponding to the field point and t_, t+ being the distances from the
segment ends to the field point, can be carried out trough

—dt'
t'

2
+ **
f l J— \—^d

P-{*
t=*}*pi'

= lim —£-»° p

' r 2
- = lim —

E-*0 p

' 'ï*'
-1— +
. í r

Ì-Ì f

ì-l·1. £-»0

= lim ±. [- [In 4-+ [In t'l \ (3-155)

P L

since (p-p') = -i-sina, (z-z') = /'•cosa and /?, =|i| -seeFig. 4.5-.

The /-integration of (3.155) derived from the weighting yields zero. Indeed, let us take
a number of points symmetrically distributed along the i-segment, one compensates
the contribution of its symmetric point; particularly, in the mid point of the segment
(3.155) is zero.

Therefore, the highest order self-annulus contribution, which is to be the most relevant, is
null for all the submatrices, since #„,(#, -*Q),Rm(R} ->0) and G,,,̂  ->0) yield zero.
A Gaussian quadrature rule may thus be sufficient to tackle the t' integration.

In any case, the numerical integration of the rest of low order terms on the self-annulus
contribution for each mode through the division of the í'-segment according to the
procedure described in Fig. 3.3 brings about worse results for all the examples tested. As a
matter of fact, the results turn out best whenever these low order contributions are set to
zero.

3.4.4 Improvement of the PeC-MFIE accuracy

The PeC-MFIE operator was first programmed according to the expression of the
submatrices in (3.115), (3.116), (3.127) and (3.128). This first raw version, though, when
compared with the PeC-EFIE [12] results -spheres and cylinders- proved to be highly
inaccurate -only some good accuracy was achieved for the very high ^-frequency modes,
which are actually those that present a negligible contribution for the current-. Therefore,
with the further goal of developing a BoR-operator for dielectrics, it was first required to
improve the accuracy of the PeC-MFIE operator by modifying this first raw PeC-MFIE
formulation. In view of the good performance of the PeC-EFIE -it relies only on
R~} (f, £',<!;) integrals-, some procedures have been implemented to compute alternatively

the Fourier coefficients of the PeC-MFIE in order to lessen the order of the integration
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3.4.4.1 The ̂ - dependence in <f,Hs(f)>, <f,Hs(0)>

The fundamental integration in (3.93), Rm(t,t'}, can be fully simplified by integrating by

parts; indeed,

" 3 f -W \ 2* 3 f -W Ad e ,„, _;„,*: ,„ r d le l-. -R (tt'}= £ *-«# = f
^•m\f'1 J \ - > , n NS/e Ulr I

Ji 3(0 -f) R
V ' (3.156)

r n I f I - r K VT" . t r (
= f_2_ £ b>-J"'̂ £ =- e'*"* - \ (-jm)-

I "\ C Ti P T">/C\ I \ «/ /

which yields

o o

(3.157)

Thanks to this change, the results improve considerably. From an integral, see (3.131),
with dependence on.R~3(f',i,£) we pass to an equivalent expression that relies on a

smoother R~\t\t,£,). This modification affects only the submatrices Z,'".,Z"'0., whose

expressions -see (3.115) and (3.116)- can now be rewritten as follows

'«+l'2

m~' '" 47TO.. J
<ri'2

' ' '*+"2

J n.m + ijcz^í.r^r·j + ̂ m-ijcj,,,.,^,? ;jör (3 158)

Vl/2

J K,
r-l/2

(3.159)

H
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3.4.4.2 The terms sin^- 9( )/3/7 in the odd submatrices <f,Hs(f)>, «¿>,Hs(0)>

The m-odd characteristic of the submatrices Z"'t. and Z^. derives from the product of a

sinus by a term with £-even behaviour. The expressions (3.128) and (3.158) implicitly
show the presence of such term through [Km+l(t,t')~ Km^(t,t')]/(2j), which corresponds

to -see (3.92)-

[Km+i(t,n-Km_,(t,n]_2? 9 fe-** \.„„

2j ~Í dn( R J (3-16°)
m —-M.. + M

Resorting to (3.99) and (3.101), the integrand in (3.157) can be equivalently expressed as

sinf — ± =-_ vvr --^ r/ v*. ,.,— ,
dn{ R j 80[ R J pp'

which is readily integrated taking into account the previous section -see (3.156)-

R ) ( IP P' ¡
(z-z')sina . _ , / , > . f-, i /rox_A L jmGm (t]t -) (3.162)

This is again a very advantageous expression since it is removed the dependence on
7?~3(í',í,^) inherent to AT,,,(i,i'). A. lower order dependence -R~l(t',t,C)- appears instead

in Gm(t,f), Gm+I(i,?')and G,,,.,^,?')- This second modification has lessened significantly

the error, but still an error has remained for the low ^-frequency current modes, which
present the uppermost values.

The introduction of (3.162) in (3.158) and in (3.128) yield the new expressions for Z™. and

Z^., that the author of this dissertation Thesis considers definitive because they only

depend on G,,,_,, Gm and Gm+I, as in the well behaving PeC-EFIE operator.

•«-i«
'«+1/2

|;.m
sin°^cos<W f G«(f,.0.ft.

4n J o '

sma'^ma^ r (z.-z^G^.f)
J o'4nps
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. . V»2
sin« Ascosa „ •

-jm— • ' • - - *

+j
cos ansino:1

&7tpt
'«-in

-COS«

8717 V-i/i

'«-1/2

'«-"2

sin a, f Gm(f,,O
47t

f
J

(3.163)

dt'

'sin a í* (z — z ) _ . „
I ^rn'^»* '

4ro? J p' (3.164)

= -M.. + M, q = \..N, s = \..N

3.4.4.3 The terms sin£ • 3()/3R ¡n the even submatrices <f,Hs(í)>,

The submatrices Z"'., and Z^1,,, with m-even characteristic because their integrand is ¿;-

even, cannot in principle take advantage of the equality in (3.162). The corresponding
expressions (3.159) and (3.127) still show dependence on^~3(r',r,^) due to the product

cos£ -3()/9n, which results in [K^ (t, f ) + Km_](t,t'')]/2. A detailed development of this

expression -see (3.132)- leads to

R

o

= - —^—
J R oR

K o K I K
V

R
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f i d=-p cosa
I n AUJ t\ öl\

1 3 (V*"_____

(3.165)

The first addend can be straightforwardly computed, as a rule of thumb, as

R R

Tm(t,tt)

/? R

But this does not provide any improvement on the order of integration. Nonetheless, as in
(3.161), through the comparison of (3.132) and (3.101) one can write

1 n f -jkLoie
——
R dR\ R R

i
PP

(3.167)

which enables some modification on the first term of (3.165) by means of the well-known
trigonometric fundamental identity

(3.166)

(3.168)

pp ' J d<^ R

which, referring again

(3.157), becomes

2pp'
(3.169)
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which lets the original cos£-30/3n product expressed in terms of Tm(t,t'), Tm+](t,t'),

r^Cr.f) -with still a /r3(r,r'.£) influence- and Gm+1(i,r'), Gm_,a,O, which

compensate the contribution to the error due to Tm_2 (t, t' ) and Tm+2 (t, t' ) .

The final expression for Z'"^ thus stands for

,„ y,? _ Ascosa,
Vi'2

- J pT„(f„f)df

V'2

L l

8 :̂

'd+1'2

^coscg^in^ f ,

"~8Í " J Z

Ascosa,
'í+l/2 '«+1/2

(m + 1) J Gm+1(ív,íVí'-(m-l) J (

Vl/2 V"2
(3.170)

where the dependence on Gm+1 and Gm_, disappears, so that

s-^f^ J pT.ft.oa'
Vl/2

/ • \'«
+

Ar, cos as (zssma, - ps cos a, ) |
87T

VI '2

AL c os cecina,
Vi'2rL J z't^.a.o+î;
Tl/2

Analogously, the final expression for Z'^,. yields

,f/ —cosce, sin a
\Zm ]''" -V-'<!>,fipV —

(3.171]
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sin a. cos a, ',(+1/2

sin2 ccs Ai, sin a 't¡
87T

"j-
J (z-O^fc.

p, sin as cos as Arv sin a ' '

sin oleosa, sin a1

4?T

'i
'«ti/2

^A J p'Tm(t,,tW

',-1/2

sin a, cos a., sin a '„ Ai,
(m + 1)

Vl/2 '«+1/2

J Gm+1(r,,O¿í'-(m-D J Gm_,(ts,t'}dt'
'í-l/2 'ij-1/2

cos2avAíícoso;1
9 '"7

2

p tcos a^A^

'„-i,

sin a, coser Ar cos a'„ '+r

, 'lI+l/2

-i J Tm(t,,t')dt'

4/r (3.172)
Vl/2

In accordance with the good behaviour of PeC-EFffi, it would have been better for all the
PeC-MFIE submatrices to depend only on Gm(t,t')t Gm+i(t,t') and Gm_,(í,í '). However,

this has not been achieved for the m-even matrices Z'"^ and Z™,. . So, the author of this

dissertation Thesis attributes the partial disagreement between PeC-MFIE and PeC-EFIE -
more precise terms about this dissimilarity are expounded in Chapter 4- to the presence of
Tm(t,t'), Tm+l(t,t') and Tm_}(t,t') in Z,¿. and Z^,. . Unfortunately, any attempt to compute

differently these fundamental integrals so that the error declined has turned out fruitless.

3.4.4.4 Symmetry derived from the reciprocity theorem on <t,Hs(<)>)>,

As the m-even submatrices Z"^,and Z '̂,. cannot be fully corrected, the author of this

dissertation Thesis has figured out a procedure, later to the computation of the matrices, to
reduce the error. The reciprocity theorem between J'1 and M ''-arbitrary magnetic and
electric source currents respectively over the surface elements S1' and Ss - yields [5]:

(3.173)
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where Ê" and Hq are the electric and magnetic fields due to M* and Jq .

According to the definition of the dielectric operators effectuated in Chapter 2, this
expression can be rewritten in terms of the PeC-operators as

- f HPK(M*\J«dS< = -\ HPEC(J*}-M*dS
Js" Js' (3.174)

According to the definitions in (3.3), and deliberately choosing the same mode number m
for both sets of functions so as to render a non-null weighting, we have

I
m = -M.. + M, q=l..N, s = l..

which consequently relates the impedance elements of Z^.and Z£f. as

\r,m "M \7m >-'
LZ*rJ =|Z,,-J (3.176)

In view of this, the two insidious submatrices Z^.and Z£,. are transposed when s&q11.

As both matrices are affected by the same error but with completely different formulations,
one might think that it could be possible to lessen the error by either substituting one
matrix by the other or by replacing both of them by a new equivalent matrix that was a
weighted average of both.

This post-correction has turned out quite helpful for those cases where the error, though
not negligible, was not very high; for instance, for the mode m = 0. However, for those
low (^-frequency modes where the error is already too high, the post-correction becomes
useless.

3.4.5 Incident field expansion

The incident magnetic field expansion can be easily deduced from the incident electric
field expansion presented in 3.3.5. By means of the well-known property regarding plane

waves e¡ = h¡ x fc f , one can determine straightforwardly the independent terms -//', , #.!0 -
A /^

of the system in (3.82), for each of the two canonical perpendicular directions t0 and 00.

According to the unit vectors triad choice referred in Fig. 3.5, the correspondence of the H-
components with each of the incident E-components yields

11 As it will be shown in detail later in Chapter 6, although the expression in (3.175), derived from the
Reciprocity Theorem, is true Vs, q, the relation in (3.176) is only true when s & q, which affects the terms
due to the Cauchy Principal Value.
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if hi=tQ => e, = t0xk,=-f0
if h¡=<p0 =3 e,=f0xk,=t0

which accordingly lets the final weighted incident H-components defined in terms of the
weighted E-components -see 3.3.5- as

7/1M rV~lM

- rn" = L±l_ (3.178)

p = -M..M, q = L.N

where 7]0 stands for the free-space impedance and s can be any of the weighting

dimensions - í or 0-. Note that in the PeC-MFIE operator, as mentioned in 3.4.1, q = l..N
for both components.
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Chapter 4 RESULTS FOR PEC BODIES
OF REVOLUTION

4.1 PEC-EFIE RESULTS

For a closed PeC-cylinder of radius 2A and height 2/1, under an incident plane wave with
(7¡ = 45° and 0(. = 90°, it is presented the bistatic cross section in Fig. 4.1 and Fig. 4.2 -

scanned along the observation plane placed at 0„fcv=60°-, and the current components

along the generating arc: 7 t(0=0) -Fig. 4.3- and 7^(^»=^/2) -Fig. 4.4-. The

discretization parameters are: N^ = 60, Nmodes=2M +1 = 31 and NFFT = 128. To confirm

the good behaviour of the PeC-EFIE code, it is compared with some reference results in
[12].

Bistatic RCS(A2) ac|>
16

14

10

dB

20 40 60 80 100 120 140 160 180

a Joseph & Mittra

FFT algorithm

Fig. 4.1 Bistatic RCS scanning along the 0oilt = 60°plane the tangential component
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Bistatic RCS(X2) 00
too

J/Hi 0

.01 -

20 40 60 80 100 120 140 160 180 00!

FFT algorithm

a Joseph & MÎIÎT3

0 45 90 135

Fig. 4.2 Bistatic RCS scanning along the <j)obs = 60°plane the ^-component

(27rp)Re(J,)

180

2 3 4
perim (X)

• Im(J , i 1 Joseph 8

- x ReCJ.) J Mi"ra

10 EO 30 40 50

Fig. 4,3 Jt current component along the generating arc (^ = 0)
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20

15

10
J/Hi

-5

J/Hi

2 3 4
perim (X)

(27i)Im(J«)

l • i

• Im (0 ,̂1 1 Joseph &

x RetJ,*) JMil"°

10 20 30 40 50 60

Fig. 4.4 J Q current component along the generating arc (0 = 7T / 2)

4.2 NATURE OF THE PEC-MFIE MISBEHAVIOUR

Along the study of the PeC-MFIE in Chapters, many clues have suggested that the
computation of Tm(t,t'), Tm+i(t,t') and Tni_,(M') are the bottleneck in the development of
this operator. According to the changes described so far, the fundamental integrals
Rm(t,n, fc+1(M')-£,„_,(?,/')] and [^.(f.O-r^Cf.f1)], depending on/r3(r,f',£),
are not precise enough because they cannot reproduce the better numerical results coming
from the analytical equivalent expressions on GnM(t,f) and Gm.¡(í,í') -see the sections

3.4.4.1, 3.4.4.2 and 3.4.4.3-. Hence, for the remaining R~3(t,t',£,)-terms in the definitive
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version of the PeC-MFIE Tm(t,t'), Tm+l(t,t') and rm_,(M'), the numerical integration

along t' and the analytical integration along ¿; are to be likewise unsatisfactory.

The accurate computation of Km(t,t') has appeared to me as very complicated since the
integrand at near distances becomes quickly very high and the integral must even yield a
finite value. This tends to compensate the contribution of the symmetric source-annulus at
the other side of the field point, according to the (p'—p,z'-z)-odd characteristic.
Moreover, the computation of this integral for different modes aggravates the problem
since a harmonic modulation must be allowed for along £.

Some changes have been carried out with the aim to improve the accuracy on the
computation of Km although in the end none of them improved the results for the
formulation presented in (3.163), (3.164), (3.171) and (3.172).

1. It has been developed another recurrent formula for Km (t, t' ) -in an analogous way as
in the appendices- using an equivalent mathematical expression for 9J?/9n ;

— = -(p'cos£-pc)cosa-(zt-z')sino:
dn

= (-(p '- p.v)cos2 (£ 12} + (p '+ p.t)sin2 (£ /2))coscc + (z'- z,)sina

The consequent integrals along t' are tackled numerically for the addend of (p'+pj,
which shows a much comparatively lower order. The high-order integrals
(p-p')//?,2(i,O and (z-z ')/-fft2(i>O> present in the other two addends, can be
carried out analytically; as a matter of fact, the analytical i-integration for the self-
segment influence in (3.155) is a particular case. Indeed, by means of the expression
of /?,, (p '- ps ) and (z '- z.v ) in terms of the parameters presented in Fig. 4.5

p'-p, = p'-p0 + p0-p j:

Z Z, = Z Zn + Zn Z, =

the elementary high-order integrals thus become

(4.4)

where each of the basic integrals along t' can be developed easily.

Furthermore, the subdivision shown in Fig. 3.2 has been undertaken for the source-
annuli in the proximity of the field-annulus so as to allow for the multiplying lower
order terms associated to these addends, which have to be assumed constant while
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integrating analytically the higher order terms. In any case, the results turn out alike
or even worse, whereby this procedure has been dismissed.

z'-z0 = -t'cosa

p-pQ = t sma

Fig. 4.5 Parameters of the analytical source-integration over a segment

2. The t-weighting has been effectuated with three field integrating points in the parts of
(3.163), (3.164), (3.171) and (3.172) where only the mid point had been used. The
results are very similar and no remarkable improvement is noticed.

4.3 DESCRIPTION OF THE DISSIMILARITY BETWEEN PEC-MFIE
AND PEC-EFIE

The disagreement in all the tested bodies -spheres and cylinders- between the PeC-MFIE
current coefficients and the PeC-EFIE ones, which are taken as reference, can be described
through the aspects below.

1. The error is increasingly perceptible as long as one heads for the low ¿¿-frequency
current coefficients. In all the bodies analysed, m — ±\ are the modes with the worst
behaviour meanwhile m = 0 shows a much more acceptable similarity.

2. The range of low ¿¿-frequency modes of considerable error augments with the electrical
dimensions of the object.

3. The shape of the generating arc of the body also influences the error. The results for a
cylinder are slightly worse than for a sphere of similar electrical dimensions.
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4. The number of low ^-frequency modes that differ appreciably increases as the incident
field reaches the transversal incidence (<7; = 90°). Under the axial incidence (o¡ = 0°),

with a series expansion with only two modes -m = ±l-12, the current error is
comparatively minor, though non-negligible.

The error due to the unsatisfactory computation of the fundamental integrals Tm (t, t' ) ,

Tm+i(t,t') and rm_,(i,f '), reasoned in section 4.2, can perfectly bring about each of the

anomalies above.

Through the inspection of the final expressions for all the submatrices in (3.163), (3.164),
(3.170) and (3.173), we remark on the more important presence of the Gm (t, t' ), Gm+1 (t, t' )

and Gm_,,(/,f ') terms as \m augments. Particularly, when m=0, the sumatrices Z "¡.and

Z^., fully dependent on Gm ( f , i ' )> Gm+i(t,t') and Gm.u(t,t'), are null, according to its m-

odd behaviour. In addition, for increasing values of m , the influence of Gm(t,t'),

Gm+i(t,t') and Gm_H(f ,f ' ) becomes gradually enhanced -and so does accordingly the

accuracy- in all the submatrices through the terms mGm(t,t''), (m + l)Gm+1(r,i') and

This fact, which can account for the first anomaly, can also be assessed intuitively. Indeed,
for high ^-frequency modes, the electromagnetic contribution of the £-lobes, due to the £
harmonic expansion, may partially cancel each other, which eases the computation. On the
other hand, as one heads for the lower ^-frequencies, the contribution of each globe
becomes itself increasingly important; that's why m\ = 1, 2, 3 can well be the worst cases.

When m = 0, though, no globes need to be allowed for and so the accuracy, compared
with the near low ^-frequency modes, improves.

The second anomaly is reasonable. Meanwhile in the 3D approach one can successfully
tackle the integration of such a high order integrand by diminishing the electrical
dimensions of the patches and by increasing the order of the quadrature rule, in BoR
problems the basic discretizing entity is an annulus with -in principle- any arbitrary radius.
Of course, being the source integration not precise enough, the error must unavoidably
increase when augmenting the value of the radius.

The third anomaly makes sense when analysing the order of the integrand near the
singularity, which is shown in the expressions (4.3) and (4.4). When integrating along t',

r , 2~T1/2

one sees how the order of the term tending to infinite, \t + P0 \ , evolves in a steeper

way for cylinders - P0 = 0 - than for spheres, which accomplish P0 ^ 0 for any segment of

the generating arc -see Fig. 4.5-.

12 The mode p of the incident field is based on a linear combination of J +) (&psin(7(. ) and

JP-I (ftp sin (7;), which under an axial incidence -O¡ = 0,7T-, become Jp+\ (0) and Jp_t (O) . On the

other hand, Jk (0)is non-null only if k = 0, which allows non-null modes only for p = ±1 -see section

3.3.5-.
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4.4 PEC-MF1E RESULTS

The fundamental integrals have been í'-integrated by means of a Gaussian quadrature rule
of four points, which were sufficient for the PeC-EFIE. Whenever the number of points
was augmented or the size of the segment was decreased, no real improvement was
noticed. To assess the behaviour of the PeC-MFIE, the PeC-EFIE results are taken as
reference.

4.4.1 Substitution of the i //?3 -terms by Ì/R

Results are presented according to the substitutions shown in the sections 3.4.4.1, 3.4.4.2
and 3.4.4.3 for a sphere of diameter 0.6/1 under an impinging plane wave with a, = 45° -

. = 0° - and e¡ = 0 . The parameters of discretization are: = 25 ,

-0.018
0

PcC-MFIE, (27i)Re(Ji), m=4 PeC-EFIE, (2it)Re(J4), m=4

PeC-EFIE, (2B)Im(J+)t- m=4

0.4 0.6
perim (X)

0.4 0.6
perim (X)

Fig. 4.6 J Q component of the mode m=4 along the cut-plane § — 0
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0.01

PeC-MFIE, (27ip)Re(J,), m=4

J/Hi
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PeC-EFIE, (27Cp)Re(Jt), m=4
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-0.02 •

-0.03

-0.02

0.4 0.6
perim (X)

-0.03
0.2 0.4 0.6

perim (X)
0.8

PeC-MFIE, (2jip)Im(J,), m=4 PeC-EFIE, (27ip)Im(Jt), m=4

0.4 0.6
perim (X)

0.2 0.4 0.6
perim(X)

0.8

Fig. 4.7 J, component of the mode m=4 along the cut-plane (j) = 0

-0.8

PeC-MFIE. (27i)ReÇg, m=2 PeC-EFIE, (27t)Re(J$), m=2

0.4 0.6
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0.4 0.6
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PeC-MFIE, , m=2

0.2 0.4 0.6 0.8

PeC-EFIE (2K)Im(J$, m=2

/Hi

0.2

0.1

Fig. 4.8 J+ component of the mode m=2 along the cut-plane <j) = 0

PeC-MFIE. (2no\Rs(J.\ m=2 PeC-EHE. (2rcp)Re(Jt), m=2

0.4 0.6
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Fig. 4.9 J ! component of the mode m=2 along the cut-plane (j) = 0
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Fig. 4.10 JQ component of the mode m=l along the cut-plane (f) = 0
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J/Hi
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Fig. 4.11 Jt component of the mode m=l along the cut-plane 0 = 0
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Fig. 4.12 J, component of the mode m=0 along the cut-plane tj) =0
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The error due to R 3 (í,í',£) diminishes in all the modes because of the substitution by the

equivalent lower order integrals dependent or\R~] (í,í',¿;). The correction due to 3.4.4.3 is

best for all the modes, which makes sense because it allows for 3.4.4.2 and 3.4.4.1 as well.
Note how for the high-frequency modes -Fig. 4.6, Fig. 4.7, Fig. 4.8 and Fig. 4.9-, the
correction is satisfactory and less noticeable, which involves that the action of R~3 (t,t',C)

is comparatively less important. For m = l-Fig. 4.10 and Fig. 4.11-, the correction is not
good enough.

According to the results, it is clear that the computation of the current for m = 0-Fig. 4.12-
is less sensitive to the error than m = 1, which shows clearly the worst behaviour. Hence,
this is the bottleneck of the BoR-PeC-MFIE implementation. For spheres of bigger
electrical dimensions, the range of inaccurate low-frequency modes grows.

4.4.2 Improvement due to the property of symmetry

As explained in 3.4.4.4, one can achieve a further correction for the mode m - 0, where
the error is less evident, -see Fig. 4.12- by applying the symmetry property between Z£,.

and Z,°0. derived from the reciprocity theorem. Indeed, the 3.4.4.4 correction yields

PeC-MFIE. (2TOÌRef J.). m=0 PeC-EFIE, (27tp)Re(J,), m=0

J/Hi

-1.5

0.2 0.4 , 0.6
penm (X)

0.8

PeC-MFIE. (27toïïmf J,"). m=0

0.5

-0.5

-1.5

0.5

-0.5

-1.5

0.4 0.6
parim (X)

0.2 °-6'•H perim (X)

'., (?7ip)TTyi(Tt), m=i

0.8

0.4 . 0.6
penm (X)0.8 1 ° 0-2

Fig. 4.13 Jt component of the mode m=0 along the cut-plane 0 = 0

0.8
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where the improvement comes from the substitution of z£,. by Z°¿. -see 3.4.4.4-.

4.4.3 Behaviour for a cylinder

Some results are presented for the case of a cylinder with diameter 0.5/1 and height 0.5A
under an impinging plane wave with o. =45° -0,. =0°- and e¡ =t0. Note that this case
presents a radius and a length of the generating arc -1A - close to the characteristics of the
sphere commented in 4.4.1 and 4.4.2. The PeC-MFIE is encoded following 3.4.4.3 for the
correction is best.
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Fig. 4.14 J\ component of the mode m=4 along the cut-plane 0 = 0
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The evolution of the results for the cylinder is analogous to the sphere. It must be noted, in
addition, that for the higher frequency mode m = 4, the J^ results -Fig. 4.14- differ

appreciably on the corners of the geometry; for m = 1 the error is considerable and turns
out again the worst. Finally, it is interesting to notice that the results form = 0 are very
good.

Comparing the results for the sphere and the cylinder, both of similar electrical
dimensions, it can be seen that the values are in general worse for the cylinder. This is
especially evident for m = 1, where the error is most remarkable. This behaviour can be
attributed to the steeper slope of the high-order varying term in the case of the cylinder, as
mentioned in 4.3.

4.5 EXPLANATION OF THE PEC-MFIE MISBEHAVIOUR

It has been proved with examples the misbehaviour of the PeC-MFIE in comparison with
the PeC-EFIE. It has been reasoned in detail that this error comes from the inaccurate
computation of the higher order integrals in the PeC-MFIE operator depending on

The source integrals involved in any BoR approach are two. One is the ¿'-integral,
undertaken by means of a Gaussian numerical rule. The other one is the integral along £,,
which does not appear explicitly in the definitive BoR-formulation but it is implicitly
incorporated since it rules the computation of the Fourier coefficients.

The author of this dissertation Thesis considers that the analytical integration of the ¿j -
dependent part can provide this error. In the Appendix B, it is theoretically proved the
recurrence formula adopted, which relies on two basic integrals: N0 and N2. As one can
well see either in the Appendix B or in (3.140) and (3.141), these integrals rely on the
complete elliptic integral of the second kind: E(j3,2/(l + /?,2)). Moreover, as discussed in

3.4.3.5, the contributions of highest order in N0 and N2 -those more relevant in the source-
annuli near the field-annulus- depend on the addends with these integrals.

The complete elliptic integrals of the second kind are defined as [1]

7T/2

E(m)= f (l-msin2,/.)"2^ (4'5)

o

However, as shown in Appendix B, these elliptic integrals of second kind do not really
come from a true second kind integral. Indeed, they come from the 0 -integral

JT/2
12 M (4-6)

which stands for a type of elliptic integral of third kind. These types of elliptic integrals, in
general, are defined as [1]
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JT/2

, . i" / 2 \-l / , . - \ - l /2 (41)
Tl(n',(p)= I ( 1 — ttsm ç») (1—sin cpsm $} d(j) v ' '

Thanks to the properties of the elliptic integrals of the third kind [1], only for the case of
« = sin2c>, which corresponds to the case of interest in (4.6), one can express (4,6)
analytically as

ü (m) = sec2 (asin(m"2))£ (m) (4'8)

which is very advantageous because it transforms an integral with a term depending on

( ) " in another integral relying on ( ) and allows thus the apparition of the elliptic

integrals of second kind in N0 and N2.

The author of this dissertation Thesis considers that this analytical transformation, although
it is theoretically correct, can be the ultimate cause of the PeC-MFIE error. Indeed, note
that a computer -with finite precision- cannot provide exactly n = sin2 cp as the

transformation requires. Therefore, one has to assume in practice that n & sin2 <p, which, as
shown in the properties of the elliptic integrals in [1], leads to much more complicated
equivalent expressions. One can well assess that as (4.8) cannot be assumed in practice, the
high-order terms present in the f -integral cannot be assumed either, because they come
from (4.8).

In general, this explanation can also account for the historical failure of the BoR PeC-
MFIE attempts because it points out the difficulty in computing with precision the terms of
highest order. Note that terms with E( ) appear also in the recurrent analytical

formulation of the PeC-EFIE -see Appendix A- but in this case they correspond truly to the
type of integrals in (4.5), which is a proof again of its accuracy.
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Chapters METHOD OF MOMENTS
ON PENETRABLE BODIES
OF REVOLUTION

All the possible dielectric formulations derive from the combination of the PeC-EFIE and
the PeC-MFIE operators. The BoR PeC-EFIE operator -see Chapter 3- assumes the basis
functions to be different for each component. Indeed, rectangular and triangular pulses are
used respectively for the expansion of the 0 and t components of the current. The sets
along both components become regularly overlapped along the generating arc -see Fig.
3.2-, which forces the number of unknowns for each component to be different -
NQ = N, +1 -. This asymmetric arrangement of the expanding functions is alluded

henceforth as unbalanced.

The development of the PeC-MFIE operator in Chapter 3 has been effectuated with
rectangular pulses for both <j) and í components. This symmetric disposition will be referred
henceforth as balanced. The performance of the PeC-MFIE operator has to be really
checked with the sets of expanding and weighting functions used by Gedney and Mittra for
the PeC-EFIE [12] -chosen to develop the dielectric operators-. In any case, the lack of
precision for the terms of highest-order of the PeC-MFIE operator must prevail because the
origin of the inaccuracy is independent of the type of pulse shape chosen.

The objective in this chapter is to assess the possible implementations for the dielectric
formulations in accordance with the limitations of the chosen unbalanced basis functions
[13]. In 5.1, the operators -PeC and dielectric- that allow the use of an unbalanced set are
presented. In 5.2, the influence of the numerical inaccuracy of PeC-MFÏE in the dielectric
operators -EFIE, MFIE and PMCHW- is assessed.

5.1 SUITABLE OPERATORS FOR AN UNBA LANCED SET

One PeC-operator -PeC-EFIE-, see 5.1.1, and one dielectric operator -PMCHW-, see 5.1.2,
allow the use of an unbalanced set as weighting and expanding functions. The other
operators present in this case a singular matrix for the mode m - 0 because the number of
expanding functions for both directions -t and 0 - is not the same. The balanced sets are in
principle accepted by all the operators.
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5.1.1 PeC operators

The impedance matrix for the mode m = 0 for PeC-EFEE operator -ZE° - becomes

2°,. 2
o z' (5.1)

The determinant of Z£° is non null as long as the determinants of each of the submatrices

are non null. Indeed, asZ'". and Z"V. are square matrices, det(Z_0) = det(Z0 ,)-det(Z° .),
=1,1 =0.0 \=E I =='.' V=0,0

irrespective of the set being either unbalanced [12] or balanced [18].

The impedance matrix for the mode m = 0 for PeC-MFTE operator - ZH° - becomes

7 -a// -
0

0 (5.2)

If the set is balanced, det (z£ ) = det (z° idetízj V which lets the problem well posed

provided that determinants of each of the submatrices are non null.

In case the set of expanding functions being unbalanced, Zl{ is singular no matter which

the values of N^, N, are. Indeed, the computation of detizw°J through the weighted

addition of the minors associated to the elements.along a row -or a column- leads in any
case to the final dependence on the elementary matrices A, 5, of size (N, + l)x(Af, +1),

A=

0 0 0 0

(5.3)

Both accomplish det(A)=0, det(5) = 0 because they have either a null row or a null
column.

Therefore, in PeC problems, the unbalanced set only allows the use of the PeC-EFIE
operator. Indeed, it is present in the literature in [12] [13].
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5.1.2 Dielectric operators

The general expression for a problem with a homogeneous dielectric body must be

EH',"

: '

EH.*

í H

EH,

EH'

M."'fYi_,-

M n
f

(5-4)

where ( ) denote one of the two equations defined over the surface of the bodies and

{ ) j M indicates if the field contribution comes from the electric or the magnetic current.

The correspondence of the submatrices in (5.4) with the PeC operators for the PMCHW
dielectric operator stands for -see Chapter 2-

(5.5)

where the matrices with superindices 7 and O correspond to the operators respectively
inside or outside the dielectric body.

Because of the /«-odd property of the submatrices Z '" , , Z '", -PeC MFIE- Z "',, Z J", -
*• L •* =r/(ft (ft z=.Httt =c0,/ =cf,0

PeC EFIE-, the matrix in (5.4) becomes

(z m] o o (z '"}\='-' /y.i = = \='-* /M,

O (=*•*' )y.i (=*•'•'/M,. O
= =

o (z "\ (z ,'") o
\='* ILI \='-' I M,ï

(z '") o o (z...m)
\=*'( /7,2 = = \=** IM,

JPCHMW - (5.6)

which, arranging properly the rows, yields
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"(z
(í

•"}'.' 1 J, I
m\

<!>''' 1 j,i

0

0
(2.
fe

0

0
m

0' L
„A

•*' //.i

(2

(s

0
=5

0
»I

M'

w

<M'

/A/,2

)„.,

(z,
(s,

.V I
*' /A/,1

m)
-*1 /A/,2

0

0

•m r . TL Jf sc *ml\m = —M.. + M (5.7)

and the arrangement of the columns finally leads to

0

0

'{z„-)„ (i,,")„,
(7 m\ Iz n'\
\=*-<' ÌJ.2 \=M' /A/,:

o (z ."\ /z '"}
\='-' /A/,2 \='-* /y,

0

0

0
=

0 o (z..") (záó,m)
\=*-' /A/.I \=** /y.i

(5.8)

This matrix is conditioned as the original matrix in (5.6) since the determinant of both
matrices coincide in absolute value -according to the properties of matrices and
determinants, there might be only a sign change13, which is irrelevant-. Since the two
groups of submatrices in (5.8) form square matrices dimensionally equal -
(N, + NQ )x (N, + NQ )-, the PMCHW operator becomes well defined even for an

unbalanced set. Indeed, it is present in the literature in [13].

It is widely known from the theorem of equivalence that two other dielectric operators can
be implemented as well: EFIE and MFIE. The elements of the matrix in (5.4) for EFIE
stand for

<z"')yl=iz|]0

(5.9)

which for the mode in = 0 set the matrix in (5.4) as

0

o (z '") (z '") o\=«.# /7i l \=(M / M _ ,

<£,"}„ °- s (a./),
(2,,"},, {z,/},., s0

(5.10)

If the columns and the rows are switched conveniently, the matrix becomes

13 If two rows or columns are switched, the determinant of the resulting matrix is that of the original matrix
multiplied by -1



Contribution to the Improvement of Integral Equation Methods for Penetrable Scatterers 120

z°EFIE =

' fe,"1),,,
(z ,'")
\— '•' 11, 2

0
—

0

1 rj III \
\— A' )

(z '")
\='-fl* IM ,2

0
—

0

0 0

o Q
(z r\ (z r)
\ "' / Aï,l \ T >T 1 J t\

1 r* m\ 1 y m\

\-*''' lu,\ \— *•*' /y.2

m = -M.. + M (5.11)

The dimensions of the two groups of submatrices are 2N, x (N, + N^ ) and

2N0 x ( JV, + N0 ). For an unbalanced set, both groups yield a non square matrix whereby,

in view of the reasoning expounded for (5.3), one can infer that det(Z£F/£ ) = 0.

For the MFIE, the submatrices in (5.4) stand for

(Z-)W-[ZÏ]

(Z-) =[z-]'
\ I J . 2 L "J

'IO

and consequently Z°/F/£ becomes -m = O -

O / Z " ) (z/f."') Q
= \='-* /y.i \='-' /Aí.i =

Z. ") O O=í-' /y,i = =

o (z / ò
m) (z,")

\='¿ /7,2 \='-' /A/,2

z, ."'} o o (z..."1)
=*'' /J,2 = = \=*·* /M.

— - M.I

o

which, following the arrangement carried out before, becomes

o o

(z./) (z...w)
\=0,i /y j2 \=M /Wi2

o o

o o

o o

(z ,'") (z A,'")
\='.' /if ,2 \='.* lj,

(z .") (z ,m \
\='.' /M.I \='^ /A

(5.12)

(5.13)

(5.14)

The dimensions of the two submatrices groups are 2A^ x ( N, +N^) and 2N, x (A^( + N$ ) ,

which again form non-square matrices, whereby det(Z]¿F/£.) = 0.

Therefore, in dielectric problems, the unbalanced set only allows the use of the PMCHW
operator.
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5.2 NUMERICAL LIMITATIONS ON THE DEVELOPMENT OF THE
DIELECTRIC OPERATORS

The study in the previous section allows the use of any dielectric operator with a balanced
set. However, to my knowledge, no dielectric BoR-formulation regarding the EFIE or the
MFIE has ever been successfully developed. Indeed, the BoR-dielectric formulations
present in literature correspond to the PMCHW -either with a balanced set [19] [20] [31] or
with an unbalanced set [13]-. In the opinion of the author of this dissertation Thesis, this
better performance of the PMCHW, as reasoned in the next paragraph, must be attributed
to the fact that it manages better the inaccuracy associated to the PeC-MFIE.

In the EFIE -see (5.9)-, the PeC-EFIE and the PeC-MFIE contributions affect only one
sort of current -respectively the electric current and the magnetic current-. Analogously,
the MFTE -see (5.12)- allows for the dual case so that the electric and the magnetic currents
are influenced respectively only by the PeC-MFIE and by the PeC-EFIE terms. The
PMCHW, on the other hand, provides both the PeC-EFIE and the PeC-MFIE influences
for both the electric and the magnetic currents -see (5.5)-. One can agree that this approach
must be more robust to the inaccuracy in the PeC-MFIE contribution since it can be
compensated -at least partially- by the well-behaving PeC-EFIE for both source
magnitudes. Note that for the EFIE and for the MFIE, the contribution due to one source
magnitude -respectively the magnetic and the electric current- is completely misled by the
erroneous PeC-MFIE term. This advantageous property of the PMCHW operator appears
again in Chapter 8 for the case of 3D penetrable bodies.

Some examples are presented in the following sections for homogeneous penetrable bodies
and for PeC-bodies coated with a single dielectric layer, whereby the E-PMCHW operator
has to be applied.

5.3 HOMOGENEOUS DIELECTRIC BODIES

The bistatic RCS for a dielectric sphere with e r=4and radius 0.4115^ with axial
incidence are presented for the two polarizations of the incident field, -see Fig. 5.1-. It is
also presented the bistatic RCS for a dielectric ellipsoid with « = 0.7849^, a/b = 3

and er = 5 for the field polarization normal to the scan plane. The discretization adopted in
both cases is JV0 = 35 and NFFT =128 The results of the sphere are compared with the Mie

solution. The results for the spheroid are compared with the Null-field solution of Barber
Yeh and the MoM solution of L. N. Medgyesi [19].

The system of equations in these cases presents a condition number higher than in the
conducting case -it is commented this aspect in detail in Chapter 8 for 3D dielectric
operators-. For the cases tested is never lower than Ie4 -and increases when heading the
high-frequency modes-. So, the extraction of the singularity through the recurrence
formula must be carried out carefully. The bound adopted to allow the extraction of the
singularity is set to 0.1/lj,.
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5.4 PEC-BODIES WITH FULL DIELECTRIC COATING

The bistatic RCS for a PeC-sphere completely coated with a penetrable layer -£r=4- are
presented in Fig. 5.3 for the two polarizations of the incident field. The outer radius -
a, = 0.477^,- and the interior radius -a2- satisfy a2/a¡ =0.25 . The discretization adopted

in the outer and the inner layers is respectively NtJ = 35 and A^ 2 = 12. The results for the

spheroid are compared with the extended Mie solution and the MoM-BoR solution of L.N.
Medgyesi [19].

20 40 60 80 „ 100 120 140 160 180

0.01
60 90 120

O Weg)
150 180

Fig. 5.3 RCS for the completely coated PeC-sphere with a layer with £r = 4-

The error in the results Fig. 5.1, Fig. 5.2 and Fig. 5.3 are evident for these objects, that in
any case present electrical dimensions considerably larger than those objects analysed
with the BoR PeC-MFIE -see Chapter 4-.



Chapter 6 RWG BASED METHOD OF
MOMENTS FOR PEC 3D
BODIES

6.1 DEFINITION OF THE BASIS FUNCTIONS
In accordance with the purpose of this dissertation Thesis, the basis Functions must be
patches, whereby the current domain of each expanding function is confined in a
determined area of the body surface.

As explained in Chapter 2, one cannot assume in the patch-based methods the expansion of
the current over edges or vertices, which represent the borders of the basic expanding
domain. As there is a discontinuity on the value of the function at both sides of the edge,
one cannot foresee in advance which the value over the edges is. One expects, though, if
the development of the electromagnetic operator is adequate, that the final current solution
will converge at both sides of the edges to the correct value as the discretization becomes
finer. In other integral methods, such as the Boundary Element Methods (BEM) [6][22],
where one uses node-based finite elements, the current interpolation is effectuated up from
the unknown values over the vertices. This lets the unknown globally defined over any
point of the body surface, no matter if a vertex, an edge or a facet.

Two very closely related patch-based functions sets, RWG and unxRWG, are used to
develop the MoM electromagnetic operators regarding either the expanding functions or
the weighting functions. These sets associate the unknown to every interior edge of the
body surface so that the edges placed along the end borders for the very particular case of
open surfaces are dismissed.

The current value for any point inside the triangular facets is obtained from the
contribution of the interior edges that shape the triangle where the point is placed -when
dealing with a closed surface, the three bordering edges do contribute-.

Let us i,j, k be the three edges that form the triangle, the value for the current J (r) inside

the triangle yields -see Fig. 6.1-

¿00= S 4 0s)/, (6.1)
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where 7v represent the current unknowns and Bs (?) stands for any of both sets, RWG or

unxRWG, to be presented next.

Fig. 6.1 The surrounding edges i, j, k contribute on the current value over the triangle

They turn out antagonistic and independent since they rely on the two orthogonal polar
fundamental canonical directions: respectively p and 0. RWG and unxRWG are
respectively included into the general groups of divergence-conforming and curl-
conforming functions14, where they stand for low-order functions defined over planar
triangular facets. The curl-conforming functions were first presented by Nedelec [32] and
used in the numerical methods by Bossavit and Vérité [42], Hano [43], and Barton and
Cendes [35]. The earliest use of divergence-conforming functions for numerical solutions
can be attributed to Raviart and Thomas [27], Rao et al. [28], and Shcaubert et al. [29].

6.1.1 RWG basis functions

Sadasiva M. Rao, Donald R. Wilton and Allen W. Glisson, [28], presented a revolutionary
set of patch-based basis functions to apply on the PeC-EFIE approach for any closed PeC
surface of arbitrary shape. Similarly, R. E. Hodges and Y. Rahmat-Samii [11] presented
later on an accurate formulation, with the same set of functions, for PeC bodies by means
of the alternative PeC-MFIE operator.

This set of basis functions {w¡}, the so-called RWG basis functions, is defined as

14 The curl-conforming and the divergence-conforming bases have, respectively, continuous tangential and
normal components across adjacent elements [33].
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*,(r) =
T¿+(')'

_

r<=

(6.2)

where 4* and f* (r) respectively stand for the area and the expanding part over each

triangle T*, associated to the edge i. Particularly,

with r* being the local coordinates origin placed at the vertex opposite to the edge i, -see

Fig. 6.2-. The convention adopted forces the current to flow from T,+ to 7)~ through the

common i edge, as shown in the figure below.

vv,.(r)

Fig. 6.2 RWG basis function

pf in (6.3) denotes that the RWG set effectuates a radially directed expansion of the

current over each triangular facet 7]*.

The component perpendicular to the common edge / of the RWG function at both "sides
7)* is equal15, as shown right away

"?+ / — \ *+
-fi (r)-n„llU

.

15 The original definition of the RWG basis functions allowed for a product of (6.2) by the length of the edge,
which normalise the current coefficient to the normal component of the current; later on, though, this
formulation was simplified and the multiplication by this constant factor was left out. Both developments are
equivalent and the results are the same.
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^_

~2/F fedi:
(6.4)

where it is taken for granted the well-known equality for the area of the triangle
Af =hfl¡/2. s (r; n?;-) denotes the border common to both triangles, /. stands for the

length of the i edge, hf denotes the heights of 7)1 from ^f and n*ut,, -n~(/i/ are the

unit vectors that are at the same time perpendicular to 3(r,v.r,-), coplanar with 7]+, 7)~

and following the + to - flux. As the normal component across the four exterior edges
is null, any RWG expansion ensures the normal components across the edges to be
continuous.

Resorting to the polar divergence expression,

v. J? (f )=(±), v. p? = (±), -yUp,*) = (±), 2
(6.5)

the surface divergence of the RWG basis functions yields

.

(6.6)

which lets the PeC-EHE operator well-defined at least with regard to the Scalar
potential term, that depends on the surface charge density cr -related with the
divergence of the current through the continuity equation-. The charge throughout the i
expanding function Q¡, in view of (6.5), is ensured to be zero; that is,

ß,.= = — nyßJ r;u7--
= 0 (6.7)

because the charge-density pulses -see Fig. 6.2- in 7)* compensate each other. This of

course sets to zero the total amount of charge Q¡ over the body surface

(6.8)

that is a condition that all the correct MoM expanding functions, as referred in Chapter
2, must accomplish.

The basic structure of the RWG functions may be understood as an elementary electric
dipole since the application of the curl operator yields zero.
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6.1.2 unxRWG basis functions

An antagonistic set to R WG appears by means of the following definition

24*"
(6.9)

24:-

which I name unxRWG because it is derived from the cross-product between RWG and ñf ,

the normal vectors to the planar facets 7]*. That is,

~ t̂ ) X "f = (i); P* X «f (6.10)

which, in view of Fig. 6.3, replaces the original RWG polar unit vectors (±). pf by the

other, azimuthal, local direction $f over both triangles 7]*.

(6.11)

The convention adopted compels the current to flow from one side of both triangles 7]* to
the other side; indeed,

(wxn).(r)

Fig. 6.3 unxRWG basis function

A. .

4 0(. in (6.11) denotes that the unxRWG set effectuates an angularly oriented expansion

of the current over each triangular facet T*.

4 In contrast with (6.4), the component parallel to the common edge i of the unxRWG
function at both sides T* is that which now becomes equal,
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2A+"

=/,

24:

f--~wfl _ ;
(6.12)

As the component parallel to the four exterior edges is null, any unxRWG expansion
ensures the tangential components along the edges to be continuous.

4 The divergence of the unxRWG functions yields zero because there is only p
dependence along the 0 component,

(6.13)

which lets the surface charge density a be identically null at any point over the body
surface. Therefore, in any closed domain inside r* u r(~, the entering and the leaving

current flux coincide. Hence, the charge inside any arbitrary domain all over the body
surface is identically zero, which accomplishes the required preliminary MoM
condition of QT = 0 but, as shown later on, lets the scalar potential gradient in PeC-
EFIE badly defined.

4 In contrast with RWG, the basic structure of the unxRWG functions represents an
elementary magnetic dipole; indeed, according to (6.13), its electric dipolar moment is
null.

4 Although it is required for n/" and «r to point to the same medium so that the rotation

of the function has the same sense across T¡+ and T¡~, there is no constraint on the

choice of the sign for nf . On PeC-Bodies, it has been adopted the convention to direct

nf towards the outer free-space medium.

6.2 VALID PEC-OPERATORS

It has been presented in Chapter 2 the construction of the system of equations that leads to
the general matrix expression for PeC-bodies. The impedance matrix elements z present

the general form
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(6.14)

where N , W and B are respectively the number of unknowns and the sets of weighting and

expanding functions and S is the chosen electromagnetic operator, which in essence is the
PeC-EFIE or the PeC-MHE. The PeC-CFIE -Combined Field Integral Equation- results
from their addition. As detailed in Chapter 2, in the development of the PeC-operators
7&S~ is assumed.

The weighting functions must be so that they constitute a complete basis of the rank space
of the operator. This obviously links the weighting -Wt- with the expanding -Bq-

functions, which in turn must be appropriate with the characteristics of the operator.

In the next section it is given a descriptive insight into the characteristics of the valid PeC-
operators in order to assess its good behaviour. A thorough analysis of the required
characteristics of the field -rank- and current -domain- spaces for each operator is given in
section 6.5. It is then justified the right choice of RWG and unxRWG as weighting or
expanding functions in the following valid operators.

6.2.1 PeC-EFIE(RWG,RWG): w,,

6.2.1.1 Mathematical development

S. Raó, D. Wilton and A. Glisson [28] developed this Galerkin MoM approach making use
of their R WG functions. The impedance terms stand for

(6.15)

which, examined separately for each plus-minus field-source triangle contribution, in view
of the definition for the R WG functions in (6.6) and in Fig. 6.2, stands for

1 "± J

ÌÌ "¡-¿í

•"//§•

r)'

¡j'

Sí ' f* (r
[Jj u\ f" (

(±VG(F-
2A^'G(r

\r>í-

r')J5'

dS

dS

= \..N, q =

(6.16)

and
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.2A±J' 2A*

Tí ""V

dS

:'}dSdS'

' q = l..N
(6.17)

The field integrand in (6.17) can be equivalently expressed as

(6.18)

The first addend when field-integrated throughout the pair of edge triangles -resorting to
the surface gradient theorem- becomes

JJ = JJ

ar; arr

where n*ul denotes the unit vector pointing out across the borders. Since there is no leak of
current outwards -the current is parallel to the outer borders-, the previous expression, in
accordance with (6.4), yields zero

= J

2A; 2A;
dl=0 (6.20)

Therefore, back to (6.17), with the modifications due to (6.18), (6.19) and (6.20), the scalar
potential term stands for:

1 f ì f r '± J<, v

. »

dS
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-i-ff El
jtse{l Af

dS s = l..N, q = l,.N (6.21)

which is a very advantageous expression because the dependence on the Green's function
gradient disappears 16.

6.2.1.2 Theoretical considerations

To assess the prospective good behaviour of a Galerking operator, it is advantageous to use
a self-adjoint operator. In this case, the validity relies merely on the skill of the expanding
functions set in spanning the operator domain, since both, rank and domain spaces, are the
same.

By viewing each of the terms corresponding to the Vector and Scalar potentials in (6.16)
and (6.21), one remarks that the field terms and the source terms in each of these integrals
can be switched so that

Zefte(s,q) = (*,,Es
PtC (vP,)} = (w,,Es

M (w, )) = Z^(q,s) (6.22)

which implies that Ztfie is a symmetric matrix.

According to the inner-product definition presented in Chapter 2, one can remark through
the observation of (6.22) that the adjoint operator of Es is the complex conjugate of Es :

Es . Of course, the domain space of both conjugate operators must be the same and the
implication must be the same as if the operator was self-adjoint. Therefore, in view of the
good behaviour of the operator, one has to consider RWG as good expanding set for the
domain of Es .

(6.22) can also be inferred from the application of the reciprocity theorem on two electric
current distributions ws and w¡r This involves that ws and \vq present a physical

behaviour. Indeed, as shown before, thanks to the fact that there is no leak of current in w ,
one can simplify the testing of the scalar potential gradient and yield a symmetric
impedance term.

6.2.2 PeC-MFIE(unxRWG,RWG):

6.2.2.1 Mathematical development

The detailed development of the impedance terms for the PeC-MHE operator with the
RWG expanding functions and the unxRWG weighting functions, according to R.E. Hodges
and Y. Rahmat-Samii [11], yields

16 The absence of the Green's function gradient dependence in the PeC-EFIE operator was also expounded
when developing the BoR PeC-EFIE operator (Chapter 3) and it happens whenever there is no leak of current
all over the weighting function domain.
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= \..N
(6.23)

which, examined separately for each plus-minus field-source triangle contribution and

resorting to the vector equality V x tyMÌ = VI/A x A +1//V • Ä, stands for

(6.24)
r* •*• i

Moreover, (6.24) can be simplified, as described in [1 1], through the expression

(6.25)

so that the cross-product is left out of the source-integral; that is,

dS

P v

(6.26)

which is more advantageous in computational terms for the cross-product is moved out of
the source integral.

6.2.2.2 Theoretical considerations

The PeC-MFIE operator demands special attention when the source-integration is carried
out since two different integrals determine the result when r ' —» r. The Principal Cauchy
value contribution, which is the term coming from the routine source-integration, turns out
null when the field and source triangles coincide because it is perpendicular to the plane
where the unxRWG weighting function lies. Indeed, when r' —> f , VG(r-r ' )°c (r-r1)

is coplanar with p'*, whereby [VG(r-r')xp'*]
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As usual when developing PeC-MFIE and r ' — > f , the key term from the source
integration comes from the integration of the singularity, whose analytical expression is
presented in Chapter 2. According to the convention sign expounded in 6.1.2 for ñ, with
opposite sense to n~ , the singular contribution to the impedance element becomes

which is only applicable for those s, c-edges pairs that have common T* , T* associated

triangles. Particularly, if s=q Tn = T* UÜT," , and if sïq, ^corresponds to that triangle

that is common to the domain of both functions vvt and vv? . (6.27) can be seen as the inner-

product between all the elements of the R WG set, which must be in general non null.

The application of the operator #£eCL .on a given function w,(r) can be analytically
I f 'Co

computed, as shown in Chapter 2, for the specific case of the terms due to the singularity.
To build the complete rank space, though, one should assess in addition the influence from
the Cauchy Principal Value. Even though, as above-mentioned, it tends to zero for the
functions that are nearly coplanar with the edge / -usually the closest ones for smooth-
varying bodies-, its influence in general all over the rank subdomain r e T¡+ u T¡~ cannot
be considered negligible.

In any case, as we have the closed expression of a very important part of the rank, it makes
sense to use unxRWG as weighting functions because they expand perfectly this important
part of the rank

NÍ- =f^-xw,.(r)~(>vxn) ( . rehuir (6.28)

This property has suggested the author of this dissertation Thesis that the reasoning would
be likewise fit if the expanding and weighting functions, respectively RWG and unxRWG,
were exchanged, which leads to the next section.

6.2.3 PeC-MFIE(RWG,unxRWG):
I re 5"

6.2.3.1 Mathematical development

Analogously to (6.23), the impedance elements for this case become

(6.29)
= \..N
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and an arrangement more in detail yields

dS (6.30)

6.2.3.2 Theoretical considerations

Since one can indistinctly turn either RWG into unxRWG or unxRWG into RWG through
the normal vector cross-product, the previous expressions (6.27) and (6.28) can now be
easily adapted

Ü„
(6.31)

UÏ (6.32)

whereby it is clear that RWG expands the rank of the singular integration contribution to
the operator, when the domain is expanded through unxRWG.

Through the application of the rule ä-

VG =— V'G , one can express (6.30) as

and the fact that

(6.33)

which is the same expression as in (6.24) by switching the field and source domains.
Whenever the triangles associated to the edges s and q accomplish T* ^ T*, in view of

(6.33), one can state

(6.34)
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In case both edges have in common at least one triangle, one cannot say so since what rules
now is the term due to the integration of the singularity. By comparing the contribution of
this term for operators, (6.27) and (6.31), one can infer particularly for the self-impedance
elements

Zrfe (*> •*) = -Z,,**™ (s, s) (6.35)

as long as T* and T~ are nearly co-planar to dismiss the Cauchy principal value

contribution, which is normally the case.

Furthermore, let one apply the reciprocity theorem to a pair of sources (wxñ) /electric,

and ws , magnetic,

¡I &**),& (Ü.Í^dS*:- ¡j ü,Hs(&xñ),^^dS (6-36)

sAccording to the field integral expressions presented in Chapter 2, H can be expressed in
terms of Hs

PeC as

- , , - ç , N (6.37)
E5 (w J + =-HL.(w,) +v * ' FeC v * '

which leads (6.36) to

J J " ' IreT*, w7"_ JJ ' ^ ' 'IreT1, wT.

which is in agreement with the expression (6.34). Although at first glance one may find it
contradictory with (6.35), this is not the case. Indeed, Hs

PeC assumes re S~\ that is, the
same side of the surface for both operators. On the other hand, one can imagine this
particular case for the reciprocity theorem as two collapsed surfaces, where the normal
vector coming from the singularity integration have opposite sign at both sides.

6.3 DISMISSED PEC-OPERATORS

The study of the validity of a given operator must focus firstly on the domain space. Only
if the functions expand correctly the domain space -current and charge-, should one care
for the right weighting functions for the rank space. The dismissed combinations between
the RWG and the unxRWG sets as weighting and expanding functions for the PeC-MFIE
and PeC-EFIE operators are shown right away.
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6.3.1 Operators with an inappropriate expansion of the domain
space

The unxRWG set is inappropriate to expand the PeC-EFIE domain space because,
according to its null divergence, (6.13), it is unable to expand the surface charge density a.
Indeed, as cris null, one cannot develop the Scalar potential term -second addend in (6.15)-
which results in a bad definition for the PeC-EFIE operator. One can equivalently
understand this through the vector space theory. Indeed, the addition of the dimension of
the rank and of the null spaces of a linear transformation yields the dimension of the
domain space. In this case, the whole unxRWG set expands the Null space of the scalar
potential operator, which definitely forces the PeC-EFIE rank to be formed only by the
zero. Hence, the two operators that must be dismissed are the PeC-
E¥iE(urucRWG,unxRWG) and the PeC-EFIE(RWG,unxRWG).

One must note that although PzC-EPTE(unxRWG,unxRWG) -like PeC-EFTE(RWG,RWG)-
results in a symmetric matrix impedance, the operator is not correct in this case. This
confirms that the fact of the operator being self-adjoint -it can be considered so in practice
in both cases- is only a sufficient condition of good behaviour provided that the expanding
functions form a proper set throughout the domain space, which is not the case now.

Some strategies to deal with the inherent charge accumulation of the unxRWG set are
shown right away. The results, in general, have turned out unsatisfactory. In section 6.5, it
will be given a thorough insight into the properties of the PeC-EFIE operator and it will be
reasoned why these strategies have failed.

6.3.1.1 Computation of the accumulated charge along the edges

Some efforts have been poured by the author of this dissertation Thesis to get some PeC-
EFIE operator alike to PeC-EFlE(unxRWG,unxRWG) but with the introduction of a a-
dependent term that allows for the charge accumulation on the borders inherent to
unxRWG.

In the literature there are certain examples of basis functions with charge accumulation
along the borders. For instance, the use of cubical cells for developing the dielectric
electromagnetic operators in accordance with the volume equivalence Tteorem [26], where
it is allowed for the remaining charge over the opposite faces along the different current
directions.

According to the general idea of providing the radiation due to the residual charge along
wires (2D) and faces (3D), the computation of the radiation due to the scalar potential
regarding the edges of the triangles as wires has been attempted. One has resorted then to a
definition of a in terms of the Dirac's delta -infinite on the edges-. This is the required
mathematical resort to supply a linear charge distribution over the edges. The surface
integrals accordingly become line integrals in this case.

However, a major problem appears in the computation of the self-contribution of a wire,
which is singular and thus non-integrable. Some results have been programmed without
this term, which have turned out, in general terms, unsatisfactory and no real improvement
has been noticed.
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6.3.1.2 Charge definition on the four neighbouting triangles. Modified
unXRWG functions

Fig. 6.4 Modified unxRWG functions

Another attempted strategy has been to modify the unxRWG basis function definition by
extending the basic subdomain of the unxRWG expanding functions to the four
neighbouring triangles -see Fig. 6.4 -.

The charge associated to the unxRWG functions is null inside each patch because the
surface charge density is indeed null at each point inside the patch. So, the leaving flux
equals the entering flux for each patch. For an arbitrary triangle, one can not assume that
the leaking flux at one side compensates the entering flux from the other side, since there is
entering and leaving flux across the common edge. Anyway, one has preferred to leave the
original pair of triangles untouched and apply a slope for the current over the four adjacent
triangles, so that the introduced charge at one side equals the charge at the other side -see
Fig. 6.4-. I have called these functions as modified unxRWG. Note that under this definition
the value of the expanded current inside a triangle is defined not only by the expanding
functions linked to the edges shaping the triangle but by the expanding functions linked to
the edges shaping the adjacent triangles.

Note that this definition does not ensure the normal current component across the edges to
be continuous. This disagrees with the definition of the RWG functions [28] or of the
Kolundzija's quadrangular functions [14]. However, it is actually consistent with the
unxRWG definition, which does not allow for the continuity of the normal component
across the common edge. With this charge introduction on the four neighbouring patches -
see Fig. 6.4-, the function on the two triangles of the middle keeps being orthogonal to
RWG, which seems intuitively reasonable with regard to the necessary uncoupling
properties for developing the dielectric operators. Moreover, a is not null anymore at any
point of the surface. Indeed, now the scalar potential term can be defined with a finite
value for G .

The definition of the modified unxRWG has been heuristic. These functions have turned out
the only ones -compared to the other attempted unxRWG modifications- able to expand the
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current over a sphere, which is known beforehand through the Mie series. Note that this is
a necessary condition but not sufficient to define properly the PeC-EFIE operator. The
results have turned out unsatisfactory in general; it was remarked only some improvement
in comparison with the PeC-EFlE(unxRWG) for smooth-varying low-frequency surfaces
with a coarse mesh.

6.3.2 Operators with an inappropriate expansion of the rank
space

In accordance with the sections 6.2 and 6.3.1, PeC-MFIE accepts RWG and unxRWG as
expanding functions meanwhile PeC-EFIE allows only for the RWG set. In this section, it
is assessed the performance of these operators when the weighting functions -the
expansion of the rank space- are chosen to be alternative to the choice for the valid PeC-
operators shown in 6.2. The computation of the alternative operators PeC-
EFÍE(unxRWGJlWG), PeC-MFIE(RWGJRWG) and PeC- MFlE(unxRWG,unxRWG) yields
self-contributions in general close to zero -these contributions are the biggest ones in the
valid operators of 6.2-.

In consequence, the condition numbers become very high. For example, for a PeC-sphere
with 128 triangles and radius 0.2/1 the condition number for the PeC-
E¥lE(unxKWG,RWG) operator yields 1.175el7 -near singular matrix-, while the condition
number for the same problem under PeC-EF1E(RWG,RWG), PEC-MFIE(unxRWG,RWG),
PeC-MFIE(RWG,unxRWG) are respectively of 46.58, 3.5905, 3.22.

It is thus reasonable that none of the proposed sets of weighting functions can expand the
rank space for the presented operators. Particularly, according to the proximity to zero of
the self-contributions, it seems that the corresponding chosen weighting spaces represent
the worst choice. Indeed, it has to be so because they are orthogonal to those presented in
6.3.1, with a much better performance for the same examples.

The bad behaviour of the alternative combinations - PeC-EFÏE(unxRWG,RWG), PEC-
MFm(RWG,RWG), PeC-MFlE(unxRWG, unxRWG)- agrees with the intuitive physical
interpretation. Indeed, the electric field radiated by RWG is uncoupled with unxRWG, and
the magnetic field radiated by any of both sets, RWG, unxRWG, is uncoupled with itself.
One can easily resort to electric dipole antenna examples, where the coupling with the
incident field is maximum when the electric incident field is parallel to the electric source
current and null when they both are perpendicular.

Finally, it must be noted that with the same set of expanding functions RWG, PeC-MFIE
and PeC-EFIE require different and orthogonal sets, respectively RWG and unxRWG. This
agrees with the intuitive reasonable idea that the electric and magnetic fields due to the
same electric source are uncoupled. For example, an elementary magnetic dipole, which
contributes in the dual operator through the basic PeC-MFIE, provides best
electromagnetic coupling with an incident electric field in the normal plane 17. On the other
hand, an elementary electric dipole likewise oriented yields a null coupling with the same
incident field.

17 An elementary magnetic dipole corresponds physically to an electric circular spire around the magnetic
dipole axis; the normal plane stands for the plane where the spire lies
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6.3.2.1 PeC-EP\E(unxRWG,RWG)

The PeC-EFIE only accepts RWG as expanding functions. The detailed development of the
terms of self-impedance due to the PeC-EFIE(unxRWG,RWG) operator for any edge
yields.

Assuming that the pair of triangles is symmetric with regard to the common edge, the
analysis in detail for each addend yields

= Ai JJ (wxA) g JJ G(r,f'y*¿S'dS (6 40)
7>r; r;ur;

= --7^- JJ (wXA) f JJ VG(r,r'j7'.*',dS'dS

which can be tackled through the addition of the cross- and the self-influences between
triangles.

With regard to the cross-influence -Tf over T*-,

(6.42)

T} r*

"v (6.43)
-l

2AiA¡ r* r*

With regard to the self-influence - T* over T* -,

(6.44)

T*

r,1 9 r; y (6-45)
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There is symmetry with regard to the common edge in the previous expressions with
regard to the source functions and the Green's function terms. However, the field term

(p^xn*) is antisymmetric, which lets the relative inner-products defined with opposite

sign; indeed, the previous expressions become related as fc*ifj =-fc~lf<i , /%,2
 =~/c.i//,2'

fccn,.i - ~/cm,i ' fc+
m,2 = ~fccrs,2 ' which makes the self-impedance term in (6.39) zero.

Despite this being concluded for symmetric pairs of triangles, which is actually quite a
common case in regular discretizations, in a general case, according to the same reasoning,
the inner-product with (wxn) tends to cancel both source-triangle contributions too.

6.3.2.2 PeC-MFIE(unxRWG,unxRWG), PeC-MFIE(RWG,RWG)

As previously pointed out, the PeC-MFIE accepts both sets to span the domain space. If on
the testing of Hs , one makes the chosen weighting functions set to coincide with the
expanding functions set, be it RWG or unxRWG, the key term coming from the integration
of the singularity, in view of (6.27) and (6.31), becomes

(6-46)
Tn

which for s = q yields zero. The diagonal row of the resulting matrix for both operators
PeC-MFlE(imxRWG,unxRWG), PeC-MFlE(RWG,unxRWG) is then quasi-null -it is only
left the Cauchy Principal Value that, anyway, as explained before, is usually very close to
zero too in this case-.

6.4 NUMERICAL DEVELOPMENT OF THE PEC-OPERATORS
The development of the valid operators PeC-EHE(RWG.RWG), PeC-MFlE(unxRWG,
RWG} and PtC-MFlE(RWG,unxRWG) has been thoroughly undertaken so as to enable a
further precise formulation for the derived dielectric operators.

The computation of the impedance terms Z,q focuses on the influence between the pairs of

triangles T* - T~ over Tv
+ - T~. It is efficient to compute first the influences between the

triangles and after update the corresponding impedance terms in accordance with the
characteristics, + or -, of each source and field triangle. Hence, through the computation
of the interaction between two triangles one updates nine impedance terms at most -nine
impedance terms actually when all the edges are interior-.
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6.4.1 Analytical integration

The source integration has been carried out analytically for the highest order terms, which
contribute most at very near distances of the field point r . One has followed the analytical
developments presented in [9] that have been used by S. M. Rao, D. R. Wilton and A. W.
Glisson to develop the PeC-EFIE(RWGlRWG) [28] and by R. E. Hodges and Y. Rahmat-
Samii to develop the PeC-MFIE(unxRWG,RWG) [11]. The PeC-EFffi formulation of Rao
et a/., which allowed for the precise integration only for the self-contribution, has been in
this work extended to the influence due to the neighbouring source triangles. Furthermore,
the PeC-MFÍE(RWG,unxRWG) operator, that has been developed from scratch, has made
use of these fundamental integrals too.

Fig. 6.5 Decomposition in the analytical development of the source-surface integral

The developments in [9] are based on analytical formulas for the potentials due to uniform
and linearly varying source distributions defined over triangular facets. They derive from
the addition of the contributions from the non-singular and singular parts of the integrand.
While one can obtain an analytical expression for the non-singular part through the
application of the surface divergence and gradient theorems18, the singular part is provided
as the limit of a surface integral embracing a domain around the singularity with radius
approaching zero -see Fig. 6.5-

The analytical expressions for the fundamental high-order terms yield [9][11],

=S {ff-^
r 1=1,2,3

»'=1,2,3

(6.47)

tan" --tan

E
/=1.2,3

(6.48)

' The surface integral theorems are only valid over non-singular domains
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P/K

(6.49)

(6.50)

ig. 6.6 Parameters of the analytical source-integration over a triangle

The parameters, associated to an arbitrary side of the source triangle Ts, are defined as -see

Fig. 6.6-

p»=
(6.51)

The development of these integrals with the field point outside Ts for certain cases where

some of the parameters - P°, if, d - is zero, brings about singularities for the

corresponding sides and addends. This is meaningless since the real contribution of that
addend for that side in this case must be taken as zero, as one can check when obtaining
the theoretical expressions.



Contribution to the Improvement of Integral Equation Methods for Penetrable Scatterers 144

6.4,2 Integration according to a Gaussian quadrature rule
With regard to the computation of the field integrals or of the low-order source
contributions, which become comparatively increasingly important as the source triangle is
less near from the field triangle, it is undertaken through Gaussian quadrature rules for
triangles.

0 < T 7 < 1

Fig. 6.7 Local linear interpolation over the triangle

One makes use of a local coordinate system especially aimed to generate linear facets. For
the case of a triangle, it becomes -see Fig. 6.7-

(6.52)

where r\, f2, r3 correspond to the position vector at the vertices of the triangle and Ç,T],Ç

are the local coordinates assigned to each vertex, defined as the relative area of the portion
embraced by r and the opposite side to the corresponding vertex.

A A A

so that Ç +77 + Ç = 1, which means that two variables are only really needed.

The integration is performed by a Gaussian quadrature rule such that

(6.53)

(6.54)
¿=i

where for the ith Gaussian point of location (^¡,77,,^,.), there corresponds a Gaussian

weight w¡. The points and the weights are tabulated in advance according to the value of

ng ; for example, for ng = 1 one point is placed at the centroid of the triangle with weight
1/3. The points are disposed symmetrically over the triangle.
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The computation of the integral can be precisely accomplished whenever the integrands are
not singular. The choice of ng depends on the varying order of the integrand; for example,
with regard to the computation of the impedance elements, the far interactions require
lower values of ng than the near ones.

6.4.3 PeC-EFIE(RWG,RWG)

The integrand inside the vector and scalar potential contributions relies on the Green's
function. The extraction of the highest order terms in (6.16) and (6.21), can be effectuated
through the Taylor's expansion of the Green's function

~jkR
., „jk R + .

R J 2
(6.55)

where only the first term is fast-varying when R—»0. Therefore, meanwhile the l /R
dependence is analytically source-integrated at small distances, the rest are numerically
integrated by means of a Gauss quadrature rule.

The source contribution in the scalar potential expression (6.21), in view of (6.47), yields

\\G(r-f')dS' = —V ' (6.56)

= \..N, q = \..N

Analogously, the source contribution in the vector potential expression (6.16), in
accordance with (6.47) and (6.48), becomes

n
_ -I

n
(6.57

= \..N, q = l..

6.4.4 PeC-MFIE(unxRWG,RWG)

The contribution due to the singular part is analytically expressed in (6.27) in terms of the
solid angle. Because of the quadratic dependence of the integrand, the field-integration is
performed exactly. Furthermore, since the triangular facets are flat, the solid angle value
must be taken as In , whereby (6.27) results in

(6.58:
Tn
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(6.59)

where the two first terms are fast-varying when R approaching zero. Therefore, these
terms are analytically source-integrated at small distances, while the rest are numerically
integrated by means of a Gauss quadrature rule.

The numerical computation of the Cauchy principal value in (6.24) is carried out according
to (6.59) with the help of the analytical expressions (6.47) (6.48) (6.49) (6.50),

J_
47C

(6.60)

.4.5 PeC-MFIE(RWG,unxRWG)

For the same reason as in 6.4.4, the impedance element part due to the integration of the
singularity (6.31) becomes

(6.61)

Unlike 6.4.3 and 6.4.4, one can not now express the principal value of the source
contribution in (6.30)

JJVG(r-r·)x(p·JxA,*)dS· (6.62)

in terms of an analytical expression for the high-order terms.

In any case, making use of the thorough reasoning developed in 6.2.3.2, which is a
consequence of the particular characteristics of the Hs

PeC operator, one can compute the

impedance terms Zmfie:am(s,q) from Zmflc(q,s), which can provide a high-order analytical
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development -see (6.60)-. This is equivalent to developing Zmßemn (s, q) by first field-

integrating and after source-integrating, which, though contrary to the usual MoM
implementations, is perfectly possible -see (6.33)-.

6.5 PHYSICAL PROPERTIES ON AN ARBITRARY POLYHEDRON

The purpose of this section, a singular contribution of this dissertation Thesis, is to study
the physical properties of the fields and the current over the enclosing surface of an
arbitrary polyhedron, which represents the meshed surface -see Fig. 6.8-. From an
electromagnetic problem where, in accordance with the theorem of equivalence, the
solution is unique for both possible approaches -EFIE and MFIE-, one passes to a
discretization of the original problem. The correct PeC-operators must be those that keep
the solution correct in electromagnetic terms.

The edges do not exist physically; what is commonly called edge is a very steep transition
on the curvature angle of a surface but the continuity of the magnitudes is never lost. The
edges of the polyhedron represent the break on the continuity properties of the fields and
current magnitudes. One can thus consider that the correct patch-based PeC-operators are
those that succeed in enforcing correctly the field and current boundary conditions over the
edges19.

Fig. 6.8 Boundary conditions across the edge 3f

6.5.1 Charge boundary conditions

The description of the current behaviour is present in the continuity equation, where the
current J and the charge density <j are related. Obtaining <j is straightforward whenever
J is continuous because the divergence operator is well defined

19 The boundary conditions inside the facets must be accomplished too. Since the functions are continuous
there, they are automatically accomplished
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a(7^-—V'jr(F)

However, as the divergence is a differential operator, some special condition must be
provided on the edges, where the expanded current -in accordance with the restrictions of
the patch-based functions- is not continuous.

Fig. 6.9 Elementary surface with area A5 — » 0 around a point over the edge 8,

The integration of Vc • J over a portion of surface - AS — > 0 - around a point on the edge -

re 9,.- with the length of the transversal side tending to zero -A? — >0-see Fig. 6.9- yields
-see Fig. 6.8-

lim f V •JdS = (ncí·J,+nc2·J7}dl (6.64)
àS->0 J V •' ' c'¿ ¿'

AS

where the surface divergence theorem is applied.

Moreover, the integration of o (F) in the same portion of surface with area tending to zero

yields

lim ladS^dl (6.65)
As-)0 JAS

AS

where t stands for the linear charge density over the edge and it is well-known over the
literature as charge accumulation. This magnitude is beyond the reach of the patch-based
functions because, as explained in Chapter 2, they cannot assume the expansion over the
edges.

The comparison of (6.64) and (6.65) -following (6.63)- yields

1 /-
(6.66)

JO) \ ~" ' red. "" " ̂ "i / re'

which is a condition to define properly the scalar potential since it affects the surface
charge. Therefore, any PeC-EFIE approach must supply it.

6.5.2 Field boundary conditions

The field magnitudes have to accomplish the boundary conditions over the surface of the
polyhedron. Through the enforcement of the field boundary conditions across the edge, a
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description of the current behaviour -and therefore of the expanding functions- inside the
patches can be obtained. Likewise, one can also reach a description of the rank of the
operators, which justifies the choice of the corresponding weighting functions.

The boundary conditions presented in Chapter 2 -(2.37), (2.38), (2.39), (2.40)- rule the
conditions for the fields across an interface surface. The study of the boundary conditions
on the polyhedron requires the adaptation of the boundary conditions of Chapter 2 to the
2D case.

6.5.2.1 Magnetic field conditions: MFIE

This condition comes from the adaptation of the boundary condition in (2.40) to 2D
with the imposition -characteristic to the PeC case- of no magnetic linear charge
density.

According to the equivalence theorem, the medium in the equivalent problem is
homogeneous, whereby one can accordingly state for the case of an arbitrary edge 3,.

in the polyhedron -see Fig. 6.8-

fea,
= 0 (6.67)

Since the sources in the equivalent problem are radiating sources, the magnetic field at
each side -1,2- of the edge is related with the current through the well-known
expression

which readily yields

''{IK} - "{112} X " {112}

" {112} ~ J{112} X "{112}

(6.68)

(6.69)

When introduced in (6.67), an expression of the boundary condition in terms of the
current is obtained

(6.70)

which can be rewritten, in view of Fig. 6.8, as

Ted,
= 0

fea, (6.71)
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It is thus a sufficient condition to accomplish the boundary condition in (6.67) to have
the tangential component of the current along each edge continuous. As mentioned in
6.1.2, any magnitude expanded by unxRWG -in general, by a curl-conforming set-
satisfies this property. Furthermore, with the choice of RWG -in general, any
divergence-conforming set- as weighting set, the normal component of the magnetic
field is ensured to be continuous, which agrees with the field requirement in (6.67).
Hence, the operator P&C-MFÍE(RWG,unxRWG) appears as suitable to satisfy this
unambiguous field requirement.

+ nx(H,-H2}\ = 0V 'Irei,.

This condition results from the adaptation of the boundary condition (2.37) to the 2D
case. Indeed, when integrating V5 X H over a portion of surface - AS —> 0 - around a

point on the edge - r e 9, - with the length of the transversal side tending to zero -
at —> 0 -see Fig. 6.9 -, we have -see Fig. 6.8-

lim J V5 x HdS = (rtc, x H, + ñc 2 xH2}dl (6-72)
~* AS

where the surface curl theorem is applied.

The Ampere's law allows the equivalent expression of the left-hand side term as

lim í Vv x HdS = lim f i J + jCûD]dS = (lì + jœD,î}dl (6.73)
AS-)0 J AS-»0 J \ ' \ ' /

AS AS

where 7 and D¡ stand respectively for the electric wire-current and the electric flux

density at r e 3;.

The electric flux density on the edge, according to the Gauss law, coincides with the
charge Q on the edge; indeed,

dD,=rdl => D,=Q (6'74)

The introduction of (6.74) in (6.73) yields the continuity equation over a wire, which
makes (6.73) become zero

,^^0dl (6/75)

and thus the expression for (6.72) yields

which represents a boundary condition for the magnetic field on an arbitrary edge 9(-
of the polyhedron -see Fig. 6.8-.
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The introduction of (6.69) in the field boundary condition -(6.76)- yields

=0 (6.77)

Moreover, one can easily express

X X «

= - nÍC,{1E}··/{1I2} 7e3,

- \nc(
fe3,. \ c'<

'{112}

«J V}

(6.78)

which, back to (6.77), yields

(6.79)

which is a sufficient condition for the current to satisfy (6.76). Due to the planar
discretization, though, one cannot assume «t = n2 in general, which makes more
difficult than before the enforcement of the boundary condition.

For the specific case of «, = n2, the field condition in (6.76) is equivalent to -see Fig.
6.8-

l - H .

which, in view of (6.69), becomes

-l-H.
f e 3,

= 0 (6.80)

-/•(7,xfü| =0
I/ v ''líeS,.

-(«2xf).

= 0
I Te 3,

which is obviously equivalent to (6.79) when n, =«2.

(6.81)

-and any divergence-conforming set- excels as the expanding set that fulfils
(6.81). Similarly, the use of unxRWG -in general, any curl-conforming set- as
weighting functions satisfies the field requirement in (6.80).

Nonetheless, these unambiguous current and field spaces are wrong in physical terms
since its behaviour is not in general in agreement with the behaviour of the magnetic
field, derived from the boundary condition (6.76). In consequence, in the solution due
to PeC-MFlE(unxRWG,RWG) there must always be some inherent error that declines
when «, and n2 approach. A deeper insight into this fact is given in Chapter 7 and a
heuristic method of correction is provided.
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6.5.2.2 Electric field conditions: PeC-EFIE

This condition comes from the adaptation of the boundary condition in (2.39) to 2D. In
this case one must allow for the electric linear charge density. Note that this is a new
fact because in the magnetic field boundary conditions either there is no linear charge
density -(6.67)- or the influences of the wire-magnitudes sum zero -(6.76)-.

The integration of Vv • E over a portion of surface - AS — > 0 - around a point on the

edge - r e 8, - with the length of the transversal side tending to zero - Ai — > 0 -see Fig.
6.9-yields -see Fig. 6.8-

lim \V,
&S~>0 J

AS

(6.82)

where the surface divergence theorem is applied.

The Gauss' law enables the equivalent expression of the left-hand side term as

lim
AS

lim f crío1

4S-»0 J
AS

(6.83)

where r stands for the electric linear charge density at f e 9 f .

Therefore, the expression in (6.82) becomes

fea,
(6.84)

which represents a boundary condition for the electric field on an arbitrary edge 9; in
the polyhedron -see Fig. 6.8-.

Furthermore, according to the continuity equation, (6.83) can be expressed in terms of
the electric current through the application of the surface divergence theorem

lim J V, • ÈdS = - lim J adS = —i— Hm J V, • JdS

-JCÙ£ ^ C-1 '

(6.85)

which, in accordance with (6.82), yields the following boundary condition for the
electric field

(6.86)
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The comparison of (6.84) and (6.86) provides the condition for the current to let the
rank well defined in electromagnetic terms

-J03S
(6.87)

Fe3,

which coincides with the charge condition in (6.66). This is very important because
with (6.87) it is enforced on the polyhedron at the same time the physical requirements
regarding the charge and the electric flux density, which is a definition of the rank -
field- and domain -current and charge- spaces.

Since only one condition is imposed over each edge and it relates two independent
source magnitudes -/ and i -, this problem is ambiguously defined. That is, one
cannot set at the same time the field and current spaces without imposing a value for
T . It is thus an undetermined problem -it has infinite solutions- and the degrees of
freedom are the number of edges of the polyhedron. Logically, the problem must be
more undetermined -the degrees of freedom increase- as more edges are set in the
discretization.

The only way to undertake this problem is to impose a constriction in the domain
space so that the solution suits best the physical behaviour. If we take into
consideration the fact that on a physical edge the charge accumulation is null, it seems
reasonable to impose T = 0 over the edges of the polyhedron. According to the charge
condition, this involves

rea, Ted,
= 0 (6.88)

which ensures the electric field to accomplish

?e3i

=0 (6.89)

The current and field conditions in (6.88) and in (6.89) impose the continuity of the
normal component of these magnitudes across an arbitrary edge of the polyhedron 9, -

see Fig. 6.9-.

It makes thus sense the use of the RWG set as expanding and weighting functions
because, as explained in 6.1.1, any expansion undertaken through RWG enforces the
continuity of the normal component of the magnitude across the edges.

Similarly, it is justified the dismissal of the antagonistic unxRWG as expanding
functions of the domain of the PeC-EFIE operator. One can also understand why all
the strategies to deal with the unxRWG charge accumulation -see 6.3.1.1- have turned
out unsuccessful. They all cannot ensure this condition.

It must be noted that the good behaviour of the operator PeC-EFlE(RWG,RWG) relies
on the capacity of the operator to assume the implicit imposition r = 0. Since the
apparition of T is a consequence of the discretization, it is reasonable that, as long as
the amount edges is not very high, the assumption for r can be well-accomplished and
the system well-defined. However, as long as the discretization becomes finer, the
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solution for the current becomes increasingly undetermined. Indeed, it is well-known
that the PeC-EFIE(7?WG,7?WG) condition number for increasingly fine meshings
increases accordingly.

It is important to point out that the PeC-EFIE is undetermined in any case. As the
number of edges increases -the number of degrees of freedom of the problem-, the
system becomes increasingly undetermined and the condition number augments
accordingly. The fact of having good condition numbers for PeC-EFlE(RWG,RWG)
with a restricted amount of edges shows that the group of possible solutions are very
near the physical assumption T = 0 over each edge. As the degree of meshing
increases, the polyhedron is less physical and the range of possible solutions becomes
gradually less near the assumption of no charge accumulation. That is why, from a
certain bound the solution cannot be determined anymore since the degree of the
ambiguity of the system is too high.

In the original physical problem, the solution obtained through the theorem of
equivalence and EFIE is unique. However, the discretization unavoidably compels the
apparition of the magnitude T , which brings about an ambiguity in the values of the
normal components of the electric field and the current on the edges of the
polyhedron. Note that the magnetic field boundary conditions, on the other hand, show
no dependence on any wire-magnitude -see 6.5.2.1-. Therefore, the uniqueness of the
solution for the PeC-MFIE is maintained after discretizing the body, whereby the
condition number must be low and stable for increasing degrees of meshing.

The condition in (6.88) ensures the charge over the surface to be null. Indeed, the
integration of the left-hand side term over the line-path defined by the whole set of N
edges over the polyhedron consequently yields

= 0 (6-90)

By grouping together the paths ;'(/), &(/) , /(/) that surround an arbitrary triangular
facet I and by selecting the addend placed on that triangle, the left-hand side term of
(6.90) can be equivalently expressed as

2/V/3

I
/=!

J ñCÁ,yJt(l}dl + j nc,i(,}-Jj(ndl+ J ñett(l]'Jt(ndl = 0 "(6.91)

which can be better written in terms of the number of triangular facets20

N, = 2///3and the path around the 7 triangle 97] as

c./-V = 0 (6.92)
=! 3T¡

Thanks to the surface divergence theorem, this expression becomes

20 For the sake of simplicity, triangular facets are chosen, in agreement with the type of facets used in this
work. One can likewise build the reasoning for any type of facet, such as rectangles for example.
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,
-£ í V< • J'dS = Jai\°dS = i^L®' = ° =* QT = ° (6.93)

'-i T,

which stands for the charge conservation principle.

4 nx(Ê,-Ê2)\ =0
V ' '/re .T.

This condition comes from the adaptation of the boundary condition in (2.38) to 2D.
The integration of V, x É over a portion of surface - AS —» 0 - around a point on the

edge - r e 3( - with the length of the transversal side tending to zero - Ai —» 0 -see Fig.
6.9- yields -see Fig. 6.8-

lim J V,xEdS = (ñc}xEí+ñc2xE2Jdl (6.94)
A5

where the surface curl theorem is applied.

The Faraday's law allows the equivalent expression of the left-hand side term as

lim f V, x ÊdS = lim - f jCûBdS = O (6.95)
AS-X) J AS->0 JAJ-X) J AS->0

AS OS

because the integration of a finite magnitude -the magnetic flux density ¿-over a
portion of surface with area tending to zero yields zero.

Therefore, the expression in (6.94) becomes

+ nnXÊ.c,2 " "2 = 0 (6.96)

which represents a boundary condition for the electric field on an arbitrary edge 9, of
the polyhedron -see Fig. 6.8-.

Unlike the previous cases -see (6.70),(6.77),(6.86)-, it is not possible now to introduce
a term due to the electric current in the field boundary condition. Indeed, from the
value of B on a wire -the edge- it is not possible to set the value the value of the
electric current. That is, the field requirements are incompatible with the electric
current.

This can be better understood through the analysis of the electromagnetic solution for
a wire with electric current flowing. It is well known that in this case the magnetic
field in the proximity of the wire rotates around the wire -the magnetic field cannot
impinge the electric source-. In the limit case of a point on the wire - r e d¡ - the
magnetic field cannot be defined. Indeed, the magnetic field there must accordingly
maintain the rotation, which is absurd because it allows infinite directions for the value
of the magnetic field at one single point, reo,.. In mathematical terms this means that

the limit of B in (6.95) does not exist and thus the limit of the surface integral in (6.95)
with area tending to zero yields zero.
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As reasoned in detail for the dual magnetic condition in (6.76), unxRWG expands a
space that approaches to a certain extent the electric field requirements in (6.96).
According to the reasoning of the previous paragraph, it is not possible to implement
any PeC-EFIE approach with unxRWG -or any curl-conforming set- as weighting
functions. That is why all the attempts for the PeC-EFIE with unxRWG as weighting
set shown in the sections 6.3.1.1 and 6.3.1.2 failed.

6.5.3 Conclusions

From the previous study it can be concluded

1. The correct operators to obtain the solution for an arbitrary polyhedron, a constraint of
a planar facet approach, come from compatible current and field boundary conditions
over the edges. That is why the number of edges sets the number of unknowns of the
system.

2. PeC-MFIE(RWG,unxRWG) and PeC-MFlE(unxRWG,RWG) show a perfect
correspondence between the rank generated by the expanding functions and the space
expanded by the weighting functions. They both correspond to compatible problems
with unique solution. Therefore, for the PeC-MFTE, the discretization does not add any
ambiguity and the solution keeps being unique. In consequence, the condition number
for the PeC-MFIE must be low and stable when yielding the meshing finer -as long as
the impedance elements are accurately computed-.

3. In general, the electric flux density boundary condition over each edge allows infinite
solutions; the solution is thus undetermined. This is a consequence of the discretization
because the equivalence theorem ensures the uniqueness of the solution in the physical
problem without discretization. Through the a priori imposition of no charge
accumulation -T = 0-, one can set a system that best approaches the physical
behaviour. The ambiguity of the system increases as the degree of discretization
augments and more edge conditions appear. The condition number must increase
accordingly. This accounts for the fact that the condition number of PeC-
EFIE(RWG,RWG) is always higher than those of PeC-MFlE(unxRWG,RWG) and PeC-
MFIE (R WG, unxR WG).

4. P&C-MFlE(RWG,unxRWG) ensures the required physical boundary conditions for any
kind of discretization. PeC-MFlE(uiixRWG,RWG), on the contrary, enforces tangent
continuity for the magnetic field over the edges, which only approaches the
corresponding magnetic field boundary condition if the normal vectors of adjacent
facets tend to become parallel. Therefore, with the same degree of discretization and
accuracy, the PeC-MFlE(RWG,unxRWG) results must be better than those from the
PeC-MFlE(unxRWG,RWG).

5. Since both PeC-MFIE approaches -corresponding to the two canonical directions
across the edge- are defined with no restrictions, one can infer that a global
interpolatory technique, such as the node-based Finite elements, applied to the PeC-
MFIE can be possible too. Indeed, node-based finite element PeC-MFIE formulations
with current interpolation have been carried out [22]. The PeC-EFIE, though, has to
impose a charge constraint over the edges, which is not inherently assumed by the
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electric field over the edges of a polyhedron. That is why no node-based finite-element
formulations for the PeC-EFIE operator have ever been published.

6. No patch-based formulations can be developed for PeC-EFIE with unxRWG - or any
curl-conforming set- as weighting set because the problem cannot be posed.

7. This study has focused on the necessary conditions for the field and the current. The
RWG and unxRWG sets represent low-order expanding bases over the triangle
subdomain. The higher-order bases enclosed in the wide families of the divergence-
conforming and curl-conforming bases -where RWG and unxRWG respectively belong-
accomplish the required edge conditions too. One has to assume thus in the results of
this work the error due to the low-order expansion of the current, which is different for
the RWG and unxRWG sets. This fact is commented more in detail in Chapter 7.

8. P&C-EFIE(RWG,RWG) ensures the charge conservation principle through the
accomplishment of the charge condition over the edges. PeC-MFIE does not impose
this condition over the edges but unxRWG and RWG fulfil it by definition because it is
a requirement of the patch-based functions. On an PeC-MFIE approach with boundary
elements, though, the charge condition is not needed to be explicitly set since it is not
required for the definition of the PeC-MFIE operator for both canonical directions over
the edge, tangential and normal. This implies that the PeC-MFIE must incorporate
implicitly the charge conservation principle on the solution with node-based finite
elements.
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