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CHAPTER 6. ClusDM Properties 
 
 
 
 
In this chapter, we will study in detail the properties of the ClusDM method. As it is a 
general procedure rather than a concrete algorithm, we will concentrate on the study 
of this method when it is applied to a set of qualitative preference criteria.  In this 
case, this decision making technique can be seen as an aggregation operator since we 
are trying to capture the knowledge provided by a set of qualitative criteria and 
summarise it with a single overall criterion. 
 
To study some of the properties, we will consider that the vocabulary used in the new 
preference criterion is specified by the user instead of being selected from the 
available ones. The reason for this assumption is that if the vocabulary was 
automatically selected, we could not study some of the properties, since the final 
vocabulary will not necessarily be the same after applying ClusDM to different data 
sets. 
 
Formally, we will denote as Θ the ClusDM operator, which is defined over a set of 
qualitative preference criteria. The result, cr, is a new qualitative preference criterion 
that takes into consideration the p preferences provided by the data suppliers: c1,...,cp. 
 

( ) rp ccc =Θ ,...,1  

 
It must be noted that the units that are aggregated are criteria (i.e. the columns in our 
decision matrix). For this reason, the property of individual independence must not be 
required to the rows (i.e. alternatives). In this case, it has no sense to obtain the final 
preference of the alternatives without considering the relationships among them, 
because the similarity relationships from one alternative to the others will determine 
its final value of preference. 
 
For example, let us consider the two decision matrices, X1 and X2 of Figure 21. They 
have a unique common alternative, a5=b5. We can see that in the first case, X1, the 
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alternative a5 is placed in the second position in the ranking, with the value of 
“good” , whereas in the second case, X2, an identical alternative, b5, is placed in the 
first position, with a preference value of “very good” . This example shows that the 
final preference of an alternative depends on the values of the other alternatives to 
which it is compared. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 21. Quali tative matrices with a common alternative 

 
We wil l now see the properties that are fulfill ed by our Multiple Criteria Decision 
Making procedure, ClusDM, for quali tative preferences. The definition of each 
property is followed by an explanation to proof whether ClusDM satisfies the 
property or not. 
 

 c1 c2 cr 
a1 vgood vgood vgood 
a2 vgood vgood vgood 
a3 vgood good good 
a4 vgood good good 
a5 vgood good good 
a6 bad good reg 
a7 bad good reg 
a8 bad good reg 
a9 bad vbad bad 
a10 bad vbad bad 
a11 vbad vbad vbad 

 
X1 

 c1 c2 cr 
b1 good good good 
b2 good good good 
b3 good good good 
b4 good vgood vgood 
b5 vgood good vgood 
b6 good bad reg 
b7 good bad reg 
b8 good bad reg 
b9 bad good reg 
b10 bad bad bad 
b11 vbad bad vbad 

 
X2 



ClusDM properties 

   91 

 

6.1 Basic Aggregation Properties 
 
 
We will begin with the study of three properties that are usually required to 
aggregation and decision making operators: symmetry, idempotency and 
monotonicity [Marichal,1999b]. 
 

6.1.1 Symmetry 
 
It is also known as commutativity, neutrality or anonymity. 
 
The symmetry property is fulfill ed if the ordering of the criteria does not affect to the 
result. This is required when we combine criteria of equal importance or anonymous 
expert’s opinions. 
 
Θ is a symmetric operator if, for all criteria Cc ∈  and all pΠ∈π  (where Πp 

corresponds to the set of all permutations of dimension p), we have: 
 

( ) ( ) ( )( )pp cccc ππ ,...,,..., 11 Θ=Θ  

 
In situations when criteria or individual opinions are not equally important, the 
symmetry property must be omitted.   
 
 
Symmetry of ClusDM: 
 
In the case of having equally weighted (or non-weighted) criteria, the symmetry of 
ClusDM depends on the clustering algorithm. If the clustering does not take into 
account the order of the criteria, we will obtain the same set of clusters, and the 
following stages will give the same results.  
 
The clustering builds clusters according to the values in the similarity matrix. So, if 
the similarity function is symmetric, the grouping stage will not be affected. As we 
recommend the use of the Manhattan distance and this metric is symmetric, we have 
that ClusDM is symmetric. 
 
However, if we would like to use another similarity function, we can easily see that 
the types considered in Sedàs [Valls et al.,1997] are also symmetric: 
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Similarity Calculation Properties Sy? 
Functions based on Distances The result is obtained from a summatory of 

distances. Being distances symmetric, the 
addition is also symmetric. 

Yes 

Association Coefficients The result is based on some counters that are 
independent of the position of the criteria 

Yes 

Correlation Coefficients Correlation is independent of the ordering of the 
criteria 

Yes 

Table 12. Symmetry of similarity functions 

 
 

6.1.2 Idempotence 
 
This property is also called unanimity. It refers to the case of having a data matrix 
with equal columns, that is, all the criteria give exactly the same value to the 
alternatives. In this case, the expected result is to have, at the end, the same value for 
each alternative. 
 

( ) ccc =Θ ,...,  
 
 
Idempotence of ClusDM: 
 
To check this property we will analyse the aggregation, ranking and explanation 
stages separately. 
 
STAGE 1. With regard to the aggregation, the clustering will create a cluster for each 
term in the vocabulary of this criterion, c.  
 
STAGE 2. The ranking stage can be performed using the Principal Components 
Analysis or the Similarity Ranking. However, if all the criteria have the same 
vocabulary and semantics, and they give the same value to the same alternatives, the 
correlation among them will be maximum. That is, we will be in CASE A and apply 
the PCA. 
 
In this case, the p-dimensional space will be reduced to a 1-dimensional space, since 
all the dimensions are equal. Thus, the space of criteria is a line, which is the first 
principal component that we will obtain if we calculate the PCA. The projection of 
the prototypes of the clusters in this line will not modify the ranking. Moreover, the 
value attached to each cluster will be the central value of the interval corresponding 
to the term that has originated the class. 
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STAGE 3. In this stage we will select the vocabulary of this unique criterion, c, to 
explain the clusters (CASE D). The algorithm that selects the vocabulary will select 
the same terms that were originally assigned to the alternatives, because the value 
attached to each cluster is the central point of these intervals. 
  
Therefore, we can say that this method is idempotent.  
 
In addition, it is important to underline that if the vocabularies are different but they 
have the same granularity and the same semantics, the idempotency property will be 
fulfilled too.  
 
 

6.1.3 Monotonicity 
 
This property refers to the fact that increasing (respectively, decreasing) the values of 
one criterion in a data matrix will produce a result that is greater than the original 
one. 

 
This is, when  ,

kk cc > , where  ,
kk cc > means that ( ) ( ) miacac ikik ..1 allfor  , , => , we 

will have a monotonous operator if ( ) ( )pkpk cccccc ,...,,...,,...,,..., ,
11 Θ≥Θ . 

 
That is, monotonicity is satisfied if the result of applying the decision operator to a 
data matrix that has better preference values in one criterion, is greater or equal than 
the result obtained with the other matrix.  
 
 
Monotonicity in ClusDM 
 
We show with an example, that monotonicity is not satisfied. Let us consider two 
data matrices, X1 and X2, which only differ in the second criterion (see Figure 22). 
For X2, criterion c2+ has better values for all the alternatives than the corresponding 
criterion c2 in X1, so  22 cc >+ . 
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Figure 22. Data matrices for the monotonicity example 

 
 
Let us consider the case that all criteria have the same vocabulary {g,f,e,d,c,b,a}, with 
g<f<d<c<b<a. The terms have the same semantics for all criteria, which is given by 
the following negation function, N: 
 

N(a)={f,g}, N(b)={f}, N(c)={e}, N(d)={d}, N(e)={c}, N(f)={a,b}, N(g)={a} 
 
Let us suppose that we want a result described with 5 terms, then, after applying the  
clustering method (centroid clustering with Manhattan distance), we will have 5 
clusters for each data matrix. Here you have a trace of the clustering process: 
 
STEP 1: Build a dissimilarity matrix and put together those alternatives with 
minimum value.  

In this case, alternatives a2, a3 and a4 are the components of the first class, k1, 
and a8, a9 and a10 form the second class, k2. The elements of these clusters have 
dissimilarity 0, which means that they are equal (indistinguishable in the space 
of preferences). 

 
 
 
 
 

 c1 c2 
a1 e d 
a2 d d 
a3 d d 
a4 d d 
a5 e c 
a6 c c 
a7 c b 
a8 b b 
a9 b b 
a10 b b 
a11 b f 
a12 f f 
a13 g c 

 
X1 

 c1 c2+ 
a1 e c 
a2 d c 
a3 d c 
a4 d c 
a5 e b 
a6 c b 
a7 c a 
a8 b a 
a9 b a 
a10 b a 
a11 b e 
a12 f e 
a13 g b 

 
X2 
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STEP 2: Calculate the prototype of each new class. 
For matrix X1, the prototypes are: 

Prototype k1 = (d,d) = (0.5,0.5) = a2 = a3 = a4 
Prototype k2 = (b,b) = (0.72,0.72) = a8 = a9 = a10 

 
For matrix X2, the prototypes are: 

Prototype k1’  = (d,c) = (0.5, 0.61) = a2 = a3 = a4 
Prototype k2’  = (b,a) = (0.72, 0.89) = a8 = a9 = a10 

 
STEP 3: Modify the dissimilarity matrix, including the new clusters and deleting their 
components. 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 23. Dissimilarity matrix for X1 (step3) 

 
For matrix X1, we obtain the result in Figure 23 (the red value is the minimum). For 
matrix X2, we obtain the result in Figure 24. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24. Dissimilarity matrix for X2 (step 3) 

 

 a1 k1 a5 a6 a7 k2 a11 a12 a13 
a1 0 0.11 0.11 0.33 0.44 0.55 0.61 0.45 0.44 
k1  0 0.22 0.22 0.33 0.44 0.5 0.56 0.55 
a5   0 0.22 0.33 0.44 0.72 0.56 0.33 
a6    0 0.11 0.22 0.5 0.78 0.55 
a7     0 0.11 0.61 0.89 0.66 
k2      0 0.5 1 0.77 
a11       0 0.5 1.05 
a12        0 0.55 
a13         0 

 

 a1 k1’  a5 a6 a7 k2’  a11 a12 a13 
a1 0 0.11 0.11 0.33 0.5 0.61 0.55 0.39 0.44 
k1’   0 0.22 0.22 0.39 0.5 0.44 0.5 0.55 
a5   0 0.22 0.39 0.5 0.66 0.5 0.33 
a6    0 0.17 0.28 0.44 0.72 0.55 
a7     0 0.11 0.61 0.89 0.73 
k2’       0 0.5 1 0.83 
a11       0 0.5 0.99 
a12        0 0.49 
a13         0 
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STEP 4: Build another level of clusters.  
For matrix X1, we have that the minimum value is 0.11, which creates two 
new clusters: k3 = {a1, k1, a5} and k4 = {a6, a7, k2}. 
For matrix X2, we have that the minimum value is also 0.11, which creates 
two other clusters: k3’  = {a1, k1’ , a5} and k4’  = {a7, k2’}. 

 
STEP 5: Calculate the prototype of each new class. 

For matrix X1: 
Prototype k3 = (0.456, 0.522) = average (a1, a2, a3, a4, a5) 
Prototype k4 = (0.676, 0.698) = average (a6, a7, a8, a9, a10) 

For matrix X2: 
Prototype k3’  = (0.456, 0.646) = average (a1, a2, a3, a4, a5) 
Prototype k4’  = (0.692, 0.89) = average (a7, a8, a9, a10) 

Notice, that clusters k4’  and k4 are not equal. The difference is due to the 
fact that the interval covered by each term has not the same length, that is, 
we have terms whose interval of possible numerical values is smaller than 
others.  

 
For matrix X1, we can stop the process because we have the alternatives in 5 groups: 
{ a1, a2, a3, a4, a5}, {a6, a7, a8, a9, a10 }, {a11}, {a12} and {a13}. 
 
For the case of matrix X2, we must continue a step forward, to reduce the number of 
clusters, now equal to 6. So, we recalculate the similarity matrix, introducing k3’  and 
k4’  and removing their elements (Figure 25). 
 
 
 
 
 
 
 
 
 
 
 

Figure 25. Dissimilarity matrix for X2 (step 5) 

 
Using the dissimilarity values in that matrix, we build a new cluster with the elements 
of k3’  and a6. The prototype of this new class, k5’ , is (0.482, 0.647), which 
corresponds to the arithmetic average of a1, a2, a3, a4, a5 and a6. 
 
At the end of the aggregation of X2, we have obtained the following 5 groups: {a1, a2, 
a3, a4, a5, a6}, {a7, a8, a9, a10 }, {a11}, {a12}and {a13}. 

 k3’  a6 k4’  a11 a12 a13 
k3’  0 0.23 0.48 0.52 0.49 0.47 
a6  0 0.25 0.44 0.72 0.55 
k4’    0 0.53 0.97 0.81 
a11    0 0.5 0.99 
a12     0 0.49 
a13      0 
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Notice that, the partitions generated by the same methodology with the two data 
matrices are different. Alternative a6 belongs to different clusters because the increase 
of the values of one criterion has modified the relationships among the alternatives. 
 
To establish a ranking of the clusters, we use the Manhattan distance with respect to 
the Ideal alternative, which in this case is I = (1.0,1.0). 
 
 
 Elements of the class Prototype Similarity to the Ideal Rank 
X1 {a1, a2, a3, a4, a5} (0.456, 0.522) 1.022 2 
 {a6, a7, a8, a9, a10 } (0.676, 0.698) 0.626 1 
 {a11} (0.72, 0.22) 1.06 3 
 {a12} (0.22, 0.22) 1.56 5 
 {a13} (0.05, 0.61) 1.34 4 
X2 {a1, a2, a3, a4, a5, a6} (0.482, 0.647) 0.871 2 
 {a7, a8, a9, a10} (0.692, 0.89) 0.418 1 
 {a11} (0.72, 0.39) 0.89 3 
 {a12} (0.22, 0.39) 1.39 5 
 {a13} (0.05, 0.72) 1.23 4 
  

Table 13. Ranking of X1 and X2 based on similarities 

 
In this example, we can see that if we change the values of a particular criterion 
(increasing them), we can modify the relations among the alternatives, which 
produces a new classification. In case of obtaining different clusters, some 
alternatives can be positioned lower in the new criterion, because now they are more 
similar to other alternatives with lower values. Alternative a6, who had the best 
position in the ranking from X1, has the second position considering data in X2. 
 
In conclusion, ClusDM is not monotonous in general. 
 
This is so because when the increase in the preference value of all the alternatives is 
not constant, the relationships among them may be modified, which produces new 
clusters, and some alternatives will decrease its preference in the resulting ranking.  
 
 
However, if we increase the value of all the alternatives in the same degree8, we only 
produce a translation in the space without affecting the relationships among the 
                                                 
8 This case is possible only if the semantics of the criterion modified is given by the classical negation 
function, which gives equal informativeness to all the terms.  
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alternatives. In this case, the result will be greater or equal, depending if the increase 
is enough to move the clusters to receive the next term in the vocabulary. If it is the 
case, the property fulfilled could be stated as: 
 

( ) ( ) dvvdvdv ipiipi +Θ=++Θ ,...,,..., 11  

 
If we change each term for the one that is d positions up or down (a better one or a 
worse one), the result shows an increase or decrease of the same degree, d, in the 
value of the alternatives.  
 
Let us now study the case that the vocabularies of our criteria have equal or different 
granularity but with the semantics given by the classical negation function (to assure 
terms equally informative).  
 
In this case, the clustering process will produce the same clusters with the initial data 
and with the values increased (or decreased) in d units, because the differences 
between the values do not change if terms are equally informative. 
 
The ranking stage may apply the Principal Components Analysis or the Distance 
Calculation. With the change of the terms, the values of the numerical prototypes 
suffer a transformation of ∆i units in each criterion, where ∆i depends on the 
granularity of each criterion ci, to that:  

)(tlengthd ii ⋅=∆  Eq. 6.1 

being lengthi(t) the length of the interval corresponding to any term t of the 
vocabulary of the i-th criterion. 
 
Notice that, although we modify each criterion with a different value, ∆i, we are only 
performing a translation of the points in the p-space. Let us now study in detail the 
ranking process for the two possible approaches: 
 
• PCA:  
 
The translation of the prototypes is counteracted by the use of a correlation9 matrix to 
generate the principal components. Thus, the U vectors will be the same than the ones 
obtained with the original matrix. For this reason, although the clusters have suffered 
a translation in the original alternatives space, their z-scores will remain the same. 
However, the values of the ideal and nadir alternatives will not be modified (they do 
not increase or decrease d units), so, their z-scores will be different. As the values of 
these to extreme fictitious alternatives are used to scale the z-scores to the interval 

                                                 
9 Using the correlation matrix we work with centred and standardised values. 
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[0,1], we will obtain new positions for the clusters, although the ranking will be the 
same.  
 
To measure the change in the position of the clusters, we must know the change in 
the position of the reference alternatives (the ideal and nadir points). Both of them 
will have a new z-score that differs from the one in the original matrix in λ units. 
Being z1 the value in the first analysis, calculated as follows,  
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1z  the score corresponding to the second analysis (after the increment), 
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the difference between them, λ, is given by equation Eq. 6.2. 

∑
=

∆
−=

p

i
i

i

i u
s1

1λ  Eq. 6.2 

Consequently, if the z-scores of the clusters have not been modified, and the ones of 
the ideal and nadir points are increased in λ units (see that λ is a negative value), the 
clusters will be nearer the ideal than in the first analysis.  
 
However, this difference, λ, is given in units without having into account the scaling 
of the z-scores to the interval [0,1], if we perform this scaling, we have equation Eq. 
6.3.  

)()( 11
01

nadirideal azaz −
=

λ
λ  Eq. 6.3 

Following with the ClusDM procedure, the explanation stage will use the vocabulary 
given by the user to explain the result based on the position of each cluster in the 
interval [0,1].  
 
Being t any term of this vocabulary, and length(t) the length of the interval 
corresponding to each term, if )()()1( 01 tlengthdtlengthd ⋅≥>⋅+ λ , the terms 
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selected will be exactly the ones that are d positions up or down with respect to the 
ones selected with the original data. 
 
To check this condition, we will study each inequality separately. So, we must check 
if the following conditions are true: 
 

Condition 1: )(01 tlengthd ⋅≥λ  

Condition 2: 01)()1( λ>⋅+ tlengthd  
 
Beginning with condition 1, we substitute the value of λ01 in equation Eq. 6.3, 
obtaining: 
 

)(
)()( 11

1
1

tlengthd
azaz

u
s

nadirideal

p

i
i

i

i

⋅≥
−

∆∑
=  

 
which can be rewritten as: 
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if we expand the expression corresponding to ∆i, we have: 
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which can be simplified as: 
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Substituting z1(anadir) and z2(anadir) by their corresponding expression in terms of U (Eq. 
4.7), we can easily see that if the ideal is an alternative with the highest values 
(1,1,....,1) and the nadir is an alternative with the lowest values (0,0,....,0), we have 
that )()( 11 nadirideal azaz − is equal to: 
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Substituting this result in the previous inequality, we obtain that: 
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If we separate length(t), which is the value we are analysing, we have: 
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So, the length of the terms is constrained according to equation Eq. 6.4. 
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Now, we proceed to study the condition number 2, to select exactly the terms d 
position up (or down) and not another greater (or smaller).  
 
Substituting λ01 we have: 
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Then, we can perform an analysis equal to the one done with the other inequality, to 
find out the following expression: 
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We can rewrite this expression and obtain: 
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which is the same that: 
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Now, we will separate the length(t) variable to know what is it constrained for. So, 
we separate the constant elements from the ones depending on the variable i. 
 
Putting all together, we have: 
 

0)()()(
1

1

1

1

1

1 >⋅−⋅⋅+⋅ ∑∑∑
===

tlength
s

u
d

s

u
tlengthd

s

u
tlength i

p

i i

i
p

i i

i
p

i i

i  

 
 

( ) )()(1
1

1

1

1 tlength
s

u
d

s

u
tlengthd i

p

i i

i
p

i i

i ∑∑
==

⋅>⋅⋅+  

 
We obtain that the length of the terms in the vocabulary must be: 
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Consequently, we have that the property will be true iff the equations Eq. 6.4 and Eq. 
6.5  hold. 
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The expressions that are restricting the length of the terms in the final vocabulary are 
weighted averages. It is interesting to note that the weights are proportional to the 
contribution of the criteria (i.e. experts) to the formation of the first principal 
component (which is the meaning of the U-vectors, see section 4.1.4). Moreover, we 
can see that these weights are inversely proportional to the standard deviation of the 
criterion, which is a measure of the data dispersion. 
 
 
• Similarity:  
 
The translation of the prototypes makes them to be nearer (or farther) from the ideal 
alternative in λ units. Thus, if )()()1( 01 tlengthdtlengthd ⋅≥>⋅+ λ , the terms 

selected in the final vocabulary will be exactly the ones d positions up (or down). 
 
In this case λ depends on the similarity function. Let us study the case of the 
Manhattan distance, which is the one we recommend. We will see that the 
interpretation of the result in this case is straightforward. 
 
Taking the Manhattan distance (Eq.3.3), we can see that the distance to the ideal 
point will be modified with a value equal to: 
 

∑
=

∆=
p

i
i

1

λ     

 
However, to work with values in the interval [0,1], we scale the distance obtained 
with the Manhattan calculation by dividing it by the distance between the nadir and 
the ideal points, which is: 
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λ  Eq. 6.7 

 
Now, we can check the two conditions required: 
  

Condition 1: )(01 tlengthd ⋅≥λ  

Condition 2: 01)()1( λ>⋅+ tlengthd  
 
 
Beginning with condition 1, we substitute the value of λ01 in Eq. 6.7, obtaining: 
 

)(1 tlengthd
p

p

i
i

⋅≥
∆∑

=  

 
Substituting the value of  ∆ι, we have: 

)(
)(

1 tlengthd
p

tlengthd
p

i
i

⋅≥
⋅∑

=  

 
Which can be simplified as: 

)(
)(

1 tlength
p

tlength
p

i
i

≥
∑

=  
Eq. 6.8 

Taking, now, condition number 2, we repeat the same analysis: 
 

)()1(1 tlengthd
p

p

i
i

⋅+<
∆∑

=  
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Having, 
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d
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tlength
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i
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⋅+<
∑

=  
Eq. 6.9 

Finally, we obtain that the two conditions (Eq. 6.8 and Eq. 6.9) can be written as: 
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Eq. 6.10 

 
 
This equation, Eq. 6.10, means that if we want to have a monotonous operation, the 
length of the terms in the final vocabulary must be less or equal to the arithmetic 
average of the lengths of the terms used by the different experts (i.e. criteria), and 
greater than this average length multiplied by a factor related to the increment or 
decrement applied. Notice, that again we are constrained by an average of the lengths 
of the terms in the vocabularies of the criteria, however, now we make an arithmetic 
average while in the Principal Components based ranking we have to perform a 
weighted average. 
 
 
After the analysis of the two ranking approaches, we can say that under some 
conditions, ClusDM is monotonous. In particular, if the length of the terms in the 
final vocabulary is constrained according to Eq. 6.6 or Eq. 6.10, the property is 
fulfilled. 
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6.2 Other Properties 
 
 
In this section we review other properties studied for aggregation operators: the 
stability of ClusDM to some modifications in the data values. In particular, we study 
the behaviour of the method with respect to the negation of all the values in the data 
matrix, and with respect to the inversion of the preference values of one criterion.  
 

6.2.1 Stability for the negation  
 
An aggregation operator is stable for the negation if the reversal of the scale has no 
effect on the evaluation.  
 

( ) ( )( )pp ccNcNcN ,...,)(),...,( 11 Θ=Θ  

 
being Ν the application of a negation operator to all the values in one column of the 
decision matrix (i.e. to one criterion).  
 
In the numerical case, the negation operator can be the classical one,  ijij xxN −= 1)( , 

or a strong negation operator of the form ( ))(1)( 1
ijij xxN ϕϕ −= − .  

 
The rationale of this property is that if we assume that the experts give us values of 
their non-preference (or distaste), the result should be the opposite to the one obtained 
in terms of preference. 
 
This property expresses self-duality of Θ, equivalently to the De Morgan laws in 
fuzzy sets theory [Klir&Yuan,1995]. 
 
 
Stability for the negation of ClusDM  
 
This property can only be applied if the negation of each term is a single term, that is, 
if it is the classical negation. In this case, the property holds because the relations 
among the terms will be the same, so the clusters will be the same, and the terms 
selected will be the ones corresponding to the negation of the ones obtained with the 
original data. This is proven below. 
  
Instead, if more than one term belong to the negation of another, the substitution of 
this term by its negation is not possible, since we do not allow to have more than one 
value in each cell of the decision matrix. 
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To prove that the terms selected will be the negation of the terms obtained, in case of 
using the data matrix with the real values, we will study the ranking results. 
 
− PCA: Since all the terms in the vocabulary are equal informative (i.e. have equal 

interval lengths), we have that the values used to compute the principal 
components are, 1-xij, being xij the numerical value corresponding to the term 
attached to the i-th alternative for the j-th criterion. As the relationships among 
the data do not change (they are only inverted), the use of the correlation matrix 
assures that the eigenvalues and eigenvectors will be the same, since the 
standardisation of the data will remain the same. Consequently, the z-scores of the 
cluster prototypes will only change their sign. However, the z-scores of the ideal 
and nadir alternatives, will not suffer this modification since the negation is not 
applied to their values.  

 
Therefore, the distance of a z-score to the ideal will be now the distance to this score 

to the nadir. So, it is as we considered as the reference point 1 the position of 
the nadir, and as reference point 0 the position of the ideal. With this 
interchange we will have that all the positions of the clusters will suffer the 
following modification when they are scaled to the unit interval: 

 
( ) ( )ii

N xzxz 011
01

−=  

 
In the following step, if all the terms are equally informative, the assignment 
algorithm will select the opposite terms. 

 
 
− Similarity-Based Ranking: When all the values of the matrix are negated, the 

objects suffer a translation in the variables space. However, the ideal alternative 
remains at the same point. So, the clusters obtained with the aggregation method 
will be the same, but their prototypes will have the negations of the values of the 
original ones. Now, what we want to prove is that the distance of a cluster 
prototype in the negated matrix, N

ix , is equal to 1-z01, where z01 is the distance of 

the same cluster with the original values, ix . 
 

( ) ( )i
N
i xzxz

i 0101 1−=  

 
Considering the MCD distance, we can write this equation as: 
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According to the fact that N
ix  corresponds to the negation of xi, this expression 

corresponds to: 
( )
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Thus, we have: 
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which can be rewritten as: 
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As 10 ≤≤ ix , we can ignore the absolute value calculation: 
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This equation is always true since ∑
=

p

i p1

1
 is equal to 1. Consequently, we have 

that the position of the prototype with negated values will be exactly the negation 
of the position of the prototype with the original values. Therefore, the algorithm 
for selecting the terms, will select the terms corresponding to the negation of the 
ones selected in the study with non-negated values. 

 
 
 

6.2.2 Stability for the Opposition 
 
In a data matrix with two criteria, if the two criteria have opposite preferences, then 
the result of the aggregation should be a null degree of preference over the 
alternatives. 
 
 
Opposition in ClusDM 
 
This property holds when the semantics of the terms is based on the classical negation 
function. In this case, if two criteria give completely opposite preferences to all the 
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alternatives in the decision matrix, the result of the aggregation will be a single 
cluster with the neutral label (the one corresponding to position 0.5 in the interval 
[0,1]). 
 
What is happening is that the opposite terms compensate each other. So if all the 
terms in the vocabulary are used, the distances between the objects will be constant 
and they will be put together in a single cluster with a neutral prototype. 
 
In Figure 26, we can see an example with two criteria with a vocabulary of 5 terms 
(from best to worst): {a, b, c, d, e}. 
 
 
 
 
 
 
 
 

Figure 26. Decision matrix with opposite preferences 

 
The first step in the clustering procedure will calculate the Manhattan distance 
considering the classical negation function, so we will obtain: 
 
 
 
 
 
 
 
 

Figure 27. Dissimilarity matrix for opposite preferences 

With this values, we have to build a cluster with objects: a1, a2, a3, a4 and a5. They all 
have a dissimilarity value of 0.4. The prototype of this cluster will have the following 
values: {0.5,0.5} = {c,c} whose aggregation label will be the neutral one, c.  
 
 
 
 
 
 
 

 c1 c2 
a1 a e 
a2 b d 
a3 c c 
a4 d b 
a5 e a 

 
 

 a1 a2 a3 a4 a5 
a1  0.4 0.8 1.2 1.6 
a2   0.4 0.8 1.2 
a3    0.4 0.8 
a4     0.4 
a5      
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6.3 Properties with respect to the alternatives 
 
 
Although our decision making operator is applied to the criteria, it is also interesting 
to study the results from the point of view of the alternatives, since what we are 
trying to do is an analysis of the alternatives in order to know which is their 
individual preference in an overall criterion. For this reason, we will now study the 
behaviour of the ClusDM methodology according to the values of the alternatives.  
 
We will denote as Φ the application of the ClusDM operator to an alternative. 
Although we do not mention that the aggregation result of an alternative depends on 
the value of the other alternatives, it is implicitly taken into account. In fact, to study 
these properties we assume that the rest of the data matrix does not  change. Formally 
we have,  

 
( ) ( ) iripiii vvvva =Φ=Φ ,...,, 21  

 
Considering this new view of the ClusDM operator, in this section we study three 
properties that are usually fulfilled by aggregation operators: increasingness or 
monotonicity, positive association and neutrality. 
 
 

6.3.1 Increasingness 
 
This property is fulfilled when an alternative with a better rating for each criterion 
evaluates better in the final rating. This is, if there is an alternative ak such that for all 
the other alternatives, al, satisfying ( ) ( )liki acac >  for all criteria i=1..p, then we have 

that ( ) ( )lk aa Φ>Φ . 
 
 
Increasingness of ClusDM for alternatives: 
 
Let us consider a data matrix where all the alternatives have the same value for all 
criteria.  
 
When an alternative ak is better than all the others, it will be also the best one in the 
result, cr, because for the idempotency property of ClusDM, the preference value of 
each alternative in the result, will be the same one that they have in all the criteria. 
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However, if the values of the alternatives are different according to the criteria, the 
alternative with best value cannot receive the best term in the result. It will depend on 
the relationships among the alternatives and the groups produced by the clustering. 
 
Here we have an example of the non-monotonicity for the case of two different 
columns. Let us consider the case that all criteria have the same vocabulary (from 
worse to best): {g,f,e,d,c,b,a}. The terms have the same semantics for all criteria, 
which is given by the following negation function, N: 
 

N(a)={f,g}, N(b)={f}, N(c)={e}, N(d)={d}, N(e)={c}, N(f)={a,b}, N(g)={a} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28. Decision matrix for the example of increasingness of alternatives 

 
The trace of applying the clustering method (centroid clustering with Manhattan 
distance) is given here: 
 
STEP 1: Build a dissimilarity matrix and put together those alternatives with 
minimum value.  

In this case, alternatives a5, a11, a12, a13 and a14 are the components of the first 
cluster because these alternatives are identical. We will denote this cluster k1. 

 
STEP 2: Calculate the prototype of the new cluster. 

Prototype k1 = (d,b) = (0.5, 0.72) = a5 = a11 = a12 = a13 = a14 
 
 

 c1 c2 
a1 a a 
a2 b a 
a3 c a 
a4 d a 
a5 d b 
a6 a d 
a7 f c 
a8 e e 
a9 f f 
a10 g g 
a11 d b 
a12 d b 
a13 d b 
a14 d b 
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STEP 3: Build a dissimilarity matrix and put together those alternatives with 
minimum value.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29. Dissimilarity matrix in the 3rd. step 

 
STEP 4: Calculate the prototype of the new cluster. 

Prototype k2 = (0.61, 0.89) = average (a2, a3, a4) 
 
STEP 5: Modify the dissimilarity matrix, including the new cluster and deleting its 
components. 
 
 
 
 
 
 
 
 
 
 
 

Figure 30. Dissimilarity matrix in the 5th. step 

 
STEP 6: Build another level of clusters.  

We have that the minimum value is also 0.28, which creates another class: k3 
= {a1, k2, k1}. 

 

 a1 a2 a3 a4 k1 a6 a7 a8 a9 a10 
a1 0 0.17 0.28 0.39 0.55 0.39 0.94 1.0 1.33 1.67 
a2  0 0.11 0.22 0.39 0.55 0.78 0.83 1.17 1.5 
a3   0 0.11 0.28 0.67 0.67 0.72 1.05 1.39 
a4    0 0.17 0.78 0.55 0.61 0.94 1.28 
k1     0 0.61 0.39 0.44 0.78 1.11 
a6      0 0.78 0.61 0.94 1.27 
a7       0 0.39 0.39 0.72 
a8        0 0.33 0.67 
a9         0 0.33 
a10          0 

 

 a1 k2 k1 a6 a7 a8 a9 a10 
a1 0 0.28 0.55 0.39 0.94 1.0 1.33 1.67 
k2  0 0.28 0.67 0.67 0.72 1.06 1.39 
k1   0 0.61 0.39 0.44 0.78 1.11 
a6    0 0.78 0.61 0.94 1.27 
a7     0 0.39 0.39 0.72 
a8      0 0.33 0.67 
a9       0 0.33 
a10        0 
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STEP 7: Calculate the prototype of this class. 
Prototype k3 = (0.58, 0.795) = average (a1, a2, a3, a4, a5, a11, a12 , a13 , a14) 

 
We stop the process because we have 6 clusters. Then, to establish a ranking of the 
clusters, we can use the similarity with respect to the Ideal alternative, which in this 
case is I = (a,a) or the Principal Components Analysis (see Table 14).  
 
If we consider that the two criteria are correlated, we can apply the ranking based on 
the Principal Components Analysis. In this case, the position of the clusters in the 
ranking is the same that the one obtained with the similarity function (Table 14). We 
have  that the correlation degree between the two criteria is 83%. Moreover, we can 
see that cluster { a6} and cluster { a7} are not properly represented by this ranking, 
since they have a quality value of 0.207 and 0.593, respectively. Therefore, although 
a6 is given as the best alternative, we should not rely on this result, because this 
alternative has different preference values for the two criteria: criterion 1 says that it 
is the best (value a) while criterion 2 says that it is normal (value d). 
 
 
Elements of the class Prototype Similarity to the Ideal PCA projection Rank 
{ a1, a2, a3, a4, a5, 
 a11, a12 , a13 , a14}  

(0.58, 0.795) 0.405 0.66 2 

{ a6}  (0.89, 0.5) 0.39 0.79 1 
{ a7}  (0.22, 0.61) 0.95 -0.91 3 
{ a8}  (0.39, 0.39) 1.0 -1.0 4 
{ a9}  (0.22, 0.22) 1.34 -1.97 5 
{ a10}  (0.05, 0.05) 1.68 -2.94 6 
 

Table 14. Ranking of the alternatives in the increasingness proof 

 
With this example, we can see that ClusDM is not monotonous with respect to the 
alternative’s preference. In the initial data, a1 was the most preferred (in fact, it is the 
ideal) and in the result a6 is considered better than a1.  
 
However, this situation occurs when, for two alternatives ak and al such that, ak>al, we 
have that the aggregation makes that ak become part of a cluster whose centroid is 
worse than the cluster that al belongs to (see Figure 31). 
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Figure 31. Two clusters with objects that do not fulfil the increasingness property 

 
In this figure, we can see that some elements of cluster A are better that others of 
cluster B. However, the prototype of A is worse than the one of cluster B. 
 
This situation is more diff icult to arise in the case of having quali tative criteria. This 
is due to the fact that the alternatives can only take a linguistic value that is covering 
an interval in the numerical domain. In this case, the possibility of generating clusters 
that produce this effect decreases, since we have to build elli ptical clusters, rather  
than spheripherical ones, which means that we need alternatives with conflicting 
evaluations (i.e. one criteria says that all the alternatives have the same preference, 
while the other distinguish quite different preference degrees). It can be seen in the 
example used to demonstrate that ClusDM in not monotonous. 
 

6.3.2 Positive Association 
 
This property holds when having a set of preference criteria (i.e. experts) whose 
resulting decision criterion establishes that ai is preferred to aj, then making ai better 
or aj worse than before, implies that, in the overall decision criterion, ai remains 
preferred to aj. This can be formalised as follows. 
 
Let ( )ipiii vvva ,...,, 21=  and ( )jpjjj vvva ,...,, 21=  such that ( ) ( )ji aa Φ>Φ . Then for 

all  ii aa >'  (i.e. ijij vv >'  for some j) it holds ( ) ( )ji aa Φ>Φ ' . 
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Positive Association in ClusDM: 
 
In Figure 32 we can see a two-variable example of the non fulfilment of this property 
for the case of ranking according to the PCA results. Note that each dimension on this 
figure corresponds to a variable and each painted cell represents one or more 
alternatives (the darker the grey is, the more alternatives with the same value are). In 
particular, we want to study the behaviour of the x and y alternatives. The alternative 
y has the values (b,g), which is marked in green colour in the figure. Otherwise, the 
orange cell corresponds to alternative x, with (c,e) values. According to the first 
picture, x is preferred to y. Then, if we increase the value of the second criterion of x, 
obtaining (c,d), this alternative is now closer to another class, whose projection is 
worse than the one of y. So, in the second picture, y is preferred to x. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32. Representation of alternatives that do not fulfil the positive association 

 
As it can be seen in the pictures above, in order to make that an alternative, x, which 
belongs to a cluster better projected than the one of y, to be moved to another cluster 
whose projection is worse than the one of y, we need that the cluster that receives the 
alternative x has an elliptical form, in order to be near the alternative x after the 
increase of its values but having the gravity centre lower than the one of the cluster of 
y. Therefore, we believe that it is a non-common case for decision making problems, 
since it means that alternative with very different values are put together in an 
elliptical class. With the quality measures we would detect such a cluster with a very 
low intra-cluster cohesion, which will decrease the confidence on the value attached 
to it. 
In case of using the similarity-based ranking, we need an elliptical cluster whose 
gravity centre is farther than the one of cluster y (green). So, if an alternative x of the 
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orange cluster receives a better value in the second criterion, it will can move to the 
big cluster (grey) and then, it will become worse than y. See Figure 33. 

 
Figure 33. Clusters that do not fulfil the positive association property 

 
This case is similar to the one explained before, in which we have some strange 
clusters, since one of them is covering a widespread set of alternatives.  
 
In general, it seems reasonable that if an alternative moves to a situation in which 
there is a large cluster with low intra-cluster cohesion, the new label attached to this 
alternative is not appropriate, since it is not clear that this cluster can have a unique 
prototype that determines its value. Therefore, although positive association is not 
fulfilled, the quality measures that ClusDM uses, probably will show us that the result 
obtained is not reliable. Thus, although it cannot be proved, in the general case, and 
specially if criteria are correlated, we will have that the positive association of the 
alternatives holds. 
 
 

6.3.3 Neutrality with respect to alternatives 
 
In decision making procedures it is required that any two identical alternatives (such 
that they have the same value for all the criteria) receive the same preference value in 
the final ranking.  
 
Having two alternatives ( )ipiii vvva ,...,, 21=  and ( )jpjjj vvva ,...,, 21=  so that jkik vv =  

for all k in 1..p, this property can be stated as: 
( ) ( )ji aa Φ=Φ  
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Neutrality in ClusDM 
 
Our method guarantees this property, since the first clusters that are generated in the 
aggregation process are the ones that put together those indistinguishable objects, 
because they have a dissimilarity value equal to 0. Therefore, even in the case of 
cutting the tree at the lowest level, we will have those alternatives in the same class, 
which means that they will be attached to the same term.  
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