Chapterl:Introduction



1 Introduction

In software engineering, a formal specification of what a system has to do plays
a crucial role in the software development process. Formality is required for
verification and validation purposes. Different forms of formal specifications
have been developed. This thesis concentrates on the algebraic approach to
system specification. In essence, this approach can be characterized by:

e axiomatic specifications which consist of a signature together with a set
of axioms in a specification logic which any implementation of the system
with that specification has to satisfy.

e operations to combine and modify specifications from subspecifications
with an algebraic semantics.

e An abstract presentation of the semantics as independent as possible of
the specification logic or institution [GB92].

Another crucial step in the software development process is software design.
Some of the usual tasks which are performed during software design are the fol-
lowing: deduction of properties from specifications, refinement of specifications
and verification of a program with respect to a specification. Assuming the
existence of a model-theoretic semantics of the algebraic specification language
by which a class of models is associated to any specification expressible in the
language, usually the three main software design tasks are formally represented
as propositions with the following informal reading:

e SP |= ¢ which can be read as a proposition which is true if and only if all
models of the specification S P satisfy the formula ¢.

e SP, ~ SP; which can be read as a proposition which is true iff the
specification S P; implements the more abstract specification SP,

e P = SP which can be read as a proposition which is true iff the program
P written in the language L satisfies the specification SP. This makes
sense if the model-theoretic semantics of the specification language is re-
lated to the the semantics of the programming language. See [ST96] for
some problems to establish this relation.

We understand by an algebraic design framework a formalism which includes
a formal definition of an algebraic specification language including a model-
theoretic semantics and the implicit or explicit formal definition of at least the
two first software design tasks. The definition of algebraic design frameworks
should be for several specification logics or even better for an arbitrary but fixed
institution ([GBY92]), and if it is the case for an arbitrary class of programming
languages. In the literature, there exists a large amount of algebraic specification
languages and algebraic design frameworks. See [SW] for a survey.

An interesting example of algebraic specification language which will be also
used in this thesis is ASL([SW83]). ASL is a kernel specification language



which was not originally designed to be used directly but as a basis to define
the semantics of higher-level specification languages. ASL includes different
operators to structure and build specifications from argument specifications.
Since it has a loose semantics, there is no reason to restrict the expressibility
of the logic to equations and therefore it can be defined with first-order and
higher-order logics as specification logic and additionally it is also possible to
include a programming language in its associated algebraic design frameworks.

In [BHW95] and [Hen97] it is presented a version of ASL with structuring
operators, behavioural operators and a reachability operator with many-sorted
first-order logic as specification logic. In [Hen97] it is also presented different
notions of refinement: the standard notion defined as model inclusion between
the model-theoretic semantics of the concrete and abstract specification of the
refinement, and additionally two more notions of refinement. These two new
notions are also defined by model inclusion but this time between the model-
theoretic semantics of the concrete specification and two different notions of
behavioural abstraction of the class of models of the abstract specification. One
notion of refinement requires a partial congruence between the carrier sets of
an algebra (behavioural refinement) and the other notion requires an equiva-
lence relation between algebras (abstract refinement). Behavioural refinement
requires that the model-theoretic semantics of the concrete specification is in-
cluded in the class of models whose quotients by the given partial congruence
belong to the class of models of the abstract specification and abstract refine-
ment requires that the model-theoretic semantics of the concrete specification
is included in the class of models which are equivalent to some of the models of
the abstract specification by the given equivalence relation.

In [HWBY97] and in [Hen97] proof systems for the deduction of properties
from ASL specifications and for the refinement of ASL specifications are also
presented, and in [BCH] the proof systems for the deduction of properties from
structured specifications (without the reachability and behavioural operators)
are generalised for a fixed but arbitrary institution. Some of the proof systems
are presented as infinitary proof systems in order to achieve completeness.

Another interesting example of an algebraic specification language which has
been recently developed in the Common Framework Initiative (CoFT) [San] is
CASL ([CoF98]).

The model-theoretic semantics of C'ASL specifications is defined as a class
of structures including subsorts, partial operations and predicates. CASL also
extends ASIL with architectural specifications on top of its specification building
operators which are similar to the ones of ASL.

An architectural specification consists of a list of units and a unit term with
the following basic syntax:

units P : SPy;

P, : SPy;
result LINKgr(Pi,...,P,)



where a unit P; can be seen as a structure which implements the specification
SP; and the unit teem LINKgg(Py,...,P,) can be seen as the linking op-
eration to build an implementation of the architectural specification from the
given structures. This structuring mechanism is useful to fix the architecture
of the system or a part of the system under development at a certain stage or
branching point BR. Thus, we can always refine a CASL specification by an ar-
chitectural specification even if it is a unit of another architectural specification.
This improves the model of refinement from a linear sequence of refinements of
the form

SPOWSle...wSPN

to a modular tree structure of refinements. At any step i of the refinement a
specification SF; ; can be decomposed as follows:

SPiy1k
SPi1,k41

With just building operations for specifications, this would not be possible since
at any refinement step we can always define a refined specification with a com-
pletely different structure than the structure of the abstract specification. This
is not the case of architectural specifications because we can not refine archi-
tectural specifications to architectural specifications but CASL specifications to
architectural specifications. See [BST99] for more motivations on architectural
specifications, a formal semantics of architectural specifications including the
formal semantics of the different operators of unit terms which are closely re-
lated to the C'ASL operators for building specifications and the formal semantics
of the refinement of architectural specifications.

For most of the algebraic specification languages and algebraic design frame-
works presented in [SW], specific tools to assist different tasks of software design
have been developed.

Since the design of CASL, a policy to reuse existing and powerful theorem
provers for the development of CASL tools has been established. More precisely,
the technical problems to reuse the theorem prover Isabelle([Pau]) (which is

based on higher-order logic) for CASL has been solved.

2 Objective and main results of the thesis

The main objective of this thesis is to give an approach to reuse theorem provers
for type theories with dependent and inductive types for the development of
theorem provers for algebraic design frameworks. The problem can be consid-
ered interesting for several reasons. First, we believe that the development of
CoFT tools in type-theoretic theorem provers will help to spread the use of alge-
braic techniques. Note that these kind of theorem provers like for example Coq
([CJI*]) or Lego ([LP92]) have been widely used and applied. Second, the work



to be done is completely different to the work done in Isabelle and finally this
work requires a thorough understanding of a non-standard family of formalisms
which are type theories.

Because of simplicity and without loss of generality, we will present our
generic implementation strategy just for the algebraic design framework of ASL
of [HAWBY97] and [Hen97]. Note that since ASL has been used to give seman-
tics of higher-level algebraic specification languages, we believe that it would
not be difficult to adapt the presented generic implementation strategy to give
proof support to algebraic design frameworks including higher level algebraic
specification languages.

Type theories were initially used as a logical language for the foundations
of mathematics. Since they also include a computational language (in partic-
ular a functional language), most of them have also been used as a framework
for program development. Some type theories have also been used as logical
frameworks like for example the LF type theory [HHP93].

LF can be seen as a pure type system, that is a three-level typed lambda cal-
culus (level of elements, types and kinds) with dependent II-types. LF has been
used to make adequate encoding of different logics. The principle of encoding is
based on the idea of judgements as types, where judgements are seen as families
of types of their proofs [HHP93]. Some of the limitations of this principle of
encoding are the following: first, it is not possible to develop metatheory of
the encoded logical systems. Thus, we can not define properties of the logical
systems and prove them using for example induction. Second, the encoding are
not very readable and finally there exist important restrictions in the kind of
logical systems which can be represented.

UTT [Luo94][Gog94] (Uniform Theory of dependent types) is a type the-
ory which adds to the Extended Calculus of Constructions (ECC [Luo94]) the
possibility to define inductive types. The whole type theory is encoded in the
Martin-Lof Logical Framework [BNS90]. This type theory has been applied to
define an algebraic design design framework including a higher-order logic and a
restricted functional programming language as we briefly explain in the section
of related work. On the other hand, the increase of the expressive power of the
type theory with respect to LF is useful to define a new principle of encoding,
which, as we will explain in chapter 2 and 3 of this thesis, does not have the
main problems of the principle of encoding of LF.

In order to give a generic presentation of the framework of ASL presented
in [HWB97] and in [Hen97] for different specification logics, we give an abstract
semantic framework in which the semantics of the behavioural operators of ASL
can be uniformly instantiated in first-order and higher-order logic. Additionally,
we relate a different semantics of the behavioural operators given in [HS96] in
higher-order logic with ours generalizing also the semantics of [HS96]. We define
normal forms for both different semantics in the same abstract framework to
have a better understanding of both semantics and their relationship. The
abstract semantic framework is referred as behavioural algebraic institutions.

We also redesign the different proof systems for deduction and refinement
when it is not possible to give adequate encodings in UTT because they are



infinitary proof systems. In some cases, different solutions are given for first
and higher-order logics.

Finally, the main proof systems of the algebraic design framework for ASL
have been encoded in UTT using the new principle of encoding presented in
the thesis. This allows us to take advantage of the current implementation of
theorem provers for UTT to implement proof checkers for the proof systems of
our chosen algebraic design framework.

3 Related work

The main related works to this thesis are the following;:

e In [Luo94] and in the third chapter of this thesis an algebraic design frame-
work for the development of functional programs from modular algebraic
specifications is presented. This framework is defined using type-theoretic
constructions of UTT.

The type of signatures of specifications can be any type of the type the-
ory. Since the type theory is quite expressible, it is of course possible to
define many-sorted first-order signatures in the algebraic style. Inhabi-
tants of the type of signatures are referred as structures and axioms of
specifications are defined as functions which given a structure returns a
proposition in the logic of the type theory which is higher-order intuition-
istic logic. The consequence relation between specifications and formulas
can be easily defined and in [Luo94] different operations on specifications
are defined which can be instantiated to operations which are similar to
the structuring operators of ASL.

If the type of signatures are many-sorted first-order signatures then the
inhabitants of signatures can be seen as functional programs (which can be
defined using primitive recursive operators but with no general recursion
operator) and therefore it can be defined a satisfaction relation between
functional programs and specifications.

Additionally, in [Luo94] a notion of refinement is defined with a correctness
condition which relates the structures which satisfy the concrete specifi-
cation and the abstract specification.

Finally, parameterised specifications and refinement of parameterised spec-
ifications are also defined.

The main drawbacks of this framework are the following;

— There exists an expressibility constraint at the level of functional
programming in order to achieve decidability of the type checking.
Thus, it is not possible to define functional programs using general
recursion and not all the computable functions are representable.

— It is not generic enough in the sense that it is not independent of the
specification logic and of the functional programming language.



— Although its semantics is based on the semantics of the algebraic
design framework for ASL presented in this thesis, it is difficult to
relate both semantics as we will explain in chapter 3.

e The proof support developed for CASL in [MKKB97] and in [Mos00].
They use higher-order logic as metalanguage instead of UTT and their
aim is to reuse the proof support of the theorem prover Isabelle [Pau]. The
representation technique is totally different to the one which we present
and it is based on map of institutions [CM97]. They basically present
a map between the CASL logic and higher-order logic and technically it
requires the definition of the following categorical structores;

— a functor from the category of theories of the CASL logic to the
category of theories of higher-order logic.

— a natural transformation from the functor of sentences of the CASL
logic to the functor of sentences of higher-order logic.

— a natural transformation from the model functor of the higher-order
logic to the model functor of the CASL logic.

In our case, we would have to define a proof system with a finite set of
rules for the CASL logic and then give an adequate encoding of the proof
sytem in UT'T.

It is out of the scope of this thesis to compare the efficiency of the theorem
provers associated to a given algebraic design framework which can be
obtained following both approaches.

4 Summary of the thesis

The organization of the thesis is as follow: in chapter 2, we give a general view
of the different type theories which have appeared in the literature and how
they have been used as metalanguages of different formalisms. We will also
present the type theory which we are going to use (UTT [Luo94]) and in the
next chapter we will present the two main different ways to use this type theory
in software design. We present a new principle of encoding proof systems and
higher-order calculi but similar to the one of LF. The main advantages of the
new principle with respect to the one of LF' is that it allows to encode a wider
range of proof systems, it is possible to develop metatheory of the encoded proof
systems in the type theory and the encoded formalisms are more readable.

In chapter 4, we will present the abstract semantics for the algebraic design
framework presented in [BHW95], [BCH] and [Hen97] relating the semantics of
its behavioural operators for many-sorted first-order logic with the semantics
of the behavioural operators presented in [HS96] for higher-order logic. This
is achieved by defining both semantics and their normal forms in a new kind
of institutions which are referred to as behavioural algebraic institutions. The
normal form of specifications is also useful to define certain kind of proof systems



which are presented in [Hen97] just for many sorted first-order logic and in this
thesis for an arbitrary but fixed behavioural algebraic institution.

In chapter 5, we will present the most significant proof systems which appear
in [Hen97]. The main novelty of this chapter is that the infinitary proof systems
are redesigned using a finite presentation to be able to represent them adequately
in type theory and they are presented for first-order and higher-order logic.

In chapter 6, we will present how to give adequate encodings of the most
interesting proof systems presented in the previous chapter in UTT and in the
final chapter we will briefly explain the assistance which proof checkers similar
to the one of UTT offers and we will raise some conclusions and future work.



References

[BCH]

[BHW95]

[BNS90]

[BSTY9)]

[CJIF]

[CMY7]

[CoF98]

[GBY2]

[Gog94]

[Hen97]

[HHPY3]

[F1S96]

Michel Bidoit, Maria Victoria Cengarle, and Rolf Hennicker. Proof
systems for structured specifications and their refinements. Chapter
11 of the book Algebraic Foundations of Systems Specification.

Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural
and abstractor specifications. Science of Computer Programming,

25(2-3):149-186, December 1995.

Kent Petersson Bengt Nordstrom and Jan Smith. Programming
in Martin-L6f’s Type Theory: An Introduction. Oxford University
Press, 1990.

Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architec-
tural specifications in CASL. Technical Report ECS-LFCS-99-407,
University of Edinburgh, 1999.

C.Cornes, J.Courant, J.F.Fillaitre, G.Huet, and et al. The coq proof
assistant reference manual v.5. Inria-Rocquencourt and CNRS-ENS
Lyon, France.

Maura Cerioli and José Meseguer. May i borrow your logic? (trans-
porting logical structures along maps). Theoretical Computer Sci-

ence, 173:311-347, 1997.

CoFi LD Task. CASL the CoFi algebraic specification language.
http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary-
v1.0/index.html; October 1998.

Joseph A Goguen and Rod Burstall. INSTITUTIONS: Abstract
model theory for specification and programming. Journal of the
Assoc. for Computing Machinery, 39(1):95-146, 1992.

Healfdene Goguen. A Typed Operational Semantics for Type The-
ory. PhD thesis, University of Edinburgh, September 1994. Also
published as Technical Report CST-110-94, Department of Com-

puter Science.

Rolf Hennicker. Structured Specifications with Behavioural Oper-
ators: Semantics, Proof Methods and Applications. Habilitation-
sschrift, Institut fiir Informatik, Ludwig-Maximilians-Universitét
Miinchen, June 1997.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework
for defining logics. Journal of the Association for Computing Ma-
chinery, 40(1):143-184, January 1993.

Martin Hofmann and Donald Sannella. On behavioural abstrac-
tion and behavioural satisfaction in higher-order logic. Theoretical

Computer Science, 167:3—-45, 1996.



[HWB7]

[LP92]

[Luo94]

[MKKB97]

[Mos00]

[Paul]

[San]

[ST96]

[SW]

[SW83]

Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems
for structured specifications with observability operators. Theoret-
ical Computer Science, 173, February 1997.

Zhaohui Luo and Randy Pollack. LEGO proof development system:
User’s manual. Report ECS-LFCS-92-211, Department of Com-
puter Science, University of Edinburgh, May 1992.

Zhaohui Luo. Computation and Reasoning: A Type Theory for
Computer Science. Clarendon Press Oxford, 1994.

T. Mossakowski, Kolyang, and B. Krieg-Bruckner. Static semantic
analysis and theorem proving for casl. In 12th International Work-

shop WADT97 (LNCS 1376), 1997.

Till Mossakowski. Casl: From semantics to tools. In TACAS00
(LNCS), 2000.

Lawrence C. Paulson. Introduction to isabelle. 25 October 1998
(Computer laboratory of University of Cambridge).

Donald Sannella. The common framework initiative for algebraic
specifications and development of software. www.dcs.ed.ac.uk/ dts/.

D. Sannella and A. Tarlecki. Mind the gap! abstract versus concrete
models of specifications. In Proc. 21st Intl. Symp. on Mathematical
Foundations of Computer Science, 1996.

Donald Sannella and Martin Wirsing. Specification languages.
Chapter 8 of the book Algebraic Foundations of Systems Specifi-
cation.

Don Sannella and Martin Wirsing. A kernel language for algebraic
specification and implementation. In Proc. Intl. Conf. on Founda-
tions of Computation Theory, Borgholm, Sweden, number 158 in
Springer LNCS, pages 413-27, 1983.

10



