
UNIVERSITAT POLITÈCNICA DE CATALUNYA

DEPARTAMENT DE LLENGUATGES I SISTEMES INFORMÀTICS

JOSÉ SAMOS JIMÉNEZ

DEFINITION OF EXTERNAL SCHEMAS AND

DERIVED CLASSES IN OBJECT ORIENTED

DATABASES

TESI DOCTORAL

DIRIGIDA PEL DR. FÈLIX SALTOR I SOLER

BARCELONA

1997





Memòria presentada per José Samos Jiménez

per tal d’aconseguir el grau de Doctor en Informàtica

per la Universitat Politècnica de Catalunya





A mis padres



Agradecimientos

Agradezco muy especialmente al Dr. Fèlix Saltor por haber aceptado dirigir esta tesis,
por su confianza, apoyo, comentarios y consejos: por su ejemplo profesional y humano
que siempre tendré presente.

A Antoni Olivé, Elisa Bertino, Oscar Díaz, Jesús García y Toni Urpí por honrarme
aceptando formar parte del tribunal.

A los revisores de versiones previas de este trabajo y de las publicaciones realizadas
durante su desarrollo,  por sus comentarios.

Quiero agradecer a los miembros de LSI, especialmente a Laura Espitia, su ayuda en
todo momento.

Agradezco a Winterthur Seguros las posibilidades profesionales que me ha ofrecido,
resultando éstas de gran utilidad para el desarrollo de la tesis. A todos los compañeros
que han vivido día a día mis comentarios sobre los avances en este trabajo, por el
interés y paciencia demostrados.

Finalmente, agradecer la colaboración al resto de personas que hayan participado de
alguna manera en la elaboración de esta tesis.

Este trabajo ha recibido parcialmente ayuda material del programa CICYT, proyecto
TIC93-0436.



Table of contents

1 INTRODUCTION ............................................................................................................................. 1

1.1 MOTIVATION .................................................................................................................................... 1
1.2 STRUCTURE OF THE THESIS................................................................................................................ 2

2 VIEWS: EXTERNAL SCHEMAS AND DERIVED CLASSES ...................................................... 5

2.1 THE ANSI/SPARC FRAMEWORK....................................................................................................... 5
2.1.1 Three-level schema architecture ............................................................................................... 5
2.1.2 Schema definition systems......................................................................................................... 6
2.1.3 The ANSI/SPARC framework in OODBs................................................................................... 6

2.2 EXTERNAL SCHEMA DEFINITION METHODOLOGIES............................................................................... 7
2.2.1 Survey of external schema definition methodologies ................................................................. 7

2.2.1.1 [Tanaka et al., 1988] .........................................................................................................................7
2.2.1.2 [Heiler & Zdonik, 1988]....................................................................................................................8
2.2.1.3 [Dayal, 1989]....................................................................................................................................8
2.2.1.4 [Abiteboul & Bonner, 1991]..............................................................................................................9
2.2.1.5 [Rundensteiner, 1992c]...................................................................................................................10
2.2.1.6 [Tresch & Scholl, 1993]..................................................................................................................11
2.2.1.7 [Geppert et al., 1993] ......................................................................................................................11
2.2.1.8 [Barclay & Kennedy, 1993].............................................................................................................11
2.2.1.9 [Santos et al., 1994] ........................................................................................................................12
2.2.1.10 [Kim & Kelley, 1995]....................................................................................................................13
2.2.1.11 [Naja & Mouaddib, 1995].............................................................................................................13
2.2.1.12 [Bertino et al., 1996] .....................................................................................................................14

2.2.2 A classification of the external schema definition methodologies ............................................ 15
2.2.2.1 External schemas are subschemas of the conceptual schema............................................................15
2.2.2.2 External schemas are not necessarily subschemas of the conceptual schema.....................................15
2.2.2.3 External schema as a class of the conceptual schema.......................................................................16

2.3 ISSUES IN THE DEFINITION OF DERIVED CLASSES................................................................................ 16
2.3.1 Integration of derived classes in a schema.............................................................................. 16

2.3.1.1 Integration using the inheritance relationship...................................................................................17
2.3.1.1.1 Direct subclasses of class objects.............................................................................................17
2.3.1.1.2 Relation only with its base classes...........................................................................................18
2.3.1.1.3 Explicitly defined relations......................................................................................................18
2.3.1.1.4 Define all the possible relations...............................................................................................19

2.3.1.2 Integration using other relationships................................................................................................20
2.3.1.2.1 Derivation relationship............................................................................................................21
2.3.1.2.2 May_be relationship................................................................................................................22
2.3.1.2.3 Cluster of classes....................................................................................................................22

2.3.2 Subsumption between classes.................................................................................................. 22
2.3.3 Object-preserving and object-generating semantics................................................................ 24

2.3.3.1 Only object-preserving semantics....................................................................................................24
2.3.3.2 Only object-generating semantics....................................................................................................24
2.3.3.3 Both object-preserving and object-generating semantics..................................................................25

2.3.4 Identifiers of the objects in derived classes ............................................................................. 25
2.3.4.1 Function of identifiers of the base objects........................................................................................25
2.3.4.2 Function of values or identifiers of the base objects.........................................................................26

2.3.5 Transmission of modifications................................................................................................. 26
2.3.5.1 Automatic transmission of modifications.........................................................................................27
2.3.5.2 Transmission of modifications through methods of the derived class................................................28

2.3.6 Definition of non-derived attributes ........................................................................................ 28
2.4 CONCLUSIONS................................................................................................................................. 28



ii

3 OBJECT-ORIENTED CONCEPTS............................................................................................... 31

3.1 FORMAL DEFINITION OF OUR REFERENCE BASIC OODB MODEL.......................................................... 31
3.1.1 Constants, values and objects ................................................................................................. 31
3.1.2 Types. The aggregation relationship ....................................................................................... 31
3.1.3 Class hierarchy. The inheritance relationship......................................................................... 32
3.1.4 Methods.................................................................................................................................. 33
3.1.5 Attributes and methods: properties ......................................................................................... 34
3.1.6 The structural semantics of a class hierarchy.......................................................................... 34

3.2 CLASS HIERARCHY CLOSURE............................................................................................................ 35
3.2.1 Inheritance closure................................................................................................................. 35
3.2.2 Property decomposition closure.............................................................................................. 36

3.3 OBJECT SCHEMAS............................................................................................................................ 37
3.3.1 Valid object schema................................................................................................................ 37
3.3.2 Closed object schema ............................................................................................................. 37

4 DEFINITION OF DCMS OF OODBS ........................................................................................... 41

4.1 INTRODUCTION...............................................................................................................................41
4.2 DEDUCTIVE CONCEPTUAL MODELS................................................................................................... 42
4.3 ARCHITECTURE OF DCMS OF OODBS.............................................................................................. 42
4.4 CONCEPTUAL SCHEMA DEFINITION DCM.......................................................................................... 43

4.4.1 Base predicates ...................................................................................................................... 44
4.4.2 Derived predicates.................................................................................................................. 46
4.4.3 Integrity constraints................................................................................................................ 46
4.4.4 Output Requirements .............................................................................................................. 49

4.5 RELATED WORK .............................................................................................................................. 50
4.6 CONCLUSIONS................................................................................................................................. 50

5 A NEW EXTERNAL SCHEMA DEFINITION METHODOLOGY ............................................ 53

5.1 DEFINITION OF EXTERNAL SCHEMAS IN THE ANSI/SPARC FRAMEWORK............................................ 53
5.1.1 Conceptual schema and external schemas .............................................................................. 53
5.1.2 Organisation of the data dictionary ........................................................................................ 54
5.1.3 The external schema definition system ....................................................................................55

5.2 INTEGRATION OF DERIVED CLASSES IN THE SCHEMAS OF AN OODB.................................................... 55
5.2.1 Integration in the data dictionary ........................................................................................... 56
5.2.2 Integration in an external schema........................................................................................... 57
5.2.3 Effort of integration in the data dictionary vs. in the external schema .................................... 58
5.2.4 Qualification of the classes selected to compose the external schema ..................................... 60

5.3 GENERATION OF EXTERNAL SCHEMAS............................................................................................... 62
5.3.1 Transformations of transformable classes............................................................................... 62
5.3.2 Order in the transformation of transformable classes into a class hierarchy ........................... 63

5.3.2.1 Gradual integration of transformable classes....................................................................................63
5.3.2.2 Schema with all the transformable classes integrated.......................................................................64

5.3.3 Inheritance between transformable and non-transformable classes......................................... 65
5.3.3.1 Characteristics of the class hierarchy...............................................................................................66
5.3.3.2 Subsumption relationships..............................................................................................................66
5.3.3.3 From subsumption to inheritance for transformable classes..............................................................66

5.3.4 Property relationship closure.................................................................................................. 68
5.3.4.1 Classes referenced by transformable and non-transformable classes.................................................68
5.3.4.2 Required properties of a class..........................................................................................................69
5.3.4.3 Non-transformable classes referencing transformable classes...........................................................70
5.3.4.4 Transformation of references to classes...........................................................................................70

5.3.5 Alternatives in the process of definition of external schemas................................................... 71
5.4 EXTERNAL SCHEMA GENERATION ALGORITHMS................................................................................. 72

5.4.1 External schema generation basic algorithm .......................................................................... 72
5.4.1.1 Property decomposition closure.......................................................................................................73
5.4.1.2 Class inheritance closure.................................................................................................................74
5.4.1.3 Valid object schema........................................................................................................................77

5.4.2 External schema generation extended algorithm..................................................................... 77
5.4.2.1 Obtain the initial sets of transformable and non-transformable classes.............................................79



iii

5.4.2.2 Property decomposition hierarchy closure........................................................................................79
5.4.2.3 Class inheritance closure.................................................................................................................80
5.4.2.4 Integration of the transformable classes...........................................................................................81

5.4.2.4.1 Transformable class with subclasses in the schema..................................................................82
5.4.2.4.2 Transformable class without subclasses in the schema.............................................................83

5.4.2.5 Unification of transformable classes................................................................................................84
5.5 CONCLUSIONS................................................................................................................................. 85

6 DEFINITION OF DERIVED CLASSES ........................................................................................ 87

6.1 DERIVED CLASSES........................................................................................................................... 87
6.1.1 Base classes and base objects ................................................................................................. 87
6.1.2 Object-preserving vs. object-generating semantics ................................................................. 87
6.1.3 The derivation relationship..................................................................................................... 88
6.1.4 An example............................................................................................................................. 88

6.2 DERIVED CLASS OBJECT IDENTIFIERS................................................................................................ 89
6.2.1 Object-preserving semantics................................................................................................... 90
6.2.2 Object-generating semantics................................................................................................... 90
6.2.3 Classes containing objects already generated......................................................................... 92

6.3 DEFINITION OF THE OBJECTS IN DERIVED CLASSES............................................................................. 93
6.3.1 Derived classes definition predicates...................................................................................... 93
6.3.2 Definition of properties of derived objects ..............................................................................95
6.3.3 Kinds of derivation relationships ............................................................................................ 96

6.4 TRANSMISSION OF MODIFICATIONS................................................................................................... 97
6.4.1 Dynamic derivation relationship............................................................................................. 97
6.4.2 Connection between base and derived objects......................................................................... 98
6.4.3 Transmission of modifications through the derivation relationship ......................................... 98
6.4.4 Operation consistency relations............................................................................................ 100

6.5 CONCLUSIONS...............................................................................................................................101

7 EXTERNAL SCHEMAS IN A SCHEMA-EVOLUTION ENVIRONMENT ............................. 103

7.1 INFORMATION IN OBJECT SCHEMAS................................................................................................. 103
7.1.1 Information in external schemas ........................................................................................... 103
7.1.2 Simulating conceptual schema transformations using external schemas................................ 104

7.2 NON-DERIVED INFORMATION IN CLASSES........................................................................................ 106
7.2.1 Partially derived classes....................................................................................................... 107

7.2.1.1 Non-derived elements in the intension...........................................................................................107
7.2.1.2 Non-derived elements in the extension..........................................................................................107
7.2.1.3 Local extension of a partially derived class....................................................................................108

7.2.2 Extent propagation links....................................................................................................... 109
7.3 A SCHEMA-EVOLUTION ENVIRONMENT........................................................................................... 110

7.3.1 Test environment .................................................................................................................. 110
7.3.2 Evolution of the conceptual schema...................................................................................... 111
7.3.3 Non-side effect external schemas .......................................................................................... 112

7.4 CONCLUSIONS...............................................................................................................................112

8 CONCLUSIONS ........................................................................................................................... 115

8.1 MAIN RESULTS.............................................................................................................................. 115
8.2 FUTURE WORK...............................................................................................................................116

APPENDIX A. CONCEPTUAL SCHEMA DEFINITION DCM ................................................... 119

APPENDIX B. OODB DEFINITION DCM .................................................................................... 147

APPENDIX C. EXTERNAL SCHEMA DEFINITION DCM ........................................................ 165

APPENDIX D. LIST OF PUBLICATIONS .................................................................................... 183

GLOSSARY OF TERMS ................................................................................................................ 185



iv

BIBLIOGRAPHY............................................................................................................................ 191



1

1 Introduction

1.1 Motivation

The ANSI/SPARC three-level architecture classified database fuctions in physical,
logical, and external levels; information at these levels is represented by the internal,
conceptual, and external schemas respectively.

External schemas offer views of the information contained in the conceptual schema.
They allow the end-users to concentrate on a logical representation of data adapted to
their particular requirements. External schemas provide logical data independence
(many aspects of the conceptual schema may be changed without having to modify the
views of the conceptual schema offered by external schemas).

The three-level architecture has been widely applied in relational databases. In object-
oriented databases (OODBs), the conceptual schema and the internal schema have also
been studied deeply; this is not the case for external schemas. Nonetheless, logical data
independence is also a requirement for OODBs.

Therefore, the main target of this thesis is to broaden the study of external schemas in
OODBs, in particular, the external schema definition process. The definition of external
schemas in OODBs has been previously studied by other authors, but, from our point of
view, still there are some issues without a satisfactory solution. Some of these issues are
further studied in this work and new solutions to them are proposed.

In OODBs, external schemas can contain classes from the conceptual schema as well as
derived classes defined from previously existing classes (derived or non-derived);
derived classes offer views of the information contained in the classes from which they
are defined. The definition of derived classes is an important issue in the definition of
external schemas in OODBs. Therefore, the definition of derived classes is our second
focus of research.

One of the main uses of external schemas is to provide a mechanism that support the
simulation of schema changes. Information in external schemas has to be derived from
the conceptual schema; the kind of schema changes that can be simulated using external
schemas is conditioned by this fact. Therefore, our third target is to present a mechanism
that supports the simulation of a wider spectrum of schema changes. This mechanism is
based on the definition of external schemas but incorporates some additional extensions.



2

1.2 Structure of the thesis

State of the art

In chapter 2 a review and a classification of existing external schema definition
methodologies is presented. Most of the methodologies studied do not consider explicitly
the ANSI/SPARC framework, but propose similar architectures. An effort is made in this
sense, and these methodologies are presented using the ANSI/SPARC terminology. Even
the few methodologies that reference the ANSI/SPARC architecture, propose systems
that do not totally coincide with the definitions of this architecture.

Different issues dealing with the definition of derived classes, as they are treated by other
authors, are presented as well. Derived classes can be included in external schemas. In
some outstanding points about the definition of derived classes, different alternatives
have been proposed. Specifically, the integration of derived classes with other classes in
an object schema, the possibility of defining derived classes with object preserving and
object generating semantics, the problems in the generation of identifiers for new objects
and the transmission of modifications between the objects in base classes and derived
classes.

We consider that the problems presented in this chapter are not satisfactorily solved, and
alternative proposals are put forward in chapters 5, 6 and 7.

Object-oriented concepts

The concepts used in this work do not refer to any particular object oriented model; they
are general concepts applicable to most existing object models. In chapter 3, the formal
definition of the basic object oriented concepts used in our proposal is presented, as well
as some additional outstanding concepts used by other authors.

Definition of DCMs of OODBs

In chapter 4 the definition of deductive conceptual models (DCMs) using Prolog in order
to specify different aspects of OODBs is proposed. The result of the specification
process using this technique is an executable prototype of the system. Having a
prototype directly available, along with the system specifications, is particularly useful in
order to define additional elements in the context of OODBs (e.g. schema evolution,
definition of derived classes, definition of external schemas). The use of this technique is
proposed mainly due to the difficulty of building prototypes of the mentioned elements
over commercial OODBs. This technique is used in chapter 5 in order to define some of
the algorithms proposed there.



3

A new external schema definition methodology

In chapter 5, a new external schema definition methodology that considerably simplifies
the process of definition and the results obtained, is presented. The ANSI/SPARC
framework is taken as a reference. The systems of conceptual and external schema
definition are based on a data dictionary. The universe of discourse of the data
dictionary is all information in the management and use of the database system -including
the management and use of schemas.

In this approach the process of integration of derived classes has two phases: first,
derived classes are integrated directly into the data dictionary by means of the derivation
relationship and then, a set of classes that will compose the external schema is selected
from the data dictionary. From this set of classes an external schema in which classes are
integrated by means of the inheritance relationship is generated. The derivation
relationship does not appear in either the conceptual schema or the external schemas,
only in the data dictionary and it is not necessary to extend the object orientation
paradigm in order to include it.

To carry out the process of generation of the external schema, two algorithms are
defined: the basic algorithm and the extended algorithm. The classes of the set with
which the extended algorithm works must be qualified as either transformable or non-
transformable, indicating whether they can or cannot be modified automatically, in the
sense of adding or removing properties. The extended algorithm automatically modifies
as needed the transformable classes, hence avoiding the need to define explicitly all the
classes that we want to include in the external schema.

Definition of derived classes

The conceptual schema can contain classes initially defined, and also classes defined from
previously existing classes, i.e., derived classes. Sometimes, in order to adapt to final
users’ needs, the information contained in the conceptual schema’s classes must be re-
organised in the form of new classes: external schemas may contain conceptual schema
classes as well as new derived classes. The classes from which a derived class is directly
defined are its base classes; they can be derived or non-derived classes. A derived class
may be defined either by object preserving semantics, if it only contains objects of its
base classes; or by object generating semantics, if it contains new objects generated from
the objects of its base classes. Defining derived classes by object generating semantics
makes it possible to carry out sophisticated re-organisations of existing information
which would otherwise be impossible -i.e., transformation of values into objects or
aggregation of objects to form a new concept.

In chapter 6 we shall study two of the main problems of defining derived classes: the
generation of identifiers for the objects of the derived classes; and the transmission of
modifications between the objects of the derived classes and those of the base classes.



4

Schema evolution

External schemas are derived from the database conceptual schema; they can be used to
simulate changes to the database conceptual schema. Sometimes the final users’
information requirements change; they need new information which cannot be derived
from the information previously contained in the database. Therefore, external schemas
cannot be used to simulate this kind of schema changes.

In order to provide more flexibility in this area, in chapter 7 we propose the definition of
derived classes that can contain non-derived information in their intension as well as in
their extension: partially derived classes. When an external schema with non-derived
information is to be defined, the conceptual schema has to be modified in order to
include the non-derived information of the new schema. In order to avoid unnecessary
modifications of the conceptual schema the use of a test environment for the definition of
temporal external schemas is also proposed in chapter 7.

Conclusions

Finally, some conclusions and future work topics are presented in chapter 8.



5

2 Views: external schemas and derived classes

A view is a simplifying abstraction of a complex structure. In OODBs, some authors
identify the term “view” with the concept of schema; others consider it just a class. In
order to avoid confusion, in this work the term “view” will not be used. Instead the terms
“external schema” or “derived class” will be used respectively. The ANSI/SPARC three-
level schema architecture is adopted as a guide and consequently our terminology,
concepts, and the terminology used in other referenced works, are adapted to it. The aim
of this chapter is to provide insight into the existing methodologies of definition of
external schemas and derived classes. In section 2.1 a brief review of the ANSI/SPARC
framework is presented. Secondly, section 2.2 corresponds to a survey and a
classification of existing external schema definition methodologies. Lastly, in section 2.3
different issues are presented concerning the definition of derived classes as they are
treated by other authors.

2.1 The ANSI/SPARC framework

2.1.1 Three-level schema architecture

The ANSI/SPARC framework [ANSI/X3/SPARC, 1975] proposed a three-level
architecture for DBMSs, presented in fig. 2.1. The conceptual schema is a logical
representation of the reality modeled by the database; it describes the relevant aspects of
the universe of discourse.

Conceptual
schema

Internal
schema

External
schema  n

External
 schema  2

External
 schema  1

Figure 2.1. Three-level schema architecture.

Each external schema is derived from the conceptual schema and describes the part of
the information appropriate for the group of users to whom it is addressed. Databases



6

with external schemas are flexible and adaptable to changes according to how users view
the data. External schemas provide logical data independence (many aspects of the
conceptual schema may be changed without having to modify the views of the
conceptual schema offered by external schemas).

The internal schema is a physical representation of the data stored into the database (it
specifies what data is actually stored in the database, and how that data is stored). The
distinction between the the conceptual schema and the internal schema provides physical
data independence (many aspects fo the physical implementation may be changed
without having to modify the abstract vision of the database).

In this work we focus our attention on the conceptual schema and the external schemas.

2.1.2 Schema definition systems

The systems of conceptual and external schema definition are based on a data dictionary
[ANSI/X3/SPARC, 1986] as shown in fig. 2.2. The universe of discourse of the data
dictionary is all the information relevant to the management and use of the database
system -including the management and use of schemas.

Enterprise
administrator

Database
administrator

Conceptual
schema

definition
system

Internal
schema

definition
system

Data
dictionary

Application
administrator

External
schema

definition
system

Figure 2.2. Schema definition framework.

The definition of external schemas is carried out by the external schema definition
system. The information contained in an external schema must be derivable from the
information contained in the conceptual schema.

2.1.3 The ANSI/SPARC framework in OODBs

The ANSI/SPARC three-level schema architecture has been widely applied to relational
databases. In OODBs, the conceptual schema and the internal schema have also been
studied deeply; this is not the case for external schemas.



7

External schemas should have the same organisational structure as the conceptual
schema from which they are defined; thus, in OODBs the conceptual schema and the
external schemas should be object schemas.

In the OODB field only a few works deal explicitly with the definition of external
schemas referring the ANSI/SPARC architecture [Barclay & Kennedy, 1993; Santos et
al., 1994; Kim & Kelley, 1995; Bertino et al., 1996]. A common characteristic of most
of the works about the definition of external schemas in this field is that they don’t use
the ANSI/SPARC terminology (including works that refer the ANSI/SPARC
architecture).

2.2 External schema definition methodologies

External schemas should have the same organisational structure as the conceptual
schema from which they are defined. That is to say, in the object-orientation paradigm
they should be object schemas.

A requirement that external schemas have to fulfil is schema closure [Dayal, 1989]:
every class referenced by some class included in an external schema has to be also
included in the same external schema. A class is referenced by another class if it appears
as the type of some argument of a method or as the domain of an attribute of the second
class. In an external schema definition methodology some mechanism to verify the
closure of the schema should be provided.

In order to review what has been done by others authors about the definition of external
schemas, a survey of external schema definition methodologies is presented. Finally, in
section 2.2.2 a classification of the different methodologies considered is made.

2.2.1 Survey of external schema definition methodologies

In this section, the main characteristics of some of the most relevant external schema
definition methodologies are presented. In some of these works, the ANSI/SPARC
architecture is referred to. However, each author uses his/her own terminology. This
presentation is made using the ANSI/SPARC terminology, adapting its concepts to the
particular concepts used in each methodology.

2.2.1.1 [Tanaka et al., 1988]

In the work of Tanaka, Yoshikawa & Ishihara [Tanaka et al., 1988] the definition
process of external schemas is called schema virtualisation. Their system allows the
definition of derived classes by object-preserving semantics; the definition of derived
classes by object-generating semantics is proposed as a further research topic.

An external schema has to contain one or more derived classes. The steps in order to
construct an external schema are as follows:

• Define all the derived classes in the external schema.



8

 
• Define manually all the inheritance relationships between the derived classes in the

previous step; these definitions are automatically validated by the system.

After these steps an external schema is obtained: In some cases this can be the final
result. In others, the following steps can also be done several times (as many as needed):

• Delete a subschema from a previously existing schema (conceptual or external).
 
• In order to obtain a new external schema, import the schema derived from the

previous step and merge it with the external schema obtained. The merge process is
also defined manually but validated automatically. Some of the classes referred to by
some class in the external schema may not be included in the external schema (the
external schema may not be closed). This is allowed in the proposed system; avoiding
this situation is another research topic.

In this work [Tanaka et al., 1988], external schemas are called virtual schemas; derived
classes are virtual classes; the conceptual schema is called base schema.

2.2.1.2 [Heiler & Zdonik, 1988]

In the system proposed by Heiler & Zdonik [Heiler & Zdonik, 1988], for defining an
external schema two sets have to be specified: “a set of types and a set of objects that are
instances of those types.” This is equivalent to specifying a set of classes.

An external schema is derived by applying functions to other external schema definitions
in order to obtain the new external schema definition. In the data dictionary, external
schema definitions are objects which have the functions necessary in order to obtain the
new external schema associated. Therefore, the definition of an external schema consists
of the definition of these functions.

“Each installation will define a base view from which all other views can be derived. One
can think of the base view as the conceptual schema of the installation.” External schema
derivation functions are defined according to the definition of the conceptual schema.
External schemas can contain new derived classes not included in the conceptual schema.

Therefore, external schemas are defined from the conceptual schema and/or other
external schemas by derivation functions. The definition of the external schema consists
exclusively of the definition of the derivation functions; by means of these functions the
classes that will compose the external schema are defined. External schemas have to be
closed. However, it is not explained how this property is achieved.

2.2.1.3 [Dayal, 1989]

In the work of Dayal [Dayal, 1989] external schemas can contain classes imported from
other schemas and also new derived classes. Derived classes can be defined by object-
preserving and also by object-generating semantics.



9

Therefore, the steps in order to define an external schema are:

• Import of classes previously defined in other schemas.
 
• Definition of derived classes from previously existing classes (not necessarily included

in this schema).
 
• Definition of inheritance relationships between the classes in the external schema.

It is mentioned that one problem in the external schema definition process is to guarantee
closure of the external schema, but it is not indicated how this is achieved.

2.2.1.4 [Abiteboul & Bonner, 1991]

Abiteboul & Bonner presented in [Abiteboul & Bonner, 1991] a system for defining
derived classes and external schemas. Derived classes can be defined with object-
preserving and with object-generating semantics; external schemas can also include
classes defined in other schemas and new defined classes.

The ANSI/SPARC architecture is not referred to in [Abiteboul & Bonner, 1991], but the
architecture proposed there can be adapted to it: “In general, there can be many
databases in a system. In such systems, one database can use data from other databases
via import statements. A view can thus be thought of as a database that imports all its
data from other databases. That is, a view has a schema, like all databases, but no proper
data of its own.” If in the system there is only one database that has its own data, this
database will be the conceptual schema.

The steps in order to define an external schema are as follows:

• Selection of classes from other schemas (external or conceptual) to be included in the
actual external schema -they can be classes from more than one schema-; the selection
is made using the import mechanism. When classes are imported, they become visible
together with their subclasses.

 
• Hide the undesired classes or properties in classes of the schema (hiding a property in

a class hides it in all its subclasses). If a class’s property is hidden in a schema, the rest
of schemas where this class is included are not affected.

 
At this point an initial external schema is obtained. It can be further modified by the
following operations:
 
• Definition of classes derived from classes already included in the external schema; the

two basic mechanisms for defining derived classes are generalisation and
specialisation. Derived classes are automatically integrated with their direct base
classes using inheritance relationships.

 
• Hide additional properties or classes in the resulting external schema.



10

In this system, external schemas are called views and derived classes are virtual classes.
If a derived class is defined with object-generating semantics it is called imaginary class,
and its new objects are imaginary objects. No specific name is used in order to denote
the conceptual schema or the data dictionary.

2.2.1.5 [Rundensteiner, 1992c]

Rundensteiner proposed an external schema definition methodology called MultiView
[Rundensteiner, 1992a; Rundensteiner, 1992c]. It is complemented with algorithms
presented in [Rundensteiner, 1992b] and [Rundensteiner & Bic, 1992]. In this
methodology, the specification of an external schema is divided into the following
independent tasks:

• Definition of derived classes needed from previously existing classes, derived or non-
derived.

 
• Automatic integration of defined derived classes with all previously existing classes in

an object schema; this integration process is carried out using the inheritance
relationship [Rundensteiner, 1992b]. The objective is to explicitly maintain all the
existing inheritance relationships between derived and non-derived classes. In this
process, in order to have all the inheritance relationships explicitly defined, some
additional derived classes may be automatically generated.

 
• Selection of a set of classes (derived and/or non-derived) from which will be

composed the external schema.
 
• Automatic external schema generation. This task has to parts: Primarily, all classes

that are used by originally selected classes have to be included in the external schema.
These classes are automatically added to the set of selected classes [Rundensteiner,
1992a; Rundensteiner, 1992c]. Followed by the generation of a class hierarchy from
the set of classes obtained [Rundensteiner & Bic, 1992]. The generation process
consists of defining the inheritance relationships that exist between the classes in the
set. The definition of the inheritance relationships is made taking into account only the
inheritance relationships actually defined in the object schema in which all the classes
have been integrated.

 
In this methodology, derived classes are called virtual classes, non-derived classes are
base classes, external schemas are called views, view schemas or virtual schemas, and
classes (derived or non-derived) included in an external schema are view classes. Two
different schemas are defined: the base schema, which is the initial object schema where
all classes correspond to non-derived classes, and the global schema, which is an
extension of the base schema augmented by the collection of all derived classes defined
during the lifetime of the database. Therefore, the conceptual schema would correspond
to the global schema rather than to the base schema because the base schema has the
limitation of not containing derived classes. The global schema is not the data dictionary
either because it only contains the base schema and the new derived classes. However, it
does not contain additional information about the definition of external schemas as the
data dictionary should. The global schema partially plays the role of data dictionary.



11

2.2.1.6 [Tresch & Scholl, 1993]

The presentation of the external schema definition system of Tresch & Scholl [Tresch &
Scholl, 1993] is made using the ANSI/SPARC terminology.

The steps in order to define an external schema are:

• Extend the conceptual schema by a set of derived classes that simulate the desired
schema organisation; derived classes are defined by object-preserving semantics.
Position the derived classes in the schema -related by inheritance only to its direct
base classes [Scholl & Schek, 1991].

 
• Define a subschema of the extended schema, by selecting a set of classes (derived and

non-derived) that corresponds to the restructured schema. Close the subschema
adding the required classes.

The position of the derived classes in the schema is made automatically, but for any one
of the other operations the possibility of it being done automatically is mentioned.

2.2.1.7 [Geppert et al., 1993]

Geppert, Scherrer & Dittrich [Geppert et al., 1993] proposed an architecture in which
there are two levels of conceptual schemas: the level called logical schema, which
describes the structure of a part of interest for a set of applications (in a database there
can be many logical schemas); the other level is composed by the union of all the logical
schemas to form the global schema (there is only one global schema). External schemas -
or subschemas- are defined from logical schemas: an external schema is a subset of
classes of a logical schema.

Focusing only on one logical schema, the steps in order to define an external schema are
as follows:

• Definition and integration of the necessary derived classes into the conceptual schema
(the logical schema considered). Only classes defined with object-preserving
semantics can be defined.

 
• Selection of the set of classes that will compose the external schema. The external

schema is required to be closed, but it is not explained how this is achieved.

2.2.1.8 [Barclay & Kennedy, 1993]

In the system proposed by Barclay & Kennedy [Barclay & Kennedy, 1993] each external
schema is implemented defining a new class with just an object that simulates the
behaviour of all classes of the new external schema; the operations of this class provide a
site for the various queries to define how the external schema is derived from its base
classes.



12

Consequently, the necessary steps in order to define an external schema are as follows:

• Define a new class to represent the external schema itself; this class can be defined by
inheritance from other classes that also define external schemas. The extension and
intension of the classes in the external schema are defined as operations of the new
class.

 
• Define operations to represent the extent of the classes in the external schema.
 
• Define operations to represent all attributes and methods of classes in the external

schema.

It is the responsibility of the application administrator to ensure that the resulting
external schema is closed.

In [Barclay & Kennedy, 1993] the schema (conceptual schema or data dictionary) where
the new defined classes are integrated is not explicitly defined, but it should be in the
data dictionary. The ANSI/SPARC architecture is referred to and its terminology is used,
but the data dictionary is not mentioned anywhere.

A significant disadvantage of this approach is that using a class that represents a schema
means a change in the schema nature and in the way of dealing with it.

2.2.1.9 [Santos et al., 1994]

The external schema definition system proposed by Santos, Abiteboul & Delobel [Santos
et al., 1994; Santos, 1995], continuation of the work of Abiteboul & Bonner [Abiteboul
& Bonner, 1991], is based on the ANSI/SPARC three level architecture. However, they
use their own terminology.

The main change of this proposal with regard to the system of Abiteboul & Bonner
[Abiteboul & Bonner, 1991] is the way it integrates derived classes with the rest of
classes in external schemas. In this case, a new kind of relationship is used: may_be
relationship, using the concept of non-strict inheritance. Since external schemas are
offered to end users, this means a modification of the object-orientation paradigm.

• Therefore, the first step of this methodology is to build the initial external schema that
imports definitions from other schema or schemas, and hides unneeded properties or
classes.

• Then, additional derived classes can be defined in the external schema; these classes
are defined from the set of classes initially included in the external schema, as well as
from previously defined derived classes (also included in the external schema).
Derived classes with object-preserving semantics are defined through the
generalisation or specialisation mechanisms; these classes are integrated in the
external schema using the may_be relationship (instead of using inheritance with its
direct base classes as was done by Abiteboul & Bonner).



13

• Finally, as in the system proposed by Abiteboul & Bonner, additional properties or
classes in the resulting external schema can be hidden.

Here, external schemas are called virtual schemas or views and the term real schema is
used in contrast to virtual schema to allude to the conceptual schema. As mentioned in
[Santos, 1995], “Once defined, a virtual schema definition is compiled and stored into a
view repository.” Therefore, this repository would be the data dictionary.

2.2.1.10 [Kim & Kelley, 1995]

Kim & Kelley [Kim & Kelley, 1995] refer to the ANSI/X3/SPARC three-level schema
architecture, but the ANSI terminology is not totally used along their work. The term
view is used with the meaning of derived class and also signifying external schema.

According to the concepts presented in [Kim & Kelley, 1995], the process of defining an
external schema is as follows:

• Definition of the derived classes needed to form the external schema; derived classes
are defined from previously existing classes (non-derived or derived). Derived classes
are related with the classes from which they have been defined using a new
relationship called derived-from relationship. The set of classes related by this
relationship also form a view-derivation hierarchy. Derived and non-derived classes
have separate inheritance hierarchies. A derived class is related by inheritance with the
classes indicated at the moment of its definition, as is done for non-derived classes:
“Information about superclasses and subclasses of a class (view) is defined within the
class (view).” Therefore, “the burden of ensuring the correctness of the view
hierarchy falls on the users.”

• Selection of the classes that will compose the external schema (this step is not
explicitly defined). External schemas can be composed by derived and non-derived
classes. Derived and non-derived classes have separate inheritance hierarchies, but
they can be related by aggregation. The domain of a property of a derived class can be
a derived or a non-derived class, but the domain of a property of a non-derived class
can not be a derived class.

Thus, in [Kim & Kelley, 1995] the conceptual schema, called the database schema,
“consists of two separate structures; one for the classes (i.e., the class hierarchy), and
one for the views (derived classes).” Therefore, derived classes are integrated in the
conceptual schema using a new relationship not defined in the object-orientation
paradigm.

2.2.1.11 [Naja & Mouaddib, 1995]

In the external schema definition system defined by Naja & Mouaddib [Naja &
Mouaddib, 1995], derived classes can only be defined by object-preserving semantics,
and they have to contain the same set of objects as their base classes; also, derived
classes can contain non-derived attributes.



14

In external schemas, derived classes are integrated using the inheritance relationship.
Derived classes are related with its base classes using a derivation relationship, called the
is_derived_from relationship; this relationship does not appear in external schemas, nor
in the conceptual schema (it is not mentioned, but it should only appear in the data
dictionary).

Therefore, external schemas are defined manually from other external schemas and/or the
conceptual schema. External schemas can contain new derived classes which have the
same extension as their respective base classes and, possibly, a new intension.

2.2.1.12 [Bertino et al., 1996]

Bertino, Catania, García-Molina & Gerrini [Bertino et al., 1996] presented a system that
allow “the definition of external schemas with the meaning proposed by the ANSI three-
level architecture” and that can be used “to simulate schema evolution, allowing the
users to experiment with schema changes without affecting other users.”

This system is defined as an extension of Bertino’s system [Bertino, 1992], where only
the definition of derived classes is studied.

Using the terminology of ANSI/SPARC, the definition process of an external schema
consists of the following steps:

• Take the conceptual schema or a previously defined external schema and define the
necessary derived classes. All the classes to be included in a new external schema have
to be new derived classes defined from only one schema. Derived classes are
connected with the classes from which they have been defined using a new
relationship called a view derivation relationship. The inheritance relationships
between derived classes are defined at the moment of definition of the classes; the
correctness of the inheritance relationships defined will be ensured by the system. This
verification can be made because some limitations have been imposed upon the
derived class definition language.

 
• The external schema has to be closed; the classes from the original schema referred to

and not included in the external schema, are automatically redefined as new derived
classes and included in the external schema.

In [Bertino et al., 1996], the conceptual schema is called base schema; derived classes
are called views and instead of external schema, the concept of schema view is used. It is
an extension of the concept of external schema that allows the incorporation of derived
classes with non-derived properties in order to support schema evolution.

As defined in [Bertino et al., 1996]: “A global database schema consists of a base
schema together with a set of schema views” and “the schema derivation and view
derivation relationships are part of the global database schema too.” Consequently, the
concept of global database schema shall be the data dictionary.



15

2.2.2 A classification of the external schema definition methodologies

Three kinds of external schema definition methodologies are distinguished, just by
considering the relation between the conceptual schema and the different external
schemas defined.

2.2.2.1 External schemas are subschemas of the conceptual schema

In this group of methodologies [Rundensteiner, 1992c; Geppert et al., 1993; Tresch &
Scholl, 1993; Kim & Kelley, 1995] the conceptual schema has to contain all the classes
of the defined external schemas. If an external schema containing a class that is not
previously included in the conceptual schema is to be defined, this class has to be defined
and integrated into the conceptual schema. Class integration assures the consistency of
all external schemas with the conceptual schema and with one another. The main
problem here is that the conceptual schema becomes more complex each time a new
derived class is defined. The conceptual schema is used in part with the function of the
data dictionary, in the sense that all the classes included in external schemas have to be
previously integrated into it.

In some cases [Rundensteiner, 1992c; Geppert et al., 1993; Tresch & Scholl, 1993], new
derived classes are integrated by inheritance into the conceptual schema; however, in the
system proposed by Kim & Kelley [Kim & Kelley, 1995] derived classes are integrated
using a new derivation relationship with its base classes and by inheritance with other
derived classes.

The most representative methodology of this group is Rundensteiner’s one. Some
examples developed according to this methodology are presented in chapter 5 in order to
show the problems that it has. Finally, a solution to them is proposed.

2.2.2.2 External schemas are not necessarily subschemas of the conceptual schema

External schemas can contain classes not included in the conceptual schema [Tanaka et
al., 1988; Heiler & Zdonik, 1988; Dayal, 1989; Abiteboul & Bonner, 1991; Santos et al.,
1994; Naja & Mouaddib, 1995; Bertino et al., 1996]. These new classes are derived
directly or indirectly from conceptual schema classes, but they are not necessarily
included into the conceptual schema. Therefore, the conceptual schema is not affected by
external schema definitions.

The main problem of most existing methodologies of this second group is that external
schemas are defined independently. Except for the system proposed by Bertino, Catania,
García-Molina & Gerrini [Bertino et al., 1996], an external schema definition data
dictionary that allows all the defined classes integrated, does not exist, so it is difficult to
re-use previous definitions: i.e., in the systems presented in [Abiteboul & Bonner, 1991],
and in [Santos et al., 1994; Santos, 1995], derived classes included in an external schema
can only be defined from classes already included in this external schema; even in the
system presented in [Bertino et al., 1996], an external schema can be defined from only
one schema (external schema or conceptual schema), isolated from the rest of definitions
already made.



16

2.2.2.3 External schema as a class of the conceptual schema

This is a unique case [Barclay & Kennedy, 1993], where each external schema is
implemented defining a new class which only contains one object that simulates the
behaviour of all the classes of the new external schema. Compared with the conceptual
schema, the way of defining external schemas means a change in the nature of these
schemas and also in the way of working with them.

The classes that conceptually compose the external schema are not classes previously
existing in the conceptual schema, therefore, from this point of view this methodology
might have been classified in the second group. The main reason for making a new group
for this methodology is to make evident its peculiarity.

2.3 Issues in the definition of derived classes

Derived classes are classes which are defined from previously existing classes (derived or
non-derived) using object-oriented queries. Non-derived classes are defined during the
initial definition of the conceptual schema (it can contain non-derived and also derived
classes). Derived classes are defined during the lifetime of the database in order to be
included in some external schema (or in the conceptual schema). Normally, a derived
class can be used like a (non-derived) class.

2.3.1 Integration of derived classes in a schema

Integration of derived classes refers to two different scopes: integration of derived
classes and previously existing classes in the data dictionary (or in the conceptual schema
playing the role of data dictionary) and integration of a set of classes (derived and/or
non-derived) to form an external schema.

In external schemas defined according the object-orientation paradigm, integration has to
be done using the inheritance relationship; in some cases this is not respected.

On the other hand, the main objective of integrating new derived classes with the rest of
the existing classes in an object schema is twofold: primarily, it is to maintain explicit
class relationships between derived and non-derived classes in order to have external
schemas consistently defined; secondly, as pointed out in [Rundensteiner, 1992b], class
integration serves data modelling purposes, therefore, “classes should be organised in a
systematic manner such that they are more easily comprehensible by the users of the
system.” With this aim in mind, data dictionaries may allow other forms of organisation.
Consequently, besides the inheritance relationship, other kind of relationships -maybe
more suitable than inheritance- may be used in the integration of derived classes.

In order to show the different alternatives of integration of a derived class in a class
hierarchy (external schema or data dictionary), the example object schema in fig. 2.3 is
going to be used. A new class EMPLOYEES', defined from class EMPLOYEES hiding the
Salary property and selecting objects that are not manager employees, is defined. If this



17

new class is to be integrated into the class hierarchy, it can be seen that it is not a
subclass of the original class EMPLOYEES because it has less properties (Salary); nor it is
a superclass of EMPLOYEES because its set of objects is a subset of the set of objects of
EMPLOYEES (only not manager employees). In the following parts of this section, some
of the solutions to this problem offered in different approaches are presented.

PEOPLE
...

Address()

EMPLOYEES
Category()
Salary() ...

CLIENTS

ADDRESSES
...

City()

OBJECTS
Inheritance

Aggregation

EMPLOYEES’
...

Category()

Non-derived class

Defined derived class

only non-manager employees,
hide Salary()

Figure 2.3. OODB example schema and definition of a derived class.

2.3.1.1 Integration using the inheritance relationship

As defined in [Rundensteiner, 1992c]: “Class integration is concerned with finding the
most ‘appropriate’ location in the schema graph for a virtual class in terms of property
inheritance and subset relationships between classes.”

2.3.1.1.1 Direct subclasses of class objects

PEOPLE
...

Address()

EMPLOYEES
Category()
Salary() ...

CLIENTS

ADDRESSES
...

City()

OBJECTS
Inheritance

Aggregation

EMPLOYEES’
...

Category()

Non-derived class

Defined derived class

Figure 2.4. Derived class direct subclass of objects.

One possibility is to define the new derived classes as direct subclasses of class objects,
as shown in fig. 2.4. This approach completely ignores the issue of classification, thus



18

resulting in a flat class structure that does not take advantage of the mentioned
possibilities offered by inheritance, neither of the modelling possibilities of the object-
orientation paradigm.

This solution is adopted in Kim’s system [Kim, 1989]. With regard to our example, the
solution proposed in [Kim, 1989] would have defined class EMPLOYEES' with object-
generating semantics -since it does not allow another definition of derived classes.

2.3.1.1.2 Relation only with its base classes

In this solution, each derived class is only related by inheritance with its direct source
classes. The main problem, as the case of the example shows, is when a derived class is
not directly related by inheritance to its immediate source classes. This problem is
avoided allowing only definition operations of derived classes in which the resulting class
can be directly related with its source classes. Therefore, it would have best results in a
partial, hence less informative, class hierarchy; as pointed out in [Rundensteiner, 1992b]:
“There may be additional subsumption relationships between the derived class and other
classes in the schema that are not directly derivable from the class derivation. It is the
task of class integration to find these class relationships and to explicitly represent then in
the schema graph.”

In the external schema definition methodology presented in [Abiteboul & Bonner, 1991],
in order to define an external schema, derived classes can be defined from classes
previously included in it; the inheritance relationships between a new classes and its base
classes are automatically obtained according to the operations used in the definition of
the derived class (generalisation or specialisation).

This solution is also adopted in [Scholl & Schek, 1991; Tresch & Scholl, 1993]: for each
derived class definition operation, the relationship between the classes that participate is
defined.

2.3.1.1.3 Explicitly defined relations

In this approach the user (the application administrator) is required to specify explicitly
the inheritance relationships between the defined derived classes and existing classes.
This approach is vulnerable to potential consistency problems, since the users might
introduce inconsistencies in the schema graph by inserting “is-a” arcs between two
classes not related by an inheritance relationship; also, an incomplete schema graph that
does not capture all existing class relationships may be defined. A solution to verifying
the correctness, in essence would have to be able to provide automatic verification of the
class hierarchy defined.

In our example, see below fig. 2.5, derived class EMPLOYEES' is defined only as a direct
subclass of class PEOPLE; as has been previously shown, it can not be directly related
with class EMPLOYEES using the inheritance relationship.



19

In [Bertino et al., 1996] the definition of the inheritance relationship between the classes
selected to compose an external schema is carried out in this way. The correctness of the
inheritance relationships defined are ensured by the system.

Inheritance relationships between derived classes in [Kim & Kelley, 1995] are also
defined explicitly, but no verification mechanism is mentioned there, so “the burden of
ensuring the correctness of the view hierarchy falls on the users.” This is also the case in
[Tanaka et al. 1988; Dayal, 1989; Naja & Mouaddib, 1995].

PEOPLE
...

Address()

EMPLOYEES
Category()
Salary() ...

CLIENTS

ADDRESSES
...

City()

OBJECTS
Inheritance

Aggregation

EMPLOYEES’
...

Category()

Non-derived class

Defined derived class

Figure 2.5. Integration of a derived class with existing classes using inheritance.

2.3.1.1.4 Define all the possible relations

Instead of integrating manually the derived classes and verifying automatically that
integration has been properly done, an alternative is to carry out the integration process
automatically; thus, all explicit inheritance relationships existing between the derived
class and the rest of existing classes are obtained.

In the example considered, the result obtained would be fig. 2.5. The resulting object
schema may still seem incomplete: classes EMPLOYEES and EMPLOYEES' have objects
and properties in common, that are more specific than the ones of class PEOPLE, and this
fact is not explicitly represented in the class hierarchy.

In Rundensteiner’s methodology [Rundensteiner, 1992c] a derived class integration
process is proposed that solves this question. In order to integrate derived classes by
inheritance into an object schema, the object schema requires that for each pair of classes
of it that have some property in common, a superclass of them which only has all the
properties common to both classes has to be also included in the object schema (this
property is called inheritance closure of the object schema). The resulting schema of the
example is presented in fig. 2.6. In order to integrate the class EMPLOYEES', all the
classes required to maintain the object schema according to the enunciated requirement
are automatically generated (class EMPLOYEES'').



20

OBJECTS

PEOPLE
...

Address()

ADDRESSES
...

City()

CLIENTS

EMPLOYEES

Salary()

EMPLOYEES’’
...

Category()

EMPLOYEES’

Generated derived class

Defined derived class

Inheritance

Aggregation

Non-derived class

Figure 2.6. Rundensteiner’s automatic class integration by inheritance (I).

In order to show this process with more detail, in fig. 2.7 another example of integration
is presented. In this case, class EMPLOYEES' is defined hiding the property Salary and
adding a new property City which returns the city where the employee lives, already
defined in class ADDRESSES. In this case, the inheritance problem between EMPLOYEES
and EMPLOYEES' is just in their respective types. A new class EMPLOYEES'' is generated
which contains a set of objects different of the same class in the previous example.
Another additional class has to be generated, the class WITH_CITY. This new class
contains the properties common to ADDRESSES and EMPLOYEES'; thus, these
properties can be inherited by both classes.

OBJECTS

PEOPLE
...

Address()

WITH_CITY

City()

CLIENTS

EMPLOYEES

Salary()

EMPLOYEES’’
...

Category()

EMPLOYEES’

ADDRESSES
...

Generated derived class

Defined derived class

Inheritance

Aggregation

Non-derived class

Figure 2.7. Rundensteiner’s automatic class integration by inheritance (II).

Therefore, the essence of this solution is the creation of additional intermediate classes
that restructure the schema graph.

2.3.1.2 Integration using other relationships

This approach ignores the issue of determining inheritance relationships between derived
classes and other classes by using other kind of relationships.



21

Contrary to the integration of derived classes in a class hierarchy using the inheritance
relationship, in [Bertino et al., 1996] is argued that: “This approach has the major
problem that gives rise to inheritance hierarchies quite complex, often containing classes
that are not semantically meaningful for the users.” Then, an alternative solution to the
problem of integration of derived classes in an object schema is to use another kind of
relationships.

2.3.1.2.1 Derivation relationship

Each derived class is related with the classes from which it has been defined using a
derivation relationship, it defines the way in which derived classes are obtained
independently if they have been defined using object-preserving or object-generating
semantics. In our example, fig. 2.8, class EMPLOYEES' is directly integrated using the
derivation relationship.

Inheritance

Aggregation

Non-derived class

Defined derived class

Derivation

OBJECTS

PEOPLE
...

Address()

ADDRESSES
...

City()

EMPLOYEES’
...

Category()

EMPLOYEES
Category()
Salary() ...

CLIENTS

Figure 2.8. Integration of derived classes using the derivation relationship.

This relationship is called view derivation in [Bertino, 1992; Bertino et al., 1996]. In
[Bertino et al., 1996] the definition of external schemas is studied, and the derivation
relationship only appears in the data dictionary. In [Bertino, 1992] only the definition of
derived classes is studied and the object-orientation paradigm is extended by introducing
the derivation relationship along side the aggregation and inheritance relationships.

In [Kim & Kelley, 1995] derived classes are related with the classes from which they
have been defined by the derived-from relationship; the set of classes related using this
relationship form a view-derivation hierarchy.

In the case of the derivation relationship proposed in [Naja & Mouaddib, 1995], the
is_derived_from relation, restrictions are stronger than in similar relationships. The
extensions of two classes related using this relation have to be the same, the only
difference between both classes can be its respective set of attributes. However, this
relationship is only used in the data dictionary.



22

In [Monk, 1994] derived classes are related with its base classes by the view-of
relationship; derived classes can be defined only by object-preserving semantics.

2.3.1.2.2 May_be relationship

The May_be relationship is proposed in [Santos et al., 1994] in order to integrate
derived classes in external schemas (this means an extension to the object-orientation
paradigm). Derived classes defined with object-preserving semantics are related with its
base classes using the may_be relationship. This relationship is called may_be to
distinguish it from the conventional inheritance relationship usually called is_a. In that
sense, an instance of a base class may_be an instance of a corresponding derived class (it
is defined only with object-preserving semantics).

In relation to the group derivation relationships, a different group has been distinguished
here because the meaning of this relationship is different. In the system proposed in
[Santos et al., 1994] derived classes defined by object-generating semantics can also be
defined and they are not related with any relationship to its base classes. The may_be
relationship is only defined if the derived class is defined by object-preserving semantics;
therefore, it is clearly different to the derivation relationship defined in other works.

In our example, derived class EMPLOYEES' is defined by object-preserving semantics,
therefore the result obtained will be the same as the one presented in fig. 2.7 for the
derivation relationship.

2.3.1.2.3 Cluster of classes

In order to solve the problem of integration of derived classes with other classes, the
solution proposed in [Heuer & Sander, 1991] consists of the definition of clusters of
classes: “A cluster consist of at most one base class and several derived classes having
the same set of ‘possible objects’ (the same abstract domain) as the corresponding base
class.” If a derived classes is defined by object-preserving semantics, it has its own
cluster. Inside each cluster, two different hierarchies are considered: one of types, and
another of instances. Each derived class is classified in the hierarchies that belong to its
respective cluster.

In the example considered, the derived class EMPLOYEES' is included into the cluster of
its base class EMPLOYEES from which it is defined.

2.3.2 Subsumption between classes

As pointed out in [Rundensteiner, 1992b], taken from [Schmolze & Lipkis, 1983]:
“Classification is the process of taking a new (class) description and putting it where it
belongs in the (class) hierarchy.” In the process of automatically integrating a derived
class into an object schema, or in the automatic verification of the result obtained from a
manual process of integration, a process of classification is carried out. As it is expressed
in [Rundensteiner, 1992b]: “A class is in the ‘right place’ (in a class hierarchy) if it is
below all classes that subsume it and if it is above all classes that it subsumes.”
Therefore, a method for determining the subsumption relationships between classes is



23

needed in both cases, as mentioned in [Rundensteiner, 1992b]: “We thus need to define a
boolean function subsumes() that given two classes, c1 and c2, determine whether the
first subsumes the second.”

Class c1 is said to subsume class c2, denoted subsumes(c1, c2), if and only if c1 can be
defined as a superclass of c2 in a class hierarchy correctly defined. This means that the
type associated to c1 is a supertype of the type of c2; and, the set of objects of c1 always
contains the set of objects of c2.

Derived and non-derived classes can have membership constraints associated to them. As
defined in [Rundensteiner, 1992b]: “Membership constraints are predicates that restrict
the set content of a class, i.e., this could be a subset-predicate for base (non-derived)
classes or a derivation query for virtual (derived) classes.” Therefore, “the classification
problem for object-oriented models is not decidable since it may involve the comparison
of arbitrary functions and predicates.” In order to avoid this situation, “(...) one would
either have to limit the expressiveness of the derivation specification such as to be
computable, or, we could require a canonical predicate expression that can be broken
into decidable expressions. In the later case, we would base the classification on the
comparison of this partial information.”

In the development of the classification algorithm presented in [Rundensteiner, 1992b], a
subsumes() function has been defined -not presented there- with some of the limitations
previously indicated, and the results obtained are as follows: “Our classification
algorithm is sound but not complete. The subsumes() function being sound means that if
the function returns true for a pair of classes then the two classes are necessarily is-a
related. (...) Second, the subsumes function is total, i.e., it always terminates and returns
either true, or fail. However, the subsumes function is not complete, i.e., the function is
not guaranteed to discover a relationship between two classes even if one exists. (...) In
the worst case, if some is-a relationship is not discovered, then the virtual class is placed
higher in the class hierarchy than would theoretically be possible. This would be a correct
but not the most informative class arrangement.”

In [Bertino et al., 1996] a subsumption function is also needed in order to verify the
correction of external schemas defined manually. The solution proposed there consists of
limiting the possibilities in the definition of derived classes, and also limiting the
inheritance relationships defined between derived classes in external schemas.

Subsumption is also studied in [Buchheit et al., 1994], being the query optimisation
problem in a class hierarchy the main target in this case.

The conclusion to this situation is also enunciated in [Rundensteiner, 1992b]: “Hence,
the development of a realistic subsumes() function for some of the emerging object
models needs to be investigated. The goal of such a project would be not to restrict the
expressive power of the model nor the constructs used for deriving new classes, while
guaranteeing that the subsumes() function stays computable.” This topic is not further
studied here. We suppose that a subsumes() function exists. The study and definition of
such a function can be the topic of another thesis.



24

2.3.3 Object-preserving and object-generating semantics

A derived class is defined with object-preserving semantics if it only contains objects
extracted from previously existing classes. A derived class is defined with object-
generating semantics if it contains new objects generated in the definition process, the
new objects must be identified by newly generated object identifiers.

If the derived class represents a concept previously defined in object form, it will have to
be defined by object-preserving semantics: the derived class defines a new interface for
its objects. If the derived class represents a concept not previously defined in object
form, it will have to be defined by object-generating semantics.

In the papers about the definition of derived classes three tendencies can be
distinguished: those that only allow derived classes to be defined by object-preserving
semantics, those that only allow definitions to be carried out by object-generating
semantics, and those that afford both definition semantics.

2.3.3.1 Only object-preserving semantics

In the case of the systems presented in [Tanaka et al., 1988; Heiler & Zdonik, 1988;
Scholl & Schek, 1991; Rundensteiner, 1992c; Monk, 1994; Geppert et al., 1993; Kim &
Kelley, 1995; Naja & Mouaddib, 1995], only derived classes defined by object-
preserving semantics can be defined.

One of the main reasons for defining this limitation is that, with object-preserving
semantics updates can be handled better between objects in derived classes and objects in
their corresponding base classes [Scholl & Schek, 1991; Rundensteiner, 1992c; Barclay
& Kennedy, 1993; Geppert et al., 1993].

In [Tanaka et al., 1988] the definition of derived classes by object-generating semantics
is proposed as a further research topic.

2.3.3.2 Only object-generating semantics

In [Kim, 1989] and [Kifer et al., 1992] only object-generating semantics can be used in
the definition of derived classes. Even if the derived class represents a concept previously
defined in object form, a new object is generated. Hence, information will be replicated in
these systems.

In [Kifer et al., 1992] the main topic studied is the generation of identifiers for objects in
derived classes; identifiers are generated using functions specific to each derived class.
The only requirement that these functions have to fulfil is that they return a unique value
for each different set of input parameters, and that this value does not occur elsewhere in
the database. In order to be able to manage the transmission of modifications between
objects in derived classes and the respective objects in base classes, the correspondence
between its identifiers is stored.



25

2.3.3.3 Both object-preserving and object-generating semantics

The possibility of defining derived classes by object-preserving and object-generating
semantics allows one to carry out sophisticated reorganisations of the existing
information which would not be possible if derived classes could only be defined by
object-preserving semantics, i.e., “combining small objects into larger aggregate objects;
decomposing large objects into several smaller objects; sophisticated restructuring that
turns objects into values and values into objects. [Abiteboul & Bonner, 1991]”

Other systems that allow the definition of derived classes with both semantics are the
following: [Dayal, 1989; Shaw & Zdonik, 1990; Abiteboul & Bonner, 1991; Heuer &
Sander, 1991; Heuer & Scholl, 1991; Hull et al., 1991; Bertino, 1992; Alhajj & Arkun,
1993; Santos et al., 1994; Santos, 1995; Bertino et al., 1996].

Usually, the correspondence among the new object identifier and the base object
identifier is stored in order to manage the transmission of modifications between them.

2.3.4 Identifiers of the objects in derived classes

Each object (non-derived or derived) is represented by its identifier. In [Hull et al., 1991]
it is stated that: “An object identifier has no intrinsic meaning -and derives its meaning
only from its relationship to values or other object identifiers in a given database
instance. In particular, then, if an object identifier is considered independently from its
associated database instance, then it conveys essentially no information other than its
identity as being distinct from all other object identifiers.”

In some proposals the identifier of a derived object is defined exclusively in function of
other object identifiers; in other cases the identifier is defined in function of other object
identifiers as well as function of values of some of the properties of the objects; these
two options are presented next.

2.3.4.1 Function of identifiers of the base objects

The definition of derived classes by object-preserving semantics can be considered a
particular case in which the object identifiers of objects in derived classes only depend on
object identifiers of objects in other classes. As a matter of fact, the object identifiers of
objects in derived classes are the object identifiers of the objects from which they have
been defined.

In other cases, new object identifiers are generated for the objects in derived classes
defined with object-generating semantics. In [Bertino, 1992; Kifer et al., 1992; Bertino
et al., 1996; Gardarin & Yoon, 1996] the new object identifiers can be defined as a
function of the identifiers of the objects from which they are defined, i.e. aggregation of
objects in order to form a new concept. A derived class can be defined from many
classes; the classes on which the identity of the objects in the derived class depend are
explicitly defined using some specific clause.



26

In [Bertino, 1992] by means of the clause ‘identityfrom’, in [Bertino et al., 1996] by
means of ‘UPDATE-ON’, and in [Kifer et al., 1992] by means of ‘OID FUNCTION OF’
the subset of base classes that the identity of a derived class instance depends upon is
specified; the object identifiers of the objects belonging to the classes that participate in
the definition of an object, together with the generated object identifier, usually are
stored together in order to maintain this correspondence; such a correspondence also can
be used to propagate the update operations to the base objects.

In the case of [Dayal, 1989], the identifiers of derived objects are considered as tuples
whose components are the identifiers of their corresponding base objects. If a derived
class only has a base class, its objects will be defined by object-preserving semantics,
base and derived objects will have the same object identifier.

2.3.4.2 Function of values or identifiers of the base objects

If the identifier of a derived object is defined exclusively in function of other object
identifiers, then, the transformation of values into objects cannot be defined. In order to
offer this kind of transformations, some systems [Abiteboul & Bonner, 1991; Heuer &
Sander, 1991; Hull et al., 1991; Santos et al., 1994] allow the definition of new objects
as functions of values of properties, or a combination of values and object identifiers of
other objects.

It can be considered that the object identifier of a derived object is generated from a set
of its attributes; in [Abiteboul & Bonner, 1991] these attributes are called core
attributes. As mentioned in [Santos et al., 1994]: “The first time an imaginary object
(derived object defined with object-generating semantics) is accessed, the attributes from
which the identity of the object depends must be given so that the object can be properly
constructed. Further accesses return the same object identifier.”

An additional problem in this case is the management of changes in the values of the core
attributes. As pointed out in [Santos et al., 1994]: “The values of the core attributes may
change but their object identifiers must remain the same.”

2.3.5 Transmission of modifications

In order to transmit the modifications from the objects in the derived classes to the
objects in the classes upon which those derived classes are defined, a connection must
exist between them. If the definition of the derived classes is carried out exclusively with
object-preserving semantics, this connection is immediate as it is given directly by the
object identifier according to [Scholl & Schek, 1991; Rundensteiner, 1992c; Kim &
Kelley, 1995]. If a derived class is defined by object-generating semantics, a connection
has to be maintained between the identifier of the derived object and the objects from
which it is defined [Kifer et al., 1992; Bertino et al., 1996].

As defined in [Heiler & Zdonik, 1988], in the transmission of modifications from objects
of derived classes to the corresponding objects in base classes, the equivalence
preservation property has to be fulfilled: correct changes in the base objects have to be
produced in order to provide the desired updates in derived objects.



27

Regarding the problem of modification transmission, the solutions which are put forward
by other authors are presented: automatic transmission limiting the definition of the
derived classes and transmission of modifications through methods of the derived classes.

2.3.5.1 Automatic transmission of modifications

According to Gottlob, Paolini & Zicari [Gottlob et al., 1988]: “Most of the authors who
have been studying the view-update problem concentrate their attention on finding ways
for deriving translations automatically or semi-automatically by restricting the set of
allowed (static) view definitions and the set of allowed update policies. Their derivation
rules usually are based upon notions of ‘natural translation’ (typically minimalty of side-
effects) and upon constraints on the data model and on the database instances (functional
dependencies and other data dependencies for relational databases).” Such an affirmation
-made several years ago when most of the papers on this subject focused on relational
databases- still applies to a large number of subsequent papers on the transmission of
modifications in OODBs.

The main restriction imposed upon the definition of the derived classes in order for their
instances to be modifiable, is that it be carried out by object-preserving semantics [Scholl
& Schek, 1991; Rundensteiner, 1992c; Kim & Kelley, 1995]. Thus, the number of
possible cases in the modification transmission is reduced. The implementation is
simplified considerably in view of the fact that, having the same identifier, no additional
structure is needed to relate the base objects and the derived objects -the derivation of
identity alone being taken into consideration. The modification operators which are
applied to the objects of the derived class bring about the same effect as if they had been
applied directly to the objects of the corresponding base class [Ra & Rundensteiner,
1995; Kim & Kelley, 1995].

Regarding the restrictions in the set of possible modification policies, those in which the
transmission is not direct are not permitted, i.e., the direct assignment to derived
properties [Scholl & Schek, 1991; Kim & Kelley, 1995] and the creation of new objects
in derived classes [Abiteboul & Bonner, 1991; Santos et al., 1994]. Among all the
possible forms of transmission of a modification to a derived object one is selected, as
mentioned in [Gottlob et al., 1988], normally the one which brings about the least side-
effects or the one which may be considered the ‘most natural’, i.e., create, delete, add,
remove and set update operators applied to an instance of a virtual difference class work
on the first argument class [Ra & Rundensteiner, 1995]; deletion of an object related by
aggregation with other objects, in [Kim & Kelley, 1995] only the root object is deleted,
not the component objects. Nevertheless, this form of transmission is not necessarily
always the most appropriate.

The automatic definition of modification policies keeps the effort of defining derived
classes to a minimum -the definition of a derived class consisting merely in defining the
manner in which objects are obtained. This requires major restrictions, both in derived
class definition as well in permitted modification operations. If derived classes are
defined by object-generating semantics, the automatic definition of modifications would
become more complicated because the number of ways of possible transmissions
increases, this being the reason why it is not permitted.



28

2.3.5.2 Transmission of modifications through methods of the derived class

An alternative to the automatic transmission of modifications is to use the additional
mechanisms that are offered by the object-orientation paradigm -in particular, that of
encapsulation: defining the manner of propagation of all the operations by means of
methods [Dayal, 1989; Kimura & Tsuruoka, 1991; Rundensteiner, 1992c; Kifer et al.,
1992; Andersen & Reenskaug, 1993; Barclay & Kennedy, 1993]. In [Bertino et al.,
1996] the use of the automatic transmission mechanism is proposed when the derived
class is defined by object-preserving semantics and there are no problems of ambiguity. If
ambiguity in the manner of transmission exists (i.e., deletions on derived classes defined
as joins), it is suggested that methods which implement it are used. Normally, the
methods of the derived class are defined using methods of the base classes.

The cost of definition involved in this solution is greater than that of automatic
modification transmission since the definition of the derived class consists in the
definition of the manner in which its objects are obtained and also in the implementation
of the methods of modification transmission.

2.3.6 Definition of non-derived attributes

In some systems [Bertino, 1992; Naja & Mouaddib, 1995; Bertino et al., 1996], the
definition of derived classes with non-derived attributes is allowed. The definition of
those classes permits one to simulate some additional transformations in a schema
evolution environment.

As pointed out in [Kim & Kelley, 1995]: “A non-derived attribute defined in a view
(derived class) obviously has no corresponding attribute in a stored class. Therefore,
values inserted into the attribute cannot be stored in any ‘corresponding’ stored class,
and also the attribute cannot be materialised;” and no alternative solution to this situation
is given there.

According to the ANSI/SPARC architecture, external schemas can only contain
information derived from the conceptual schema. Therefore, if an external schema is to
be defined including a class with some non-derived attribute, the conceptual schema
should be modified in order to include the additional information [Ra & Rundensteiner,
1995]; therefore, the information in external schemas can always be derived from the
conceptual schema.

2.4 Conclusions

The main target of this chapter has been studying the elements that take part in the
definition of external schemas and derived classes in OODBs.

The ANSI/SPARC framework defined a general architecture for DBMSs. This
architecture has been widely applied for relational databases but this has not been the
case for OODBs. The external schema is a part of this architecture concept, and its



29

definition is studied in the proposed framework; consequently, the main characteristics of
this framework have been presented in section 2.1.

In section 2.2 a review and a classification of existing external schema definition
methodologies has been made. Most of the methodologies studied do not consider
explicitly the ANSI/SPARC framework, but propose architectures that approximately
can be translated to this one. An effort has been made in this sense, and these
methodologies have been presented using the ANSI/SPARC terminology. Even the few
methodologies considered that reference the ANSI/SPARC architecture propose systems
that do not totally meet the definitions of this architecture.

Derived classes can be included in external schemas. In some outstanding points about
the definition of derived classes, different alternatives have been proposed, some of the
most important ones have been presented in section 2.3, specifically, the integration of
derived classes with other classes in an object schema, the possibility of defining derived
classes with object-preserving and object-generating semantics, the problems in the
generation of identifiers for new objects, and the transmission of modifications between
the objects in base classes and derived classes.

We consider that the problems presented are not solved satisfactorily, and alternative
proposals are presented in chapters 5, 6 and 7 of this work.



30



31

3 Object-oriented concepts

The concepts used in this thesis don't refer to any particular object oriented model, they
are general concepts applicable to most existing object models. In this chapter, the
formal definition of the basic object oriented concepts used in our proposal is presented,
as well as some additional outstanding concepts used by other authors.

3.1 Formal definition of our reference basic OODB model

The concepts presented in this section have been defined starting from the object models
presented in [Rundensteiner, 1992c] and [Abiteboul et al., 1995]. Many of its features
are shared by most of the existing OODB models. The terminology used in [Abiteboul et
al., 1995] with some changes and extensions has been used in the formal definition.

3.1.1 Constants, values and objects

The atomic types integer, string, bool, float, and their corresponding domains are
considered. The set dom of atomic values is the union of these domains; the elements of
dom are called constants. A special constant nil represents the undefined (i.e., null)
value.

The set obj = {o1, o2, ...} is the infinite set of object identifiers (OIDs); and att is the set
of attribute names. Given a set O of OIDs, i.e., O ⊂ obj, then the family of values over
O, denoted val(O), is defined so that

a) the constant nil ∈ val(O);
b) if v ∈ dom then v ∈ val(O);
c) if o ∈ O then o ∈ val(O);
d) the set {vi | vi ∈ val(O), (i = 1, ..., n)} ∈ val(O); and
e) given a set of values {vi | vi ∈ val(O), (i = 1, ..., n)}, and a set of distinct

attribute names {Ai | Ai, Aj ∈ att, (i ≠ j ⇒ Ai ≠ Aj), (i, j = 1, ..., n)} then, the
tuple [A1 : v1, ..., An : vn] ∈ val(O).

An object is a pair (o, v), where o is an OID and v a tuple value.

3.1.2 Types. The aggregation relationship

Objects are grouped in classes; class is the set of class names. All objects in a class have
values of the same type, these values are tuples. Each class c is associated with a type
σ(c), which dictates the type of the objects in this class. In particular, for each object (o,
v) in class c, v must have the structure described by σ(c).



32

So, types are defined with respect to a given set C of class names, C ⊂ class. The family
of types over C, denoted types(C), is defined so that

1. the atomic types integer, string, bool, and float ∈ types(C);
2. if c ∈ C then c ∈ types(C);
3. if τ ∈ types(C), then the set {τ} ∈ types(C);
4. given a set of types {τi | τi ∈ types(C), (i = 1, ..., n)}, and a set of distinct

attribute names {Ai | Ai, Aj ∈ att, (i ≠ j ⇒ Ai ≠ Aj), (i, j = 1, ..., n)}, then the
tuple [A1 : τ1, ..., An : τn] ∈ types(C); and

5. given the special class name objects, σ(objects) = any, then any ∈ types(C),
but this type may not occur inside another type.

Each class c has a type with tuple form associated, i.e., σ(c) = [A1 : τ1, ..., An : τn]. If a
class c1 has an attribute Ai of type τi, and τi = c2, being c2 a class, then between the
classes c1 and c2 there is an aggregation relationship -the objects of class c1 are
composed by objects of class c2.

3.1.3 Class hierarchy. The inheritance relationship

A class hierarchy is a triple (C, σ, p ), where C is a finite set of classes, σ is a mapping
from C to types(C), and p  is a strict partial order relation (transitive and irreflexive) on
C, called subclass relation, corresponding to a specification of the inheritance
relationships between the classes in the class hierarchy. The class objects is included in
every class hierarchy, being σ(objects) = any; and, for each class c in any class
hierarchy, c p  objects.

Given a finite set C of class names, the subtyping relationship on types(C) is the smallest
partial order ≤ over types(C) satisfying the following conditions:

a) if c1 p  c2, then c1 ≤ c2;
b) if τi ≤ τ’ i, (i = 1, ..., n), and n ≤ m, then [A1 : τ1, ..., An : τn, ..., Am : τm] ≤ [A1 :

τ’ 1, ..., An : τ’ n];
c) if τ ≤ τ’ , then {τ} ≤ {τ’ }; and
d) for each τ, τ ≤ any.

For two types τ1, τ2 ∈ types(C), τ2 is called a subtype of τ1, if and only if τ2 ≤ τ1; in this
case, τ1 is called a supertype of τ2. The type τ2 is a direct subtype of τ1 and τ1 is a direct
supertype of τ2, if τ2 ≤ τ1, and ((/∃  τi ∈ types(C)) (τi ≤ τ1, τ2 ≤ τi, τi ≠ τ1, τi ≠ τ2)).

In a class hierarchy the type associated with a subclass should be a refinement (the same
type or a subtype) of the type associated with its superclasses. A class hierarchy (C, σ,
p ) is well formed with regard to types(C) if for each pair c1, c2 ∈ C, c1 p  c2 implies
σ(c1) ≤ σ(c2).

Given a well-formed class hierarchy (C, σ, p ), for two classes c1, c2 ∈ C, c2 is called a
subclass of c1, if and only if c2 p  c1; in this case, c1 is called a superclass of c2. The class
c2 is a direct subclass of c1 and c1 is a direct superclass of c2, if c2 p  c1, and ((/∃  ci ∈ C)
(ci p  c1, c2 p  ci)).



33

3.1.4 Methods

A method has three components: a name, a signature, and an implementation (or body).
The set meth is an infinite set of method names. Let (C, σ, p ) be a class hierarchy. For
method name m, a signature of m is an expression of the form m : c × τ1 × ... τn-1 → τn,
where c is a class name in C and each τi is a type over C. This signature is associated
with the class c; a method m applies to objects of class c.

The same method name can have different signatures in connection with different classes;
but, if m : c1 × τ1 × ... τn-1 → τn and m : c2 × τ’ 1 × ... τ’ p-1 → τ’ p are two definitions of m
and c1 p  c2, then, n = p, and τi ≤ τ’ i (i = 1, ..., n). This rule is called covariance of the
definition of m in c1 and c2.

If a method m is defined for a class c1 but not for a direct subclass c2 of c1, then, the
definition of m for c2 is inherited from c1. The signature of m in c2 has the form m : c2 ×
τ1 × ... τn-1 → τn; the signature of m on c2 is identical to the one of m on c1, except that
the first c1 is replaced by c2. In general, the method m is inherited by a class c2 from a
class c1 where m has been defined, if c2 p  c1, m is not defined in c2, and m is not defined
in any class ci, being c2 p  ci, ci p  c1. If m has been inherited by c2, the implementation of
m for c2 is identical to that for c1.

A set M of method signatures is associated to a class hierarchy (C, σ, p ). Each class c of
C has a set of method signatures associated, denoted µ(c): the set of methods defined in
c or inherited by c from its superclasses; according to this, M = ∪{ µ(c) | c ∈ C}. Objects
in a class c can be accessed only using the set of methods µ(c). The methods of a class c
are defined using the attributes of σ(c); methods are dependent on the set of attributes
used in their definition. Methods allow us to consult or modify the value of the attributes
of the objects in class c. The set of methods applicable to an object is called the interface
of the object. Objects are accessed only via their interface; this principle is called
encapsulation.

In order to avoid the production of ambiguities in the inheritance of methods, the
unambiguity rule is defined: if c1 is a subclass of c2 and c3, and there is a definition of m
for c2 and c3, then there is a definition of m for a subclass of c2 and c3 that is either c1

itself, or a superclass of c1.

The set M of method signatures associated to the class hierarchy (C, σ, p ) is well
formed if it obeys the unambiguity and the covariance rules.

Extending the definition previously given, a class hierarchy (C, σ, p ) is well formed if it
is well formed with regard to types(C), and the set M of method signatures associated to
the class hierarchy is also well formed. Only well-formed class hierarchies are considered
in this work.



34

3.1.5 Attributes and methods: properties

Each class c in a class hierarchy (C, σ, p ) has a set of attribute names associated
corresponding to the ones in σ(c), and a set of methods µ(c). The attributes of c
constitute its internal structure; the methods of µ(c) constitute the interface of c.

An attribute of name a and type τ defined in σ(c) can be expressed in the same form as a
method: a : c → τ. According to the definition of well-formed class hierarchy, if c1, c2 ∈
C, c2 p  c1, and a is an attribute of type τ1 defined in σ(c1), i.e., a : c1 → τ1, then the
attribute a is also defined in σ(c2), i.e., a : c2 → τ2, and τ2 ≤ τ1. (The covariance rule for
methods was defined in a similar way.)

The set of properties or the intension of a class c, denoted ρ(c), is defined as the union
of the set of attributes defined in σ(c) and the set of methods µ(c). In a class hierarchy
(C, σ, p ), if c1, c2 ∈ C, and c2 p  c1, then ρ(c1) ⊆ ρ(c2), and ((∀ p ∈ ρ(c1)) (if p : c1 × τ1

× ... τn-1 → τn and  p : c2 × τ’ 1 × ... τ’ m-1 → τ’ m then n = m, and τ’ i ≤ τi (i = 1, ..., n))),
covariance rule for properties.

As in [Rundensteiner, 1992c], for simplicity, we assume for the following that all
properties in a class hierarchy have unique property names. To ensure uniqueness of
properties, an unique property identifier can be associated to each newly defined
property; therefore, two properties that have the same property name could thus be
distinguished internally based on their identifier.

Each property p in a class c may be defined using other properties of the class c or from
other classes in the class hierarchy. The set of properties that property p needs for its
definition in class c is denoted by def(p,c) = {(pi,cj) | property p ∈ ρ(c) uses the property
pi ∈ ρ(cj) in its definition}.

3.1.6 The structural semantics of a class hierarchy

Let (C, σ, p ) be a class hierarchy. An OID assignment is a function π mapping each
name in C to a finite set of OIDs. Given OID assignment π, the instances or the proper
extension of c ∈ C is π(c). An object o instance of a class c1 ∈ C, denoted o ∈ π(c1), can
not be instance of any of the subclasses of c1 in the class hierarchy: ((/∃  ci ∈ C) (o ∈
π(ci), ci p  c1)). A major point of difference of the model presented here with respect to
the model of [Abiteboul et al., 1995] is that an object can be instance of two classes not
related by inheritance in a class hierarchy, like in [Rundensteiner, 1992c] or [Bertino et
al., 1995].

The members or the extension of c, denoted π* (c), is ∪{ π(ci) | ci ∈ C, ci p  c}; if an
object o is an instance of a class c, then o is also a member of all the superclasses of c. If
π is an OID assignment, then π* (c2) ⊆ π* (c1) whenever c2 p  c1.

The semantics for types is now defined relative to a class hierarchy (C, σ, p ) and an
OID assignment π. Let O = ∪{ π(c) | c ∈ C}, and define π* (objects) = O. The
interpretation of a type τ, denoted dom(τ), is given by



35

a) for each atomic type τ, dom(τ) is the usual interpretation of that type;
b) dom(any) is val(O) (being σ(objects) = any);
c) for each c ∈ C, dom(c) = π* (c) ∪ {nil};
d) dom({ τ}) = {{ v1, ..., vn} | n ≥ 0, and vi ∈ dom(τ), (i = 1, ..., n)}; and
e) dom([A1 : τ1, ..., Ak : τk]) = {[A1 : v1, ..., Ak : vk , Ak +1 : vk +1, ..., Al : vl] | vi ∈

dom(τi), (i = 1, ..., k), vj ∈ val(O), (j = k + 1, ..., l)}.

3.2 Class hierarchy closure

The definitions presented in this section are based on [Rundensteiner, 1992c]. Closure of
a class hierarchy referes to the closure of the inheritance relationship, and also to the
closure of the references made between classes through properties.

3.2.1 Inheritance closure

Let (C, σ, p ) be a class hierarchy. Given c1, c2 ∈ C, a class c3 is a common superclass of
c1 and c2 if the properties of c3 are ρ(c3) ⊆ (ρ(c1) ∩ ρ(c2)), and the set of objects of c3

are π* (c3) ⊇ (π* (c1) ∪ π* (c2)); if the definition of a property p for c3 is  p : c3 × τ’’ 1 × ...
τ’’ n-1 → τ’’ n, then, the definition of p for c1 and c2 is, respectively, p : c1 × τ1 × ... τn-1 →
τn, and  p : c2 × τ’ 1 × ... τ’ n-1 → τ’ n, where each τ’’ i = τi if τ’ i ≤ τ i, otherwise τ’’ i = τ’ i

(for i = 1, ..., n). If c1 and c2 do not have any property in common, their only common
superclass is the class objects.

The class c3 is the lowest common superclass of c1 and c2, denoted LCS(c1, c2) = c3, if
and only if c3 is a common superclass of c1 and c2, but ρ(c3) = (ρ(c1) ∩ ρ(c2)), and π* (c3)
= (π* (c1) ∪ π* (c2)).

Given c1, c2 ∈ C, then  is a function from C × C → C that defines a new class c3 by c3 =
c1  c2, being c3 a common superclass of c1 and c2, and ρ(c3) = (ρ(c1) ∩ ρ(c2)).

(b)(a)

Inheritance relationship

c3
p1, p2, p3

c4
p1, p2, p4

c5
p1, p2

c3
p1, p2, p3

c4
p1, p2, p4

c1
p1

c2
p2

c1
p1

c2
p2

Figure 3.1. Class hierarchy closure under function .



36

A class hierarchy (C, σ, p ) is closed under  if and only if for any two classes c1, c2 ∈
C, a class c3 is included in C, being c3 = c1  c2 (c3 is a superclass of c1 and c2 which only
has all the properties common to both classes).

In fig. 3.1.a, part of a class hierarchy that is not closed under  can be seen; classes c3

and c4 inherit the properties defined in c1 and c2. In order to obtain a class hierarchy
closed under  class c5 has to be defined (fig. 3.1.b), class c5 contains all the properties
common to both c3 and c4.

In a class hierarchy closed under  each property is defined only in one class, if used
elsewhere, it is inherited from this original definition class; properties can be redefined in
accordance with the rules that define a well formed class hierarchy.

A way of integrating derived classes in the class hierarchy is to make them direct
subclasses of class objects [Kim, 1989]; the main reasoning against this method of
derived class integration is that some information that may be interesting to the end-user
is lost, because in the class hierarchy all the inheritance relationships existing between the
classes are not explicitly expressed. The main aim of having a class hierarchy closed
under function  is to have explicitly represented all the inheritance relationships existing
between all the classes in the class hierarchy: all the properties common to any pair of
classes are explicitly defined in (or inherited by) another class which only has these
properties, and it is superclass of both classes in the class hierarchy.

In the model proposed by Rundensteiner [Rundensteiner, 1992c] class hierarchies have
to be closed under  in order to integrate automatically new defined classes. We do not
have this requirement in our model, it is only an additional possibility as it will be shown
in chapter 5.

3.2.2 Property decomposition closure

Let (C, σ, p ) be a class hierarchy; a class c1 ∈ C is directly related with another class c2

∈ C via a property relationship, denoted pr(c1,c2), if and only if ((∃ p ∈ ρ(c1)) ( p : c1 ×
τ1 × ... τn-1 → τn and c2 = τi, for some n ≥ i ≥ 1. In general, a class c1, is related with
another class c2 via a property relationship, denoted pr* (c1,c2), if and only if, pr(c1,c2) or,
pr(c1,ci) and pr* (ci,c2) for some ci ∈ C; that is to say, c1 is related with c2 via a property
relationship if they are directly or indirectly related via a property relationship.

The aggregation relationship is only a particular case of the property relationship; the
aggregation relationship referes to the relationship expressed in attributes, the property
relationship referes to the aggregation relationship and the relationships expressed in
methods, so the aggregation relationship is included in the definion of the property
relationship.

The set of all property relationships among the classes in a class hierarchy is refered as its
property decomposition hierarchy.



37

A class hierarchy (C, σ, p ) is closed in relation to the property relationship or its
property decomposition hierarchy is closed, if and only if, for all ci ∈ C, if ci is related
with some other class cj via a property relationship, then cj ∈ C.

According to the definition of class hierarchy (secction 3.1.3), all the class hierarchies
have to be closed in relation to the property relationship; the reason is that in a class
hierarchy (C, σ, p ), σ is defined as a mapping from C to types(C) -the family of types
over C- thus, all the classes included in types(C) are also included in C.

3.3 Object schemas

3.3.1 Valid object schema

A class hierarchy is frequently represented as a graph. An object schema is a
representation of a class hierarchy (C, σ, p ) in the form of a rooted directed acyclic
graph S = (C, E), where C is the set of classes and E is a finite set of directed edges.
Each edge e = <c1, c2>, being c1, c2∈ C, represents the fact that the class c1 is a direct
subclass of class c2.

As in [Rundensteiner, 1992c], given an object schema S = (C, E), an edge e = <c1, c2> is
defined to be

• required in S, if c1 is a direct subclass of c2;
• redundant in S, if c1 is an indirect subclass of c2;
• or inconsistent in S, if c1 is not a subclass of c2.

An object schema S = (C, E) is valid if the set of edges E contains all required and no
redundant, neither inconsistent edges in S; that is, the set of edges E represents all the
existing pairs of direct subclasses in C, and only contains these edges.

3.3.2 Closed object schema

By definition, an object schema contains the class objects, and also has to be closed in
relation to the property decomposition relationship, because it is a representation of a
class hierarchy.

Given a set of classes C, and the set E of all required, non-redundant and non-
inconsistent edges that can be defined between the classes of C, if S = (C, E) is not an
object schema (because it does not represent a class hierarchy closed in relation to the
property decomposition relationship -and inheritance relationship if required), then, S’ =
(C’, E’) is a minimal object schema defined from C, if and only if, S’ is a valid object
schema, C ⊆ C’, and ((/∃  c ∈ C’) (c ∉ C, C’’  = C’ - {c}, and S’’ = (C’’ , E’’ ) is an
object schema for some set of edges E’’ )) -that is to say that the set C’ contains the
classes originally included in C, and some additional classes which are strictly necessary
in order to obtain a closed object schema.



38

Given a set of classes C, many minimal object schemas can be obtained from it. With
regard to the property decomposition hierarchy closure, there is no doubt about the
classes which have to be included in C’ in order to obtain a closed schema: all the classes
referenced by some property of any class of C or of any referenced class. For obtaining a
class hierarchy closed under function  (see section 3.2.1), different sets of classes can
be considered: the function  is defined such that, if c3 = c1  c2 then, there may be
different possibilites for defining the extension of class c3 in order to have c3 as a
common superclass of c1 and c2 -the only condition about the extension is π* (c3) ⊇
(π* (c1) ∪ π* (c2)).

(b)(a)

Inheritance relationship

c3
{o1}

c4
{o2}

c51
{ o1 ,o2 }

c3
{ o1}

c4
{ o2}

c1
{ o1 ,o2 ,o3}

c2
{ o1 ,o2 ,o3}

c1
{ o1 ,o2 ,o3}

c2
{ o1 ,o2 ,o3}

(c)

c52
{ o1 ,o2 ,o3}

c3
{o1}

c4
{ o2}

c1
{ o1 ,o2 ,o3}

c2
{ o1 ,o2 ,o3}

Figure 3.2. Different possibilities obtaning a class hierarchy closed under function .

In the example of fig. 3.1, class c5 was defined in order to have a class hierarchy closed
under function . Concerning the extension of the new class c5, in fig. 3.2 two different
possibilities are shown, adding class c51 or class c52, and in both cases a minimal object
schema is obtained.

(b)(a)

Inheritance relationship

c3
{ o3}

c1
{o1}

c2
{ o2}

(c)

c3
{ o3}

c1
{ o1}

c2
{ o2}

c23
{ o2,o3}

c12
{ o1,o2} c13

{ o1,o3}

c123
{ o1,o2 ,o3}

c3
{ o3}

c1
{ o1} c2

{o2}

c123
{o1,o2 ,o3}

Figure 3.3. Minimal object schema.



39

In fig. 3.3 a new example is presented; in fig. 3.3.a, classes c1, c2 and c3, all of them with
the same intension (ρ(c1) = ρ(c2) = ρ(c3)), are selected to compose an object schema. In
figs. 3.3.b and 3.3.c two different class hierarchies closed under function  obtained from
the set of classes of fig. 3.3.a are represented. All the classes generated in both figures
also have the same intension. In fig 3.3.b, classes c12, c13, c23 can be removed and the
class hierarchy remains closed under function . The object schema represented in fig.
3.3.c is minimal, because the class added can not be removed without afecting the
closure of the schema.

Given any two minimal object schemas S’ = (C’, E’) and S’’ = (C’’ , E’’ ) defined from a
set of classes C, the cardinality of C’ and C’’  is the same and ((∀ c ∈ (C’ - C), ∃ c’ ∈
(C’’  - C)) (ρ(c) = ρ(c’))) -both schemas have the same number of classes, and the classes
added to the initial set of classes C in order to obtain a minimal object schema have the
same set of properties for any minimal object schema:

• With regard to the property decomposition hierarchy closure, in order to obtain a
closed schema, the set of classes that have to be added are all the classes referenced
by some property of any class in the initial set of classes C, or of any one of the
referenced classes; so, there is no alternative in obtaining this set of classes.

• Once a set of classes closed with regard to the property relationship has been
obtained, in order to obtain from it an object schema closed under function , for
each pair of classes c1, c2 of this new set, a class c3 = c1  c2 has to be included in the
resulting set of classes. By definition of function , each one of the classes c3 will only
have properties already defined in c1 and c2. So, the intension of the classes to be
added is clearly defined; on the other hand, as has been shown in fig. 3.3, if there are
many classes with the same intension in an object schema closed under function , in
order to obtain a minimal object schema, all of them except the highest class in the
class hierarchy with the same intension can be removed and the object schema still
remains closed. The only degree of freedom that remains in the definition of those
classes is in the definition of their extension, as has been shown in fig. 3.2.



40



41

4 Definition of DCMs of OODBs

In this chapter the definition of deductive conceptual models (DCMs) using Prolog in
order to specify different aspects of OODBs is proposed. The result of the specification
process using this technique is an executable prototype of the system. Having a
prototype directly available, along with the system specifications, is particularly useful in
order to define additional elements in the context of OODBs (e.g. schema evolution,
definition of derived classes, definition of external schemas). The use of this technique is
proposed mainly due to the difficulty of building prototypes of the mentioned elements
over commercial OODBs. The specification of a conceptual schema definition system
and its associated data model is presented.

4.1 Introduction

In the field of OODBs a variety of proposals over a broad range of aspects are found:
from the actual data model to be used, to proposals about the evolution of the schema,
the definition of derived classes, the definition of external schemas, etc. Their
implementation, or even prototype implementation, is carried out in very few cases.

The carrying out of prototypes serves as a great help in the specification of any kind of
complex system, and the mentioned elements of OODBs are no exception. The problem
lies in the fact that it is not always easy to carry out a prototype of the system to be
specified -not on account of the system itself, but because there is not an adequate
platform or tool available for building it. In the actual case of the OODBs, one possibility
is to use a commercial OODB as the platform for the construction of the prototype
(depending on the aspect to be prototyped and the possibilities that the database offers,
this could be a good solution). The main problem in using a commercial OODB lies in
the fact that the database itself could be a limitation -e.g. its data model or the possibility
of its’ being extended.

The definition of DCMs is a technique which allows the specification of information
systems (ISs) by expressing only their logical component [Olivé, 1989]. Moreover, if
Prolog is used for the construction of the DCM [Costal et al., 1989], together with the
formal specification, a prototype of the system is also obtained. On account of this, in
this chapter the development of DCMs in Prolog is proposed as a means of specifying
the different aspects of interest of OODBs. As far as we know, this is the first proposal
in this sense.

In section 4.2 the features and basic elements of DCMs are briefly outlined. In section
4.3 a general architecture for developing DCMs of the different aspects of OODBs is
proposed. In order to show the practical application of DCMs, part of the specification



42

of a conceptual schema definition system is carried out along section 4.4. Finally, in
sections 4.5 and 4.6, some comparisons with other works and conclusions are presented.

4.2 Deductive conceptual models

The basic feature of conceptual models is that they make it possible to specify the logic
of ISs. There are two types of conceptual models: operational and deductive.
Operational conceptual models, as well as specifying the logic of ISs, define part of their
control component. However, DCMs specify ISs expressing only their logical component
[Olivé, 1989].

A detailed description of DCM construction can be found in [Olivé, 1989], and the use
of Prolog language as a means to this end in [Costal et al., 1989]. In the remainder of
this section we summarise the most important points of this process.

One of the main elements to be considered in order to construct a DCM is time; all the
external events relevant to the system, together with information about the moment in
which they occurred, are recorded in the form of base predicates. Based on the base
predicates, derived predicates are defined; they represent the information about the
system in any given moment. The output requirements and the desired behaviour of the
system are also expressed using derivation rules.

The system’s internal status must be always consistent; such consistency is defined
through a set of integrity constraints based on the base and derived predicates. If, as a
result of some external event or in the course of time, the system is found to be no longer
fulfilling any of the integrity constraints, consequent action must be taken so that these
rules are fulfilled overall. If it is due to a recorded event, the immediate solution is to
cancel the record of the said event. If an inconsistency comes about due to the passing of
time there is no general solution; the most suitable course of action will vary according
to each case.

Thus, the components of a DCM are:
• Base predicates.
• Derived predicates.
• Integrity constraints.
• Output requirements.

In section 4.4 these components will be seen in greater detail for the model we are
concerned with.

4.3 Architecture of DCMs of OODBs

We propose to model each aspect of the OODBs separately, using the output of one
model as the input for the rest of the models as may be necessary.

The first element to be modelled corresponds to the definition of the conceptual schema -
marked in grey in fig. 4.1. The input for the conceptual schema definition system is a set



43

of definitions of types, classes, etc.; as its output, a representation of the OODB’s
conceptual schema is obtained, which in turn can be the input for another system -as
showed in fig. 4.1.

Object
definition

DCM

Schema
evolucion

DCM

Conceptual
schema

definition
DCM

Schema
modification
operations

Object
definition

terms

OODB
representation

Conceptual
schema

definition
terms

External
schema

definition
DCM

External
schema

definition
terms

Conceptual
schema

representation

Figure 4.1. Proposed DCM definition architecture.

Our initial purpose is to specify an external schema definition system. With this aim, we
have build a conceptual schema definition DCM, an object definition DCM and the
external schema definition DCM -some derived predicates of the last one can be found in
chapter 5.

4.4 Conceptual schema definition DCM

Let’s take as our example of an OODB conceptual schema the one represented in fig.
4.2; a possible syntax to express it can be seen in fig. 4.3.

PEOPLE
...

Address()

EMPLOYEES
Category()
Salary() ...

CLIENTS

ADDRESSES
...

City()

OBJECTS

Inheritance
Aggregation

Figure 4.2. Representation of the OODB example schema.



44

type person is_a any
name (string)
address (addresses)
...

type employee is_a person
category (string)
...

type address is_a any
city (string)
...

class people (person) is_a objects
class clients (person) is_a people
class employees (employee) is_a people
class addresses (address) is_a objects

Figure 4.3. Definition of  the OODB example schema.

The conceptual schema definition terms showed in fig. 4.3 correspond to the system
input. In order to deal only with the semantic aspects of the system, let’s suppose that we
start out with definition terms which are syntactically correct.

Below we describe in detail the different components of the DCM that has been
developed. The features of the used object-oriented model will be defined through the
development of the corresponding DCM. For the development the PDC Prolog (before
Turbo Prolog) language has been used.

4.4.1 Base predicates

In fig. 4.4 the base predicates are represented. They are recorded in response to the
definition events.

domains
id = integer
idList = id*
time = integer
domain = t(id); c(id); t_(id); c_(id)
signature = domain*
propertyName= symbol
typeName = symbol
className = symbol

database
csDefineProperty(id,propertyName,time)
csDefineType(id,typeName,idList,time)
csDefineTypeProperty(id,id,signature,time)
csDefineClass(id,className,id,idList,time)
csDefineEnd

Figure 4.4. Base predicates.

The events and their corresponding base predicates are the following:

• Definition of property (csDefineProperty ): the name of a property is defined and an
internal identifier is assigned to it -by which reference can be made from the rest of
the predicates. Additionally, the moment of definition is recorded (in all of the



45

following predicates also, this being the case we shall not mention this aspect any
further).

 
• Definition of type (csDefineType ): the internal type identifier, the name, and a list of

type identifiers corresponding to the supertypes of the type in question are recorded.
 
• Properties of a type (csDefineTypeProperty ): for each property of a type, the type

internal identifier, the identifier of the property and the property signature are
recorded. The property signature is composed by a list of terms which may be types
or classes -represented by t  or c respectively, depending on whether the element is a
value or an object when working with instances. Also they may be made up of sets of
values or objects all of the same type or class -represented by t_  or c_  respectively.
Thus, associated with the symbols t , c, t_  and c_ , the identifier of the corresponding
type or class is given.

 
• Definition of a class (csDefineClass ): the internal identifier of the class, the class

name, the identifier of the associated type, and the list of identifiers corresponding to
the superclasses of the class are recorded.

 
• End of the definition (csDefineEnd ): the definition of the conceptual schema has

finished.

The system disposes of some predefined types and classes (the types any , real ,
integer , char  and string ; and the class objects ). For these predefined types and
classes, the definition system automatically generates the corresponding definition events
(recorded in the form of base predicates as can be seen in fig. 4.5, together with de base
predicates corresponding to the schema in fig. 4.2).

csDefineType(Tany,any,[],t0)
csDefineType(Tstring,string,[Tany],t0)
...
csDefineClass(Cobjects,objects,Tany,[],t0)
...
csDefineProperty(P1,name,t1)
csDefineProperty(P2,address,t2)
csDefineProperty(P3,categoy,t3)
csDefineProperty(P4,city,t4)
...
csDefineType(T1,person,[Tany],t5)
csDefineType(T2,employee,[T1],t6)
csDefineType(T3,address,[Tany],t7)
...
csDefineClass(C1,people,T1,[Cobjects],t8)
csDefineClass(C2,clients,T1,[C1],t9)
csDefineClass(C3,employees,T2,[C1],t10)
csDefineClass(C4,addresses,T3,[Cobjects],t11)
...
csDefineTypeProperty(T1,P1,[t(Tstring)],t12)
csDefineTypeProperty(T1,P2,[c(C4)],t13)
csDefineTypeProperty(T2,P3,[t(Tstring)],t14)
csDefineTypeProperty(T3,P4,[t(Tstring)],t15)

Figure 4.5. Base predicates instances.



46

4.4.2 Derived predicates

From the base predicates, a set of derived predicates is defined. They represent
information about the status of the modelled system at any given moment. Derived
predicates are defined in the form of rules of deduction -there may be one or more rules
of deduction for each derived predicate. Each rule of deduction is defined using base
predicates or other derived predicates (including the predicate that is being defined by
the rules: recursivity).

(a) superclass(IdC,IdC2,T) :-
directSuperclass(IdC,IdC2,T),
!.

superclass(IdC,IdC2,T) :-
indirectSuperclass(IdC,IdC2,T),
!.

(b) directSuperclass(IdC1,IdC2,T) :-
classSuperclasses(IdC2,Superclasses,T),
memberId(IdC1,Superclasses),
!.

indirectSuperclass(IdC1,IdC2,T) :-
classSuperclasses(IdC2,Superclasses,T),
superclassOfSomeClass(IdC1,Superclasses,T),
!.

superclassOfSomeClass(IdC1,[IdC2|_],T) :-
superclass(IdC1,IdC2,T),
!.

superclassOfSomeClass(IdC,[_|L],T) :-
superclassOfSomeClass(IdC,L,T).

(c) classSuperclasses(IdC,IdCs,T) :-
csDefineClass(IdC,_,_,IdCs,T1),
T1 <= T.

Figure 4.6. Examples of derived predicates.

In fig. 4.6 some examples of derived predicates are presented. In fig. 4.6.a the definition
of the superclass  derived predicate, which defines the fact that a class may be direct or
indirect superclass of another, is shown. This predicate is defined using the predicates of
fig. 4.6.b. In the case of a direct superclass, the identifier of the first class will be in the
list of superclasses of the second class; the first class will be an indirect superclass if it is
a superclass of one of the superclasses of the second class.

In the derived predicates presented so far, the only direct reference to a base predicate
has been made through the classSuperclasses  derived predicate, whose definition can
be found in fig. 4.6.c. The base predicates have been encapsulated through derived
predicates; thus the derived predicate definitions are isolated from possible changes in the
base predicates.

4.4.3 Integrity constraints

The semantics of the DCM is defined by the integrity constraints; they are expressed
using derived predicates.



47

When a new definition event is produced it is recorded by the assertz  standard
language predicate; also, the rules of integrity are verified by the defined inconsistency

predicate. If some inconsistency is produced, the record of the event must be cancelled;
this operation is done by the retract  standard language predicate. This procedure, for
the case of the class definition predicate, can be seen in fig. 4.7. Similar predicates are
defined for each of the specified events.

classDefinition(IdC,Class,IdT,IdCs) :-
now(T),
assertz(csDefineClass(IdC,Class,IdT,IdCs,T)),
inconsistency(T),
retract(csDefineClass(IdC,Class,IdT,IdCs,T)),
assertz(error),
!.

classDefinition(_,_,_,_) :-
!.

Figure 4.7. Events and inconsistency validation.

Below some of the rules of deduction corresponding to the inconsistency  derived
predicate are presented.

• A property may only be defined once in a type. Fig. 4.8.a corresponds to the rule of
deduction that defines this inconsistency. By means of the typePropertyAtT

predicate (becomes true if a property has been defined in a type at the indicated
moment) the fact that a property has not been defined twice in the same type is
validated.

• A type cannot be a supertype of itself. In order to verify that loops have not come
about in the definitions of inheritance relationship between types the supertype

derived predicate has been used, similar to the superclass  defined beforehand. In this
way, if, when defining a new type, it turns out that a type is a supertype of itself, the
definition would not be valid, as can be seen in the rule of deduction in fig. 4.8.b.

• There cannot be redundant supertypes in a type definition. In the supertype list of a
type there must be no redundant types -repeated types or supertypes of types already
included in the list, fig. 4.8.c. This fact can be verified by using the
redundantSupertypes  derived predicate, presented in fig. 4.8.d.

• Single definition of properties between types. A property can only be defined once. If
two types share properties, these have to have been inherited from the same type. The
rule of deduction that defines this inconsistency, fig. 4.8.e, consists in searching for
two types that share some property and that are not related by inheritance
(typeInheritance ), and also have no existing common supertype that has the
property in question defined (commonTypeProperty ).

• Domains in the redefinition of properties. If a property is redefined in a type, the
property domain has to be a subdomain of the corresponding property domains as
previously defined in the type supertypes. This fact is verified in the rule of deduction
of fig. 4.8.f.



48

• A class cannot be a superclass of itself. The definition of this inconsistency for classes
is equivalent to the already defined in fig. 4.8.b for types.

• There cannot be redundant superclasses in a class definition. The definition of this
inconsistency for classes is equivalent to the already defined in figs. 4.8.c and 4.8.d for
types.

(a) inconsistency(T) :-
typePropertyAtT(IdT,IdP,T1),
typePropertyAtT(IdT,IdP,T2),
T1 <> T2,
T1 <= T,
T2 <= T,
!.

(b) inconsistency(T) :-
typeName(IdT,Type,T),
supertype(IdT,IdT,T),
!.

(c) inconsistency(T) :-
typeSupertypes(IdT,IdTs,T),
redundantSupertypes(IdTs,T),
!.

(d) redundantSupertypes([Id|L],_) :-
memberId(Id,L),
!.

redundantSupertypes([Id|L],T) :-
typeInherWithSomeType(Id,L,T),
!.

redundantSupertypes([_|L],T) :-
redundantSupertypes(L,T).

typeInherWithSomeType(IdT1,[IdT2|_],T) :-
typeInheritance(IdT1,IdT2,T),
!.

typeInherWithSomeType(IdT,[_|L],T) :-
typeInherWithSomeType(IdT,L,T).

(e) inconsistency(T) :-
typeProperty(IdT1,IdP,T),
typeProperty(IdT2,IdP,T),
IdT1 <> IdT2,
not(typeInheritance(IdT1,IdT2,T)),
not(commonTypeProperty(IdT1,IdT2,IdP,T)),
!.

(f) inconsistency(T) :-
typePropertySignature(IdT1,IdP,S1,T),
typePropertySignature(IdT2,IdP,S2,T),
IdT1 <> IdT2,
supertype(IdT2,IdT1,T),
not(signatureStrictSubdomains(S1,S2,T)),
!.

Figure 4.8. Inconsistency deduction rules (I).



49

• Types of classes related by inheritance. The types of the superclasses of a defined
class have to be either supertypes or the same type as that which corresponds to the
class. Fig. 4.9.a, given the types of the superclasses of a class, it is verified that this
condition is fulfilled by way of the sameTypeOrSubtype  derived predicate presented
in fig. 4.9.b.

 
• Single definition of properties between classes. Similar to the inconsistency defined in

fig. 4.8.e for types; corresponds to fig. 4.9.c: a property can only be defined once, and
inherited from the type of the class where it was originally defined.

(a) inconsistency(T) :-
className(IdCobjects,objects,T),
classType(IdC,IdT,T),
IdC <> IdCobjects,
classSuperclasses(IdC,IdCs,T),
classesTypes(IdCs,IdTs,T),
not(sameTypeOrSubtype(IdT,IdTs,T)),
!.

(b) sameTypeOrSubtype(IdT,[IdT],_) :-
!.

sameTypeOrSubtype(IdT,[IdT2],T) :-
supertype(IdT2,IdT,T),
!.

sameTypeOrSubtype(IdT,[IdT|L],T) :-
!,
sameTypeOrSubtype(IdT,L,T).

sameTypeOrSubtype(IdT,[IdT2|L],T) :-
supertype(IdT2,IdT,T),
!,
sameTypeOrSubtype(IdT,L,T).

(c) inconsistency(T) :-
classType(IdC1,IdT1,T),
classType(IdC2,IdT2,T),
IdC1 <> IdC2,
typeProperty(IdT1,IdP,T),
typeProperty(IdT2,IdP,T),
not(classInheritance(IdC1,IdC2,T)),
not(commonClassProperty(IdC1,IdC2,IdP,T)),
!.

Figure 4.9. Inconsistency deduction rules (II).

4.4.4 Output Requirements

In response to the event corresponding to the base predicate csDefineEnd , the system
has just one output requirement: to produce a set of correct terms of definition of the
conceptual schema. These terms have to be in a format adequate for the definition of
DCMs that model other aspects of OODBs. In particular, the conceptual schema
definition terms will be base predicates of the object definition DCM represented in fig.
4.1. So, the output terms represented in fig. 4.10 have been adapted to the format
required by the derived predicates defined in the object definition DCM.



50

csType(Tany,any,[],[],ta)
...
csClass(Cobjects,objects,Tany,[],[C1,C4],tb)
...
csProperty(P1,name,t1)
csProperty(P2,address,t2)
csProperty(P3,category,t3)
csProperty(P4,city,t4)
...
csType(T1,person,[Tany],[P1,P2],t5)
csType(T2,employee,[T1],[P1,P2,P3],t6)
csType(T3,address,[Tany],[P4],t7)
...
csClass(C1,people,T1,[Cobjects],[C2,C3],t8)
csClass(C2,clients,T1,[C1],[],t9)
csClass(C3,employees,T2,[C1],[],t10)
csClass(C4,addresses,T3,[Cobjects],[],t11)
...
csTypeProperty(T1,P1,[t(Tstring)],t12)
csTypeProperty(T1,P2,[c(C4)],t13)
csTypeProperty(T2,P3,[t(Tstring)],t14)
csTypeProperty(T3,P4,[t(Tstring)],t15)

Figure 4.10. Conceptual schema DCM output.

4.5 Related work

In [Gray et al., 1992; Díaz et al., 1991] some proposals are made about implementing an
OODB in Prolog. Unlike these, in this paper the development of DCM of different
elements of OODBs in Prolog is proposed. Although the subject (OODBs) and the tool
(Prolog language) are the same in both cases, the aspects taken into consideration are
completely different.

In [Gray et al., 1992; Scholl et al., 1992; Lemke, 1995] among others, different
metamodels of object-oriented models are presented. Metamodels and DCMs are
different concepts and they are used with different objectives.

Following the focus presented in [Quer & Olivé, 1994], object-oriented DCM to specify
any IS can be constructed -CIAM language [Gustafsson et al., 1982] would correspond
to a materialisation of that focus, as pointed out there. Using some version of Prolog
extended with concepts of object-orientation, executable object-oriented DCM in Prolog
could also be defined.

4.6 Conclusions

The definition of DCMs in Prolog allows the specification of ISs by expressing only their
logical component and, together with the formal specification, a prototype of the system
is also obtained. The availability of prototypes of the elements which are specified is very
useful. In the actual field of OODBs this possibility is very valuable, since we consider
that no alternative means of creating prototypes in a simpler manner exists. We are so far
unaware of similar experiences along these lines and consider that its application in this
field may turn out to be of great use.



51

In order to specify the different elements of OODBs carrying out DCMs in a progressive
way, a DCM definition architecture has been presented.

Part of the DCM of a conceptual schema definition system -and its corresponding data
model- has been shown. The definition of predicates that has been carried out in this
example is similar to the formal definitions found in chapter 3; the main difference is that
in developing the DCM in Prolog a prototype of the system has been also obtained. This
mechanism is of particular use in order to specify additional elements of OODBs, like,
for example: richer semantic models [Castellanos et al., 1992], schema evolution [Peters
& Özsu, 1995], definition of derived classes [Abiteboul & Bonner, 1991; Santos, 1995],
definition of external schemas [Rundensteiner, 1992c; Samos, 1995].

In order to specify an external schema definition DCM according to [Samos, 1995], a
conceptual schema definition DCM, an object definition DCM and the external schema
definition DCM have been constructed -some derived predicates of the last one can be
found in chapter 5.



52



53

5 A new external schema definition methodology

In this chapter, a new external schema definition methodology that considerably
simplifies the definition process and the results obtained regarding other authors’
proposals is presented. The ANSI/SPARC framework is taken as a reference. In section
5.1, the relationship between the conceptual schema and external schema is discussed
together with the organisation of the data dictionary and the external schema definition
system. In section 5.2 the different processes of integration needed in order to define an
external schema, are reviewed (integration in the data dictionary and in the external
schema) comparing them with alternative proposals. In order to reduce the number of
classes that is required to be explicitly defined, a new proposal is made: different
categories of classes can be defined when the classes composing the external schema are
selected; classes can be qualified as transformable or non-transformable if they can be
modified or not, respectively, before being included into the external schema. In section
5.3 different issues related with the process of generation of external schemas are
studied, particularly those related with the transformation of transformable classes. In
section 5.4 two external schema generation algorithms are presented. These algorithms
are defined in the framework of the new external schema definition methodology for
OODBs put forward in the previous sections. Lastly, in section 5.5, some conclusions
are presented.

5.1 Definition of external schemas in the ANSI/SPARC framework

As mentioned before, the ANSI/SPARC framework defined a general architecture for
DBMSs. This architecture has been widely applied for relational databases, but, as has
been shown in chapter 2, this has not been the case for OODBs. Our basic idea is that the
ANSI/SPARC architecture should also be applied in OODBs. Therefore, an
interpretation of this architecture is given in this section.

Relating to the ANSI/SPARC framework, three main issues are considered: first, the
relationship between the database conceptual schema and each one of the external
schemas defined over it; secondly, the organisation of the data dictionary and, finally, the
services offered by the external schema definition system.

5.1.1 Conceptual schema and external schemas

In OODBs, conceptual schema and external schemas have to be object schemas defined
according to the object-orientation paradigm. In this sense, from the end-users point of
view, there should be no difference between working over the conceptual schema or over
an external schema: the data has the same kind of organisation in both schemas.



54

The information contained in the conceptual schema is represented by its classes.
External schemas are derived from the database conceptual schema. The information
contained in each external schema is derived from the information of the conceptual
schema -this does not necessarily mean that the classes included in an external schema
need to have been previously defined in the conceptual schema. An external schema may
include classes defined in the conceptual schema just as it may also contain derived
classes -directly or indirectly defined on the basis of conceptual schema classes- that,
from our point of view, do not necessarily need to be included in the conceptual schema.
These classes are defined and included in the data dictionary. A derived class may
represent a relevant concept in an external schema, but this concept does not have to be
especially significant to be explicitly represented in the conceptual schema, i.e., a derived
class that hides some property of a class already included in the conceptual schema.

According to the classification of external schema definition methodologies made in
section 2.2.2, our interpretation of the ANSI/SPARC architecture coincides with the
second group of methodologies: external schemas are not necessarily subschemas of the
conceptual schema.

Therefore, the two main ideas concerning the relationship between the conceptual
schema and external schemas are:

• Conceptual schema and external schemas are object schemas defined according the
object-orientation paradigm.

 
• External schemas can contain conceptual schema classes as well as classes derived

from conceptual schema classes and not included in the conceptual schema.

5.1.2 Organisation of the data dictionary

The data dictionary contains all information relating to the management and use of the
database system: information related to the definition of the different schemas -internal,
conceptual and externals- of the database.

In order to define the conceptual schema or an external schema, the users of the
information contained in the data dictionary are the enterprise administrator -by means
of the conceptual schema definition system- or the application administrator -through
the external schema definition system (see fig. 2.2). Therefore, information in the data
dictionary should be organised in order to fulfil the requirements of these users (as well
as other users’ requirements not studied in this work).

Derived classes represent a customisation of part of the information contained in the
conceptual schema in the form of new classes; they are defined from previously existing
classes using object-oriented queries. If an external schema is to be defined containing
some new class, this derived class has to be defined and integrated into the data
dictionary together with the definition of the external schema. In section 2.3.1, two
different groups of methods of integration of derived classes in a schema have been
presented: integration using the inheritance relationship and integration using other
relationships. In our opinion, the most suitable way of having derived classes relating to



55

the classes from which they have been defined in the data dictionary is the derivation
relationship, as defined in [Bertino, 1992; Monk, 1994; Kim & Kelley, 1995; Naja &
Mouaddib, 1995; Bertino et al., 1996].

Therefore, the conceptual schema is contained in the data dictionary together with the
definition of derived classes, and also with the definition of the external schemas. In the
data dictionary, each derived class is related through the derivation relationship with the
classes from which it has been defined; this relationship only appears in the data
dictionary.

5.1.3 The external schema definition system

The definition of the external schemas is carried out by means of the external schema
definition system over the data dictionary.

External schemas have to be closed with regard to the property relationship: any class
referenced by a class included in an external schema has to be included in the same
external schema (see section 3.2.2). Also, external schemas have to be valid according to
the inheritance relationship -all required inheritance relationships are defined in the
schema, and not redundant, neither inconsistent relationships should be included, as
defined in section 3.3.1.

In order to have external schemas correctly defined, one possibility is that application
administrators define manually all the components of the schema; to avoid possible
mistakes a validation system should be provided. Another possibility is to have the
external schema definition system automated -application administrators only select the
classes to be included in the external schema, and the system generates the resulting
external schema. The later is our choice. Therefore, generation algorithms of the external
schema from a set of classes have to be provided.

5.2 Integration of derived classes in the schemas of an OODB

In order to make the reasons of some of the decisions expressed in the previous section
in this section clear, the different processes of integration needed in order to define an
external schema are reviewed.

Given the conceptual schema of fig 5.1 (the same example schema used in section 2.3.1
to illustrate the different possibilities of integration of a derived class in a schema), and
the derived class EMPLOYEES' -defined from class EMPLOYEES hiding the Salary
property and selecting objects that are not manager employees- an external schema with
the same structure of the conceptual schema but with the new class EMPLOYEES'
replacing class EMPLOYEES is needed to be defined.



56

PEOPLE
...

Address()

EMPLOYEES
Category()
Salary() ...

CLIENTS

ADDRESSES
...

City()

OBJECTS
Inheritance

Aggregation

EMPLOYEES’
...

Category()

Non-derived class

Defined derived class

only non-manager employees,
hide Salary()

Conceptual schema

Figure 5.1. Conceptual schema and definition of a derived class.

5.2.1 Integration in the data dictionary

Derived classes do not need to be included in the conceptual schema before being
included in an external schema, derived classes are defined and included in the data
dictionary (different methods of integration were given in section 2.3.1).

In this case, the purpose of having the data dictionary is to define external schemas. If
inheritance is considered as a way of relating new derived classes with the rest of the
classes, frequently, as happens in our example with class EMPLOYEES’, a new derived
class will not be directly related by inheritance with its base classes. Therefore, in order
to have explicitly defined all the existing inheritance relationships between the classes in
the data dictionary, some intermediate classes have to be generated, as proposed in
[Rundensteiner, 1992b; Rundensteiner, 1992c], and was shown in fig. 2.6.

OBJECTS

PEOPLE
...

Address()

ADDRESSES
...

City()

CLIENTS

EMPLOYEES

Salary()

EMPLOYEES’’
...

Category()

EMPLOYEES’

External Schema

Generated derived class

Defined derived class

Inheritance

Aggregation

Non-derived class

Figure 5.2. Automatic integration by inheritance. External schema class selection (I).

Fig. 5.2 shows the selection of the set of classes that will compose the external schema
corresponding to the example considered. It can be seen that, in order to integrate the
new defined class, a class (EMPLOYEES'') has been generated automatically and added to



57

the data dictionary, but this class is not included in the external schema. This class
represents exclusively the inheritance relationship between the original base class
(EMPLOYEES), and the defined class (EMPLOYEES'). However, the external schema only
includes one of them. In most cases, the only schema to contain both of them will be the
data dictionary (or the conceptual schema playing the role of data dictionary in the
Rundensteiner’s methodology) and it would be useful only for defining more external
schemas; even for this operation it will be problematic, because complex schemas not
meaningful to the external schema definer may be obtained.

An alternative solution is to use other kind of relationships in order to integrate derived
classes into the data dictionary. From the existing relationships (presented in section
2.3.1.2), we selected the derivation relationship [Bertino, 1992; Monk, 1994; Kim &
Kelley, 1995; Naja & Mouaddib, 1995; Bertino et al., 1996]. However, the definition of
clusters of classes [Heuer & Sander, 1991] can also be a suitable solution.

OBJECTS

PEOPLE
...

Address()

ADDRESSES
...

City()

EMPLOYEES’
...

Category()

EMPLOYEES
Category()
Salary() ...

CLIENTS

Inheritance

Aggregation

Derivation

External Schema

Defined derived class

Non-derived class

Figure 5.3. Integration by derivation. External schema class selection (I).

As is shown in fig. 5.3, the new derived class is directly integrated into the data
dictionary by means of derivation relationship, without generating any additional class.

5.2.2 Integration in an external schema

When the new derived classes are integrated into the data dictionary, as can be seen in
figs. 5.2 and 5.3, a set of classes can be selected to form an external schema. Obtaining a
schema closed in regard to the property relationship is independent of the method of
integration of derived classes in the data dictionary. However, obtaining the inheritance
relationships will depend on the way in which derived classes have been integrated.

In the case of integration of derived classes by inheritance in the data dictionary, as can
be seen in fig. 5.2, two classes will be related by inheritance in an external schema if and
only if, they are related by inheritance (directly or indirectly) in the data dictionary -the
integration process in the data dictionary consists on defining explicitly all the inheritance
relationships between the classes, therefore, all the inheritance relationships between
classes in the external schema have been already defined, and can be directly obtained.



58

The effort of integration has been already made, integrating the new derived classes into
the data dictionary.

If the integration into the data dictionary has been made using the derivation relationship,
some of the inheritance relationships between the classes in the external schema have to
be further discovered. If two classes included in an external schema are related by
inheritance in the data dictionary (in the conceptual schema or in an external schema
previously defined), they will also be related by inheritance in the external schema.
However, there may be classes not related by inheritance in the data dictionary, and an
inheritance relationship between them nevertheless exists. In the example of fig. 5.3, the
inheritance relationship between EMPLOYEES’ and PEOPLE has to be obtained. In this
case, the effort of integration has to be done when derived classes have been selected to
become part of an external schema, but in this case, the quantity of classes to take into
account into the integration process is less than in the previous case (only the set of
classes selected to compose the external schema vs. all the classes in the data dictionary).

5.2.3 Effort of integration in the data dictionary vs. in the external schema

As has been shown in the previous point, the main effort of integration can be done by
the process of integration in the data dictionary (if derived classes are integrated by
inheritance in the data dictionary), or in the generation of the external schema (if derived
classes are integrated by derivation into the data dictionary).

In order to show more clearly the differences in the results obtained between the two
different methods of integration, let’s study an additional example. Starting from the
conceptual schema in fig. 5.1, an external schema with similar structure is needed to be
defined, but instead of having the property Address in PEOPLE, CLIENTS and
EMPLOYEES, it has a property City, already defined in class ADDRESS; and it also hides
the property Salary in class EMPLOYEES.

OBJECTS

PEOPLE

Address()

ADDRESSES
...

CLIENTS
EMPLOYEES

Salary()

WITH_CITY

City()

EMPLOYEES’

EMPLOYEES’’

Category()

CLIENTS’

PEOPLE’

PEOPLE’’
...

CLIENTS’’

External Schema

Generated derived class

Defined derived class

Inheritance

Aggregation

Non-derived class

Figure 5.4. Automatic integration by inheritance. External schema class selection (II).

The definition of this external schema, if derived classes are integrated into the data
dictionary according to Rundensteiner’s algorithm [Rundensteiner, 1992b], can be seen
in fig. 5.4. First, CLIENTS' and EMPLOYEES' classes are defined according to



59

requirements. Then, they are integrated into the conceptual schema, generating in this
operation some additional classes. It is not necessary to define the new class PEOPLE’
because it is generated by the integration algorithm. Finaly, some classes are selected to
obtain the defined external schema.

OBJECTS

PEOPLE
...

Address()

ADDRESSES
...

City()

EMPLOYEES’
Category()

City()...

EMPLOYEES
Category()
Salary() ...

CLIENTS

CLIENTS’
...

City()

Inheritance

Aggregation

Derivation

External Schema

Defined derived class

PEOPLE’
...

City()

Non-derived class

Figure 5.5. Integration by derivation. External schema class selection (II).

If integration of derived classes in the data dictionary is made using the derivation
relationship, as can be seen in fig. 5.5, the integration process does not have to generate
any additional derived class. However, all the classes needed have to be explicitly
defined, and the data dictionary only contains the classes that are strictly necessary in
order to define the external schema.

As can be seen in fig. 5.4, if the effort of integration is made in order to integrate by
inheritance the new derived classes in the data dictionary, then:

• A great number of classes are generated automatically, and only a few of them are
directly used in the external schema defined (all the classes included in the data
dictionary have to be taken into account in the integration process).

 
• Some of the classes required to be included in the external schema do not have to be

explicitly defined as they are generated in the process of integration of the rest of the
classes explicitly defined.

• The inheritance relationships between the classes selected to compose the external
schema can be directly obtained because all the existing inheritance relationships
between the classes have already been defined in the data dictionary, therefore, two
classes will be related by inheritance into an external schema if and only if they are
related by inheritance (directly or indirectly) into the data dictionary.

On the other hand, if derived classes are integrated in the data dictionary using the
derivation relationship, as can be seen in fig. 5.5, then:

• No classes are automatically generated in the process of integration of derived classes
into the data dictionary.



60

 
• All the required classes have to be explicitly defined.
 
• The effort of integration has to be done in the process of generation of the external

schema, inheritance relationships not defined in the data dictionary have to be
discovered, but only the set of classes selected to compose the external schema have
to be considered.

5.2.4 Qualification of the classes selected to compose the external schema

In order to simplify the external schema definition process, reducing the number of
classes that is required to be explicitly defined, an alternative solution is to define
different categories of classes when the selection of the classes to compose the external
schema is made.

OBJECTS

PEOPLE
...

Address()

ADDRESSES
...

City()

EMPLOYEES’
Category()

City()...

EMPLOYEES
Category()
Salary() ...

CLIENTS

CLIENTS’
...

City()
Non-Transformable

Non-Transformable

Transformable

Inheritance

Aggregation

Derivation

External Schema

Defined derived class

Non-derived class

Figure 5.6. Qualification of the classes selected to compose the external schema.

PEOPLE
...

Address()

EMPLOYEES
Category()
Salary() ...

CLIENTS

ADDRESSES
...

City()

OBJECTS

EMPLOYEES’
...

Category()

CLIENTS’

PEOPLE’
...

City()

Inheritance

Aggregation

Derivation
External
Schema

Defined derived class

Generated derived class

Non-derived class

Figure 5.7. Obtained external schema.



61

Two kinds of classes are distinguished: transformable and non-transformable. Non-
transformable classes have to be added to the external schema directly (in the examples
considered in previous sections, all classes were non-transformable). Transformable
classes can be replaced by another new derived class into the external schema if
necessary. This new class is the result of modifying the original transformable class in the
sense of adding or removing properties.

Returning to our example, if the class PEOPLE is qualified as transformable and the rest
of the classes selected are qualified as non-transformable, as shown in fig. 5.6, the
corresponding external schema obtained is shown in fig. 5.7. Therefore it can be seen
that the class PEOPLE is replaced in the external schema by the generated class PEOPLE'.
This new class is defined according to the structure of the non-transformable classes
belonging to the external schema specified. In this case, only strictly necessary classes for
the external schema are generated.

PEOPLE
...

Address()

EMPLOYEES
Category()
Salary() ...

CLIENTS

ADDRESSES
...

City()

OBJECTS

PEOPLE’
...

City()

EMPLOYEES’
Category()

City()...
Non-Transformable

Transformable

Non-Transformable

Inheritance

Aggregation

Derivation

External
Schema

Defined derived class

Non-derived class

Figure 5.8. Alternative external schema definition.

PEOPLE
...

Address()

EMPLOYEES
Category()
Salary() ...

CLIENTS

ADDRESSES
...

City()

OBJECTS

CLIENTS’

PEOPLE’
...

City()

EMPLOYEES’
...

Category()

Inheritance

Aggregation

Derivation
External
Schema

Defined derived class

Generated derived class

Non-derived class

Figure 5.9. Obtained external schema.

There may be other ways of defining the same external schema; as shown in fig. 5.8. In
this case, the derived classes PEOPLE' and EMPLOYEES' are explicitly defined, the



62

derived classes PEOPLE' and EMPLOYEES' are qualified as non-transformable, and the
class CLIENTS is qualified as transformable. With these conditions, the external schema
generated (shown in fig. 5.9) is equal to the one of fig. 5.7. However, the set of
generated classes is different since the class CLIENTS’ has been generated from the
transformable class CLIENTS.

5.3 Generation of external schemas

According to the previous of sections, the steps necessary in order to define an external
schema are:

• Definition and integration of the requited derived classes in the data dictionary -
derived classes are directly integrated using the derivation relationship. This topic is
further studied in chapter 6.

 
• Selection of the set of classes that will constitute the external schema -classes can be

qualified as transformable or non-transformable (by default, a class is considered non-
transformable).

 
• Generation of the external schema.

The different alternatives considered in the generation process of the external schema are
presented in this section.

5.3.1 Transformations of transformable classes

(b) (c)c2
NT

p1

p2

p4

c1
T

p1

p2

p3

p4

c1
T

p1

p2

c2
NT

p1

p2

p4

c1
T

p1

p2

p3

(a)

(d)

(e)
c2
NT

p1

c1
T

cn
NT

p2

p4
...

p1

p2

p3

p4

Properties

T:   Transformable
NT: Non-transformable

cn+1
NT

p1

p2

p4

p5

c2
NT

p1

c1
T

cn
NT

p4...

p1

p2

p4

p5

cm
NT

p1

p2

p3

p4

p5

...

Figure 5.10. Integration of a transformable class.

In order to have a transformable class properly integrated into a class hierarchy, it may
have to suffer different transformations, adding or removing properties. The
transformations that can be carried out in a transformable class are represented in fig.



63

5.10. Given a transformable class c1, to be integrated (fig. 5.10.a), if it has to be subclass
of a class c2, which subsumes it in extension, then the class c1 inherits the properties of c2

and, furthermore, maintains its own properties (fig. 5.10.b). However, if the class c1 has
to be a superclass of class c2, then class c2 conditions the structure of the transformable
class c1 in such a way that any properties which are not defined for c2 must be eliminated
from c1 (fig. 5.10.c).

Transformable classes inherit the properties of the classes defined to be their
superclasses, and lose the properties not defined in the classes selected to be their
subclasses (fig. 5.10.d). If all the classes that are subclasses of a transformable class have
some properties in common, and these properties are defined for all the objects of the
transformable class, then these properties will also be added to the transformable class
(property p5 in fig. 5.10.d). Finaly, if a transformable class only has superclasses, it
doesn’t lose any property, it inherits all the properties of its superclasses (fig. 5.10.e).

Therefore, the transformations that a transformable class can suffer when it is integrated
into a class hierarchy:

• Addition of the properties of its superclasses not defined within it.
 
• Addition of the properties common to all of its subclasses, defined for all of its objects

and not defined in it.

• Elimination of the properties not defined in all of its subclasses.

5.3.2 Order in the transformation of transformable classes into a class hierarchy

In the transformations presented in the previous point only one transformable class was
considered -all the classes with which the transformable class were related were non-
transformable classes. Another possibility is to have more than one transformable class
integrated in the class hierarchy and then proceed transforming all of them.

Therefore, in defining the order of transformation of the transformable classes, two main
situations are considered:

• Gradual integration of the transformable classes into the external schema.

• External schema with all the transformable classes already integrated.

5.3.2.1 Gradual integration of transformable classes

Regarding the class hierarchy formed exclusively by non-transformable classes,
transformable classes can be integrated gradually into it. Therefore, each transformable
class will be related only with non-transformable classes. A transformable class can be
transformed in the integration process but once integrated, it becomes non-
transformable.



64

As has been shown in fig. 5.10.b and 5.10.c, a transformable class can have properties
added or eliminated, depending on its relationships with non-transformable classes in the
class hierarchy. In general, superclasses make transformable classes gain new properties,
but subclasses make them lose properties. Therefore, if one wants a previously
transformable class (c2) already integrated does not cause the effect of losing properties
in the integration of another transformable class (c1) in the way shown in fig. 5.10.c, the
transformable classes that are not subsumed in extension by other transformable classes
have to be integrated first. Therefore, transformable classes that have already been
integrated can only make other transformable classes gain new properties (as shown in
fig. 5.10.b).

5.3.2.2 Schema with all the transformable classes integrated

If a class hierarchy is defined containing several transformable classes, the order in which
the transformations of the transformable classes are carried out may affect the end result.
With the intention of keeping as much properties as possible in the transformable classes,
the first transformations to be applied should be the addition of properties of their
respective superclasses or subclasses.

(b)

(d)

c2
NT

p1

p2

c1
T

p1

p2

p3

(a)

(e)

c3
T

p1

p2

c2
NT

p1

p2

c1
T

p1

p2

p3

c3
T

p1

p2

p3

c2
NT

p1

p2

c1
T

p1

p2

p3

c3
T

p1

p2

c2
NT

p1

p2

c1
T

p1

p2

p3

c3
T

p1

p2

p3

(c)

c2
NT

p1

p2

c1
T

p1

p2

c3
T

p1

p2

p3

(f)

c2
NT

p1

p2

c1
T

p1

p2

c3
T

p1

p2

p3

Figure 5.11. Addition of properties of the superclasses.

In fig. 5.11 two different cases of adding properties defined in the superclasses of a
transformable class are shown. Figs 5.11.a and 5.11.b correspond to the first case, they
show respectively the situation before and after this transformation. Figs. 5.11.d and
5.11.e correspond to the second case. In both situations property p3 is inherited by class
c3 from class c1. If another kind of transformation was carried out before this one
(eliminate the properties not defined in all the subclasses of a transformable class),
property p3 may not have been defined for class c3. The final result of the transformation
process is shown in figs. 5.11.c and 5.11.f, respectively. As can be seen, in both cases
property p3 is eliminated from class c1, but it remains defined in class c3. If integration
were made gradually, property p3 would not have been defined in class c3 because it
would have been previously eliminated from class c1 when it was integrated.



65

An example of transformation consisting of the addition of properties taken from the
subclasses of the transformable class is shown in fig. 5.12. If all the non-transformable
classes that are subclasses of a transformable class have some properties in common (in
fig. 5.12.a, c2 and c3 have property p2 not defined in c1), and these properties are defined
for all the objects of the transformable class, then, these properties will also be added to
the transformable class (property p2 is added to c1, fig. 5.12.b). And the new properties
added can be propagated to its subclasses (property p2 is added to c4, fig. 5.12.c). If all
the subclasses of a transformable class are transformable classes, any property defined in
one of the subclasses may be added to the transformable class in the root -if the property
is defined for all its objects.

(b)

c2
NT

p1

p2

c1
T

p1

(a)

c3
NT

p1

p2

c4
T

p1

p3

c2
NT

p1

p2

c1
T

p1

p2

c3
NT

p1

p2

c4
T

p1

p3

(c)

c2
NT

p1

p2

c1
T

p1

p2

c3
NT

p1

p2

c4
T

p1

p2

p3

Figure 5.12. Addition of the properties of the subclasses.

Once all the possible properties of the superclasses and subclasses have been added to
the transformable classes, the elimination of the properties not defined in all of their
subclasses has to be carried out, as shown in figs. 5.11.c and 5.11.f. Therefore, before
eliminating properties of a class, all of its subclasses should have been previously
transformed.

5.3.3 Inheritance between transformable and non-transformable classes

Once the set of transformable and non-transformable classes has been selected, in order
to transform the transformable classes, the inheritance relationships between the selected
classes have to be obtained. These inheritance relationships determine the way
transformable classes will be transformed.

One possibility is to define the inheritance relationships between the classes selected
manually in the moment in which the selection is made -these relationships have to be
automatically verified (like it was done in the case of manual integration of derived
classes by inheritance) in order to only allow correct definitions. Another possibility is to



66

obtain automatically all the existing inheritance relationships. This case will be further
studied here.

5.3.3.1 Characteristics of the class hierarchy

Regarding the problem of obtaining the inheritance relationships between the set of
classes selected, like for the problem of integrating automatically by inheritance a derived
class in a class hierarchy, two solutions are considered depending on the desired
characteristics of the resulting class hierarchy:

• Obtain a class hierarchy closed related to the inheritance relationship, adding to the
set of classes selected the additional classes needed (as the Rundensteiner’s
methodology [Rundensteiner, 1992c] does in the conceptual schema).

• Obtain all the inheritance relationships exclusively considering the set of classes
selected.

5.3.3.2 Subsumption relationships

In the case of non-transformable classes, their intension and extension is totally pre-
determined: On the other hand, transformable classes have their extension pre-
determined, but not their intension. The intension of transformable classes can be
modified in order to be adapted to the position of the class in the class hierarchy related
to the rest of the classes. Therefore, the relationships between non-transformable classes
have to be obtained (or only checked) according to their intension and extension, but
relationships between transformable classes or between transformable and non-
transformable classes would have to be obtained (or only checked) only according to
their extension.

The inheritance relationships between the classes can be obtained using a subsumes()
function (see section 2.3.2), also based on the relationships already existing in the data
dictionary (between the classes selected, or between its corresponding base classes,
taking into account the definition of the derived classes). The subsumes() function refers
to the intension and extension of the classes, but for transformable classes only their
extension is considered.

In the case of non-transformable classes the relationships obtained between them will
depend exclusively on the subsumes() function used. On the other hand, in the case of
transformable classes (in relation to other transformable or non-transformable classes) as
their intension can be modified, different possibilities may exist.

5.3.3.3 From subsumption to inheritance for transformable classes

If the extension of a transformable class c1 is subsumed by the extension of other classes
(transformable or non-transformable) but it does not subsume any other class in the class
hierarchy (fig. 5.13.a), the transformable class can be defined as a subclass of all the
classes that subsume it. Therefore, subsumption of extension relationships can be
transformed directly into inheritance relationships (as shown there). Also, if the



67

transformable class c1 is subsumed by some classes and it also subsumes other classes,
but all of the classes subsumed by c1 are subclasses of the classes that subsume it,
(represented in fig. 5.13.b), then class c1 can be defined as a subclass of all the classes
that subsume it and a superclass of all the classes subsumed by it (as shown in fig.
5.13.b).

(b)(a)
c2

c1
T

cn...

Inheritance

Subsumption of the extension

c3

c2

c1
T

c2

c1
T

cn... c3

c2

c1
T

(c)
c3
NT

c2
NT

c1
T

c3
NT

c2
NT

c1
T

c1
T

(d)

c2
NT

c1
T

cn
NT

...

(e) c2 c1
T

c2

c2c1
T

c1
T

Figure 5.13. Relationships between transformable classes and other classes.

In the two cases represented in figs. 5.13.a and 5.13.b, the inheritance relationships
between transformable classes and the rest of classes can be directly defined from the
subsumption of extension relationships. In other situations, in the transformation of
subsumption relationships between transformable classes and other classes into
inheritance relationships, different possibilities may exist. For example, in the case
represented in fig. 5.13.c, the transformable class c1 is subsumed by a non-transformable
class c3; c1 also subsumes other non-transformable class c2, however c2 is not a subclass
of class c3. Therefore, in transforming the subsumption relationships into inheritance
relationships different possibilities may exist: to define c1 as a subclass of c3, or to define
c1 as a superclass of c2. Nevertheless it is not possible to define both of them in the same
schema because c3 is not a superclass of c2. Another possibility in this case, is to consider
the transformable class c1 twice in the class hierarchy, and to generate two different
classes in the resulting schema (one from its relationship with c3, and the other the
relation with c2).

If a transformable class (c1) subsumes in extension a set of non-transformable classes
(fig. 5.13.d) which do not have any properties in common, and it is defined as a
superclass of all of them, the result of the transformations on the transformable class
would be a class without properties. However, this would not be an acceptable result.
Therefore, the transformable class may be defined as a superclass of only a subset of the
classes subsumed by it, in this case, different possibilities may be considered (different
subsets of classes with properties in common can be defined).

Lastly, if a transformable class (c1) and another of the selected classes have the same
extension (fig. 5.13.e, the classes subsume in extension each other) the transformable
class can be defined as a superclass as well as a subclass of the other class in the class
hierarchy and both possibilities can be valid, even though, both of them can not be



68

defined in the same class hierarchy. Therefore, one of them has to be selected. Another
possibility can be to have the class c1 twice in the class hierarchy, once as a subclass and
another as a superclass of the class which has the same extension and generate two
different classes from the class c1 after the transformations. If both classes c1 and c2 are
transformable classes, potentially they will become the same class after transformations.

In order to avoid the situation in which many possibilities of defining inheritance
relationships between transformable classes and other classes may exist, different
solutions can be considered:

• Forbid the selection of sets of classes in which these situations occur.
 
• Present all the subsumption relationships between transformable classes and other

classes to the application administrator and let him/her select the desired inheritance
relationships.

 
• Define some criteria of automatic selection of the existing subsumption relationships

that have to be transformed into inheritance relationships.
 
• Have the transformable classes included more than once in the class hierarchy and

generate different classes from each one of them.

5.3.4 Property relationship closure

A class hierarchy is closed in relation to the property relationship if and only if, for all the
classes included in the class hierarchy, all the classes related via a property relationship
with them are also included in the class hierarchy.

5.3.4.1 Classes referenced by transformable and non-transformable classes

Given the set of transformable and non-transformable classes selected in order to
compose an external schema, if a property of a non-transformable class references some
other class (a property relationship exists between them), then, the referenced class has
to be included into the set of classes selected in order to compose the external schema.
On the other hand, if a transformable class is related by a property relationship with other
classes not included in the mentioned set of classes, the transformable class can be
transformed in order to avoid the inclusion of the referenced classes into the external
schema. This kind of transformation of transformable classes is exclusively due to the set
of classes selected to compose the external schema, whereas the transformations
presented in point 5.3.2 are due to the position of the transformable class within the class
hierarchy.

An example of this kind of transformations can be seen in figs. 5.8 and 5.9. In fig. 5.8 the
class CLIENTS references class ADDRESSES (inherits the property Addresses from class
PEOPLE). Class CLIENTS is qualified as transformable so, in order to avoid that the
referenced class ADDRESSES be included into the external schema, class CLIENTS loses
that property (as can be seen in the resulting external schema of fig. 5.9), otherwise, the
resulting external schema would have been the one represented in fig. 5.14.



69

PEOPLE
...

Address()

EMPLOYEES
Category()
Salary() ...

CLIENTS

ADDRESSES
...

City()

OBJECTS

CLIENTS’
...

Address()

PEOPLE’
...

City()

EMPLOYEES’
...

Category()

Inheritance

Aggregation

Derivation
External
Schema

Defined derived class

Generated derived class

Non-derived class

Figure 5.14. Obtained external schema.

5.3.4.2 Required properties of a class

A non-transformable class may also reference other classes already included in the set of
selected classes -these classes can be transformable or non-transformable. A non-
transformable class may reference some of the properties (methods) defined in the classes
that it references. These properties may also reference other properties defined in the
same class or in other classes -referenced indirectly by the non-transformable class. If a
property is referenced directly or indirectly by a non-transformable class, and is defined
in a transformable class, then the class resulting by transforming the transformable class
has to include the referenced property. Therefore, the properties of transformable classes
can be required if they are referenced by a non-transformable class, or non-required in
other case.

Each property in a class (transformable or non-transformable) is related to the set of
properties, from the same class or from other classes, that are needed in order to have
that property defined. All the properties of non-transformable classes are required
properties. The set of properties needed by a required property are also required
properties, and the referenced classes in which required properties are defined also have
to be included into the external schema at least with the required properties defined. If a
required property of a transformable class references a class that has not been initially
selected to compose the external schema, it also has to be included into the set of classes.
If a property (non-required) of a transformable class is eliminated in a transformation of
the class, all the properties of this class or other transformable classes that reference the
eliminated property have to be eliminated too. These properties will be non-required. If
they were required properties, then the property initially eliminated would have also been
required.

The classes referenced by transformable or non-transformable classes, additionally
included in the set of classes, can also be considered as transformable or non-
transformable. The reason for including these classes in the set of selected classes is that
some of their properties are required directly or indirectly by non-transformable classes.



70

Therefore, if they are considered as transformable classes, all the requirements about
them will be fulfilled.

5.3.4.3 Non-transformable classes referencing transformable classes

When a transformable class is transformed, a new class is generated. Therefore, if a non-
transformable class references some transformable classes, and the transformable classes
are replaced by new classes in the external schema then, the non-transformable class has
to be modified in order to replace its references to transformable classes using references
to the new generated classes. If references to other classes in non-transformable classes
have to be modified, then, new classes have to be generated that replace these non-
transformable classes in the external schema.

In the process described above, non-transformable classes may have to be replaced by
new classes in the external schema in order to change its references to other new classes
generated. In order to avoid this, a simplification of the external schema generation
process consists in requiring that any class referenced by a non-transformable class has to
be qualified as non-transformable. Therefore, transformable classes referenced by non-
transformable classes have to be re-qualified as non-transformable and the classes
referenced by (originally or re-qualified) non-transformable classes that were not
included initially in the set of selected classes, have to be included qualified as non-
transformable classes too. This simplification is a limitation because less classes than in
the previous process can be automatically transformed -there will be more classes
qualified as non-transformable than before. Therefore, these classes would have to be
explicitly defined.

5.3.4.4 Transformation of references to classes

If a non-transformable class or a required property of a transformable class references
another class not included in the set of classes selected to compose the external schema,
contrary to what has been said before, this second class does not have to be necessarily
included in the external schema. If some derived class has been defined from the class
originally referenced, and this derived class is included in the set of classes selected, and
it also has all the required properties and extension then, the referenced class can be
replaced by the derived class in the external schema. If more than one derived class
satisfying these conditions are included in the set of classes, all the possibilities can be
shown to the application administrator and one of them selected. Another possibility can
be to forbid this situation, and only allow one class satisfying these conditions.

In fig. 5.15 an example is shown in which an external schema is to be defined, with the
same classes of the original conceptual schema but replacing the class ADDRESSES by a
new class ADDRESSES’ which does not include the property City. With the behaviour
described above, the only class that has to be explicitly defined is class ADDRESSES’.
The rest of the classes will be automatically adapted to the new situation producing the
desired external schema, as shown in fig 5.16.



71

PEOPLE
...

Address()

EMPLOYEES
Category()
Salary() ...

CLIENTS

ADDRESSES
...

City()

OBJECTS
Inheritance

Aggregation

ADDRESSES’
...

Non-derived class

Defined derived class

External
schema

Derivation

Figure 5.15. References to new classes.

PEOPLE
...

Address()

EMPLOYEES
Category()
Salary() ...

CLIENTS

ADDRESSES
...

City()

OBJECTS

EMPLOYEES’
Category()
Salary() ...

CLIENTS’

PEOPLE’
...

Address()

ADDRESSES’
...

Inheritance

Aggregation

Derivation
External
Schema

Defined derived class

Generated derived class

Non-derived class

Figure 5.16. Obtained external schema.

5.3.5 Alternatives in the process of definition of external schemas

In previous sections, different alternatives for the definition of external schemas have
been considered in different contexts, all of them according to the ANSI/SPARC
architecture; in this section, the main ones of these alternatives are presented as a whole.

Organisation of the external schema
• External schemas have to be closed according to the inheritance relationship.
• External schemas do not have to be necessarily closed according to the inheritance

relationship.

Qualification of the classes selected
• Qualify the classes selected to compose the external schema as transformable or non-

transformable classes.
• Classes selected can not be transformed, therefore all the classes have to be non-

transformable.



72

Order of the transformation of classes
If classes are qualified as transformable or non-transformable, transformable classes can
be transformed differently depending upon the way in which they are integrated:
• Gradually integrated in the class hierarchy and transformed as they are integrated (at

each moment, in the class hierarchy there is only one transformable class).
• First integrated and then transformed according to their situation (on relation to the

rest of transformable or non-transformable classes).

Therefore, different external schema generation algorithms can be defined selecting
different combinations of the alternatives presented.

5.4 External schema generation algorithms

In this section two external schema generation algorithms are presented. These
algorithms are defined in the framework of the new external schema definition
methodology for OODBs put forward in the previous sections. They generate an external
schema from a set of classes selected from those existing in the data dictionary.

In both cases the external schema has to be closed with regard to the inheritance
relationship. In the basic algorithm all the classes selected have to be non-transformable.
The extended algorithm generates an object schema from a set of classes which are
qualified as transformable or non-transformable. In the extended algorithm classes are
gradually integrated in the class hierarchy.

We have carried out a specification of the external schema definition system by defining a
DCM of it, as has been shown in chapter 4. This method is especially useful in the
specification of elements of OODBs. The definition of DCMs is a technique which allows
the specification of information systems by expressing only their logical component
[Olivé, 1989]. If Prolog is used for the construction of the DCM, together with the
formal specification, a prototype of the system is also obtained.

In the defined DCM, the external schema generation algorithms are implemented as
derived predicates. In DCMs, derived predicates have time T as a component; in this
case, time is not relevant for the presentation of the algorithms, so we shall not mention
this aspect any further.

5.4.1 External schema generation basic algorithm

Given the set of classes Cs selected from the data dictionary, by means of the generation
basic algorithm, a minimal object schema S = (Cs’, Es) defined from Cs, is generated.

According to the definition of object schema made in section 3.3, the class objects has to
be included in the set of classes Cs’; the object schema S has to be valid, and also has to
be closed in relation to the inheritance and the property decomposition relationships.



73

In the defined DCM, the external schema generation algorithm is a derived predicate
which can be seen in fig. 5.17.

generateExternalSchema(S,Cs,Es,T) :-
classSetSelection(S,Cs1,T),
includeElement(c(objects),Cs1,Cs2),
propertyDecompositionHierarchyClosure(Cs2,Cs3,T),
classInheritanClosure(Cs3,Cs4,Es1,T),
eliminateReduntantEdges(Es1,Es2,T),
classesExistingInDataDictionary(Cs4,Cs,Es2,Es,T),
!.

Figure 5.17. GenerateExternalSchema predicate.

Given the identifier S of the schema to be generated, the set of classes Cs and the edges
Es are obtained. First, (fig. 5.17.a) the initial set of classes Cs1 associated with the
identifier S of the schema must be defined in the data dictionary. Fig. 5.17.b, the class
objects must be included in the initial set of classes, being added if it was not previously
there (the set of classes Cs2 is obtained). Fig. 5.17.c, the set obtained must be closed in
relation to the property relationship over the referenced classes that have not been
included in the initial set must be added (the set of classes Cs3 is obtained). Fig. 5.17.d,
the classes in question together with the set of existing inheritance relationships between
them and the necessary additional classes, defined in the data dictionary, must form a
closed schema in relation to the inheritance relationship (the set of classes Cs4 and the set
of edges Es1 are obtained). The schema must be valid in relation to the inheritance
relationship, on account of the defined steps redundant inheritance relationships may be
generated. For this reason they must be eliminated -fig. 5.17.e, the set of edges Es2 is
obtained. In the process of obtaining a closed schema in relation to the inheritance
relationship some derived classes may have been generated. In the case that some class,
according to the characteristics of some one of the generated classes, previously existed
in the data dictionary, the generated classes are replaced by those classes in the external
schema and its generation its cancelled, fig. 5.17.f.

In the following subsections steps c, d and e of the algorithm in fig. 5.17 are set out.

5.4.1.1 Property decomposition closure

Given a set of classes (Cs1), a new set of classes (Cs2) is obtained which is the transitive
closure in relation to the property relationship of the classes in Cs1. Every class
referenced by a property of a class of the resulting set Cs2 also belongs to Cs2.

In fig. 5.18 the predicate that defines this property is presented. To specify it in Prolog,
as is indicated in fig. 5.18.a, an auxiliary predicate is defined which uses a kind of
incomplete structure called difference-list1. Explained in an intuitive fashion, by way of
dl (Cs2,Cs1) it is expressed that the list Cs2 that must be calculated initially contains the

                                               
1 A difference-list is an incomplete structure that represents the difference between two lists. We
represent them by dl (As,Bs), where As is the head of the difference-list and Bs the tail. dl ([1,2,3|Xs],Xs)
is the most general difference-list representing the sequence 1,2,3; dl (Xs,[ ]) is the list Xs; and dl (Xs,Xs)
is the empty list [ ], [Sterling & Shapiro, 1986]. In the predicates we use the difference-lists indicated
explicitly by way of the functor dl for reasons of clarity. However, the prototype obtained may be further
optimised in run-time if the components of the difference-lists are dealt with directly as arguments in the
predicates where they are used (it is achieved that predicates are tail-recursive.)

(d)

(a)
(b)

(c)

(e)
(f)



74

(2)

elements from the list Cs1 as well as new elements that will be added along the way. By
definition Cs2 = Cs1 ∪ {  ci | pr* (cj, ci), cj ∈ Cs1}. Therefore, a difference list would be a
suitable structure for representing this situation.

In fig. 5.18.b, taking the classes of Cs1 into consideration, if class c1, included in the
initial set Cs1, is related by means of a property relationship with class c2 not included in
the set Cs3 (temporary result, initially was the set Cs1) c2 must be included in the
temporary result Cs3 (fig. 5.18.b.1). This operation has to be carried out for the rest of
the classes with which c1 is related by means of a property relationship and also, for the
new incorporated class c2 (fig. 5.18.b.2). The property relationships that exist between
class c1 and other classes are consulted in the data dictionary using the predicate
propertyRel .

propertyDecompositionHierarchyClosure(Cs1,Cs2,T) :-
propertyDecompositionHierarchyClosureDL(Cs1,dl(Cs2,Cs1),T).

propertyDecompositionHierarchyClosureDL([C1|Cs1],dl(Cs2,Cs3),T) :-
propertyRel(C1,C2,_,T),
not(includedElement(C2,Cs3)),
!,

propertyDecompositionHierarchyClosureDL([C1,C2|Cs1],dl(Cs2,[C2|Cs3]),
T).

propertyDecompositionHierarchyClosureDL([_|Cs1],Cs2dl,T) :-
!,
propertyDecompositionHierarchyClosureDL(Cs1,Cs2dl,T).

propertyDecompositionHierarchyClosureDL([],dl(Cs,Cs),_) :-
!.

Figure 5.18. propertyDecompositionHierarchyClosure  predicate.

If the check for all the classes directly related by means of the property relationship with
a given class has already been carried out (fig. 5.18.c) the same operation has to be done
for the rest of the classes of Cs1. When this operation has been carried out for all the
classes of Cs1 -that is to say, no more classes are left in Cs1 (fig. 5.18.d), the final
resulting set will be the temporary resulting set that had been obtained until this moment
(the two components of the difference-list used are unified: dl (Cs,Cs)).

5.4.1.2 Class inheritance closure

Given a set of classes (Cs1), a new set of classes (Cs2) and a set of edges (Es) are
obtained in such a way that Cs2 and some Es’, Es’ ⊆ Es, form a minimal object schema
defined from Cs1. In other words, the obtained schema is closed in relation to the
inheritance relationship: for each pair of classes c1, c2 of Cs2 a class c3 = c1  c2 is also
included in Cs2. However, Es does not contain inconsistent edges, all the required edges
are included in it, nevertheless it may contain redundant edges.

If a pair of classes c1, c2 have previously been included in the same schema (conceptual
or external), so will a class c3 = c1  c2. If this is not so, it is possible that a class c1  c2

has not been defined beforehand, and therefore will have to be generated, being a
generated derived class.

(1)

(a)

(b)

(c)

(d)



75

The predicate corresponding to the definition of this property is presented in fig. 5.19.
As with the predicate in fig. 5.18 difference-lists are used, in this case with two sets to be
obtained: that of the classes and that of the edges (fig. 5.19.a.1). Therefore a difference-
list is used for each one of them. In the case of the class set, the initial class set Cs1 is
taken as the basis to obtain Cs2 as a result; and in the case of the edge set, the empty set
[] is taken and Es is obtained.

classInheritanClosure(Cs1,Cs2,Es,T) :-

classInheritanClosure( Cs1,Cs1 ,dl(Cs2,Cs1),dl(Es,[]),T).

classInheritanClosure([C|Cs1],[C|Cs2],Csdl,Esdl,T) :-
!,
classInheritanClosure([C|Cs1],Cs2,Csdl,Esdl,T).

classInheritanClosure([C1|Cs1],[C2|Cs2],dl(Cs3,Cs4),dl(Es1,Es2),T) :-
classPropertiesIntersection(C1,C2,Ps,T),
!,
addLowestCommonSuperclass(C1,C2,Ps,dl(Cs6,Cs4), dl(Cs5,Cs1),

dl(Es3,Es2),T),

classInheritanClosure([C1|Cs5],Cs2,dl(Cs3,Cs6),dl(Es1,Es3),T).

classInheritanClosure([_|Cs1],[],dl(Cs2,Cs3),Esdl,T) :-
!,
classInheritanClosure(Cs1,Cs3,dl(Cs2,Cs3),Esdl,T).

classInheritanClosure([],_,dl(Cs,Cs),dl(Es,Es),_) :-
!.

Figure 5.19. classInheritanClosure  predicate.

All the possible pairs of classes included in Cs1 have to be considered. In order to do so,
the set of classes Cs1 is passed twice as the parameter to the auxiliary predicate in fig.
5.19.a.2. A class from each set will be taken into consideration. The following are the
different cases that can be found:

• Both classes taken into consideration are the same class c (fig. 5.19.b), c = c  c,
already being included as a class and not being related by way of inheritance to itself.
Therefore, we must continue the check for the class c and the rest of the classes of the
second set.

 
• c1 and c2 are two different classes (fig. 5.19.c). The class c1  c2 must be included in

the resulting set of classes (Cs4 becomes Cs6 in fig. 5.19.c.1) and the inheritance
relationships existing between c1, c2 and c1  c2, which are updated in the resulting set
of edges -Es2 becomes Es3 in fig. 5.19.c.2-, are defined. The class c1  c2 must be
compared with the rest of the classes -not in order to generate new classes (since they
would be generated anyway in comparing the original classes of Cs1), but rather in
order to determine the inheritance relationships that exist between it and the rest of
the classes. Thus, c1  c2 is added to the set of classes to be taken into consideration
(Cs1 becomes Cs5 in fig. 5.19.c.3). The predicate that carries out these operations is
addLowestCommonSuperclass , presented in fig. 5.20. Once these operations have
been carried out, the same operation must continue to be carried out for the class c1

and the set of the remaining classes (Cs2).
 

(3)

(1)

(a)
(2)

(b)

(c)

(d)

(e)

(2)
(1)



76

• If, for a class of Cs1, the comparisons with the rest of the selected classes have been
done (the list of the remaining classes is the empty list [] in fig. 5.19.d), the same
operation of comparison with the rest of the classes of Cs1 and the current set of
resulting classes Cs3 has to be carried out.

 
• When this operation has been carried out for all selected and obtained classes (fig.

5.19.e), the resulting sets of classes and edges will be the resulting temporary sets
obtained up until this moment (the two components of the difference-lists used are
unified: dl (Cs,Cs), dl (Es,Es)).

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs1,Cs1),dl(Cs2,Cs2),
dl(Es2,Es1),T) :-

classProperties(C1,Ps,T),
subsumesExtension(C1,C2,T),
includeElement(e(is_a(C2,C1)),Es1,Es2),
!.

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs1,Cs1),dl(Cs2,Cs2),
dl(Es2,Es1),T) :-

classProperties(C2,Ps,T),
subsumesExtension(C2,C1,T),
includeElement(e(is_a(C1,C2)),Es1,Es2),
!.

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs1,Cs1),dl(Cs2,Cs2),
dl(Es3,Es1),T) :-

superclassWithPropertiesInSet(C1,C2,Ps,Cs1,C3,T),
not(lowerSuperclassWithPropertiesInSet(C1,C2,Ps,Cs1,C3,T)),
includeElement(e(is_a(C1,C3)),Es1,Es2),
includeElement(e(is_a(C2,C3)),Es2,Es3),
!.

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs2,Cs1),dl(Cs4,Cs3),
dl(Es3,Es1),T) :-

derivedClassWithPropertiesInSet(C1,C2,Ps,Cs1,C3,T),
modifyDerivedClassExtension(C1,C2,C3,T),
includeElement(C3,Cs1,Cs2),
includeElement(C3,Cs3,Cs4),
includeElement(e(is_a(C1,C3)),Es1,Es2),
includeElement(e(is_a(C2,C3)),Es2,Es3),
!.

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs2,Cs1),dl(Cs4,Cs3),
dl(Es3,Es1),T) :-

generateDerivedClass(C3,T),
classProperties(C3,Ps,T),
classObjectsUnion(C1,C2,C3,T),
includeElement(C3,Cs1,Cs2),
includeElement(C3,Cs3,Cs4),
includeElement(e(is_a(C1,C3)),Es1,Es2),
includeElement(e(is_a(C2,C3)),Es2,Es3),
!.

Figure 5.20. addLowestCommonSuperclass  predicate.

Given two classes (c1, c2) belonging to the set of classes (Cs1), the different possible
cases in relation to the class c1  c2 are as follows:

• c1  c2 = c1 (fig. 5.20.a), in which case the fact that c2 is a subclass of c1 must be
reflected by adding the corresponding edge, is_a(c2,c1) to the set of edges Es1.

 
• c1  c2 = c2 (fig. 5.20.b) -similar to the previous case, the edge that must be added in

this case is is_a(c1,c2).

(a)

(b)

(c)

(d)

(e)



77

 
• c1  c2 = c3 -being that c3 is different from c1 and c2:
 

• If c3 is included in the set of classes Cs1 selected to form the external schema
(fig. 5.20.c), it is only necessary to add the inheritance relationships to the
edges set, is_a(c1,c3) and is_a(c2,c3).

 
• If c3 is not included in the set of classes Cs1, but a derived class has already

been defined with the same intension (fig. 5.20.d), this class is modified to
fulfil the requirements of the extension and the necessary inheritance
relationships are added. This way the generation of multiple classes with the
same intension is avoided (as shown in section 3.3.2).

 
• Lastly, c3 must be generated in such a way that it fulfils the required conditions

(fig. 5.20.e); and must be added to the set of selected classes, just as the
inheritance relationships with c1 and c2 must be added to the set of edges.

5.4.1.3 Valid object schema

In order to obtain a closed schema with regard to the inheritance relationship all the
possible pairs of classes are considered. If an inheritance relationship exists between two
classes the corresponding edge is included in the set of edges. The set of edges resulting
from the previous process contains all the inheritance relationships that exist between the
set of selected classes -all of them are correct. This set will contain redundant
relationships since it will contain as direct relationships some ones that may be obtained
in an indirect form. The edges corresponding to these relationships are redundant and
must be eliminated in order to have a valid schema. The predicate that carries out this
operation is eliminateRedundantEdges  (fig. 5.21). For each edge of the set that is
obtained a check is made to see whether there exists an alternative path between their
nodes using the rest of the edges in the set. If such a path does exist the edge is,
consequently, redundant.

eliminateReduntantEdges(Es1,Es2) :-
eliminateReduntantEdges(Es1,Es1,Es2,[]).

eliminateReduntantEdges([],_,Es,Es) :-
!.

eliminateReduntantEdges([E|Es1],Es2,Es3,Es4) :-
indirectEdge(E,Es2),
!,
eliminateReduntantEdges(Es1,Es2,Es3,Es4).

eliminateReduntantEdges([E|Es1],Es2,Es3,Es4) :-
eliminateReduntantEdges(Es1,Es2,Es3,[E|Es4]).

Figure 5.21. eliminateRedundantEdges  predicate.

5.4.2 External schema generation extended algorithm

In the previous section the external schema generation basic algorithm was presented. In
this algorithm all the classes, except the ones generated in order to obtain a closed object
schema in respect to the inheritance relationship, must be defined explicitly by the
application administrator. In section 5.2.4 a mechanism is proposed in order to make



78

(1)

(1)

available greater power in the external schema definition. Basically, it consists in offering
the possibility of qualifying as transformable or non-transformable each one of the
selected classes in order to construct the external schema. Such a qualification is carried
out in the moment of the selection of the set of classes -that is to say, it is not related to
the class alone, but rather to the class within the selection. Non-transformable classes
have to be added to the external schema directly (in the basic algorithm, all classes were
non-transformable); transformable classes can be replaced by another existing or newly
derived class in the external schema if necessary, the class that substitutes it is required to
have the same extension (although possibly a different intension, adapted to the structure
imposed by the schema’s non-transformable classes).

By using such a mechanism the number of classes that needs to be defined explicitly is
reduced -it is enough to define the non-transformable classes that determine the structure
of the schema and qualify the rest of the classes we consider necessary to be included as
transformable.

Given a set of classes (QCs1), that have been selected from the data dictionary, qualified
as transformable or non-transformable, it is the initial definition of the schema S. By way
of the extended generation algorithm, we obtain a new set of classes (Cs2) and a new set
of edges (Es2) so that S = (Cs2,Es2) is an object schema which is valid and closed in
relation to the inheritance and property relationships.

generateQualifiedExternalSchema(S,Cs,Es,T) :-
qualifiedClassSetSelection(S,QCs1,T),
includeElement(q(esc(c(objects),nonTransformable)),QCs1,QCs2),

qualifiedClasses(QCs2,nonTransformable,CsNT1),
qualifiedClasses(QCs2,transformable,CsT1),

%Property Decompostion Hierarchy Closure.
propertyDecompositionHierarchyClosure(CsNT1,CsNT2,T),
elementsDifference(CsT1,CsNT2,CsT2),
transfClassesRelatedByPropertyRel(CsT2,CsNT2,CsT3,CsNT3,T),

classesWithProperties(CsT3,CsTWPs1,T),
transfClassesPropDecompHierarchyClosure(CsTWPs1,CsT3,CsNT3,

CsTWPs2,T),

% Class Inheritance Closure.
classInheritanClosure(CsNT3,CsNT4,EsNT1,T),
eliminateReduntantEdges(EsNT1,EsNT2,T),

subsumptionIsomorficClasses(CsTWPs2,ICsTWPs,CsT4,T),
integrationOfTansformableClasses(ICsTWPs,CsNT4,EsNT2,

Cs3,Es2,T),
eliminateReduntantEdges(Es2,Es3,T),

eliminateRedundantTransformableClasses(CsNT3,CsT4,Cs3,Es3,
Cs,Es,T),

!.

Figure 5.22. generateQualifiedExternalSchema  predicate.

The predicate that defines the generation algorithm, which is presented in fig. 5.22, has
the parts presented in the following points.

(a)

(b)
(2)

(c)

(d)

(2)



79

5.4.2.1 Obtain the initial sets of transformable and non-transformable classes

In (fig. 5.22.a), the set of qualified classes QCs1 associated with the schema S is
obtained. Then, the class objects must be included, being qualified as non-transformable
-QCs2 is obtained-; and on the basis of this set of qualified classes the sets of non-
transformable classes CsNT1 and transformable classes CsT1 are obtained separately.
 

5.4.2.2 Property decomposition hierarchy closure

Obtain a schema that is closed in relation to the property relationship (fig. 5.22.b). Each
property defined in a class depends on a set of properties from other classes or from the
same class, these are the properties used in the property definition.

A property can be an attribute or a method (section 3.1.5). Properties are referred to in
the implementation of the methods defined in a class. In the definition of an attribute,
class names may be used but not properties; the use of a class name in the definition of
an attribute in a class does not mean that all the properties of the referenced class are
required, the only properties directly used would be the ones referenced in the
implementation of the methods of the class.

A property can be redefined in different classes in the class hierarchy, the set of
properties directly used by a property p in a class c, denoted uses(p,c), is defined as
follows: uses(p,c) = {(pi,cj) | property pi defined in class cj is directly referenced in the
definition of property p in class c}.

In the same way, the set of properties directly or indirectly used in the definition of
property p in class c, denoting uses*(p,c), is defined as follows: uses*(p,c) = uses(p,c) ∪
{( pi,cj) | ((pi,cj) ∈ uses(pk,cl) or (pi,cj) ∈ uses*(pk,cl)) and (pk,cl) ∈ uses(p,c)}

The property decomposition closure criteria (section 3.2.2) can be further refined not
considering all the classes referenced in the definition of some class, rather the properties
of those classes that are used. Hence, in order to have an external schema closed in
relation to the property relationship, for each one of the properties of the classes selected
to compose an external schema, all the properties directly or indirectly used in the
definition of these properties have to be included in the external schema. If these
properties are defined in classes not included in the external schema, two possibilities are
considered in reference to the classes:

• The classes should also be included in the external schema.
 
• The classes can be redefined (define new derived classes) in order to include

exclusively the properties needed. Then, the classes previously included in the external
schema that referenced the original classes should also be redefined to reference the
new derived classes.

In the algorithm presented in this section, the first option was considered because it is
simpler than the second one, and it is enough to show the possibilities offered by the
external schema mechanism presented. Therefore, in the present version of the extended



80

algorithm of generation, the condition that all classes referenced by means of property
relationship by another class must be non-transformable has been imposed. This is a way
of avoiding the need, in transforming a class that is referenced by another, to modify the
class that refers to it as well.

Therefore, in order to obtain an object schema closed in relation to the property
relationship, the following steps have been defined:
 
• Adding the necessary non-transformable classes (fig. 5.22.b.1): Using the previously

defined predicate propertyDecompositionHierarchyClosure , we add to the set of
non-transformable classes the classes referenced by the non-transformable classes,
obtaining CsNT2. The transformable classes referenced by non-transformable classes
have become non-transformable classes; and so, by way of the predicate
elementsDifference  the new set of transformable classes CsT2 is obtained. The
selected transformable classes that are referenced by some other transformable class
must be non-transformable. transfClassesRelatedByPropertyRel  carries out this
requalification to thus obtain the sets CsNT3 and CsT3.
 

• Transforming the transformable classes by eliminating external references (fig.
5.22.b.2): Any transformable class that references classes not selected in order to
compose the schema must be transformed, eliminating such references. By means of
the predicate classesWithProperties , taking the set of transformable classes CsT3

as its basis, we obtain the set CsTWPs1 of “transformable classes with the set of
properties” for each class. The mentioned references are eliminated by the predicate
transfClassesPropDecompHierarchyClosure , thus obtaining the new set
CsTWPs2, which contains the classes of CsT3 but at the same time maintains only the
references to classes of the schema (due to the requalifications carried out in the
previous step, only non-transformable classes are referenced).
 

5.4.2.3 Class inheritance closure

To obtain a schema that is closed in relation to the inheritance relationship (fig. 5.22.c):
 
• Obtain the schema formed exclusively by non-transformable classes (fig. 5.22.c.1).

The initial schema is obtained by way of the predicate classInheritanClosure

previously defined in the basic algorithm. After eliminating the redundant edges we
obtain the new set of non-transformable classes CsNT4 and the set of edges that are
defined between them EsNT2.
 

• Integration of transformable classes (fig. 5.22.c.2): Given the initial schema obtained
in the previous step S1 = (CsNT4,EsNT2), the transformable classes of CsT3 are
integrated in it, the detailed process of which is set out in section 5.4.2.4.

• Unification of transformable classes (fig. 5.22.d): once all the transformable classes
have been integrated, under certain conditions, some of them may be transformed and
unified with auxiliary classes added to the schema exclusively in order to achieve
closure in relation to the inheritance relationship or with other transformable classes,



81

such operation being defined by means of the derived predicate
eliminateRedundantTransformableClasses  presented in section 5.4.2.5.

5.4.2.4 Integration of the transformable classes

The determining component of a transformable class is its extension, in view of the fact
that the intension may be transformed in order to adapt to the schema. Therefore, two
transformable classes with the same extension definition are potentially the same class. It
is for this reason that groups of transformable classes are created whose extensions
subsume mutually. Each group is represented by a class that has the extension of the
classes of the group and the union of the intensions of the represented classes as its
intension. In this way, integrating the representative class of the group, all the classes of
the group are integrated. The predicate that carries out this operation is
subsumptionIsomorficClasses  (fig. 5.22.c.2). The new set of transformable classes
CsT4 is obtained along with the properties of these classes and the classes of each group
in ICsTWPs (each element included has the structure si (c,Ps,Cs), -that is to say, the
class c, its intension Ps and represented classes Cs). The classes of CsT4 do not subsume
in extension mutually.

Given the schema formed by non-transformable classes S1 =  (CsNT4,EsNT2), the
transformable classes of CsT4 -associated classes and properties are in ICsTWPs- have to
be integrated into it. This operation is carried out integrating the transformable classes
one at a time in the schema in question. A transformable class integrated in the schema is
considered as non-transformable in the process of integration of the remaining classes.

The transformations that can be carried out in a transformable class can be seen in fig.
5.10. Given a transformable class c1 to be integrated (fig. 5.10.a), if the transformable
class is subsumed in extension by another class c2 belonging to the schema and,
therefore, non-transformable (fig. 5.10.b), then the class c1 inherits the properties of c2

and, furthermore, maintains its own properties. However, if it is the class c1 that
subsumes in extension another class c2 of the schema (fig. 5.10.c), the non-transformable
class c2 conditions the structure of the transformable class c1, in such a way that any
properties which are not defined for c2 must be eliminated from c1.

transformableClassIntegration(si(C1,Ps1,Cs1),Cs2,Es2,
Cs3,Es3,T) :-

includedElement(C2,Cs2),
subsumesExtension(C1,C2,T),
!,
branchTransfClassInteg(si(C1,Ps1,Cs1),

Cs2,Es2,Cs3,Es3,T).

transformableClassIntegration(si(C1,Ps1,Cs1),Cs2,Es2,
Cs3,Es3,T) :-

!,
leafTransfClassInteg(si(C1,Ps1,Cs1),

Cs2,Es2,Cs3,Es3,T).

Figure 5.23. transformableClassIntegration  predicate.

When a transformable class is integrated in the schema, it becomes considered non-
transformable. So that a previously transformable class already integrated (c2) has no

(a)

(b)

(1)



82

effect in the integration of another transformable class (c1) causing it to lose properties
(in the way shown in fig. 5.10.c). In the first place it is necessary to integrate the
transformable classes that are not subsumed in extension by other transformable classes
(CsT4 is the set of transformable classes and these do not subsume in extension
mutually). The order of integration of the transformable classes is defined in this way in
the predicate integrationOfTansformableClasses  (used in fig. 5.22.c.2) which
proceeds by selecting transformable classes which are not subsumed by any of the
remaining transformable classes and carries out the integration by way of
transformableClassIntegration  predicate, presented in fig. 5.23.

5.4.2.4.1 Transformable class with subclasses in the schema

If the transformable class to be integrated (c1) subsumes in extension any of the classes
(c2) currently integrated in the schema (fig. 5.10.d), as would be the case in fig. 5.23.a
where the condition denoted by (1) is fulfilled, the predicate which defines the manner of
integration in this case is branchTransfClassInteg . This predicate, for each one of the
classes (c2) of the schema subsumed in extension by the transformable class to be
integrated (c1), carries out the integration operations defined by the predicate
integrateTransformableClass  set out in fig. 5.24.

integrateTransformableClass(si(C1,Ps1,Cs1),C2,Cs2,Es2,Cs3,Es3,T) :-
subsumingSuperclassPropertyUnion(C1,C2,Cs2,Es2,Ps3,T),
elementsUnion(Ps1,Ps3,Ps4),

classProperties(C2,Ps2,T),
elementsIntersection(Ps2,Ps4,Ps5),

defineTransformableClass(si(C1,Ps5,Cs1),C3,T),
includeElement(C3,Cs2,Cs4),
classInheritanClosure([C3],Cs2,dl(Cs3,Cs4),dl(Es3,Es2),T),
!.

Figure 5.24. integrateTransformableClass  predicate.

A transformable class (c1) has a set of properties (Ps1) associated with it and represents
the set of transformable classes with identical extension (Cs1), (represented by
si (c1,Ps1,Cs1) in fig. 5.24). c1 subsumes in extension the class c2, which is included in the
schema S2 = (Cs2, Es2). The predicate integrateTransformableClass  defines the
integration of the class c1 into the schema S2 to generate a new schema S3 = (Cs3, Es3).
The class c1 will be a superclass of c2 and a subclass of those superclasses of c2 that
subsume in extension c1. The intension of c1 will be conditioned by the intensions of the
superclasses that are obtained just as it will by the intension of c2.

In fig. 5.24.a, we obtain in Ps3 the properties of the superclasses of c2 that subsume c1.
Such properties must be inherited by c1: united to the properties Ps1 that c1 had, Ps4 is
obtained. The intension of c2 is Ps2 (Ps2 contains the properties of the set Ps3 since they
are properties of the superclasses of c2, inherited by c2). Therefore, the set of properties
which the transformable class c1 has, having been transformed previously, is Ps5, the
intersection of Ps2 and Ps4 (fig. 5.24.b). This would be the case in the example shown in
fig. 5.10.d where c1 is affected by transformations imposed by the superclasses found,
just as it is by the subclass c2. Once we have the properties of the transformable class, we
proceed with its definition and inclusion in the schema (fig. 5.24.c). The definition is
carried out by way of the predicate defineTransformableClass  which is presented in

(a)

(b)

(c)



83

fig. 5.25. Given the transformable class c1 and its characteristics, it returns the
transformed class c3. The integration in the schema of the transformed class is carried out
by means of the auxiliary part of classInheritanClosure  set out in fig. 5.24 which
finds the inheritance relationships of the class c3 that is to be integrated with the rest of
the existing classes in the schema S2 = (Cs2,Es2), to obtain a schema S3 = (Cs3,Es3).

defineTransformableClass(si(C1,Ps1,Cs1),C2,T) :-
classProperties(C2,Ps1,T),
subsumesExtension(C2,C1,T),
subsumesExtension(C1,C2,T),
!,
associateClassesByDerivation(C2,Cs1,T).

defineTransformableClass(si(C1,Ps1,Cs1),C2,T) :-
generateDerivedClass(C2,T),
classProperties(C2,Ps1,T),
classObjects(C1,Os1,T),
classObjects(C2,Os1,T),
!,
associateClassesByDerivation(C2,Cs1,T).

Figure 5.25. defineTransformableClass  predicate

By way of the predicate defineTransformableClass  (fig. 5.25) we obtain a
transformed class from the transformable class. If a class with the required characteristics
already existed in the data dictionary (fig. 5.25.a) this will be the obtained class.
Otherwise (fig. 5.25.b) it defines the new class in the data dictionary. Once it has the
class (existing or generated), it adds to the data dictionary the fact that a derivation
relationship exists between this class and the set of transformable classes (Cs1) that are
represented by c1 (fig. 5.25.c).

This process of transformation of a transformable class c1 is carried out for each class of
the schema that is subsumed by c1. In the schema, the only classes subsumed by c1 will be
the set of non-transformable classes that made up the initial schema; this is due to the
order of integration of the transformable classes that is followed.

5.4.2.4.2 Transformable class without subclasses in the schema

If the class c1 does not subsume any class of the schema (fig. 5.25.b), the integration
would be brought about by way of leafTransfClassInteg  which is set out in fig. 5.26.

leafTransfClassInteg(si(C1,Ps1,Cs1),Cs2,Es2,Cs3,Es3,T) :-
subsumingClassPropertyUnion(C1,Cs2,Ps2,T),
elementsUnion(Ps1,Ps2,Ps3),

defineTransformableClass(si(C1,Ps3,Cs1),C2,T),
includeElement(C3,Cs2,Cs4),
classInheritanClosure([C2],Cs2,dl(Cs3,Cs4),dl(Es3,Es2),T),
!.

Figure 5.26. leafTransfClassInteg  predicate.

Corresponding to the example in fig. 5.10.e, the transformation is carried out by adding
to the transformable class (c1) the properties of the classes that subsume it in extension
(fig. 5.26.a), being defined and integrated into the schema afterwards (fig. 5.26.b).

(a)

(a)

(b)

(b)

(c)



84

With the defined integration process indirect inheritance relationships are represented as
edges, the elimination of such redundant edges being defined in the predicate
eliminateReduntantEdges  in fig. 5.21.

5.4.2.5 Unification of transformable classes

Once we have all the transformable classes integrated, under certain conditions, some of
these classes may be transformed and unified with auxiliary classes that have been added
to the schema exclusively in order to achieve the closure in relation to the inheritance
relationship and even with other transformable classes. Before describing the unification
process, we shall consider the conditions that must be satisfied.

An edge e = is_a(c1,c2) has exclusive nodes in a set of edges Es, if it is the only edge
included in Es that has the class c1 as its first node and also is the only one that has the
class c2 as its second node -in other words, the edge e is the only one that arrives at c2

and is also the only one that starts from c1.

c2

c1

a)

c2

c1

c)

c2

c1

b)

c3

c3

...

...

...

...

...

...

...

......

...

exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-
includedElement(e(is_a(C1,C2)),Es),
includedElement(e(is_a(C1,C3)),Es),
compareClasses(C3,C2,ne),
!,
fail.

exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-
includedElement(e(is_a(C1,C2)),Es),
includedElement(e(is_a(C3,C2)),Es),
compareClasses(C3,C1,ne),
!,
fail.

exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-
includedElement(e(is_a(C1,C2)),Es),
!.

Figure 5.27. Exclusive nodes edge.

In fig. 5.27 the predicate that determines whether an edge is of exclusive nodes is
presented together with its graphic representation. Only in the case represented in fig.
5.27.c, does the indicated edge satisfy the described requirements.

Should c1 be a class that has been added in order to achieve the closure of the schema in
relation to the inheritance relationship (a class included in the set CsAdded in fig. 5.28),
should c2 be an originally transformable or an already transformed class (included in
CsTnew), and should an edge of exclusive nodes exist between them: then, the predicate
eliminateRedundantTransformableClasses , presented in fig. 5.28, joins both classes
in a new transformed class, updating the schema as may be appropriate and repeats this
operation for each existing case. This predicate is made up of two parts: primarily, fig.
5.28.a, the various sets of classes (CsTnew and CsAdded) are determined and afterwards,
fig. 5.28.b, the added classes are analysed by ascertaining whether any edge of exclusive
nodes exists with the described conditions and carrying out the unification.

(a)

(b)

(c)



85

eliminateRedundantTransformableClasses(CsNT,CsT,Cs1,Es1,
Cs2,Es2,T) :-

elementsDifference(Cs1,CsNT,Cs_notNT),
elementsDifference(Cs_notNT,CsT,Cs_notNTnotT),
obtainedFromTransformableClasses(Cs_notNTnotT,CsT,CsTrans,T),
elementsUnion(CsT,CsTrans,CsTnew),
elementsDifference(Cs_notNTnotT,CsTrans,CsAdded),
eliminateRedundantTransformableClasses(CsAdded,CsTnew,

dl(Cs2,Cs1),dl(Es2,Es1),T).

eliminateRedundantTransformableClasses([C1|CsAdded],CsTnew,
dl(Cs2,Cs1),dl(Es2,Es1),T) :-

exclusiveNodesEdge(e(is_a(C1,C2)),Es1),
includedElement(C2,CsTnew),
!,
unifyTransformableAndAddedClasses(C2,C1,C3,T),
unifyClassesInSchema(C2,C1,C3,Cs1,Es1,Cs3,Es3,T),
eliminateRedundantTransformableClasses(CsAdded,CsTnew,

dl(Cs2,Cs3),dl(Es2,Es3),T).
eliminateRedundantTransformableClasses([_|CsAdded],CsTnew,

Csdl,Esdl,T) :-
!,
eliminateRedundantTransformableClasses(CsAdded,CsTnew,

Csdl,Esdl,T).
eliminateRedundantTransformableClasses([],_,dl(Cs,Cs),

dl(Es,Es),_) :-
!.

Figure 5.28. eliminateRedundantTransformableClasses  predicate.

5.5 Conclusions

Independently of the external schema generation algorithm considered, the main
characteristics of this proposal are:

• Two phase integration: First, derived classes are integrated directly into the data
dictionary by derivation relationships. Then, they are integrated into the external
schema, but this time considering only the set of selected classes and using inheritance
relationships.

 
• The new concepts of transformable and non-transformable classes simplify the

external schema definition process, because they permit the direct generation of the
classes needed in the external schema, avoiding more complex definitions.

• This methodology respects the ANSI/SPARC three-level schema architecture.
 
• According to the classification of external schema definition methodologies presented

in chapter 2, the new methodology belongs to the second group: defined external
schemas are not necessarily subschemas of the conceptual schema.

 
• In the examples presented, derived classes were always defined according to object-

preserving semantics. This is not a limitation of the new methodology: derived classes
defined according to object-generating semantics can also be handled in the same way.

• With the definition of this methodology, in particular using the derivation relationship
to integrate derived classes, the object-orientation paradigm is not changed. The

(a)

(b)



86

derivation relationship does not appear in object schemas for end users, it is only used
in the data dictionary.

 
 In [Santos, 1995] it is stated that: “By relating virtual (derived) and corresponding

root (base) classes through the may_be relationship, we avoid the creation of auxiliary
intermediate classes which have to be generated to allow the integration of virtual
classes into the inheritance hierarchy as described in [Rundensteiner, 1992b]. From a
philosophical point of view, integrating virtual classes into a single inheritance
hierarchy amounts to define a single taxonomy which encompasses the whole set of
concepts (in the spirit of the KL-ONE classification algorithm), whereas relating such
classes to the inheritance hierarchy through an orthogonal relation gives these classes
a different conceptual status, making them not concepts themselves, but different
points of views (possibly exceptional and therefore involving type incompatibility) of
existing concepts instead.”

 
 In the external schema definition methodology proposed here, using the derivation

relationship, derived classes have this “different conceptual status” but only in the data
dictionary and not in end-user’s schemas.



87

6 Definition of derived classes

In the definition of derived classes three main issues have to be resolved such as:

• The integration of derived classes with other classes in an object schema.
 
• The definition of classes with new objects.
 
• The transmission of modifications between the objects in derived classes and the

objects from which they have been defined.

A solution to the first issue has been proposed in chapter 5. In this chapter, the other two
remaining issues are further studied.

6.1 Derived classes

Non-derived classes are defined during the initial definition of the conceptual schema.
Derived classes are classes which are defined from previously existing classes (derived or
non-derived) using object-oriented queries; derived classes are defined during the lifetime
of the database in order to be included in some external schema or in the conceptual
schema.

In order to adapt to final users’ needs, the information contained in the conceptual
schema’s classes must be re-organised in the form of new classes: external schemas may
contain conceptual schema classes as well as new derived classes.

6.1.1 Base classes and base objects

The classes from which a derived class is directly defined are its base classes. Derived
classes offer a new interface of access to the information contained in their base classes;
derived classes share the data stored in the database with their base classes. In no case
may a derived class contain information that has not been obtained from its base classes.

The objects contained in a derived class are derived objects. The objects in base classes
that participate in the definition of a derived object are its base objects.

6.1.2 Object-preserving vs. object-generating semantics

A derived class may be defined either by object-preserving semantics, if it only contains
objects of its base classes; or by object-generating semantics, if it contains new objects
generated from the objects of its base classes. Defining derived classes by object-



88

generating semantics makes it possible to carry out sophisticated reorganisations of
existing information which would otherwise be impossible -i.e. transformation of values
into objects, or aggregation of objects to form a new concept.

If a derived class represents a concept previously defined in object form, it will have to
be defined by object-preserving semantics: the derived class defines a new interface for
its objects. If a derived class represents a concept not previously defined in object form,
it will have to be defined by object-generating semantics.

We consider it necessary to be able to define derived classes using both semantics since,
in some situations, it is necessary to carry out reorganisations of the information that
could not be accomplished defining derived classes exclusively by object-preserving
semantics; besides, if the derived class defines a new interface over a concept previously
defined in object form, it will have to be defined by object-preserving semantics in order
to keep this information.

6.1.3 The derivation relationship

A derivation relationship is defined between a derived class and the set of its base
classes. The derivation relationship defines how to obtain a derived class from its base
classes; it establishes the correspondence between the base objects and the derived
objects.

The derivation relationship is used to integrate the derived classes into the data
dictionary. Derived classes are related by means of the derivation relationship to its base
classes. This relationship is different from the inheritance relationship and aggregation
relationship found in the object orientation paradigm and they lie on an orthogonal
dimension: the derivation dimension, part of the point of view dimension in terms of the
ANSI/SPARC framework [ANSI/X3/SPARC, 1986].

Unlike other authors who define similar relationships (“view derivation” [Bertino, 1992],
“may_be” [Santos et al., 1994], “derived-from” [Kim & Kelley, 1995]), this derivation
relationship does not appear in either the conceptual schema or the external schemas,
only in the data dictionary; and it is not necessary to extend the object orientation
paradigm in order to include it.

6.1.4 An example

Let us take as an example the classes laid out in fig. 6.1, based on the examples used in
[Abiteboul & Bonner, 1991; Heuer & Sander, 1991]. Initially, we have the non-derived
class PEOPLE, this class containing the property Hobbies which returns a set of names of
hobbies for each object. From the class PEOPLE the derived classes HOBBIES and
HOBBIES’ are defined by object-generating semantics, such classes representing the
existing hobbies in object form according to different criteria, as we shall see in the next
section.

The class PEOPLE’ has been defined by object-preserving semantics. This class represents
the same concept represented by the initial class PEOPLE but is adapted to the new



89

representation provided by the derived class HOBBIES with which it is related by way of
an aggregation relationship. The class MATCHES has been defined by object-generating
semantics, and represents the different matches that can be defined between objects of
the class PEOPLE’ with which certain hobbies are associated -that is to say, it represents
a new concept defined on the basis of existing information.

PEOPLE’

Hobbies’()
HOBBIES

Name()

PEOPLE

Hobbies()

MATCHES

Players()
Hobby()

HOBBIES’

Name()

Derivation

Aggregation

Non-derived class

Derived class

Figure 6.1. Definition of derived classes.

Therefore, this example shows the definition of classes by object-preserving semantics, in
the case of class PEOPLE’, as well as the definition of classes by object-generating
semantics: transformation of values into objects in the definition of the classes HOBBIES
or HOBBIES’, and aggregation of objects in order to form a new concept in the case of
the class MATCHES.

6.2 Derived class object identifiers

Each base object or derived object is represented by its identifier. “An object identifier
has no intrinsic meaning -and derives its meaning only from its relationship to values or
other object identifiers in a given database instance. In particular, then, if an object
identifier is considered independently from its associated database instance, then it
conveys essentially no information other than its identity as distinct from all other object
identifiers” [Hull et al., 1991]. The relationships of the object identifier with values or
other object identifiers are defined by the properties that are applicable to the object.

PEOPLE
oid ... Age Hobbies
p1 31 {Tennis, Football, Driving}
p2 16 {Reading, Chess}
p3 18 {Chess, Tennis}
p4 27 {Chess, Tennis}

Figure 6.2. Non-derived class PEOPLE.



90

Let us consider the example set out in fig. 6.1. In fig. 6.2 the elements of the non-derived
class PEOPLE that are relevant to the example we are using are represented in table form.
Every object is represented by one row in the table, and for each one we have its
identifier and the properties Age and Hobbies. The use of tables in the various examples is
only a form of representation.

6.2.1 Object-preserving semantics

In the example of fig. 6.1 the only class defined by object-preserving semantics is the
class PEOPLE’. As shown in fig. 6.3, the object identifier of each object of the new class
PEOPLE’ is the same as the identifier of its corresponding base object of the non-derived
class PEOPLE of fig. 6.2.

PEOPLE’
oid Base Objects ...
p1 p1

p2 p2

p3 p3

p4 p4

Figure 6.3. Representation of the objects of the class PEOPLE’.

The objects of a class defined by object-preserving semantics are objects already existing
in its base classes.

6.2.2 Object-generating semantics

As presented in chapter 2, section 2.3.4, some systems generate new object identifiers
defined as a combination of values and object identifiers of other objects. It can be
considered that the object identifier of a derived object is generated from a set of its
attributes; in [Abiteboul & Bonner, 1991] these attributes are called core attributes. This
is also our point of view.

The core attributes do not necessarily form part of the interface of the derived class -they
may be internal properties. In the case that a derived class is defined by object-preserving
semantics, for each object of the derived class it may be considered that there exists an
internal core attribute that returns the identifier of its base object.

There will never be two objects in a derived class having identical values in their
respective core attributes. Therefore, the objects of a derived class may be represented
either by way of their identifier or by way of their core attributes: there is a bijective
relationship between object identifiers and core attributes for each derived class.

A class is defined to be value-identifiable if its objects can be identified using a set of its
attributes that only can be values (not object identifiers) [Schewe et al., 1992]. In the
same way, we define a class as attribute-identifiable if its objects can be identified using



91

a set of its attributes (without type restriction). Derived classes are attribute-identifiable:
their objects can also be identified by their core attributes.

Therefore, the representation of the classes shown in the example of fig. 6.1 is the
following: from the class PEOPLE the class HOBBIES is defined in such a manner that an
object is generated for each different value in the set returned by the Hobbies property for
any object, carrying out a transformation of values into objects. In fig. 6.4 a
representation of the result obtained can be seen.

HOBBIES
oid Core Attributes Base Objects ... Name
h11 Tennis { p1, p3, p4} Tennis
h12 Football { p1} Football
h13 Driving { p1} Driving
h14 Reading { p2} Reading
h15 Chess { p2, p3, p4} Chess

Figure 6.4. Representation of the objects of the class HOBBIES.

If two objects of the class PEOPLE have some value in common in the set returned by the
Hobbies property, both of them will be base objects of the corresponding derived object
(generated from that value). In general, all the base objects from which the same values
for the core attributes are obtained are included in the set of base objects for the
corresponding derived object that is generated.

In fig. 6.5 the representation of the result obtained for the class HOBBIES’ is shown. The
identifier of the base object and the hobby name have been defined as core attributes. In
this way a new object is generated for each value in the set returned by the property
Hobbies in each one of the objects of the class PEOPLE.

HOBBIES’
oid Core Attributes Base Objects ... Name
h21 p1, Tennis p1 Tennis
h22 p1, Football p1 Football
h23 p1, Driving p1 Driving
h24 p2, Reading p2 Reading
h25 p2, Chess p2 Chess
h26 p3, Chess p3 Chess
h27 p3, Tennis p3 Tennis
h28 p4, Chess p4 Chess
h29 p4, Tennis p4 Tennis

Figure 6.5. Representation of the objects of the class HOBBIES’.

The class PEOPLE’ represented in fig. 6.6 has been defined by object-preserving
semantics, the only core attribute being the base object identifier.



92

PEOPLE’
oid Core Attributes Base Objects ... Hobbies’
p1 p1 p1 { h11, h12, h13}
p2 p2 p2 { h14, h15}
p3 p3 p3 { h15, h11}
p4 p4 p4 { h15, h11}

Figure 6.6. Representation of the objects of the class PEOPLE’.

The class MATCHES in fig. 6.7, has been defined by object-generating semantics by
object association. It corresponds to the possible Tennis or Chess matches that may be
defined between two different objects of PEOPLE’ with those hobbies; the order of the
players is irrelevant.

MATCHES
oid Core Attributes Base Objects ... Hobby Players
m1 h11, {p1, p3} h11, {p1, p3} h11 { p1, p3}
m2 h11, {p1, p4} h11, {p1, p4} h11 { p1, p4}
m3 h11, {p3, p4} h11, {p3, p4} h11 { p3, p4}
m4 h15, {p2, p3} h15, {p2, p3} h15 { p2, p3}
m5 h15, {p2, p4} h15, {p2, p4} h15 { p2, p4}
m6 h15, {p3, p4} h15, {p3, p4} h15 { p3, p4}

Figure 6.7. Representation of the objects of the class MATCHES.

6.2.3 Classes containing objects already generated

In previous systems, the most commonly used ways of sharing objects between derived
classes were the same as the ways of sharing objects between non-derived classes or
derived and non-derived classes, namely:

• Inheritance: defining a derived class as a subclass of a previously existing derived
class.

 
• Derivation: defining a new class with object-preserving semantics from another

derived class.

Usually, in order to generate new identifiers, Skolem functors are used [Hull et al.,
1991]; in general, a distinct Skolem functor is used for each new derived class. Given the
values of the set of core attributes, the functor generates a new object identifier: the
identifiers of new generated objects are function of the core attributes and the derived
class; therefore, derived classes defined by object-generating semantics can not share
objects with previously existing classes.

We propose to define the identifiers of the new objects only as function of their
respective core attributes. Thus, two different derived classes defined by object-
generating semantics can have objects in common without being related by inheritance or



93

derivation: having the same set of core attributes. Independently of their respective
names, attributes are uniquely identified in the data dictionary.

As mentioned in chapter 3, section 3.1.5, for simplicity, we assume that all properties in
the data dictionary have unique property names. To ensure uniqueness of properties, a
unique property identifier can be associated to each newly defined property; therefore,
two properties that have the same property name could thus be distinguished internally
based on their identifier.

Therefore, the generation of identifiers of objects in a derived class is not dependent
upon the derived class itself, it only depends on the core attributes selected.

For example, if a new derived class HOBBIES’’ representing the hobbies that are related
with people older than 20 is defined by object-generating semantics (its base class is the
class PEOPLE), it will contain a subset of the objects of class HOBBIES (fig. 6.4)
independently of which class have been defined before (HOBBIES’’ or HOBBIES), as
shown in fig. 6.8.

HOBBIES’’
oid Core Attributes Base Objects ... Name
h11 Tennis { p1, p4} Tennis
h12 Football { p1} Football
h13 Driving { p1} Driving
h15 Chess { p4} Chess

Figure 6.8. Representation of the objects of the class HOBBIES’’.

6.3 Definition of the objects in derived classes

6.3.1 Derived classes definition predicates

In order to define the derived classes, derived predicates can be defined in Prolog as part
of the corresponding DCM of an external schema definition system, as it is shown in this
section.

The definition of the derived classes has been carried out by means of the predicate
derivedClass ; in this predicate hobbies  corresponds to class HOBBIES, hobbies_  to
class HOBBIES’, etc. The creation of new objects is controlled by the predicate
newObject .

The definition of the class HOBBIES can be seen in fig. 6.9. For each object of the class
PEOPLE its set of hobbies is obtained (property hobbies); and for each one of the names
of its hobbies a new object is generated by the predicate newObject  (if not generated
before). In order to generate a new object it has to be given the derived class name (i.e.
hobbies ), the names -identifiers- of the core attributes that define de derived class (i.e.
coreAttNames([prop(hobbyName)]) ), the values of the core attributes defined (i.e.



94

coreAttValues([value(Name)]) ) and the set of base objects that take part in the
definition of the derived object (i.e. baseObjects([object(P)]) ).

derivedClass(hobbies,T) :-
classObject(people,P,T),
objectProperty(P,hobbies,set(Hs),T),
includedElement(value(Name),Hs),
newObject(hobbies,

coreAttNames([prop(hobbyName)]),

coreAttValues([value(Name)]) ,
baseObjects([object(P)]),T),

fail.
derivedClass(hobbies,_) :-

!.

Figure 6.9. Definition of objects of class HOBBIES.

The definition of the class HOBBIES’ can be seen in fig. 6.10. In this case, two core
attributes have been defined: the hobby name, and the object of class PEOPLE where this
hobby is defined (i.e. coreAttNames([prop(hobbyPer),prop(hobbyName)]) ).

derivedClass(hobbies_,T) :-
classObject(people,P,T),
objectProperty(P,hobbies,set(Hs),T),
includedElement(value(Name),Hs),
newObject(hobbies_,

coreAttNames([prop(hobbyPer),prop(hobbyName)]),
coreAttValues([object(P),value(Name)]),
baseObjects([object(P)]),T),

fail.
derivedClass(hobbies_,_) :-

!.

Figure 6.10. Definition of objects of class HOBBIES’.

The class HOBBIES’’ represented in fig. 6.8 is defined in fig. 6.11. As can be seen there,
with regard to the core attributes used, the definition of this class is the same as the
definition of class HOBBIES in fig. 6.10. Thus, the same object identifiers as before are
generated.

derivedClass(hobbies__,T) :-
classObject(people,P,T),
objectProperty(P,age,value(Age),T),
Age > 20,
objectProperty(P,hobbies,set(Hs),T),
includedElement(value(Name),Hs),
newObject(hobbies,

coreAttNames([prop(hobbyName)]),

coreAttValues([value(Name)]) ,
baseObjects([object(P)]),T),

fail.
derivedClass(hobbies__,_) :-

!.

Figure 6.11. Definition of objects of class HOBBIES’’.

The class PEOPLE’ is defined by object-preserving semantics. Its definition can be seen in
fig. 6.12. In this case, the only core attribute defined is the associated object of its base
class PEOPLE; therefore, the same object identifier is used for the corresponding object
of the new class.



95

derivedClass(people_,T) :-
classObject(people,P,T),
newObject(people_,

coreAttNames([prop(person)]),
coreAttValues([object(P)]),
baseObjects([object(P)]),T),

fail.
derivedClass(people_,_) :-

!.

Figure 6.12. Definition of objects of class PEOPLE’.

The definition of class MATCHES can be seen in fig. 6.13.

derivedClass(matches,T) :-
classObject(hobbies,H,T),
objectProperty(H,name,value(Name),T),
includedElement(value(Name),

[value(tennis),value(chess)]),
classObject(people_,P1,T),
objectProperty(P1,hobbies_,set(Hs1),T),
includedElement(object(H),Hs1),
classObject(people,P2,T),
P1 <> P2,
objectProperty(P2,hobbies_,set(Hs2),T),
includedElement(object(H),Hs2),
newObject(matches,

coreAttNames([prop(hobby),prop(players)]),
coreAttValues([object(H),

set([object(P1),object(P2)])]),
baseObjects([object(H),

set([object(P1),object(P2)])]),T),
fail.

derivedClass(matches,_) :-
!.

Figure 6.13. Definition of objects of class MATCHES.

6.3.2 Definition of properties of derived objects

The properties of the derived objects are defined from the base objects and the core
attributes using the predicate objectProperty . The base objects and core attributes are
accessible through predicates from the identifier of the derived object. In fig. 6.14, some
examples of object property definition for classes HOBBIES (i) and MATCHES (ii , iii ) can
be seen.

objectProperty(H,hobbyName,N,T) :-
classObject(hobbies,H,T),
objectCoreAttributes(H,[N],T).

objectProperty(M,hobby,H,T) :-
classObject(matches,M,T),
objectBaseObjects(M,[H|_],T).

objectProperty(M,players,Ps,T) :-
classObject(matches,M,T),
objectBaseObjects(M,[_,Ps],T).

Figure 6.14. Definition of properties of derived objects.

i)

ii )

iii )



96

6.3.3 Kinds of derivation relationships

The base objects of a derived object are all those objects upon which it is defined. The
set of objects that participate in the definition of the identity of a derived object is a
subset of its set of base objects. An example of this is given in figs. 6.15 (representation)
and 6.16 (definition): the class PEOPLE’’ is defined with the property Hobbies’ defined as
was made before for the class PEOPLE’, and also the property OtherHobbies, which
relates each person with the names of hobbies which the person in question does not
practise but are practised by other people who have some hobby in common with that
person. This class is defined by object-preserving semantics from the class PEOPLE’, its
only core attribute being the identifier of the object of the base class from which it
receives its identity.

PEOPLE’’
oid Core Attributes Base Objects ... Hobbies’ OtherHobbies
p1 p1 p1, {p3, p4}, { h15} { h11, h12, h13} {Chess}
p2 p2 p2, {p3, p4}, { h11} { h14, h15} {Tennis}
p3 p3 p3, {p1, p2}, { h12,

h13, h14}
{ h15, h11} {Footbal,Driving,

Reading}
p4 p4 p4, {p1, p2}, { h12,

h13, h14}
{ h15, h11} {Footbal,Driving,

Reading}

Figure 6.15. More than one base object by object-preserving semantics.

For the definition of the class PEOPLE’’, each derived object is related to the object from
which it receives its identity and also to the objects that participate in the definition of its
properties.

derivedClass(people__,T) :-
classObject(people_,P,T),
newObject(people__,coreAttributes([object(P)]),

baseObjects([object(P)]),T),
fail.

derivedClass(people__,T) :-
classObject(people_,P1,T),
objectProperty(P1,hobbies_,set(Hs1),T),
classObject(people_,P2,T),
P1 <> P2,
objectProperty(P2,hobbies_,set(Hs2),T),
intersection(Hs1,Hs2,[_|_]),
difference(Hs2,Hs1,Hs3),
newObject(people__,

coreAttNames([prop(person)]),
coreAttValues([object(P1)]),
baseObjects([object(P1),set([object(P2)]),

set(Hs3)]),T),
fail.

derivedClass(people__,_) :-
!.

Figure 6.16. Definition of objects of class PEOPLE’’.



97

The derivation relationship establishes the correspondence between the base objects and
the objects of the derived class. Some of the base objects participate in the formation of
the identity of the derived objects: the values as well as the identifiers of the objects
returned by the properties that form the core attributes are obtained from a subset of the
base objects. Some base objects are only used in order to define properties of the derived
objects. Therefore, two kinds of derivation relationship exist: derivation of identity and
derivation of value. A base class is related through a derivation relationship of identity
to a derived class if the objects of the base class participate in the definition of the
identity of the objects of the derived class, a derivation relationship of value existing
between a base class and a derived class only if the objects of the base class do not
participate in the definition of the identity of the derived objects.

PEOPLE’

Hobbies’()

HOBBIES

Name()
Identity
derivation

Aggregation

Value
derivation

Logical
association

p1

h11

h12

h13

h15

oid

Derived class

Object

a)

b)

PEOPLE’’
Hobbies’()

OtherHobbies()

p1

p3

p4

Figure 6.17. Kinds of derivation relationship.

An example of these two kinds of relationship is shown in fig. 6.17 for the definition of
the class PEOPLE’’ represented in fig. 6.15. In fig. 6.17.a these relationships are depicted
on a class level, and in fig. 6.17.b on occurrence level for a derived object.

In addition to the derivation relationships mentioned, in fig. 6.17 there is an explicit
representation of the relationship expressed by way of the conditions defined in order to
associate an object of the class PEOPLE’ with the objects of the class HOBBIES upon
whose basis the property OtherHobbies is defined -distinct from those already related
through the aggregation relationship. This relationship is termed logical association.

6.4 Transmission of modifications

6.4.1 Dynamic derivation relationship

Adapting the definitions of “static view” and “dynamic view” made by Gottlob, Paolini &
Zicari [Gottlob et al., 1988], a static derivation relationship is defined between the set
of base classes and a derived class, and establishes the correspondence between the base



98

objects and the derived objects. The derived class defined by a static derivation
relationship is a static derived class.

A dynamic derivation relationship is made up of a static derivation relationship and a
translator or update policy that determines how to transmit the modifications that are
made to the objects of the derived class into modifications to the objects in the base
class. The derived class defined by a dynamic derivation relationship is a dynamic
derived class. In most of the cases, the modifications made to the objects of derived
classes may be transmitted in various manners to the objects of the base classes, some
such manners possibly bringing about side-effects.

6.4.2 Connection between base and derived objects

In order to transmit the modifications from the objects in the derived classes to the
objects in the base classes upon which those derived classes are defined a connection
must exist between them, in such a way that, given a derived object, the base objects
upon whose basis that derived object has been defined are obtained. This connection is
the derivation relationship of identity and value presented in section 6.3.3.

If the definition of the derived classes is carried out exclusively by means of object-
preserving semantics, the base objects related by way of derivation of identity are
obtained directly, with no need to use additional data structures to implement this
relationship [Scholl & Schek, 1991; Kim & Kelley, 1995; Ra & Rundensteiner, 1995].

In the system proposed by Kifer, Kim & Sagiv [Kifer et al., 1992], this limitation is given
more flexibility by defining a new object-generation mechanism where the core attributes
may only be identifiers of objects. By using this identifier generation mechanism direct
access is gained to the base object identifiers upon which the identity depends.

In none of the mentioned cases is there access to the base objects related exclusively
through a derivation relationship of value; for this reason the modifications that affect
these objects cannot be transmitted. The set of base objects from which a derived object
is defined contains the set of objects that participate in the generation of the identifier. If
we only take the latter set into consideration, we will not have all the information
available which is necessary to access all the base objects that take part in the definition
of the derived object.

Regarding the problem of the transmission of modifications, the solutions which are put
forward by other authors (automatic transmission limiting the definition of the derived
classes, and transmission of modifications through methods of the derived classes) were
presented in chapter 2, section 2.3.5. In the next section, our proposal is presented:
transmission of modifications through the derivation relationship.

6.4.3 Transmission of modifications through the derivation relationship

Derived classes are defined directly or indirectly over non-derived classes. In a schema
evolution environment it is sometimes necessary to change the definition of the classes in
such a way that derived classes become non-derived classes and vice-versa. If the



99

transmission of modifications from a derived class to its base classes has been defined in
the methods of the derived class (as in the approaches of section 2.3.5.2) and it is
decided to redefine this derived class as a non-derived class, it will be necessary to
modify the methods of the derived classes. In such a context, if a derived class becomes
non-derived, it is important that only the derivation relationships between the classes
must change -not the classes themselves. Thus, our approach is to define the
transmission of modifications outside the class: in the derivation relationship.

The derivation relationship defines the correspondence that exists between the base
objects and the derived objects. The transmission of modifications between base objects
and derived objects (in both directions) is also defined in the derivation relationship.

The modifications of base objects or derived objects cause a change in the relationships
that are initially established between them. For each of the methods of the base classes or
the derived class which carries out modifications (modification of property values,
creation or deleting of objects), the way in which the modifications in question affect the
various elements that participate in the derivation relationship must be defined. Such
definition is made in the derivation relationship. For each method of modification of the
base classes or the derived class, an associated operation is defined in the derivation
relationship which is run each time the corresponding method is used, each modification
method having a defined operation consistency relation [Bratsberg, 1992] in the
derivation relationship, which is responsible for maintaining the consistency between the
base classes and the derived class.

Derivation

Derived class

a)

b)

Non-derived Class

HOBBIES
ChangeName()

Name()

PEOPLE

Hobbies()

HOBBIES
ChangeName()

Name()

ChangeName()

Name := NewName

Name := NewName

for all p of
PEOPLE in
baseObjects ...

Figure 6.18. Representation of a derived class.

In fig. 6.18 an example of such a proposal is presented. The derived class HOBBIES has
been defined from the non-derived class PEOPLE by way of the derivation relationship,
fig. 6.18.a, assuming that in the derived class HOBBIES a method ChangeName is defined
to change the value of the attribute Name; this method is defined the same way as in a
base class. In the derivation relationship an operation is defined that is associated with
ChangeName which carries out the transmission of the necessary modifications to the
values of Hobbies in the affected objects of PEOPLE, as well as the corresponding
changes in the relationship that is established between the base objects and the derived



100

object if any. Similarly, if there is a method that has been defined to change the value of
the attribute Hobbies in the base class PEOPLE, then in the derivation relationship the
ways in which the possible changes might affect objects of class HOBBIES are defined by
means of an operation. The class HOBBIES has the characteristics of a base class; yet, on
the other hand, its definition makes it derived.

In order to transform the class HOBBIES into a non-derived class, fig. 6.18.b, the only
part affected is that of derivation relationship but not the definition of its properties, i.e.
the method ChangeName.

A first version of the modification operations in the derivation relationship can be defined
automatically (following the criteria presented in section 2.3.5.1 “Automatic transmission
of modifications”); these operations can be further refined by the application
administrator.

The value of the core attributes can be modified. The result of modifying the core
attributes of an object will depend on the semantics of the modification operations as
defined in the associated operation consistency relations.

6.4.4 Operation consistency relations

The concept of operation consistency relation set out by Bratsberg in [Bratsberg, 1992]
has been adapted to our environment, fulfilling the initially defined requirements.

In [Bratsberg, 1992] an approach to class evolution is put forward. The evolution of the
classes’ intensions and extensions are considered separately. If we consider the extension
alone, a class (origin) is related by means of extent propagation link with another class
(destination) if inserting a new object in the origin class means that it will also have to be
included in the destination class. The destination class contains all the objects of the
origin class, and may also contain further objects not added in the origin class. The
objects in both classes may have common properties as well as properties particular to
each respective class.

Associated with the extent propagation link that unites two classes, for each one of the
classes attribute consistency relations are defined which describe all the attributes of one
class that are dependent on the attributes of the other. These relations may be either:
derivable if it is possible to obtain the attributes of one class from the attributes of the
other; or non-derivable if the attributes are dependent but cannot be derived. The
derivation relationships existing between the attributes define the manner of transmission
of modifications between classes. In [Monk, 1994] a similar approach is taken
exclusively in the case of derivable attributes.

The operation consistency relations are defined as a means of implementing the attribute
consistency relations, in order to maintain the consistency when the derived attributes are
materialised -that is to say, when the base attributes and the derived attributes happen to
be stored separately. They also present an alternative to the attribute consistency
relations in order to maintain the consistency between the objects of the base class
without describing the dependencies between the attributes. This second focus of



101

operation consistency relations has been considered in the present paper -not at
implementation level, but on a conceptual level only.

6.5 Conclusions

The definition of derived classes by object-preserving and object-generating semantics
makes it possible to offer a new interface to previously existing objects or to carry out
sophisticated re-organisations of existing information: transforming values into objects,
aggregating objects to form a new concept. In order to carry out this kind of
transformations the identifiers of the new objects have to be generated from identifiers of
other objects as well as from values of attributes. This fact, already pointed out by other
authors, has been further studied in this chapter.

In some cases, derived classes defined with object-generating semantics have objects in
common between them. In previous systems, the only way of sharing these objects was
to define inheritance relationships between the classes. A mechanism of generation of
object identifiers has been proposed that avoids this requirement.

The derivation relationship is defined between a derived class and the set of its base
classes. It is used to integrate the derived classes into the data dictionary. The
connections between the derived objects and its respective base objects are defined using
derivation relationships of identity and of value.

The derivation relationship is also used to define the way of transmission of
modifications between derived classes and their respective base classes. In a schema
evolution environment it is sometimes necessary to change the definition of the classes in
such a way that derived classes become non-derived classes and vice-versa. In our
approach, the set of defined classes in the data dictionary does not change -all that
changes is its manner of definition: that is to say, the derivation relationships defined
among its classes.



102



103

7 External schemas in a schema-evolution environment

External schemas are derived from the database conceptual schema. They can be used to
simulate changes to the database conceptual schema. From our point of view, external
schemas can contain conceptual schema classes as well as derived classes directly or
indirectly defined from conceptual schema classes. Derived classes can be defined by
object-preserving or object-generating semantics. In this chapter, this fact is contrasted
to the interpretation of the concept of information capacity of object schemas made by
other authors.

Sometimes the final users’ information requirements change: they need new information
which cannot be derived from the information previously contained in the database. The
solution that we propose here is the definition of derived classes that can contain non-
derived information: partially derived classes. This possibility presents additional
problems which are dealt with in an integrated way in this chapter.

7.1 Information in object schemas

As pointed out in [Hull, 1986]: “A central issue in the area of databases is that of data
‘relativism’, that is, the general activity of structuring the same data in different ways.”
The problem of determining the relative information capacity of schemas has been
studied for different models (for relational schemas, both with and without key
dependencies [Hull, 1986]; for structures built recursively using some data constructs:
set, tuple and union of types [Hull & Yap, 1984; Abiteboul & Hull, 1988]; for a model
with complex types and constraints [Miller et al., 1994]). This topic has special
importance in the areas of definition of external schemas and integration of different
schemas. It has to be further studied for object-oriented models.

The information contained in an object schema is represented by its classes -by their
intension and extension. In object schemas, the concept of data relativism is
implemented defining external schemas and derived classes.

Studying this topic in depth is out of the scope of this work. It can be the topic of
another thesis. In this section, only a short introduction to it is made; specifically, only
the different possibilities of definition of derived classes in order to be included into
external schemas are studied.

7.1.1 Information in external schemas

External schemas are derived from the database conceptual schema. Each external
schema describes the part of the information of the conceptual schema appropriate to the
group of users to whom it is addressed.



104

An external schema may include classes defined in the conceptual schema just as it may
also contain derived classes -directly or indirectly defined on the basis of conceptual
schema classes- that, from our point of view, do not necessarily need to be included in
the conceptual schema. Derived classes are defined and included in the data dictionary.
The information represented with derived classes is already represented in the conceptual
schema.

The information contained in any external schema has to be also contained in the
conceptual schema. If an object is to be created or modified in an external schema, the
information necessary to obtain this object from the objects into the conceptual schema
has to be also added to the conceptual schema (problem of transmission of modifications,
see chapter 6, section 6.4).

7.1.2 Simulating conceptual schema transformations using external schemas

In [Tresch & Scholl, 1993] the use of external schemas in order to avoid re-organisations
of the conceptual schema was proposed in the following terms:

Schema transformations usually follow from evolutionary changes of the logical object
structure, that is, the database schema.

(...) Schema transformations can be classified according to their impact on the object
modelling capacity [Abiteboul & Hull, 1988]:

• Capacity preserving transformations do not affect the modelling possibilities. That
is, the same potential set of objects can be represented after transformation.

 
• Capacity reducing transformations reduce the modelling possibilities, such that with

these transformations, information is lost.
 
• Finally, capacity augmenting transformations enhance the information contents of

the schema.

(...) Can reorganisations always be avoided? In most cases: schema transformations that
are capacity preserving and capacity reducing can always be avoided. However, the latter
can produce some nondeterminism. Unfortunately, capacity augmenting transformations
require some propagation to the physical level.

(...) The transformation from an object-oriented modelling to a value-oriented modelling
of the same situation is an example of a capacity reducing transformation.

(...) Notice that object-to-value transformation is capacity reducing, and therefore, the
information is lost. (...) Consequently, the reverse transformation, value-to-object, is
capacity augmenting.

Transformations that are capacity augmenting cannot be simulated using views (external
schemas).

In these definitions, it can be seen that the information capacity of a schema is directly
related to the potential set of objects that can be represented in that schema. According
to them, an external schema can not include derived classes defined by object-generating
semantics.



105

In [Hull, 1986], different measures of relative information capacity are defined for
relational databases based in the following definition: “Suppose that P and Q are two
relational database schemata. Speaking informally, we say that Q dominates P if there
are functionsσ  andτ  such that (i)σ  maps the family of instances of P into the family of
instances of Q, (ii )τ  maps the family of instances of Q into the family of instances of P,
and (iii ) the composition ofσ  followed byτ  is the identity on the family of instances of
P.” The different measures of information capacity are obtained by making certain
restrictions on the mapsσ  andτ .

Therefore, the question is, can an external schema include a derived class defined by
object-generating semantics from classes included into the conceptual schema? Our
answer to this question, contrary to Tresch & Scholl [Tresch & Scholl, 1993], is “yes”.

In order to show the reasons for this answer, in fig. 7.1 an example of a definition of an
external schema is presented. It is based on the set of derived classes defined in the
previous chapter, in fig. 6.1. The non-derived class PEOPLE has the property Hobbies
which returns a set of names of hobbies for each object. From the class PEOPLE the
derived class HOBBIES is defined by object-generating semantics; this class represents the
existing hobbies in object form. The class PEOPLE’ has been defined by object-preserving
semantics from the class PEOPLE. This class represents the same concept represented by
the initial class PEOPLE but being adapted to the new representation provided by the
derived class HOBBIES with which it is related by way of an aggregation relationship.

PEOPLE’

Hobbies’() HOBBIES

Name()

PEOPLE

Hobbies()

Derivation

Aggregation

Non-derived class

Derived class

OBJECTSInheritance

External schema

Figure 7.1. Derived classes defined with object-preserving and object-generating
semantics.

Taking into account the schema composed by the class PEOPLE and the new external
schema composed by the classes PEOPLE’ and HOBBIES of fig. 7.1, if a restriction is
defined between the classes PEOPLE’ and HOBBIES in such a way that no objects can
exist in class HOBBIES without being related by aggregation with some object of class
PEOPLE’, the information capacity of both schemas is the same.



106

According to the definition of dominance of schemas [Hull, 1986] presented before, the
schemas of fig. 7.1 dominate each other, their information capacity is equivalent, the new
external schema is defined from the original schema, all its possible instances can be
obtained from the original schema; and all the information that can be contained in the
original schema can be obtained from the new external schema.

If such a restriction was not defined between the classes PEOPLE’ and HOBBIES, the
class HOBBIES could contain objects which would not have any relationship with values
of the property hobbies of class PEOPLE. Therefore, this schema would dominate the
original one, but the opposed affirmation would not be true.

Can an external schema be defined that only contains the class HOBBIES? This class has
been defined by object-generating semantics, each one of its objects is related with values
of attributes of objects included in its base class. If a new object is to be added to the
class HOBBIES, a new value has to be added to the corresponding attribute of some
object in class PEOPLE. If allowed, the update policy from class HOBBIES to class
PEOPLE will be defined in the operations of the derivation relationship (see chapter 6,
section 6.4.3). The modelling possibilities of a class are given by its structural part (the
set of attributes of its objects), and also by its behavioural part (the set of methods that
can be applied to its objects). Therefore, if the class HOBBIES is defined consistently, the
answer to this question is “yes”.

From our point of view, a class or a set of classes defined by object-generating semantics
does not necessarily contain more information than their base classes. We agree with
Tresch & Scholl [Tresch & Scholl, 1993] in that the operations upon the conceptual
schema in order to obtain an external schema must be capacity preserving or capacity
reducing. In other words, these transformations do not affect or reduce the modelling
possibilities of the conceptual schema. It will be this way if all the possible instances of
external schemas can be obtained from the instances of the conceptual schema by the
derivation relationship.

7.2 Non-derived information in classes

The base classes of a derived class may be other derived classes and/or non-derived
classes. The information contained in the non-derived classes is obtained directly from
the database. By applying the transitivity of the derivation relationship, the information of
the derived classes is calculated based on the data stored in the database, the derived
classes offering a new interface for such data. Along the derivation dimension, the
derived classes share the data stored in the database with their base classes. In no case
may the derived classes contain information that has not been obtained from their base
classes.

Sometimes the end-users’ information requirements change. They need new information
which cannot be derived from the information previously contained in the database; and
this new information must be incorporated into the database. Adding the new
information might either call for the definition of new non-derived classes or the
modification of previously existing classes so that it can be included. Modifying a



107

previously existing class may turn out to be troublesome in some cases, if new classes
have been derived from it or if there are programs which use it.

7.2.1 Partially derived classes

Conceptually, a solution to support schema evolution with some capacity augmenting
transformations consists in allowing derived classes that may contain non-derived
information -that is to say, partially derived classes. The non-derived information is
added to the information obtained from the base classes, thus avoiding the need to
modify the definition of other classes.

The definition of partially derived classes allows us to define derived classes through
capacity augmenting transformations from the base classes without the rest of the
existing classes being affected. The base classes and the partially derived classes share
the information that may be contained in both classes. The additional information that
cannot be contained in the base classes is contained exclusively in the non-derived parts
of the partially derived classes.

The intension of a class is made up of the set of properties of that class. The extension is
the set of occurrences of the class, the set of objects included in the class. In a partially
derived class non-derived elements may be defined in the class’s intension just as in its
extension.

7.2.1.1 Non-derived elements in the intension

Several systems allow non-derived elements to be defined in the intension of the partially
derived classes [Bertino, 1992; Ra & Rundensteiner, 1995; Naja & Mouaddib, 1995;
Bertino et al., 1996], partially derived classes with non-derived properties can be
defined. Such properties may be initialised with default values.

A further essential transformation is the possibility of modifying the type associated with
a property in such a way that it has a greater information capacity, i.e. a simple property
becomes multi-valued in the partially derived class, or a property defined as an integer in
the base class becomes real in the new class. The initial value of the generalised property
of the partially derived class’s objects is the value obtained from the base objects. This
information may be extended at a later stage. The non-derived information defined in the
intension must be stored somewhere for each one of the occurrences of the new defined
class.

The ability to define partially derived classes with non-derived properties simplifies the
execution of some schema evolution operations but, as we will shown in the following
point, there are requirements of evolution which are not catered for by this type of
transformation.

7.2.1.2 Non-derived elements in the extension

We come across an example of these additional requirements in [Bertino et al., 1996]: a
derived class is defined by object-preserving semantics which hides a constraint defined



108

in the corresponding base class. For this reason, the derived class could contain objects
that cannot be included in the base class. However, although the insertion of such objects
into the derived class looks valid to an user of the class, this insertion would not be
possible unless a capacity augmenting mechanism were in place.

We come across a similar situation in the example of fig. 7.1, where the class HOBBIES
has been defined by object-generating semantics from the property Hobbies of the class
PEOPLE. By way of this transformation the representation of the hobby concept has
changed. It has turned from the value of an object’s multi-valued property into an object.
Having the hobby concept represented as a value, we will only be able to store a hobby if
it happens to appear in an occurrence of PEOPLE. Once the class HOBBIES is defined, if
a restriction exists which specifies a similar dependency between the occurrences of the
class HOBBIES and the occurrences of the new class PEOPLE’, there will be no problem.
If such a restriction does not exist, or if an external schema is defined that contains the
class HOBBIES but not the class PEOPLE’, in these schemas it would be possible to insert
new objects in the class HOBBIES without being associated with any occurrence in the
class PEOPLE’. The problem is that such an operation is not supported by the base
schema.

7.2.1.3 Local extension of a partially derived class

The problem is the same in both cases: a class has been created by way of a
transformation which increases the information capacity with respect to the base classes.
So, the base classes cannot provide support for all the information that the new defined
class may contain. One solution to this problem consists in allowing the definition of
partially derived classes with non-derived local extensions. Based on the same term
defined by Bratsberg [Bratsberg, 1992], a partially derived class’s local extension
contains the non-derived elements that are defined both in the class’s intension as well as
its extension.

Let us consider a concrete example for the class HOBBIES. Let us suppose it were
necessary to deal with hobbies regardless of whether they were associated with some
occurrences of the class PEOPLE’. We define HOBBIES as a partially derived class. If we
introduce a new hobby whose core attribute value is Basketball, such an object will be
created in the local extension of the class HOBBIES. In fig. 7.2 it can be seen that this
object has been created and has no associated base objects.

HOBBIES
oid Core Attributes Base Objects ... Name
h11 Tennis { p1, p3, p4} Tennis
h12 Football { p1} Football
h14 Reading { p2} Reading
h15 Chess { p2, p3, p4} Chess
h16 Basketball Basketball
h13 Driving Driving

Figure 7.2. Representation of the class HOBBIES with non-derived objects.



109

If another final user modifies the objects in the class PEOPLE and it turns out that no
object remains that has an associated concrete hobby, the object of the class HOBBIES
corresponding to the hobby in question would cease to exist. If the class HOBBIES is
handled independently, this could be undesired behaviour. Let us assume that Driving
ceases to be a hobby of anybody. In fig. 7.2, it can be seen that the object in question has
not been eliminated from the class HOBBIES, but instead has moved to the local
extension (it has no associated base objects). In the transmission of the corresponding
modifications, the object-generated in the class HOBBIES has not been deleted, but,
rather, has been transformed into a non-derived object.

In the same way that a derived object may become non-derived (i.e. the object that
corresponds to Driving in the example), a non-derived object may become derived. If,
following a modification in the class PEOPLE, it turns out that Basketball is defined as the
value of the property Hobbies of one of the objects, a new object will not be generated in
the class HOBBIES but, instead the non-derived object will become derived, and
associated with its corresponding base objects.

The extension of a partially defined class is made up of the derived extension obtained
from the base classes and the local extension. The objects of the local extension may go
to form part of the derived extension; and the objects of the derived extension may pass
over to the local extension.

7.2.2 Extent propagation links

As pointed out in section 6.4.3 and 6.4.4, in [Bratsberg, 1992] an approach to class
evolution is put forward. The evolution of the classes’ intensions and extensions are
considered separately. If we consider the extension alone, a class (origin) is related by
means of extent propagation link with another class (destination) if inserting a new object
in the origin class means that it will also have to be included in the destination class. The
destination class contains all the objects of the origin class, and may also contain further
objects not added in the origin class. The objects in both classes may have common
properties as well as properties particular to each respective class.

If we consider the extension of the classes, the various possibilities which are allowed by
Bratsberg [Bratsberg, 1992] are set out in parts (a), (b) and (c) of fig. 7.3: i.e. in part (a)
class c1 is the destination of an extent propagation link whose origin is class c2. As can be
seen, class c1 contains all the extension of class c2, but not necessarily all its intension. In
the case depicted in part (d) extent propagation link cannot be used, since none of the
classes contains all the occurrences of the other class, although both classes possess
common elements.

In order to depict the situation in part (d) of fig. 7.3 with terminology resembling that
used in [Bratsberg, 1992] we define a new relation: the conditional extent propagation
link, which asserts that the occurrences of the origin class may become occurrences of
the destination class under certain conditions. This new relationship may also be defined
between classes related by means of extent propagation links shown in parts (a) and (b)
of fig. 7.3.



110

a) b)

c) d)

c1

c2

Intension

Extension

Extent
propagation
link

Conditional
extent
propagation
link

c1              c2 c1              c2

c1              c2 c1              c2

Figure 7.3. Extent propagation between classes.

The extent propagation links set out in [Bratsberg, 1992] define the flow of copies of
object identifiers between classes. For the derived classes defined by object-generating
semantics we extend this definition, along with the definition of the conditional extent
propagation link, so that instead of defining the flow of object identifiers, they define the
flow of information between classes. Our derivation relationship introduced in chapter 6,
defined between a derived or partially derived class and its base classes, corresponds to a
set of conditional extent propagation links. The conditional extent propagation links
define the flow of information from the base classes to the derived class and vice-versa.

7.3 A schema-evolution environment

By definition, the information contained in the external schemas has to be obtained from
the conceptual schema. The conceptual schema has to include all the non-derived classes
defined in the data dictionary, and it can also contain derived classes. In the cases in
which non-derived information (in the form of new non-derived classes or partially
derived classes) is required in order to satisfy the end-users’ new information
requirements, this information can not be included into an external schema without being
previously included into the conceptual schema.

7.3.1 Test environment

In the external schema design process, continually new non-derived information may be
required to be subsequently rejected; this means that the conceptual schema has to be
continually modified until a final version of the external schema is achieved.

In order to avoid the continual modification of the conceptual schema, the availability of
a test environment is very useful. In this environment, temporal external schemas can be
defined that include non-derived information without having the conceptual schema
affected.



111

When a temporal external schema is accepted by the end-users, this schema has to
become a real external schema: the conceptual schema has to be modified, if necessary,
in order to include the non-derived information of the new schema.

Therefore, the definition of partially-derived classes or new non-derived classes will only
affect the conceptual schema if the decision is made to include them in some external
schema, in other case, they will be exclusively defined in the test environment of the data
dictionary.

7.3.2 Evolution of the conceptual schema

Given the conceptual schema, all the external schemas defined over it, and a temporal
external schema with non-derived information, in order to transform the temporal
external schema into an external schema the following transformations have to be carried
out:

• The conceptual schema is modified in order to embody the non-derived information.
 
• The temporal external schema becomes an external schema, derived from the

conceptual schema: the non-derived information becomes derived.
 
• The previously existing external schemas are not affected by this transformation of the

conceptual schema.

The most immediate way of achieving this would be adding the new non-derived or
partially-derived classes to the conceptual schema, as it is made by Ra & Rundensteiner
[Ra & Rundensteiner, 1995] for derived classes with non-derived properties. But in this
solution, complex class hierarchies would be obtained with classes which are not strictly
necessary.

For example, in fig. 7.1 only the new derived classes PEOPLE’ and HOBBIES should be
included into the conceptual schema because they dominate the schema composed
exclusively by class PEOPLE; the class PEOPLE would become a derived class. In the
solution proposed by Ra & Rundensteiner, the class PEOPLE would also be included into
the conceptual schema.

As it has been shown in chapter 6, section 6.4.3, derived classes can be transformed
directly into non-derived classes and vice versa; the only element that has to be changed
is the derivation relationship.

In some cases, the classes that will have to be added to the conceptual schema will not be
classes belonging to the temporal external schema considered, but new classes defined
from classes previously existing in the conceptual schema as well as from classes in the
temporal external schema. All this process can be carried out manually, but we think that
most of it can be carried out automatically. This is one of ours topics of further study.



112

7.3.3 Non-side effect external schemas

The concept of non-side effect external schema (non-side effect view) is defined by
Gentile & Zicari [Gentile & Zicari, 1994] as an external schema (view) which is re-
computed dynamically so that conceptual schema modifications are (whenever possible)
“filtered out” from applications using the external schema (view).

In the system proposed by Gentile & Zicari, external schemas have to be transformed in
order to be adapted to the new conceptual schema obtained after the modifications. In
the system proposed in the present work, external schemas are always non-side effect;
even in this case, previously existing external schemas do not have to be modified after
changes in the conceptual schema have been carried out.

The classes included in external schemas are classes of the conceptual schema or classes
derived directly or indirectly from classes of the conceptual schema. If some class of the
conceptual schema, which is a base class of some derived class or is included in an
external schema has to be modified, a new class is defined and the previously existing
class is not affected by this modification. The only thing that can change is its definition,
it can become a derived class. If the class is no longer included into the conceptual
schema it will remain defined in the data dictionary. Therefore, the rest of classes defined
over it will not be affected by this change.

7.4 Conclusions

External schemas can contain derived classes defined by object-preserving as well as by
object-generating semantics.

Derived classes offer a new interface of access to the information contained in their base
classes. In a schema evolution environment we consider it necessary to be able to define
partially derived classes: derived classes which can also contain non-derived elements. If
some class with non-derived information needs to be incorporated into some external
schema, the non-derived information will have to be included into the conceptual
schema. The same derivation operations discussed in chapter 6 can be used to produce
partially derived classes.

Preceding systems of definition of derived classes [Bertino, 1992; Ra & Rundensteiner,
1995; Naja & Mouaddib, 1995; Bertino et al., 1996] only allow partially derived classes
to be defined by having non-derived elements in the intension: non-derived properties
may be defined. For this situation, a way of propagating the transformations to the
conceptual schema is presented in [Ra & Rundensteiner, 1995]. In the system proposed
here, partially derived classes can be defined with non-derived elements in the intension
as well as in the extension of the class.

Other papers on schema evolution [Skarra & Zdonik, 1986; Andany et al., 1991; Tresch,
1991; Tresch & Scholl, 1992; Monk & Sommerville, 1993; Brèche et al., 1995;
Ferrandina et al., 1995] offer such mechanisms as lazy conversion, or class or schema
versioning, with elements common to the derivation relationship; but they do not offer
the possibilities that derived and partially derived class definition affords.



113

In order to avoid unnecessary modifications of the conceptual schema the use of a test
environment for the definition of temporal external schemas has been proposed. When an
external schema with non-derived information is to be defined, the conceptual schema
has to be modified in order to include the non-derived information of the new schema.

External schemas defined in the environment presented here are non-side effect external
schemas, they are not affected by modifications carried out in the conceptual schema.



114



115

8 Conclusions

Given the importance and usefulness of having an external schema definition mechanism
in OODB, this thesis has gone deeply into this subject. A new external schema definition
methodology has been presented that fulfils the ANSI/SPARC three-level schema
architecture. Most of the concepts used in this methodology are not new -however, what
is new is the defined combination and also the consequent results.

8.1 Main results

The main contributions of this thesis are the following:

• Proposal of a new external schema definition methodology according to the
ANSI/SPARC framework, which in OODBs had not been taken into account. This
methodology considerably simplifies the process of definition of external schemas.
The defined methodology is not particular to any object oriented model, it uses
common concepts to most of the existing object oriented models.

 
• The new external schema definition methodology offers a solution to the problem of

integration of derived classes with the rest of the existing classes in object schemas.
Integration is made in two phases: first, into the data dictionary; then, into the defined
external schema. The solution put forward reduces the number of auxiliary classes
that must be generated in order to carry out the integration in respect to other
alternative solutions

 
• Definition of the new concepts of transformable and non-transformable classes.

Transformable classes can be automatically modified, hence avoiding the need to
explicitly define all the classes that we want to include into the external schema. It has
been shown how the transformable and non-transformable class concepts simplify the
external schema definition process.

 
• Study of the definition of classes with object-preserving and object-generating

semantics, in particular, study of the problem of generation of object identifiers. Both
object definition semantics are dealt with in an integrated way. New objects may be
defined from the association of previously existing objects, just as from values of
existing objects’ properties -transformation of values into objects. Unlike previous
works, a distinction has been made between the identifier generation mechanism and
the mechanism for maintaining the connection between the objects of the base classes
and the objects of the derived classes.

 



116

• A solution for the problem of transmission of modifications between base and derived
classes has been proposed. The solution that we have put forward is an adaptation to
our environment of the proposal made in [Bratsberg, 1992] which solves some of the
inconveniences of other alternatives. The derivation relationship contains the initial
definition of the objects of the derived class as well as a set of operation consistency
relations that define how the relationships between the base objects and the derived
objects change with the modification operations.

 
• In order to satisfy the end-user’s requirements of new information in a schema

evolution environment we have proposed the definition of partially derived classes:
classes that may contain derived information as well as non-derived information. The
base classes are updated with all the new information that they can contain arising out
of the partially derived classes. The partially derived classes may contain non-derived
information in the intension and moreover, unlike other systems, in the extension. The
objects of the partially derived classes may cease to be derived or become derived in
response to the modifications.

 
• The information contained in the external schemas must be a subset of the information

contained in the conceptual schema. If we want to include partially derived classes in
some external schema, the non-derived information contained in such classes must be
included in the conceptual schema -that is to say, the conceptual schema must evolve.
In order to avoid unnecessary modifications of the conceptual schema the use of a test
environment for the definition of temporal external schemas has been proposed.

 
• The definition of DCMs using Prolog in order to specify different aspects of OODBs

has been proposed. The result of the specification process using this technique is an
executable prototype of the system. The use of this technique has been proposed
mainly due to the difficulty of building prototypes of the mentioned elements over
commercial OODBs.

 

8.2 Future work

Some of the topics of interest for future work are as follows:

• Study the subsumption relationships between classes. Define a subsumes() function
for a specific object model, i.e. BLOOM.

 
• Study the problem of determining the relative information capacity for object-oriented

models, that is to say, study the subsumption relationships between object schemas.
 
• If some temporal external schema containing non-derived information (new non-

derived classes and/or partially derived classes) is to be defined as an external schema,
the conceptual schema has to be modified in order to embody the non-derived
information. Algorithms that automatically carry out this process are going to be
proposed.

 



117

• Extend the external schema definition methodology in order to adapt it to use the
concepts of richer object oriented models as BLOOM [Castellanos et al., 1992].

 



118

 



119

Appendix A. Conceptual schema definition DCM

The following is the source code of the conceptual schema definition DCM developed:

/*********************************************************************
**********************************************************************

CS_DEF.DAT
Input file.

**********************************************************************
*********************************************************************/

csdefine(type("person",[]))
csdefine(typeproperty("person","name",[type("string")]))
csdefine(typeproperty("person","address",[setclass("addresses")]))
csdefine(type("employee",["person"]))
csdefine(typeproperty("employee","category",[type("string")]))
csdefine(typeproperty("employee","salary",[type("integer")]))
csdefine(type("address",[]))
csdefine(typeproperty("address","city",[type("string")]))
csdefine(class("people","person",[]))
csdefine(class("clients","person",["people"]))
csdefine(class("employees","employee",["people"]))
csdefine(class("addresses","address",[]))

/*********************************************************************
**********************************************************************

CS.DEF
Output file.

**********************************************************************
*********************************************************************/

csproperty(50,"name",86)
csproperty(51,"address",87)
csproperty(52,"category",88)
csproperty(53,"salary",89)
csproperty(54,"city",90)
cstype(37,"any",[],[],77)
cstype(38,"real",[37],[],78)
cstype(39,"integer",[38],[],79)
cstype(40,"character",[39],[],80)
cstype(41,"string",[37],[],81)
cstype(43,"person",[37],[51,50],83)
cstype(44,"employee",[43],[51,50,53,52],84)
cstype(45,"address",[37],[54],85)
cstypeproperty(43,50,[t(41)],91)
cstypeproperty(43,51,[c_(49)],92)
cstypeproperty(44,52,[t(41)],93)
cstypeproperty(44,53,[t(39)],94)
cstypeproperty(45,54,[t(41)],95)
cstypeproperty(44,50,[t(41)],112)
cstypeproperty(44,51,[c_(49)],112)
csclass(42,"objects",37,[],[49,46],82)
csclass(46,"people",43,[42],[48,47],96)
csclass(47,"clients",43,[46],[],97)
csclass(48,"employees",44,[46],[],98)
csclass(49,"addresses",45,[42],[],99)



120

/*********************************************************************
**********************************************************************

CS_GLDOM.PRO
**********************************************************************
*********************************************************************/

global domains

file = idFile; timeFile; objectFile

id = integer
idList = id*
time = integer

domain = t(id); c(id); t_(id); c_(id)
signature = domain*
signatures = signature*

propertyName = symbol
typeName = symbol
className = symbol



121

/*********************************************************************
**********************************************************************

CS_GLPRE.PRO
**********************************************************************
*********************************************************************/

global predicates

/*********************************************************************
Access to base facts.

*********************************************************************/
propertyName(id,propertyName,time) -

(i,i,i)(i,o,i)(o,i,i)(o,o,i)

typeName(id,typeName,time) -
(i,i,i)(i,o,i)(o,i,i)(o,o,i)

typeSupertypes(id,idList,time) -
(i,i,i)(i,o,i)(o,i,i)(o,o,i)

typeAllProperties(id,idList,time) -
(i,i,i)(i,o,i)(o,i,i)(o,o,i)

typePropertyAtT(id,id,time) -
(i,i,i)(i,i,o)(i,o,i)(i,o,o)
(o,i,i)(o,i,o)(o,o,i)(o,o,o)

typeProperty(id,id,time) -
(i,i,i)(i,o,i)(o,i,i)(o,o,i)

typePropertySignature(id,id,signature,time) -
(i,i,i,i)(i,i,o,i)(i,o,i,i)(i,o,o,i)
(o,i,i,i)(o,i,o,i)(o,o,i,i)(o,o,o,i)

newTypeProperty(id,id,signature,time) -
(i,i,i,i)

className(id,className,time) -
(i,i,i)(i,o,i)(o,i,i)(o,o,i)

classSuperclasses(id,idList,time) -
(i,i,i)(i,o,i)(o,i,i)(o,o,i)

classType(id,id,time) -
(i,i,i)(i,o,i)(o,i,i)(o,o,i)

assertzTmpIdList(idList) -
(i)

retractTmpIdList(idList) -
(i)(o)

/*********************************************************************
Inconsistency verification.

*********************************************************************/

inconsistency(time) -
(i)

inconsistency2(time) -
(i)

/*********************************************************************
Signatures.

*********************************************************************/

signatureExtrictSubdomains(signature,signature,time) -
(i,i,i)

/*********************************************************************
Types.

*********************************************************************/

supertype(id,id,time) -
(i,i,i)

directSupertype(id,id,time) -
(i,i,i)

indirectSupertype(id,id,time) -
(i,i,i)

supertypeOfSomeOne(id,idList,time) -
(i,i,i)

redundantSupertypes(idList,time) -
(i,i)

typeInheritanceWithSomeOne(id,idList,time) -
(i,i,i)

typeInheritance(id,id,time) -
(i,i,i)

commonTypeProperty(id,id,id,time) -



122

(i,i,i,i)
sameTypeOrSubtype(id,idList,time) -

(i,i,i)
deriveTypeProperties(id,idList,time) -

(i,o,i)
definedLowestCommonSupertype(id,id,time) -

(i,i,i)
lowestCommonSupertype(id,id,id,time) -

(i,i,i,i)(i,i,o,i)
greatestCommonSubtype(id,id,id,time) -

(i,i,i,i)(i,i,o,i)

/*********************************************************************
Classes.

*********************************************************************/

superclass(id,id,time) -
(i,i,i)

directSuperclass(id,id,time) -
(i,i,i)

indirectSuperclass(id,id,time) -
(i,i,i)

superclassOfSomeOne(id,idList,time) -
(i,i,i)

redundantSuperclasses(idList,time) -
(i,i)

classInheritanceWithSomeOne(id,idList,time) -
(i,i,i)

classInheritance(id,id,time) -
(i,i,i)

commonClassProperty(id,id,id,time) -
(i,i,i,i)

classesTypes(idList,idList,time) -
    (i,o,i)

deriveClassSubclasses(id,idList,time) -
(i,o,i)

definedLowestCommonSuperclass(id,id,time) -
(i,i,i)

lowestCommonSuperclass(id,id,id,time) -
(i,i,i,i)(i,i,o,i)

greatestCommonSubclass(id,id,id,time) -
(i,i,i,i)(i,i,o,i)

/*********************************************************************
   System primitives
*********************************************************************/

    /*-----------------------------------------------------
    Generate system identifier.
    -------------------------------------------------------*/

generateId(id) -
(o)

    /*-----------------------------------------------------
    Get system time.
    -------------------------------------------------------*/

now(time) -
(o)

/*********************************************************************
Id lists.

*********************************************************************/

    /*-----------------------------------------------------
    An Id is member of a list of Ids.
    -------------------------------------------------------*/

memberId(id,idList) -
(i,i)

    /*-----------------------------------------------------
    Add a new Id to an Id list only if it is not included
    yet.
    -------------------------------------------------------*/

addNewId(idList,id,idList) -
(i,i,o)

    /*-----------------------------------------------------
    Intersection of two lists of identifiers.
    -------------------------------------------------------*/

intersectionIdList(idList,idList,idList) -
(i,i,o)



123

    /*-----------------------------------------------------
Equal lists.

    -------------------------------------------------------*/
equalIdList(idList,idList) -

(i,i)

    /*-----------------------------------------------------
    All the elements of a list are contained in another
    list.
    -------------------------------------------------------*/

allContainedIdList(idList,idList) -
(i,i)



124

/*********************************************************************
**********************************************************************

CS.PRO
Conceptual Schema Definition.

**********************************************************************
*********************************************************************/

code = 4096

include "cs_gldom.pro"

domains
supertypes = typeName*
superclasses = className*

domainName = type(typeName);
  class(className);
  settype(typeName);
  setclass(className)

signatureName = domainName*

csDefinitionTerm = type(typeName,supertypes);
        typeProperty(typeName,propertyName,signatureName);
        class(className,typeName,superclasses);
        consulterror;
        error

database
tmpIdList(idList)

error(csDefinitionTerm)

csDefine(csDefinitionTerm)

csDefineClassName(id,className)
csDefineTypeName(id,typeName)
csDefineClass(id,className,id,idList,time)
csDefineType(id,typeName,idList,time)

csProperty(id,propertyName,time)
csType(id,typeName,idList,idList,time)
csTypeProperty(id,id,signature,time)
csClass(id,className,id,idList,idList,time)

include "cs_glpre.pro"

predicates
conceptualSchemaDefinition
systemComponentDefinition
nameDefinition
typeDefinition
supertypeNames2Ids(supertypes,idList)
typeRoot(idList,idList)
propertyDefinition
typePropertyDefinition
signatureNames2Ids(signatureName,signature)
classDefinition
superclassNames2Ids(superclasses,idList)
classRoot(idList,idList)
removeDefinitionTerms
deriveDirectSubclassRelationship
deriveAllTypeProperties

goal
makewindow(1,7,7,"",0,0,25,80),

write("\n  Defining the Conceptual Schema..."),
conceptualSchemaDefinition,

write("\n\n\n  To finish press the space bar, please."),
readchar(_),
removewindow.

clauses



125

/*********************************************************************
Access to base facts.

**********************************************************************/

propertyName(IdP,Property,T) :-
csProperty(IdP,Property,T1),
T1 <= T.

typeName(IdT,Type,T) :-
csDefineType(IdT,Type,_,T1),
T1 <= T.

typeSupertypes(IdT,IdTs,T) :-
csDefineType(IdT,_,IdTs,T1),
T1 <= T.

typeAllProperties(IdT,IdPs,T) :-
csType(IdT,_,_,IdPs,T1),
T1 <= T.

typePropertyAtT(IdT,IdP,T) :-
csTypeProperty(IdT,IdP,_,T).

typeProperty(IdT,IdP,T) :-
csTypeProperty(IdT,IdP,_,T1),
T1 <= T.

typePropertySignature(IdT,IdP,Signature,T) :-
csTypeProperty(IdT,IdP,Signature,T1),
T1 <= T.

newTypeProperty(IdT,IdP,Signature,T) :-
assertz(csTypeProperty(IdT,IdP,Signature,T)),
!.

className(IdC,Class,T) :-
csDefineClass(IdC,Class,_,_,T1),
T1 <= T.

classSuperclasses(IdC,IdCs,T) :-
csDefineClass(IdC,_,_,IdCs,T1),
T1 <= T.

classType(IdC,IdT,T) :-
csDefineClass(IdC,_,IdT,_,T1),
T1 <= T.

assertzTmpIdList(IdList) :-
assertz(tmpIdList(IdList)),
!.

retractTmpIdList(IdList) :-
retract(tmpIdList(IdList)),
!.

/*********************************************************************
Conceptual Schema definition.

**********************************************************************/

conceptualSchemaDefinition :-
assertz(error(consulterror)),
consult("cs_def.dat"),
retract(error(consulterror)),

systemComponentDefinition,
nameDefinition,
typeDefinition,
propertyDefinition,
typePropertyDefinition,
classDefinition,
not(error(_)),
now(T),
not(inconsistency(T)),
deriveDirectSubclassRelationship,
deriveAllTypeProperties,
now(T2),
not(inconsistency2(T2)),

removeDefinitionTerms,
save("cs.def"),
write("\n\n  Conceptual Schema defined."),
!.

conceptualSchemaDefinition :-
error(consulterror),
write("\n\n  DE000: Sintax error in the input file."),
!.



126

conceptualSchemaDefinition :-
!.

    /*-----------------------------------------------------
    Remove temporal definition terms in order to
    mantain just the Conceptual Schema definition terms.
    -------------------------------------------------------*/

removeDefinitionTerms :-
retract(csDefine(_)),
fail.

removeDefinitionTerms :-
retract(csDefineClassName(_,_)),
fail.

removeDefinitionTerms :-
retract(csDefineTypeName(_,_)),
fail.

removeDefinitionTerms :-
retract(csDefineClass(_,_,_,_,_)),
fail.

removeDefinitionTerms :-
retract(csDefineType(_,_,_,_)),
fail.

removeDefinitionTerms :-
!.

/*********************************************************************
   System components definition.
**********************************************************************/

systemComponentDefinition :-
now(T1),
generateId(IdA),
assertz(csDefineType(IdA,any,[],T1)),
assertz(csDefineTypeName(IdA,any)),

now(T2),
generateId(IdR),
assertz(csDefineType(IdR,real,[IdA],T2)),
assertz(csDefineTypeName(IdR,real)),

now(T3),
generateId(IdI),
assertz(csDefineType(IdI,integer,[IdR],T3)),
assertz(csDefineTypeName(IdI,integer)),

now(T4),
generateId(IdCh),
assertz(csDefineType(IdCh,character,[IdI],T4)),
assertz(csDefineTypeName(IdCh,character)),

now(T5),
generateId(IdS),
assertz(csDefineType(IdS,string,[IdA],T5)),
assertz(csDefineTypeName(IdS,string)),

now(T6),
generateId(IdCl),
assertz(csDefineClass(IdCl,objects,IdA,[],T6)),
assertz(csDefineClassName(IdCl,objects)),
!.

/*********************************************************************
Temporal definition of names, this way there can be crossed
references.

**********************************************************************/

nameDefinition :-
csDefine(type(Name,A_)),
not(error(_)),
assertz(error(type(Name,A_))),
not(csDefineTypeName(_,Name)),
retract(error(type(Name,A_))),
generateId(IdT),
assertz(csDefineTypeName(IdT,Name)),
fail.

nameDefinition :-
csDefine(class(Name,A_,B_)),
not(error(_)),
assertz(error(class(Name,A_,B_))),



127

not(csDefineClassName(_,Name)),
retract(error(class(Name,A_,B_))),
generateId(IdC),
assertz(csDefineClassName(IdC,Name)),
fail.

nameDefinition :-
error(Term),
write("\n\n  DE001: Type or class name already defined in:\n  ",Term),
retract(error(Term)),
assertz(error(error)),
!.

nameDefinition :-
!.

/*********************************************************************
Initial Type definition.

**********************************************************************/

typeDefinition :-
csDefine(type(Name,Supertypes)),
csDefineTypeName(IdT,Name),
not(error(_)),
assertz(error(type(Name,Supertypes))),

supertypeNames2Ids(Supertypes,IdTsTMP),
typeRoot(IdTsTMP,IdTs),

retract(error(type(Name,Supertypes))),
now(T),
assertz(csDefineType(IdT,Name,IdTs,T)),
fail.

typeDefinition :-
error(type(_,_)),
error(Term),
write("\n\n  DE002: Supertype name not defined in:\n  ",Term),
!.

typeDefinition :-
!.

    /*-----------------------------------------------------
    Conversion from a list of supertype names to a list
    of Ids.
    -------------------------------------------------------*/

supertypeNames2Ids([],[]) :-
!.

supertypeNames2Ids([Name|L1],[IdT|L2]) :-
csDefineTypeName(IdT,Name),
supertypeNames2Ids(L1,L2).

    /*-----------------------------------------------------
    Add the type "any" as the parent of a type if it
    hasn't any one specified.
    -------------------------------------------------------*/

typeRoot([],[IdA]) :-
csDefineTypeName(IdA,any),
!.

typeRoot(IdTs,IdTs) :-
!.

/*********************************************************************
Initial Property definition.

**********************************************************************/

propertyDefinition :-
csDefine(typeproperty(_,Name,_)),
not(csProperty(_,Name,_)),
now(T),
generateId(IdP),
assertz(csProperty(IdP,Name,T)),
fail.

propertyDefinition :-
!.

/*********************************************************************
Initial Type Property definition.

**********************************************************************/

typePropertyDefinition :-
csDefine(typeproperty(Type,Property,Signature)),
not(error(_)),



128

assertz(error(typeproperty(Type,Property,Signature))),
csDefineTypeName(IdT,Type),
csProperty(IdP,Property,_),
signatureNames2Ids(Signature,IdSs),

retract(error(typeproperty(Type,Property,Signature))),
now(T),
assertz(csTypeProperty(IdT,IdP,IdSs,T)),
fail.

typePropertyDefinition :-
error(typeproperty(_,_,_)),
error(Term),
write("\n\n  DE003: Type or class not defined in:\n  ",Term),
!.

typePropertyDefinition :-
!.

    /*-----------------------------------------------------
    Conversion from a signature list of domain names to
    a signature list of Ids.
    -------------------------------------------------------*/

signatureNames2Ids([],[]) :-
!.

signatureNames2Ids([type(Name)|L1],[t(IdT)|L2]) :-
csDefineTypeName(IdT,Name),
signatureNames2Ids(L1,L2).

signatureNames2Ids([settype(Name)|L1],[t_(IdT)|L2]) :-
csDefineTypeName(IdT,Name),
signatureNames2Ids(L1,L2).

signatureNames2Ids([class(Name)|L1],[c(IdC)|L2]) :-
csDefineClassName(IdC,Name),
signatureNames2Ids(L1,L2).

signatureNames2Ids([setclass(Name)|L1],[c_(IdC)|L2]) :-
csDefineClassName(IdC,Name),
signatureNames2Ids(L1,L2).

/*********************************************************************
Initial Class definition.

**********************************************************************/

classDefinition :-
csDefine(class(Class,Type,Superclasses)),
csDefineClassName(IdC,Class),
not(error(_)),
assertz(error(class(Class,Type,Superclasses))),

csDefineTypeName(IdT,Type),
superclassNames2Ids(Superclasses,IdCsTMP),
classRoot(IdCsTMP,IdCs),

retract(error(class(Class,Type,Superclasses))),
now(T),
assertz(csDefineClass(IdC,Class,IdT,IdCs,T)),
fail.

classDefinition :-
error(class(_,_,_)),
error(Term),
write("\n\n  DE004: Type or superclass name not defined in:\n  ",Term),
!.

classDefinition :-
!.

    /*-----------------------------------------------------
    Conversion from a list of superclass names to a
    list of Ids.
    -------------------------------------------------------*/

superclassNames2Ids([],[]) :-
!.

superclassNames2Ids([Name|L1],[IdC|L2]) :-
csDefineClassName(IdC,Name),
superclassNames2Ids(L1,L2).

    /*-----------------------------------------------------
    Add the class "objects" as the parent of a type if
    it hasn't any one specified.
    -------------------------------------------------------*/

classRoot([],[IdCl]) :-
csDefineClassName(IdCl,objects),
!.

classRoot(IdCs,IdCs) :-
!.



129

/*********************************************************************
Subclass relationship derivation.

**********************************************************************/

deriveDirectSubclassRelationship :-
csDefineClass(IdC,Class,IdT,IdUs,T),
now(T1),
deriveClassSubclasses(IdC,IdDs,T1),
assertz(csClass(IdC,Class,IdT,IdUs,IdDs,T)),
fail.

deriveDirectSubclassRelationship :-
!.

/*********************************************************************
Type properties derivation.

**********************************************************************/

deriveAllTypeProperties :-
csDefineType(IdT,Type,IdTs,T),
now(T1),
deriveTypeProperties(IdT,IdPs,T1),
assertz(csType(IdT,Type,IdTs,IdPs,T)),
fail.

deriveAllTypeProperties :-
!.

include "cs_incon.pro"
include "cs_signa.pro"
include "cs_types.pro"
include "cs_class.pro"

include "oom_syst.pro"
include "oom_list.pro"



130

/*********************************************************************
**********************************************************************

CS_INCON.PRO
Inconsistency verification.

**********************************************************************
*********************************************************************/

clauses

    /*-----------------------------------------------------
    A property can only be defined once in a type.
    -------------------------------------------------------*/

inconsistency(T) :-
typePropertyAtT(IdT,IdP,T1),
typePropertyAtT(IdT,IdP,T2),
T1 <> T2,
T1 <= T,
T2 <= T,

typeName(IdT,Type,T),
propertyName(IdP,Property,T),
write("\n\n  IN001: Property ",Property,

" defined more than once in type ",Type,"."),
    !.

    /*-----------------------------------------------------
    A type can't be its own supertype.
    -------------------------------------------------------*/

inconsistency(T) :-
typeName(IdT,Type,T),
supertype(IdT,IdT,T),
write("\n\n  IN002: Type ",Type," can't be its own supertype."),

    !.

    /*-----------------------------------------------------
    There can't be redundant supertypes in a type
    definition.
    -------------------------------------------------------*/

inconsistency(T) :-
typeSupertypes(IdT,IdTs,T),
redundantSupertypes(IdTs,T),
typeName(IdT,Type,T),
write("\n\n  IN003: Type ",Type," has redundant supertypes."),

    !.

    /*-----------------------------------------------------
    A property can't be defined in two subtypes not
    related by inheritance.
    -------------------------------------------------------*/

inconsistency(T) :-
typeProperty(IdT1,IdP,T),
typeProperty(IdT2,IdP,T),
IdT1 <> IdT2,
not(typeInheritance(IdT1,IdT2,T)),
not(commonTypeProperty(IdT1,IdT2,IdP,T)),

typeName(IdT1,Type1,T),
typeName(IdT2,Type2,T),
propertyName(IdP,Property,T),
write("\n\n  IN004: Property ",Property," is defined in types ",

Type1," and ",Type2,
",\n  but they are not related by inheritance."),

    !.

    /*-----------------------------------------------------
    The domains of the property functions redefined in
    a subtype must be contained within the domains of
    the respective property functions of the supertype.
    -------------------------------------------------------*/

inconsistency(T) :-
typePropertySignature(IdT1,IdP,Signature1,T),
typePropertySignature(IdT2,IdP,Signature2,T),
IdT1 <> IdT2,
supertype(IdT2,IdT1,T),
not(signatureExtrictSubdomains(Signature1,Signature2,T)),

typeName(IdT1,Type1,T),
typeName(IdT2,Type2,T),
propertyName(IdP,Property,T),
write("\n\n  IN005: Property ",Property," is defined in types ",



131

Type1," and ",Type2,",\n  related by inheritance, but the ",
"respective domains are not extrict\n  subdomains."),

    !.

    /*-----------------------------------------------------
    A class can't be its own superclass.
    -------------------------------------------------------*/

inconsistency(T) :-
className(IdC,Class,T),
superclass(IdC,IdC,T),
write("\n\n  IN011: Class ",Class," can't be its own superclass."),
!.

    /*-----------------------------------------------------
    There can't be redundant superclasses in a class
    definition.
    -------------------------------------------------------*/

inconsistency(T) :-
classSuperclasses(IdC,IdCs,T),
redundantSuperclasses(IdCs,T),

className(IdC,Class,T),
write("\n\n  IN012: Class ",Class," has redundant superclasses."),

    !.

    /*-----------------------------------------------------
    All Superclass types of a class have to be
    supertypes or the same type that the one of the
    class.
    -------------------------------------------------------*/

inconsistency(T) :-
className(IdCobjects,objects,T),
classType(IdC,IdT,T),
IdC <> IdCobjects,
classSuperclasses(IdC,IdCs,T),
classesTypes(IdCs,IdTs,T),
not(sameTypeOrSubtype(IdT,IdTs,T)),

className(IdC,Class,T),
typeName(IdT,Type,T),
write("\n\n  IN013: Some superclass of ",Class,

" has an incompatible type\n  with ",Type,"."),
    !.

    /*-----------------------------------------------------
    If two classes share properties, they have to be
    inherited from a common class.
    -------------------------------------------------------*/

inconsistency(T) :-
classType(IdC1,IdT1,T),
classType(IdC2,IdT2,T),
IdC1 <> IdC2,
typeProperty(IdT1,IdP,T),
typeProperty(IdT2,IdP,T),
not(classInheritance(IdC1,IdC2,T)),
not(commonClassProperty(IdC1,IdC2,IdP,T)),

className(IdC1,Class1,T),
className(IdC2,Class2,T),
propertyName(IdP,Property,T),
write("\n\n  IN014: Property ",Property," is defined in classes ",

Class1," and ",Class2,
",\n  but they are not related by inheritance."),

    !.

    /*-----------------------------------------------------
Type Closure: "A type specialization hierarchy is
said to be closed under intersection, if and only
if for any two types t1, t2, there exists a third
type t which has exactly all properties common to
t1 and t2: t = intersection(t1,t2)".

    -------------------------------------------------------*/
inconsistency2(T) :-

typeName(IdT1,Type1,T),
typeName(IdT2,Type2,T),
IdT1 <> IdT2,
not(definedLowestCommonSupertype(IdT1,IdT2,T)),

write("\n\n  IN006: Type hierarchy not closed, the lowest common \n",
"  supertype of ",Type1," and ",Type2," does not exist."),

!.



132

    /*-----------------------------------------------------
Class Hierarchy Closure: "A class hierarchy is said
to be closed under intersection if and only if for
any two classes C1 and C2, there must exist a third
class C3 which type is the intersection of C1 and
C2 types, and its content contents the union of the
respective contents". C3 = intersection(C1,C2).

    -------------------------------------------------------*/
inconsistency2(T) :-

className(IdC1,Class1,T),
className(IdC2,Class2,T),
IdC1 <> IdC2,
not(definedLowestCommonSuperclass(IdC1,IdC2,T)),

write("\n\n  IN015: Class hierarchy not closed, the lowest common \n",
"  superclass of ",Class1," and ",Class2," does not exist."),

!.



133

/*********************************************************************
**********************************************************************

CS_SIGNA.PRO
Signatures.

**********************************************************************
*********************************************************************/

predicates
subdomain(signature,signature,time)
extrictSubdomainCondition(signature,signature,time)

signaturesIntersection(signatures,signature,time)
domainIntersection(signature,signature,signature,time)
domainUnion(signature,signature,signature,time)

clauses

   /*-----------------------------------------------------
    The first signature domains are extrict subdomains
    of the second signature given ones.
    -------------------------------------------------------*/

signatureExtrictSubdomains(Signature1,Signature2,T) :-
subdomain(Signature1,Signature2,T),
extrictSubdomainCondition(Signature1,Signature2,T),
!.

   /*-----------------------------------------------------
The first domain is subdomain of the second one.

    -------------------------------------------------------*/
subdomain([],[],_) :-

!.
subdomain([Domain|L1],[Domain|L2],T) :-

!,
subdomain(L1,L2,T).

subdomain([t(D1)|L1],[t(D2)|L2],T) :-
supertype(D2,D1,T),
!,
subdomain(L1,L2,T).

subdomain([t_(D1)|L1],[t_(D2)|L2],T) :-
supertype(D2,D1,T),
!,
subdomain(L1,L2,T).

subdomain([t(D1)|L1],[t_(D1)|L2],T) :-
!,
subdomain(L1,L2,T).

subdomain([t(D1)|L1],[t_(D2)|L2],T) :-
supertype(D2,D1,T),
!,
subdomain(L1,L2,T).

subdomain([c(D1)|L1],[c(D2)|L2],T) :-
superclass(D2,D1,T),
!,
subdomain(L1,L2,T).

subdomain([c_(D1)|L1],[c_(D2)|L2],T) :-
superclass(D2,D1,T),
!,
subdomain(L1,L2,T).

subdomain([c(D1)|L1],[c_(D1)|L2],T) :-
!,
subdomain(L1,L2,T).

subdomain([c(D1)|L1],[c_(D2)|L2],T) :-
superclass(D2,D1,T),
!,
subdomain(L1,L2,T).

   /*-----------------------------------------------------
If the first domain is subdomain of the second one,
and this condition is true, the first subdomain is
EXTRICT subdomain of the second one.

    -------------------------------------------------------*/
extrictSubdomainCondition([D|L1],[D|L2],T) :-

extrictSubdomainCondition(L1,L2,T),
!.

extrictSubdomainCondition([t(D1)|_],[t(D2)|_],T) :-
supertype(D2,D1,T),
!.

extrictSubdomainCondition([t_(D1)|_],[t_(D2)|_],T) :-
supertype(D2,D1,T),
!.

extrictSubdomainCondition([t(D1)|_],[t_(D1)|_],_) :-



134

!.
extrictSubdomainCondition([t(D1)|_],[t_(D2)|_],T) :-

supertype(D2,D1,T),
!.

extrictSubdomainCondition([c(D1)|_],[c(D2)|_],T) :-
superclass(D2,D1,T),
!.

extrictSubdomainCondition([c_(D1)|_],[c_(D2)|_],T) :-
superclass(D2,D1,T),
!.

extrictSubdomainCondition([c(D1)|_],[c_(D1)|_],_) :-
!.

extrictSubdomainCondition([c(D1)|_],[c_(D2)|_],T) :-
superclass(D2,D1,T),
!.

extrictSubdomainCondition([_|L1],[_|L2],T) :-
extrictSubdomainCondition(L1,L2,T).

   /*------------------------------------------------------
Given a set of signatures, obtains the signature
intersection of them.

    -------------------------------------------------------*/
signaturesIntersection([Signature],Signature,_) :-

!.
signaturesIntersection([Sig1|S],Signature,T) :-

signaturesIntersection(S,Sig2,T),
domainIntersection(Sig1,Sig2,Signature,T).

    /*-----------------------------------------------------
    Given two domains, gets the domain intersection
    of them.
    -------------------------------------------------------*/

domainIntersection([],[],[],_) :-
!.

domainIntersection([D|L1],[D|L2],[D|L3],T) :-
!,
domainIntersection(L1,L2,L3,T).

domainIntersection([t(D1)|L1],[t(D2)|L2],[t(D3)|L3],T) :-
greatestCommonSubtype(D1,D2,D3,T),
!,
domainIntersection(L1,L2,L3,T).

domainIntersection([t_(D1)|L1],[t_(D2)|L2],[t_(D3)|L3],T) :-
greatestCommonSubtype(D1,D2,D3,T),
!,
domainIntersection(L1,L2,L3,T).

domainIntersection([t(D1)|L1],[t_(D2)|L2],[t(D3)|L3],T) :-
greatestCommonSubtype(D1,D2,D3,T),
!,
domainIntersection(L1,L2,L3,T).

domainIntersection([t_(D1)|L1],[t(D2)|L2],[t(D3)|L3],T) :-
greatestCommonSubtype(D1,D2,D3,T),
!,
domainIntersection(L1,L2,L3,T).

domainIntersection([c(D1)|L1],[c(D2)|L2],[c(D3)|L3],T) :-
greatestCommonSubclass(D1,D2,D3,T),
!,
domainIntersection(L1,L2,L3,T).

domainIntersection([c_(D1)|L1],[c_(D2)|L2],[c_(D3)|L3],T) :-
greatestCommonSubclass(D1,D2,D3,T),
!,
domainIntersection(L1,L2,L3,T).

domainIntersection([c(D1)|L1],[c_(D2)|L2],[c(D3)|L3],T) :-
greatestCommonSubclass(D1,D2,D3,T),
!,
domainIntersection(L1,L2,L3,T).

domainIntersection([c_(D1)|L1],[c(D2)|L2],[c(D3)|L3],T) :-
greatestCommonSubclass(D1,D2,D3,T),
!,
domainIntersection(L1,L2,L3,T).

    /*-----------------------------------------------------
    Given two domains, gets the domain union of them.
    -------------------------------------------------------*/

domainUnion([],[],[],_) :-
!.

domainUnion([D|L1],[D|L2],[D|L3],T) :-
!,
domainUnion(L1,L2,L3,T).

domainUnion([t(D1)|L1],[t(D2)|L2],[t(D3)|L3],T) :-
lowestCommonSupertype(D1,D2,D3,T),
!,



135

domainUnion(L1,L2,L3,T).
domainUnion([t_(D1)|L1],[t_(D2)|L2],[t_(D3)|L3],T) :-

lowestCommonSupertype(D1,D2,D3,T),
!,
domainUnion(L1,L2,L3,T).

domainUnion([t(D1)|L1],[t_(D2)|L2],[t_(D3)|L3],T) :-
lowestCommonSupertype(D1,D2,D3,T),
!,
domainUnion(L1,L2,L3,T).

domainUnion([t_(D1)|L1],[t(D2)|L2],[t_(D3)|L3],T) :-
lowestCommonSupertype(D1,D2,D3,T),
!,
domainUnion(L1,L2,L3,T).

domainUnion([c(D1)|L1],[c(D2)|L2],[c(D3)|L3],T) :-
lowestCommonSuperclass(D1,D2,D3,T),
!,
domainUnion(L1,L2,L3,T).

domainUnion([c_(D1)|L1],[c_(D2)|L2],[c_(D3)|L3],T) :-
lowestCommonSuperclass(D1,D2,D3,T),
!,
domainUnion(L1,L2,L3,T).

domainUnion([c(D1)|L1],[c_(D2)|L2],[c_(D3)|L3],T) :-
lowestCommonSuperclass(D1,D2,D3,T),
!,
domainUnion(L1,L2,L3,T).

domainUnion([c_(D1)|L1],[c(D2)|L2],[c_(D3)|L3],T) :-
lowestCommonSuperclass(D1,D2,D3,T),
!,
domainUnion(L1,L2,L3,T).



136

/*********************************************************************
**********************************************************************

CS_TYPES.PRO
Types.

**********************************************************************
*********************************************************************/

predicates
deriveTypeProperty(id,time)
typeProperties(id,id,signature,time)
typeInheritedProperties(id,id,signature,time)
inheritedProperty(id,id,time)
propertySignaturesIntersection(idList,id,signature,time)
signaturesOfTypes(idList,id,signatures,time)
typePropertiesDomainUnion(id,id,id,idList,time)
lowerCommonSupertype(id,id,id,time)
greaterCommonSubtype(id,id,id,time)

clauses

    /*-----------------------------------------------------
    The first type is supertype of the second one.
    -------------------------------------------------------*/

supertype(IdT1,IdT2,T) :-
directSupertype(IdT1,IdT2,T),
!.

supertype(IdT1,IdT2,T) :-
indirectSupertype(IdT1,IdT2,T),
!.

    /*-----------------------------------------------------
    The first type is direct supertype of the second
    one.
    -------------------------------------------------------*/

directSupertype(IdT1,IdT2,T) :-
typeSupertypes(IdT2,IdTs,T),
memberId(IdT1,IdTs),
!.

    /*-----------------------------------------------------
    The first type is indirect supertype of the second
    one.
    -------------------------------------------------------*/

indirectSupertype(IdT1,IdT2,T) :-
typeSupertypes(IdT2,IdTs,T),
supertypeOfSomeOne(IdT1,IdTs,T),
!.

    /*-----------------------------------------------------
    A type is supertype of some one of the types included
    in the list.
    -------------------------------------------------------*/

supertypeOfSomeOne(IdT1,[IdT2|_],T) :-
supertype(IdT1,IdT2,T),
!.

supertypeOfSomeOne(IdT,[_|L],T) :-
supertypeOfSomeOne(IdT,L,T).

    /*-----------------------------------------------------
    There is some redundant supertype in a list of types.
    -------------------------------------------------------*/

redundantSupertypes([Id|L],_) :-
memberId(Id,L),
!.

redundantSupertypes([Id|L],T) :-
typeInheritanceWithSomeOne(Id,L,T),
!.

redundantSupertypes([_|L],T) :-
redundantSupertypes(L,T).

    /*-----------------------------------------------------
    There is some inheritance relationship between a
    given type and any one of a list.
    -------------------------------------------------------*/

typeInheritanceWithSomeOne(IdT1,[IdT2|_],T) :-
typeInheritance(IdT1,IdT2,T),
!.

typeInheritanceWithSomeOne(IdT,[_|L],T) :-
typeInheritanceWithSomeOne(IdT,L,T).



137

    /*-----------------------------------------------------
There is an inheritance relationship between the
given types.

    -------------------------------------------------------*/
typeInheritance(IdT1,IdT2,T) :-

supertype(IdT1,IdT2,T),
!.

typeInheritance(IdT1,IdT2,T) :-
supertype(IdT2,IdT1,T),
!.

    /*-----------------------------------------------------
    The property is defined in a type common to both
    of the types given.
    -------------------------------------------------------*/

commonTypeProperty(IdT1,IdT2,IdP,T) :-
typeProperty(IdT3,IdP,T),
IdT1 <> IdT3,
IdT2 <> IdT3,
supertype(IdT3,IdT1,T),
supertype(IdT3,IdT2,T),
!.

    /*-----------------------------------------------------
    A type is subtype of all the types of a list, or
    it's the same type.
    -------------------------------------------------------*/

sameTypeOrSubtype(IdT,[IdT],_) :-
!.

sameTypeOrSubtype(IdT,[IdT2],T) :-
supertype(IdT2,IdT,T),
!.

sameTypeOrSubtype(IdT,[IdT|L],T) :-
!,
sameTypeOrSubtype(IdT,L,T).

sameTypeOrSubtype(IdT,[IdT2|L],T) :-
supertype(IdT2,IdT,T),
!,
sameTypeOrSubtype(IdT,L,T).

    /*-----------------------------------------------------
    Given a type obtains the list of properties that it
    has.
    -------------------------------------------------------*/

deriveTypeProperties(IdT,IdPs,T) :-
assertzTmpIdList([]),
deriveTypeProperty(IdT,T),
retractTmpIdList(IdPs),
!.

    /*-----------------------------------------------------
    Given a type stores the list of properties that it
    has.
    -------------------------------------------------------*/

deriveTypeProperty(IdT,T) :-
typeProperties(IdT,IdP,_,T),
retractTmpIdList(IdPs),
assertzTmpIdList([IdP|IdPs]),
fail.

deriveTypeProperty(_,_) :-
!.

   /*------------------------------------------------------
   Properties of a type (local or inherited).
    -------------------------------------------------------*/

typeProperties(IdT,IdP,Signature,T) :-
typePropertySignature(IdT,IdP,Signature,T).

       typeProperties(IdT,IdP,Signature,T) :-
typeInheritedProperties(IdT,IdP,Signature,T).

   /*------------------------------------------------------
Inherited properties of a type.

    -------------------------------------------------------*/
typeInheritedProperties(IdT,IdP,Signature,T) :-

typeSupertypes(IdT,IdTs,T),
propertyName(IdP,_,T),
inheritedProperty(IdT,IdP,T),
propertySignaturesIntersection(IdTs,IdP,Signature,T),
newTypeProperty(IdT,IdP,Signature,T).



138

   /*------------------------------------------------------
A property is inherited.

    -------------------------------------------------------*/
inheritedProperty(IdT,IdP,T) :-

    not(typeProperty(IdT,IdP,T)),
    typeProperty(IdT2,IdP,T),

    supertype(IdT2,IdT,T),
    !.

   /*------------------------------------------------------
Intersection of the signatures of a property for a
set of types.

    -------------------------------------------------------*/
propertySignaturesIntersection(IdTs,IdP,Signature,T) :-

signaturesOfTypes(IdTs,IdP,Signatures,T),
signaturesIntersection(Signatures,Signature,T).

   /*------------------------------------------------------
Given a set of types and a property, returns the
set of signatures of this property for the different
types.

    -------------------------------------------------------*/
signaturesOfTypes([],_,[],_) :-

!.
signaturesOfTypes([IdT|L],IdP,[Signature|S],T) :-

typeProperties(IdT,IdP,Signature,T),
signaturesOfTypes(L,IdP,S,T),
!.

signaturesOfTypes([_|L],IdP,S,T) :-
signaturesOfTypes(L,IdP,S,T).

   /*-----------------------------------------------------
The lowest common supertype of two given types is
defined and is supertype of both of them or one of
them.

    -------------------------------------------------------*/
definedLowestCommonSupertype(IdT,IdT,_) :-

!.
definedLowestCommonSupertype(IdT1,IdT2,T) :-

supertype(IdT1,IdT2,T),
!.

definedLowestCommonSupertype(IdT1,IdT2,T) :-
supertype(IdT2,IdT1,T),
!.

definedLowestCommonSupertype(IdT1,IdT2,T) :-
typeAllProperties(IdT1,IdPs1,T),
typeAllProperties(IdT2,IdPs2,T),
intersectionIdList(IdPs1,IdPs2,IdPsI),
typeAllProperties(IdT3,IdPs3,T),
equalIdList(IdPs3,IdPsI),
supertype(IdT3,IdT1,T),
supertype(IdT3,IdT2,T),
typePropertiesDomainUnion(IdT1,IdT2,IdT3,IdPsI,T),
!.

   /*-----------------------------------------------------
The domains of the third type properties are the
union of the respective property domains of the
first and second given types.

    -------------------------------------------------------*/
typePropertiesDomainUnion(_,_,_,[],_) :-

!.
typePropertiesDomainUnion(IdT1,IdT2,IdT3,[IdP|L],T) :-

typePropertySignature(IdT1,IdP,Signature1,T),
typePropertySignature(IdT2,IdP,Signature2,T),
typePropertySignature(IdT3,IdP,Signature3,T),

        domainUnion(Signature1,Signature2,Signature3,T),
typePropertiesDomainUnion(IdT1,IdT2,IdT3,L,T).

   /*-----------------------------------------------------
Given two types gets the defined lowest common
supertype of them.

    -------------------------------------------------------*/
lowestCommonSupertype(IdT,IdT,IdT3,_) :-

!,
IdT3 = IdT.

lowestCommonSupertype(IdT1,IdT2,IdT3,T) :-
supertype(IdT1,IdT2,T),
!,
IdT3 = IdT1.



139

lowestCommonSupertype(IdT1,IdT2,IdT3,T) :-
supertype(IdT2,IdT1,T),
!,
IdT3 = IdT2.

lowestCommonSupertype(IdT1,IdT2,IdT3,T) :-
typeName(IdT3,_,T),
supertype(IdT3,IdT1,T),
supertype(IdT3,IdT2,T),
not(lowerCommonSupertype(IdT1,IdT2,IdT3,T)),
!.

   /*-----------------------------------------------------
Given two types and a proposed lowest common
supertype, cheks if a lower supertype exists.

    -------------------------------------------------------*/
lowerCommonSupertype(IdT1,IdT2,IdT3,T) :-

typeName(IdT4,_,T),
supertype(IdT4,IdT1,T),
supertype(IdT4,IdT2,T),
supertype(IdT3,IdT4,T),
!.

   /*-----------------------------------------------------
Given two types gets the defined greatest common
subtype of them.

    -------------------------------------------------------*/
greatestCommonSubtype(IdT,IdT,IdT3,_) :-

!,
IdT3 = IdT.

greatestCommonSubtype(IdT1,IdT2,IdT3,T) :-
supertype(IdT2,IdT1,T),
!,
IdT3 = IdT1.

greatestCommonSubtype(IdT1,IdT2,IdT3,T) :-
supertype(IdT1,IdT2,T),
!,
IdT3 = IdT2.

greatestCommonSubtype(IdT1,IdT2,IdT3,T) :-
typeName(IdT3,_,T),
supertype(IdT1,IdT3,T),
supertype(IdT2,IdT3,T),
not(greaterCommonSubtype(IdT1,IdT2,IdT3,T)),
!.

   /*-----------------------------------------------------
Given two types and a proposed greatest common
subtype, cheks if a greater subtype exists.

    -------------------------------------------------------*/
greaterCommonSubtype(IdT1,IdT2,IdT3,T) :-

typeName(IdT4,_,T),
supertype(IdT1,IdT4,T),
supertype(IdT2,IdT4,T),
supertype(IdT4,IdT3,T),
!.



140

/*********************************************************************
**********************************************************************

CS_CLASS.PRO
Classes.

**********************************************************************
*********************************************************************/

predicates
deriveClassSubclass(id,time)
lowerCommonSuperclass(id,id,id,time)
greaterCommonSubclass(id,id,id,time)

clauses

    /*-----------------------------------------------------
    The first class is superclass of the second one.
    -------------------------------------------------------*/
    superclass(IdC,IdC2,T) :-

directSuperclass(IdC,IdC2,T),
!.

    superclass(IdC,IdC2,T) :-
indirectSuperclass(IdC,IdC2,T),
!.

    /*-----------------------------------------------------
    A class is direct superclass of another.
    -------------------------------------------------------*/

directSuperclass(IdC1,IdC2,T) :-
classSuperclasses(IdC2,Superclasses,T),
memberId(IdC1,Superclasses),
!.

    /*-----------------------------------------------------
    A class is indirect superclass of another.
    -------------------------------------------------------*/

indirectSuperclass(IdC1,IdC2,T) :-
classSuperclasses(IdC2,Superclasses,T),
superclassOfSomeOne(IdC1,Superclasses,T),
!.

    /*-----------------------------------------------------
    A class is superclass of some one of the classes
    included in the list.
    -------------------------------------------------------*/

superclassOfSomeOne(IdC1,[IdC2|_],T) :-
superclass(IdC1,IdC2,T),
!.

superclassOfSomeOne(IdC,[_|L],T) :-
superclassOfSomeOne(IdC,L,T).

    /*-----------------------------------------------------
    There is some redundant superclass in a list of
    classes.
    -------------------------------------------------------*/

redundantSuperclasses([IdC|L],_) :-
memberId(IdC,L),
!.

redundantSuperclasses([IdC|L],T) :-
classInheritanceWithSomeOne(IdC,L,T),
!.

redundantSuperclasses([_|L],T) :-
redundantSuperclasses(L,T).

    /*-----------------------------------------------------
    There is some inheritance relationship between a
    given type and any one of a list.
    -------------------------------------------------------*/

classInheritanceWithSomeOne(IdC1,[IdC2|_],T) :-
classInheritance(IdC1,IdC2,T),
!.

classInheritanceWithSomeOne(IdC,[_|L],T) :-
classInheritanceWithSomeOne(IdC,L,T).

    /*-----------------------------------------------------
There is an inheritance relationship between the
given classes.

    -------------------------------------------------------*/
classInheritance(IdC1,IdC2,T) :-

superclass(IdC1,IdC2,T),



141

!.
classInheritance(IdC1,IdC2,T) :-

superclass(IdC2,IdC1,T),
!.

    /*-----------------------------------------------------
    The property is defined in a class common to both
    of the classes given.
    -------------------------------------------------------*/

commonClassProperty(IdC1,IdC2,IdP,T) :-
typeProperty(IdT3,IdP,T),
classType(IdC3,IdT3,T),
IdC1 <> IdC3,
IdC2 <> IdC3,
superclass(IdC3,IdC1,T),
superclass(IdC3,IdC2,T),
!.

    /*-----------------------------------------------------
    Get the types of the classes given.
    -------------------------------------------------------*/

classesTypes([],[],_) :-
    !.

classesTypes([IdC|LC],[IdT|LT],T) :-
classType(IdC,IdT,T),

    classesTypes(LC,LT,T).

    /*-----------------------------------------------------
    Given a class obtains the list of its direct
    subclasses.
    -------------------------------------------------------*/

deriveClassSubclasses(IdC,IdDs,T) :-
assertzTmpIdList([]),
deriveClassSubclass(IdC,T),
retractTmpIdList(IdDs),
!.

    /*-----------------------------------------------------
    Given a class stores the list of its direct
    subclasses.
    -------------------------------------------------------*/

deriveClassSubclass(IdC1,T) :-
classSuperclasses(IdC2,IdCs,T),
memberId(IdC1,IdCs),
retractTmpIdList(IdDs),
assertzTmpIdList([IdC2|IdDs]),
fail.

deriveClassSubclass(_,_) :-
!.

   /*-----------------------------------------------------
The lowest common superclass of two given classes
is defined and is superclass of both of them or one
of them.

    -------------------------------------------------------*/
definedLowestCommonSuperclass(IdC,IdC,_) :-

!.
definedLowestCommonSuperclass(IdC1,IdC2,T) :-

superclass(IdC1,IdC2,T),
!.

definedLowestCommonSuperclass(IdC1,IdC2,T) :-
superclass(IdC2,IdC1,T),
!.

definedLowestCommonSuperclass(IdC1,IdC2,T) :-
classType(IdC1,IdT1,T),
classType(IdC2,IdT2,T),
lowestCommonSupertype(IdT1,IdT2,IdT3,T),
classType(IdC3,IdT3,T),
superclass(IdC3,IdC1,T),
superclass(IdC3,IdC2,T),
!.

   /*-----------------------------------------------------
Given two classes gets the defined lowest common
superclass of them.

    -------------------------------------------------------*/
lowestCommonSuperclass(IdC,IdC,IdC3,_) :-

!,
IdC3 = IdC.

lowestCommonSuperclass(IdC1,IdC2,IdC3,T) :-
superclass(IdC1,IdC2,T),



142

!,
IdC3 = IdC1.

lowestCommonSuperclass(IdC1,IdC2,IdC3,T) :-
superclass(IdC2,IdC1,T),
!,
IdC3 = IdC2.

lowestCommonSuperclass(IdC1,IdC2,IdC3,T) :-
className(IdC3,_,T),
superclass(IdC3,IdC1,T),
superclass(IdC3,IdC2,T),
not(lowerCommonSuperclass(IdC1,IdC2,IdC3,T)),
!.

   /*-----------------------------------------------------
Given two classes and a proposed lowest common
superclass, cheks if a lower superclass exists.

    -------------------------------------------------------*/
lowerCommonSuperclass(IdC1,IdC2,IdC3,T) :-

className(IdC4,_,T),
superclass(IdC4,IdC1,T),
superclass(IdC4,IdC2,T),
superclass(IdC3,IdC4,T),
!.

   /*-----------------------------------------------------
Given two classes gets the defined greatest common
subclass of them.

    -------------------------------------------------------*/
greatestCommonSubclass(IdC,IdC,IdC3,_) :-

!,
IdC3 = IdC.

greatestCommonSubclass(IdC1,IdC2,IdC3,T) :-
superclass(IdC2,IdC1,T),
!,
IdC3 = IdC1.

greatestCommonSubclass(IdC1,IdC2,IdC3,T) :-
superclass(IdC1,IdC2,T),
!,
IdC3 = IdC2.

greatestCommonSubclass(IdC1,IdC2,IdC3,T) :-
className(IdC3,_,T),
superclass(IdC1,IdC3,T),
superclass(IdC2,IdC3,T),
not(greaterCommonSubclass(IdC1,IdC2,IdC3,T)),
!.

   /*-----------------------------------------------------
Given two classes and a proposed greatest common
subclass, cheks if a greater subclass exists.

    -------------------------------------------------------*/
greaterCommonSubclass(IdC1,IdC2,IdC3,T) :-

className(IdC4,_,T),
superclass(IdC1,IdC4,T),
superclass(IdC2,IdC4,T),
superclass(IdC4,IdC3,T),
!.



143

/*********************************************************************
**********************************************************************

OOM_SYST.PRO
System primitives.

generateId(id)
now(time)

**********************************************************************
*********************************************************************/

domains
    idReg = id(id)
    timeReg = time(time)

predicates
lastId(id)
newId(id)

lastTime(time)
newTime(time)

clauses

    /*=====================================================
    Generate a new identifier.    
    =======================================================*/

generateId(Id) :-
lastId(Id1),
Id = Id1 + 1,
newId(Id),
!.

    /*-----------------------------------------------------
    Get the last generated Id.
    -------------------------------------------------------*/

lastId(Id) :-
openread(idFile,"oomid.dat"),
readdevice(Old),
readdevice(idFile),
readterm(idReg,id(Id)),
closefile(idFile),
readdevice(Old),
!.

lastId(0).

    /*-----------------------------------------------------
    Store the last generated Id.
    -------------------------------------------------------*/

newId(Id) :-
openwrite(idFile,"oomid.dat"),
writedevice(Old),
writedevice(idFile),
write("id(",Id,")\n"),
closefile(idFile),
writedevice(Old).

    /*=====================================================
Get the time.

    =======================================================*/
now(Time) :-

lastTime(T1),
Time = T1 + 1,
newTime(Time),
!.

    /*-----------------------------------------------------
Get the last generated time.

    -------------------------------------------------------*/
lastTime(T) :-

openread(timeFile,"oomtime.dat"),
readdevice(Old),
readdevice(timeFile),
readterm(timeReg,time(T)),
closefile(timeFile),
readdevice(Old),
!.

lastTime(0).



144

    /*-----------------------------------------------------
    Store the last generated Id.
    -------------------------------------------------------*/

newTime(T) :-
openwrite(timeFile,"oomtime.dat"),
writedevice(Old),
writedevice(timeFile),
write("time(",T,")\n"),
closefile(timeFile),
writedevice(Old).



145

/*********************************************************************
**********************************************************************

OOM_LIST.PRO
Id lists.

memberId(id,idList)
addNewId(idList,id,idList)

**********************************************************************
*********************************************************************/

clauses

    /*-----------------------------------------------------
    An Id is member of a list of Ids.
    -------------------------------------------------------*/

memberId(X,[X|_]) :-
    !.

memberId(X,[_|L]) :-
    memberId(X,L).

    /*-----------------------------------------------------
    Add a new Id to an Id list only if it is not included
    yet.
    -------------------------------------------------------*/

addNewId(L,Id,L) :-
memberId(Id,L),
!.

addNewId(L,Id,[Id|L]) :-
!.

    /*-----------------------------------------------------
    Intersection of two lists of identifiers.
    -------------------------------------------------------*/

intersectionIdList([],_,[]) :-
!.

intersectionIdList([X|L1],L2,[X|L3]) :-
memberId(X,L2),
!,
intersectionIdList(L1,L2,L3).

intersectionIdList([_|L1],L2,L3) :-
intersectionIdList(L1,L2,L3).

    /*-----------------------------------------------------
Equal lists.

    -------------------------------------------------------*/
equalIdList(L1,L2) :-

allContainedIdList(L1,L2),
allContainedIdList(L2,L1).

    /*-----------------------------------------------------
    All the elements of a list are contained in another
    list.
    -------------------------------------------------------*/

allContainedIdList([],_) :-
!.

allContainedIdList([X|L1],L2) :-
memberId(X,L2),
allContainedIdList(L1,L2).



146



147

Appendix B. OODB definition DCM

The following is the source code of the OODB definition DCM developed. It includes a
simplified version of the previous DCM.

/*********************************************************************
**********************************************************************

OOSCHE.DEF
Input file.

**********************************************************************
*********************************************************************/

dbbaseproperty(p("address"))
dbbaseproperty(p("name"))
dbbaseproperty(p("category"))
dbbaseclass(c("objects"))
dbbaseclass(c("people"))
dbbaseclass(c("addresses"))
dbbaseclass(c("clients"))
dbbaseclass(c("employees"))
dbdirectclassproperty(c("people"),p("address"))
dbdirectclassproperty(c("employees"),p("category"))
dbdirectclassproperty(c("clients"),p("name"))
dbdirectinheritance(c("people"),c("objects"))
dbdirectinheritance(c("addresses"),c("objects"))
dbdirectinheritance(c("clients"),c("people"))
dbdirectinheritance(c("employees"),c("people"))
dbdirectaggregation(c("people"),c("addresses"),p("address"))

/*********************************************************************
**********************************************************************

OOINST.DEF
Input file.

**********************************************************************
*********************************************************************/

dbbaseobject(o("o1"))
dbbaseobject(o("o2"))
dbbaseobject(o("o3"))
dbbaseobject(o("o4"))
dbbaseobject(o("o5"))
dbdirectclassobject(c("people"),o("o1"))
dbdirectclassobject(c("clients"),o("o2"))
dbdirectclassobject(c("employees"),o("o2"))
dbdirectclassobject(c("addresses"),o("o3"))
dbdirectclassobject(c("employees"),o("o4"))
dbdirectclassobject(c("addresses"),o("o5"))
dbdirectobjectproperty(o("o1"),p("address"),o([o("o3")]))
dbdirectobjectproperty(o("o2"),p("address"),o([o("o3"),o("o5")]))
dbdirectobjectproperty(o("o4"),p("address"),o([o("o5")]))
dbdirectobjectproperty(o("o2"),p("category"),v([v("boss")]))
dbdirectobjectproperty(o("o4"),p("category"),v([v("technician")]))

/*********************************************************************
**********************************************************************

OODERI.DEF
Input file.

**********************************************************************
*********************************************************************/

dbdefinedderivedclass(c("employees_"))
dbdirectderivation(c("employees_"),[c("employees")],preservation)
dbdirectclassproperty(c("employees_"),p("name"))
dbdirectclassproperty(c("employees_"),p("address"))
dbdirectaggregation(c("employees_"),c("addresses"),p("address"))



148

/*********************************************************************
**********************************************************************

OOSELE.DEF
Input file.

**********************************************************************
*********************************************************************/

dbclasssetselection("es1",[c("objects"),c("clients"),c("employees_")])
dbqualifiedclasssetselection("es2",[q(esc(c("objects"),nontransformable)),q(esc(c("clien
ts"),transformable)),q(esc(c("employees_"),nontransformable)),q(esc(c("addresses"),trans
formable)),q(esc(c("people"),transformable))])
dbqualifiedclasssetselection("es3",[q(esc(c("objects"),nontransformable)),q(esc(c("clien
ts"),transformable)),q(esc(c("employees_"),transformable)),q(esc(c("addresses"),transfor
mable)),q(esc(c("people"),nontransformable))])



149

/*********************************************************************
**********************************************************************

OODB.DAT
Output file.

**********************************************************************
*********************************************************************/

rbaseproperty(p("address"),1)
rbaseproperty(p("name"),2)
rbaseproperty(p("category"),3)
rbaseclass(c("objects"),4)
rbaseclass(c("people"),5)
rbaseclass(c("addresses"),6)
rbaseclass(c("clients"),7)
rbaseclass(c("employees"),8)
rdirectclassproperty(c("people"),p("address"),9)
rdirectclassproperty(c("employees"),p("category"),10)
rdirectclassproperty(c("clients"),p("name"),11)
rdirectclassproperty(c("employees_"),p("name"),12)
rdirectclassproperty(c("employees_"),p("address"),13)
rdirectinheritance(c("people"),c("objects"),14)
rdirectinheritance(c("addresses"),c("objects"),15)
rdirectinheritance(c("clients"),c("people"),16)
rdirectinheritance(c("employees"),c("people"),17)
rdirectaggregation(c("people"),c("addresses"),p("address"),18)
rdirectaggregation(c("employees_"),c("addresses"),p("address"),19)
rbaseobject(o("o1"),20)
rbaseobject(o("o2"),21)
rbaseobject(o("o3"),22)
rbaseobject(o("o4"),23)
rbaseobject(o("o5"),24)
rdirectclassobject(c("people"),o("o1"),25)
rdirectclassobject(c("clients"),o("o2"),26)
rdirectclassobject(c("employees"),o("o2"),27)
rdirectclassobject(c("addresses"),o("o3"),28)
rdirectclassobject(c("employees"),o("o4"),29)
rdirectclassobject(c("addresses"),o("o5"),30)
rdirectobjectproperty(o("o1"),p("address"),o([o("o3")]),31)
rdirectobjectproperty(o("o2"),p("address"),o([o("o3"),o("o5")]),32)
rdirectobjectproperty(o("o4"),p("address"),o([o("o5")]),33)
rdirectobjectproperty(o("o2"),p("category"),v([v("boss")]),34)
rdirectobjectproperty(o("o4"),p("category"),v([v("technician")]),35)
rdefinedderivedclass(c("employees_"),36)
rdirectderivation(c("employees_"),[c("employees")],preservation,37)
rclasssetselection("es1",[c("objects"),c("clients"),c("employees_")],38)
rqualifiedclasssetselection("es2",[q(esc(c("objects"),nontransformable)),q(esc(c("client
s"),transformable)),q(esc(c("employees_"),nontransformable)),q(esc(c("addresses"),transf
ormable)),q(esc(c("people"),transformable))],39)
rqualifiedclasssetselection("es3",[q(esc(c("objects"),nontransformable)),q(esc(c("client
s"),transformable)),q(esc(c("employees_"),transformable)),q(esc(c("addresses"),transform
able)),q(esc(c("people"),nontransformable))],40)
rindirectinheritance(c("clients"),c("objects"),41)
rindirectinheritance(c("employees"),c("objects"),42)
rinheritedaggregation(c("clients"),c("addresses"),p("address"),43)
rinheritedaggregation(c("employees"),c("addresses"),p("address"),44)
rallclassproperties(c("objects"),[],45)
rallclassproperties(c("people"),[p("address")],46)
rallclassproperties(c("addresses"),[],47)
rallclassproperties(c("clients"),[p("name"),p("address")],48)
rallclassproperties(c("employees"),[p("category"),p("address")],49)
rallclassproperties(c("employees_"),[p("name"),p("address")],50)
rallclassobjects(c("objects"),[o("o1"),o("o2"),o("o3"),o("o4"),o("o5")],51)
rallclassobjects(c("people"),[o("o1"),o("o2"),o("o4")],52)
rallclassobjects(c("addresses"),[o("o3"),o("o5")],53)
rallclassobjects(c("clients"),[o("o2")],54)
rallclassobjects(c("employees"),[o("o2"),o("o4")],55)
rallclassobjects(c("employees_"),[o("o4")],56)
rtime(56)



150

%********************************************************************
%********************************************************************
% Domains.
%********************************************************************
%********************************************************************

domains

comparation = eq;
  ne

element = p(property);
  c(class);
  o(object);
  v(value);
  e(edge);
  q(esClass);
  cp(element,elements); %Class with properties.
  si(element,elements,elements)

%Subsumption Isomorfic classes with properties.
  

elements = element*
difList = dl(elements,elements)

property = symbol
class = symbol
object = symbol
value = symbol
schema = symbol
edge = reference is_a(element,element)
esClass = esc(element,classQuality) % External Schema Class

classQuality = transformable;
  nonTransformable;
  any

evaluation = o(elements);
  v(elements)

derSemantics = preservation;
  generation

    
time = integer



151

/*********************************************************************
**********************************************************************

OODB.PRO
**********************************************************************
*********************************************************************/

include "domains.pro"
include "elemlist.pro"

predicates
run

addTime
now(time)

inheritanceInconsistency
nondeterm inheritanceInconsistency(symbol)

findIndirectInheritance(element)
nondeterm thereIsInheritance(element,element)
nondeterm loopInInheritance(element,elements)
nondeterm inheritance(element,element)

classInconsistency
nondeterm classInconsistency(symbol)

findClassProperties
nondeterm hasClassProperty(element,element)
nondeterm superclassWithProperties(element,element,elements,element)
nondeterm class(element)

compareClasses(element,element,comparation)
nondeterm classProperties(element,elements)
nondeterm classProperty(element,element)
nondeterm classPropertiesIntersection(element,element,elements)

objectInconsistency
nondeterm objectInconsistency(symbol)

findClassObjects
nondeterm containsClassObject(element,element)
nondeterm objectClassProperty(element,element,element)

objects(elements)
values(elements)

nondeterm classObjects(element,elements)
subsumesExtension(element,element)

aggregationInconsistency
nondeterm aggregationInconsistency(symbol)

findInheritedAggregation
nondeterm thereIsAggregation(element,element,element)
nondeterm refinedAggregation(element,element,element)
nondeterm aggregation(element,element,element)

derivationInconsistency
nondeterm derivationInconsistency(symbol)

findDerivedClassObjects
classes(elements)

nondeterm loopInDerivation(element,elements)

classSetInconsistency
nondeterm classSetInconsistency(symbol)

qualifiedClassSetInconsistency
nondeterm qualifiedClassSetInconsistency(symbol)

rightQualifiedClasses(elements)
qualifiedClasses(elements,classQuality,elements)

nondeterm characteristicFunction(element,element)



152

database - oodb

dbBaseProperty(element)
dbBaseClass(element)
dbDirectClassProperty(element,element)
dbDirectInheritance(element,element)
dbDirectAggregation(element,element,element)
dbBaseObject(element)
dbDirectClassObject(element,element)
dbDirectObjectProperty(element,element,evaluation)
dbDefinedDerivedClass(element)
dbDirectDerivation(element,elements,derSemantics)
dbGeneratedDerivedClass(element)
dbClassSetSelection(schema,elements)
dbQualifiedClassSetSelection(schema,elements)
dbExternalSchema(schema,elements,elements)

dbIndirectInheritance(element,element)
dbInheritedAggregation(element,element,element)
dbAllClassProperties(element,elements)
dbAllClassObjects(element,elements)

database - roodb

rBaseProperty(element,time)
rBaseClass(element,time)
rDirectClassProperty(element,element,time)
rDirectInheritance(element,element,time)
rDirectAggregation(element,element,element,time)
rBaseObject(element,time)
rDirectClassObject(element,element,time)
rDirectObjectProperty(element,element,evaluation,time)
rDefinedDerivedClass(element,time)
rDirectDerivation(element,elements,derSemantics,time)
rGeneratedDerivedClass(element,time)
rClassSetSelection(schema,elements,time)
rQualifiedClassSetSelection(schema,elements,time)
rExternalSchema(schema,elements,elements,time)

rIndirectInheritance(element,element,time)
rInheritedAggregation(element,element,element,time)
rAllClassProperties(element,elements,time)
rAllClassObjects(element,elements,time)

rTime(integer)

goal
run.

clauses

run :-
consult("oosche.def",oodb),
consult("ooinst.def",oodb),
consult("ooderi.def",oodb),
consult("oosele.def",oodb),

not(inheritanceInconsistency),
not(classInconsistency),
not(aggregationInconsistency),
not(objectInconsistency),
not(derivationInconsistency),
not(classSetInconsistency),
not(qualifiedClassSetInconsistency),

addTime,
save("oodb.dat",roodb),
write("\n\nOK."),
!.



153

addTime :-
dbBaseProperty(P),
now(T),
assertz(rBaseProperty(P,T)),
fail.

addTime :-
dbBaseClass(C),
now(T),
assertz(rBaseClass(C,T)),
fail.

addTime :-
dbDirectClassProperty(C,P),
now(T),
assertz(rDirectClassProperty(C,P,T)),
fail.

addTime :-
dbDirectInheritance(C1,C2),
now(T),
assertz(rDirectInheritance(C1,C2,T)),
fail.

addTime :-
dbDirectAggregation(C1,C2,P),
now(T),
assertz(rDirectAggregation(C1,C2,P,T)),
fail.

addTime :-
dbBaseObject(O),
now(T),
assertz(rBaseObject(O,T)),
fail.

addTime :-
dbDirectClassObject(C,O),
now(T),
assertz(rDirectClassObject(C,O,T)),
fail.

addTime :-
dbDirectObjectProperty(O,P,E),
now(T),
assertz(rDirectObjectProperty(O,P,E,T)),
fail.

addTime :-
dbDefinedDerivedClass(C),
now(T),
assertz(rDefinedDerivedClass(C,T)),
fail.

addTime :-
dbDirectDerivation(C,Cs,S),
now(T),
assertz(rDirectDerivation(C,Cs,S,T)),
fail.

addTime :-
dbGeneratedDerivedClass(C),
now(T),
assertz(rGeneratedDerivedClass(C,T)),
fail.

addTime :-
dbClassSetSelection(S,Cs),
now(T),
assertz(rClassSetSelection(S,Cs,T)),
fail.

addTime :-
dbQualifiedClassSetSelection(S,Cs),
now(T),
assertz(rQualifiedClassSetSelection(S,Cs,T)),
fail.

addTime :-
dbExternalSchema(S,Cs,Es),
now(T),
assertz(rExternalSchema(S,Cs,Es,T)),
fail.

addTime :-
dbIndirectInheritance(C1,C2),
now(T),
assertz(rIndirectInheritance(C1,C2,T)),
fail.

addTime :-
dbInheritedAggregation(C1,C2,P),
now(T),
assertz(rInheritedAggregation(C1,C2,P,T)),
fail.



154

addTime :-
dbAllClassProperties(C,Ps),
now(T),
assertz(rAllClassProperties(C,Ps,T)),
fail.

addTime :-
dbAllClassObjects(C,Os),
now(T),
assertz(rAllClassObjects(C,Os,T)),
fail.

addTime :-
!.

%******************************************************
% now(T) :- Obtain the time.
%
now(T) :-

retract(rTime(T1)),
!,
T = T1 + 1,
assertz(rTime(T)).

now(1) :-
!,
assertz(rTime(1)).

%********************************************************************
% Inheritance.
%********************************************************************

%******************************************************
% inheritanceInconsistency(N) :- Inheritance
% inconsistencies in the repository.
%
inheritanceInconsistency :-

inheritanceInconsistency(N),
write("\nInheritance Inconsistency: ",N,"\n"),
!.

inheritanceInconsistency(a01) :-
dbDirectInheritance(C,_),
not(dbBaseClass(C)).

inheritanceInconsistency(a02) :-
dbDirectInheritance(_,C),
not(dbBaseClass(C)).

inheritanceInconsistency(a03) :-
dbBaseClass(C),
dbDirectInheritance(C,C).

inheritanceInconsistency(a04) :-
dbDirectInheritance(C1,C2),
loopInInheritance(C2,[C1]).

inheritanceInconsistency(a05) :-
dbBaseClass(C1),
findIndirectInheritance(C1),
dbDirectInheritance(C1,C2),
dbIndirectInheritance(C1,C2).

inheritanceInconsistency(a06) :-
not(dbBaseClass(c(objects))).

inheritanceInconsistency(a07) :-
dbBaseClass(C),
compareClasses(C,c(objects),ne),
not(inheritance(C,c(objects))).

%******************************************************
% findIndirectInheritance :- Find indirect inheritance
% relationships.
%
findIndirectInheritance(C1) :-

dbBaseClass(C1),
dbBaseClass(C2),
compareClasses(C1,c(objects),ne),
compareClasses(C1,C2,ne),
not(dbDirectInheritance(C2,C1)),
not(dbIndirectInheritance(C2,C1)),
dbDirectInheritance(C1,C3),
thereIsInheritance(C3,C2),
not(dbIndirectInheritance(C1,C2)),
assertz(dbIndirectInheritance(C1,C2)),
fail.

findIndirectInheritance(_) :-



155

!.

%******************************************************
% thereIsInheritance(Class1,Class2) :- Class1 and
% Class2 are related by inheritance.
%
thereIsInheritance(C1,C2) :-

dbDirectInheritance(C1,C2).
thereIsInheritance(C1,C2) :-

dbDirectInheritance(C1,C3),
thereIsInheritance(C3,C2).

%******************************************************
% loopInInheritance(Class,Classes) :- There is a loop
% in inheritance relationships: we have arrived to
% Class visiting Classes.
%
loopInInheritance(C,Cs) :-

includedElement(C,Cs).
loopInInheritance(C1,Cs) :-

dbDirectInheritance(C1,C2),
loopInInheritance(C2,[C1|Cs]).

%******************************************************
% inheritance(Class1,Class2) :- Class1 is subclass of
% Class2.
%
inheritance(C1,C2) :-

dbDirectInheritance(C1,C2).
inheritance(C1,C2) :-

dbIndirectInheritance(C1,C2).

%********************************************************************
% Classes.
%********************************************************************

%******************************************************
% classInconsistency(N) :- Class inconsistencies in the
% repository.
%
classInconsistency :-

classInconsistency(N),
write("\nClass Inconsistency: ",N,"\n"),
!.

classInconsistency(b01) :-
dbDirectClassProperty(C,_),
not(class(C)).

classInconsistency(b02) :-
dbDirectClassProperty(_,P),
not(dbBaseProperty(P)).

classInconsistency(b03) :-
dbBaseClass(C1),
dbBaseClass(C2),
compareClasses(C1,C2,ne),
dbDirectClassProperty(C1,P),
dbDirectClassProperty(C2,P).

classInconsistency(b04) :-
findClassProperties,
dbBaseClass(C1),
dbBaseClass(C2),
compareClasses(C1,C2,ne),
not(inheritance(C1,C2)),
not(inheritance(C2,C1)),
classPropertiesIntersection(C1,C2,Ps),
not(superclassWithProperties(C1,C2,Ps,_)).

%******************************************************
% findClassProperties :- Find all the properties of
% classes.
%
findClassProperties :-

class(C),
findall(P,hasClassProperty(C,P),Ps2),
nonDuplicatedElements(Ps2,Ps1),
assertz(dbAllClassProperties(C,Ps1)),
fail.



156

findClassProperties :-
!.

%******************************************************
% hasClassProperty(Class,Property) :- Class has Property.
%
hasClassProperty(C,P) :-

dbDirectClassProperty(C,P).
hasClassProperty(C1,P) :-

dbDirectClassProperty(C2,P),
inheritance(C1,C2).

%******************************************************
% superclassWithProperties(Class1,Class2,Properties,Class3) :-
% Class3 is superclass of Class1 and Class2 and has
% Properties.
%
superclassWithProperties(C1,C2,Ps,C3) :-

inheritance(C1,C3),
inheritance(C2,C3),
classProperties(C3,Ps).

%******************************************************
% class(Class) :- Class is a class.
%
class(C) :-

dbBaseClass(C).
class(C) :-

dbDefinedDerivedClass(C).
class(C) :-

dbGeneratedDerivedClass(C).

%******************************************************
% compareClasses(C1,C2,Comparation) :- Comparation
% between two classes.
%
compareClasses(c(C1),c(C2),eq) :-

C1 = C2,
!.

compareClasses(c(C1),c(C2),ne) :-
C1 <> C2,
!.

%******************************************************
% classProperties(Class,Properties) :- Class has
% Properties.
%
classProperties(C,Ps) :-

class(C),
not(bound(Ps)),
dbAllClassProperties(C,Ps).

classProperties(C,Ps1) :-
class(C),
bound(Ps1),
dbAllClassProperties(C,Ps2),
equalElements(Ps2,Ps1).

%******************************************************
% classProperty(Class,Property) :- Class has Property.
%
classProperty(C,P) :-

dbAllClassProperties(C,Ps),
includedElement(P,Ps).

%******************************************************
% classPropertiesIntersection(Class1,Class2,Properties) :-
% Class1 and Class2 have Properties in common.
%
classPropertiesIntersection(C1,C2,Ps) :-

dbAllClassProperties(C1,Ps1),
dbAllClassProperties(C2,Ps2),
elementsIntersection(Ps1,Ps2,Ps).



157

%********************************************************************
% Aggregation.
%********************************************************************

%******************************************************
% aggregationInconsistency(N) :- Aggregation
% inconsistencies in the repository.
%
aggregationInconsistency :-

aggregationInconsistency(N),
write("\nAggregation Inconsistency: ",N,"\n"),
!.

aggregationInconsistency(c01) :-
dbDirectAggregation(C,_,_),
not(class(C)).

aggregationInconsistency(c02) :-
dbDirectAggregation(_,C,_),
not(class(C)).

aggregationInconsistency(c03) :-
dbDirectAggregation(C,_,P),
not(classProperty(C,P)).

aggregationInconsistency(c04) :-
dbDirectClassProperty(C1,P),
dbDirectAggregation(C2,_,P),
compareClasses(C1,C2,ne),
not(dbDirectAggregation(C1,_,P)).

aggregationInconsistency(c05) :-
dbDirectAggregation(C1,C2,P),
dbDirectAggregation(C3,C4,P),
compareClasses(C1,C3,ne),
compareClasses(C2,C4,ne),
inheritance(C3,C1),
not(inheritance(C4,C2)).

aggregationInconsistency(c06) :-
dbDirectAggregation(C1,C2,P),
dbDirectAggregation(C1,C3,P),
compareClasses(C2,C3,ne).

aggregationInconsistency(c07) :-
findInheritedAggregation,
aggregation(C1,C2,P),
aggregation(C1,C3,P),
compareClasses(C2,C3,ne).

%******************************************************
% findInheritedAggregation :- Find inherited
% aggregation relationships.
%
findInheritedAggregation :-

dbBaseClass(C1),
dbDirectAggregation(_,C2,P),
not(dbDirectAggregation(C1,C2,P)),
not(dbInheritedAggregation(C1,C2,P)),
thereIsAggregation(C1,C2,P),
not(refinedAggregation(C1,C2,P)),
assertz(dbInheritedAggregation(C1,C2,P)),
fail.

findInheritedAggregation :-
!.

%******************************************************
% thereIsAggregation(Class1,Class2,Property) :- There
% is an aggregation relationship between Class1 and
% Class2 in Property.
%
thereIsAggregation(C1,C2,P) :-

dbDirectAggregation(C1,C2,P).
thereIsAggregation(C1,C2,P) :-

inheritance(C1,C3),
dbDirectAggregation(C3,C2,P).

%******************************************************
% refinedAggregation(Class1,Class2,Property) :- The
% aggregation relationship between Class1 y Class2
% has been redefined.
%
refinedAggregation(C1,C2,P) :-

inheritance(C3,C2),
thereIsAggregation(C1,C3,P).



158

%******************************************************
% aggregation(Class1,Class2,Property) :- There is a
% property function defined for class Class1 with the
% property label Property and the domain class Class2.
%
aggregation(C1,C2,P) :-

dbDirectAggregation(C1,C2,P).
aggregation(C1,C2,P) :-

dbInheritedAggregation(C1,C2,P).

%********************************************************************
% Objects.
%********************************************************************

%******************************************************
% objectInconsistency(N) :- Object inconsistencies in
% the repository.
%
objectInconsistency :-

objectInconsistency(N),
write("\nObject Inconsistency: ",N,"\n"),
!.

objectInconsistency(d01) :-
dbDirectClassObject(C,_),
not(dbBaseClass(C)).

objectInconsistency(d02) :-
dbDirectClassObject(_,O),
not(dbBaseObject(O)).

objectInconsistency(d03) :-
dbBaseObject(O),
not(dbDirectClassObject(_,O)).

objectInconsistency(d04) :-
dbDirectClassObject(C1,O),
dbDirectClassObject(C2,O),
compareClasses(C1,C2,ne),
inheritance(C1,C2).

objectInconsistency(d05) :-
dbDirectObjectProperty(O,_,_),
not(dbBaseObject(O)).

objectInconsistency(d06) :-
dbDirectObjectProperty(_,P,_),
not(dbBaseProperty(P)).

objectInconsistency(d07) :-
dbDirectObjectProperty(_,_,o(Os)),
not(objects(Os)).

objectInconsistency(d08) :-
dbDirectObjectProperty(_,_,v(Vs)),
not(values(Vs)).

objectInconsistency(d09) :-
dbDirectObjectProperty(O,P,v(Vs1)),
dbDirectObjectProperty(O,P,v(Vs2)),
not(equalElements(Vs1,Vs2)).

objectInconsistency(d10) :-
dbDirectObjectProperty(O,P,o(Os1)),
dbDirectObjectProperty(O,P,o(Os2)),
not(equalElements(Os1,Os2)).

objectInconsistency(d11) :-
dbDirectObjectProperty(O,P,o(_)),
dbDirectObjectProperty(O,P,v(_)).

objectInconsistency(d12) :-
dbDirectObjectProperty(O,P,_),
not(objectClassProperty(O,_,P)).

objectInconsistency(d13) :-
dbDirectObjectProperty(O,P,o(_)),
dbDirectClassObject(C,O),
classProperty(C,P),
not(aggregation(C,_,P)).

objectInconsistency(d14) :-
dbDirectObjectProperty(O,P,v(_)),
dbDirectClassObject(C,O),
classProperty(C,P),
aggregation(C,_,P).

objectInconsistency(d15) :-
findClassObjects,
dbDirectObjectProperty(O,P,o(Os1)),
dbDirectClassObject(C1,O),
classProperty(C1,P),
aggregation(C1,C2,P),



159

classObjects(C2,Os2),
not(includedElements(Os1,Os2)).

%******************************************************
% findClassObjects :- Find all the objects of classes.
%
findClassObjects :-

dbBaseClass(C),
findall(O,containsClassObject(C,O),Os2),
nonDuplicatedElements(Os2,Os1),
assertz(dbAllClassObjects(C,Os1)),
fail.

findClassObjects :-
!.

%******************************************************
% containsClassObject(Class,Object) :- Object is member
% of Class.
%
containsClassObject(C,O) :-

dbDirectClassObject(C,O).
containsClassObject(C1,O) :-

dbDirectClassObject(C2,O),
inheritance(C2,C1).

%******************************************************
% objectClassProperty(Object,Class,Property) :- Object
% is member of Class that has Property defined.
%
objectClassProperty(O,C,P) :-

dbDirectClassObject(C,O),
classProperty(C,P).

%******************************************************
% objects(Objects) :- Objects is a set of objects.
%
objects([O|Os]) :-

dbBaseObject(O),
!,
objects(Os).

objects([]) :-
!.

%******************************************************
% values(Values) :- Values is a set of values.
%
values([v(_)|Vs]) :-

!,
values(Vs).

values([]) :-
!.

%******************************************************
% classObjects(Class,Objects) :- Class has Objects as
% members.
%
classObjects(C,Os) :-

class(C),
not(bound(Os)),
dbAllClassObjects(C,Os).

classObjects(C,Os1) :-
class(C),
bound(Os1),
dbAllClassObjects(C,Os2),
equalElements(Os2,Os1).

%******************************************************
% subsumesExtension(Class1,Class2) :- Class1 subsumes
% extesion of Class2. APROXIMACIÓN INCORRECTA.
%
subsumesExtension(C1,C2) :-

classObjects(C1,Os1),
classObjects(C2,Os2),
includedElements(Os2,Os1),



160

!.

%********************************************************************
% Derivation.
%********************************************************************

%******************************************************
% derivationInconsistency(N) :- Derivation
% inconsistencies in the repository.
%
derivationInconsistency :-

derivationInconsistency(N),
write("\nDerivation Inconsistency: ",N,"\n"),
!.

derivationInconsistency(e01) :-
dbDirectDerivation(C,_,_),
not(dbDefinedDerivedClass(C)).

derivationInconsistency(e02) :-
dbDefinedDerivedClass(C),
not(dbDirectDerivation(C,_,_)).

derivationInconsistency(e03) :-
dbDirectDerivation(_,[],_).

derivationInconsistency(e04) :-
dbDirectDerivation(_,Cs,_),
not(classes(Cs)).

derivationInconsistency(e05) :-
dbDefinedDerivedClass(C),
dbBaseClass(C).

derivationInconsistency(e06) :-
dbDirectDerivation(C,Cs,_),
includedElement(C,Cs).

derivationInconsistency(e07) :-
dbDirectDerivation(C,Cs,_),
loopInDerivation(C,Cs).

derivationInconsistency(e08) :-
findDerivedClassObjects,
dbDefinedDerivedClass(C1),
class(C2),
compareClasses(C1,C2,ne),
dbAllClassProperties(C1,Ps1),
dbAllClassProperties(C2,Ps2),
equalElements(Ps1,Ps2),
subsumesExtension(C1,C2),
subsumesExtension(C2,C1).

%******************************************************
% findDerivedClassObjects :- Definition predicates of
% derived classes.
%
findDerivedClassObjects :-

dbDefinedDerivedClass(C),
findall(O,characteristicFunction(C,O),Os),
assertz(dbAllClassObjects(C,Os)),
fail.

findDerivedClassObjects :-
!.

%******************************************************
% classes(Classes) :- Classes is a set of classes.
%
classes([C|Cs]) :-

class(C),
!,
classes(Cs).

classes([]) :-
!.

%******************************************************
% loopInDerivation(Class,Classes) :- Class is derived
% from a class in Classes which also is derived from
% Class.
%
loopInDerivation(C1,Cs1) :-

includedElement(C2,Cs1),
dbDirectDerivation(C2,Cs2,_),
includedElement(C1,Cs2),
!.



161

loopInDerivation(C1,Cs1) :-
includedElement(C2,Cs1),
dbDirectDerivation(C2,Cs2,_),
loopInDerivation(C1,Cs2).

%********************************************************************
% External Schema Class Set Selection.
%********************************************************************

%******************************************************
% classSetInconsistency(N) :- Class set selection
% inconsistencies in the repository.
%
classSetInconsistency :-

classSetInconsistency(N),
write("\nClass Set Inconsistency: ",N,"\n"),
!.

classSetInconsistency(f01) :-
dbClassSetSelection(_,[]).

classSetInconsistency(f02) :-
dbClassSetSelection(_,Cs),
not(classes(Cs)).

classSetInconsistency(f03) :-
dbClassSetSelection(_,Cs),
repeatedElement(_,Cs).

classSetInconsistency(f04) :-
dbClassSetSelection(S,Cs1),
dbClassSetSelection(S,Cs2),
not(equalElements(Cs1,Cs2)).

%********************************************************************
% External Schema Qualified Class Set Selection.
%********************************************************************

%******************************************************
% qualifiedClassSetInconsistency(N) :- Qualified class
% set selection inconsistencies in the repository.
%
qualifiedClassSetInconsistency :-

qualifiedClassSetInconsistency(N),
write("\nQualified Class Set Inconsistency: ",N,"\n"),
!.

qualifiedClassSetInconsistency(g01) :-
dbQualifiedClassSetSelection(_,[]).

qualifiedClassSetInconsistency(g02) :-
dbQualifiedClassSetSelection(_,QCs),
qualifiedClasses(QCs,any,Cs),
not(classes(Cs)).

qualifiedClassSetInconsistency(g03) :-
dbQualifiedClassSetSelection(_,QCs),
qualifiedClasses(QCs,any,Cs),
repeatedElement(_,Cs).

qualifiedClassSetInconsistency(g04) :-
dbQualifiedClassSetSelection(S,QCs1),
dbQualifiedClassSetSelection(S,QCs2),
not(equalElements(QCs1,QCs2)).

qualifiedClassSetInconsistency(g05) :-
dbClassSetSelection(S,_),
dbQualifiedClassSetSelection(S,_).

qualifiedClassSetInconsistency(g06) :-
dbQualifiedClassSetSelection(_,QCs),
not(rightQualifiedClasses(QCs)).

qualifiedClassSetInconsistency(g07) :-
dbQualifiedClassSetSelection(_,QCs),
includedElement(q(esc(c(objects),transformable)),QCs).

%******************************************************
% rightQualifiedClasses(QCs) :- Given a set of qualified
% classes, checks if they are righly qualified.
%
rightQualifiedClasses([q(esc(_,transformable))|QCs]) :-

!,
rightQualifiedClasses(QCs).

rightQualifiedClasses([q(esc(_,nonTransformable))|QCs]) :-
!,
rightQualifiedClasses(QCs).

rightQualifiedClasses([]) :-
!.



162

%******************************************************
% qualifiedClasses(QCs,Q,Cs) :- Given a set of qualified
% classes and a qualification, obtains the set of
% classes qualified this way.
%
qualifiedClasses([q(esc(C,_))|QCs],any,[C|Cs]) :-

!,
qualifiedClasses(QCs,any,Cs).

qualifiedClasses([q(esc(C,Q))|QCs],Q,[C|Cs]) :-
!,
qualifiedClasses(QCs,Q,Cs).

qualifiedClasses([_|QCs],Q,Cs) :-
!,
qualifiedClasses(QCs,Q,Cs).

qualifiedClasses([],_,[]) :-
!.

%********************************************************************
% Characteristic Functions.
%********************************************************************

%******************************************************
% characteristicFunction(Class,Object) :- Characteristic
% function of a class.
%
characteristicFunction(c(employees_),O) :-

dbDefinedDerivedClass(c(employees_)),
dbDirectDerivation(c(employees_),[c(employees)],preservation),
dbDirectClassObject(c(employees),O),
dbDirectObjectProperty(O,p(category),v([v(Category)])),
Category <> "boss".



163

%********************************************************************
%********************************************************************
% ELEMLIST.PRO
% List of Elements.
%********************************************************************
%********************************************************************

predicates
nondeterm includedElement(element,elements)

includedElements(elements,elements)
includeElement(element,elements,elements)

nondeterm repeatedElement(element,elements)
equalElements(elements,elements)
nonDuplicatedElements(elements,elements)
elementsIntersection(elements,elements,elements)
elementsUnion(elements,elements,elements)
elementsDifference(elements,elements,elements)

clauses

%******************************************************
% includedElement(Element,Elements) :- Element is
% included in the list Elements.
%
includedElement(E,[E|_]).
includedElement(E,[_|Es]) :-

includedElement(E,Es).

%******************************************************
% includedElements(Es1,Es2) :- The list of elements Es1
% is included in the list Es2.
%
includedElements([E|Es1],Es2) :-

includedElement(E,Es2),
!,
includedElements(Es1,Es2).

includedElements([],_) :-
!.

%******************************************************
% includeElement(Element,ElementsI,ElementsO) :-
% Include the given Element in the set of Elements,
% if not included yet.
%
includeElement(E,Es,Es) :-

includedElement(E,Es),
!.

includeElement(E,Es,[E|Es]) :-
!.

%******************************************************
% repeatedElement(Element,Elements) :- Element is
% repeated in the list of Elements.
%
repeatedElement(E,[E|Es]) :-

includedElement(E,Es).
repeatedElement(E,[_|Es]) :-

repeatedElement(E,Es).

%******************************************************
% equalElements(Elements1,Elements2) :- Both sets have
% the same elements.
%
equalElements(Es1,Es2) :-

includedElements(Es1,Es2),
includedElements(Es2,Es1).

%******************************************************
% nonDuplicatedElements(Es1,Es2) :- Given a list of
% elements obtains a new list without duplicates.
%
nonDuplicatedElements([E|Es1],Es2) :-

includedElement(E,Es1),
!,
nonDuplicatedElements(Es1,Es2).



164

nonDuplicatedElements([E|Es1],[E|Es2]) :-
!,
nonDuplicatedElements(Es1,Es2).

nonDuplicatedElements([],[]) :-
!.

%******************************************************
% elementsIntersection(Es1,Es2,Es) :- Intersection
% of two lists of elements.
%
elementsIntersection([E|Es1],Es2,[E|Es]) :-

includedElement(E,Es2),
!,
elementsIntersection(Es1,Es2,Es).

elementsIntersection([_|Es1],Es2,Es) :-
!,
elementsIntersection(Es1,Es2,Es).

elementsIntersection([],_,[]) :-
!.

%******************************************************
% elementsUnion(Es1,Es2,Es) :- Union of two lists of
% elements.
%
elementsUnion([E|Es1],Es2,Es3) :-

includedElement(E,Es2),
!,
elementsUnion(Es1,Es2,Es3).

elementsUnion([E|Es1],Es2,[E|Es3]) :-
!,
elementsUnion(Es1,Es2,Es3).

elementsUnion([],Es,Es) :-
!.

%******************************************************
% elementsDifference(Es1,Es2,Es) :- Difference between
% two lists of elements.
%
elementsDifference([E|Es1],Es2,Es3) :-

includedElement(E,Es2),
!,
elementsDifference(Es1,Es2,Es3).

elementsDifference([E|Es1],Es2,[E|Es3]) :-
!,
elementsDifference(Es1,Es2,Es3).

elementsDifference([],_,[]) :-
!.



165

Appendix C. External schema definition DCM

The following is the source code of the external schema definition DCM developed. Its
input file is the output file of the DCM in appendix B.

%********************************************************************
%********************************************************************
% OODBEE.DAT
% Output file
%********************************************************************
%********************************************************************

rbaseproperty(p("address"),1)
rbaseproperty(p("name"),2)
rbaseproperty(p("category"),3)
rbaseclass(c("objects"),4)
rbaseclass(c("people"),5)
rbaseclass(c("addresses"),6)
rbaseclass(c("clients"),7)
rbaseclass(c("employees"),8)
rdirectclassproperty(c("people"),p("address"),9)
rdirectclassproperty(c("employees"),p("category"),10)
rdirectclassproperty(c("clients"),p("name"),11)
rdirectclassproperty(c("employees_"),p("name"),12)
rdirectclassproperty(c("employees_"),p("address"),13)
rdirectinheritance(c("people"),c("objects"),14)
rdirectinheritance(c("addresses"),c("objects"),15)
rdirectinheritance(c("clients"),c("people"),16)
rdirectinheritance(c("employees"),c("people"),17)
rdirectinheritance(c("clients"),c("g0"),58)
rdirectinheritance(c("employees_"),c("g0"),58)
rdirectinheritance(c("g0"),c("objects"),58)
rdirectinheritance(c("employees_"),c("g1"),59)
rdirectinheritance(c("clients"),c("g1"),59)
rdirectinheritance(c("g1"),c("objects"),59)
rdirectinheritance(c("g0"),c("people"),60)
rdirectaggregation(c("people"),c("addresses"),p("address"),18)
rdirectaggregation(c("employees_"),c("addresses"),p("address"),19)
rbaseobject(o("o1"),20)
rbaseobject(o("o2"),21)
rbaseobject(o("o3"),22)
rbaseobject(o("o4"),23)
rbaseobject(o("o5"),24)
rdirectclassobject(c("people"),o("o1"),25)
rdirectclassobject(c("clients"),o("o2"),26)
rdirectclassobject(c("employees"),o("o2"),27)
rdirectclassobject(c("addresses"),o("o3"),28)
rdirectclassobject(c("employees"),o("o4"),29)
rdirectclassobject(c("addresses"),o("o5"),30)
rdirectobjectproperty(o("o1"),p("address"),o([o("o3")]),31)
rdirectobjectproperty(o("o2"),p("address"),o([o("o3"),o("o5")]),32)
rdirectobjectproperty(o("o4"),p("address"),o([o("o5")]),33)
rdirectobjectproperty(o("o2"),p("category"),v([v("boss")]),34)
rdirectobjectproperty(o("o4"),p("category"),v([v("technician")]),35)
rdefinedderivedclass(c("employees_"),36)
rdirectderivation(c("employees_"),[c("employees")],preservation,37)
rdirectderivation(c("g1"),[c("people")],preservation,59)
rgeneratedderivedclass(c("g0"),58)
rgeneratedderivedclass(c("g1"),59)
rclasssetselection("es1",[c("objects"),c("clients"),c("employees_")],38)
rqualifiedclasssetselection("es2",[q(esc(c("objects"),nontransformable)),q(esc(c("client
s"),transformable)),q(esc(c("employees_"),nontransformable)),q(esc(c("addresses"),transf
ormable)),q(esc(c("people"),transformable))],39)
rqualifiedclasssetselection("es3",[q(esc(c("objects"),nontransformable)),q(esc(c("client
s"),transformable)),q(esc(c("employees_"),transformable)),q(esc(c("addresses"),transform
able)),q(esc(c("people"),nontransformable))],40)



166

rexternalschema("es1",[c("g0"),c("addresses"),c("objects"),c("clients"),c("employees_")]
,[e(is_a(c("addresses"),c("objects"))),e(is_a(c("clients"),c("g0"))),e(is_a(c("employees
_"),c("g0"))),e(is_a(c("g0"),c("objects")))],58)
rexternalschema("es2",[c("clients"),c("addresses"),c("objects"),c("employees_"),c("g1")]
,[e(is_a(c("employees_"),c("g1"))),e(is_a(c("clients"),c("g1"))),e(is_a(c("g1"),c("objec
ts"))),e(is_a(c("addresses"),c("objects")))],59)
rexternalschema("es3",[c("g0"),c("employees_"),c("clients"),c("addresses"),c("objects"),
c("people")],[e(is_a(c("people"),c("objects"))),e(is_a(c("addresses"),c("objects"))),e(i
s_a(c("employees_"),c("g0"))),e(is_a(c("clients"),c("g0"))),e(is_a(c("g0"),c("people")))
],60)
rindirectinheritance(c("clients"),c("objects"),41)
rindirectinheritance(c("employees"),c("objects"),42)
rindirectinheritance(c("employees_"),c("objects"),58)
rinheritedaggregation(c("clients"),c("addresses"),p("address"),43)
rinheritedaggregation(c("employees"),c("addresses"),p("address"),44)
rallclassproperties(c("objects"),[],45)
rallclassproperties(c("people"),[p("address")],46)
rallclassproperties(c("addresses"),[],47)
rallclassproperties(c("clients"),[p("name"),p("address")],48)
rallclassproperties(c("employees"),[p("category"),p("address")],49)
rallclassproperties(c("employees_"),[p("name"),p("address")],50)
rallclassproperties(c("g0"),[p("name"),p("address")],58)
rallclassproperties(c("g1"),[p("name"),p("address")],59)
rallclassobjects(c("objects"),[o("o1"),o("o2"),o("o3"),o("o4"),o("o5")],51)
rallclassobjects(c("people"),[o("o1"),o("o2"),o("o4")],52)
rallclassobjects(c("addresses"),[o("o3"),o("o5")],53)
rallclassobjects(c("clients"),[o("o2")],54)
rallclassobjects(c("employees"),[o("o2"),o("o4")],55)
rallclassobjects(c("employees_"),[o("o4")],56)
rallclassobjects(c("g0"),[o("o2"),o("o4")],58)
rallclassobjects(c("g1"),[o("o1"),o("o2"),o("o4")],59)
rtime(60)
rid(1)



167

%********************************************************************
%********************************************************************
% COMMREPO.PRO
% Definition Repository.
%********************************************************************
%********************************************************************

predicates
now(time)

nondeterm inheritance(element,element,time)
updateNewInheritanceRelationships(elements,time)
updateNewInheritanceRelationships(elements,difList,time)
updateNewIndirectInheritanceRelationships(elements,time)
findIndirectInheritance2(element,time)

nondeterm thereIsInheritance2(element,element,time)

nondeterm class(element,time)
nondeterm classProperties(element,elements,time)
nondeterm classPropertiesIntersection(element,element,elements,time)

compareClasses(element,element,comparation)

directDerivation(element,elements,derSemantics,time)
generateDerivedClass(element,time)
newClassName(element)
associateClassesByDerivation(element,elements,time)

nondeterm classObjects(element,elements,time)
classObjectsUnion(element,element,element,time)
subsumesExtension(element,element,time)

nondeterm aggregation(element,element,element,time)

nondeterm classSetSelection(schema,elements,time)
nondeterm qualifiedClassSetSelection(schema,elements,time)
nondeterm externalSchema(schema,elements,elements,time)

defineExternalSchema(schema,elements,elements,time)

database - coodb

rBaseProperty(element,time)
rBaseClass(element,time)
rDirectClassProperty(element,element,time)
rDirectInheritance(element,element,time)
rDirectAggregation(element,element,element,time)
rBaseObject(element,time)
rDirectClassObject(element,element,time)
rDirectObjectProperty(element,element,evaluation,time)
rDefinedDerivedClass(element,time)
rDirectDerivation(element,elements,derSemantics,time)
rGeneratedDerivedClass(element,time)
rClassSetSelection(schema,elements,time)
rQualifiedClassSetSelection(schema,elements,time)
rExternalSchema(schema,elements,elements,time)

rIndirectInheritance(element,element,time)
rInheritedAggregation(element,element,element,time)
rAllClassProperties(element,elements,time)
rAllClassObjects(element,elements,time)

rTime(integer)
rId(integer)

clauses

%******************************************************
% now(T) :- Obtain the time.
%
now(T) :-

retract(rTime(T1)),
!,
T = T1 + 1,
assertz(rTime(T)).

now(1) :-
!,
assertz(rTime(1)).



168

%********************************************************************
% Inheritance.
%********************************************************************

%******************************************************
% inheritance(Class1,Class2,T) :- Class1 is subclass of
% Class2.
%
inheritance(C1,C2,T) :-

rDirectInheritance(C1,C2,T2),
T2 <= T.

inheritance(C1,C2,T) :-
rIndirectInheritance(C1,C2,T2),
T2 <= T.

%******************************************************
% updateNewInheritanceRelationships(Edges,T) :- Given
% the Edges obtained in an External Schema, updates
% the repository with the new inheritance
% relationships obtained.
%
updateNewInheritanceRelationships(Es,T) :-

updateNewInheritanceRelationships(Es,dl(Cs1,[]),T),
nonDuplicatedElements(Cs1,Cs2),
updateNewIndirectInheritanceRelationships(Cs2,T).

updateNewInheritanceRelationships([e(is_a(C1,C2))|Es],
dl(Cs1,Cs2),T) :-

not(inheritance(C1,C2,T)),
!,
assertz(rDirectInheritance(C1,C2,T)),
updateNewInheritanceRelationships(Es,dl(Cs1,[C1|Cs2]),T).

updateNewInheritanceRelationships([_|Es],Csdl,T) :-
!,
updateNewInheritanceRelationships(Es,Csdl,T).

updateNewInheritanceRelationships([],dl(Cs,Cs),_) :-
!.

%******************************************************
% updateNewIndirectInheritanceRelationships(Classes,T) :-
% Given the set of new classes related directly by
% inheritance, obtains the indirect inheritance.
%
updateNewIndirectInheritanceRelationships([C|Cs],T) :-

findIndirectInheritance2(C,T),
!,
updateNewIndirectInheritanceRelationships(Cs,T).

updateNewIndirectInheritanceRelationships([],_) :-
!.

%******************************************************
% findIndirectInheritance2 :- Find indirect inheritance
% relationships.
%
findIndirectInheritance2(C1,T) :-

class(C1,T),
class(C2,T),
compareClasses(C1,c(objects),ne),
compareClasses(C1,C2,ne),
not(rDirectInheritance(C2,C1,_)),
not(rDirectInheritance(C1,C2,_)),
not(rIndirectInheritance(C2,C1,_)),
rDirectInheritance(C1,C3,_),
thereIsInheritance2(C3,C2,T),
not(rIndirectInheritance(C1,C2,_)),
assertz(rIndirectInheritance(C1,C2,T)),
fail.

findIndirectInheritance2(_,_) :-
!.

%******************************************************
% thereIsInheritance2(Class1,Class2,T) :- Class1 and
% Class2 are related by inheritance.
%
thereIsInheritance2(C1,C2,T) :-

rDirectInheritance(C1,C2,T2),
T2 <= T.



169

thereIsInheritance2(C1,C2,T) :-
rDirectInheritance(C1,C3,T2),
T2 <= T,
thereIsInheritance2(C3,C2,T).

%********************************************************************
% Classes.
%********************************************************************

%******************************************************
% class(Class,T) :- Class is a class.
%
class(C,T) :-

rBaseClass(C,T2),
T2 <= T.

class(C,T) :-
rDefinedDerivedClass(C,T2),
T2 <= T.

class(C,T) :-
rGeneratedDerivedClass(C,T2),
T2 <= T.

%******************************************************
% classProperties(Class,Properties,T) :- Class has
% Properties.
%
classProperties(C,Ps,T) :-

class(C,T),
not(bound(Ps)),
rAllClassProperties(C,Ps,T2),
T2 <= T.

classProperties(C,Ps1,T) :-
class(C,T),
bound(Ps1),
rAllClassProperties(C,Ps2,T2),
T2 <= T,
equalElements(Ps2,Ps1).

classProperties(C,Ps,T) :-
class(C,T),
bound(Ps),
not(rAllClassProperties(C,_,_)),
assertz(rAllClassProperties(C,Ps,T)).

%******************************************************
% classPropertiesIntersection(Class1,Class2,Properties,T) :-
% Class1 and Class2 have Properties in common.
%
classPropertiesIntersection(C1,C2,Ps,T) :-

classProperties(C1,Ps1,T),
classProperties(C2,Ps2,T),
elementsIntersection(Ps1,Ps2,Ps).

%******************************************************
% compareClasses(C1,C2,Comparation) :- Comparation
% between two classes.
%
compareClasses(c(C1),c(C2),eq) :-

C1 = C2,
!.

compareClasses(c(C1),c(C2),ne) :-
C1 <> C2,
!.

%********************************************************************
% Derivation.
%********************************************************************

%******************************************************
% directDerivation(C,Cs,Way,T) :- C class is derived
% from Cs classes in the way specified.
%
directDerivation(C,Cs,Way,T) :-

rDirectDerivation(C,Cs,Way,T2),
T2 <= T,
!.



170

%******************************************************
% generateDerivedClass(Class) :- Defines a new generated
% derived class.
%
generateDerivedClass(C,T) :-

newClassName(C),
assertz(rGeneratedDerivedClass(C,T)).

%******************************************************
% newClassName(Class) :- Generates a new class name.
%
newClassName(c(C)) :-

retract(rId(Id1)),
!,
Id = Id1 + 1,
assertz(rId(Id)),
str_int(StrId,Id),
concat("g",StrId,Nom),
C = Nom.

newClassName(c(g0)) :-
assertz(rId(0)).

%******************************************************
% associateClassesByDerivation(C,Cs,T) :- Associate C
% class with Cs classes by the derivation relationship.
%
associateClassesByDerivation(C,Cs,_) :-

includedElement(C,Cs),
!.

associateClassesByDerivation(C,Cs1,T) :-
rDirectDerivation(C,Cs2,preservation,T2),
T2 <= T,
retract(rDirectDerivation(C,_,preservation,_)),
!,
elementsUnion(Cs1,Cs2,Cs3),
assertz(rDirectDerivation(C,Cs3,preservation,T)).

associateClassesByDerivation(C,Cs,T) :-
!,
assertz(rDirectDerivation(C,Cs,preservation,T)).

%********************************************************************
% Objects.
%********************************************************************

%******************************************************
% classObjects(Class,Objects,T) :- Class has Objects as
% members.
%
classObjects(C,Os,T) :-

class(C,T),
not(bound(Os)),
rAllClassObjects(C,Os,T2),
T2 <= T.

classObjects(C,Os1,T) :-
class(C,T),
bound(Os1),
rAllClassObjects(C,Os2,T2),
T2 <= T,
equalElements(Os2,Os1).

classObjects(C,Os,T) :-
class(C,T),
bound(Os),
not(rAllClassObjects(C,_,_)),
assertz(rAllClassObjects(C,Os,T)).

%******************************************************
% classObjectsUnion(Class1,Class2,Class3,T) :- Class3
% contains the union of the set of objects of Class1
% and Class2.
%
classObjectsUnion(C1,C2,C3,T) :-

not(rAllClassObjects(C3,_,_)),
classObjects(C1,Os1,T),
classObjects(C2,Os2,T),
!,
elementsUnion(Os1,Os2,Os3),
assertz(rAllClassObjects(C3,Os3,T)).



171

classObjectsUnion(C1,C2,C3,T) :-
classObjects(C3,Os3,T),
classObjects(C1,Os1,T),
classObjects(C2,Os2,T),
elementsUnion(Os1,Os2,Os4),
equalElements(Os3,Os4),
!.

%******************************************************
% subsumesExtension(Class1,Class2,T) :- Class1 subsumes
% extesion of Class2. APROXIMATION.
%
subsumesExtension(C1,C2,T) :-

classObjects(C1,Os1,T),
classObjects(C2,Os2,T),
includedElements(Os2,Os1),
!.

%********************************************************************
% Aggregation.
%********************************************************************

%******************************************************
% aggregation(Class1,Class2,Property,T) :- There is a
% property function defined for class Class1 with the
% property label Property and the domain class Class2.
%
aggregation(C1,C2,P,T) :-

rDirectAggregation(C1,C2,P,T2),
T2 <= T.

aggregation(C1,C2,P,T) :-
rInheritedAggregation(C1,C2,P,T2),
T2 <= T.

%********************************************************************
% External Schemas.
%********************************************************************

%******************************************************
% classSetSelection(S,Cs,T) :- Selection of classes
% to compose an External Schema.
%
classSetSelection(S,Cs,T) :-

rClassSetSelection(S,Cs,T2),
T2 <= T.

%******************************************************
% qualifiedClassSetSelection(S,QCs,T) :- Qualified
% selection of classes to compose an External Schema.
%
qualifiedClassSetSelection(S,QCs,T) :-

rQualifiedClassSetSelection(S,QCs,T2),
T2 <= T.

%******************************************************
% externalSchema(S,Cs,Es,T) :- Defined External Schema.
%
externalSchema(S,Cs,Es,T) :-

rExternalSchema(S,Cs,Es,T2),
T2 <= T.

%******************************************************
% defineExternalSchema(S,Cs,Es,T) :- Define an External
% Schema.
%
defineExternalSchema(S,Cs,Es,T) :-

assertz(rExternalSchema(S,Cs,Es,T)),
!.



172

%********************************************************************
%********************************************************************
% GESGEN.PRO
% General External Schema Generation.
%********************************************************************
%********************************************************************

include "domains.pro"
include "elemlist.pro"
include "commrepo.pro"

predicates
run
generateExternalSchemas(time)

generateExternalSchema(elements,elements,elements,time)
propertyDecompositionHierarchyClosure(elements,elements,time)
propertyDecompositionHierarchyClosureDL(elements,difList,time)
classHierarchyClosure(elements,elements,elements,time)
classHierarchyClosure(elements,elements,difList,difList,time)

addLowestCommonSuperclass(element,element,elements,difList,
difList,difList,time)

nondeterm superclassWithPropertiesInSet(element,element,
elements,elements,element,time)

lowerSuperclassWithPropertiesInSet(element,element,
elements,elements,element,time)

nondeterm superclassWithPropertiesInRepository(element,
element,elements,element,time)

lowersuperclassWithPropertiesInRepository(element,element,
elements,element,time)

eliminateReduntantEdges(elements,elements,time)
eliminateReduntantEdges(elements,elements,difList,time)
nondeterm indirectEdge(element,elements)
nondeterm definedEdge(element,elements)

generateQualifiedExternalSchema(elements,elements,elements,time)
qualifiedClasses(elements,classQuality,elements)
transfClassesRelatedByAggregation(elements,elements,elements,

elements,time)
transfClassesRelatedByAggregationDL(elements,elements,difList,

difList,time)
classesWithProperties(elements,elements,time)
classesWithPropertiesDL(elements,difList,time)
transfClassesPropDecompHierarchyClosure(elements,elements,

elements,elements,time)
transfClassesPropDecompHierarchyClosure(elements,elements,

difList,time)
classPropertyDecompositionClosure(element,elements,element,time)
classPropertyDecompositionClosure(element,elements,elements,

difList,time)

subsumtionIsomorficClasses(elements,elements,elements,time)
subsumtionIsomorficClassesDL(elements,difList,difList,time)
integrationOfTansformableClasses(elements,elements,elements,

elements,elements,time)
integrationOfTansformableClasses(elements,difList,difList,time)
transformableClassIntegration(element,elements,elements,

elements,elements,time)
branchTransformableClassIntegration(element,elements,elements,

elements,elements,time)
branchTransformableClassIntegrationDL(element,elements,difList,

difList,time)
integrateTransformableClass(element,element,elements,elements,

elements,elements,time)
leafTransformableClassIntegration(element,elements,elements,

elements,elements,time)
subsumedBySomeClass(element,elements,time)
subsumingSuperclassPropertyUnion(element,element,elements,

elements,elements,time)
subsumingSuperclassPropertyUnionDL(element,element,elements,

elements,difList,time)
subsumingClassPropertyUnion(element,elements,elements,time)
subsumingClassPropertyUnionDL(element,elements,difList,time)
defineTransformableClass(element,element,time)
eliminateRedundantTransformableClasses(elements,elements,

elements,elements,elements,elements,time)
eliminateRedundantTransformableClasses(elements,elements,difList,

difList,time)



173

exclusiveNodesEdge(element,elements)
unifyTransformableAndAddedClasses(element,element,element,time)
unifyClassesInSchema(element,element,element,elements,elements,

elements,elements,time)
unifyClassesInSchema(elements,element,element,difList,time)
obtainedFromTransformableClasses(elements,elements,elements,time)
obtainedFromTransformableClassesDL(elements,elements,difList,time)

goal
run.

clauses
run :-

consult("oodb.dat",coodb),
now(T),
generateExternalSchemas(T),
save("oodbee.dat",coodb),
write("\n\nOK."),
!.

%********************************************************************
%********************************************************************

%******************************************************
% generateExternalSchemas(T) :- Generated all the
% defined external schemas.
%
generateExternalSchemas(T) :-

classSetSelection(S,Cs1,T),
not(externalSchema(S,_,_,T)),
now(T1),
generateExternalSchema(Cs1,Cs2,Es,T1),
defineExternalSchema(S,Cs2,Es,T1),
fail.

generateExternalSchemas(T) :-
qualifiedClassSetSelection(S,QCs,T),
not(externalSchema(S,_,_,T)),
now(T1),
generateQualifiedExternalSchema(QCs,Cs,Es,T1),
defineExternalSchema(S,Cs,Es,T1),
fail.

generateExternalSchemas(_) :-
!.

%********************************************************************
%********************************************************************

%******************************************************
% generateExternalSchema(Cs1,Cs2,Es,T) :- Given a set
% of classes Cs1, generates a correct External Schema
% with all the classes needed (Cs2) and the edges
% between them (Es).
%
generateExternalSchema(Cs1,Cs2,Es2,T) :-

includeElement(c(objects),Cs1,Cs3),
propertyDecompositionHierarchyClosure(Cs3,Cs4,T),
classHierarchyClosure(Cs4,Cs2,Es1,T),
eliminateReduntantEdges(Es1,Es2,T),

updateNewInheritanceRelationships(Es2,T),
!.

%******************************************************
% propertyDecompositionHierarchyClosure(Cs1,Cs2,T) :-
% Given a set of classes Cs1 obtains the set of
% classes Cs2 closed according to the property
% decomposition hierarchy: "all classes that are being
% used in a external schema are also defined within
% the external schema"; adding the classes referenced
% and not included.
%
propertyDecompositionHierarchyClosure(Cs1,Cs2,T) :-

propertyDecompositionHierarchyClosureDL(Cs1,dl(Cs2,Cs1),T).

propertyDecompositionHierarchyClosureDL([C1|Cs1],dl(Cs2,Cs3),T) :-
aggregation(C1,C2,_,T),
not(includedElement(C2,Cs3)),



174

!,
propertyDecompositionHierarchyClosureDL([C1,C2|Cs1],

dl(Cs2,[C2|Cs3]),T).
propertyDecompositionHierarchyClosureDL([_|Cs1],Cs2dl,T) :-

!,
propertyDecompositionHierarchyClosureDL(Cs1,Cs2dl,T).

propertyDecompositionHierarchyClosureDL([],dl(Cs,Cs),_) :-
!.

%******************************************************
% classHierarchyClosure(Cs1,Cs2,Es,T) :- Given the set
% of classes Cs1, obtains the associated External
% Schema closed w.r.t. class hierarchy.
%
classHierarchyClosure(Cs1,Cs2,Es,T) :-

classHierarchyClosure(Cs1,Cs1,dl(Cs2,Cs1),dl(Es,[]),T).

classHierarchyClosure([C|Cs1],[C|Cs2],Cs3dl,Esdl,T) :-
!,
classHierarchyClosure([C|Cs1],Cs2,Cs3dl,Esdl,T).

classHierarchyClosure([C1|Cs1],[C2|Cs2],dl(Cs3,Cs4),dl(Es1,Es2),T) :-
classPropertiesIntersection(C1,C2,Ps,T),
!,
addLowestCommonSuperclass(C1,C2,Ps,dl(Cs6,Cs4),dl(Cs5,Cs1),

dl(Es3,Es2),T),
classHierarchyClosure([C1|Cs5],Cs2,dl(Cs3,Cs6),dl(Es1,Es3),T).

% Added classes are considered again in order to update
% all its inheritance relationships (Cs1 -> Cs5).

classHierarchyClosure([_|Cs1],[],dl(Cs2,Cs3),Esdl,T) :-
!,
classHierarchyClosure(Cs1,Cs3,dl(Cs2,Cs3),Esdl,T).

classHierarchyClosure([],_,dl(Cs,Cs),dl(Es,Es),_) :-
!.

%******************************************************
% addLowestCommonSuperclass(C1,C2,Ps,Cs1dl,Cs2dl,Esdl,T) :-
% Given the classes C1, C2 and their common properties
% Ps, obtains the lowest common superclass (LCS) in
% order to update the sets of classes and edges adding
% the LCS class and its inheritance relationships with
% the classes given.
%
addLowestCommonSuperclass(C1,C2,Ps,dl(Cs1,Cs1),dl(Cs2,Cs2),

dl(Es2,Es1),T) :-
classProperties(C1,Ps,T),
subsumesExtension(C1,C2,T),
includeElement(e(is_a(C2,C1)),Es1,Es2),
!.

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs1,Cs1),dl(Cs2,Cs2),
dl(Es2,Es1),T) :-

classProperties(C2,Ps,T),
subsumesExtension(C2,C1,T),
includeElement(e(is_a(C1,C2)),Es1,Es2),
!.

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs1,Cs1),dl(Cs2,Cs2),
dl(Es3,Es1),T) :-

superclassWithPropertiesInSet(C1,C2,Ps,Cs1,C3,T),
not(lowerSuperclassWithPropertiesInSet(C1,C2,Ps,Cs1,C3,T)),
includeElement(e(is_a(C1,C3)),Es1,Es2),
includeElement(e(is_a(C2,C3)),Es2,Es3),
!.

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs2,Cs1),dl(Cs4,Cs3),
dl(Es3,Es1),T) :-

superclassWithPropertiesInRepository(C1,C2,Ps,C3,T),
not(lowersuperclassWithPropertiesInRepository(C1,C2,Ps,C3,T)),
includeElement(C3,Cs1,Cs2),
includeElement(C3,Cs3,Cs4),
includeElement(e(is_a(C1,C3)),Es1,Es2),
includeElement(e(is_a(C2,C3)),Es2,Es3),
!.

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs2,Cs1),dl(Cs4,Cs3),
dl(Es3,Es1),T) :-

generateDerivedClass(C3,T),
classProperties(C3,Ps,T),
classObjectsUnion(C1,C2,C3,T),
includeElement(C3,Cs1,Cs2),
includeElement(C3,Cs3,Cs4),
includeElement(e(is_a(C1,C3)),Es1,Es2),
includeElement(e(is_a(C2,C3)),Es2,Es3),



175

!.

%******************************************************
% superclassWithPropertiesInSet(C1,C2,Ps,Cs,C3,T) :-
% C3 is superclass of C1 and C2, belongs to Cs and
% has properties Ps.
%
superclassWithPropertiesInSet(C1,C2,Ps,Cs,C3,T) :-

includedElement(C3,Cs),
classProperties(C3,Ps,T),
subsumesExtension(C3,C1,T),
subsumesExtension(C3,C2,T).

%******************************************************
% lowerSuperclassWithPropertiesInSet(C1,C2,Ps,Cs,C3,T) :-
% C3 is superclass of C1 and C2, belongs to Cs and
% has properties Ps, but another class exists with
% the same properties that C3 and is subclass of C3.
%
lowerSuperclassWithPropertiesInSet(C1,C2,Ps,Cs,C3,T) :-

superclassWithPropertiesInSet(C1,C2,Ps,Cs,C4,T),
compareClasses(C4,C3,ne),
subsumesExtension(C3,C4,T),
!.

%******************************************************
% superclassWithPropertiesInRepository(C1,C2,Ps,C3,T) :-
% C3 is superclass of C1 and C2 in the repository and
% has properties Ps.
%
superclassWithPropertiesInRepository(C1,C2,Ps,C3,T) :-

classProperties(C3,Ps,T),
subsumesExtension(C3,C1,T),
subsumesExtension(C3,C2,T).

%******************************************************
% lowerSuperclassWithPropertiesInRepository(C1,C2,Ps,C3,T) :-
% C3 is superclass of C1 and C2 in the repository and
% has properties Ps, but another class exists with
% the same properties that C3 and subclass of C3.
%
lowersuperclassWithPropertiesInRepository(C1,C2,Ps,C3,T) :-

superclassWithPropertiesInRepository(C1,C2,Ps,C4,T),
compareClasses(C4,C3,ne),
subsumesExtension(C3,C4,T),
!.

%******************************************************
% eliminateReduntantEdges(Es1,Es2,T) :- Given a set of
% edges Es1, eliminates the redundant edges to obtain
% the set Es2.
%
eliminateReduntantEdges(Es1,Es2,T) :-

nonDuplicatedElements(Es1,Es3),
eliminateReduntantEdges(Es3,Es3,dl(Es2,[]),T).

eliminateReduntantEdges([E|Es1],Es2,Es3dl,T) :-
indirectEdge(E,Es2),
!,
eliminateReduntantEdges(Es1,Es2,Es3dl,T).

eliminateReduntantEdges([E|Es1],Es2,dl(Es3,Es4),T) :-
!,
eliminateReduntantEdges(Es1,Es2,dl(Es3,[E|Es4]),T).

eliminateReduntantEdges([],_,dl(Es,Es),_) :-
!.

%******************************************************
% indirectEdge(E,Es) :- E is an edge that is indirectly
% defined in the set of edges Es.
%
indirectEdge(e(is_a(C1,C2)),Es) :-

includedElement(e(is_a(C1,C3)),Es),
definedEdge(e(is_a(C3,C2)),Es).



176

%******************************************************
% definedEdge(E,Es) :- The given edge E is defined
% directly or indirectly in the list of edges Es.
%
definedEdge(E,Es) :-

includedElement(E,Es).
definedEdge(E,Es) :-

indirectEdge(E,Es).

%********************************************************************
%********************************************************************

%******************************************************
% generateQualifiedExternalSchema(QCs,Cs,Es,T) :- Given
% a set of qualified classes QCs, generates a correct
% External Schema with all the classes Cs needed and
% the edges Es between them.
%
generateQualifiedExternalSchema(QCs1,Cs,Es,T) :-

includeElement(q(esc(c(objects),nonTransformable)),QCs1,QCs2),

% NonTransformable and Transformable Classes.
qualifiedClasses(QCs2,nonTransformable,CsNT1),
qualifiedClasses(QCs2,transformable,CsT1),

% Property Decomposition Hierarchy Closure.
% -----------------------------------------

% Classes refered by NT classes become NT.
propertyDecompositionHierarchyClosure(CsNT1,CsNT2,T),

% T classes refered by NT classes become NT.
elementsDifference(CsT1,CsNT2,CsT2),

% T classes refered by T classes become NT.
transfClassesRelatedByAggregation(CsT2,CsNT2,CsT3,CsNT3,T),

                     
% References of T classes to classes not included
% have to be supressed.
classesWithProperties(CsT3,CsTWPs1,T),
transfClassesPropDecompHierarchyClosure(CsTWPs1,CsT3,CsNT3,

CsTWPs2,T),

% Class Hierarchy Closure.
% ------------------------

% NT classes hierarchy closure.
classHierarchyClosure(CsNT3,CsNT4,EsNT1,T),
eliminateReduntantEdges(EsNT1,EsNT2,T),

% Unification of T classes that contain the same objects.
subsumtionIsomorficClasses(CsTWPs2,ICsTWPs,CsT4,T),

% Integration of T classes.
integrationOfTansformableClasses(ICsTWPs,CsNT4,EsNT2,

Cs3,Es2,T),
eliminateReduntantEdges(Es2,Es3,T),

% T classes that can be replaced by auxiliary added clases.
eliminateRedundantTransformableClasses(CsNT3,CsT4,Cs3,Es3,

Cs,Es,T),

updateNewInheritanceRelationships(Es,T),
!.

%******************************************************
% qualifiedClasses(QCs,Q,Cs) :- Given a set of qualified
% classes and a qualification, obtains the set of
% classes qualified this way.
%
qualifiedClasses([q(esc(C,_))|QCs],any,[C|Cs]) :-

!,
qualifiedClasses(QCs,any,Cs).

qualifiedClasses([q(esc(C,Q))|QCs],Q,[C|Cs]) :-
!,
qualifiedClasses(QCs,Q,Cs).

qualifiedClasses([_|QCs],Q,Cs) :-
!,
qualifiedClasses(QCs,Q,Cs).

qualifiedClasses([],_,[]) :-
!.



177

%******************************************************
% transfClassesRelatedByAggregation(CsT1,CsNT1,CsT2,
% CsNT2,T) :- T classes refered by T classes become NT.
% Given the original T and NT sets of classes, obtains
% the new ones.
%
transfClassesRelatedByAggregation(CsT1,CsNT1,CsT2,CsNT2,T) :-

transfClassesRelatedByAggregationDL(CsT1,CsT1,dl(CsT2,[]),
dl(CsNT2,CsNT1),T).

transfClassesRelatedByAggregationDL([C1|CsT1],CsT0,CsT2dl,
dl(CsNT2,CsNT1),T) :-

aggregation(C2,C1,_,T),
includedElement(C2,CsT0),
!,
transfClassesRelatedByAggregationDL(CsT1,CsT0,CsT2dl,

dl(CsNT2,[C1|CsNT1]),T).
transfClassesRelatedByAggregationDL([C|CsT1],CsT0,

dl(CsT2,CsT3),CsNTdl,T) :-
!,
transfClassesRelatedByAggregationDL(CsT1,CsT0,

dl(CsT2,[C|CsT3]),CsNTdl,T).
transfClassesRelatedByAggregationDL([],_,dl(CsT,CsT),

dl(CsNT,CsNT),_) :-
!.

%******************************************************
% classesWithProperties(Cs,CsWPs,T) :- Given a set of
% classes Cs returns a set of classes with properties.
%
classesWithProperties(Cs,CsWPs,T) :-

classesWithPropertiesDL(Cs,dl(CsWPs,[]),T).

classesWithPropertiesDL([C|Cs1],dl(CsWPs,Cs2),T) :-
classProperties(C,Ps,T),
!,
classesWithPropertiesDL(Cs1,dl(CsWPs,[cp(C,Ps)|Cs2]),T).

classesWithPropertiesDL([],dl(CsWPs,CsWPs),_) :-
!.

%******************************************************
% transfClassesPropDecompHierarchyClosure(CsTWPs1,CsT,
% CsNT,CsTWPs2,T) :- Given a set of classes with their
% properties, deletes the properties that reference
% classes not included in the sets of NT and T classes.
%
transfClassesPropDecompHierarchyClosure(CsPs1,CsT,CsNT,

CsPs2,T) :-
elementsUnion(CsT,CsNT,AllCs),
transfClassesPropDecompHierarchyClosure(CsPs1,AllCs,

dl(CsPs2,[]),T).

transfClassesPropDecompHierarchyClosure([CP1|CsPs1],AllCs,
dl(CsTWPs,CsPs2),T) :-

!,
classPropertyDecompositionClosure(CP1,AllCs,CP2,T),
transfClassesPropDecompHierarchyClosure(CsPs1,AllCs,

dl(CsTWPs,[CP2|CsPs2]),T).
transfClassesPropDecompHierarchyClosure([],_,

dl(CsTWPs,CsTWPs),_) :-
!.

%******************************************************
% classPropertyDecompositionClosure(CP1,Cs,CP2,T) :-
% Given a class with its properties, deletes the
% properties that don't reference the set of classes
% also given; returns the class with the properties
% that remain.
%
classPropertyDecompositionClosure(cp(C,Ps1),Cs,cp(C,Ps2),T) :-

classPropertyDecompositionClosure(C,Ps1,Cs,dl(Ps2,[]),T).

classPropertyDecompositionClosure(C1,[P|Ps1],Cs,Ps2dl,T) :-
aggregation(C1,C2,P,T),
not(includedElement(C2,Cs)),
!,



178

classPropertyDecompositionClosure(C1,Ps1,Cs,Ps2dl,T).
classPropertyDecompositionClosure(C,[P|Ps1],Cs,dl(Ps2,Ps3),T) :-

!,
classPropertyDecompositionClosure(C,Ps1,Cs,dl(Ps2,[P|Ps3]),T).

classPropertyDecompositionClosure(_,[],_,dl(Ps,Ps),_) :-
!.

%******************************************************
% subsumtionIsomorficClasses(CsPs,ICsPs,Cs,T) :- Given
% a set of classes with properties, obtains isomorfic
% groups of classes using the subsumtion relationship.
%
subsumtionIsomorficClasses(CsPs,ICsPs,Cs,T) :-

subsumtionIsomorficClassesDL(CsPs,dl(ICsPs,[]),
dl(Cs,[]),T).

subsumtionIsomorficClassesDL([cp(C1,Ps1)|CsPs1],
dl(ICsPs1,ICsPs2),Csdl,T) :-

includedElement(si(C2,Ps2,Cs2),ICsPs2),
subsumesExtension(C1,C2,T),
subsumesExtension(C2,C1,T),
!,
elementsDifference(ICsPs2,[si(C2,Ps2,Cs2)],ICsPs3),
elementsUnion(Ps2,Ps1,Ps3),
subsumtionIsomorficClassesDL(CsPs1,

dl(ICsPs1,[si(C2,Ps3,[C1|Cs2])|ICsPs3]),Csdl,T).
subsumtionIsomorficClassesDL([cp(C,Ps)|CsPs],dl(ICsPs1,ICsPs2),

dl(Cs1,Cs2),T) :-
!,
subsumtionIsomorficClassesDL(CsPs,dl(ICsPs1,

[si(C,Ps,[C])|ICsPs2]),dl(Cs1,[C|Cs2]),T).
subsumtionIsomorficClassesDL([],dl(ICsPs,ICsPs),dl(Cs,Cs),_) :-

!.

%******************************************************
% integrationOfTansformableClasses(ICsTWPs,CsNT,EsNT,Cs,
% Es,T) :- Given the set of T classes and the
% schema of NT classes, integrates the T classes
% obtaining the new schema.
%
integrationOfTansformableClasses(ICsTWPs,CsNT,EsNT,Cs,Es,T) :-

integrationOfTansformableClasses(ICsTWPs,
dl(Cs,CsNT),dl(Es,EsNT),T).

integrationOfTansformableClasses(ICsTWPs1,dl(Cs1,Cs2),
dl(Es1,Es2),T) :-

includedElement(si(C,Ps,Cs),ICsTWPs1),
not(subsumedBySomeClass(C,ICsTWPs1,T)),
!,
elementsDifference(ICsTWPs1,[si(C,Ps,Cs)],ICsTWPs2),
transformableClassIntegration(si(C,Ps,Cs),Cs2,Es2,Cs3,Es3,T),
integrationOfTansformableClasses(ICsTWPs2,dl(Cs1,Cs3),

dl(Es1,Es3),T).
integrationOfTansformableClasses([],dl(Cs,Cs),dl(Es,Es),_) :-

!.

%******************************************************
% transformableClassIntegration(si(C,Ps,Cs),Cs1,Es1,Cs2,
% Es2,T) :- Given a T class, the set of classes
% integrated and the edges between them, integrates
% the class obtaining a new set of classes and edges.
%
transformableClassIntegration(si(C1,Ps1,Cs1),Cs2,Es2,

Cs3,Es3,T) :-
includedElement(C2,Cs2),
subsumesExtension(C1,C2,T),
!,
branchTransformableClassIntegration(si(C1,Ps1,Cs1),

Cs2,Es2,Cs3,Es3,T).
transformableClassIntegration(si(C1,Ps1,Cs1),Cs2,Es2,

Cs3,Es3,T) :-
!,
leafTransformableClassIntegration(si(C1,Ps1,Cs1),

Cs2,Es2,Cs3,Es3,T).

%******************************************************
% branchTransformableClassIntegration(si(C1,Ps1,Cs1),



179

% ,Cs2,Es2,Cs3,Es3,T) :- Transform and integrate the
% given class in a branch of the class hierarchy.
%
branchTransformableClassIntegration(si(C1,Ps1,Cs1),

Cs2,Es2,Cs3,Es3,T) :-
branchTransformableClassIntegrationDL(si(C1,Ps1,Cs1),Cs2,

dl(Cs3,Cs2),dl(Es3,Es2),T).
branchTransformableClassIntegrationDL(si(C1,Ps1,Cs1),[C2|Cs2],

dl(Cs3,Cs4),dl(Es1,Es2),T) :-
subsumesExtension(C1,C2,T),
!,
integrateTransformableClass(si(C1,Ps1,Cs1),C2,Cs4,Es2,

Cs5,Es3,T),
branchTransformableClassIntegrationDL(si(C1,Ps1,Cs1),Cs2,

dl(Cs3,Cs5),dl(Es1,Es3),T).
branchTransformableClassIntegrationDL(C,[_|Cs],Csdl,Esdl,T) :-

!,
branchTransformableClassIntegrationDL(C,Cs,Csdl,Esdl,T).

branchTransformableClassIntegrationDL(_,[],dl(Cs,Cs),dl(Es,Es),_) :-
!.

%******************************************************
% integrateTransformableClass(si(C1,Ps1,Cs1),C2,Cs2,Es2,
% Cs3,Es3,T) :- Given a transformable class C1 that
% subsumes C2 class, and a schema, transforms and
% integrates the transformable class in the schema.
%
integrateTransformableClass(si(C1,Ps1,Cs1),C2,Cs2,Es2,

Cs3,Es3,T) :-
subsumingSuperclassPropertyUnion(C1,C2,Cs2,Es2,Ps3,T),
elementsUnion(Ps1,Ps3,Ps4),

classProperties(C2,Ps2,T),
elementsIntersection(Ps2,Ps4,Ps5),

defineTransformableClass(si(C1,Ps5,Cs1),C3,T),
includeElement(C3,Cs2,Cs4),
classHierarchyClosure([C3],Cs2,dl(Cs3,Cs4),

dl(Es3,Es2),T),
!.
% Add to the T class C1 the properties of the superclasses of
% C2 class that subsume C1; the new class will have all these
% properties intesectioned with C2 properties (it is a C2
% superclass), this is the class to integrate by inheritance
% in a closed schema.

%******************************************************
% leafTransformableClassIntegration(si(C1,Ps1,Cs1),
% Cs2,Es2,Cs3,Es3,T) :- The given transformable class,
% that doesn't subsume any of the existing classes, is
% integrated in the class hierarchy.
%
leafTransformableClassIntegration(si(C1,Ps1,Cs1),

Cs2,Es2,Cs3,Es3,T) :-
subsumingClassPropertyUnion(C1,Cs2,Ps2,T),
elementsUnion(Ps1,Ps2,Ps3),

defineTransformableClass(si(C1,Ps3,Cs1),C2,T),
includeElement(C2,Cs2,Cs4),
classHierarchyClosure([C2],Cs2,dl(Cs3,Cs4),

dl(Es3,Es2),T),
!.

%******************************************************
% subsumedBySomeClass(C,ICsTWPs,T) :- The given a class
% is subsumed by some class from the given list.
%
subsumedBySomeClass(C1,[si(C2,_,_)|_],T) :-

compareClasses(C1,C2,ne),
subsumesExtension(C2,C1,T),
!.

subsumedBySomeClass(C,[_|ICsTWPs],T) :-
!,
subsumedBySomeClass(C,ICsTWPs,T).

%******************************************************
% subsumingSuperclassPropertyUnion(C1,C2,Cs,Es,Ps,T) :-



180

% Ps is the union of the properties of the superclasses
% of C2 class that subsume C1 class.
%
subsumingSuperclassPropertyUnion(C1,C2,Cs,Es,Ps,T) :-

subsumingSuperclassPropertyUnionDL(C1,C2,Cs,Es,
dl(Ps,[]),T).

subsumingSuperclassPropertyUnionDL(C1,C2,[C3|Cs],Es,
dl(Ps1,Ps2),T) :-

definedEdge(e(is_a(C2,C3)),Es),
subsumesExtension(C3,C1,T),
classProperties(C3,Ps3,T),
elementsUnion(Ps2,Ps3,Ps4),
!,
subsumingSuperclassPropertyUnionDL(C1,C2,Cs,Es,

dl(Ps1,Ps4),T).
subsumingSuperclassPropertyUnionDL(C1,C2,[_|Cs],Es,Psdl,T) :-

!,
subsumingSuperclassPropertyUnionDL(C1,C2,Cs,Es,Psdl,T).

subsumingSuperclassPropertyUnionDL(_,_,[],_,dl(Ps,Ps),_) :-
!.

%******************************************************
% subsumingClassPropertyUnion(C1,Cs,Ps,T) :- Ps is the
% union of the properties of the classes of Cs that
% subsume C1 class.
%
subsumingClassPropertyUnion(C1,Cs,Ps,T) :-

subsumingClassPropertyUnionDL(C1,Cs,dl(Ps,[]),T).

subsumingClassPropertyUnionDL(C1,[C2|Cs],dl(Ps1,Ps2),T) :-
subsumesExtension(C2,C1,T),
classProperties(C2,Ps3,T),
elementsUnion(Ps2,Ps3,Ps4),
!,
subsumingClassPropertyUnionDL(C1,Cs,dl(Ps1,Ps4),T).

subsumingClassPropertyUnionDL(C,[_|Cs],Psdl,T) :-
!,
subsumingClassPropertyUnionDL(C,Cs,Psdl,T).

subsumingClassPropertyUnionDL(_,_,dl(Ps,Ps),_) :-
!.

%******************************************************
% defineTransformableClass(si(C1,Ps1,Cs1),C2,T) :- Given
% a transformed transformable class C1, defines this
% class in the repository (if not defined yet) and
% returns it in C2.
%
defineTransformableClass(si(C1,Ps1,Cs1),C2,T) :-

classProperties(C2,Ps1,T),
subsumesExtension(C2,C1,T),
subsumesExtension(C1,C2,T),
!,
associateClassesByDerivation(C2,Cs1,T).

defineTransformableClass(si(C1,Ps1,Cs1),C2,T) :-
generateDerivedClass(C2,T),
classProperties(C2,Ps1,T),
classObjects(C1,Os1,T),
classObjects(C2,Os1,T),
!,
associateClassesByDerivation(C2,Cs1,T).

%******************************************************
% eliminateRedundantTransformableClasses(CsNT,CsT,
% Cs1,Es1,Cs2,Es2,T) :- Given the sets of NT and T
% classes and the schema obtained, eliminate the
% redundant classes of the schema, obtaining a new one.
%
eliminateRedundantTransformableClasses(CsNT,CsT,Cs1,Es1,

Cs2,Es2,T) :-
% Classes added to the schema.
elementsDifference(Cs1,CsNT,Cs3),
elementsDifference(Cs3,CsT,Cs4),
obtainedFromTransformableClasses(Cs4,CsT,CsT2,T),
elementsUnion(CsT,CsT2,CsTnew),
elementsDifference(Cs4,CsT2,CsAdd),
eliminateRedundantTransformableClasses(CsAdd,CsTnew,

dl(Cs2,Cs1),dl(Es2,Es1),T).



181

eliminateRedundantTransformableClasses([C1|Cs],CsT,
dl(Cs2,Cs1),dl(Es2,Es1),T) :-

exclusiveNodesEdge(e(is_a(C1,C2)),Es1),
includedElement(C2,CsT),
!,
unifyTransformableAndAddedClasses(C2,C1,C3,T),
unifyClassesInSchema(C2,C1,C3,Cs1,Es1,Cs3,Es3,T),
eliminateRedundantTransformableClasses(Cs,CsT,

dl(Cs2,Cs3),dl(Es2,Es3),T).
eliminateRedundantTransformableClasses([_|Cs],CsT,Csdl,Esdl,T) :-

!,
eliminateRedundantTransformableClasses(Cs,CsT,Csdl,Esdl,T).

eliminateRedundantTransformableClasses([],_,dl(Cs,Cs),
dl(Es,Es),_) :-

!.

%******************************************************
% obtainedFromTransformableClasses(Cs1,CsT,Cs2,T) :-
% Cs2 are the classes from Cs1 that have been obtained
% from the set CsT of T classes given.
%
obtainedFromTransformableClasses(Cs1,CsT,Cs2,T) :-

obtainedFromTransformableClassesDL(Cs1,CsT,dl(Cs2,[]),T).

obtainedFromTransformableClassesDL([C|Cs1],CsT,dl(Cs2,Cs3),T) :-
directDerivation(C,Cs4,preservation,T),
not(elementsIntersection(CsT,Cs4,[])),
!,
obtainedFromTransformableClassesDL(Cs1,CsT,dl(Cs2,[C|Cs3]),T).

obtainedFromTransformableClassesDL([_|Cs1],CsT,Csdl,T) :-
!,
obtainedFromTransformableClassesDL(Cs1,CsT,Csdl,T).

obtainedFromTransformableClassesDL([],_,dl(Cs,Cs),_) :-
!.

%******************************************************
% exclusiveNodesEdge(e(is_a(C1,C2)),Es) :- The given
% edge is the only one that has class C1 as the
% starting class, and also is the only one that has
% C2 as the ending class.
%
exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-

includedElement(e(is_a(C1,C2)),Es),
includedElement(e(is_a(C1,C3)),Es),
compareClasses(C3,C2,ne),
!,
fail.

exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-
includedElement(e(is_a(C1,C2)),Es),
includedElement(e(is_a(C3,C2)),Es),
compareClasses(C3,C1,ne),
!,
fail.

exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-
includedElement(e(is_a(C1,C2)),Es),
!.

%******************************************************
% unifyTransformableAndAddedClasses(CT,CA,C,T) :- Given
% a T class CT, and an added class CA, unifies them
% in a new class C which has the properties of CA and
% the objects of CT.
%
unifyTransformableAndAddedClasses(CT,CA,C,T) :-

classProperties(CA,Ps,T),
!,
defineTransformableClass(si(CT,Ps,[CT]),C,T).

%******************************************************
% unifyClassesInSchema(C1,C2,C3,Cs1,Es1,Cs2,Es2,T) :-
% Given two classes C1 and C2 that are unified in C3,
% and a schema, reflects this fact in the schema.
%
unifyClassesInSchema(C1,C2,C3,Cs1,Es1,Cs2,Es2,T) :-

elementsDifference(Cs1,[C1,C2],Cs3),
elementsUnion(Cs3,[C3],Cs2),



182

unifyClassesInSchema(Es1,e(is_a(C2,C1)),C3,
dl(Es2,[]),T).

unifyClassesInSchema([E|Es],E,C,Esdl,T) :-
!,
unifyClassesInSchema(Es,E,C,Esdl,T).

unifyClassesInSchema([e(is_a(C1,C4))|Es],
e(is_a(C2,C1)),C3,dl(Es2,Es1),T) :-

!,
unifyClassesInSchema(Es,e(is_a(C2,C1)),C3,

dl(Es2,[e(is_a(C3,C4))|Es1]),T).
unifyClassesInSchema([e(is_a(C4,C2))|Es],

e(is_a(C2,C1)),C3,dl(Es2,Es1),T) :-
!,
unifyClassesInSchema(Es,e(is_a(C2,C1)),C3,

dl(Es2,[e(is_a(C4,C3))|Es1]),T).
unifyClassesInSchema([E1|Es],E2,C,dl(Es2,Es1),T) :-

!,
unifyClassesInSchema(Es,E2,C,dl(Es2,[E1|Es1]),T).

unifyClassesInSchema([],_,_,dl(Es,Es),_) :-
!.



183

Appendix D. List of publications

The following is a list of the publications where work reported in this thesis is presented:

• J. Samos, “Definición de Vistas en Bases de Datos Orientadas a Objectos,”
Universitat Politècnica de Catalunya, Departament de Llenguatges i Sistemes
Informàtics, Report LSI-93-19-T, May 1993.

 
 This report introduces the concept of “view” with the different meanings used by

other authors (derived class and external schema), and presents the main problems
and uses of the definition of derived classes and external schemas. It is related to
chapters 1 and 2.

 
• J. Samos, “Esquemas Externos en Bases de Datos Orientadas a Objectos,” Universitat

Politècnica de Catalunya, Departament de Llenguatges i Sistemes Informàtics, Report
LSI-95-26-R, May 1995.

 
 In this report the first proposal of the new external schema definition methodology;

the concepts of transformable and non-transformable classes are first defined in it. It is
related to chapters 2, 5 and 6.

 
• J. Samos, “Definition of External Schemas in Object Oriented Databases,” Proc. Int’l

Conf. on Object Oriented Information Systems, Springer, pp. 154-166, Dublin,
December 1995.

 
 This is a shortened version of the previous report, focused on the new methodology

of definition of external schemas. It is mainly related to chapter 5.
 
• J. Samos, J. Sistac, “Definition of Deductive Conceptual Models of OODBs,” Proc.

Int’l Workshop on Database and Expert Systems Applications, IEEE Computer
Society Press, pp. 313-318, Zurich, September 1996.

 
 This paper proposes the definition of deductive conceptual models as a prototyping

tool, specially suitable for the specification of different components of OODBs. It is
covered by chapter 4.

 
• J. Samos, F. Saltor, “External Schema Generation Algorithms for Object Oriented

Databases,” Proc. Int’l Conf. on Object Oriented Information Systems, Springer, pp.
317-332, London, December 1996.

 
 In this paper two external schema generation algorithms are proposed, they are

defined as part of a deductive conceptual model, in the form of derived predicates. It
is related to chapter 5, section 4.



184

 
• J. Samos, F. Saltor, “Definition of Derived Classes in OODBs Using both Object

Preserving and Object Generating Semantics,” submitted for publication.
 
 In this paper the problems involved in the definition of derived classes are studied; the

concept of partially derived class is defined; a proposal is made for transmitting the
modifications between derived and base classes. It is related mainly to chapter 6, and
also to chapter 7.

 



185

Glossary of terms

Aplication administrator In order to define an external schema, the user of the information
contained in the data dictionary is the application administrator -
through the external schema definition system.

Attribute-identifiable class We define a class as attribute-identifiable if its objects can be
identified using a set of its attributes (without type restriction).
Derived classes are attribute-identifiable: their objects can also be
identified by their core attributes.

Base class The classes from which a derived class is directly defined are its
base classes; they can be derived or non-derived classes.

Base object The objects in base classes that participate in the definition of a
derived object are its base objects.

Classification Classification is the process of taking a new class description and
putting it where it belongs in the class hierarchy.

Conceptual schema The conceptual schema is a logical representation of the reality
modeled by the database; it describes the relevant aspects of the
universe of discourse.

Core attributes It can be considered that the object identifier of a derived object is
generated from a set of its attributes, these attributes are called core
attributes.

Data dictionary The systems of conceptual and external schema definition are based
on a data dictionary. The universe of discourse of the data dictionary
is all information in the management and use of the database system
-including the management and use of schemas.

Data relativism Data relativism is the general activity of structuring the same data in
different ways. In object schemas, the concept of data relativism is
implemented defining external schemas and derived classes.

DCM Deductive conceptual model.

Derivation relationship A derivation relationship is defined between a derived class and the
set of its base classes. The derivation relationship defines how to
obtain a derived class from its base classes; it establishes the
correspondence between the base objects and the derived objects.
The derivation relationship is used to integrate the derived classes
into the data dictionary.

Derivation relationship of
identity

A base class is related through a derivation relationship of identity
to a derived class if the objects of the base class participate in the
definition of the identity of the objects of the derived class.



186

Derivation relationship of
value

A derivation relationship of value existing between a base class and
a derived class only if the objects of the base class do not participate
in the definition of the identity of the derived objects.

Derived class Derived classes are defined from previously existing classes (derived
or non-derived); derived classes offer views of the information
contained in the classes from which they are defined. Derived
classes are defined during the lifetime of the database in order to be
included in some external schema or in the conceptual schema.

Derived object The objects contained in a derived class are derived objects.

Dynamic derivation
relationship

A dynamic derivation relationship is made up of a static derivation
relationship and a translator or update policy that determines how to
transmit the modifications that are made to the objects of the derived
class into modifications to the objects in the base class.

Dynamic derived class The derived class defined by a dynamic derivation relationship is a
dynamic derived class.

Enterprise administrator In order to define the conceptual schema the user of the information
contained in the data dictionary is the enterprise administrator -by
means of the conceptual schema definition system

Equivalence preservation
property

In the transmission of modifications from objects of derived classes
to the corresponding objects in base classes, the equivalence
preservation property has to be fulfilled: correct changes in the base
objects have to be produced in order to provide the desired updates
in derived objects.

Extension (of a class) The extension of a class is its set of occurrences, the set of objects
included in it.

External schema External schemas offer views of the information contained in the
conceptual schema; they allow the end-user to concentrate on a
logical representation of data adapted to their particular
requirements.

External schema definition
system

The definition of external schemas is carried out by the external
schema definition system.

Inheritance closure The object schema requires that for each pair of classes of it that
have some property in common, a superclass of them which only has
all the properties common to both classes has to be also included in
the object schema (this property is called inheritance closure of the
object schema).

Integration of derived
classes

Integration of derived classes refers to two different scopes:
integration of derived classes and previously existing classes in the
data dictionary (or in the conceptual schema playing the role of data
dictionary) and integration of a set of classes (derived and/or non-
derived) to form an external schema.

Intension (of a class) The intension of a class is made up of the set of properties of that
class.



187

Internal schema The internal schema is a physical representation of the data stored
into the database.

Local extension (of a
partially derived class)

A partially derived class’s local extension contains the non-derived
elements that are defined both in the class’s intension as well as its
extension.

Logical association The relationship expressed by way of the conditions defined in order
to associate objects of the base classes to define a derived object is
termed logical association.

Logical data independence External schemas provide logical data independence (many aspects
of the conceptual schema may be changed without having to modify
the views of the conceptual schema offered by external schemas).

Non-derived class Non-derived classes are defined during the initial definition of the
conceptual schema (it can contain non-derived and also derived
classes).

Non-required property The properties of transformable classes can be required if they are
referenced by a non-transformable class, or non-required in other
case.

Non-side effect external
schema

A non-side effect external schema is an external schema which is re-
computed dynamically so that conceptual schema modifications are
(whenever possible) “filtered out” from applications using the
external schema.

Non-transformable class The classes selected to compose the external schema can be qualified
as non-transformable to indicate that they cannot be modified
automatically, in the sense of adding or removing properties in the
external schema generation process.

Object generating semanticsA derived class defined by object generating semantics contains new
objects generated from the objects of its base classes.

Object preserving semanticsA derived class defined by object preserving semantics can only
contain objects of its base classes.

OID Object identifier.

OODB Object-oriented database.

Operation consistency
relation

For each method of modification of the base classes or the derived
class, an associated operation is defined in the derivation
relationship which is run each time the corresponding method is
used, each modification method having a defined operation
consistency relation in the derivation relationship, which is
responsible for maintaining the consistency between the base classes
and the derived class.

Partially derived class Partially derived classes are derived classes that can contain non-
derived information in their intension as well as in their extension.



188

Physical data independenceThe distinction between the the conceptual schema and the internal
schema provides physical data independence (many aspects fo the
physical implementation may be changed without having to modify
the abstract vision of the database).

Property The set of properties or the intension of a class is defined as the
union of its set of attributes and its set of methods.

Required property The properties of transformable classes can be required if they are
referenced by a non-transformable class, or non-required in other
case.

Schema closure A requirement that external schemas have to fulfil is schema
closure: every class referenced by some class included in an external
schema has to be also included in the same external schema.

Static derivation
relationship

A static derivation relationship is defined between the set of base
classes and a derived class, and establishes the correspondence
between the base objects and the derived objects.

Static derived class The derived class defined by a static derivation relationship is a
static derived class.

Subsumption relationship Class c1 is said to subsume class c2, denoted subsumes(c1, c2), if and
only if c1 can be defined as a superclass of c2 in a class hierarchy
correctly defined. This means that the type associated to c1 is a
supertype of the type of c2; and, the set of objects of c1 always
contains the set of objects of c2.

Temporal external schema Temporal external schemas are external schemas that include non-
derived information without having the conceptual schema affected;
they can be defined in the test environment.

Test environment In order to avoid the continual modification of the conceptual
schema, the availability of a test environment is very useful. In this
environment, temporal external schemas can be defined that include
non-derived information without having the conceptual schema
affected.

Three-level architecture The ANSI/SPARC three-level architecture classified database
fuctionalities into physical, logical, and external levels; information
at these levels is represented by the internal, conceptual, and
external schemas respectively.

Transformable class The classes selected to compose the external schema can be qualified
as transformable to indicate that they can be modified automatically,
in the sense of adding or removing properties in the external schema
generation process.

Translator A dynamic derivation relationship is made up of a static derivation
relationship and a translator or update policy that determines how
to transmit the modifications that are made to the objects of the
derived class into modifications to the objects in the base class.

Update policy See translator.



189

Value-identifiable class A class is defined to be value-identifiable if its objects can be
identified using a set of its attributes that only can be values (not
object identifiers).

View A view is a simplifying abstraction of a complex structure. In
OODBs, some authors identify the term “view” with the concept of
schema; others consider it just a class.



190



191

Bibliography

[Abiteboul & Bonner, 1991] S. Abiteboul, A. Bonner, “Objects and Views,” Proc.
ACM SIGMOD Int’l Conf. on Management of Data,
pp. 238-247, Denver, 1991.

[Abiteboul & Hull, 1988] S. Abiteboul, R. Hull, “Restructuring Hierarchical
Database Objects,” Theoretical Computer Science, 62,
pp. 3-38, 1988.

[Abiteboul et al., 1995] S. Abiteboul, R. Hull, V. Vianu, Foundations of
Databases, Addison-Wesley, 1995.

[Alhajj & Arkun, 1993] R. Alhajj, M. Arkun, “An Object Algebra for Object-
Oriented Database Systems,” DATABASE, vol. 24, no.
3, pp. 13-22, August 1993.

[Andany et al., 1991] J. Andany, M. Léonard, C. Palisser, “Management of
Schema Evolution In Databases,” Proc. Int’l. Conf. on
Very Large Databases, pp. 161-170, Barcelona,
September 1991.

[Andersen & Reenskaug, 1993] J. Andersen, T. Reenskaug, “Operations on Sets in an
OODB,” OOPS Messenger, vol. 4, no. 1, pp. 12-25
January 1993.

[ANSI/X3/SPARC, 1975] ANSI/X3/SPARC Study Group on Database
Management Systems, “Interim report,” ACM
SIGMOD, bulletin 7, no. 2, 1975.

[ANSI/X3/SPARC, 1986] ANSI/X3/SPARC Database System Study Group,
“Reference Model for DBMS Standardisation,”
SIGMOD Record, vol. 15, no. 1, pp. 19-58, March
1986.

[Barclay & Kennedy, 1993] P. Barclay, J. Kennedy, “Viewing Objects,” 11th
British National Conf. on Databases, Springer, pp.
93-109, Keele, July, 1993.



192

[Bertino, 1992] E. Bertino, “A View Mechanism for Object-Oriented
Databases,” Proc. Int’l Conf. on Extending Database
Technology, Springer, pp. 136-151, Vienna, March
1992.

[Bertino et al., 1996] E. Bertino, B. Catania, J. García-Molina, G. Gerrini,
“A Formal Model of Views for Object-Oriented
Database Systems,” submitted for publication.

[Bratsberg, 1992] S. Bratsberg, “Unified Class Evolution by Object
Oriented Views,” Proc. Int’l Conf. on the Entity-
Relationship Approach, pp. 423-439 , Karlsruhe,
October 1992.

[Brèche et al., 1995] P. Brèche, F. Ferrandina, M. Kuklok, “Simulation of
Schema Change using Views,” Proc. Int’l Conf. on
Database and Expert Systems Applications, pp. 247-
258, London, September 1995.

[Buchheit et al., 1994] M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt,
“Subsumption between Queries to Object-Oriented
Databases,” Information Systems, vol. 19, no. 1, pp.
33-54, 1984.

[Castellanos et al., 1992] M. Castellanos, F. Saltor, M. García, “A Canonical
Model for the Interoperatibility among Object
Oriented and Relational Models,” Proc. Int’l.
Workshop on Distributed Object Management, pp.
309-314, Edmonton, Aug. 1992.

[Costal et al., 1989] D. Costal, J. Pastor, M. Sancho, “Deductive
Conceptual Modelling of Systems Using Prolog,”
Proc. IFIP Working Conf., pp. 41-57, Barcelona, May
1989.

[Dayal, 1989] U. Dayal, “Queries and Views in an Object-Oriented
Data Model,” Proc. 2nd Int’l. Workshop on Database
Programming Languages, 1989.

[Díaz et al., 1991] O. Díaz, N. Paton, P. Gray, “Rule Management in
Object Oriented Databases: A Uniform Approach,”
Proc. Int’l. Conf. Very Large Databases, pp. 317-326,
Barcelona, Sep. 1991.

[Ferrandina et al., 1995] F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, J.
Madec, “Schema and Database Evolution in the O2

Object Database System,” Proc. Int’l. Conf. on Very
Large Databases, pp. 170-181, Zürich, Sep. 1995.



193

[Gardarin & Yoon, 1996] G. Gardarin, S. Yoon, “On the Power of Views in
Hypermedia Databases,” Proc. Engineering Systems
Design and Analysis Conf., vol. 2, pp. 31-40,
Montpellier, July 1996.

[Gentile & Zicari, 1994] M. Gentile, R. Zicari, “ Updating Views in Object
Oriented Database Systems,” Proc. Int’l. Symposium
on Adavanced Database Technologies and their
Integration, Nara, Japan, October, 1994.

[Geppert et al., 1993] A. Geppert, S. Scherrer, K.R. Dittrich, “Derived
Types and Subschemas: Towards Better Support for
Logical Data Independence in Object-Oriented Data
Models,” Univ. Zürich, Institut für Informatik, Tech.
Rep. 93.27, June, 1993.

[Gottlob et al., 1988] G. Gottlob, P. Paolini, R. Zicari, “Properties and
Update Semantics of Consistent Views,” ACM
Transactions on Database Systems, vol. 13, no. 4, pp.
486-524, December 1988.

[Gray et al., 1992] P. Gray, K. Kulkarni, N. Paton, Object-Oriented
Databases. A Semantic Data Model Approach,
Prentice Hall, 1992.

[Gustafsson et al., 1982] M.R. Gustafsson, T. Karlsson, J. Bubenko, “A
Declarative Approach to Conceptual Information
Modelling,” Information Systems Design
Methodologies: A Comparative Review, pp. 93-143,
T. Olle, H. Sol, A. Verrijn-Stuart (Eds.), North-
Holland, Amsterdam, 1982.

[Heiler & Zdonik, 1988] S. Heiler, S. Zdonik, “Views, Data Abstraction, and
Inheritance in the FUGUE Data Model,” Proc. 2nd
Int’l. Workshop on OODBS, Springer, FRG, Sep.,
1988.

[Heuer & Sander, 1991] A. Heuer, P. Sander, “Preserving and Generating
Objects in the LIVING IN A LATTICE Rule
Language,” Proc. Int’l IEEE Conf. on Data
Engineering, pp. 562-569, Kobe, April 1991.

[Heuer & Scholl, 1991] A. Heuer, M. Scholl, “Principles of Object-Oriented
Query Languages,” Proc. GI-Fachtagung
“Datenbanksysteme in Büro, Technik und
Wissenschaft”, pp. 178-197, Springer, Kaiserslautern,
March 1991.



194

[Hull, 1986] R. Hull, “Relative Information Capacity of Simple
Relational Database Schemata,” SIAM Journal of
Computing, vol. 15, no. 3, pp. 856-886, August 1986.

[Hull & Yap, 1984] R. Hull, C. Yap, “The Format Model: A Theory of
Database Organization,” Journal of the ACM, vol. 31,
no. 3, pp. 518-537, July 1984.

[Hull et al., 1991] R. Hull, S. Widjojo, D. Wile, M. Yoshikawa, “On
Data Restructuring and Merging with Object Identity,”
IEEE Data Engineering, vol. 14, no. 2, pp. 18-22,
June 1991.

[Kifer et al., 1992] M. Kifer, W. Kim, Y. Sagiv, “Querying Object-
Oriented Databases” Proc. ACM SIGMOD
Conference on Management of Data, pp. 393-402,
San Diego, 1992.

[Kim, 1989] W. Kim, “A model of Queries for Object-Oriented
Databases,” Proc. Int’l Conf. on Very Large
Databases, pp. 423-432, Amsterdam, August 1989.

[Kim & Kelley, 1995] W. Kim, W. Kelley, “On View Support in Object-
Oriented Database Systems,” Modern Database
Systems: the Object Model, Interoperability, and
beyond, W. Kim (Ed.), pp. 108-129, ACM Press,
1995.

[Kimura & Tsuruoka, 1991] Y. Kimura, K. Tsuruoka, “A View Class Mechanism
for Object-Oriented Database Systems,” Int’l Symp.
on Database Systems for Advanced Applications, pp.
269-273, Tokyo, April 1991.

[Lemke, 1995] T. Lemke, “DDL = DML ? An Exercise in Reflective
Schema Management for Chimera,”
IDEA.WP.22.O.003, http://www.ecrc.de/IDEA/,
March 1995.

[Miller et al., 1994] R. Miller, Y. Ioannidis, R. Ramakrishnan, “Schema
equivalence in Heterogeneous Systems: Bridging
Theory and Practice,” Information Systems, vol. 19,
no. 1, pp. 3-11, 1994.

[Monk, 1994] S. Monk, “View Definition in an Object-Oriented
Database,” Information and Software Technology,
vol. 36, no. 9, pp. 549-554, 1994.



195

[Monk & Sommerville, 1993] S. Monk, Y. Sommerville, “Schema Evolution in
OODBs Using Class Versioning,” SIGMOD Record,
vol. 22, no. 3, pp. 16-22, September 1993.

[Naja & Mouaddib, 1995] H. Naja, N. Mouaddib, “The Multiple Representation
in an Architectural Application,” Proc. Int’l. Conf. on
Database and Expert Systems Applications, pp. 237-
246, London, September 1995.

[Olivé, 1989] A. Olivé, “On the Design and Implementation of
Information Systems from Deductive Conceptual
Models,” Proc. Int’l. Conf. Very Large Databases, pp.
3-11, Amsterdam, August 1989.

[Peters & Özsu, 1995] R. Peters, M. Özsu, “Axiomatization of Dynamic
Schema Evolution in Objectbases,” Proc. Int’l IEEE
Conf. Data Engineering, pp. 156-164, Tapei, March
1995.

[Quer & Olivé, 1994] C. Quer, A. Olivé, “Determining Object Interaction in
Object-Oriented Deductive Conceptual Models,”
Information Systems, vol. 19, no. 3, pp. 211-227,
1994.

[Ra & Rundensteiner, 1995] Y. Ra, E. Rundensteiner, “A Transparent Object-
Oriented Schema Change Approach Using View
Evolution,” Proc. Int’l IEEE Conf. on Data
Engineering, pp. 165-172, Taipei, March 1995.

[Rundensteiner, 1992a] E. Rundensteiner, “MultiView: A Methodology for
Supporting Views in Object-Oriented Databases,”
Univ. of Cal., Irvine, Tech. Rep. #92-07, Jan. 1992.

[Rundensteiner, 1992b] E. Rundensteiner, “A Class Integration Algorithm and
its Application for Supporting Consistent Object
Views,” Univ. of Cal., Irvine, Tech. Rep. #92-50, May
1992.

[Rundensteiner, 1992c] E. Rundensteiner, “MultiView: A Methodology for
Supporting Views in Object-Oriented Databases,”
Proc. Int’l Conf. on Very Large Databases, pp. 187-
198, Vancouver, Aug. 1992.

[Rundensteiner & Bic, 1992] E. Rundensteiner, L. Bic, “Automatic View Schema
Generation in Object-Oriented Databases,” Univ. of
Cal., Irvine, Tech. Rep. #92-15, Feb. 1992.



196

[Samos, 1995] J. Samos, “Definition of External Schemas in Object
Oriented Databases,” Proc. Int’l Conf. on Object
Oriented Information Systems, pp. 154-166, Dublin,
Dec. 1995.

[Santos, 1995] C. Santos, “Design and Implementation of Object-
Oriented Views,” Proc. Int’l Conf. on Database and
Expert Systems Applications, pp. 91-102, London,
Sep. 1995.

[Santos et al., 1994] C. Santos, S. Abiteboul, C. Delobel, “Virtual Schemas
and Bases,” Proc. Int’l Conf. on Extending Database
Technology, pp. 81-94, Cambridge, March 1994.

[Schewe et al., 1992] K. Schewe, J. Schmidt, I. Wetzel, “Identification,
Genericity and Consistency in Object-Oriented
Databases,” Int’l Conf. on the Entity-Relationship
Approach, pp. 341-356, Karlsruhe, Oct. 1992.

[Schmolze & Lipkis, 1983] J. Schmolze, T. Lipkis, “Classification in the KL-ONE
Knowledge Representation System,” The Eigth Int’l.
Joint Conf. on Artificial Inteligence, vol. 1, pp. 330-
332, Aug. 1983.

[Scholl et al., 1992] M.H. Scholl, C. Laasch, C. Rich, H. Schek, M.
Tresch, “The COCOON Object Model,” Univ. Ulm,
Faculty of Computer Science, Rep. #193, Dec. 1992.

[Scholl & Schek, 1991] M. Scholl, H. Schek, “Supporting Views in Object-
Oriented Databases,” IEEE Data Engineering, vol.
14, no. 2, pp. 43-47, June 1991.

[Shaw & Zdonik, 1990] G. Shaw, S. Zdonik, “A Query Algebra for Object-
Oriented Databases,” Proc. Int’l IEEE Conf. on Data
Engineering, pp. 154-162, Los Angeles, 1990.

[Skarra & Zdonik, 1986] A. Skarra, S. Zdonik, “The Management of Changing
Types in an Object-Oriented Database,” Proc. Int’l.
Conf. on Object-Oriented Programming Systems and
Languages Applications, pp. 383-495, Portland, Sep.
1986.

[Sterling & Shapiro, 1986] L. Sterling, E. Shapiro, The Art of Prolog. Advanced
Programming Techniques, The MIT Press, 1986.



197

[Tanaka et al., 1988] K. Tanaka, M. Yoshikawa, K. Ishihara, “Schema
Virtualization in Object-Oriented Databases,” Proc. of
the 4th Int’l. Conf. on Data Engineering, IEEE
Computer Society Press, pp. 23-30, Feb., 1988.

[Tresch, 1991] M. Tresch, “A Framework for Schema Evolution by
Meta Object Manipulation,” Proc. Int’l Workshop on
Foundations of Models and Languages for Data and
Objects, pp. 1-13, Aigen, Sep. 1991.

[Tresch & Scholl, 1992] M. Tresch, M. Scholl, “Meta Object Management and
its Application to Database Evolution,” Proc. Int’l.
Conf. on Entity-Relationship Approach, pp. 299-321,
Karlsruhe, Oct. 1992.

[Tresch & Scholl, 1993] M. Tresch, M. Scholl, “Schema Transformation
without Database Reorganization,” SIGMOD Record,
vol. 22, no. 1, pp. 21-27, March 1993.


