UNIVERSITAT POLITECNICA DE CATALUNYA

DEPARTAMENT DELLENGUATGES ISISTEMESINFORMATICS

JOSESAMOS JMENEZ

DEFINITION OF EXTERNAL SCHEMAS AND
DERIVED CLASSES INOBJECT ORIENTED
DATABASES

TESIDOCTORAL

DIRIGIDA PEL DR. FELIX SALTOR | SOLER

BARCELONA

1997

Memoria presentada per José Samos Jiménez
per tal d’aconseguir el grau de Doctor en Informatica

per la Universitat Politecnica de Catalunya

A mis padres

Agradecimientos

Agradezco muy especialmente al Dr. Feélix Saltor por haber aceptado dirigir esta tesis,
por su confianza, apoyo, comentarios y consejos: por su ejemplo profesional y humano
gue siempre tendré presente.

A Antoni Olivé, Elisa Bertino, Oscar Diaz, Jesus Garcia y Toni Urpi por honrarme
aceptando formar parte del tribunal.

A los revisores de versiones previas de este trabajo y de las publicaciones realizadas
durante su desarrollo, por sus comentarios.

Quiero agradecer a los miembros de LSI, especialmente a Laura Espitia, su ayuda en
todo momento.

Agradezco a Winterthur Seguros las posibilidades profesionales que me ha ofrecido,
resultando éstas de gran utilidad para el desarrollo de la tesis. A todos los compafieros
que han vivido dia a dia mis comentarios sobre los avances en este trabajo, por el
interés y paciencia demostrados.

Finalmente, agradecer la colaboracion al resto de personas que hayan participado de
alguna manera en la elaboracion de esta tesis.

Este trabajo ha recibido parcialmente ayuda material del programa CICYT, proyecto
TIC93-0436.

Table of contents

L INTRODUGCTION .ttt ettt e ettt e et ettt et e e e e e e e e e e e ea s r e e e e nrb e e e e enna s 1

I 1, 1 1V 7: 1T) 1....
1.2 STRUCTURE OF THE THE SIS, et tttuttiutnintntnttentnettnsttnetstaesta s tas e sa st ss et tastataststnetstaetsttrraseseneanenres 2

2 VIEWS: EXTERNAL SCHEMAS AND DERIVED CLASSES ... 5

2.1 THE ANSI/SPARCFRAMEWORKccttttttttitaaeeetttteeetesatseaia s s e e e e et eeeestebe e e e e e e e e e e eesbbbba e e e e eeeeeeas 5
2.1.1 Three-level schema arChit@CtUIeooeuuiiii i eeaa 5.
2.1.2 Schema definition SYSTEIMS.......cuuiiiiiiiiiiiiiiee ettt e e e e eeees
2.1.3 The ANSI/SPARC framework in OODBS.........ccuuiiiiiiiiiieeeeeee e e e 6
2.2 EXTERNAL SCHEMA DEFINITION METHODOLOGIES......ttuuetiertiieetettiseeeteesisneeestniaeeeenninseesennnneeeneennnns 7
2.2.1 Survey of external schema definition Methodologies ...,
2.2. 1.1 [Tanaka €t @l., TO88]ccoiiiiiiiiiiiiiiiiiiii e —
2.2.1.2 [Heiler & Zdonik, 1988]
2.2.1.3[DAYal, 1989]......c.cueeeeeeeeeeeeeeeeeee et eee ettt ettt ettt ettt e et neen 8.....
2.2.1.4 [ADItEbOUl & BONNET, 1O ... ittt ettt e e e e e e e e e e e e e e eeeeeeeennnnne 9
2.2.1.5 [RUNAENSIEINET, 1O92C] ... euueiiiiiiieeie et e ettt e e e e e e e e e et et e et e e e et e e eeesnnnnreenneas
2.2.1.6 [Tresch & SChOll, TO93]......ciiiiiiiiiiiiiiiiii e e e e e e ettt e e e e r e e e e e e e s e e e e e e eeeeeeeeees
2.2. 1.7 [GePPErt €L al., 1003 ..t ———
2.2.1.8 [Barclay & Kennedy, 1993]
2.2.2.9[SAntoS €t al., 1994] ...ouuiiii i et e e eennmmm— e eean
2.2.1.20 [Kim & KeIIBY, 1995cueueeeiereeeeeeeeeeeeeeeeetee et ee ettt e et en et en s e nee e n e e
2.2.1.11 [Naja & Mouaddib, 1995}
2.2.1.12 [Bertin0 €t @l., 1996]coiiiiiiiiiiiiiiieiieeeeee e s

2.2.2 A classification of the external schema definition methodologies...........cccccoiiiiies 15
2.2.2.1 External schemas are subschemas of the conceptual schema...........cccoooiiees 15
2.2.2.2 External schemas are not necessarily subschemas of the conceptual.schema...................... 15
2.2.2.3 External schema as a class of the conceptual SChema............cccoovviiiiiiee 16

2.3 ISSUES IN THE DEFINITION OF DERIVED CLASSES......ccevttuuietttttuseetertiiaeeestiaaesestinaesesnnaaaesrennnaesenns 16

2.3.1 Integration of derived classes in @ SCheM@........ ..o, 6. 1
2.3.1.1 Integration using the inheritance relationShip. ... 17
2.3.1.1.1 Direct SUDCIASSES Of CIABHECES.coii it 17
2.3.1.1.2 Relation only With itS DASE CIASSES.........cuvriiiiiiiiiiier e 18
2.3.1.1.3 Explicitly defined relations.............uvriuiiieiiiiire et 18
2.3.1.1.4 Define all the possible relations..........coouuueiiiii e e 19
2.3.1.2 Integration using other relatioNShINS............vriuiiiiii e 20
2.3.1.2.1 Derivation relationShip...........oooiiiiiieie e 21
2.3.1.2.2May_DerelationNSNiP.......cooiiiiiiiiiieiie e 22
2.3.1.2.3CIUSEEIOf ClASSES... .o e ettt et e e e e e e e e e ettt 22
2.3.2 SUDBSUMPLION DEIWEEN CIASSES......eiiiiiiiiiiii e 22
2.3.3 Object-preserving and object-generating SEMaNtICS........ccovvuuiiiiiiiiiiiiiiee e e e 24
2.3.3.1 Only ObjJeCt-PreServing SEMENTICS.uuururueeeeee e e e e e e e ettt ettt a e e e e e e e aeeeeeees 24
2.3.3.2 Only Object-generating SEIMANLICS.uuuuruueeiers e e e e e e e e e e e ettt e e e e e e e e e e aeeaeeees 24
2.3.3.3 Both object-preserving and object-generating SEMAaNLCS.........oovvvvrrriiiiiiriiiiii e eeeeens 25
2.3.4 Identifiers of the objects in derived ClaSSESuuuiiiiiii e 25
2.3.4.1 Function of identifiers of the base ODJECLS............ovviiiiiiiiii 25
2.3.4.2 Function of values or identifiers of the base ObJECES...........oovviviiiiiiiiii e 26
2.3.5 Transmission of MOAIfiCAtiONS............ooiiiiiiiiii e s 26....
2.3.5.1 Automatic transmission Of MOIfICAtIONSuurueeeiiie s 27
2.3.5.2 Transmission of modifications through methods of the derived.class............cccccoovvviiiiiinnn. 28
2.3.6 Definition of non-derived attribULESooiiiiiiii e 28.....
2.4 GONCLUSIONS. ... ettt ettt ettt e e et e ettt et et e e et e et e e et e e e et e e et e e et et b e e et e an s n e e e enna e e e e eennaan 28......

o

3 OBJECT-ORIENTED CONCEPRTSttt 31

3.1 FORMAL DEFINITION OF OUR REFERENCE BASIOODB MODELcccvttiiiiiieiiiiiee et 31
3.1.1 Constants, values and ODJECTSuiiiiiiiiiii e e 31.....
3.1.2 Types. The aggregation relatioNShiP e 31l........
3.1.3 Class hierarchy. The inheritance relationship..........cccccoo i, 32
TNt I 1V 1 1 T T PP 33
3.1.5 Attributes and Methods: PrOPEItIESevviiiiiiiiiiiiiiiiiie e 3M.......
3.1.6 The structural semantics of a class hierarchy............coooo e 34

3.2 (QLASS HIERARCHY CLOSUREcctttuuettettiteeteeti e e eteeti s e e e e et s e et e s e e e et ee e tb e et ee st e e e e ent s e e e enraa e eeennnes 35
3.2.1 INNEMTANCE ClOSUIE .. ittt e e e e e et e e e e e e e e eaa e e e e s emmmmmm 35
3.2.2 Property decompoSition ClOSUIE........cooiiiiiiiiiiiiieieeieeee ettt 36......

3.3 OBIECT SCHEMAScettueettett e ettt e ettt e et et e et e e et e et e ee e e et e e et e et e e Ea e et e e ab e e n e et e e e e e e e ennanneeeennes 37
3.3.1 Valid ODJECE SCNEM@......cciiiiiiiiiiiiiti e e 37
3.3.2 CloSed 0DJECE SCREIMAeiiiiiiiie e e 31..

4 DEFINITION OF DCMS OF OODBSottt 41

o N N =T 01 o 1 [] USSP 41........

4.2 DEDUCTIVE CONCEPTUAL MODELS ..t utttitnttnetnetu ettt et eseeae et eaeeteeastaesesneeae et aseneseeneeneeaertarsastaesnannns 42

4.3 ARCHITECTURE OFDCIMS OFOODIBS. ... ottt et e e e et e et e e anen 42

4.4 CONCEPTUAL SCHEMA DEFINITIONDCM .. .ouitiiiii it et e e aaas 43
I o ST o] =Y [o= = 7
N B T 1Y/ =T o I o] £ =T Lo = 46
4.4.3 INtEQIILY CONSIIAINTS. ...uetttiieiiiiiee e e eeeeeeaaeeeas 46
4.4.4 OULPUL REQUITEMIENTS ..ttt e e e e e e e e e e e e eennmmnes 49.

4.5 RELATED WORK ...eutittititeteteet et et e et et e e e e e e et e et e e e s e et e et et e e s e s e e e eaeea e et e ea st seneeneeneesaenneen 0........ 5

S @ 0] Nl UL (0] P 50......

5 ANEW EXTERNAL SCHEMA DEFINITION METHODOLOGY ...ciiiiiiiiiieiieieeeei e 53

5.1 DEFINITION OF EXTERNAL SCHEMAS IN THEANSI/SPARCFRAMEWORK.ceteeveieeeeeiiinneeeeaiinnneeeeeeens 53
5.1.1 Conceptual schema and external SChemas ... 53
5.1.2 Organisation of the data diCHONAIYuuuuiie e 54......

5.1.3 The external schema definition SYSTEMiiiiiiiii 55

5.2 INTEGRATION OF DERIVED CLASSES IN THE SCHEMAS OF ARODB.........cccviiiiiiiiiii e, 55
5.2.1 Integration in the data diCtIONAIYcooviiiiiiiiiiiiiii e 56...

5.2.2 Integration in an external SChemMa............ooooiiiiiii e 57......
5.2.3 Effort of integration in the data dictionary vs. in the external schemaccccccco..... 58...
5.2.4 Qualification of the classes selected to compose the external schema....................... 60.....

5.3 GENERATION OF EXTERNAL SCHEMAS. tctuuttttuatttnetetnatettaeetnaaeetnaaeesaaeeanaeetnaaasnnaaesneeesnsaeennaaeennns 62
5.3.1 Transformations of transformable ClasSes. ..o 62
5.3.2 Order in the transformation of transformable classes into a class hierarchy.......................... 63

5.3.2.1 Gradual integration of transformable ClaSSES..........oovvvviiiiiiiiiii s

5.3.2.2 Schema with all the transformable classes integrated............ccccoevviviiiiieeeeeeeee,
5.3.3 Inheritance between transformable and non-transformable classes.................. .o

5.3.3.1 Characteristics of the class hierarChly............oovvvviimiiiii 66

5.3.3.2 Subsumption relationNSIIPS.coviiiiiiiiiiii e 66

5.3.3.3 From subsumption to inheritance for transformable Classes..........cccccceeiiieiiiiiiiii e, 66
5.3.4 Property relationShip ClOSUIE.........u i e 68..

5.3.4.1 Classes referenced by transformable and non-transformable.classes.............ccccoveeiiiiiniinnnnnn. 68

5.3.4.2 Required properties Of @ CLASS..........ooiiiiiiiiiiieii e 69

5.3.4.3 Non-transformable classes referencing transformable Classes...........oevvvvviiiiiiiiiiiiiiiieen 70

5.3.4.4 Transformation of referenCes t0 ClaSSES.........uiiiiiiiiii e 70
5.3.5 Alternatives in the process of definition of external schemas..........ccccccooiiiiiiiiiiiiin e, 71

5.4 EXTERNAL SCHEMA GENERATION ALGORITHMStttutettneettn ettt eeetinaeeanaeeaneeennaaesnnsaesneeestnaaernaaennns 72

5.4.1 External schema generation basic algorithm ... 72
5.4.1.1 Property deCOMPOSItION CIOSUIE...........eeiiiuiiiiiiiiiiiiaes e e e e e e e et e e e e e ees 73
5.4.1.2 Class INNEMHIANCE CIOSULE........ciiiiie ettt et e e e et e e e e e et b e e e e e eaettn e e eeeeneenns 74
5.4.1.3 Valid ODJECT SCREMIAL. ... 77

5.4.2 External schema generation extended algorithm...........cooooeiiiiiii e 77....
5.4.2.1 Obtain the initial sets of transformable and non-transformable classes............ccccovvvieiiinins 79

5.4.2.2 Property decomposition hierarChy CIOSUIE...........ovviiiiiiiiiiiii e 79
5.4.2.3 Class INNEITANCE ClOSULE........oiuiiiie it e e e e e e e e et e et e et e ea e s et eeneeeaneees 80
5.4.2.4 Integration of the transformable CIaSSES..........ccoiiiiiiiiiieee e 81
5.4.2.4.1 Transformable class with subclasses in the schema.........coccoviiiiiicii e 82
5.4.2.4.2 Transformable class without subclasses in the schema..........coccoeiiiiiiciiieci, 83
5.4.2.5 Unification of transformable ClaSSES.couuiiieiiiii e 84
R I € o) N (o1 0 1] o] N PR 85......

6 DEFINITION OF DERIVED CLASSESottt 87

5.1 DERIVED CLASSES. ... tttttuueetetttaetteeti e e eeetta e e et ee st e e e ee e e e e te e e e e rt e e ee e e e e et e e st e e e eabeee e e e e eea s neeeennn e
6.1.1 Base classes and base ODJECEScoiiiiiiiiiiiiiii e
6.1.2 Object-preserving vs. object-generating semantics
6.1.3 The derivation relatioNShiP....... ...
B.1.4 AN EXAIMPIE ..ottt e

6.2 DERIVED CLASS OBJECT IDENTIFIERS ... e tttttueetettiseetessti e eeeesse s e eteste s e e reesi s aeeeeesne e e e nenneneeeennna s
6.2.1 ObjecCt-preServing SEMEANTICScoui ettt e e e e e e e e e aaeeas
6.2.2 Object-generating SEIMANTICS.uu i e e e ee e 0.....
6.2.3 Classes containing objects already generated................uuuuuueiiiiiiiiiiiiiiirae e 92

6.3 DEFINITION OF THE OBJECTS IN DERIVED CLASSES.....cttuuettertiueerertiiaeseentisaesentinsaeeesnnaaeseeesnenaeeens 93
6.3.1 Derived classes definition PrediCates....... e a3.......
6.3.2 Definition of properties of derived ODJECESoviiiiiiiiiii 95........
6.3.3 Kinds of derivation relationShipsccooooii e 96....

6.4 TRANSMISSION OF MODIFICATIONS ... c.ttutettettuseeeette e eteesses s e eeesre s e et essareeeeatnr e e e e eena s e e e ennn e ereenna s 97
6.4.1 Dynamic derivation relationShip..........oooooiiiiiiii e 91.....
6.4.2 Connection between base and derived ODJECTS............ccovvviiiiiiii 98
6.4.3 Transmission of modifications through the derivation relationshipccccccciiiiiiieeenn. 98
6.4.4 Operation CONSIStENCY relatioNS.........coiiii i 100.....

5.5 CGONCLUSIONS. ... ettt ettt ettt e ettt e ettt e et e e e et e e et et e et e et e et e eea st e e e e s rna e e e e enna s neeene 101......

7 EXTERNAL SCHEMAS IN A SCHEMA-EVOLUTION ENVIRONMENT coiiiiiiiiiieeeene 103

7.1 INFORMATION IN OBJIECT SCHEMAS......etuititetttet et eee et et et e e et ea e et eet et et aeteeaestaesnesnesneenernrenaennns 103
7.1.1 Information in external SChEMASuiiiiiiiie e 103......
7.1.2 Simulating conceptual schema transformations using external schemas................ccccccvvvveeeee. 104

7.2 NON-DERIVED INFORMATION IN CLASSES .. .utttiuitettteteenetneetaeteteeeeneeneeteeateteetareneeaeetaesastaesaesnaen 106
7.2.1 Partially derived ClaSSEScccoi it e e e 107

7.2.1.1 Non-derived elements in the INTENSION........cciii e e e e e 107

7.2.1.2 Non-derived elements in the EXIENSION.........ciiiiii i e eaaaes 107

7.2.1.3 Local extension of a partially derived ClasS.............uiiii e 108
7.2.2 Extent propagation lINKS...........oooiiiiiiiiiiiiiiiie e eeeeees 109

7.3 ASCHEMA-EVOLUTION ENVIRONMENTtutitittitetetnetaeete et eeteeneeaeea et eeaessaesassnesneetaesnesnesneeneeneeraennns 110
A T R =TS A=Y 0 VT o] T =T o) 110
7.3.2 Evolution of the conceptual SChemMa...........coooiiiiiiiiiii e 11...... 1
7.3.3 Non-side effect external SChEMASoivuiiiii i ae 112........

A € o) N (ol H0 1] o] N LSRR 112......

G CONCLUSIONS ...ttt ettt e e et e et e et e e e e et e e bt a e e et e e e e e ennanneeeenn 115

T Y Y N T 15...... 1
A S U U] LY Vo] = T 116......

APPENDIX A. CONCEPTUAL SCHEMA DEFINITION DCM ..o 119

APPENDIX B. OODB DEFINITION DCM ..ottt ettt e e 147
APPENDIX C. EXTERNAL SCHEMA DEFINITION DCM ..o 165
APPENDIX D. LIST OF PUBLICATIONS ...ttt et e e 183

GLOSSARY OF TERMS ...ttt e e et e e e e e e 185

BIBLIOGRAPHY

1 Introduction

1.1 Motivation

The ANSI/SPARCthree-level architectureclassified database fuctions iphysical,
logical, and externdlevels; information atheselevels isrepresented by thmternal,
conceptual, and external schemas respectively.

External schemasffer views ofthe information contained irthe conceptuaschema.
They allowthe end-users to concentrate ofogical representation of data adapted to
their particular requirements. External schemas provwdgcal data independence
(manyaspects of the conceptusthemamay bechanged withouhaving to modify the
views of the conceptual schema offered by external schemas).

The three-level architecture has beeidely applied in relationatiatabases. In object-
oriented databases (OODBSs), the concemuahéma andhe internal schema have also
been studied deeply; this m®t thecase for external schemas. Nonethelleggcal data
independence is also a requirement for OODBSs.

Therefore, the @in target ofthis thesis is to broadghe study of externachemas in
OODBs, in particular, the externs¢thema definitiorprocess. Thelefinition of external
schemas in OODBs has been previously studieotioyr authors, but, from ogoint of

view, still there are somissueswithout a satisfactory solution. Some of thesseies are
further studied in this work and new solutions to them are proposed.

In OODBSs, externatchemas can contain classes fitby conceptuaschema as well as
derived classeglefined from previously existing classes (derived or non-derived);
derived classes offer views tfe information contained ithe classes from which they
are defined. Thedefinition of derived classes is amportant issue irthe definition of
external schemas @ODBs. Therefore, thdefinition of derived classes @ur second
focus of research.

One of the rain uses of external schemas is to providmechanism thasupport the
simulation of schema changes. Information in external schemas has to be derived from
the conceptuadchemathekind of schema changes that can be simulated using external
schemas is conditioned by tliget. Thereforepur third target is to presentraechanism

that supports theimulation of a widespectrum of schema changes. Tinischanism is
based on the definition of external schemas but incorporates some additional extensions.

1.2 Structure of the thesis
State of the art

In chapter 2 a review and elassification of existing external schendafinition
methodologies is presented. Most of the methodologies studied do not cenplagty

the ANSI/SPARC framework, but propose similar architectures. An effort is mélais in
sense, and these methodologies are presented using the ANSI/SPARC terminology. Even
the few methodologies that referentge ANSI/SPARC architecture, proposgstems

that do not totally coincide with the definitions of this architecture.

Different issues dealing with the definition of derived classes, astieeyeated by other
authors, are presented asll. Derived classes can be included in external schemas. In
some outstanding pointbout thedefinition of derived classes, different alternatives
have beemproposedSpecifically,the integration of derivedlasses wittotherclasses in

an object schemdhe possibility of definingderived classes with object preserving and
object generating semanti¢se problems irthe generation atlentifiersfor new objects

and the transmsion of modifications betweethe objects in baselasses and derived
classes.

We consider that theroblems presented in this chapaee notsatisfactorily solved, and
alternative proposals are put forward in chapters 5, 6 and 7.

Object-oriented concepts

The concepts used in thisork do notrefer toanyparticular object oriented modéhey
aregeneral conceptapplicable tomostexisting object models. lohapter 3, théormal
definition ofthe basicobject oriented concepts usedur proposal is presented, agll
as some additional outstanding concepts used by other authors.

Definition of DCMs of OODBs

In chapter 4 the definition of deductive conceptual models (DQisisgProlog in order
to specify differentaspects of OODBs is proposed. The result of theifsgaion
processusing this technique is an executalgeototype of thesystem. Having a
prototypedirectly available, along witthe system specifications, is particularly useful in
order todefine additional elements the context of OODBs (e.gchema evolution,
definition of derived classes, definition of external schen&®. use of this technique is
proposed mainlylue to thedifficulty of building prototypes of thenentioned elements
overcommercialOODBs.This technique isised in chapter 5 in order tefine some of
the algorithms proposed there.

A new external schema definition methodology

In chapter 5, a new externrsdhema definition methodology that consideraduyplifies

the process ofiefinition andthe results obtained, is presented. The ANSI/SPARC
framework is taken as a reference. Wystems of conceptual and extersahema
definition are based on aata dictionary The universe of discourse de data
dictionary is all information in the management and usbéetatabassystem -including
the management and use of schemas.

In this approachthe process of integration of derivethsses haswo phases: first,
derived classeare integratediirectly intothe data dictnary by means dhe derivation
relationship and then, set ofclasses that M compose the externathema is selected
from the datadictionary. From thiset ofclasses an external schema in which classes are
integrated bymeans ofthe inheritance relationship igenerated. The derivation
relationshipdoes not appear in either thenceptual schema dine externalschemas,
only in the data dictionanand it isnot necessary to extenthe object orientation
paradigm in order to include it.

To carry out the process of generation of the exterselhema,two algorithms are
defined: the basic algorithm andhe extended algorithm. Thelasses ofthe setwith
which the extendedilgorithmworks must bequalified as eithetransformableor non-
transformable indicatingwhether they can or cannot bedified automatically, in the
sense of adding or removimgoperties. The extendedgorithm automaticallynodifies
as needed theansformable classes, hence avoidimg need talefine explicitly all the
classes that we want to include in the external schema.

Definition of derived classes

The conceptual schema can contain classes initially defined, and also classes defined from
previously existing classese., derived classes. Sometimes,omder to adapt tdinal
users’ needs, thmformation contained ithe conceptuatchema’s classes must be re-
organised in théorm of new classes: external schemasy contain conceptuachema
classes as well asew derived classes. The classes fwanich a derived class is directly
definedare itsbase classegshey can be derived or non-derived classes. A derived class
may bedefined either bybject preserving semantici it only contains objects of its
base classes; or Impject generating semantjdit contains new objects generatieom

the objects of its base classBgfining derived classes by object generatsgmnantics
makes it possible to carrgut sophisticated re-organisations of existing information
which would otherwise bampossible-i.e., transformation oWalues into objects or
aggregation of objects to form a new concept.

In chapter 6 weshall studytwo of the main problems of defininglerived classes: the
generation of identifierfor the objects of the derivetlasses; andhe transmission of
modifications between the objects of the derived classes and those of the base classes.

Schema evolution

External schemaare derivedrom the database conceptismhema; they can hesed to
simulate changes tdhe database conceptuathema. Sometimethe final users’
information requirements change; they need new information wd@ohot bederived
from the information previously contained the database. Therefore, extersehemas
cannot be used to simulate this kind of schema changes.

In order toprovide mordlexibility in this area, in chapter 7 we propose tedinition of
derived classes that can contain non-derived information in their intensigellass in
their extensionpartially derived classesWhen an external schema with non-derived
information is to be definedhe conceptuakchema has to be modified arder to
includethe non-derivednformation ofthe newschema. Irorder toavoid unnecessary
modifications of the conceptual schema the use of a test envirofonéme definition of
temporal external schemas is also proposed in chapter 7.

Conclusions

Finally, some conclusions and future work topics are presented in chapter 8.

2 Views: external schemas and derived classes

A view is a simplifyingabstraction of a complestructure. In OODBssome authors
identify the term“view” with the concept obchemapthers consider it just elass. In
order to avoid confusion, in this work the term “view” will not be used. Instead the terms
“external schema” or “derived classilvbe used respectively. The ANSI/SPARRree-
level schemaarchitecture is adopted asgaide and consequentlyur terminology,
concepts, and the terminology used in otieéerencedvorks, are adapted to it. The aim
of this chapter is to providesight into the existing methodologies of definition of
external schemas and derived classes. In se2Ztioabrief review ofthe ANSI/SPARC
framework is presented. Secondly, sectidr?2 corresponds to &urvey and a
classification of existing external schema definition hodblogies. Lastly, in section 2.3
different issuesare presented concerning ttefinition of derived classes as they are
treated by other authors.

2.1 The ANSI/SPARC framework

2.1.1 Three-level schema architecture

The ANSI/SPARC framework [ANSI/X3/SPARC, 1975] proposed thaee-level
architecture for DBMSs, presented fig. 2.1. The conceptual schem# a logical
representation of theality modeled byhe database; describeghe relevant aspects of

the universe of discourse.
External External External
schema schema ¢ ®*_scheman
Conceptual

schema

Internal
schema

Figure 2.1. Three-level schema architecture.

Each external schema is derived frtme conceptuaschema and describéise part of
the information appropriate for the group of users to whom it is addred3athbases

with external schemaareflexible and adaptable to changes according to how wsass
the data.External schemas provide logicdata independence (mangspects of the
conceptual schemanay be changed withouthaving to modify the views of the
conceptual schema offered by external schemas).

Theinternal schemas a physicatepresentation of the data stored into the database (it
specifies wat data isactuallystored in the databasand how thatlata is stored). The
distinction betweethe the conceptualchema antheinternal schema providgshysical

data independencémany aspects fo thehysical implementatiormay be changed
without having to modify the abstract vision of the database).

In this work we focus our attention on the conceptual schema and the external schemas.

2.1.2 Schema definition systems

The systems of conceptual and external schifiaition are based on @atadictionary

[ANSI/X3/SPARC, 1986] as shown iilg. 2.2. The universe of discourse tie data
dictionary isall the information relevant tadhe management and use thfe database
system -including the management and use of schemas.

Database
administrato

Enterprise
administrato

Application
administrato

Internal
schema
definition
system

External
schema
definition
system

Conceptua
schema
definition
system

Data
dictionary

Figure 2.2. Schema definition framework.

The definition of external schemas is carriedt by the external schema definition
system The information contained in an external schema must be derivable from the
information contained in the conceptual schema.

2.1.3 The ANSI/SPARC framework in OODBs

The ANSI/SPARC three-level scheraechitecture has beewidely applied to relational
databases. In OODBs, the concepts@iema andhe internal schema have aldmen
studied deeply; this is not the case for external schemas.

External schemas should hatlee same organisationastructure as the conceptual
schema from which thegre defined;thus, in OODBs the conceptusthema and the
external schemas should be object schemas.

In the OODBfield only a few works deal explicitly with the definition of external
schemas referrinthe ANSI/SPARC architecturi@arclay & Kennedy, 1993Santos et
al., 1994;Kim & Kelley, 1995; Bertino etl., 1996]. Acommon characteristic of most
of the works about thdefinition of external schemas in tHisld is thatthey don’'t use
the ANSI/SPARC terminology (including works that refer the ANSI/SPARC
architecture).

2.2 External schema definition methodologies

External schemas should hatlee same organisationastructure as the conceptual
schema from which thegre defined.That is tosay, inthe object-orientatioparadigm
they should be object schemas.

A requirement that external schemas havdutfi is schema closurdDayal, 1989]:

every class referenced by some class included in an external schema has to be also
included inthe same external schema. A class is referencezhbtherclass if it appears

as the type of some argument of a method or addimain of arattribute of the second

class. In an external schema definition methodology sporeehanism to verify the
closure of the schema should be provided.

In order to review whahas beemone by others authors about thefinition of external
schemas, a survey of external schema definition methodologoeessntedFinally, in
section 2.2.2 a classification of the different methodologies considered is made.

2.2.1 Survey of external schema definition methodologies

In this sectionthe main characteristics of some of the most relevant extesclaéma
definition methodologiesare presented. In some of theserks, the ANSI/SPARC
architecture is referretb. However, eachauthor usesis/herown terminology.This
presentation is made usitite ANSI/SPARC terminology, adapting its concepts to the
particular concepts used in each methodology.

2.2.1.1 [Tanaka eal., 1988]

In the work of TanakaYoshikawa & Ishihara [Tanaka etl., 1988] thedefinition
process of externachemas is calledchema virtualisationTheir system allows the
definition of derived classes by object-preserving semarttiesdefinition of derived
classes by object-generating semantics is proposed as a further research topic.

An external schema has to contaime or more derived classes. The stepsrdter to
construct an external schema are as follows:

* Define all the derived classes in the external schema.

» Define manually alkhe inheritance relationships betweére derivedclasses in the
previous step; these definitions are automatically validated by the system.

After these steps an exterrsdhema is obtained: In some cases this cathédinal
result. In others, the following steps can also be done several times (as many as needed):

» Delete a subschema from a previously existing schema (conceptual or external).

* In order toobtain a new external schema, imptre schema derived from the
previous step antherge it with the externachema obtained. The mergecess is
also defined marally but validated automatically. Some thfe classes referred to by
some class ithe externakchemamay not beincluded inthe externalschema(the
external schemmaynot beclosed).This is allowed irthe proposedystem; avoiding
this situation is another research topic.

In thiswork [Tanaka etl., 1988],external schemaare calledvirtual schemasderived
classes areirtual classesthe conceptual schema is calleke schema

2.2.1.2 [Heiler & Zdonik, 1988]

In the system poposed by Heiler & Zdonik [Heiler & Zdonik,988], for defining an
external schema two sets have to be specified: “a set of types and a set of objects that are
instances of those types.” This is equivalent to specifying a set of classes.

An external schema is derived by applying functionstteerexternal schema definitions
in order toobtain the new externalchema definition. Inhe datadictionary, external
schema definitionare objectshich havethe functions necessary wrder toobtain the
new external schemassociated. Therefore, thefinition of an external schema consists
of the definition of these functions.

“Each installation W define abaseview from whichall otherviews can be derived. One

can think of the base view #s conceptuachema otheinstallation.” Externaschema
derivation functionsare defined according teéhe definition of the conceptuaschema.
External schemas can contain new derived classes not included in the conceptual schema.

Therefore, externakchemasare defined fromthe conceptualkchema and/oother
external schemas by derivation functions. @eénition of the externabkchema consists
exclusively ofthe definition of the derivatiorfunctions; by means dhese functions the
classes that M/ compose the externathemaare defined. External schemas have to be
closed. However, it is not explained how this property is achieved.

2.2.1.3 [Dayal, 1989]

In the work ofDayal [Dayal,1989] externabchemas can contain classes impoftenh
otherschemas and also new derived classes. Derived classes can be defined by object-
preserving and also by object-generating semantics.

Therefore, the steps in order to define an external schema are:
» Import of classes previously defined in other schemas.

» Definition of derived classes from previously existing clagsesnecessarily included
in this schema).

» Definition of inheritance relationships between the classes in the external schema.

It is mentioned that one problem in the external schema defipitamess is to guarantee
closure of the external schema, but it is not indicated how this is achieved.

2.2.1.4 [Abiteboul & Bonner, 1991]

Abiteboul & Bonner presented in [Abiteboul & BonndQ91] asystemfor defining

derived classes and external schemas. Derived classes can be defined with object-
preserving and with object-generating semantics; external schemas canchide
classes defined in other schemas and new defined classes.

The ANSI/SPARC architecture ot referred to in [Abiteboul & Bonned,991], but the
architecture proposed there can be adapted t6Init:general, there can bemany
databases in a system. In such systems, one database datafisen otherdatabases
via import statements. Aview can thus behought of as a database that impaitsts
data from other databases. Tlsata view has a schema, liak databases, but no proper
data ofits own.” If in thesystemthere isonly one database that has a&n data,this
database will be the conceptual schema.

The steps in order to define an external schema are as follows:

» Selection of classes frootherschemas (external or conceptual) tarmuded in the
actual external schema -they can be classes from morernkachema-the selection
is made usinghe import mechanism. When classase importedthey becomeisible
together with their subclasses.

» Hidethe undesiredlasses oproperties irclasses othe schema (hiding @roperty in
a class hides it in all its subclasses). If a class’s property is hidden in a stieenesst
of schemas where this class is included are not affected.

At this point aninitial external schema is obtained. It can be furtimedified by the
following operations:

» Definition of classes derived from classes already includéueiexternaschema; the
two basic mechanismsfor defining derived classesare generalisation and
specialisation. Derived class@se automatically integrated with their direbase
classes using inheritance relationships.

» Hide additional properties or classes in the resulting external schema.

In this system, external schenae calledviewsand derived classese virtual classes
If a derived class is defined with object-generating semantics it is caldeginary class
and its new objects armaginary objectsNo specific name issed in order to denote
the conceptual schema or the data dictionary.

2.2.1.5 [Rundensteiner, 1992c]

Rundensteiner pragsed anexternal schema definition methodology calldltiView
[Rundensteiner, 1992a; Rundensteiner, 1992c]. Icomplemented with algorithms
presented in [Rundensteiner, 1992b] and [Rundensteiner & HI®2]. In this
methodology, thespecification of an external schema is divided ithie following
independent tasks:

» Definition of derived classes needed from previously existing classes, derived or non-
derived.

» Automatic integration of defined derived classes \altlpreviously existing classes in
an object schema; this integratiggrocess is carriecbut using the inheritance
relationship [Rundensteiner, 1992b]. The objective igxplicitly maintain all the
existing inheritance relationships between derived and non-derived clasgbs In
process, in order thave all the inheritance relationships explicitly defined, some
additional derived classes may be automatically generated.

» Selection of aset of classes (derived and/or non-derived) from whicli e
composed the external schema.

* Automatic external schema generation. Tiaisk has toparts: Primarily, all classes
that are used bgriginally selected classes have to be includethénexternaschema.
These classeare automatically added tthe set of selectedasses [Rundensteiner,
1992a; Rundensteiner, 1992c]. Followed by the generationctafsa hierarchy from
the set ofclasses obtained [Rundensteiner & Bl®92]. The generation process
consists ofdefining the inheritance relationships that exist betwéeaclasses in the
set. The definition of the inheritance relationships is made taking into acadyrthe
inheritance relationships actually definedhe object schema iwhich all the classes
have been integrated.

In this methodology, derived classa® called virtual classes non-derived classes are
base classesexternal schemaare called views view schemas®r virtual schemasand
classes (derived or non-derived) included in an external schesneew classesTwo
different schemaaredefined:the base schemawhich isthe initial object schema where
all classescorrespond to non-derived classes, and dglabal schema which is an
extension of the basehema augmented biye collection ofall derived classes defined
during thelifetime of the database. Therefore, the concepguhbma woulatorrespond
to theglobal schemaather than to the base schema because thesbhema has the
limitation of not containing derived classes. The global schermatighe datalictionary
either because dnly contains the bassgchema anthe new derived classes. However, it
does notcontain additional informatioabout thedefinition of external schemas as the
data dictionary should. The global schema patrtially plays the role of data dictionary.

10

2.2.1.6 [Tresch & Scholl, 1993]

The presentation of the exterrs@hema definition system dfesch & Scholl [Tresch &
Scholl, 1993] is made using the ANSI/SPARC terminology.

The steps in order to define an external schema are:

» Extend the conceptualchema by &et ofderived classes that simuldtee desired
schema organisation; derived classes defined by object-preserving semantics.
Position the derivedlasses irthe schema -related bgheritance only tats direct
base classes [Scholl & Schek, 1991].

» Define a subschema tife extendedchema, by selectingset ofclasses (derived and
non-derived) that corresponds to the restructuiseldema. Closdhe subschema
adding the required classes.

The position of the derivetlasses irthe schema is made automaticalbyt for any one
of the other operations the possibility of it being done automatically is mentioned.

2.2.1.7 [Geppert dl., 1993]

Geppert, Scherrer & Dittrich [Geppert &t, 1993] proposed an architecturewhich
there aretwo levels of conceptual schemashe level calledlogical schema which
describeghe structure of a part afiterest for a set adpplications (in alatabase there
can bemany logicalschemas)the othelevel iscomposed by thanion ofall the logical
schemas to form thglobal schemdthere is only one global schema). External schemas -
or subschemasare defined from logical schemas: an external schema sabaset of
classes of a logical schema.

Focusing only oronelogical schemathe steps in order tdefine an external schema are
as follows:

» Definition and integration ahe necessary derived classes itite conceptuadchema
(the logical schemaconsidered). @ly classes defined with object-preserving
semantics can be defined.

» Selection of theset ofclasses that W compose the externachema. The external
schema is required to be closed, but it is not explained how this is achieved.

2.2.1.8 [Barclay & Kennedy, 1993]

In the system proposed by Barclay & Kennedy [Barclay & KennEeal§3] eaclexternal
schema is implemented definingrew class with just an object that simulates the
behaviour of all classes tife new externadchemathe operations ahis class provide a
site for the various queries tiefine how the external schema is deriviedm its base
classes.

11

Consequently, the necessary steps in order to define an external schema are as follows:

» Define a new class t@present the externsthema itself; this class can be defined by
inheritance fronother classes that also define external schermhs. extension and
intension ofthe classes irthe externakchemaare defined asoperations of the new
class.

» Define operations to represent the extent of the classes in the external schema.

» Define operations to represeatl attributes and methods ofasses irthe external
schema.

It is the responsibility ofthe application administrator to ensure thiie resulting
external schema is closed.

In [Barclay & Kennedy1993] theschemgconceptuaschema odatadictionary) where

the newdefined classeare integrated isot explicitly defined,but it should be in the

data dictionary. The ANSI/SPARC architecture is referred to and its terminology is used,
but the data dictionary is not mentioned anywhere.

A significant disadvantage of thapproach is thaising a class thaepresents achema
means a change in the schema nature and in the way of dealing with it.

2.2.1.9 [Santos @dl., 1994]

The external schema definition systerogwsed by Santogbiteboul & Delobel[Santos
etal., 1994; Santos, 1995], continuation of therk of Abiteboul & Bonner [Abiteboul
& Bonner, 1991], is based on the ANSI/SPARC tHexel architecture. Howevethey
use their own terminology.

The main change of this proposal wittegard to thesystem of Abiteboul & Bonner
[Abiteboul & Bonner,1991] is theway it integrates derived classes witte rest of
classes in external schemas. In this case, akieivof relationship isused:may_be
relationship, usinghe concept of non-striahheritance. Since external schemas are
offered to end users, this means a modification of the object-orientation paradigm.

» Therefore, the first step of this methodology ibtad theinitial external schemthat
imports definitions fronother schema or schasy and hides unneedptbperties or
classes.

» Then, additional derived classes can be defingtldnexternaschematheseclasses
aredefined fromthe set ottlassesnitially included inthe externakchema, as well as
from previously defined derived classes (also includedh@ externalschema).
Derived classes with object-preserving semantam® defined through the
generalisation or specialisation mechanisitieese classesire integrated in the
external schema usirthe may_berelationship (instead of using inheritance with its
direct base classes as was done by Abiteboul & Bonner).

12

* Finally, as inthe system poposed by Abiteboul & Bonner, additionafoperties or
classes in the resulting external schema can be hidden.

Here, externaschemasre calledvirtual schemasr viewsand the ternteal schemas
used in contrast teirtual schema to allude tihe conceptuatchema. As mentioned in
[Santos, 1995];0nce defined, a virtual schema definition is compiled siaded into a
view repository.” Therefore, this repository would be the data dictionary.

2.2.1.10 [Kim & Kelley, 1995]

Kim & Kelley [Kim & Kelley, 1995] refer to the ANSI/X3/SPAR@ree-level schema
architecture, but the ANSkrminology isnot totally used along thework. The term
viewis used with the meaning of derived class and also signifying external schema.

According to the concepts presentedkim & Kelley, 1995], the process alkefining an
external schema is as follows:

» Definition of the derivedclasses needed to fortine externaschema; derived classes
aredefined from previously existing classes (non-derived or derived). Derived classes
are related with theclasses from which they have been defined using a new
relationship calledderived-from relationship. Theset of classes related byhis
relationship also form aiew-derivation hierarchyDerived and non-derived classes
have separate inheritance hierarchies. A derived class is related by inheritance with the
classes indicated &he moment of its definition, as idone for non-derivedlasses:
“Information aboutsuperclasses and subclasses of a class (view) is defined within the
class (view).” Therefore, “the burden of ensuririfpe correctness of theiew
hierarchy falls on the users.”

» Selection of theclasses that W/ compose the externachema (thisstep is not
explicitly defined). External schemas can be composed by derived and non-derived
classes. Derived and non-derived classes Baparatenheritance hierarchies, but
they can be related by aggregation. The domain of a property of a derived class can be
a derived or a non-derived clabsit thedomain of aproperty of a non-derivedass
can not be a derived class.

Thus, in[Kim & Kelley, 1995] the conceptuadchema, calledhe database schema
“consists oftwo separate structures; one for ttlasseq(i.e., theclass hierarchy), and
one for theviews (derived classes)Therefore, derived classese integrated in the
conceptual schema using a new relationshgi defined in the object-orientation
paradigm.

2.2.1.11 [Naja & Mouaddib, 1995]

In the externalschema definition system defined by Naja & Mouaddib [Naja &
Mouaddib, 1995]derived classes camnly be defined bybject-preserving semantics,
and they have to contaitmhe sameset of objects asheir base classes; also, derived
classes can contain non-derived attributes.

13

In external schemas, derived classes integratedising the inheritance relationship.
Derived classeare related with its bas#asses using a derivation relationship, called the
is_derived_fronrelationship; this relationshigpoes not appear external schemas, nor
in the conceptuaschema(it is not mentioned, but it shouldnly appear in the data
dictionary).

Therefore, external schemas are defined manually from other external schemas and/or the
conceptual schema. External schemas can contain new derived ulhgdesave the
same extension as their respective base classes and, possibly, a new intension.

2.2.1.12 [Bertino eal., 1996]

Bertino, Catania, Garcia-Molina &errini[Bertino etal., 1996] presented systemthat
allow “the definition of external schemas witie meaning poposed by the ANSI three-
level architecture” and that can be us&d simulate schema evolution, allowing the
users to experiment with schema changes without affecting other users.”

This system is defined as an extension of Bertino’s syfamino, 1992], wherenly
the definition of derived classes is studied.

Using the terminology of ANSI/SPARCthe definition process of an externathema
consists of the following steps:

» Take the conceptuaichema or a previously defined external schema and define the
necessary derived classes. All the classes to be included in a new external schema have
to be new derived classes defined framly one schema. Derivedlasses are
connected with theclasses from which they have been defined using a new
relationship called aview derivation relationship. The inheritance relationships
between derived classese defined atthe moment of definition ofthe classes; the
correctness of the inheritance relationships defined will be ensured $ysteen This
verification can be made because some limitations have been imppsadthe
derived class definition language.

» The external schema has to be closkdrlasses fronthe original schemaeferred to
andnot included inthe externaschemaare automatically redefined as new derived
classes and included in the external schema.

In [Bertino etal., 1996], the conceptuachema is callebase schemaderived classes
arecalledviewsand instead of external scherttee concept ofchemaviewis used. It is
an extension of the concept of extersehema that allowthe incorporation otlerived

classes with non-derived properties in order to support schema evolution.

As defined in[Bertino etal., 1996]: “A global database schemeonsists of a base
schematogetherwith a set of schema views” and “the schema derivation areiv
derivation relationshipare part of theglobal database schert@o.” Consequently, the
concept of global database schema shall be the data dictionary.

14

2.2.2 A classification of the external schema definition methodologies

Three kinds of external schema definition methodologée distinguished, just by
consideringthe relation between the conceptishema andhe different external
schemas defined.

2.2.2.1 External schemas are subschemas of the conceptual schema

In this group ofmethodologies [Rundensteiner, 1992c; Geppedl.etl993; Tresch &
Scholl, 1993Kim & Kelley, 1995] the conceptuachema has to contaall the classes

of the defined external schemas. If an external schema containing a class that is not
previously included in the conceptual schema is to be defined, this class has to be defined
and integrated into the conceptsahema. Class integration assutesconsistency of

all external schemas witthe conceptuakchema and wittone another. Themain
problem here is thahe conceptuakchema becomeasore complex eactime a new
derived class is defined. The conceptual schernaad in partith the function of the
datadictionary, in the sense thall the classes included in external schemas have to be
previously integrated into it.

In some cases [Rundensteiner, 1992c; Geppalt, &t993; Tresch & Scholl,993], new
derived classeare integrated binheritance intdhe conceptuadchemahowever, in the
system propsed byKim & Kelley [Kim & Kelley, 1995] derivedclassesare integrated
using a new derivation relationship with its base classes and by inheritancativeith
derived classes.

The most representative methodology of tgeup is Rundensteinersone. Some
examples developed according to this methodology are presented in chapiedds o
show the problems that it has. Finally, a solution to them is proposed.

2.2.2.2 External schemas are not necessarily subschemas of the conceptual schema

External schemas can contain clagsesincluded inthe conceptuaschemgTanaka et
al., 1988; Heiler & Zdonik, 1988; Dayal, 1989; Abiteboul & Bonner, 1991; Santals, et
1994; Naja & Mouaddib, 1995; Bertino at., 1996]. These newlassesare derived
directly or indirectly fromconceptual schema classdsjt they are not necessarily
included into the conceptual schema. Therefore, the conceptual scheshafiscted by
external schema definitions.

The main problem of mosexisting methodologies of thiecond group is thaxternal
schemasredefined independentl¥except for thesystem poposed by Bertino, Catania,
Garcia-Molina & Gerrini[Bertino et al., 1996], anexternal schema definitiodata
dictionary that allowsll the defined classeimtegrated, doesot exist, so it idifficult to
re-use previoudefinitions:i.e., in thesystemgresented in [Abiteboul & Bonnet991],
and in [Santos «dl., 1994; Santos, 1995], derived classetuded in an external schema
canonly be defined from classes already included in éiigrnal schema; even in the
systempresented in [Bertino etl., 1996], arexternal schema can be defined fronly
oneschema (external schema or conceptual schema), isolatethieamst otdefinitions
already made.

15

2.2.2.3 External schema as a class of the conceptual schema

This is a unique case [Barclay & Kennedy993], whereeach external schema is
implemented defining aew class whiclonly contains one object thaimulates the

behaviour ofall the classes othe new externadchema. Compared withe conceptual

schemathe way of definingexternal schemas means a changéhé nature of these
schemas and also in the way of working with them.

The classes that conceptually comptse externalschemaare notclasses previously
existing inthe conceptuaschema, therefore, from this point\aéw this methodology
might have been classified in the second group. Tdie meason fomaking a nevgroup
for this methodology is to make evident its peculiarity.

2.3 Issues in the definition of derived classes

Derived classes are classes whacadefined from previously existing classes (derived or
non-derived) using object-oriented queridgn-derived classeare defined during the
initial definition of the conceptuaschem&(it can contain non-derived and also derived
classes). Derived classese defined duringthe lifetime of the database in order to be
included in some external scherfa in the conceptual schemdjlormally, a derived
class can be used like a (non-derived) class.

2.3.1 Integration of derived classes in a schema

Integration of derived classeefers totwo different scopes: integration oflerived
classes and previously existing classes irdtita dictonary(or inthe conceptuadchema
playing the role of datalictionary) and integration of set ofclasses (derivednd/or
non-derived) to form an external schema.

In external schemas defined according the object-orientation paradigm, inteeatit;m
be done using the inheritance relationship; in some cases this is not respected.

On the othehand, the rain objective of integrating new derived classes \iih rest of
the existing classes in an object schemanisfold: primarily, it is to maintain explicit
class relationships between derived and non-derived classgdan to have external
schemas consistently defined; secondlyp@istedout in [Rundensteiner, 1992b¢lass
integration servedatamodellingpurposes, thereforéglasses should be organised in a
systematic manner such that theye more asily comprehensible bthe users of the
system.” With thisaim in mind,datadictionariesmay allow otherforms of organisation.
Consequently, besiddbe inheritance relationshipyther kind of relationshipsmaybe
more suitable than inheritance- may be used in the integration of derived classes.

In order to show thelifferent alternatives of integration of a derived class ilaas
hierarchy (external schema datadictionary), theexampleobject schema ifig. 2.3 is
going to be used. A nealassEMPLOYEES', defined from classMPLOYEES hiding the
Salary property andselecting objects thatre notmanager employees, is defined. If this

16

new class is to be integrated irttee class hierarchy, it can be seen that in@ a
subclass of the original classIPLOYEES because it has lepsoperties $alary); nor it is

a superclass #MPLOYEES because itset of objects is a subset of the set of objects of
EMPLOYEES (only not manager employees). thefollowing parts ofthis section, some

of the solutions to this problem offered in different approaches are presented.

O Defined derived class
O Non-derived class

= Inheritance
—» Aggregation

EMPLOYEES
Cateéory()

only non-manager employees,
hide Salary()

Category()
Salary() ...

Figure 2.3. OODB example schema and definition of a derived class.

2.3.1.1 Integration using the inheritance relationship

As defined in [Rundensteinet992c]: “dass integration i€oncerned witHinding the
most ‘appropriate’ location in thechemagraph for a virtuatlass in terms oproperty
inheritance and subset relationships between classes.”

2.3.1.1.1 Direct subclasses of clasbjects

O Defined derived class
O Non-derived class

= Inheritance
—» Aggregation

PEOPLE
Address()

MPLOYEE
Category()
Salary() ...

EMPLOYEES
Cateéory()

Figure 2.4. Derived class direct subclasslgects

Onepossibility is to definghe new derivealasses as direct subclasses of otdgscts
as shown in fig. 2.4. Thiapproachcompletely ignoreshe issue of classification, thus

17

resulting in a flat classtructure that does not takedvantage of thementioned
possibilities offered by inheritance, neithertbhé modelling possibilities othe object-
orientation paradigm.

This solution isadopted irKim’s system [Kim,1989]. With regard to ouexample, the
solution proposed ifKim, 1989] wouldhave defined classMPLOYEES' with object-
generating semantics -since it does not allow another definition of derived classes.

2.3.1.1.2 Relation only with its base classes

In this solution, each derived classomly related by inheritance with its diresburce
classes. The amn problem, as the case of tagampleshows, is when a derivezlass is

not directly related by inheritance to iteimediatesource classesThis problem is
avoided allowing only definition operations of derived classes in whiehesulting class

can be directly related with i®urce classes. Therefore, it woblalve best results in a
partial, hence less informative, class hierarchyp@stedout in [Rundensteiner, 1992b]:
“Theremay beadditionalsubsumption relationshigsetween the derivetdass andther
classes irthe schema thaare notdirectly derivable fronthe class derivation. It is the

task of class integration to find these class relationships and to explicitly represent then in
the schema graph.”

In the external schendefinition methodologyresented in [Abiteboul & Bonnet991],

in order todefine an external schema, derived classes can be defined from classes
previously included in itthe inheritance relationships between a new classes and its base
classesare automatically obtained according tiee operations used in thefinition of

the derived class (generalisation or specialisation).

This solution is also adopted in [Scholl & Schek, 1991; Tresch & Sd88B]: foreach
derived class definitiooperation, theelationship betweethe classes that participate is
defined.

2.3.1.1.3 Explicitly defined relations

In this approaclthe user (thepplication administrator) is required $pecify explicitly

the inheritance relationships betwe#me defined derived classes and existing classes.
This approach isvulnerable to potential consistency problems, sitiee users mght
introduce inconsistencies ithe schemagraph by inserting “is-a” arcs between two
classesiot related by an inheritance relationship; also, an incomplete soipeph that
does not capturell existing class relationshipaay bedefined. A solution toverifying

the correctness, in essence would have tableto provideautomatic verification of the
class hierarchy defined.

In ourexample, see belofig. 2.5, derived clasEMPLOYEES' is defined only as direct

subclass of clasBEOPLE; as has been previously shown, it cant bedirectly related
with classEMPLOYEES using the inheritance relationship.

18

In [Bertino etal., 1996] thedefinition of the inheritance relationship betwe#re classes
selected to compose an extersehema is carriedut inthis way. The correctness of the
inheritance relationships defined are ensured by the system.

Inheritance relationships between derived classeim & Kelley, 1995] arealso
defined explicitly,but noverification mechanism is mentionecetk, so “the burden of
ensuringthe correctness of theew hierarchy falls orthe users.This is alsahe case in
[Tanaka etl. 1988; Dayal, 1989; Naja & Mouaddib, 1995].

O Defined derived class
(O Non-derived class

= Inheritance
—» Aggregation

MPLOYEE
Category()
Salary() ...

MPLOYEES
Cateéory()

Figure 2.5. Integration of a derived class with existing classes using inheritance.

2.3.1.1.4 Define all the possible relations

Instead of integrating maally the derivedclasses andverifying automaticallythat
integration has been propedypne, an alternative is to camwt the integration process
automatically;thus, all explicit inheritance relationships existing betwettye derived
class and the rest of existing classes are obtained.

In the exampleconsidered, the result obtained wouldfige 2.5. The resulting object
schemamay still seem incomplete: classESIPLOYEES andEMPLOYEES' have objects
and properties in common, that are more specific than the ones d#fetausE, and this
fact is not explicitly represented in the class hierarchy.

In Rundensteiner's methodology [Rundensteiner, 1992c] a denlass integration
process is proposed that solibs question. Irorder to integratelerived classes by
inheritance into an object schema, the object schema requirdsrteath pair otlasses
of it that have someroperty in common, a superclasstioém whichonly has allthe
properties common tboth classes has to be also includedhe object schema (this
property iscalledinheritance closuref the object schema). Thesulting schema of the
example ispresented irfig. 2.6. In order to integrate thelassEMPLOYEES', all the
classes required tmaintainthe objectschema according tihe enunciated requirement
are automatically generated (Cl&s&LOYEES").

19

O Defined derived class

(O Generated derived class
 Non-derived class

= Inheritance
—= Aggregation

PEOPLE

Address()

EMPLOYEES
Salary()
Figure 2.6. Rundensteiner’s automatic class integration by inheritance (I).

In order to showhis process with more detail, frg. 2.7 anotheexample of integration
is presented. In this casdlassEMPLOYEES' is defined hidinghe propertysalary and
adding a newproperty City which returns thecity wherethe employee lives, already
defined in clasaDDRESSES. In this casethe inheritance problem betwe@&@WPLOYEES
andEMPLOYEES' is just in their respective types. A new clas®LOYEES" is generated
which contains aset of objectdifferent of the same class ithe previousexample.
Another additional class has to lenerated, thelasswITH_CITY. This newclass
contains the propertie€ommon to ADDRESSES and EMPLOYEES'; thus, these
properties can be inherited by both classes.

O Defined derived class

(O Generated derived class
(O Non-derived class

= Inheritance
—» Aggregation

MPLOYEES
Cateéory()
EMPLOYEES
Salary()

Figure 2.7. Rundensteiner’s automatic class integration by inheritance (II).

Therefore, the essence this solution isthe creation ofdditional intermediate classes
that restructure the schema graph.

2.3.1.2 Integration using other relationships

This approach ignores thssue of determining inheritance relationships between derived
classes and other classes by using other kind of relationships.

20

Contrary to the integration of derivethsses in a class hierarchy usthg inheritance
relationship, in [Bertino etl., 1996] is argued thatThis approach hashe major
problem that gives rise to inheritance hierarchies quite compfe containinglasses
that are nosemantically meaningfubr the users.” Then, an alternative solution to the
problem of integration of derived classes in an object schemauiset@nothekind of
relationships.

2.3.1.2.1 Derivation relationship

Each derived class is related withe classes from which it has been defined using a
derivation relationship, it definethe way in which derived classeare obtained
independently if they have been defined using object-preserving or object-generating
semantics. Irour example, fig. 2.8, clasBMPLOYEES' is directly integrated using the
derivation relationship.

O Defined derived class
O Non-derived class

= Inheritance
—» Aggregation
Derivation

PEOPLE
Address()

Category()
Salary() ...

EMPLOYEES
Cateéory()
Figure 2.8. Integration of derived classes using the derivation relationship.

This relationship is callediew derivationin [Bertino, 1992; Bertino eal., 1996]. In
[Bertino etal., 1996] thedefinition of external schemas s$udied, and theerivation
relationship onlyappears in the datictionary. In [Bertino, 1992pnly the definition of
derived classes is studied aheé object-orientatioparadigm is extended by introducing
the derivation relationship along side the aggregation and inheritance relationships.

In [Kim & Kelley, 1995] derivedclassesare related with thelasses from which they
have been defined ke derived-fromrelationship;the set ofclasses related usirtgis
relationship form aiew-derivation hierarchy

In the case of the derivatiaelationship poposed in [Naja & Mouaddibl995], the
is_derived_fromrelation, restrictions are stronger thansimilar relationships. The
extensions oftwo classes related using this relation have tothee same, thenly

difference betweemoth classes can be its respectset of attributes. Howevethis

relationship is only used in the data dictionary.

21

In [Monk, 1994] derivedclassesare related with its baselasses bythe view-of
relationship; derived classes can be defined only by object-preserving semantics.

2.3.1.2.2 May_berelationship

The May_be relationship is proposed ifbantos etal., 1994] in order to integrate
derived classes in external schemas (this means an extendio® dbject-orientation
paradigm). Derived classes defined with object-preserving semangicglated with its
base classes usintpe may_be relationship. This relationship is calleday_be to
distinguish it fromthe conventional inheritance relationship usually caikeda In that
sense, an instance of a base amag_bean instance of a corresponding derived class (it
is defined only with object-preserving semantics).

In relation to thegroup cerivation relationships, a differegtouphas been distinguished
here because thmeaning of this relationship is different. the system poposed in
[Santos etl., 1994] derivectlasses defined by object-generating semantics can also be
defined and thewre notrelated withany relationship tats base classes. Timeay be
relationship is only defined the derivedclass is defined by object-preserving semantics;
therefore, it is clearly different to the derivation relationship defined in other works.

In our example, derived clasaMPLOYEES' is defined by object-preserving semantics,
therefore the result obtainedllvbe the same aghe one presented irg. 2.7 for the
derivation relationship.

2.3.1.2.3 Clusterof classes

In order tosolve the problem of integration of derived classes watiher classes, the
solution proposed in [Heuer & Sander, 1991] consists ofd#fmition of clusters of
classes: “A cluster consist of at most one beaes and several derived clashkesing

the sameset of‘possible objects{the sameabstract domain) abe correspondinpase
class.” If a derived classes is defined by object-preserving semantics, it has its own
cluster. Inside each clustawyo different hierarchiesre considered: one of types, and
another of instances. Each derivadss is classified ithe hierarchies that belong to its
respective cluster.

In theexampleconsidered, the deriverlassEMPLOYEES' is included intahe cluster of
its base clasBMPLOYEES from which it is defined.

2.3.2 Subsumption between classes

As pointedout in [Rundensteiner, 1992b], taken from [SchmolzelL#kis, 1983]:
“Classificationis the process of taking a new (class) description and putting it where it
belongs inthe (classhierarchy.” Inthe process o&utomatically integrating a derived
class into an object schema, othe automatiwerification ofthe result obtaineffom a
manual process of integration, a process of classification is carried out. As it is expressed
in [Rundensteiner, 1992b]: “Alass is inthe ‘right place’ (in a class hierarchy) if it is
below all classes that subsume it and if it is abale classes that it subsumes.”
Therefore, a method fateterminingthe subsumptiomelationships between classes is

22

needed in both cases, as mentioned in [Rundensteiner, 1982hus need taefine a
boolean functiorsubsumes(}hat giventwo classesg; andc,, determine whether the
first subsumes the second.”

Classc; is said to subsume clasg denotedsubsumgs;, ¢;), if andonly if ¢; can be
defined as a superclass @fin a class hierarchy correctly defined. This means that the
type associated tg is a supertype of the type of and, the set of objects of always
contains the set of objects @f

Derived and non-derived classes can have membership constraints associated to them. As
defined in [Rundensteinet,992b]: “Membershipconstraints are predicates that restrict

the set content of alass, i.e., this could be a subset-predicate for base (non-derived)
classes or a derivation qudny virtual (derived) classes.” Therefore, “thiassification

problem for object-orientethodels isnot decidable since nay involvethe comparison

of arbitrary functions and predicates.” dnder toavoid this situation’(...) one would

either have tdimit the expressiveness dhe derivationspecification such as to be
computableor, we could require a canonical predicate expression that can be broken
into decidable expressions. the later case, we would base ttiassification on the
comparison of this partial information.”

In the development of theassification algorithnpresented in [Rundensteiner, 1992b], a
subsumes(junction has been definedot presented therevith some of thdimitations
previously indicated, andhe results obtained are as follows: “Odiassification
algorithm issoundbut not complete Thesubsumes(junction beingsoundmeans that if
the function returngrue for apair of classes thethe two classesare necessarily is-a
related.(...) Second, theubsumes function tetal, i.e., it always terminates and returns
either true, offail. However, thesubsumes function isot completei.e., thefunction is
not guaranteed to discover a relationship betwianclasses even dne exists(...) In
the worst case, gome is-a relationship et discovered, then thartual class is placed
higher in the class hierarchy than would theoretically be possible. This woulcbie=et
but not the most informative class arrangement.”

In [Bertino etal., 1996] a subsumptiofunction is also needed rder toverify the
correction of external schemdsfined manuallyThe solution proposed there consists of
limiting the possibilities inthe definition of derived classes, and alémiting the
inheritance relationships defined between derived classes in external schemas.

Subsumption is also studied in [Buchheitadt 1994], being the queryoptimisation
problem in a class hierarchy the main target in this case.

The conclusion to this situation is also enunciated in [Rundensteiner, 1992b]. “Hence,
the development of aealistic subsumes(function for some othe emerging object
models needs to be investigated. The goal of symojact would benot to restrict the
expressivepower of themodelnor the constructs used fderiving new classes, hie
guaranteeing that th@ubsumes(junction stays computable.” Thispic is not further
studied here. We suppose thatudbsumes(junction exists. The study amtfinition of

such a function can be the topic of another thesis.

23

2.3.3 Object-preserving and object-generating semantics

A derived class is defined with object-preserving semanticsoiflit contains objects
extractedfrom previously existing classes. A derived class is defined with object-
generating semantics if it contains new objects generattt ihefinition process, the
new objects must be identified by newly generated object identifiers.

If the derivedclassrepresents a concepteviously defined imbject form, it vill have to
be defined by object-preserving semanttbe: derivedclass defines a new interface for
its objects. If the derivedlassrepresents a concepbt previously defined in object
form, it will have to be defined by object-generating semantics.

In the papers about theefinition of derived classeshree tendencies can be
distinguishedthose thatonly allow derived classes to be defined diyect-preserving
semantics,those thatonly allow definitions to becarried out by object-generating
semantics, and those that afford both definition semantics.

2.3.3.1 Only object-preserving semantics

In the case of theystemspresented in [Tanaka et., 1988; Heiler & Zdonik, 1988;
Scholl & Schek, 1991; Rundensteiner, 1999cnk, 1994; Geppert &l., 1993;Kim &
Kelley, 1995; Naja & Mouaddib,1995], only derived classes defined hybject-
preserving semantics can be defined.

One of the rain reasons fordefining this limitation isthat, with object-preserving
semantics updates can be handled better between objects in derived classes and objects in
their corresponding base classes [Scholl & Schek, 1991; Rundensteiner, B&2ay

& Kennedy, 1993; Geppert at., 1993].

In [Tanaka efl., 1988] thedefinition of derived classes by object-generating semantics
is proposed as a further research topic.

2.3.3.2 Only object-generating semantics

In [Kim, 1989] andKifer et al., 1992]only object-generating semantics can be used in
the definition of derived classes. Even if the derived class represemsaptpreviously
defined in object form, a new object is generated. Hence, information will be replicated in
these systems.

In [Kifer et al., 1992] the raintopic studied is the generationidéntifiersfor objects in
derived classes; identifieewe generatedsing functions specific to each derived class.
Theonly requirement that these functions havéuldl is that theyreturn aunique value

for each different set of input parameters, and that this daas not occuelsewhere in

the database. In order to hble to managéhe transmission of modifications between
objects in derived classes atf# respective objects in base classes, the correspondence
between its identifiers is stored.

24

2.3.3.3 Both object-preserving and object-generating semantics

The possibility of definingderived classes by object-preserving and object-generating
semantics allowsone to carryout sophisticated reorganisations of tlexisting
information whichwould not bepossible if derived classes coubtly be defined by
object-preserving semantics, i.&ombining smallobjects into larger aggregate objects;
decomposing large objects into sevesuadallerobjects; sophisticated restructuritizat
turns objects into values and values into objects. [Abiteboul & Bonner, 1991]"

Other systems that allowhe definition of derived classes withoth semanticsare the
following: [Dayal, 1989; Shaw & Zdonik, 1990; Abiteboul Bonner, 1991; Heuer &
Sander, 1991; Heuer & Scholl, 199ull et al., 1991; Bertino, 1992Alhajj & Arkun,
1993; Santos dl., 1994; Santos, 1995; Bertinoatt, 1996].

Usually, the correspondence among the new objdettifier andthe base object
identifier is stored in order to manage the transmission of modifications between them.

2.3.4 Identifiers of the objects in derived classes

Each object (non-derived or derived) is represented by its identifier. In [Halll, 4991]

it is stated that?An objectidentifier has no intrinsic meaningnd derives itsneaning
only from its relationship to values awther objectidentifiers in a givendatabase
instance. In particular, then, if an objedentifier is considered independently from its
associated database instance, then it congsgsntially no informatiomther than its
identity as being distinct from all other object identifiers.”

In some proposals thdentifier of a derivedbject isdefined exclusively irfunction of
other objecidentifiers; inothercases thé&dentifier is defined in function abtherobject
identifiers as well as function of values sdme of the properties of the objects; these
two options are presented next.

2.3.4.1 Function of identifiers of the base objects

The definition of derived classes by object-preserving semantics can be considered a
particular case in which the object identifiers of objects in derived clasgedepend on
objectidentifiers of objects imtherclasses. As a matter of fact, the objeentifiers of
objects in derived classese the objecidentifiers ofthe objectdrom which they have

been defined.

In other casespew objectidentifiers are generated for the objects in derivdasses
defined with object-generating semantics[Bertino, 1992;Kifer et al., 1992; Bertino
et al., 1996; Gardarin &oon, 1996] thenew objectidentifiers can be defined as a
function oftheidentifiers ofthe objectdrom which theyaredefined, i.e. aggregation of
objects inorder toform a newconcept. Aderived class can be defined framany
classesthe classes on whicthe identity of the objects in the derivedlass depend are
explicitly defined using some specific clause.

25

In [Bertino, 1992] bymeans ofthe clause ‘identityfrom’, in [Bertino etal., 1996] by

means of ‘UPDATE-ON’, and in [Kifer &dl., 1992] by means of ‘OID FUNCTION OF

the subset of basdasses thathe identity of a derived class instance depeuagen is
specified;the objectidentifiers ofthe objectdelonging tothe classes that participate in

the definition of anobject, togethemwith the generated objeadentifier, usually are

stored together in order to maintain this correspondence; such a correspondence also can
be used to propagate the update operations to the base objects.

In the case ofDayal, 1989], theidentifiers of derived objectare considered as tuples
whose components are thgentifiers of theircorresponding base objects. If a derived
class only has a base clags, objects Wi be defined by object-preserving semantics,
base and derived objects will have the same object identifier.

2.3.4.2 Function of values or identifiers of the base objects

If the identifier of a derivedobject isdefined exclusively irfunction of other object
identifiers,then, the transformation @alues into objectsannot bedefined. Inorder to
offer this kind of transformations, some systems [AbiteboBd&aner, 1991; Heuer &
Sander, 1991Hull et al., 1991; Santos &tl., 1994]allow the definition of new objects
as functions of values giroperties, or @ombination of values and objadentifiers of
other objects.

It can be considered that the objetdntifier of a derivedbject is generated from a set
of its attributes; in [Abiteboul & Bonnerl991] these attributes arealled core
attributes As mentioned irfSantos efal., 1994]: “Thefirst time an imaginaryobject
(derived objectlefined with object-generating semanticagsessed, the attributem
which theidentity ofthe object depends must gen so thathe object can be properly
constructed. Further accesses return the same object identifier.”

An additional problem in this case is the management of chantesvalues ofthe core
attributes. As pointed out in [Santosagt 1994]: “Thevalues ofthe core attributes may
change but their object identifiers must remain the same.”

2.3.5 Transmission of modifications

In order totransmit themodifications fromthe objects in the derivedasses to the
objects in theclassesuponwhich thosederived classeare defined, a connection must
exist between them. the definition ofthe derivedclasses is carriedut exclusively with
object-preserving semantics, this connectioirmsiediate as it is given directly by the
object identifier according to [Scholl &chek, 1991; Rundensteiner, 199%an &
Kelley, 1995]. If aderived class is defined by object-generating semantics, a connection
has to be maintained betwettre identifier of the derived object and the objedtsm

which it is defined [Kifer etl., 1992; Bertino eal., 1996].

As defined in [Heiler & Zdonik1988], in thetransmission of modifications from objects
of derived classes tdhe corresponding objects in base classes, eitpgivalence
preservation propertyas to bdulfilled: correctchanges in the base objebeve to be
produced in order to provide the desired updates in derived objects.

26

Regarding thgroblem of modification transmissiotie solutionswvhich are putforward
by other authors are presented: automafasmissionlimiting the definition of the
derived classes and transmission of modifications through methods of the derived classes.

2.3.5.1 Automatic transmission of modifications

According to Gdtlob, Paolini & Zicari[Gottlob etal., 1988]: “Most of the authors who
have been studyintpe view-updatg@roblemconcentrate their attention dinding ways
for deriving translations automatically or semi-automatically by restridtieg set of
allowed (static)iew definitions andhe set ofallowedupdatepolicies. Their derivation
rules usuallyare based upon notions of ‘natural translatigypically minimalty ofside-
effects) and upon constraints on the data model artldeodatabasmstances (functional
dependencies arather datalependencies for relational databases).” Sudfamation
-made several yeaeggowhen most othe papers othis subject focused on relational
databasesstill applies to alarge number of subsequemdpers on théransmission of
modifications in OODBs.

The nainrestriction imposed upotie definition ofthe derivedclasses irorder fortheir
instances to be modifiable, is that it be caroetl byobject-preserving semantics [Scholl
& Schek, 1991; Rundensteiner, 1992dm & Kelley, 1995]. Thus, thenumber of
possible cases ithe modification transmission iseduced. Theimplementation is
simplified considerably in view ofhe fact thathavingthe same identifier, no additional
structure is needed to relate th@se objects and the derived objetit® cerivation of
identity alone beingaken into consideration. Theodification operatorswhich are
applied tothe objects of the derivaedass bringabout thesame effect as if they hdwken
applied directly tothe objects of the corresponding bada&ss[Ra & Rundensteiner,
1995; Kim & Kelley, 1995].

Regarding the restrictions in tket ofpossible modification policieshose inwhich the
transmission isnot direct arenot permitted, i.e., the direcassignment to derived
properties [Scholl & Schek, 199Kim & Kelley, 1995] and the creation of new objects
in derived classes [Abiteboul & Bonner, 1998antos etal., 1994]. Among all the
possible forms of transmission of a modification to a derived objeetis selected, as
mentioned ifGottlob etal., 1988],normally the onewhich bringsabout thdeast side-
effects orthe onewhich may beconsidered the ‘most natural’, i.e., create, delete, add,
remove andet update operatoepplied to an instance of a virtual difference classk

on thefirst argument clasfRa & Rundensteiner, 1995]; deletion of an object related by
aggregation witlother objects, ifKim & Kelley, 1995] only the root object is deleted,
not thecomponent objects. Nevertheless, this form of transmissiotisiecessarily
always the most appropriate.

The automatiadefinition of modification policiekeeps the effort oflefining derived
classes to aninimum -the definition of a derived class consistingerely in defining the
manner in whiclobjects are obtainedhis requires major restrictionbpth inderived
class definition as well irpermitted modificationoperations. If derivectlasses are
defined by object-generating semantit®e automatiadefinition of modifications would
become more complicated because thember of ways of possible transmissions
increases, this being the reason why it is not permitted.

27

2.3.5.2 Transmission of modifications through methods of the derived class

An alternative to the automatic transsion of modifications is taise theadditional
mechanisms thadre offered by the object-orientatigr@aradigm -inparticular, that of
encapsulationdefining the manner ofpropagation ofall the operations byneans of
methods [Dayal, 198XKimura & Tsuruoka, 1991; Rundsteiner, 1992cKifer et al.,

1992; Andersen & Reenskaug, 1993; Barclay & Kennd®g83]. In [Bertino etal.,

1996] the use of the automati@nsmission mechanism isgposedwhen the derived

class is defined by object-preserving semantics and there are no problems of ambiguity. If
ambiguity inthe manner of transmission exidise., deletions on derivetlasses defined

as joins), it is suggested that methagkich implement itare used.Normally, the
methods of the derived class are defined using methods of the base classes.

The cost of definition involved in this solution igreater than that of automatic
modification transmission sincthe definition of the derivedclass consists in the
definition ofthe manner in which it®bjects are obtained and also in ilmplementation
of the methods of modification transmission.

2.3.6 Definition of non-derived attributes

In some systemfBertino, 1992; Mja & Mouaddib, 1995; Bertino edl., 1996], the
definition of derived classes with non-derivattributes is allowed. Thédefinition of
those classes permit®ne to simulate some additional transformations irs@ema
evolution environment.

As pointedout in [Kim & Kelley, 1995]: “A non-derived attributelefined in a view
(derived class) obviously has morresponding attribute in a storethss. Therefore,
values inserted intthe attribute cannot be storedany ‘corresponding’storedclass,

and also the attribute cannot be materialised;” and no alternative solution to this situation
is given there.

According to the ANSI/SPARC architecture, exterrsmhemas caronly contain
information derived fronmthe conceptuaschema. Therefore, if an external schema is to
be defined including a class wisome non-derived attribute, the conceptstiema
should be modified irder toincludethe additional informatiorfRa & Rundensteiner,
1995]; therefore, thenformation in external schemas can always be derived from the
conceptual schema.

2.4 Conclusions

The main target ofthis chapter hakeen studyinghe elements thatake part in the
definition of external schemas and derived classes in OODBSs.

The ANSI/SPARC frameworkdefined a generalarchitecture for DBMSs.This

architecture has beenmidely appliedfor relational databasdsut this hasnot been the
case for OODBs. The externathema is gart of this architectureconcept, and its

28

definition is studied in the proposed framework; consequently, #mamaracteristics of
this framework have been presented in section 2.1.

In section 2.2 areview and a classification of existing external schedeénition
methodologies has been madeod¥l of the methodologies studied dnot consider
explicitly the ANSI/SPARC framework, but propose architectures épgroximately
can be translated to thisne. An efforthas been made in this sense, and these
methodologies have been presenisshgthe ANSI/SPARC terminology. Even the few
methodologies considered that reference the ANSI/SPARC architpctyresesystems
that do not totally meet the definitions of this architecture.

Derived classes can be included in external schemas. In some outstandinglymaihts
the definition of derived classes, different alternatives have pegmosedsome of the
most important onebave been presented in section 2&cifically,the integration of
derived classes witbtherclasses in an object schertfze possibility of defining derived
classes with object-preserving and object-generating semathteqroblems in the
generation of identifierfor new objects, and the transsion of modifications between
the objects in base classes and derived classes.

We consider that thproblems presentedre notsolved satisfactorily, and alternative
proposals are presented in chapters 5, 6 and 7 of this work.

29

30

3 Object-oriented concepts

The concepts used in this thedmn't refer toany particular object oriented modéhey
are general conceptapplicable tomost existing object models. In thishapter, the
formal definition ofthe basicobject oriented concepts usedomr proposal is presented,
as well as some additional outstanding concepts used by other authors.

3.1 Formal definition of our reference basic OODB model

The concepts presented in this sechame been definestarting from the objecnodels
presented in [Rundensteiner, 1992c] and [Abitebowl €t1995].Many of its features
are shared by most of tleistingOODB models. The terminology used in [Abiteboul et
al., 1995] with some changes and extensions has been used in the formal definition.

3.1.1 Constants, values and objects

The atomic typesnteger, string, bool, float, and their corresponding domains are
considered. The sebm of atomic values ithe union of theselomains;the elements of
dom are called constants A specialconstantnil represents thendefined(i.e., null)
value.

The sebbj = {0, 0, ...} is theinfinite set ofobject identifierOIDs); andatt is the set
of attribute namesGiven asetO of OIDs, i.e.,0 U obj, then thefamily of valuesover
O, denotedsal(O), is defined so that
a) the constamtil 0 val(O);
b) if v O dom thenv [val(O);
c) if o 0 O theno O val(O);
d) the sety; | v O val(O), (i = 1, ...,n)} 0 val(O); and
e) given aset ofvalues {4 | vi O val(O), (= 1, ...,n)}, and aset ofdistinct
attributenames A\ |A, A Datt, (2] 0 A ZA), (,] =1, ...,n)} then, the
tuple [Ac: vi, ...,Aq: Vo] O val(O).

An objectis a pair ¢, v), whereo is an OID and a tuple value.

3.1.2 Types. The aggregation relationship

Objects argrouped irclassesglassis the set otlass namedll objects in a claskave
values ofthe sametype, thesevaluesare tuples. Eachlassc is associated with a type
o(c), whichdictates the type of the objectstims class. In particular, for each objeot (
V) in classc, v must have the structure describedifg).

31

So,types aralefined withrespect to givensetC of class names; [class Thefamily
of typesoverC, denotedypeqC), is defined so that

1. the atomic typemiteger, string, bool, andfloat [typeqC);

2. ifc O Cthenc O typeqC);

3. ift OtypeqC), then the setd} [typeqC);

4. given aset of types {i | 1, O typeqC), (i = 1, ...,n)}, and aset ofdistinct
attributenames A\ |A, A Datt, (2] 0 AZA), (,] =1, ...,n)}, then the
tuple [A;: Ty, ...,Ar: Tn) O typeqC); and

5. giventhe special class nanabjects, a(objects) = any, thenany [typeqC),
but this type may not occur inside another type.

Each clasg has a type with tuple form associated, ic) = [A1: Ty, ..., Aq: Tp). If @
classc; has an attributéy of typet;, andTt; = ¢;, beingc; a class, then between the
classesc; and ¢, there is anaggregation relationship-the objects ofclassc; are
composed by objects of class

3.1.3 Class hierarchy. The inheritance relationship

A class hierarchyis a triple C, o, <), whereC is a finiteset ofclassesg is a mapping
from C to typeqC), and < is a strict partiabrderrelation (transitive and irreflexive) on
C, called subclass relation corresponding to a specification ofie inheritance
relationshipsbetween thelasses irthe class hierarchy. The clasbjectsis included in
every class hierarchy, being(objects) = any; and, for eachclassc in any class
hierarchyc < objects

Given a finite seC of class names, tlsbtyping relationshipntypeqC) is thesmallest
partial orderx overtypeqC) satisfying the following conditions:
a) ifc; < ¢, thenc, < ¢;
b)ifti<ti, (1=1,..,n),andn<m, then Ps: Ty, ooy Anl Ty ooy Al T S [ALS
T, 0 An T
c) ift<t,then {{} <{t'}; and
d) for eaclt, T < any.

For twotypests, 1, [J typeqC), 1 is called asubtypeof t1;, if andonly if T, < 15; in this
casej; is called asupertypeof 1,. The typet; is adirect subtypeof T, andt; is adirect
supertypeof 1, if 1,<1y, and (I T, O typeqC)) (Ti<Ty, T2<Tj, TiZ Ty, T£To)).

In a class hierarchthe type associated withsalbclass should be a refineméhie same
type or a subtype) of the type associated with its superclasstagsshhierarchy(, o,
<) is well formedwith regard totypeqC) if for each pairc;, ¢, [0 C, ¢; < ¢, implies
o(cy) £ o(cy).

Given a well-formed class hierarch@,(o, <), for two classes, ¢, 0 C, ¢, is called a
subclassof ¢, if andonly if ¢, < ¢,; in this caseg; is called asuperclasof ¢,. Theclass
C; is adirect subclas®f ¢; andc; is adirect superclassf c,, if ¢, < ¢;, and ({1 ¢ O C)
(Ci < C, =< Ci)).

32

3.1.4 Methods

A methodhas three componentsname asignature and anmplementation(or body).
The setmeth is an infiniteset of methochamesLet (C, o, <) be a class hierarchy. For
methodnamem, asignatureof mis an expression of tfermm:c x 1y X ... Tpy - Tn,
wherec is a class name i@ and each; is a type ovelC. This signature is associated
with the clasg; a methodn appliesto objects of class.

The same method name can have different signatures in connection with different classes;
but, fm:ci X1y X ...Thy - Thandm: C; X Ty X ... T'p1 - T, aretwo definitions ofm

andc; < ¢, then,n=p, andt; < 7’5 (i = 1, ...,n). This rule is callectovarianceof the
definition ofmin ¢; andc,.

If a methodm is definedfor a classc; but not for adirect subclass, of c;, then, the
definition of m for ¢, isinheritedfrom c;. The signature af in c; hastheform m: ¢, x
T X ... Tha — Tp; the signature o onc; is identical tothe one ofm onc;, except that
thefirst c; is replaced by,. In general, the methaah is inherited by a class from a
classc; wherem has been defined,d < ¢;, mis notdefined inc,, andm is notdefined
in any classi, beingc; < ¢, ¢ < ¢;. If mhas been inherited lay, theimplementation of
m for c; is identical to that foc;.

A setM of method signatures is associated to a class hieratgloy). Each class of

C has aset of method signatures associated, denofed the set of methoddefined in

c or inherited byc from its superclasses; according to tMsz {u(c) | ¢ O C}. Objects

in a clasc can be accessexhly usingthe set of methods(c). The methods of a class
aredefined usinghe attributes ot(c); methods are dependent on the set of attributes
used in their definitionMethodsallow us to consult omodify the value ofthe attributes

of the objects in class The set of methodspplicable to ambject iscalledthe interface

of the object. Objects are accessamudy via their interface; this principle igalled
encapsulation

In order toavoid the production olmbiguities inthe inheritance of methods, the
unambiguityrule is defined: it; is a subclass af, andcs, and there is definition of m
for ¢, andcs, then there is definition of m for asubclass ot, andc; that is eitherc,
itself, or a superclass of.

The setM of method signatures associated to thess hierarchyQ, o, <) is well
formedif it obeys the unambiguity and the covariance rules.

Extending thelefinition previously given, a class hierarcl@; ¢, <) is well formedif it

is well formed with regard ttypeqC), and thesetM of method signatures associated to
theclass hierarchy is alseell formed. Only well-formed class hierarchiese considered
in this work.

33

3.1.5 Attributes and methods: properties

Each class in a class hierarchyC{ o, <) has aset of attributenames associated
corresponding to the ones o1(c), and aset of methodsu(c). The attributes otc
constitute its internal structure; the methodg(@) constitute the interface of

An attribute ofnamea and typet defined ino(c) can be expressed in tkame form as a
method:a: ¢ - 1. According to thelefinition of well-formed class hierarchy,df, ¢, [
C, ¢; < ¢, anda is an attribute of type; defined ina(c,), i.e.,a: ¢ - T4, then the
attributea is also defined iw(c,), i.e.,a: c; - T, andt, < 1;. (The covariance rule for
methods was defined in a similar way.)

The set ofpropertiesor theintensionof a class, denotedo(c), is defined ashe union
of the set of attributedefined ina(c) and theset of methodsgi(c). In a class hierarchy
(C, 0, <),ifc, c; OC, andc; < ¢, thenp(c,) O p(c,), and (U p O p(cy)) (ifp:cp x 14

X . Tp1» Thand p:GXT1X ..U - Unthenn=m, andt; <1 (i = 1, ...,n))),
covariance rule for properties.

As in [Rundensteiner, 1992c], faimplicity, we assumdor the following that all
properties in alass hierarchy have unigqueoperty names. To ensure unigueness of
properties, anunique property identifier can beassociated to eachewly defined
property; thereforetwo properties thahave the sameproperty namecould thus be
distinguished internally based on their identifier.

Each property in a class may bedefined usingther properties of thelassc or from
other classes irthe class hierarchy. Theet of properties that properp/needs for its
definition in class is denoted bygefp,c) = {(pi,c) | propertyp O p(c) uses the property
pi O p(g) in its definition}.

3.1.6 The structural semantics of a class hierarchy

Let (C, o, <) be a class hierarchy. ADID assignments a functionrt mapping each
name inC to a finiteset of OIDs.Given OID assignmentt, theinstancesor theproper
extensiorof ¢ I Cis 1q(c). An objecto instance of a clasg [C, denoted [11(c;), can
not beinstance of any ofhe subclasses of; in theclass hierarchy: @ ¢ 0 C) (o O
T(C), G < ¢1)). A major point ofdifference ofthe model presented here withspect to
themodel of [Abiteboul etl., 1995] is that an object can imstance otwo classes not
related by inheritance in a class hierarchy, like in [Rundenstdifi8gc] or [Bertino et
al., 1995].

The membersor theextensionof ¢, denotedr*(c), isO{rm(c) | ¢ O C, ¢ < c}; if an
objecto is an instance of a classtheno is also a member @il the superclasses of If
mtis an OID assignment, theri(c;) [1t*(c;) whenever; < c;.

The semantic$or types is nowdefined relative to a class hierarch, 0, <) and an

OID assignmentrt Let O = [O{m(c) | ¢ O C}, and definett*(objects) = O. The
interpretationof a typet, denoteddon(t), is given by

34

a) for each atomic type don(1) is the usual interpretation of that type;

b) dom(any) is val(O) (beinga(objects) = any);

c¢) for eachc O C, donq(c) = 1(c) O {nil};

d) don({t}) = { w4, ...,Vo} | n= 0, andv; 0 dom(1), (i = 1, ...,n)}; and

e) dom([As: T1, <o, A Td) = {[A1: Ve, o A Vi, Acer ! Vi, b AT V] [O
dom(t), (=1, ..K,v0Oval(O), =k +1,1)}

3.2 Class hierarchy closure

The definitionspresented in this secti@me based on [Rundensteiner, 1992c]. Closure of
a class hierarchy referes tioe closure of thenheritance relationship, and also to the
closure of the references made between classes through properties.

3.2.1 Inheritance closure

Let (C, o, <) be a class hierarchy. Given ¢, U C, a class; is acommon superclass

¢ andc; if the properties ot; arep(cs) O (p(c1)) n p(cz)), and theset of objects ot;

arett*(c3) [(1t (cy) O 1% (Cy)); if the definition of apropertyp forczis p:c3 x 171 % ...

T’ n1 —» Ty, then, thedefinition of p for c; andc; is, respectivelyp : ¢; X T3 X ... Ty -

Tyand p:C X Ty X ...Th1 - Up, Where each”; =1, if T; < 1, otherwiser”; = T';

(fori =1, ...,n). If ¢, andc, do nothave anyproperty in common, thewnly common
superclass is the clasbjects

The classc; is thelowest common superclas$ c; andc,, denoted.CScy, C;) = Cs, if
and only ifcs is a common superclass@fandc,, butp(cs) = (p(c1) n p(cz)), andTe*(Cs)
= (*(cy) O 17 (C2)).

Givenc,, ¢; O C, thentmis a function fronC x C - C that defines a new clasgby c; =
¢: (c,, beingc; a common superclass @fandc,, andp(cs) = (p(c1) N p(co)).

— Inheritance relationship

Figure 3.1. Class hierarchy closure under fundtipn

35

A class hierarchy@, o, <) is closed undermif and only if for anytwo classes;, ¢, [
C, a class; is included inC, beingcs = ¢; ¢, (c3 is a superclass af andc, whichonly
has all the properties common to both classes).

In fig. 3.1.a, part of @lass hierarchy that isot closed undermcan be seen; classes
and ¢, inherit the propertiesiefined inc; andc,. In order toobtain a class hierarchy
closed undermclasscs has to be defined (fi.1.b),classcs containsall the properties
common to botlt; andc,.

In a class hierarchy closemhdermeach property islefined only inone class, if used
elsewhere, it is inherited from this original definition classiperties can beedefined in
accordance with the rules that define a well formed class hierarchy.

A way of integrating derived classes tine class hierarchy is to make them direct
subclasses of classbjects [Kim, 1989]; the min reasoning against this method of
derived class integration is that some information mhag beinteresting to the end-user
is lost, because in the class hierarchytadinheritance relationships existing between the
classesare notexplicitly expressed. The am aim of having alass hierarchy closed
under functiorimis to have explicitlyepresentedll theinheritance relationships existing
betweenall the classes irthe class hierarchyall the propertie€ommon to anyair of
classesare explicitly defined in(or inherited by)anotherclass which only haghese
properties, and it is superclass of both classes in the class hierarchy.

In the model propsed byRundensteiner [Rundensteiner, 199@lklss hierarchies have
to be closed undermin order to integratautomatically new defined classes. We do not
have this requirement mur model, it is only an additional possibility as iilvee shown

in chapter 5.

3.2.2 Property decomposition closure

Let (C, 0, <) be a class hierarchy; a class] C is directly related witlanotherclassc;,
[0 C via aproperty relationshipdenotedor(c;,c,), if andonly if ((Lp O p(cy)) (p: ¢ X
Ty X ... Tpa — Tpandc, =1, for somen =i > 1. In general, a class, is relatedwith
another class; via a property relationship, denoted (c;,c,), if andonly if, pr(ci,c,) or,
pr(ci,c) andpr*(c,c;) for somec; [C; that is to saye; is related withc, via aproperty
relationship if they are directly or indirectly related via a property relationship.

The aggregation relationship anly a particular case of the propertglationship; the
aggregation relationship referesttee relationship expressed attributes, the property
relationship referes tthe aggregatiomelationship andhe relationships expressed in
methods, so the aggregatioglationship is included inthe definion of the property
relationship.

The set of all property relationships among the classes in a class hierarchy is refered as its
property decomposition hierarchy

36

A class hierarchy(, o, <) is closed in relation to the property relationshgr its
property decomposition hierarchy is closédandonly if, for all ¢, O C, if ¢ is related
with some other class via a property relationship, thend C.

According to thedefinition of class hierarchysecction 3.1.3)all the class hierarchies
have to be closed in relation tbe propertyrelationship;the reason is that in @ass
hierarchy C, o, <), o is defined as a mapping froB1to typeqC) -the family of types
overC- thus, all the classes includediypeqC) are also included i@.

3.3 Object schemas

3.3.1 Valid object schema

A class hierarchy is frequentlyepresented as a graph. Abject schemais a
representation of a classerarchy C, o, <) in theform of a rooted directedcyclic
graphS = (C, E), whereC is the set otlasses ané is a finiteset of directed edges.
Each edges = <cy, ¢;>, beingc,, ¢,[1 C, represents the fact that tblassc; is a direct
subclass of class.

As in [Rundensteiner, 1992gjiven anobject schem& = (C, E), an edges = <c,, C;> is
defined to be

» requiredin S if ¢, is a direct subclass of;

* redundantn S, ifc; is an indirect subclass of;

e orinconsistenin S if ¢; is not a subclass @f.

An object schem& = (C, E) is valid if the set of edgeE containsall required and no
redundant, neither inconsistent edgesithat is,the set of edgek representsll the
existing pairs of direct subclassednand only contains these edges.

3.3.2 Closed object schema

By definition, an object schema contathg classobjects and also has to be closed in
relation to the property decompositioglationship, because it is a representation of a
class hierarchy.

Given aset of classesC, and theset E of all required, non-redundant and non-
inconsistent edges that can defined betweethe classes otC, if S= (C, E) is not an
object schema (becausedibes not representdass hierarchy closed in relation to the
property decompositiorelationship -and inheritance relationship if required), tiser,
(C’, E’) is a minimalobject schemalefined fromC, if and only if, S’ is a validobject
schemaCOC,and (1cOC)(cOC,C" =C" -{c},andS” = (C", E"”) is an
object schemdor someset of edge€”)) -that is tosay thatthe setC’ contains the
classes originally included i@, and some additional classes whagle $rictly necessary
in order to obtain a closed object schema.

37

Given aset ofclassesC, many minimalobject schemas can be obtained fribmwith
regard to the property decompositibierarchyclosure, there is no doubt about the
classes which have to be includedCinin order toobtain a closed schemall the classes
referenced by some propertyafy class o€ or of anyreferenced clas§.or obtaining a
class hierarchy closaghder functionT(see section 3.2.13lifferent sets of classes can
be considered: thtunction Mis defined suchhat, if c; = ¢; M, then, theremay be
different possibilitesfor defining the extension otlassc; in order to havec; as a
common superclass @i and c, -the only condition about theextension isrt*(cs) [
(1t (cy) O 1 ().

Slefolegeto

— Inheritance relationship

Figure 3.2. Different possibilities obtaning a class hierarchy closed under fumction

In theexample of fig. 3.1, class wasdefined inorder tohave a class hierarchy closed
under functionml Concerninghe extension of the newlasscs, in fig. 3.2 twodifferent
possibilitiesare shownadding clasgs; or classcs;, and in both casesrainimal object
schema is obtained.

(@) (b) (©)

— Inheritance relationship

Figure 3.3. Minimal object schema.

38

In fig. 3.3 anew example ipresented,; ifig. 3.3.a,classes;, ¢, andcs, all of them with

the same intensionp(c,) = p(c;) = p(cs)), areselected to compose an object schema. In
figs. 3.3.b and 3.3.c two different class hierarchies closed under furictibtained from
the set oftlasses of fig3.3.a are representedll the classes generated loth figures
also havethe same intension. Ifig 3.3.b, classesc;,, €13, C3 can be removed and the
class hierarchy remains closedder functionm The object schemaepresented ifig.
3.3.c isminimal, because thelassadded camot beremoved withoutafecting the
closure of the schema.

Given anytwo minimal object schemaS’ = (C’, E’) andS” = (C”, E”) defined from a
set ofclasse<C, thecardinality ofC’ andC” is thesame and ({ c U (C' - C), Uc’' U
(C” -C)) (p(c) =p(c’))) -both schemas have the same number of classes, arldstes
added to thenitial set ofclasse<C in order toobtain aminimal object schema have the
same set of properties for any minimal object schema:

» With regard to the property decompositibierarchyclosure, in order tabtain a
closed schemdhe set ofclasses that have to be addedall the classes referenced
by some property oény class irthe initial set of classesC, or of anyone of the
referenced classes; so, there is no alternative in obtaining this set of classes.

* Once aset of classes closed witlhegard to the propertyelationship has been
obtained, inorder toobtain from it an object schema closaalder functiontm for
each pair of classes, ¢, of this newset, aclassc; = ¢; ¢, has to be included in the
resulting set of classes. By definition of functioneach one of the classeswill only
have propertiesalready defined irt; andc,. So, the intension ofthe classes to be
added ixlearly defined; orthe otherhand, as has been shown in fig. 3.3hére are
manyclasses witlthe same intension in an object schema claseder functionT in
order toobtain aminimal object schemaall of them excepthe highest class in the
class hierarchy witlthe same intension can be removed &hne objectschemastill
remainsclosed. Theonly degree of freedom thaemains inthe definition of those
classes is in the definition of their extension, as has been shown in fig. 3.2.

39

40

4 Definition of DCMs of OODBs

In this chapteithe definition of deductiveconceptual models (DCMs)sing Prolog in
order tospecify differentaspects of OODBs is proposed. The result of theifggion
processusing this technique is an executalgeototype of thesystem. Having a
prototypedirectly available, along witthe system specifications, is particularly useful in
order todefine additional elements the context of OODBs (e.gchema evolution,
definition of derived classes, definition of external schen&®. use of this technique is
proposed mainlylue to thedifficulty of building prototypes of thenentioned elements
over commercialOODBs. Thespecification of a conceptual schemefinition system
and its associated data model is presented.

4.1 Introduction

In the field of OODBs a variety of proposats/er a broad range of aspects are found:
from the actual datanodel to beused, to proposals about teeolution of theschema,
the definition of derived classesthe definition of external schemasgtc. Their
implementation, or even prototype implementation, is carried out in very few cases.

The carryingout of prototypes serves asgaeathelp inthe specification of any kind of
complex system, anithe mentioned elements of OODBse no exception. Theroblem
lies inthe fact that it inot alwayseasy to carryout aprototype of thesystem to be
specified-not on account of theystem itselfbut because there isot an adequate
platform or tool available for building it. In the actual case of the OODBspassbility
is to use acommercialOODB as the platform for the construction of ghetotype
(depending on the aspect to fo@totypedand thepossibilities thathe database offers,
this could be agoodsolution). The rain problem in using a commerci@ODB lies in
the fact that the databaiself could be dimitation -e.g.its datamodel orthe possibility
of its’ being extended.

The definition of DCMs is a techniquevhich allowsthe specification of information
systems(ISs) by expressing onlytheir logical component [Olivé 1989]. Moreover, if
Prolog is used for the construction of the DCM [Costadlgt1989], togethewith the

formal specification, gprototype of thesystem is also obtained. Grcount of this, in
this chaptertthe development of DCMs iRrolog is proposed asmeans of specifying
the different aspects of interest of OODBs. As far askwew, this isthe first proposal
in this sense.

In section 4.2 the featuresd basic elements of DCMse briefly outlined. In section

4.3 ageneral architecture for developing DCMstbé different aspects of OODBs is
proposed. In order to show tipeactical application of DCM%art of the spafication

41

of a conceptual schendefinition system is carriedut along section 4.4Finally, in
sections 4.5 and 4.6, some comparisons with other works and conclusions are presented.

4.2 Deductive conceptual models

The basicfeature of conceptual models is that they make it possitdpdafythe logic

of ISs. There aretwo types of conceptual models: operational and deductive.
Operational conceptual models,veall as specifyinghelogic of ISs, defingart oftheir
control component. However, DCMs specify ISs expressing only their logical component
[Olivé, 1989].

A detailed description of DCM construction can be founfQlivé, 1989], and the use
of Prolog laaguage as a means to this endGostal etal., 1989]. In theremainder of
this section we summarise the most important points of this process.

One of the rain elements to be consideredarder to construct ®CM is time;all the
external events relevant to tegstem,togetherwith informationabout themoment in
which theyoccurred, are recorded in therm of base predicatesBased on théase
predicates,derived predicatesare defined; theyrepresent thanformation about the
system in any givemoment. Theoutput requirementand the desiretlehaviour of the
system are also expressed using derivation rules.

The system’s internastatus must be always consistestich consistency iglefined
through a set ointegrity constraintdbased on the base and derived predicates. If, as a
result of some external event or in the course of time, the system is found to be no longer
fulfilling any of the integrity constraints, consequent action must be taken so that these
rules arefulfilled overall. If it is due to aecorded event, thenmediatesolution is to

cancel the record of the said event. If an inconsistency cabueg due to thpassing of

time there is no general solutiothe mostsuitablecourse of action W vary according

to each case.

Thus, the components of a DCM are:
* Base predicates.

» Derived predicates.

* Integrity constraints.

* Output requirements.

In section 4.4 these componentdl Wwe seen ingreaterdetail for the model we are
concerned with.

4.3 Architecture of DCMs of OODBs

We propose tanodel eachaspect of the OODBs separateliging the output of one
model as the input for the rest of the models as may be necessary.

The first element to be modelled corresponds to the definition of the conceptual schema -
marked in grey in fig. 4.1The input for the conceptuathema definition system is a set

42

of definitions oftypes, classes, etc.; as wsitput, arepresentation of the OODB'’s
conceptual schema is obtainechich in turn can be the input for anotheystem -as
showed in fig. 4.1.

Conceptual Object Schema External
SN definition modification schema
definition . definition
terms operations
terms terms

Conceptua
schema

External
schema

Object Schema

definition definition evolucion definition
DCM DCM DCM DCM
Conceptual
schema OoDB .
representation representation

Figure 4.1. Proposed DCM definition architecture.

Our initial purpose is tepecify anexternal schema definition system. With this aim, we
have build aconceptual schemédefinition DCM, anobject definition DCM and the
external schema definition DCM -some derived predicatéseofast one can be found in
chapter 5.

4.4 Conceptual schema definition DCM

Let's take asour example of an OODRonceptual schemine one represented fig.
4.2; a possible syntax to express it can be seen in fig. 4.3.

— Inheritance
—» Aggregation

Category()
Salary() ...

Figure 4.2. Representation of the OODB example schema.

43

type person is_a any
name (string)
address (addresses)

type em|.o.ioyee iS_a person
category (string)

type adci.r.ess is_a any
city (string)

class people (person) is_a objects

class clients (person) is_a people

class employees (employee) is_a people
class addresses (address) is_a objects

Figure 4.3. Definition of the OODB example schema.

The conceptual schenggefinition terms showed irig. 4.3 correspond to thsystem
input. In order to deal only with the semantic aspects of the system, let's suppose that we
start out with definition terms which are syntactically correct.

Below we describe in detathe different components othe DCM that has been
developed. The features of the used object-orientedel wil be definedthrough the
development of the corresponding DCKbr thedevelopment the PD@rolog (before
Turbo Prolog) language has been used.

4.4.1 Base predicates

In fig. 4.4 thebase predicates are represenfBuoey are recorded in response to the
definition events.

domains
id = integer
idList = id*
time = integer
domain = t(id); c(id); t_(id); c_(id)
signature = domain*
propertyName= symbol
typeName = symbol

className = symbol

database
csDefineProperty(id,propertyName,time)
csDefineType(id,typeName,idList,time)
csDefineTypeProperty(id,id,signature,time)
csDefineClass(id,className,id,idList,time)
csDefineEnd

Figure 4.4. Base predicates.
The events and their corresponding base predicates are the following:
 Definition of property ¢sDefineProperty ~): the name of @roperty isdefined and an

internal identifier is assigned to it -by which reference can be madetfimmest of
the predicatesAdditionally, the moment of definition isrecorded(in all of the

44

following predicates also, thiseingthe case weshall not mention thisaspect any
further).

» Definition of type sDefineType): theinternal type identifierthe name, and a list of
type identifiers corresponding to the supertypes of the type in question are recorded.

* Properties of a typec{DefineTypeProperty ~): for each property of a type, the type
internal identifier, the identifier of the property and the property signature are
recorded. The property signature is composed list af termswhich may betypes
or classesrepresented by or ¢ respectively, depending on whettiee element is a
value or an object when working with instances. Also tihay bemade up ofets of
values or objectall of the same type or classepresented by or c_ respectively.
Thus, associated with tlsymbolst , ¢, t andc_, theidentifier of the corresponding
type or class is given.

» Definition of a classdsDefineClass): theinternal identifier ofthe class, thelass
name theidentifier of the associated type, and tis¢ of identifierscorresponding to
the superclasses of the class are recorded.

» End of thedefinition (csDefineEnd): the definition of the conceptuatchema has
finished.

The system disposes of some predefined types and clébgsedypesany, real |,
integer , char andstring ; and theclassobjects). For thesepredefined types and
classes, thdefinition system automaticaltyenerates the correspondidefinition events
(recorded in théorm of base predicates as can be sedig.id.5, togethemwith de base
predicates corresponding to the schema in fig. 4.2).

csDefineType(Tany,any,[],t0)
csDefineType(Tstring,string,[Tany],t0)

EéDefineCIass(Cobjects,objects,Tany,|],t0)

csDefineProperty(P1,name,t1)
csDefineProperty(P2,address,t2)
csDefineProperty(P3,categoy,t3)
csDefineProperty(P4,city,t4)

EéDefineType(Tl,person,[Tany],tS)
csDefineType(T2,employee,[T1],16)
csDefineType(T3,address,[Tany],t7)

csDefineClass(C1,people,T1,[Cobjects],t8)
csDefineClass(C2,clients,T1,[C1],t9)
csDefineClass(C3,employees, T2,[C1],t10)
csDefineClass(C4,addresses, T3,[Cobjects],t11)

EéDefineTypeProperty(Tl, P1,[t(Tstring)],t12)
csDefineTypeProperty(T1,P2,[c(C4)],t13)

csDefineTypeProperty(T2,P3,[t(Tstring)],t14)
csDefineTypeProperty(T3,P4,[t(Tstring)],t15)

Figure 4.5. Base predicates instances.

45

4.4.2 Derived predicates

From the base predicates, set of derived predicates is defined. They represent
information about the status of thenodelled system at any givenoment. Derived
predicates ardefined inthe form of rules of deductiortheremay beone or moreules

of deduction for each derived predicate. Each rule of deductidefised using base
predicates or othederived predicate@ncluding the predicate that iseing defined by
the rules: recursivity).

(a) superclass(ldC,IdC2,T) :-
directSuperclass(ldC,IdC2,T),
|

supercléés(ldC,ldCZ,T) -
indirectSuperclass(ldC,IdC2,T),
L

(b) directSuperclass(1dC1,ldC2,T) :-
classSuperclasses(IdC2,Superclasses,T),
memberld(IdC1,Superclasses),
|

indirectSuperclass(ldC1,ldC2,T) :-
classSuperclasses(IdC2,Superclasses,T),
superclassOfSomeClass(ldC1,Superclasses,T),
|

superclassOfSomeClass(IdC1,[IdC2|_],T) :-
superclass(ldC1,1dC2,T),
|

supercla{ésOfSomeCIass(ldC,L|L],T) -
superclassOfSomeClass(ldC,L,T).

(c) classSuperclasses(IdC,IdCs,T) :-
csDefineClass(ldC, , ,IdCs,T1),
T1<=T.

Figure 4.6. Examples of derived predicates.

In fig. 4.6 some examples of derivguledicates are presented.fion 4.6.a thedefinition
of thesuperclass derived predicate, which defindbe fact that &lassmay bedirect or
indirect superclass @nother, is showrnThis predicate islefined usinghe predicates of
fig. 4.6.b. In the case of a direct superclassjdaatifier of the first class il be in the
list of superclasses the secondlass;thefirst class will be anindirect superclass if it is
a superclass of one of the superclasses of the second class.

In the derived predicates presented so far,otilg direct reference to a base predicate

has been madérough theclassSuperclasses derived predicate, whoskefinition can

be found in fig.4.6.c. Thebase predicates have been encapsuldiszligh derived
predicates; thus the derived predicate definitions are isolated from possible changes in the
base predicates.

4.4.3 Integrity constraints

The semantics othe DCM isdefined bythe integrity constraints; thewre expressed
using derived predicates.

46

When a new definitiorevent is produced it is recorded by thssertz standard
language predicate; also, the rules of integrity are verified by the deiteeslstency
predicate. If some inconsistencypioduced, the record of the event mustasacelled;
this operation is done iperetract standard language predicatéis procedure, for
the case of thelass definition predicate, can be seen in fig. &imilar predicates are
defined for each of the specified events.

classDefinition(ldC,Class,IdT,IdCs) :-
now(T),
assertz(csDefineClass(ldC,Class,IdT,ldCs,T)),
inconsistency(T),
retract(csDefineClass(IdC,Class,|dT,IdCs,T)),
assertz(error),
|

cIassDefinition(_,_,_,_) -
L

Figure 4.7. Events and inconsistency validation.

Below some of the rules of deduction corresponding toiridu@sistency derived
predicate are presented.

» A propertymay only bedefinedonce in a typeFig. 4.8.a corresponds to thale of
deduction thatdefines this inconsistency. By means thie typePropertyAtT
predicate (becomesue if a propertyhas been defined in a type thie indicated
moment) the fact that a properhyas not been defined twice ithe same type is
validated.

* A type cannot be a supertype itdelf. In order toverify thatloopshavenot come
about in thedefinitions of inheritance relationship between types supertype
derived predicate has beesed,similar tothesuperclass ~ defined beforehand. In this
way, if, whendefining anew type, it turn®ut that atype is a supertype of itself, the
definition would not be valid, as can be seen in the rule of deduction in fig. 4.8.b.

» There cannot be redundant supertypes in a digbeition. In the supertypdist of a
type there must be no redundant types -repeated types or supertypes afrégus
included in the list, fig. 4.8.c. This fact can beverified by using the
redundantSupertypes derived predicate, presented in fig. 4.8.d.

» Single definition ofproperties between types. A property cauty be definednce. If
two types share properties, thésee to have been inherited frdhe sametype. The
rule of deduction thatlefines this inconsistency, fig.8.e,consists in searching for
two types that share some property and that @o¢ related by inheritance
(typelnheritance), and also have no existing common supertype that has the
property in question definedofmmonTypeProperty).

* Domains inthe redefinition of properties. If a property isedefined in a type, the
propertydomain has to be a subdomaintbé corresponding propergomains as
previously defined ithe type supertype$his fact isverified inthe rule of deduction
of fig. 4.8.1.

a7

(@)

(b)

(c)

(d)

(e)

(f)

A classcannot be a superclassitself. Thedefinition of this inconsistencipr classes
is equivalent to the already defined in fig. 4.8.b for types.

There cannot be redundant superclassesdlass definition. Thelefinition of this
inconsistency for classes is equivalent to the already defined in figs. 4.8l@Bahdor
types.

inconsistency(T) :-
typePropertyAtT(IdT,IdP,T1),
typePropertyAtT(IdT,IdP,T2),
T1<>T2,
T1<=T,
T2<=T,
|

inconsistency(T) :-
typeName(ldT,Type,T),
supertype(ldT,IdT,T),
I

inconsistency(T) :-
typeSupertypes(IdT,IdTs,T),
redundantSupertypes(ldTs,T),
L

redundantSupertypes([Id|L],_) :-
memberld(ld,L),
|

redundaﬁtSupertypes([ld|L],T) -
typelnherwithSomeType(ld,L,T),
I

redundaﬁtSupertypes(UL],T) -
redundantSupertypes(L,T).

typelnherwWithSomeType(IdT1,[1dT2|_],T) :-
typelnheritance(IdT1,1dT2,T),
I

typelnherwithSomeType(IdT,[_|L,T) :-
typelnherwWithSomeType(IdT,L,T).

inconsistency(T) :-
typeProperty(1dT1,IdP,T),
typeProperty(1dT2,IdP,T),
dT1 <> I1dT2,
not(typelnheritance(1dT1,1dT2,T)),
not(commonTypeProperty(IdT1,1dT2,1dP,T)),
|

inconsistency(T) :-
typePropertySignature(IdT1,1dP,S1,T),
typePropertySignature(IdT2,1dP,S2,T),
IdT1 <> I1dT2,
supertype(IdT2,IdT1,T),
not(signatureStrictSubdomains(S1,S2,T)),
|

Figure 4.8. Inconsistency deduction rules ().

48

» Types of classes related by inheritance. The typebefsuperclasses of defined
class have to be either supertypesh@rsame type as thathich corresponds to the
class. Fig4.9.a,giventhe types of the superclasses of a class,vérigied that this
condition isfulfilled by way of the sameTypeOrSubtype derived predicate presented
in fig. 4.9.b.

» Single definition ofproperties between class&smilar tothe inconsistency defined in
fig. 4.8.e for types; corresponds to fig. 4.9.c: a propertyooanbe definednce, and
inherited from the type of the class where it was originally defined.

(a) inconsistency(T) :-
className(ldCobjects,objects,T),
classType(ldC,IdT,T),

IdC <> IdCobjects,
classSuperclasses(ldC,IdCs,T),
classesTypes(IdCs,IdTs,T),
not(sameTypeOrSubtype(ldT,IdTs,T)),
|

(b) sameTypeOrSubtype(ldT,[IdT],) :-
|

sameTypeOrSubtype(IdT,[IdT2],T) :-
supertype(ldT2,IdT,T),
|

sameTypeOrSubtype(IdT,[IdT|L],T) :-
|

gameTypeOrSubtype(ldT,L,T).
sameTypeOrSubtype(IdT,[IdT2|L],T) :-

supertype(ldT2,IdT,T),

|

gameTypeOrSubtype(ldT,L,T).

(c) inconsistency(T) :-
classType(ldC1,IdT1,T),
classType(IdC2,1dT2,T),
[dC1 <> I1dC2,
typeProperty(1dT1,IdP,T),
typeProperty(1dT2,IdP,T),
not(classinheritance(IdC1,IdC2,T)),
not(commonClassProperty(IdC1,1dC2,IdP,T)),
|

Figure 4.9. Inconsistency deduction rules (l1).

4.4.4 Output Requirements

In response to the event corresponding to the base precpafieeEnd , the system
has just oneutputrequirement: to produce set of correct terms afefinition of the
conceptual schema. These terms have to be in a fadeajuate for theefinition of
DCMs that modelother aspects of OODBs. In particular, the concepschema
definition terms wll be base predicates of the objelgfinition DCM represented ifig.
4.1. So,the outputterms represented ifig. 4.10 have beeradapted to the format
required by the derived predicates defined in the object definition DCM.

49

csType(Tany,any,[],[],ta)
EéCIass(Cobjects,objects,Tany,|],[Cl,C4],tb)

csProperty(P1,name,t1)
csProperty(P2,address,t2)
csProperty(P3,category,t3)
csProperty(P4,city,t4)

i:usType(Tl, person,[Tany],[P1,P2],t5)
csType(T2,employee,[T1],[P1,P2,P3],t6)
csType(T3,address,[Tany],[P4],t7)

csClass(C1,people, T1,[Cobjects],[C2,C3],t8)
csClass(C2,clients, T1,[C1],[],t9)
csClass(C3,employees,T2,[C1],[],t10)
csClass(C4,addresses, T3,[Cobjects],[],t11)

csTypeProperty(T1,P1,[t(Tstring)],t12)
csTypeProperty(T1,P2,[c(C4)],t13)

csTypeProperty(T2,P3,[t(Tstring)],t14)
csTypeProperty(T3,P4,[t(Tstring)],t15)

Figure 4.10. Conceptual schema DCM output.

4.5 Related work

In [Gray etal., 1992; Diaz eal., 1991] some proposals aredeaboutimplementing an
OODB in Prolog.Unlike these, in thispaper the development of DCM different
elements of OODBs iRrolog is proposedAlthough the subject (OODBSs) and ttool
(Prolog language) are tlgame inboth cases, the aspects taken into consideration are
completely different.

In [Gray etal., 1992; Scholl etal., 1992; Lemke, 1995] amongthers, different
metamodels of object-oriented modedse presented. Metamodels and DCMs are
different concepts and they are used with different objectives.

Following the focus presented in [Quer@livé, 1994], object-oriented DCM tspecify

any IScan be constructed -CIAM language [Gustafssoal.et1982] would correspond

to a materialisation of that focus, as pointed there.Using some version dProlog
extended with concepts of object-orientation, executable object-oriented DCM in Prolog
could also be defined.

4.6 Conclusions

The definition of DCMs irPrologallowsthe specification olSs byexpressing only their
logical component and, togethetith the formal specification, grototype of thesystem

is also obtained. The availability pfototypes of thelements whiclarespecified is very
useful. Inthe actuafield of OODBs thispossibility is very valuable, since we consider
that no alternative means of creating prototypessimaler manneexists. We are so far
unaware ofimilar experiences along theeesand consider that its application in this
field may turn out to be of great use.

50

In order tospecifythe different elements of OODBs carryingit DCMs in a progressive
way, a DCM definition architecture has been presented.

Part of theDCM of a conceptual schenuefinition systemand its corresponding data
model- has been shown. Thefinition of predicates that has been carrmat in this
example is similar tohe formal definitions found irthapter 3; the ain difference ighat

in developinghe DCM in Prolog a prototype of tleystem has been also obtain€dis
mechanism is oparticular use irorder tospecify additional elements @ODBs, like,
for example: richer semantic models [Castellanas.et1992],schema evolutiofPeters
& Ozsu, 1995]definition of derived classes [Abiteboul Bonner, 1991; Santos, 1995],
definition of external schemas [Rundensteiner, 1992c; Samos, 1995].

In order tospecify anexternal schema definitioDCM according to [Samos, 1995], a
conceptual schemdefinition DCM, anobjectdefinition DCM and the externadchema
definition DCM have beertonstructed -somderived predicates of the last one can be
found in chapter 5.

51

52

5 A new external schema definition methodology

In this chapter, a new externachema definition methodology that considerably
simplifies the definition process and the results obtained regarditiger authors’
proposals is presented. The ANSI/SPARC framework is taken as a reference. In section
5.1, therelationship betweethe conceptuaschema and external schema is discussed
togetherwith the organisation of thdata dictonary andhe externaschema definition
system. In sectioB.2 thedifferent processes of integration neededriter todefine an
external schemaare reviewed (integration in th@ata dictonary and inthe external
schema) comparing them with alternative proposalerdier to reduce thaumber of
classes that is required to leplicitly defined, anew proposal is maddifferent
categories of classes candefined wherthe classes composirthe external schema are
selected; classes can bealified as transformable or non-transformable if they can be
modified or not, respectiveljpefore being included intthe externakchema. In section
5.3 different issues related witthe process of generation of extersghemas are
studied, particularlythose relatedvith the transformation ofransformable classes. In
section 5.4wo external schema generation algorithane presented. Thesdgorithms

are defined inthe framework of the new externsthema definition methodology for
OODBs put forward in theprevious sections. Lastly, in sectiorb5some conclusions
are presented.

5.1 Definition of external schemas in the ANSI/SPARC framework

As mentioned beforeghe ANSI/SPARC frameworklefined a generadrchitecture for
DBMSs. This architecture has beemdely appliedfor relational databases, but, as has
been shown in chapter 2, this has not been the case for OODBs. Our basic idea is that the
ANSI/SPARC architecture should also be applied QODBs. Therefore, an
interpretation of this architecture is given in this section.

Relating tothe ANSI/SPARC framework, threeam issuesare considered: first, the
relationship betweeithe database conceptusthema and eacbne of theexternal
schemas defined over it; secondlye organisation of the data darary andfinally, the
services offered by the external schema definition system.

5.1.1 Conceptual schema and external schemas

In OODBSs, conceptuachema and external schemas have to be object schefimesl
according to the object-orientation paradigmiHis sense, fronthe end-users point of

view, there should be no difference between working over the conceptual schema or over
an external schema: the data has the same kind of organisation in both schemas.

53

The information contained ithe conceptuakchema isrepresented by its classes.
External schemaare derivedfrom the database conceptusthema. The information
contained in each external schema is derived ftioeninformation of the conceptual
schema -thigloes notecessarily mean th#te classes included in an external schema
need to have been previously definethia conceptuatchema. An external schema may
include classes defined the conceptuaschema just as mnay also contain derived
classes -directly or indirectly defined dine basis ofconceptual schema classes- that,
from our point of view, donot necessarily need to be includedhe conceptuadchema.
These classeare defined and included ithe datadictionary. A derived class may
represent a relevant concept in an extesnhémalut this concept does ndtave to be
especially significant to be explicithepresented in the conceptsahema, i.e., a derived
class that hides some property of a class already included in the conceptual schema.

According to theclassification of external schema definition methodologies made in
section 2.2.2pur interpretation of the ANSI/SPARC architectureincides with the
second group afethodologies: external schenag notnecessarily subschemas of the
conceptual schema.

Therefore, thetwo main ideas concerninghe relationship betweerthe conceptual
schema and external schemas are:

» Conceptual schema and external scheamasobjectschemas defined according the
object-orientation paradigm.

» External schemas can contain conceptual schema classedl &s classes derived
from conceptual schema classes and not included in the conceptual schema.

5.1.2 Organisation of the data dictionary

The data dattionary containgll information relating tahe management and use of the
database system: information relatedhe definition of the different schemas -internal,
conceptual and externals- of the database.

In order todefine the conceptuaschema or an external schente users of the
information contained ithe data dicbnaryare theenterprise administratorby means
of the conceptual schema definition systeon theapplication administrator-through
the externachema definition systeifseefig. 2.2). Thereforejnformation inthe data
dictionary should be organisedander tofulfil the requirements of these users e
as other users’ requirements not studied in this work).

Derived classesepresent a customisation péart of theinformation contained in the
conceptual schema the form of new classes; thearedefined from previously existing
classes using object-oriented queries. If an external schema isdefifed containing
some new class, this derived class has to be definedntegtated into the data
dictionary togetherwith the definition of the externalschema. In sectio2.3.1, two
different groups of methods of integration dérived classes in a schema have been
presented: integratiomsing the inheritance relationship and integration usiotper
relationships. Irour opinion, the mossuitable way of having derived classes relating to

54

the classes from which they have been definetha data diconary isthe derivation
relationship, as defined iBertino, 1992; Monk, 1994Kim & Kelley, 1995; Naja &
Mouaddib, 1995; Bertino etl., 1996].

Therefore, the conceptusthema is contained the data dicbnarytogetherwith the
definition of derived classes, and also viltle definition of the external scheas. In the
datadictionary, each derived class is relatecbugh the derivatiorelationship with the
classes from which it has been defined; this relationship appears in the data
dictionary.

5.1.3 The external schema definition system

The definition of the externakchemas is carriedut by means ofthe externakchema
definition system over the data dictionary.

External schemas have to be closed wathard to the propertselationship: any class
referenced by a class included in an external schema has to be inclutiedsame
external schema (see secti.2).Also, external schemas have tovadid according to

the inheritance relationship -allequired inheritance relationshigse defined in the
schema, andot redundant, neither inconsistent relationships should be included, as
defined in section 3.3.1.

In order tohave external schemas correctly definede possibility is that application
administrators define maally all the components of thechema; to avoid possible
mistakes a validation system should be provided. Angblssibility is to have the
external schema definition systeantomated -application administratansly select the
classes to be included the externalschema, andhe system generatethe resulting
external schema. The later is our choice. Therefore, generation algoritttmeexternal
schema from a set of classes have to be provided.

5.2 Integration of derived classes in the schemas of an OODB

In order tomakethe reasons of some of tdecisions expressed the previous section
in this section clearthe different processes of integration needednder todefine an
external schema are reviewed.

Giventhe conceptuadchema of figh.1 (thesame example schemaed in section 2.3.1
to illustrate thedifferent possibilities ofntegration of a derived class in a schema), and
the derivedclass EMPLOYEES' -defined from classEMPLOYEES hiding the Salary
property andselecting objects thare notmanager employees- an external schema with
the samestructure of the conceptuachemabut with the newclass EMPLOYEES'
replacing clasEMPLOYEES is needed to be defined.

55

O Defined derived class
O Non-derived class

= Inheritance
—» Aggregation

|:| Conceptual schema

EMPLOYEES
Cateéory()

only non-manager employees,
hide Salary()

Category()
Salary() ...

Figure 5.1. Conceptual schema and definition of a derived class.

5.2.1 Integration in the data dictionary

Derived classes domot need to be included ithe conceptual schema befdoeing
included in an external schema, derived classedefined and included ithe data
dictionary (different methods of integration were given in section 2.3.1).

In this casethe purpose ohavingthe data dictionary is tdefine external schemas. If
inheritance is considered as a way of relating new derived classetheiithst of the
classes, frequently, as happen®ur example with clasEMPLOYEES’, a new derived
class vill not bedirectly related by inheritance with its base clas$bsrefore, in order
to have explicitly definedll the existing inheritance relationships betweba classes in
the datadictionary, some intermediate classes have tadmerated, as proposed in
[Rundensteiner, 1992b; Rundensteiner, 1992c], and was shown in fig. 2.6.

O Defined derived class

(O Generated derived class
(O Non-derived class

= Inheritance
—» Aggregation

PEOPLE

|:| External Schema Addféss()

EMPLOYEES
Salary()
Figure 5.2. Automatic integration by inheritance. External schema class selection (I).
Fig. 5.2 shows theelection of theset ofclasses that M compose the externathema

corresponding to thexampleconsidered. It can be se#dmat, in order to integrate the
new defined class, a classPLOYEES") has been generated automatically and added to

56

the datadictionary, but this class isnot included inthe externalschema. This class
representsexclusively the inheritance relationship betweehe original base class
(EMPLOYEES), and the defined classMPLOYEES'). However, the externachemaonly
includesone of them. In most cases, @y schema t@ontain both othem wil be the
data dctionary (or the conceptuakchema playinghe role of data diadhary in the
Rundensteiner's methodology) and it would be usefuy for defining more external
schemas; evefor this operation it Wi be problematic, because complex schemas not
meaningful to the external schema definer may be obtained.

An alternative solution is to useherkind of relationships irorder to integratelerived
classes intadhe datadictionary. From theexisting relationships (psented in section
2.3.1.2), we selected the deion relationship [Bertino, 199 onk, 1994;Kim &
Kelley, 1995; Naja & Mouaddib, 1995; Bertino &it, 1996]. However, théefinition of
clusters of classes [Heuer & Sander, 1991] can also be a suitable solution.

O Defined derived class
(O Non-derived class

= Inheritance
—» Aggregation
Derivation

|:| External Schema

Category()
Salary() ...

EMPLOYEES
Cateéory()
Figure 5.3. Integration by derivation. External schema class selection (I).

As is shown in fig. 5.3the new derivedclass is directly integrated intthe data
dictionary by means of derivation relationship, without generating any additional class.

5.2.2 Integration in an external schema

Whenthe new derivedlassesare integrated into the dadictionary, as can be seen in
figs. 5.2 and 5.3, a set ofasses can be selected to form an external schema. Obtaining a
schema closed inegard to the propertyelationship is independent tfie method of
integration of derived classestime datadictionary. Howeverpbtainingthe inheritance
relationships will depend on the way in which derived classes have been integrated.

In the case of integration of derivethsses by inheritance the datadictionary, as can

be seen in fig. 5.2wo classes vl be related by inheritance in an external schema if and
only if, theyare related bynheritance (directly or indirectly) ithe data dicbnary -the
integration process in the data dictionary consistdefining explicitly allthe inheritance
relationships betweethe classes, therefore]l the inheritance relationships between
classes irthe externaschema have been already defined, and can be directly obtained.

57

The effort of integration has been already made, integridtmgew derivedlasses into
the data dictionary.

If the integration into the data dictionary has been made tteenderivatiorrelationship,
some of thanheritance relationships betwethre classes irthe externakchema have to
be further discovered. lfwo classes included in an external scheana related by
inheritance inthe data diconary (inthe conceptuaschema or in an external schema
previously defined), they W also be related by inheritance the externalschema.
However, theremay beclassesot related by inheritance ithe datadictionary, and an
inheritance relationship between them nevertheless exidtse &xample of fig. 5.3, the
inheritance relationship betwe@vPLOYEES' andPEOPLE has to be obtained. limis
case, the effort of integratidras to be done when deriveldsses have been selected to
becomepart of anexternal schemdyut inthis casethe quantity oftlasses tdakeinto
account into the integration procesdess than irthe previous casénly the set of
classes selected to compose the external schema vs. all the classes in the data dictionary).

5.2.3 Effort of integration in the data dictionary vs. in the external schema

As has been shown the previous point, the aim effort of integration can be done by
the process of integration in the data dictiry (if derived classesre integrated by
inheritance irthe datadictionary), or in the generation of the extersethema (if derived
classes are integrated by derivation into the data dictionary).

In order to show morelearly the differences inthe results obtained between the two
different methods of integration, let's study an additional exan§iting from the
conceptual schema fig. 5.1, an external schema wisimilar structure is needed to be
defined, but instead ofhaving the property Address in PEOPLE, CLIENTS and
EMPLOYEES, it has gpropertyCity, already defined in clag®ODRESS; and it alsahides
the propertysalary in classEMPLOYEES.

O Defined derived class

(O Generated derived class
O Non-derived class

= Inheritance
—» Aggregation

|:| External Schema,

Figure 5.4. Automatic integration by inheritance. External schema class selection (ll).
The definition of this external schema, if derived clasass integrated into the data

dictionary according to Rundensteiner’s algorithm [Rundensteiner, 1992b], cmete
in fig. 5.4. First, CLIENTS' and EMPLOYEES' classesare defined according to

58

requirements. Then, thegre integrated into the conceptsahema, generating in this
operation some additional classes. Ih@ necessary to definde newclassPEOPLE’
because it is generated by the integration algoriEinaly, some classeare selected to
obtain the defined external schema.

O Defined derived class

(O Non-derived class

= |nheritance

—= Aggregation
Derivation

PEOPLE
Address() -

|:| External Schema
Category()

PEOPLE’
City()
Salary() ...
CLIENTS' MPLOYEES
Category()
City() City()...

Figure 5.5. Integration by derivation. External schema class selection (l1).

CLIENTS

If integration of derived classes the data dictionary isnade usingthe derivation
relationship, as can be seen in fig. 3ti& integration process doest have to generate
any additionalderived class. Howeverll the classes needed have to egplicitly
defined, andhe data dictnary onlycontains theclasses thaare srictly necessary in
order to define the external schema.

As can be seen in fig. 5.4, tihe effort of integration isnade inorder to integrate by
inheritance the new derived classes in the data dictionary, then:

* A greatnumber of classeare generatedutomatically, ananly a few of them are
directly used inthe externalschema defined (alhe classes included ithe data
dictionary have to be taken into account in the integration process).

» Some of theclasses required to be includedive externakchema daot have to be

explicitly defined agheyare generated in the process of integration of the rest of the

classes explicitly defined.

» The inheritance relationships betweye classes selected to compdbe external
schema can be directly obtained becaaldhe existing inheritance relationships
between thelasses have already been definethi datadictionary, therefore, two
classes il be related by inheritance into an external schema if @iy if they are
related by inheritance (directly or indirectly) into the data dictionary.

On the otherhand, if derived classesre integrated in the data dartary using the
derivation relationship, as can be seen in fig. 5.5, then:

* No classesreautomatically generated the process of integration of deriveldsses
into the data dictionary.

59

» All the required classes have to be explicitly defined.

» The effort of integration has to be donetlie process of generation of tagternal
schema, inheritance relationshipst defined inthe data gttionary have to be

discovered, bubnly the set ofclasses selected to compdke externaschema have
to be considered.

5.2.4 Qualification of the classes selected to compose the external schema

In order tosimplify the externalschema definitiorprocess, reducing theumber of
classes that is required to leeplicitly defined, analternative solution is talefine

different categories of classes witee selection of thelasses to compogke external
schema is made.

O Defined derived class

(O Non-derived class

= Inheritance
—» Aggregation

Derivation Transforma RESSES
|:| External Schema Addféss(

CLIENTS

Non-Transformabld CLIENTS'

Figure 5.6. Qualification of the classes selected to compose the external schema.

O Defined derived class

(O Generated derived class

(Non-derived class

= Inheritance

—» Aggregation
Derivation

External
Schema

s Address()
PEOPLE
(‘

Figure 5.7. Obtained external schema.

PEOPLE

60

Two kinds of classesare distinguished: transformable and non-transformablen-
transformable classes have to be addetth¢cexternakchema directly (inhe examples
considered in previous sectional] classeswere non-transformable)Transformable
classes can be replaced byother new derivedlass intothe externalschema if
necessary. This new class is the resuthoflifying the original transformable class in the
sense of adding or removing properties.

Returning toour example, ifthe classPEOPLE is qualified as transformabéind the rest

of the classes selectedre qualified as non-transformable, akown in fig. 5.6, the
corresponding external schema obtained is showig.irb.7. Therefore it can bseen

that the clasBEOPLE is replaced in the external schemaly generatedlassPEOPLE'.

This new class is defined according ttee structure of th@&on-transformable classes
belonging to the external schema specified. In this case, only strictly necessary classes for
the external schema are generated.

O Defined derived class

(> Non-derived class

= Inheritance
—» Aggregation
Derivation

|:| External

Schema

PEOPLE’
Non-Transformable] -
ity()

Transformable

Category()
Salary() ...

Figure 5.8. Alternative external schema definition.

O Defined derived class

(O Generated derived class

(Non-derived class

= |Inheritance

—» Aggregation
Derivation

|:| External

Schema

PEOPLE’
City()

Figure 5.9. Obtained external schema.

Theremay beotherways of defininghe same external schema; as shown in fig. 5.8. In
this case,the derivedclassesPEOPLE' and EMPLOYEES' are explicitly defined, the

61

derived classeBEOPLE' and EMPLOYEES' are qualified as non-transformablend the
classCLIENTS is qualified as transformable. Withese conditions, the exterredhema
generated (shown ifig. 5.9) is equal to the one ofig. 5.7. However, the set of
generated classes is differesince the class CLIENTS’ has been generated from the
transformable clasSLIENTS.

5.3 Generation of external schemas

According to the previous of sections, the stepsessary imrder todefine an external
schema are:

+ Definition and integration othe requited derivedlasses inthe data gttionary -
derived classearedirectly integrated usinghe derivationrelationship. Thigopic is
further studied in chapter 6.

+ Selection of theset ofclasses that W constitute the externalchema -classes can be
qualified as transformable or non-transformabledefault, a class is considered non-
transformable).

« Generation of the external schema.

The different alternatives considered in the generation process of the extherah are
presented in this section.

5.3.1 Transformations of transformable classes

b]

(a) properties (D) (" C2 p © (cCip
b NT | T |p
P [P]]
Ps

T: Transformable p_1
NT: Non-transformable Ci|p b, |
T |Ps CZ P,
P NT b,

Figure 5.10. Integration of a transformable class.
In order tohave a transformable class properly integrated into a class hierarchy, it may

have to suffer different transformations, adding or removimgperties. The
transformations that can be carriedt in atransformable clasare represented ifig.

62

5.10.Given a transformable clasg to be integrated (figb.10.a), if ithas to be subclass
of a class,, which subsumes it in extension, then ¢kessc, inheritsthe properties of;
and, furthermoremaintains itsown propertiegfig. 5.10.b). However, if thelassc; has
to be a superclass of class then clas€, conditions thestructure of the transformable
classc, in such a way thadny propertiesnvhich are notdefinedfor ¢, must beeliminated
from c; (fig. 5.10.c).

Transformable classes inherthe properties of theclasses defined to be their
superclasses, and lose the properties defined inthe classes selected to be their
subclasses (figh.10.d). Ifall the classes thatresubclasses of a transformable class have
some properties in common, and these propertieslefireedfor all the objects of the
transformable class, then these propertifisalso be added to theansformable class
(property ps in fig. 5.10.d). Finaly, if a transformable class only hasiperclasses, it
doesn’t lose any property, it inherits all the properties of its superclasses (fig. 5.10.e).

Therefore, the transformations thatransformable class can suffer when it is integrated
into a class hierarchy:

» Addition of the properties of its superclasses not defined within it.

» Addition of the properties common to all of its subclasses, defined foirits objects
and not defined in it.

» Elimination of the properties not defined in all of its subclasses.

5.3.2 Order in the transformation of transformable classes into a class hierarchy

In the transformations presented in the previous pmiyt one transformablelass was
consideredall the classes with whiclihe transformable claswere related were non-
transformable classes. Anothaussibility is to havenore than one transformabitass
integrated in the class hierarchy and then proceed transforming all of them.

Therefore, irdefiningthe order otransformation of théransformable classesyo main
situations are considered:

» Gradual integration of the transformable classes into the external schema.

» External schema with all the transformable classes already integrated.

5.3.2.1 Gradual integration of transformable classes

Regarding theclass hierarchy formedexclusively by non-transformable classes,
transformable classes can be integrapetiually intoit. Therefore, each transformable
class vill be relatedonly with non-transformable classes. A transformable aassbe
transformed in the integration process but once integratedpedomes non-
transformable.

63

As has been shown in fi$.10.b and 5.10.c, ®ansformable class can hapmperties
added orliminated, depending on its relationships with non-transformable classes in the
class hierarchy. In general, superclasses make transformable classes gaipeeties,

but subclasses make them logpeoperties. Therefore, if one wants pmeviously
transformable classy) already integratedoes notause theffect of losing properties

in the integration of anothéransformable class{) in theway shown in fig5.10.c, the
transformable classes thaite notsubsumed in extension loghertransformable classes
have to be integrated first. Therefore, transformable classes that have deeady
integrated camnly makeothertransformable classes gain nevwoperties (as shown in

fig. 5.10.b).

5.3.2.2 Schema with all the transformable classes integrated

If a class hierarchy is defined containing several transformable cldssesder invhich
the transformations of theansformable classese carriecbut mayaffectthe end result.
With the intention of keeping as muploperties apossible irthe transformable classes,
the first transformations to be applied should the addition of properties dheir
respective superclasses or subclasses.

] Py Py
P P> S P>
P> Py T

—§

Figure 5.11. Addition of properties of the superclasses.

In fig. 5.11 two different cases of addingropertiesdefined inthe superclasses of a
transformable clasare shownFigs5.11.a and 5.11.b correspond to finst case they
show respectivelyhe situation before and afténis transformation. Figs.11.d and
5.11.e correspond to the second case. In both situations prpperinherited by class
c; from classc;. If anotherkind of transformation was carriedut before this one
(eliminate the properties natefined in allthe subclasses of a transformable class),
propertyps maynot have been definefr classcs. Thefinal result of the transformation
process is shown ifigs. 5.11.c and 5.11.frespectively. As can be seen,hiath cases
propertyps is eliminated from class,;, but it remains defined in class. If integration
were made graduallyproperty ps would not have been defined in class because it
would have been previously eliminated from classhen it was integrated.

64

An example of transformation consisting tbe addition of properties taken from the
subclasses ahe transformable class is shown in fig.12. If all the non-transformable
classes thaare subclasses of a transformable class have gpoperties in common (in
fig. 5.12.a,c, andcs havepropertyp, notdefined inc,), and these properties atefined
for all the objects of th&ransformable class, then, these propertiisalso be added to
the transformable clasgropertyp, is added ta;, fig. 5.12.b).And the new properties
added can bpropagated to itsubclassegpropertyp, is added tac,, fig. 5.12.c). If all
the subclasses of a transformable classtransformable classeany propertydefined in
one of thesubclassemay beadded to théransformable class theroot -if the property
is defined for all its objects.

(a) e (b) e
P2

Figure 5.12. Addition of the properties of the subclasses.

Onceall the possibleproperties of the superclasses anthclasses have been added to
the transformable classefije elimination ofthe properties notlefined in all oftheir
subclasses has to be carried out, as shown inSif%.c and 5.11.f. Thereforbefore
eliminating properties of a classll of its subclasses should have been previously
transformed.

5.3.3 Inheritance between transformable and non-transformable classes

Once theset oftransformable and non-transformable classes has been selecstrin
to transform theéransformable classethie inheritance relationships betwettre selected
classes have to be obtained. These inheritance relationships det¢haineay
transformable classes will be transformed.

One possibility is to definethe inheritance relationships betwe#me classes selected
manually inthe moment in whichthe selection isnade -these relationships have to be
automatically verified (like itwas done in the case afianualintegration of derived
classes by inheritance) arder toonly allow correct defiitions. Anothermpossibility is to

65

obtain automaticallyall the existing inheritance relationships. This cask be further
studied here.

5.3.3.1 Characteristics of the class hierarchy

Regarding theproblem of obtainingthe inheritance relationships betwedime set of
classes selected, like for the problem of integrating automatically by inheritance a derived
class in a class hierarchywo solutions are consideredepending onthe desired
characteristics of the resulting class hierarchy:

* Obtain a class hierarchy closed relatedheinheritance relationship, adding to the
set of classes selectedhe additional classes neede@s the Rundensteiner’s
methodology [Rundensteiner, 1992c] does in the conceptual schema).

* Obtain all the inheritance relationships exclusively consideriing set ofclasses
selected.

5.3.3.2 Subsumption relationships

In the case of non-transformable classes, timégmsion and extension is totalpyre-
determined: On theother hand, transformable classes have their extengioe:
determined, bumot their intension. The intension of transformable classes can be
modified inorder to be adapted to tpesition of theclass inthe class hierarchy related

to the rest of the classes. Therefore,ridationships between non-transformable classes
have to be obtainetbr only checked) according to their intension and extension, but
relationships between transformable classes or between transformable and non-
transformable classes would have to be obta{leednly checked)only according to

their extension.

The inheritance relationships betwethie classes can be obtained usingubsumes()
function (see sectio.3.2),also based on theelationships already existing the data
dictionary (betweerthe classes selected, or between its corresponding base classes,
taking into account thdefinition ofthe derived classes). Tliabsumes(junction refers

to theintension and extension difie classesbut for transformable classes only their
extension is considered.

In the case of non-transformaldtasseshe relationships obtained between thevifi
dependexclusively onthe subsumes(junction used. Oithe otherhand, in the case of
transformable classes (in relationdthertransformable or non-transformable classes) as
their intension can be modified, different possibilities may exist.

5.3.3.3 From subsumption to inheritance for transformable classes

If the extension of &ransformable class is subsumed bihe extension obtherclasses
(transformable or non-transformabl®)t it does nosubsume angtherclass inthe class
hierarchy (fig.5.13.a), thetransformable class can be defined as a subclaal thfe
classes that subsume Therefore, subsumption of extension relationships can be
transformed directly into inheritance relationshi@s shown there). Also, if the

66

transformable class, is subsumed by some classes and it also subsotiesclasses,
but all of the classes subsumed lay are subclasses ofhe classes that subsume it,
(represented ifig. 5.13.b), therclassc, can be defined as a subclassabthe classes
that subsume it and a superclassabfthe classes subsumed by (&s shown irnfig.
5.13.b).

(@) (b)

=Y Dsoh
@ :>:: BoRe

E559 4 3

- -» Subsumption of the extension

Figure 5.13. Relationships between transformable classes and other classes.

In the two cases represented figs. 5.13.a and 5.13.b, thiaheritance relationships
between transformable classes &nel rest ofclasses can be directly defined from the
subsumption of extension relationships. dtiher situations, in théransformation of
subsumption relationships between transformable classes otred classes into
inheritance relationships, different possibilitiesay exist. For example, inthe case
represented ifig. 5.13.c, thdransformable class is subsumed by a non-transformable
classcs; ¢, also subsumesthernon-transformable class, howeverc, is not asubclass
of classcs. Therefore, in transformintghe subsumptiorrelationships into inheritance
relationships different possibilitiesay exist: to definec; as a subclass af, or to define

c: as a superclass of. Nevertheless it isot possible to definboth ofthem inthe same
schema becausg is not a superclass of. Anotherpossibility in thiscase, is to consider
the transformable class; twice in theclass hierarchy, and tgeneratetwo different
classes irthe resulting schemdone from its relationship withc;, and theother the
relation withc,).

If a transformable class,) subsumes in extensionsat of non-transformable classes
(fig. 5.13.d) which do not have anyproperties in common, and it defined as a

superclass oéll of them, the result of the transformations on ttasformable class
would be a classvithout properties. Howevethis wouldnot be anacceptable result.

Therefore, theransformable clagsiay bedefined as a superclassasfly asubset of the

classes subsumed My in this casedifferent possibilitiesmay beconsidered (different

subsets of classes with properties in common can be defined).

Lastly, if a transformable class;) and another of the selectethsses havéne same
extension (fig.5.13.e, theclasses subsume in extension eatier) the transformable
class can be defined as a superclassealisas a subclass dfie otherclass inthe class
hierarchy andboth possibilities can be valid, evahough, both ofthem cannot be

67

defined inthe same class hierarchyherefore, one of them has to be selected. Another
possibility can be to havwle classc, twice in theclass hierarchypnce as a subclass and
another as a superclass of ttlass which hashe same extension angenerate two
different classes frorthe classc; after the transformations. If bothasses c1 and c2 are
transformable classes, potentially they will become the same class after transformations.

In order toavoid the situation inwvhich many possibilities of definingnheritance
relationships between transformable classes athr classesmay exist, different
solutions can be considered:

* Forbid the selection of sets of classes in which these situations occur.

» Presentall the subsumptiomelationships between transformable classes ahdr
classes tdhe application administrator and latm/her selecthe desirednheritance
relationships.

» Define some criteria ciutomatic selection of thexisting subsumption relationships
that have to be transformed into inheritance relationships.

» Have thetransformable classes includetbre than once in thelass hierarchy and
generate different classes from each one of them.

5.3.4 Property relationship closure

A class hierarchy is closed in relation to the property relationship ibalydf, for all the
classes included ithe class hierarchyall the classes relatedia a propertyrelationship
with them are also included in the class hierarchy.

5.3.4.1 Classes referenced by transformable and non-transformable classes

Given the set oftransformable and non-transformable classes selectemtdier to
compose an external schema, praperty of a non-transformabitass references some
otherclass (apropertyrelationship exists between them), thére referencedlass has
to be included intdhe set oftlasses selected order to compose thexternal schema.
On the other hand, if a transformable class is related by a property relationstogherth
classesnot included inthe mentionedset of classes, thdéransformable class can be
transformed inorder toavoid theinclusion ofthe referencedlasses intdhe external
schema. This kind of transformation of transformable classe<ligsivelydue to the set
of classes selected to compode externalschema, whereathe transformations
presented in point 5.3.2 are due to the position ofrtresformable class withie class
hierarchy.

An example of this kind of transformations can be seen in figs. 5.8 and 5.9.918fthe

classCLIENTS references classDDRESSES (inheritsthe propertyaddresses from class

PEOPLE). ClassCLIENTS is qualified as transformabkeo, in order toavoid that the
referenced classDDRESSES be included intdhe externaschema, clasSLIENTS loses

that property (as can be seen in tgulting external schema of fi§.9), otherwise, the
resulting external schema would have been the one represented in fig. 5.14.

68

O Defined derived class

(O Generated derived class

(Non-derived class

= |nheritance

—» Aggregation
Derivation

External
Schema

PEOPLE’
city()
CLIENTS’
Address(

Figure 5.14. Obtained external schema.

PEOPLE,
Addféss()

5.3.4.2 Required properties of a class

A non-transformable clageayalso referencetherclasses already includedtime set of
selected classes -these classes can be transformable or non-transformable. A non-
transformable class may reference some of the properties (methods) defined in the classes
that it references. These propertieay also referencether propertieslefined in the

same class or intherclasses -referenced indirectly the non-transformable class. If a
property is referencedirectly or indirectly by a non-transformable class, andefned

in a transformable class, th#me class resulting by transformintige transformable class

has to includehe referenced property. Therefore, the propertigsangformable classes

can berequiredif they are referenced by a non-transformable classioorrequiredin

other case.

Each property in &lass (transformable or non-transformable) is relatethéoset of
propertiesfrom the same class or froratherclasses, that are neededoiler tohave
that propertydefined. All the properties of non-transformabtdassesare required
properties. The set of properties needed by a required propertgisarerequired
properties, and the referenceldsses in whichequired properties aefined alschave
to be included intahe externaschema at least witthe required propertiegefined. If a
required property of &ransformable class references a class thanhbtbeeninitially
selected to compose the external schema, it also has to be included into the set of classes.
If a property (non-required) of ttansformable class is eliminated itransformation of
the classall the properties othis class oothertransformable classekatreference the
eliminatedpropertyhave to be eliminated tod@hese properties ilvbe non-required. If
they were required properties, then the propeitially eliminatedwould have alsdeen
required.

The classes referenced by transformable or non-transformable cladsimnally
included inthe set ofclasses, can also be considered as transformable or non-
transformable. The reason focludingthese classes the set of selectedasses ishat
some of their properties are requirdicectly or indirectly by non-transformable classes.

69

Therefore, if theyare considered asansformable classeall the requirements about
them will be fulfilled.

5.3.4.3 Non-transformable classes referencing transformable classes

When a transformable classiansformed, a new classgenerated. Therefore, if a non-
transformable class references some transformable classébe tnashsformable classes

are replaced by neuwlasses inhe externaschemahen, the non-transformabbtass has

to be modified irorder toreplace its references to transformable classes using references
to the new generated classes. If referencesthier classes in non-transformable classes
have to be modifiedthen, new classes have to be generated that replace these non-
transformable classes in the external schema.

In the process described above, non-transformabisesnay rave to be replaced by
new classes ithe externaschema irorder tochange its references twhernew classes
generated. In order tavoid this, asimplification of the external schema generation
process consists in requiring that any class referenced by a non-transformable class has to
be qualified as non-transformablEnerefore, transformable classes referenced by non-
transformable classes have to be re-qualified as non-transformabléheathsses
referenced by(originally or re-qualified) non-transformable classes thare not
included initially in the set of selectedlasses, have to be included qualifiednas-
transformable classes too. This simplification is a limitabecause less classes than in
the previous process can letomatically transformedthere will be more classes
qualified as non-transformabtban before. Therefore, these classes would have to be
explicitly defined.

5.3.4.4 Transformation of references to classes

If a non-transformable class or a requipgdperty of atransformable class references
anotherclassnot included inthe set ottlasses selected to compake externaschema,
contrary to what habeen said before, this second cldess nothave to be necessarily
included inthe externakchema. If some derived class has been defined thieralass
originally referenced, and this derived class is includeitiénset ofclasses selected, and
it also hasall the required properties and extension then, the referesiassl can be
replaced by the derivedass inthe externalschema. If more than one derivelhss
satisfyingthese conditions anecluded inthe set ofclassesall the possibilities can be
shown to theapplication administrator arshe of them selected. Anothgossibility can
be to forbid this situation, and only allow one class satisfying these conditions.

In fig. 5.15 anexample is shown iwhich an external schema is to be defined, with the
same classes tifie original conceptual schemaut replacingthe classADDRESSES by a
new classADDRESSES’ which does notinclude the propertycity. With the behaviour
described above, thanly class that has to explicitly defined is clas®DDRESSES'.
The rest of thelasses W be automaticallyadapted to the new situation producing the
desired external schema, as shown in fig 5.16.

70

O Defined derived class
O Non-derived class

= |nheritance @

—» Aggregation
Derivation
|:| External
schema PEOPLE
Address()

MPLOYEE
Category()
Salary() ...

City()

ADDRESSES’

Figure 5.15. References to new classes.

O Defined derived class

(O Generated derived class

(Non-derived class

= |nheritance

—» Aggregation
Derivation

External
Schema

Category()

Category()
Salary() ...

Figure 5.16. Obtained external schema.

5.3.5 Alternatives in the process of definition of external schemas

In previous sections, different alternativies the definition of external schemas have
been considered in differemontexts,all of them according tathe ANSI/SPARC
architecture; in this section, the main ones of these alternatives are presented as a whole.

Organisation of the external schema

» External schemas have to be closed according to the inheritance relationship.

» External schemas doot have to be necessarily closed accordinghinheritance
relationship.

Qualification of the classes selected

* Qualify the classes selected to compadle externaschema as transformable or non-
transformable classes.

» Classes selected camot betransformed, thereforall the classes have to be non-
transformable.

71

Order of the transformation of classes
If classesare qualified as transformable or non-transformable, transformable classes can
be transformed differently depending upon the way in which they are integrated:
» Graduallyintegrated in thelass hierarchy and transformed as they integrated (at
each moment, in the class hierarchy there is only one transformable class).
» First integrated and then transformed according to their situg@diorelation to the
rest of transformable or non-transformable classes).

Therefore, different externadchema generation algorithms can be defined selecting
different combinations of the alternatives presented.

5.4 External schema generation algorithms

In this sectiontwo external schema generation algorithrage presented. These
algorithms are defined in the framework of the new externaichema definition
methodology for OODBs put forward in the previous sections. They generate an external
schema from a set of classes selected from those existing in the data dictionary.

In both cases the externathema has to be closed witegard to theinheritance
relationship. Inthe basic algorithrall the classes selected have to be non-transformable.
The extended algorithm generates an obgettema from aet of classes which are
qualified as transformable or non-transformableth@ extendedhlgorithm classes are
gradually integrated in the class hierarchy.

We have carried out a specification of the external schema definition system by defining a
DCM of it, as hasbeen shown irchapter 4.This method isespecially useful in the
specification of elements of OODBs. The definition of DCMs is a technique which allows
the specification of information systems by expressing dhkgir logical component
[Olivé, 1989]. If Prolog is used for the construction of the DCM, togethién the

formal specification, a prototype of the system is also obtained.

In the defined DCM, the externalschema generation algorithnase implemented as
derived predicates. In DCMs, derived predicates hiawe T as a component; ithis
casetime isnotrelevant for the presentation of the algorithms, scha not mention
this aspect any further.

5.4.1 External schema generation basic algorithm

Giventhe set otlasse<s selected fronthe datadictionary, by means dhe generation
basic algorithm, a minimal object sche®a (Cs’, E9) defined fromCs is generated.

According to the definition of object schema made in section 3.3, theotlgesds has to

be included irthe set otlasseCs’; the objecschemsasS has to be valid, and also has to
be closed in relation to the inheritance and the property decomposition relationships.

72

In the defined DCM,the externalschema generation algorithm is a derived predicate
which can be seen in fig. 5.17.

generateExternalSchema(S,Cs,Es,T) :-

classSetSelection(S,Cs1,T), (a)
includeElement(c(objects),Cs1,Cs2), (b)
propertyDecompositionHierarchyClosure(Cs2,Cs3,T), —(c)
classinheritanClosure(Cs3,Cs4,Es1,T), - (d)
eliminateReduntantEdges(Es1,Es2,T), (e)
classesExistinglnDataDictionary(Cs4,Cs,Es2,Es,T), _ (f)

Figure 5.17GenerateExternalSchenpaedicate.

Giventheidentifier S of theschema to bgenerated, the set olassesCsand the edges
Es are obtained. Firs{(fig. 5.17.a) theinitial set of classesCs associated with the
identifier S of the schema must be defined time datadictionary. Fig. 5.17.b, thelass
objects must be included ithe initial set ofclasses, beingdded if it wasot previously
there (the set aflasse<s is obtained). Fig. 5.17.c, the set obtained must be closed in
relation to the propertyelationshipover the referencedlasses that havaot been
included intheinitial set must be added (the setctdsse<s; is obtained). Fig. 5.17.d,
theclasses in questiaimgethemwith the set ofexisting inheritance relationships between
them andthe necessary additional classes, definedhm datadictionary, must form a
closed schema in relation to the inheritance relationship (the set of cIassesl the set
of edgesEs, are obtained). Thechema must bgalid in relation to theinheritance
relationship, oraccount of thelefinedsteps redundanmbheritance relationshipsay be
generated. Fothis reason they must leiminated -fig.5.17.e, the set of edgé&s is
obtained. In the process obtaining a closed schema in relation ttee inheritance
relationship some derived classeay have beemenerated. In the case that soctess,
according to the characteristics of some one of the generated cfassesjsly existed

in the datadictionary, the generatedassesre replaced by thossasses irthe external
schema and its generation its cancelled, fig. 5.17.f.

In the following subsections steps c, d and e of the algorithm in fig. 5.17 are set out.

5.4.1.1 Property decomposition closure

Given aset ofclassesCs), a newset ofclassesCs) is obtainedvhich isthe transitive
closure in relation to the propertelationship ofthe classes inCs. Every class
referenced by a property of a class of the resultinGsedlso belongs t€s.

In fig. 5.18 the predicate thakefines thigroperty is presented. Tapecify it inProlog,
as is indicated in fig5.18.a, anauxiliary predicate isdefined whichuses a kind of
incompletestructurecalled difference-lidt Explained in an intuitive fashion, by way of
dl (Cs,Csg) it is expressed that tHist Cs, that must be calculataditially contains the

1 A difference-list is an incomplete structutieat represents thelifference between twdists. We
represent them by (As,B3g, whereAsis the head of thdifference-listandBsthe tail.d ([1,2,3|Xg],X9

is the most general difference-list representing the sequencedl(X8]]) is the listXs anddl (Xs,X$

is theemptylist [], [Sterling & Shapiro, 1986]. In the predicates usethe difference-lists indicated
explicitly by way ofthe functord! for reasons of claritydowever,the prototype obtained may larther
optimised in run-time if the components of the difference-lists are dealt with directly as arguments in the
predicates where they are used (it is achieved that predicates are tail-recursive.)

73

elements fromhelist Cs; as well amew elements thatilvbe added along the way. By
definitionCs, = Cs U { ¢ | pr* (g, c), ¢ U Cs}. Therefore, adifference listwould be a
suitable structure for representing this situation.

In fig. 5.18.b, taking thelasses ofCs, into consideration, if class;, included in the
initial setCs, is related byneans of gropertyrelationship with class, notincluded in
the setCs (temporary resultjnitially was the setCs) ¢, must be included in the
temporary resulCs; (fig. 5.18.b.1).This operation has to be carriedit for the rest of
the classes with whicle; is related bymeans of gropertyrelationship and also, for the
new incorporatedlassc, (fig. 5.18.b.2). The propertselationships that exist between
classc; and other classesare consulted in the data darary usingthe predicate
propertyRel

propertyDecompositionHierarchyClosure(Cs1,Cs2,T) :- e (a)
propertyDecompositionHierarchyClosureDL(Cs1,dl(Cs2,Cs1),T). :

propertyDecompositionHierarchyClosureDL([C1|Cs1],dI(Cs2,Cs3),T) :-
propertyRel(C1,C2,_,T),
not(includedElement(C2,Cs3)), I (2) r (1)
|

propertyDecompositionHierarchyClosureDL([_|Cs1],Cs2dl,T) :- (b)
l
propertyDecompositionHierarchyClosureDL(Cs1,Cs2dl,T). AN (C)
ropertyDecompositionHierarchyClosureDL([],dI(Cs,Cs),_) :-
prop y!. p y (.di().) . (d)
Figure 5.18propertyDecompositionHierarchyClosure predicate.

If the check forall the classes directly related logeans othe propertyrelationship with

a given class has already been caroiet(fig. 5.18.c) thesameoperation has to be done
for the rest of thelasses ofCs. When thisoperation hadeen carriedut for all the
classes ofCs -that is tosay, no more classewe left in Cs (fig. 5.18.d), thefinal
resultingset wil be the temporaryesultingset thathad been obtained until this moment
(the two components of the difference-list used are unifigs,C3).

5.4.1.2 Class inheritance closure

Given aset of classes Cs), a newset of classes €s) and aset of edgesHS are
obtained in such a way th&s, and somees’, Es’ [Es, form aminimal objectschema
defined fromCs,. In other words, theobtained schema is closed in relation to the
inheritance relationshigor each pair otlassex;, ¢; of Cs, a classc; = ¢; ¢, is also
included inCs,. However,Es does notontain inconsistent edgeds| the required edges
are included in it, nevertheless it may contain redundant edges.

If a pair of classes;, c; have previously been includedtime same schema (conceptual
or external), so W a classc; = ¢, Mc,. If this isnot so, it ispossible that a class [Tc,
has not been defined beforehand, atiterefore Wl have to begeneratedbeing a
generated derived class.

74

The predicate corresponding to tihefinition of thisproperty is presented fig. 5.19.
As with the predicate in fig. 5.18 difference-lists are used, in this caséwuatkets to be
obtained: that of thelasses and that tfie edgegfig. 5.19.a.1). Therefore difference-
list is used for each one of them. In the case ofcthssset, theinitial classsetCs, is
taken as théasis to obtailCs, as a result; and in the case of the esigje theempty set
[] is taken andEsis obtained.

classInheritanClosure(Cs1,Cs2,Es,T) :- (1)
____________ @
classinheritanClosure(Cs1,Csl ,dI(Cs2,Gs1),dI(Es,[),T). =@

classinheritanClosure([C|Cs1],[C|Cs2],Csdl,Esdl,T) :-
|

assinher " (b)
classinheritanClosure([C|Cs1],Cs2,Csdl,Esdl,T).

classinheritanClosure([C1|Cs1],[C2|Cs2],dI(Cs3,Cs4),dI(Es1,Es2),T) :-
cIassPropertlesIntersectlon(Cl C2,Ps,T),

addLowestCommonSuperclass(Cl C2,Ps dI(CsG Cs4), dI(Cs5; Csl)

dI(Es3 Es2), T), — 2 \ (1) ------------- \(3) ©

classlnhentanCIosure([ClleS],CsZ,dI(CsS,CsG),dI(Esl,ESS),T).

classinheritanClosure([_|Cs1],[],dI(Cs2,Cs3),Esdl,T) :-
! _ N (d)
classinheritanClosure(Cs1,Cs3,dl(Cs2,Cs3),Esdl,T).
classinheritanClosure([],_,dI(Cs,Cs),dI(Es,ES),_) :-
1 ([, _dI()di() (o)

Figure 5.19classInheritanClosure predicate.

All the possible pairs of classes includedCisy have to be considered. émder to do so,
the set ofclasseCs is passed twice as the parameter todineliary predicate infig.
5.19.a.2. Aclass from eaclset wil be taken into consideration. THellowing are the
different cases that can be found:

- Both classedaken into consideration are tsame clasg (fig. 5.19.b),c = ¢ Mc,
already being included as a class antlbeingrelated by way of inheritance itself.
Therefore, we must continue the check for the aas®l the rest of thelasses of the
second set.

« ¢, andc; aretwo different classes (figh.19.c). Theclassc; Mc, must be included in
the resulting set of classes €s becomesCs in fig. 5.19.c.1) and thenheritance
relationships existing between c, andc; Ic,, whichare updated in theesulting set
of edges Es, become<£s; in fig. 5.19.c.2-, aradefined. The class; Mc, must be
compared with the rest of tltbassesnot in order to generateew classes (since they
would be generatednyway in comparinghe original classes oCs), but rather in
order todeterminethe inheritance relationships that exist between it dredrest of
the classes. Thus,; ¢, is added to the set afasses to btaken into consideration
(Cs. become<s; in fig. 5.19.¢.3). The predicate that carr@st these operations is
addLowestCommonSuperclass , presented irig. 5.20. Once these operatiorsve
been carried outhe sameoperation must continue to be carreuk for the classc,
and the set of the remaining classes).

75

If, for a class ofCs,, the comparisons with the rest of the selecladses have been
done (thelist of the remaining classes ihe empty list [] in fig. 5.19.d), thesame
operation of comparison with the rest of ttlasses ofCs and the currenset of
resulting classe€s; has to be carried out.

When thisoperation hadeen carriecbut for all selected and obtained classes (fig.
5.19.e), theresulting sets of classes and edgdkhe the resulting temporary sets
obtained up until this momeifthe two components of theifference-listsused are
unified:dl (Cs,C3, dI (Es,ES).

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs1,Cs1),dl(Cs2,Cs2),
dI(Es2,Es1),T) :-
classProperties(C1,Ps,T),
subsumesExtension(C1,C2,T), N (a)
includeElement(e(is_a(C2,C1)),Es1,Es2),
|

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs1,Cs1),dl(Cs2,Cs2),
dI(Es2,Es1),T) :-
classProperties(C2,Ps,T), N (b)
subsumesExtension(C2,C1,T),
includeElement(e(is_a(C1,C2)),Es1,Es2),
|

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs1,Cs1),dl(Cs2,Cs2),
dI(Es3,Es1),T) :-
superclassWithPropertiesinSet(C1,C2,Ps,Cs1,C3,T),
not(lowerSuperclassWithPropertiesinSet(C1,C2,Ps,Cs1,C3,T)), N (c)
includeElement(e(is_a(C1,C3)),Es1,Es2),
includeElement(e(is_a(C2,C3)),Es2,Es3),
|

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs2,Cs1),dl(Cs4,Cs3),
dI(Es3,Es1),T) :-

derivedClassWithPropertiesIinSet(C1,C2,Ps,Cs1,C3,T),
modifyDerivedClassExtension(C1,C2,C3,T),
includeElement(C3,Cs1,Cs2), N (d)
includeElement(C3,Cs3,Cs4),
includeElement(e(is_a(C1,C3)),Es1,Es2),
includeElement(e(is_a(C2,C3)),Es2,Es3),
|

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs2,Cs1),dl(Cs4,Cs3),
dI(Es3,Es1),T) :-

generateDerivedClass(C3,T),
classProperties(C3,Ps,T),
classObjectsUnion(C1,C2,C3,T), N (e)
includeElement(C3,Cs1,Cs?2),
includeElement(C3,Cs3,Cs4),
includeElement(e(is_a(C1,C3)),Es1,Es2),
includeElement(e(is_a(C2,C3)),Es2,Es3),
|

Figure 5.20addLowestCommonSuperclass ~ predicate.

Given two classes q, ¢;) belonging tothe set ofclasses €s), the different possible
cases in relation to the classTic, are as follows:

¢ ¢, = ¢ (fig. 5.20.a), inwhich case the fact that, is a subclass of; must be
reflected by adding the corresponding edgegc,,c;) to the set of edgdss;.

¢ [Mc; = ¢, (fig. 5.20.b)-similar tothe previous case, the edge that must be added in
this case iss_ac;,C).

76

« ¢ 0C; = c3 -being that; is different frome, andc;:

« If ¢z is included inthe set oftlasseCs, selected to form the externrsthema
(fig. 5.20.c), it isonly necessary tadd theinheritance relationships to the
edges seis_&cy,C3) andis_&C,,Cs).

« If ¢z is notincluded inthe set ofclasse<Cs,, but aderived class has already
been defined witlthe same intension (fig5.20.d),this class is modified to
fulfil the requirements of the extension and thecessary inheritance
relationshipsare addedThis waythe generation of nitiple classes with the
same intension is avoided (as shown in section 3.3.2).

« Lastly,c; must be generated in such a way that it fulfils the required conditions
(fig. 5.20.e); and must be added to #et of selectedlasses, just as the
inheritance relationships withh andc, must be added to the set of edges.

5.4.1.3 Valid object schema

In order toobtain a closed schema withgard to thenheritance relationshigll the
possible pairs of classese considered. If amheritance relationship exists between two
classeshe corresponding edgeiigluded inthe set of edges. The set of edgesulting
from the previous process contaalkthe inheritance relationships that exist between the
set of selectedclasses -all of themare correct. This set wil contain redundant
relationships since it W contain as direct relationships some ones ittt beobtained

in an indirect form. The edges corresponding to these relationafepeedundant and
must beeliminated inorder tohave a valid schem&@he predicate that carriesit this
operation iseliminateRedundantEdges (fig. 5.21). Foreach edge of theet that is
obtained a check is made to see whethere exists an alternative path between their
nodes usinghe rest of the edges in the set.slfch a path doesxist the edge is,
consequently, redundant.

eliminateReduntantEdges(Es1,Es2) :-
eliminateReduntantEdges(Es1,Es1,Es2,[]).

eliminateReduntantEdges(([],_,Es,ESs) :-
|

eliminate.l.?eduntantEdges([ElEsl],Es2,E53,Es4) -
indirectEdge(E,Es2),
|

éliminateReduntantEdges(Esl,E52,Es3, Es4).

eliminateReduntantEdges([E|Es1],Es2,Es3,Es4) :-
eliminateReduntantEdges(Es1,Es2,Es3,[E|Es4]).

Figure 5.21eliminateRedundantEdges predicate.

5.4.2 External schema generation extended algorithm

In the previous section the extersahema generation basic algoritiwas presented. In
this algorithm all the classes, except the ones generatedentoobtain a closed object
schema inrespect to thanheritance relationship, must be definexbplicitly by the
application administrator. In sectidn2.4 amechanism is @posed in order tonake

s

availablegreater power in thexternal schema definition. Basicallyctnsists in offering

the possibility of qualifying astransformable or non-transformable each one of the
selected classes arder to construct thexternal schema. Such a qualification is carried

out inthemoment ofthe selection of theet ofclassesthat is tosay, it isnot relatedto

the class alonebut rather to theslass withinthe selection. Non-transformabttasses

have to be added the externaschema directly (ithe basic algorithmall classes were
non-transformable); transformable classes can be replacadotiyerexisting ornewly

derived class in the external schema if necessary, the class that substitutes it is required to
have the same extension (althougksilaly a different intensiomdapted to the structure
imposedby the schema’s non-transformable classes).

By using such anechanisnthe number of classes that needs to be defeqdlicitly is
reduced -it is enough to define the non-transformelialeses that determiriee structure

of theschema andualify the rest of thelasses we consider necessary to be included as
transformable.

Given aset ofclasses@Cs), that have been selected froine datadictionary,qualified
as transformable or non-transformable, thisinitial definition of the schemaS By way
of the extended generation algorithm, we obtain asewfclassesCs) and a new set
of edges Es) so thatS = (Cs,Es) is an object schemahich is validand closed in
relation to the inheritance and property relationships.

generateQualifiedExternalSchema(s,Cs,Es,T) :-
qualifiedClassSetSelection(S,QCs1,T),
includeElement(q(esc(c(objects),nonTransformable)),QCs1,QCs2),

qualifiedClasses(QCs2,nonTransformable,CSNT1), (@)
qualifiedClasses(QCs2,transformable,CsT1),

: propertyDecompositionHierarchyClosure(CsNT1,CsNT2,T),

. elementsDifference(CsT1,CsNT2,CsT2), @
: transfClassesRelatedByPropertyRel(CsT2,CsNT2,CsT3,CsNT3,T), : .
OSSOSO b
. classesWithProperties(CsT3,CsTWPs1,T), [()
: transfClassesPropDecompHierarchyClosure(CsTWPs1,CsT3,CsNT3, ! (2

. classInheritanClosure(CsNT3,CsNT4,EsNT1,T), -

! eliminateReduntantEdges(ESNT1,EsSNT2,T), (D)
 subsumptionisomorficClasses(CSTWPs2,ICSTWPs CsT4,T), | - (0
. integrationOfTansformableClasses(ICSTWPsS,CsNT4,ESNT2, \

: Cs3,Es2,T), N (2)

eliminateRedundantTransformableClasses(CsNT3,CsT4,Cs3,Es3, N_ (d)
Cs,Es,T),

1
Figure 5.22generateQualifiedExternalSchema predicate.

The predicate thadefinesthe generation algorithmyhich is presented iriig. 5.22, has
the parts presented in the following points.

78

5.4.2.1 Obtain the initial sets of transformable and non-transformable classes

In (fig. 5.22.a), the set ofualified classeQCs associated with theschemas is
obtained. Then, thelassobjects must be included, beingualified as non-transformable
-QCs is obtained-; and on thieasis of thisset of qualified classeshe sets of non-
transformable class€sNT, and transformable class@sT, are obtained separately.

5.4.2.2 Property decomposition hierarchy closure

Obtain a schema that is closed in relatiothi® propertyrelationship (fig.5.22.b). Each
propertydefined in a class depends osed of propertiefrom otherclasses or from the
same class, these are the properties used in the property definition.

A property can be an attribute or a method (se@idrb). Properties are referred to in
the implementation othe methodslefined in a class. Ithe definition of anattribute,
class namemay beused bunot properties; the use of dass name ihe definition of
an attribute in alassdoes notmean that althe properties of the referenceldss are
required, theonly propertiesdirectly used would bethe ones referenced in the
implementation of the methods of the class.

A property can beredefined in different classes ihe class hierarchythe set of
propertiesdirectly used by gropertyp in a classc, denotedusegp,c), is defined as
follows: useg¢p,c) = {(pi,c) | propertyp; defined in class; is directly referenced in the
definition of propertyp in classc}.

In the same waythe set of propertiedirectly or indirectlyused in thedefinition of
propertyp in classc, denotingusesip,c), is defined as followsises{p,c) = usegp,c) [

{(pi,c) | ((i,6) U usegpi,c) or (m1,G) U usestpi,c)) and fi,G) O usegp,c)}

The property decomposition closure criteria (secBat2) can be further refined not
considering all the classes referencethaxdefinition of some classather the properties
of thoseclasses thaare used. Hence, in order bave an external schema closed in
relation to the property relationship, for each one of the properties ofefses selected
to compose an external schenadl, the propertiedirectly or indirectlyused in the
definition of these propertiehiave to be included inhe externalschema. If these
properties arelefined in classesotincluded inthe externaschematwo possibilities are
considered in reference to the classes:

* The classes should also be included in the external schema.

* The classes can be redefined (define new derived classes)den to include
exclusively the properties needed. Then, the classes previously includeextetimal
schema that referencélde original classes should also be redefined to reference the
new derived classes.

In the algorithm presented in this sectidhge first option was considered because it is

simplerthan the second one, and it is enough to showpdssibilities offered by the
external schemmechanisnpresented. Therefore, in the presestsion ofthe extended

79

algorithm of generatiorthe condition thagll classes referenced by meanspobperty
relationship byanotherclass must be non-transformable has been imposed. This is a way
of avoidingthe need, iransforming a class that is referencedahgpther, tanodify the

class that refers to it as well.

Therefore, in order tobtain an object schema closed in relationtthe property
relationship, the following steps have been defined:

» Adding the necessary non-transformable classes Hig2.b.1):Using the previously
definedpredicatepropertyDecompositionHierarchyClosure , we add to the set of
non-transformable classeke classes referenced lilie non-transformablelasses,
obtainingCsNT. The transformable classes referenced by non-transforrolaiskes
have become non-transformable classes; aogd by way of the predicate
elementsDifference the newset of transformable classeSsT, is obtained. The
selected transformable classes thia referenced by sonmghertransformable class
must be non-transformableansfClassesRelatedByPropertyRel carriesout this
requalification to thus obtain the s€sNTE andCsT.

» Transforming the transformable classes bgliminating external references (fig.
5.22.b.2):Any transformable class that references class®sselected inorder to
compose theschema must be transformediminating such references. By means of
the predicatelasseswithProperties , taking theset oftransformable class&SsT;
as its basis, we obtaithe setCsTWPs of “transformable classes witthe set of
properties” for each class. The mentioned refereaoesliminated bythe predicate
transfClassesPropDecompHierarchyClosure , thus obtaining the new set
CsTWPg which containghe classes oCsT; but at thesame time maintains only the
references to classes tife schema(due to therequalifications carriedut in the
previous step, only non-transformable classes are referenced).

5.4.2.3 Class inheritance closure
To obtain a schema that is closed in relation to the inheritance relationship (fig. 5.22.c):

» Obtainthe schema formeaxclusively bynon-transformable classes (fi§.22.c.1).
The initial schema isobtained by way othe predicateclassinheritanClosure
previously defined irthe basic algorithm. Afteeliminatingthe redundant edges we
obtain the nevset ofnon-transformable class@sNT, and theset of edges that are
defined between theEsNT.

* Integration of transformable classes (fig. 5.22.cG¥ the initial schemaobtained
in the previous stes = (CsNT,ESNE), the transformable classes @sT; are
integrated in it, the detailed process of which is set out in section 5.4.2.4.

» Unification of transformable classes (fi§.22.d): onceall the transformable classes
have been integrated, under certain conditions, some ofrtfagnbetransformed and
unified with auxiliary classesdded to theschema exclusively iorder to achieve
closure in relation to thmheritance relationship or withthertransformable classes,

80

such operation being defined by means ofthe derived predicate
eliminateRedundantTransformableClasses presented in section 5.4.2.5.

5.4.2.4 Integration of the transformable classes

The determining component of a transformable class is its extensiawirf the fact
that the intensiomay betransformed irorder to adapt to thechema. Therefore, two
transformable classes withe same extension definiticere potentiallythe same class. It
is for this reason thagroups oftransformable classesre created whosextensions
subsume mutuallyEach group is represented bylass that hathe extension of the
classes othe groupand theunion of the intensions ofthe representedlasses as its
intension. In this way, integratirthe representativelass ofthe groupall the classes of
the group are integrated. The predicate tlwarries out this operation is
subsumptionisomorficClasses (fig. 5.22.c.2). The nevget oftransformable classes
CsT, is obtained along with the properties of thelssses anthe classes of eacgroup
in ICSTWPs(each element included h#se structuresi (c,Ps,C3, -that is tosay, the
classc, its intensiorPs and represented clasges. The classes d€sT, do notsubsume
in extension mutually.

Given the schema formed by non-transformable clasSes= (CsNT,ESNT), the
transformable classes G6ET, -associated classes gmperties are ilCsTWPs have to

be integrated into itThis operation is carriedut integrating thetransformable classes
one at a time in thechema irquestion. A transformable class integratethensschema is
considered as non-transformable in the process of integration of the remaining classes.

The transformations that can be carr@ad in atransformable class can be seerfign
5.10.Given a transformable class to be integrated (fig5.10.a), if the transformable
class is subsumed in extension &agother class c, belonging tothe schema and,
therefore, non-transformable (fi§.10.b), then thelassc; inheritsthe properties o€,
and, furthermoremaintains itsown properties. However, if it is thelassc; that
subsumes in extensi@motherclassc, of theschema (fig5.10.c), thenon-transformable
classc, conditions thestructure of tharansformable class;, in such a way that any
properties which are not defined @rmust be eliminated fromy.

transformableClassintegration(si(C1,Ps1,Cs1),Cs2,Es2,
,CslessvT)' N (a)
: includedElement(C2,Cs2), :
: subsumesExtension(C1,C2,T), N (1)

BranchTranstIasslnteg(si(Cl,Psl,Csl),
Cs2,Es2,Cs3,Es3,T).

transformableClassintegration(si(C1,Ps1,Cs1),Cs2,Es2,
Cs3,Es3,T) :-
!
leafTransfClassinteg(si(C1,Ps1,Cs1), - (b)
Cs2,Es2,Cs3,Es3,T).

Figure 5.23transformableClassintegration predicate.

When a transformable class iigegrated in theschema, it becomes considered non-
transformable. So that a previously transformable class already integrgtéthg no

81

effect inthe integration of anothd@ransformable class{) causing it to lose properties
(in the way shown in fig.5.10.c). In thefirst place it is necessary to integrate the
transformable classes thaite notsubsumed in extension loghertransformable classes
(CsT, is the set oftransformable classes and these mim subsume in extension
mutually). Theorder ofintegration of the@ransformable classes is defined in this way in
the predicateintegrationOfTansformableClasses (used infig. 5.22.c.2) which
proceeds byselecting transformable classes whate notsubsumed by any of the
remaining transformable classeand carries out the integration by way of
transformableClassintegration predicate, presented in fig. 5.23.

5.4.2.4.1 Transformable class with subclasses in the schema

If the transformable class to be integrateg Gubsumes in extensi@my ofthe classes
(co) currently integrated in thechema (fig5.10.d), as would be the casefip 5.23.a
where the condition denoted () isfulfilled, the predicatevhich defineghe manner of
integration in this case iBanchTransfClassInteg . This predicatefor each one of the
classes ;) of the schema subsumed in extension thg transformable class to be
integrated ¢;), carries out the integration operationslefined by the predicate
integrateTransformableClass set out in fig. 5.24.

integrateTransformableClass(si(C1,Ps1,Cs1),C2,Cs2,Es2,Cs3,Es3,T) :-
subsumingSuperclassPropertyUnion(C1,C2,Cs2,Es2,Ps3,T), N
elementsUnion(Ps1,Ps3,Ps4), @

classProperties(C2,Ps2,T), N
elementsintersection(Ps2,Ps4,Ps5), (b)

defineTransformableClass(si(C1,Ps5,Cs1),C3,T),
includeElement(C3,Cs2,Cs4), N (C)

classinheritanClosure([C3],Cs2,dl(Cs3,Cs4),dI(Es3,Es2),T),
]

Figure 5.24integrateTransformableClass predicate.

A transformable class{) has aset of propertiesRs;) associated with it and represents
the set of transformable classes with identical extensidls), (represented by
si (¢1,Ps,Cs) in fig. 5.24).c; subsumes in extension the clagswhich is included in the
schema$S, = (Cs, Es). The predicatentegrateTransformableClass defines the
integration of theclassc; into theschemaS, to generate a neschemeS; = (Cs;, ES).
The classc; will be a superclass o€, and a subclass @hose superclasses of that
subsume in extensian. The intension o€; will be conditioned by théntensions of the
superclasses that are obtained just as it will by the intensmn of

In fig. 5.24.a, we obtain iRs; the properties of the superclasses,othat subsume;.
Such properties must be inherited day united to the propertieBs, thatc, had,Ps, is
obtained. The intension of is Ps, (P contains the properties of tietPs since they
are properties of the superclasses,pinherited byc,). Therefore, the set of properties
which the transformable class; has,having beertransformed previously, iBs;, the
intersection oPs, andPs, (fig. 5.24.b).This would bethe case in thexample shown in
fig. 5.10.d wherec; is affected by transformations imposedthg superclasses found,
just as it is by the subclass Once we have the properties of trensformable class, we
proceedwith its definition and inclusion inhe schema (fig.5.24.c). Thedefinition is
carriedout byway of the predicatelefineTransformableClass which ispresented in

82

fig. 5.25. Given the transformable clas€, and its characteristics, it returns the
transformed class;. The integration in the schema of the transformed class is carried out
by means othe auxiliary part of classinheritanClosure setout in fig. 5.24 which

finds the inheritance relationships difie classc; that is to be integrated with the rest of
the existing classes in the sche®a (Cs,Es), to obtain a schen® = (Cs;,ES).

defineTransformableClass(si(C1,Ps1,Cs1),C2,T) :-

classProperties(C2,Ps1,T), N
subsumesExtension(C2,C1,T), (a)
subsumesExtension(C1,C2,T),
]

\ éssociateCIassesBvDerivation(CZ,Csl,T).

defineTransformableClass(si(C1,Ps1,Cs1),C2,T) :-
generateDerivedClass(C2,T),
classProperties(C2,Ps1,T), ~— (b) (c)
classObjects(C1,0s1,T),
classObjects(C2,0s1,T),
]

\ éssociateCIassesBvDerivation(CZ,Csl,T).

Figure 5.25defineTransformableClass predicate

By way of the predicatedefineTransformableClass (fig. 5.25) we obtain a
transformed class from the transformable class. If a clasghwittequired characteristics
already existed irthe data dictonary (fig. 5.25.a) this will be the obtainedclass.
Otherwise (fig.5.25.b) itdefinesthe newclass inthe datadictionary. Once it has the
class (existing ogenerated), it adds to the data dictry the fact that aderivation
relationship exists between this class #mel set oftransformable classe€$) that are
represented by, (fig. 5.25.c).

This process of transformation of a transformatiéessc, is carriedout for eachclass of
the schema that is subsumedchyin the schema, the only classes subsumexy Wil be
the set ofnon-transformable classes that madethginitial schemaithis is due to the
order of integration of the transformable classes that is followed.

5.4.2.4.2 Transformable class without subclasses in the schema

If the classc, does notsubsume any class ttie schema (fig.5.25.b), the integration
would be brought about by way le&fTransfClassinteg which is set out in fig. 5.26.

leafTransfClasslnteg(si(C1,Ps1,Cs1),Cs2,Es2,Cs3,Es3,T) :-
subsumingClassPropertyUnion(C1,Cs2,Ps2,T), \
elementsUnion(Ps1,Ps2,Ps3), €)

defineTransformableClass(si(C1,Ps3,Cs1),C2,T), \
includeElement(C3,Cs2,Cs4), (b)

classlnheritanClosure([C2],Cs2,dI(Cs3,Cs4),dI(Es3,Es2),T),
1

Figure 5.26leafTransfClassInteg predicate.
Corresponding to thexample in fig.5.10.e, the transformation is carriedt byadding

to thetransformable class {cthe properties of thelasses that subsume it in extension
(fig. 5.26.a), being defined and integrated into the schema afterwards (fig. 5.26.b).

83

With the defined integratiomprocess indireanheritance relationshipsre represented as
edges, theelimination of such redundant edgebeing defined inthe predicate
eliminateReduntantEdges in fig. 5.21.

5.4.2.5 Unification of transformable classes

Once we havall the transformable classes integrated, under certain conditions, some of
these classanay betransformed andnified with auxiliary classes that have besided

to theschema exclusively inrder toachievethe closure in relation to theheritance
relationship and even withthertransformable classes. Before descriliimgunification
process, we shall consider the conditions that must be satisfied.

An edgee = is_d(c,;,¢;) hasexclusive nodes a set of edgeBs if it is the only edge
included inEs that haghe classc; as its first node and alsotise only one that has the
classc; as its second nodeé other words, the edgeis theonly one that arrives at
and is also the only one that starts from

b) c) exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-
includedElement(e(is_a(C1,C2)),Es),

includedElement(e(is_a(C1,C3)),Es),
compareClasses(C3,C2,ne),
!
@ fail.

exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-
includedElement(e(is_a(C1,C2)),Es),

- (a)

includedElement(e(is_a(C3,C2)),Es), N
compareClasses(C3,C1,ne), (b)
|

@ fail.

exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-
/\/\ /\ includedElement(e(is_a(C1,C2)),Es), \(C)
1

Figure 5.27. Exclusive nodes edge.

In fig. 5.27 the predicate thatetermines whether an edge is exclusive nodes is
presented togethevith its graphic representationnfy in the case represented fig.
5.27.c, does the indicated edge satisfy the described requirements.

Shouldc; be a class that has besided in order tachievethe closure of the schema in
relation to thenheritance relationship (a class includedha setCsAddedn fig. 5.28),
shouldc, be an originally transformable or an alreadgnsformed class (included in
CsTnew, and should an edge exclusivenodes exist between them: théme predicate
eliminateRedundantTransformableClasses , presented ifig. 5.28,joins both classes
in a new transformed class, updating skhema asnay beappropriate and repeattss
operation for eaclexistingcase.This predicate is made up two parts: primarily, fig.
5.28.a, the various sets of clasgesThewandCsAddedl are determined and afterwards,
fig. 5.28.b, the addedassesreanalysed by ascertainimghetherany edge ofexclusive
nodes exists with the described conditions and carrying out the unification.

84

eliminateRedundantTransformableClasses(CsNT,CsT,Cs1,Es1,
Cs2,Es2,T) :-
elementsDifference(Cs1,CsNT,Cs_notNT),
elementsDifference(Cs_notNT,CsT,Cs_notNTnotT),
obtainedFromTransformableClasses(Cs_notNTnotT,CsT,CsTrans,T), (a)
elementsUnion(CsT,CsTrans,CsThew),
elementsDifference(Cs_notNTnotT,CsTrans,CsAdded),
eliminateRedundantTransformableClasses(CsAdded,CsTnew,
dl(Cs2,Cs1),dI(Es2,Esl),T).

eliminateRedundantTransformableClasses([C1|CsAdded],CsTnew,
dl(Cs2,Cs1),dI(Es2,Es1),T) :-
exclusiveNodesEdge(e(is_a(C1,C2)),Esl),
includedElement(C2,CsTnew),
|
unifyTransformableAndAddedClasses(C2,C1,C3,T),
unifyClassesinSchema(C2,C1,C3,Cs1,Es1,Cs3,Es3,T),
eliminateRedundantTransformableClasses(CsAdded,CsTnew,
di(Cs2,Cs3),dI(Es2,Es3),T). (b)
eliminateRedundantTransformableClasses([_|CsAdded],CsTnew,
Csdl,Esdl,T) :-
|
eliminateRedundantTransformableClasses(CsAdded,CsTnew,
Csdl,EsdI,T).
eliminateRedundantTransformableClasses([],_,dl(Cs,Cs),
dI(Es,Es),_) :-
|

Figure 5.28eliminateRedundantTransformableClasses predicate.

5.5 Conclusions

Independently ofthe externalschema generation algorithm considerdide main
characteristics of this proposal are:

- Two phase integration: First, derived classes integratedlirectly into the data
dictionary by derivation relationships. Then, thase integrated into thexternal
schema, but this time considering ottlg set of selecteclasses and using inheritance
relationships.

« The new concepts of transformable and non-transformelalesessimplify the
external schema definitioprocess, becaugbey permitthe direct generation of the
classes needed in the external schema, avoiding more complex definitions.

« This methodology respects the ANSI/SPARC three-level schema architecture.

« According to theclassification of external schema definition methodologresented
in chapter 2, the new methodologglongs tothe second groupdefined external
schemas are not necessarily subschemas of the conceptual schema.

+ In the examplegresented, derivedassesvere alvays definedaccording to object-
preserving semantics. Thisnst alimitation of the new methodology: derivexbsses
defined according to object-generating semantics can also be handled in the same way.

« With thedefinition of thismethodology, in particular usirthe derivatiorrelationship
to integrate derived classes, the object-orientaparadigm isnot changed. The

85

derivation relationship doe®t appear imbject schemaf®r end users, it ienly used
in the data dictionary.

In [Santos, 1995] it is stated th&By relating virtual (derived) and corresponding
root (base) classes through thay_berelationship, we avoid the creationanixiliary
intermediate classes which have tod®nerated to allovthe integration ofvirtual
classes intahe inheritance hierarchy as described in [Rundensteir@32b]. From a
philosophical point of view, integrating virtual classes into a singMaeritance
hierarchy amounts tdefine a single taxonomy which encompagbeswholeset of
conceptgin the spirit of the KL-ONE classification algorithm), whereas relating such
classes tdheinheritance hierarchthrough an orthogonal relatigivestheseclasses
a different conceptuastatus,making themnot conceptghemselvesput different
points of views (possibly exceptional atigereforeinvolving type incompatibility) of
existing concepts instead.”

In the externakchema definition methodology gposed hereusing the derivation

relationship, derived classes have this “different conceptual status” but only in the data
dictionary and not in end-user’s schemas.

86

6 Definition of derived classes

In the definition of derived classes three main issues have to be resolved such as:
» The integration of derived classes with other classes in an object schema.
» The definition of classes with new objects.

* The transmission of modifications betwetthe objects in derivedlasses and the
objects from which they have been defined.

A solution to the first issue has been proposed in chapter 5. In this chapter, the other two
remaining issues are further studied.

6.1 Derived classes

Non-derived classeare defined duringthe initial definition of the conceptuaschema.
Derived classes are classes whacadefined from previously existing classes (derived or
non-derived) using object-oriented queries; derived classes are defined dulifiedjrtiee

of the database in order to beluded in some external schema orthe conceptual
schema.

In order to adapt tdinal users’ needs, thexformation contained irthe conceptual
schema’s classes must be re-organisédamorm of new classes: external schemas may
contain conceptual schema classes as well as new derived classes.

6.1.1 Base classes and base objects

The classes fronwhich a derived class is directly definace its base classd3erived
classes offer a new interface of accesth&information contained in their base classes;
derived classes shatiee data stored in the databagéh their base classes. In no case
may a derived class contain information that has not been obtained from its base classes.

The objects contained in a derived classderived objectsThe objects in base classes
that participate in the definition of a derived object arbaise objects

6.1.2 Object-preserving vs. object-generating semantics
A derived classnay bedefined either by object-preserving semantics, diniy contains

objects of its base classes; or by object-generating semantics, if it contains new objects
generated fromthe objects of its base classé&efining derived classes by object-

87

generating semantics makes it possible to catry sophisticated reorganisations of
existing information whiclwould otherwise bémpossible-i.e. transformation o¥alues
into objects, or aggregation of objects to form a new concept.

If a derived classepresents a concepteviously defined irobject form, it vill have to
be defined by object-preserving semanttbe: derivedclass defines a new interface for
its objects. If a derived classpresents a concepot previously defined irobject form,

it will have to be defined by object-generating semantics.

We consider it necessary to be able to define derived classedasirggmantics since,
in some situations, it is necessary to cay reorganisations of thaformation that
could not be accomplished defininglerived classegxclusively by object-preserving
semantics; besides,tlie derivecclass defines a new interfaceer a conceppreviously
defined inobject form, it vill have to be defined by object-preserving semanticsder
to keep this information.

6.1.3 The derivation relationship

A derivation relationshipis defined between a derived class dnd set ofits base

classesThe derivation relationshigefineshow to obtain a derivedlass from its base
classes; it establishébe correspondence between the base objects andetived

objects.

The derivation relationship is used to integrdéte derivedclasses intothe data
dictionary. Derived classese related byneans othe derivatiorrelationship to its base
classes. This relationship is different frahe inheritance relationship and aggregation
relationship found inthe object orientatiorparadigm and theyie on anorthogonal
dimension: the derivatiodimensionpart of the point o/iew dimension irterms of the
ANSI/SPARC framework [ANSI/X3/SPARC, 1986].

Unlike other authors whdefine similarelationships (“view derivation[Bertino, 1992],
“may_be” [Santoset al, 1994],“derived-from” [Kim & Kelley, 1995]), this derivation
relationshipdoes not appear in either tikenceptual schema dhe externalschemas,
only in the datadictionary; and it isnot necessary to extenthe object orientation
paradigm in order to include it.

6.1.4 An example

Let us take as amxamplethe classes laidut infig. 6.1, based othe exampleaused in
[Abiteboul & Bonner, 1991; Heuer & Sandd991]. Initially, we havethe non-derived
classPEOPLE, this class containinthe propertyHobbies whichreturns a set afames of
hobbiesfor each object. From thelass PEOPLE the derivedclassesHOBBIES and
HOBBIES' are defined by object-generating semantics, such classes representing the
existing hobbies in object form according to different criteria, ashaésee in the next
section.

The clasEOPLE’ has been defined by object-preserving semantics. This class represents
the sameconcept represented by timgtial classPEOPLE but is adapted to the new

88

representation provided by the derivdassHOBBIES with which it isrelated by way of

an aggregation relationship. The clagsTCHES has been defined by object-generating
semantics, and represetite different matches that can be defined between objects of
the classPEOPLE’ with whichcertain hobbiesre associatedhat is tosay, it represents

a new concept defined on the basis of existing information.

Derivation PEOPLE
— Aggregation Hobbies()
HOBBIES’
Name()

O Non-derived class
HOBBIES

O Derived class
PEOPLE’
Hobbies'(

MATCHES

Name()

Figure 6.1. Definition of derived classes.

Therefore, this example shows the definition of classes by object-preserving semantics, in
the case ofclassPEOPLE’, as well asthe definition of classes by object-generating
semantics: transformation of values into objecthedefinition of the classes1OBBIES

or HOBBIES’, and aggregation of objectsander toform a newconcept in the case of

the classvATCHES.

6.2 Derived class object identifiers

Each base object or derived object is represented Inyeitsifier. “An objectidentifier

has no intrinsic meaningand derives itsneaningonly from its relationship to values or
other objectidentifiers in a givendatabase instance. In particular, then, if an object
identifier is considered independently from #ssociated database instance, then it
conveys essentially no informatiother thants identity as distinct fromall otherobject
identifiers” [Hull etal., 1991]. Therelationships othe objectidentifier with values or
other object identifiers are defined by the properties that are applicable to the object.

PEOPLE
oid | ... | Age Hobbies
P1 31 | {Tennis, Football, Driving}
P2 16 | {Reading, Chess}
Ps 18 | {Chess, Tennis}
P4 27 | {Chess, Tennis}

Figure 6.2. Non-derived claBgEOPLE.

89

Let us consider the example set out in fig. 6.1. In fig. 6.2m@ents othe non-derived
classPEOPLE that are relevant to the example we are using are represented in table form.
Every object is represented by ormw in thetable, and for each one wave its
identifier and the propertiegie andHobbies. The use of tables in the varioesamples is

only a form of representation.

6.2.1 Object-preserving semantics

In the example of fig.6.1 theonly class defined bgbject-preserving semantics is the
classPEOPLE'. As shown in fig. 6.3the objecidentifier of eaclhobject of the newelass
PEOPLE’ is thesame ashe identifier of itscorresponding base object of the non-derived
classPEOPLE of fig. 6.2.

PEOPLE’
oid | Base Objects
P1 | P2
P2 | P2
Ps | Ps
Pa | Pa

Figure 6.3. Representation of the objects of the €lBSSLE'.

The objects of a claskefined by object-preserving semantice objectalready existing
in its base classes.

6.2.2 Object-generating semantics

As presented in chapter 2, section 2.3@me systemgenerate new objectientifiers
defined as a combination of values asfgject identifiers of other objects. ltcan be
considered that the objeictentifier of a derivedobject is generated from set of its
attributes; in [Abiteboul & Bonned 991] these attributes acalledcore attributesThis
is also our point of view.

The core attributes do not necessarily form part of the interfaite aferivecclass -they

may be internal properties. In the case that a derived class is defined by object-preserving
semantics, for each object thie derivedclass itmay beconsidered that there exists an
internal core attribute that returns the identifier of its base object.

There wll never betwo objects in a derived cladsaving identical values in their
respectivecore attributes. Therefore, the objects afesived classnay berepresented
either by way of their identifier or by way of theiore attributes: there is l@jective
relationship between object identifiers and core attributes for each derived class.

A class is defined to bealue-identifiableif its objects can ba&lentified using aset of its

attributes thabnly can be valuegnot object identifiers) [Schewe etll., 1992]. In the
same way, we define a classatsibute-identifiableif its objects can ba&lentified using

90

a set ofits attributes (without type restriction). Deriveldssesare attribute-identifiable:
their objects can also be identified by their core attributes.

Therefore, the representation of tbkasses shown ithe example of fig.6.1 is the
following: from the classPEOPLE theclassHOBBIES is defined in such a manner that an
object is generated for each different value in the set returned bytibies property for
any object, carryingout a transformation of values into objects. fig. 6.4 a
representation of the result obtained can be seen.

HOBBIES
oid | Core Attributes | Base Objects ... | Name
h;; | Tennis {Pp1, P3, Pa} Tennis
h,, | Football {pi} Football
h,3 | Driving {pi} Driving
h,4 | Reading {p2} Reading
h;s | Chess { P2, P3, Pa} Chess

Figure 6.4. Representation of the objects of the ¢lass8IES.

If two objects of the claggeOPLE have some value in common in the set returned by the
Hobbies property, both othem wil be base objects of the corresponding derived object
(generated from that value). In geneddlthe base objects fromhich the same values

for the core attributes arebtained arencluded inthe set ofbase objects for the
corresponding derived object that is generated.

In fig. 6.5 the representation of the resalitained for thelassHOBBIES’ is shown. The
identifier ofthe base object and thebby name have been definedcase attributes. In
this way a new object igenerated for eactalue inthe set returned by the property
Hobbies in each one of the objects of the claRE®PLE.

HOBBIES’
oid | Core Attributes | Base Objects ... | Name
hz1 | p1, Tennis P1 Tennis
hz2 | p1, Football P1 Football
hzs | pa, Driving Ps Driving
h,4 | p2, Reading P2 Reading
h2s | P2, Chess P2 Chess
hye | ps, Chess Ps Chess
hy7 | ps, Tennis Ps Tennis
hos | ps, Chess P4 Chess
hy9 | ps, TENNIS Pas Tennis

Figure 6.5. Representation of the objects of the ¢lagBIES'.

The classPEOPLE’ represented irfig. 6.6 has been defined by object-preserving
semantics, the only core attribute being the base object identifier.

91

PEOPLE’
oid | Core Attributes | Base Objects ... Hobbies’
P1 |P1 P1 { a1, hap, hyg}
P2 | P2 P2 {14, hus}
Ps | Ps3 Ps {his, hia}
Pa_|Pa Pa {his, g}

Figure 6.6. Representation of the objects of the €lBS®LE'.

The classMATCHES in fig. 6.7, has been defined by object-generating semantics by
object association. It corresponds to pussibleTennis or Chess matches thamay be
defined betweetwo different objects oPEOPLE’ with thosehobbies;the order of the

players is irrelevant.

MATCHES
oid | Core Attributes | Base Objectg ... | Hobby | Players
my | hy, {Ps, Ps} hua, {P1, Ps} hus {p1, s}
My | iy, {P1, Pa} hy1, {p1, Pa} hyy {p1, pa}
ms | hy, {Ps, Pa} hua, {Ps, Pa} hus {Ps, Pa}
my | has, {Po, Ps} hus, {P2, Ps} hs { P2, ps}
M | his, {P2, Pa} hus, {P2, P4} his { P2, P4}
Ms | hus, {Ps, Pa} hus, {Ps, Pa} his { P, pa}

Figure 6.7. Representation of the objects of the clagEHES.

6.2.3 Classes containing objects already generated

In previous systemshe mostcommonlyused ways of sharing objects between derived
classesvere thesame aghe ways of sharing objects between non-derived classes or
derived and non-derived classes, namely:

* Inheritance:defining aderived class as a subclass of a previously existing derived
class.

» Derivation: defining a new class with object-preserving semantics franother
derived class.

Usually, inorder to generat@ew identifiers, Skolem functorare usedHull et al.,
1991]; in general, a distinct Skolem functor is used for each new derivedGilassthe
values ofthe set of core attributes, the functor generatesva object identifier: the
identifiers of newgenerated objects afanction ofthe core attributeand thederived
class;therefore, derivedlasses defined by object-generating semanticsncarshare
objects with previously existing classes.

We propose todefine the identifiers of the new objectonly as function of their

respectivecore attributes. Thustwo different derived classes defined by object-
generating semantics can have objects in common witiegrelated by inheritance or

92

derivation: havingthe sameset of core attributedndependently of their respective
names, attributes are uniquely identified in the data dictionary.

As mentioned in chapter 3, secti8ri.5, forsimplicity, we assume thail properties in
the data dicbnary have uniqueropertynames. To ensure uniquenesuofperties, a
uniquepropertyidentifier can beassociated to eaatewly definedproperty; therefore,
two properties thahavethe samepropertynamecould thus bedistinguished internally
based on their identifier.

Therefore, the generation aentifiers of objects in a derived classnist dependent
upon the derived class itself, it only depends on the core attributes selected.

For example, if a new derived clag®BBIES” representing thaobbies thaare related
with people older than 20 defined by object-generating semaniits base class is the
class PEOPLE), it will contain a subset of the objects adéssHOBBIES (fig. 6.4)
independently of which class have been defibetbre HOBBIES” or HOBBIES), as
shown in fig. 6.8.

HOBBIES”
oid | Core Attributes | Base Objects ... | Name
h;; | Tennis {p1, pa} Tennis
h,, | Football {pi} Football
h,3 | Driving {pi} Driving
h;s | Chess {pa} Chess

Figure 6.8. Representation of the objects of the ¢lagBIES”.

6.3 Definition of the objects in derived classes

6.3.1 Derived classes definition predicates

In order todefinethe derived classes, derived predicates caebeed inProlog as part
of the corresponding DCM of an extersghema definition system, as it is showithis
section.

The definition of the derivedclasses has been carriedt by means ofthe predicate
derivedClass ; In this predicatenobbies corresponds talassSHOBBIES, hobbies_ to
class HOBBIES', etc. The creation of new objects is controlled by the predicate
newObject .

The definition of the classHOBBIES can be seen in fig. 6.¢0r each object of thelass
PEOPLE its set ofhobbies is obtainefpropertyhobbies); and for each one of theames
of its hobbies a new object generated by the predicatewObject (if not generated
before). In order to generatenaw object it has to bgiventhe derivedclass name (i.e.
hobbies), thenames -identifiers- afhe core attributes thalefine de derived clagse.

coreAttNames([prop(hobbyName)])), the values ofthe core attributeslefined (i.e.

93

coreAttValues([value(Name)])) and theset of base objects thakke part in the
definition of the derived object (i.easeObjects([object(P)])).

derivedClass(hobbies,T) :-
classObject(people,P,T),
objectProperty(P,hobbies,set(Hs),T),
includedElement(value(Name),Hs),
newObject(hobbies,
coreAttNames([prop(hobbyName)]),
coreAttValues([value(Name)]) ,
baseObjects([object(P)]),T),
fail.
derivedClass(hobbies,) :-
|

Figure 6.9. Definition of objects of clas®BBIES.

The definition of the classHOBBIES' can be seen in figs.10. Inthis casejtwo core
attributeshave been definethe hobby name, anthe object otlassPEOPLE wherethis
hobby is defined (i.ecoreAttNames([prop(hobbyPer),prop(hobbyName)])).

derivedClass(hobbies_,T) :-
classObject(people,P,T),
objectProperty(P,hobbies,set(Hs),T),
includedElement(value(Name),Hs),
newObject(hobbies_,
coreAttNames([prop(hobbyPer),prop(hobbyName)]),
coreAttValues([object(P),value(Name)]),
baseObjects([object(P)]),T),
fail.
derivedClass(hobbies_,) :-
|

Figure 6.10. Definition of objects of classeBBIES'.

The classHOBBIES” represented ifig. 6.8 isdefined in fig.6.11. Ascan be seen there,
with regard to thecore attributes used, thaefinition of this class ishe same as the
definition of classHOBBIES in fig. 6.10. Thus, thesame objecidentifiers as before are
generated.

derivedClass(hobbies__,T) :-
classObject(people,P,T),
objectProperty(P,age,value(Age),T),
Age > 20,
objectProperty(P,hobbies,set(Hs),T),
includedElement(value(Name),Hs),
newObject(hobbies,
coreAttNames([prop(hobbyName)]),
coreAttValues([value(Name)]) ,
baseObjects([object(P)]),T),
fail.
derivedClass(hobbies__,) :-
|

Figure 6.11. Definition of objects of claseBBIES”.

The clasEOPLE’ is defined by object-preserving semantitsdefinition can be seen in
fig. 6.12. Inthis casethe only core attributedefined isthe associated object of itmse
classPEOPLE; therefore, thesame objecidentifier isused for the corresponding object
of the new class.

94

derivedClass(people_,T) :-
classObject(people,P,T),
newObject(people_,
coreAttNames([prop(person)]),
coreAttValues([object(P)]),
baseObjects([object(P)]),T),
fail.
derivedClass(people_,) :-
|

Figure 6.12. Definition of objects of claBEOPLE'.

The definition of classMATCHES can be seen in fig. 6.13.

derivedClass(matches,T) :-
classObject(hobbies,H,T),
objectProperty(H,name,value(Name),T),
includedElement(value(Name),
[value(tennis),value(chess)]),
classObject(people_,P1,T),
objectProperty(P1,hobbies_,set(Hs1),T),
includedElement(object(H),Hs1),
classObject(people,P2,T),
P1 <> P2,
objectProperty(P2,hobbies_,set(Hs2),T),
includedElement(object(H),Hs2),
newObject(matches,
coreAttNames([prop(hobby),prop(players)]),
coreAttValues([object(H),
set([object(P1),object(P2)])]),
baseObjects([object(H),
set([object(P1),object(P2)])]),T),
fail.
derivedClass(matches,_) :-
|

Figure 6.13. Definition of objects of clagaTCHES.

6.3.2 Definition of properties of derived objects

The properties of the derived objects defined fromthe base objects and tleere
attributesusingthe predicatebjectProperty . The base objects awdre attributes are
accessiblehrough predicateom theidentifier ofthe derived object. Ifig. 6.14,some

be seen.

i)y objectProperty(H,hobbyName,N,T) :-
classObject(hobbies,H,T),
objectCoreAttributes(H,[N],T).

ii)y objectProperty(M,hobby,H,T) :-
classObject(matches,M,T),
objectBaseObjects(M,[H|_],T).

iii) objectProperty(M,players,Ps,T) :-

classObject(matches,M,T),
objectBaseObjects(M,[_,Ps],T).

Figure 6.14. Definition of properties of derived objects.

95

6.3.3 Kinds of derivation relationships

The base objects of a derived object @l¢hose objects upowhich it is defined. The
set of objects that participate in tlefinition of the identity of a derived object is a
subset of itset ofbase objects. Aaxample of this is given in figé.15 (representation)
and 6.16(definition): the classPEOPLE” is defined withthe propertyHobbies’ defined as
was made before fathe classPEOPLE’, and also the propert®therHobbies, which
relates each person with thames of hobbies whicthe person in question does not
practise but are practised by other people Wwaee some hobby in common withat
person.This class is defined by object-preserving semantics freclassPEOPLE, its
only core attributebeing the identifier of the object of the baselass from which it
receives its identity.

PEOPLE"
oid | Core Attributes | Base Objects | ... | Hobbies’ OtherHobbies
P1 |P1 P1, {ps, p4}, {h15} { h11, hlz, h13} {ChESS}
P2 | P2 P2, {P3, Pa}, { haa} { hig, hys} {Tennis}
Pz |Ps Ps, {pla p2}1 {hlz, {hls, hll} {Footbal,Driving,
his, hia} Reading}
Pa | Pa Pa, {P1, P2}, { oz, {hus, hys} {Footbal,Driving,
Nus, ia} Reading}

Figure 6.15. More than one base object by object-preserving semantics.

For thedefinition ofthe classPEOPLE”, each derived object is related to the obfexh
which it receives its identity and alsottte objects that participate in tbefinition of its

properties.

derivedClass(people__,T) :-
classObject(people_,P,T),
newObject(people__,coreAttributes([object(P)]),
baseObjects([object(P)]),T),
fail.
derivedClass(people__,T) :-
classObject(people_,P1,T),
objectProperty(P1,hobbies_,set(Hs1),T),
classObject(people_,P2,T),
P1 <> P2,
objectProperty(P2,hobbies_,set(Hs2),T),
intersection(Hs1,Hs2,[|_1),
difference(Hs2,Hs1,Hs3),
newObject(people__,
coreAttNames([prop(person)]),
coreAttValues([object(P1)]),
baseObjects([object(P1),set([object(P2)]),
set(Hs3)]),T),
fail.
derivedClass(people__,) :-
|

Figure 6.16. Definition of objects of claBEOPLE".

96

The derivation relationship establisitbs correspondence between the base objects and
the objects of the derived class. Some of the base objects participate in the formation of
the identity of the derived objects: thealues as well athe identifiers ofthe objects
returned by the properties tifatm the core attributes abtained from a subset of the
base objects. Some base objects are only usedén todefineproperties of thelerived
objects. Thereforewo kinds of derivation relationship exist: derivation of identiyd
derivation of value. A base class is relatiebugh aderivation relationship of identity

to a derived class ifhe objects of the basdass participate irthe definition of the
identity of the objects of the derived classdarivation relationship of valuexisting
between a base class and a derived daisif the objects of the basgass do not
participate in the definition of the identity of the derived objects.

PEOPLE’ HOBBIES
Hobbies’() Name()

PEOPLE"”
Hobbies'()
QtherHobbies(

Identity a)
derivation

=p» Value
derivation

-«--» | ogical
association
— Aggregation

Figure 6.17. Kinds of derivation relationship.

An example ofthesetwo kinds of relationship is shown in fi§.17 for thedefinition of
the classPEOPLE” represented ifig. 6.15. Infig. 6.17.a theseelationshipsare depicted
on a class level, and in fig. 6.17.b on occurrence level for a derived object.

In addition to the derivatiomelationships mentioned, in fig.17 there is arexplicit

representation of theelationship expressed by waytbe conditionslefined inorder to
associate an object of tlbassPEOPLE’ with the objects of thelassHOBBIES upon

whosebasisthe propertyotherHobbies is defined -distinct fronthose already related
through the aggregation relationship. This relationship is telogéchl association

6.4 Transmission of modifications

6.4.1 Dynamic derivation relationship
Adapting the definitions of “static view” and “dynamic view” made byti®b, Paolini &

Zicari [Gottlob etal., 1988], astatic derivation relationshifs defined betweethe set
of base classes and a derived class, and estalighesrrespondence between base

97

objects and the derived objects. The derivdaiss defined by astatic derivation
relationship is &tatic derived class

A dynamic derivation relationshifs made up of a static derivation relationship and a
translator or update policythat determinefiow to transmit thenodifications that are
made tothe objects of the deriveclass into modifications tthe objects in théase
class. The derived clagdefined by a dynamic deation relationship is aynamic
derived classIn most of the cases, theodifications made tahe objects oderived
classegnay betransmitted in various manners tize objects of the base classssmne
such manners possibly bringing about side-effects.

6.4.2 Connection between base and derived objects

In order totransmit themodifications fromthe objects in the derivedasses to the

objects in the baselassesupon which thosederived classeare defined a connection
must exist between them, in such a vilagt, given a derivedbbject, the base objects
upon whoseébasis that derivedbject has beedefinedare obtainedThis connection is

the derivation relationship of identity and value presented in section 6.3.3.

If the definition of the derivedclasses is carriedut exclusively by means obbject-
preserving semanticthe base objects related byay of derivation of identity are
obtained directly, with no need to use additiodata structures tamplement this
relationship [Scholl & Schek, 1991; Kim & Kelley, 1995; Ra & Rundensteiner, 1995].

In the system proposed by Kifer, Kim & Sagiv [Kiferakt 1992], thidimitation is given
moreflexibility by defining anew object-generatiomechanisnwhere the core attributes
may only beidentifiers ofobjects. By using thigdentifier generationrmechanisndirect
access is gained to the base object identifiers upon which the identity depends.

In none of thementioned cases is there accessh® base objects related exclusively
through a derivatiomelationship of valuefor this reasorthe modifications that affect
these objects cannot be transmitted. The sbasé objects fromhich a derived object
is defined containthe set of objects that participate in the generation ofléifier. If
we only take the latter set into consideration, wél wot have all the information
available which is necessary &ocessll the base objects thtdke part in thelefinition

of the derived object.

Regarding thgroblem ofthe transnssion of modificationsthe solutionsvhich are put
forward by other authors (automatic tramssion limiting the definition of the derived
classes, and transmission of modificatittm®ugh methods of the derived classes) were
presented in chapter 2, section 2.3.5. In the next sedianproposal is presented:
transmission of modifications through the derivation relationship.

6.4.3 Transmission of modifications through the derivation relationship
Derived classeare defined directly or indirectlyover non-derived classes. Insehema

evolution environment it is sometimes necessary to chidneggefinition ofthe classes in
such a way that derived classes become non-derived classes and vice-versa. If the

98

transmission of modifications from a derived class to its base classes has been defined in
the methods of the derivedass(as in the approaches of section 2.3.28Y it is
decided to redefine this derived class as a non-derived clas8l, litewiecessary to
modify the methods of the derived classes. In such a context, if a delagsdbecomes
non-derived, it is important thatnly the derivationrelationships betweethe classes

must change-not the classes themselves. Thueur approach is todefine the
transmission of modifications outside the class: in the derivation relationship.

The derivation relationshiplefinesthe correspondence thekists betweerthe base
objects and the derived objects. The traasion of modifications between base objects
and derived objects (in both directions) is also defined in the derivation relationship.

The modifications of base objects or derived objects cause a chathggefationships
that are initially established between them. For each of the methods of tlatalsase or
the derivedclass which carrieout modifications (modification ofproperty values,
creation or deleting of objectgheway in whichthe modifications in question affect the
various elements that participate timee derivationrelationship must be defined. Such
definition is made irthe derivatiorrelationship.For each method of modification of the
base classes dhe derived class, an associated operatiotefsred inthe derivation
relationship which isun eachtiime the corresponding method is used, eaxdulification
method having a definedoperation consistency relatiofBratsberg, 1992] in the
derivation relationship, which is responsilide maintainingthe consistency between the
base classes and the derived class.

PEOPLE
Hobbies()

for all p of
ChangeName(X pEOPLE in
baseObjects ...

HOBBIES
ChangeName (< Name := NewName
Name()
HOBBIES
ChangeName(X] Name := NewName
Name()

Figure 6.18. Representation of a derived class.

Derivation a)

O Derived class

O Non-derived Class

b)

In fig. 6.18 anexample of such proposal is presented. The deriveassHOBBIES has
been defined fronthe non-deriveatlassPEOPLE by way ofthe derivationrelationship,
fig. 6.18.a,assuming that in the derivethssHOBBIES a methodchangeName is defined
to change the@alue ofthe attributeName; this method iglefinedthe same way as in a
base class. In the derivatioelationship an operation @efined that isassociatedvith
ChangeName which carriesout the transnssion ofthe necessary modifications to the
values ofHobbies in the affected objects dfEOPLE, as well asthe corresponding
changes in theelationship that is established betwélea base objects and tderived

99

object if any.Similarly, if there is a method that hbsen defined to changkee value of

the attributeHobbies in the baseclassPEOPLE, then in the derivatiomelationship the
ways in whichthe possible changes might affect objects of cl&sBBIES aredefined by
means of awmperation. ThelassHOBBIES has the characteristics of a base class; yet, on
the other hand, its definition makes it derived.

In order totransform theclassHOBBIES into a non-derived class, fi§.18.b, theonly
partaffected is that of derivation relationshopt not thedefinition of itsproperties, i.e.
the methodchangeName.

A first version of the modification operations in the derivation relationship cdeflreed

automatically (following the criteria presented in sec2d815.1“Automatic transmission
of modifications”); these operations can be furthefined by the application

administrator.

The value ofthe core attributegan be modified. The result @hodifying the core
attributes of an objectilv depend on th@emantics othe modification operations as
defined in the associated operation consistency relations.

6.4.4 Operation consistency relations

The concept of operation castency relatiorsetout byBratsberg in [Bratsberg, 1992]
has been adapted to our environment, fulfilling the initially defined requirements.

In [Bratsberg, 1992] an approachdiass evolution iput forward.The evolution of the
classes’ intensions and extensians considered separately. If we consideretttension

alone, a class (origin) is related imeans ofextent propagation linkvith anotherclass

(destination) if inserting a new objecttime origin class means that itlivalso have to be
included inthe destination class. The destinatmass containgll the objects of the
origin class, andnay also contain further objectsot added in theorigin class. The
objects in bothclassesnay have commorproperties asvell asproperties particular to
each respective class.

Associated with the extent propagation link that unives classes, for each one of the
classesttribute consistency relatioreredefined which describall the attributes of one
class thatare dependent on the attributes of the otfibese relationsnay beeither:
derivable if it is possible to obtaihe attributes of onelass fromthe attributes of the
other; or non-derivable ifthe attributes are dependent but cannot be derived. The
derivation relationships existing betwede attributeslefinethe manner of transmission

of modifications between classes. [Monk, 1994] a similar approach is taken
exclusively in the case of derivable attributes.

The operation consistency relaticm® defined as a means of implementthg attribute
consistency relations, in order to maintain the consistency when the derived attributes are
materialisedthat is tosay, wherthe base attributes and the derived attributes happen to
be storedseparately. They alspresent an alternative to the attributensistency
relations inorder to maintainthe consistency betweethe objects of the basdass
without describingthe dependencies betweedhe attributes.This second focus of

100

operation consistency relations hbsen considered ithe present paper -not at
implementation level, but on a conceptual level only.

6.5 Conclusions

The definition of derived classes by object-preserving and object-generating semantics
makes it possible to offer a new interface to previously existing objects or to carry out
sophisticated re-organisations of existing information: transforming values into objects,
aggregating objects to form a newoncept. In order tocarry out this kind of
transformations the identifiers of the new objects have to be generatediémifiers of

other objects awell as from values adttributes.This fact, already pointedut byother
authors, has been further studied in this chapter.

In some cases, derived classesined with object-generating semantics have objects in
common between them. In previous systetinsonly way of sharinghese objects was

to define inheritance relationshipgtween the classes. Aiechanism ofjeneration of
object identifiers has been proposed that avoids this requirement.

The derivation relationship idefined between a derived class dhd set ofits base
classes. It isused to integrate the derivedasses intothe datadictionary. The
connections between the derived objects and its respective base objdefshackusing
derivation relationships of identity and of value.

The derivation relationship is also used define the way of transmission of
modifications between derived classes and their respective base classeshbtma
evolution environment it is sometimes necessary to chidneggefinition ofthe classes in

such a way that derived classes become non-derived classes and vice-versa. In our
approach, the set afefined classes ithe data dictnary does notchange -allthat
changes is its manner of definition: that is to ghg, derivationrelationships defined
among its classes.

101

102

7 External schemas in a schema-evolution environment

External schemaare derivedrom the database conceptisahema. They can be used to
simulate changes tthe database conceptisdhema. Fronour point of view, external
schemas can contain conceptual schema classegllaas derived classes directly or
indirectly defined fromconceptual schema classes. Derived classes caiefined by
object-preserving or object-generating semantics. Inctimapter,this fact iscontrasted

to the interpretation of the conceptinformation capacity of object schemas made by
other authors.

Sometimeghe final users’ information requirements change: they need new information
which cannot be derived froitihe information previously contained the database. The
solution that we propose here is th&finition of derived classes that can contain non-
derived information: partially derived classes. This possibifitesents additional
problems which are dealt with in an integrated way in this chapter.

7.1 Information in object schemas

As pointedout in [HuUl, 1986]: “A centralissue inthe area of databases is that of data
‘relativism’, that is,the general activity ofstructuring thesamedata indifferent ways.”
The problem of determininghe relative information capacityof schemas has been
studied for different models(for relational schemasboth with and without key
dependencies [Hull, 1986]; fatructuresbuilt recursively using somdata constructs:
set, tupleand union of types [Hull & ¥p, 1984 ;Abiteboul & Hull, 1988]; for amodel
with complex types and constrainfsliller et al., 1994]). This topic has special
importance in the areas dEfinition of external schemas and integration of different
schemas. It has to be further studied for object-oriented models.

The information contained in an object schemaegresented by its classdsy their
intension and extension. In object schem#ds concept ofdata relativism is
implemented defining external schemas and derived classes.

Studying thistopic in depth isout of the scope othis work. It can be the topic of
another thesis. Ithis sectiononly ashort introduction to it isnade; specificallypnly
the different possibilities of definition of derived classesoirder to beincluded into
external schemas are studied.

7.1.1 Information in external schemas
External schemasre derivedfrom the database conceptusthema. Each external

schema describes the part of ih®rmation ofthe conceptuadchemaappropriate to the
group of users to whom it is addressed.

103

An external schemmay include classes defined the conceptuatchema just as it may
also contain derived classes -directly or indirectly definedhebasis of conceptual
schema classefhat, from our point of view, donot necessarily need to be included in
the conceptuatchema. Derived classase defined and included ithe data dictnary.
The information represented with derived classes is already represethedamceptual
schema.

The information contained iany external schema has to be also contained in the
conceptual schema. If an object is todoeated omodified in an external schema, the
information necessary to obtain this object frthra objects into the conceptusdhema

has to be also added to the conceptual schema (problem of transmission of modifications,
see chapter 6, section 6.4).

7.1.2 Simulating conceptual schema transformations using external schemas

In [Tresch & Scholl, 1993] the use of external schemas in order to avoid re-organisations
of the conceptual schema was proposed in the following terms:

Schema transformations usuatbflow from evolutionary changes tifie logicalobject
structure, that is, the database schema.

(...) Schema transformations can diassified according ttheir impact on theobject
modelling capacity [Abiteboul & Hull, 1988]:

» Capacity preservingransformations do naiffect the modelling possibilitiesThat
is, the same potential set of objects can be represented after transformation.

» Capacity reducingransformations redudbe modelling possibilities, su¢hatwith
these transformations, information is lost.

* Finally, capacity augmentingransformations enhance the information contents of
the schema.

(...) Can reorganisatiorsdways be avoided? In most cases: schearsformationshat
are capacity preserving and capacity reducing can always be avdmleever,the latter
canproduce somaondeterminism. Unfortunately, capac#ygmenting transformations
require some propagation to the physical level.

(...) The transformatiofrom an object-oriented modelling to a value-oriented modelling
of the same situation is an example of a capacity reducing transformation.

(...) Notice that object-to-valuetransformation is capacity reducingnd therefore, the
information is lost. (...)JConsequentlythe reverse transformationjalue-to-object, is
capacity augmenting.

Transformations that are capacity augmenting cannot be simulatedviesusgexternal
schemas).

In these defittions, it can be seen that thidormation capacity of a schema is directly
related to the potential set of objects tbamn be represented in that schema. According
to them, an external schema cwotinclude derived classes defined by object-generating
semantics.

104

In [Hull, 1986], different measures of relative information capaeity defined for
relational databases basedtlire following definition: “Suppose thaP andQ are two
relational database schemata. Speakifgrmally, we say thaQ dominatesP if there
arefunctionss andt such thatijo mapsthe family of instances oP into thefamily of

instances o, (i)t mapsthe family of instances of) into thefamily of instances oP,

and (ii) the composition a¥ followed byt is theidentity onthe family of instances of
P.” The different measures of information capacire obtained bymaking certain
restrictions on the maps andr .

Therefore, the questios, can an external schema include a derived class defined by
object-generating semantics from classes included timto conceptuaschema? Our
answer to this question, contrary to Tresch & Scholl [Tresch & Scholl, 1993], is “yes”.

In order to show the reasons tbors answer, irfig. 7.1 anexample of a definition of an
external schema ipresented. It is based on tket of derived classes defined in the
previous chapter, ifig. 6.1. The non-derivectlassPEOPLE hasthe propertyHobbies

which returns a set ohames of hobbiefor each object. From thelassPEOPLE the
derived classiOBBIES is defined by object-generating semantics; this class represents the
existing hobbies in object form. The cla&s0OPLE’ has been defined by object-preserving
semantics fronthe classPEOPLE. This classepresents theameconcept represented by

the initial classPEOPLE but being adapted to the new representation provided by the
derived classiOBBIES with which it is related by way of an aggregation relationship.

O Non-derived class
O Derived class

= |nheritance
—» Aggregation

Derivation

|:| External schema

PEOPLE’
Hobbies’(

HOBBIES
Name()
Figure 7.1. Derived classes defined with object-preserving and object-generating

semantics.

Taking into account thechemacomposed by thelassPEOPLE and the newexternal
schemacomposed by thelassesPEOPLE’ and HOBBIES of fig. 7.1, if arestriction is
defined betweethe classesPEOPLE’ andHOBBIES in such a way that no objects can
exist in classHOBBIES without beingrelated by aggregation with some objectctafss
PEOPLE’, the information capacity of both schemas is the same.

105

According to thadefinition of dominance of schemas [HUIR86] presented before, the
schemas of fig. 7.1 dominate each other, their information capacity is equitiadengw
external schema is defined frotine original schemaall its possible instances can be
obtained fronthe original schema; andll the information that can be contained in the
original schema can be obtained from the new external schema.

If such a restriction wasot defined betweenhe classesPEOPLE’ and HOBBIES, the
classHOBBIES could contain objectahich would not have any relationshigith values
of the propertyhobbies of classPEOPLE. Therefore, thisschema would dominate the
original one, but the opposed affirmation would not be true.

Can an external schema be defined tirdy contains theclassHOBBIES? This class has

been defined by object-generating semantics, each one of its objects is related with values
of attributes of objectgcluded in its base class. If a new object is tcatdded to the
classHOBBIES, a new value has to kmdded to the corresponding attributesoime

object in classPEOPLE. If allowed, the updatgolicy from classHOBBIES to class
PEOPLE will be defined inthe operations of the derivatiogrlationship (see chapter 6,
section 6.4.3). Thenodelling possibilities of a clasge given by itsstructural part (the

set of attributes ots objects), and also by its behavioypart (the set omethods that

can be applied to its object3)herefore, if theclassHOBBIES is defined consistently, the
answer to this question is “yes”.

From our point of view, a class or a sett#sses defined by object-generating semantics
does notnecessarily contaimore information than their base classes. &gesewith
Tresch & Scholl [Tresch & Scholll993] in that the operations upon the conceptual
schema irorder toobtain an external schema must be capacity preserving or capacity
reducing. Inother words, thestransformations dmot affect or reducehe nodelling
possibilities ofthe conceptuaschema. It Wl be this way ifall the possible instances of
external schemas can be obtained fitvminstances othe conceptuaschema by the
derivation relationship.

7.2 Non-derived information in classes

The base classes of a derived clagg/ beother derived classes and/or non-derived
classes. The information containedtie non-derivedlasses is obtained directisom

the database. By applying the transitivity of the derivation relationship, the information of
the derivedclasses is calculated based tbe data stored in the database, deaved
classes offering a new interfader such data. Along the derivationdimension, the
derived classes shatige data stored in the databaséh their base classes. In no case
may the derivedclasses contain information that hast been obtained from their base
classes.

Sometimeghe end-userghformation requirements change. They need new information
which cannot be derived frortihe information previously contained the database; and
this new information must bencorporated into the databas@dding the new
information might either calfor the definition of new non-derived classes or the
modification of previously existing classes so that it can be included. Modifying a

106

previously existing classay turn out to betroublesome in some cases, if nelasses
have been derived from it or if there are programs which use it.

7.2.1 Partially derived classes

Conceptually, a solution teupportschema evolution with some capacity augmenting
transformations consists in allowing derived classes thay contain non-derived
information -that is tosay, partially derived classe$he non-derived information is
added to thenformation obtained fronthe base classes, thasoiding the need to
modify the definition of other classes.

The definition of partially derived classes allows us to define derived cldssasgh
capacity augmenting transformations frdire baseclasseswithout the rest of the
existing classes being affectethe base classes atite partially derived classes share
the information thatmay becontained in both classes. Thdditional informatiornthat
cannot be contained in the badasses is containezkclusively inthe non-derived parts
of the partially derived classes.

The intension of a class is made ugh# set of properties of thaass. The extension is
the set of occurrences of thiass, theset of objectsncluded inthe class. In partially
derived class non-derived elementay bedefined inthe class’s intension just as in its
extension.

7.2.1.1 Non-derived elements in the intension

Several systems allow non-derived elements to be defirted imtension ofthe partially
derived classefBertino, 1992;Ra & Rundensteiner, 1995; Naja & Mouaddib, 1995;
Bertino etal., 1996], partially derived classes with non-derivg@doperties can be
defined. Such properties may be initialised with default values.

A further essential transformationtige possibility of modifyingthe type associateslith

a property in such way that it has greaterinformation capacity, i.e. a simptgoperty
becomes multi-valued ithe partially derived class, or gropertydefined as an integer in
the baselass becomes realthe new class. Thaitial value ofthe generalisegbroperty
of the partially derived class’sbjects is thevalue obtained fronthe base object3his
informationmay be extended atlater stage. The non-derivedormation defined in the
intension must betoredsomewhere for each one of the occurrences of thedeéned
class.

The ability to define partiallyderived classes with non-derivedoperties simigies the
execution of some schema evolutioperations but, as weillvshown in thefollowing

point, there are requirements of evolutiwhich are not catered for bthis type of
transformation.

7.2.1.2 Non-derived elements in the extension

We come across axample otthese additional requirements in [Bertincaét 1996]: a
derived class is defined by object-preserving semantics which himssaaintdefined

107

in the corresponding base claBsr this reasonthe derivedclass could contain objects
that cannot be included in the base class. However, althougiséngon of such objects
into the derivedclasslooks valid to anuser of the clasghis insertion wouldnot be
possible unless a capacity augmenting mechanism were in place.

We come across similar situation in theexample of fig. 7.1where theclassHOBBIES

has been defined by object-generating semantics tin@enpropertyHobbies of the class
PEOPLE. By way of this transformatiothe representation of theobby concept has
changed. It has turned from the value of an objegtiki-valuedproperty into an object.
Having the hobby concept represented as a value, wenlylbe able tstore ahobby if

it happens to appear in an occurrencesdPLE. Once theclassHOBBIES is defined, if

a restriction existsvhich specifies a similadependency betwedhe occurrences of the
classHOBBIES and the occurrences of the nelassPEOPLE’, there vill be noproblem.

If such a restriction doesot exist, or if an external schema is defined that contains the
classHOBBIES but not theclassPEOPLE’, in these schemas it would be possible to insert
new objects in thelassHOBBIES without beingassociated witlany occurrence in the
classPEOPLE’. The problem is that such an operatiom@ supported by théase
schema.

7.2.1.3 Local extension of a partially derived class

The problem isthe same inboth cases: alass has beewrreated byway of a
transformatiorwhich increasethe information capacity withlespect to the basgasses.
So, the baseclassexannot providesupport forall the information thatthe newdefined
classmay contain. One solution to this problem consistaliowing the definition of
partially derived classes with non-derivemtal extensionsBased on thesame term
defined by Bratsberg [Bratsberg, 1992], partially derived class’s local extension
contains the non-derivezlements thasredefinedboth in theclass’s intension as well as
its extension.

Let usconsider a concretexamplefor the classHOBBIES. Let us suppose it were
necessary to deal with hobbies regardless of whetherwbey associated witeome
occurrences of thelassPEOPLE’. We defineHOBBIES as a partially derived class. If we
introduce a newobbywhose core attributgalue isBasketball, such an object W be
created in thdocal extension othe classHOBBIES. In fig. 7.2 it can be seen that this
object has been created and has no associated base objects.

HOBBIES

oid | Core Attributes | Base Objects| ... | Name
h;; | Tennis {Pp1, P3, Pa} Tennis
h;, | Football {ps} Football
h,4 | Reading {p2} Reading
h;s | Chess | { P2, P, pa} Chess
hy | Basketball I |Basketbal
hy3 | Driving | Driving

Figure 7.2. Representation of the class8BIES with non-derived objects.

108

If anotherfinal usermodifiesthe objects in thelassPEOPLE and it turnsout that no
objectremains that has associated concreteobby,the object of theclassHOBBIES
corresponding to thbobby inquestion would cease to exist. If thiassHOBBIES is

handled independently, this could be undesired behaJi@tirus assume thabriving

ceases to be a hobby of anybody. In fig. 7.2, it can be seen that the object in question has
not been eliminated fronthe class HOBBIES, but insteadhas moved tothe local
extension (it has no associated base objectghdriransmission of the corresponding
modifications,the object-generated in thdassHOBBIES has not been deletedbut,

rather, has been transformed into a non-derived object.

In the same way that a derived objeoy become non-derived (i.e. the objebat
corresponds triving in the example), a non-derived objectay become derived. If,
following a modification in the clag®EOPLE, it turnsout thatBasketball is defined as the
value of the propertyiobbies of one of the objects, a new objedll wot begenerated in
the class HOBBIES but, instead the non-derived objecill woecome derived, and
associated with its corresponding base objects.

The extension of partially defined class is made uptbe derived extension obtained
from the baselasses anthelocal extension. The objects thfe local extensiormay go
to form part of thederived extension; arttie objects of the derived extensimay pass
over to the local extension.

7.2.2 Extent propagation links

As pointedout in section 6.4.3and 6.4.4, in [Bratsberg, 1992] an approachctass
evolution isput forward.The evolution of theclasses’ intensions and extensions are
considered separately. If we consider the extension aloclass (origin) is related by
means of extent propagation link with another class (destination) if inserting a new object
in theorigin class means that itlivalso have to be included the destination class. The
destination class contaiadl the objects of therigin class, ananayalso contain further
objectsnot added in theorigin class. The objects inoth classesmay have common
properties as well as properties particular to each respective class.

If we consider the extension of the classes, the vapiassbilities whichareallowed by
Bratsberg [Bratsberg, 1992] are set out in pas(b) and €) of fig. 7.3: i.e. inpart @)
classc, is the destination of an extent propagation link whose origin is@la8s can be
seen, class, containsall the extension oflassc,, but notnecessarily alits intension. In
the case depicted part @) extent propagation link cannot be ussithce none of the
classes containall the occurrences of the othelass, although botlblasses possess
common elements.

In order to depict thsituation inpart @) of fig. 7.3 with terminology resemblinghat
used in [Bratsberg, 1992] waefine a new relatiorthe conditional extent propagation
link, which asserts that the occurrences of ¢inigin classmay become occurrences of
the destinatiortlass under certain conditionghis new relationshipnay also bedefined
between classes related imgans okextent propagatiofinks shown in partsg) and @)
of fig. 7.3.

109

“'Cl a) G o "¢ b) -—

G 2o ¢
I:l c SRR
Intension
Extension
propagation - _ T :
link : : : :

—Conditional
extent : , ; :
propagation . : 0 DO :
link

Figure 7.3. Extent propagation between classes.

The extent propagatiolinks setout in [Bratsberg, 1992Hefine the flow of copies of
objectidentifiers between classesSor thederived classes defined by object-generating
semantics we extend this definition, along viltle definition of the conditional extent
propagatiorink, so that instead afefiningtheflow of object identifiers, theyefine the

flow of information between class&3ur cerivation relationship introduced in chapter 6,
defined between a derived or partially derived class and its base atassesponds to a

set of conditional extent propagatioinks. The conditional extent propagatidinks
define the flow of information from the base classes to the derived class and vice-versa.

7.3 A schema-evolution environment

By definition, the information contained ithe externaschemas has to be obtairfezm

the conceptuadchema. The conceptual schema haedlode allthe non-derivealasses
defined inthe datadictionary, and it can also contain derived classes. In the cases in
which non-derived information (inthe form of new non-derived classes partially
derived classes) is required iorder to satisfy the end-users’ newnformation
requirements, this information caot beincluded into an external schem@hout being
previously included into the conceptual schema.

7.3.1 Test environment

In the externakchema desigprocesscontinually new non-derived informatianay be
required to be subsequently rejected; this meansthiratonceptuaschema has to be
continually modified until a final version of the external schema is achieved.

In order toavoid thecontinual modification othe conceptuadchemathe availability of
atest environmernis very useful. In this environmengmporal external schemasin be
defined that include non-derived informatievithout having the conceptuakchema
affected.

110

When atemporal external schema iscapted by the end-userthis schema has to
become a real external scherttee conceptuadchema has to be modified, if necessary,
in order to include the non-derived information of the new schema.

Therefore, thelefinition of partially-derived classes or new non-derived clasgkesnly
affectthe conceptuaschema ifthe decision is made to include them in some external
schema, irother casethey will be exclusivelydefined inthe testenvironment othe data
dictionary.

7.3.2 Evolution of the conceptual schema

Giventhe conceptuaschemaall the externakchemas definedver it, and a temporal
external schema with non-derived information, arder to transform the temporal
external schema into an external schéinedollowing transformations have to be carried
out:

» The conceptual schema is modified in order to embody the non-derived information.

» The temporal external schema becomes an external schema, derived from the
conceptual schema: the non-derived information becomes derived.

» The previously existing external schemas are not affected by this transformation of the
conceptual schema.

The mostimmediate way of achieving thisould be addinghe new non-derived or
partially-derived classes tihe conceptuadchema, as it is made by Ra & Rundensteiner
[Ra & Rundensteiner, 1995] for derivethsses with non-derivgaroperties. But irthis
solution, complex class hierarchies would be obtained with cladsels are notstrictly
necessary.

For example, in fig.7.1 only the new deriveatlassesPEOPLE’ andHOBBIES should be
included intothe conceptuakchema because they domindte schema composed
exclusively by clas®EOPLE; the classPEOPLE would become a derived class. In the
solution proposed by Ra & Rundensteiner, the ¢tassLE would also be included into
the conceptual schema.

As it has been shown ichapter 6, section 6.4.8grived classes can be transformed
directly into non-derived classes and vice vetisapnly element that has to be changed
is the derivation relationship.

In some cases, the classes that will have to be added to the conceptual schema will not be
classes belonging tthe temporal externachema considerebut newclasses defined

from classes previously existing tine conceptuaschema as well as from classes in the
temporal external schemall this process can be carriedit manually,but wethink that

most of it can be carried out automatically. This is one of ours topics of further study.

111

7.3.3 Non-side effect external schemas

The concept ohon-side effect externachema(non-side effect view) is defined by
Gentile & Zicari [Gentile & Zicari, 1994] as an externachema (view) which is re-
computeddynamically so thatonceptual schema modificatioase (whenevepossible)
“filtered out” from applications using the external schema (view).

In thesystem propsed byGentile & Zicari, external schemas have to be transformed in
order to be adapted to timew conceptual schema obtairedter themodifications. In

the system propsed in the present workxternal schemaare alvays non-side effect;
even in this casreviously existing external schemas muat have to be modifiedfter
changes in the conceptual schema have been carried out.

The classes included in external scheara@slasses othe conceptuadchema or classes
derived directly or indirectly from classestbie conceptuadchema. If some class of the
conceptual schemayhich is a base class of some derived class or is included in an
external schema has to be modified, a new class is defineth@pckeviously existing
class isnot affected by this modification. Thenly thing thatcan change is its definition,

it can become a derived class. If ttlass is no longer included intbe conceptual
schema it will remain defined the datadictionary. Therefore, the rest dfsses defined
over it will not be affected by this change.

7.4 Conclusions

External schemas can contain derived classes defined by object-presemwilfaassby
object-generating semantics.

Derived classes offer a new interface of accesh@émformation contained in their base
classes. In a schema evolution environment we consider it necessary to bedableeto
partially derived classes: derived classes which can also contain non-derived elements. If
some class with non-derived information needs tankberporated into some external
schema,the non-derivedinformation wil have to be included intéhe conceptual
schema. The same derivatioperations discussed in chapter 6 can be used to produce
partially derived classes.

Preceding systems of definition of derived clagBestino, 1992;Ra & Rundensteiner,
1995; Naja & Mouaddib, 199%ertino etal., 1996]only allow patrtially derived classes
to be defined by having non-derived elementshm intension: non-derived properties
may bedefined. For this situation, a way opropagating the transformations to the
conceptual schema gesented in [Ra & Rundenstein@f95]. In thesystemproposed
here,partially derived classes can be defined with non-derived elemethis iimtension
as well as in the extension of the class.

Other papers on schema evolution [Skarra & Zdonik, 1888any etal., 1991; Tresch,
1991; Tresch & Scholl, 1992; Monk &ommerville, 1993; Bréche efal., 1995;

Ferrandina eal., 1995] offer suchmechanisms as laayonversion, or class achema
versioning, with elements common tiee derivationrelationship;but they donot offer

the possibilities that derived and partially derived class definition affords.

112

In order toavoid unnecessary modificationstbie conceptual schema the use aést
environment for the definition of temporal external schemas haspbepased. Wen an
external schema with non-derived information is to be defitiel,conceptuaschema
has to be modified in order to include the non-derived information of the new schema.

External schemas definedtime environment presented heage non-sideffect external
schemas, they are not affected by modifications carried out in the conceptual schema.

113

114

8 Conclusions

Giventhe importance andsefulness of having an external schema definiienhanism
in OODB, this thesis has godeeply into this subject. A new external schetafnition
methodology has been presented thdfils the ANSI/SPARCthree-level schema
architecture. Most of the concepts usethis methodologyre notnew -however, what
is new is the defined combination and also the consequent results.

8.1 Main results
The main contributions of this thesis are the following:

* Proposal of a new externachema definition methodology according to the
ANSI/SPARC frameworkwhich in OODBs hadnot beentaken into accountThis
methodology considerably sitifigs the process oflefinition of external schemas.
The defined methodology isot particular toany object oriented model, it uses
common concepts to most of the existing object oriented models.

* The new external schenafinition methodology offers a solution tioe problem of
integration of derived classes withe rest of theexisting classes in object schemas.
Integration is made itwo phases: first, into theéatadictionary; then, intdhe defined
external schema. The solutigut forwardreduces thenumber of auxiliary classes
that must be generated order to carry out the integration in respect to other
alternative solutions

» Definition of the new concepts ofransformable and non-transformable classes.
Transformable classes can be automatically modified, hence avditngeed to
explicitly define all the classes that want toinclude intothe externaschema. It has
been showiow thetransformable and non-transformable clessceptssimplify the
external schema definition process.

» Study of thedefinition of classes with object-preserving and object-generating
semantics, in particular, study thfe problem of generation of object identifieBoth
objectdefinition semanticare dealt with in an integrated way. New objeuty be
defined fromthe association opreviously existing objects, just as from values of
existing objects’properties -transformation ofalues into objectsUnlike previous
works, adistinction has been made betweka identifier generatiormechanism and
the mechanisnfor maintainingthe connection between the objects of the lotesses
and the objects of the derived classes.

115

* A solution for theproblem of transmission of modifications between base and derived
classes has begmoposed. The solution that maveput forward is aradaptation to
our environment othe proposamade in[Bratsberg, 1992hich solves some of the
inconveniences obther alternatives. The derivation relationship contaims initial
definition of the objects of the deriverdass as well as set of operatiortonsistency
relations that definbow therelationships betweetine base objects and tderived
objects change with the modification operations.

* In order to satisfy the end-user’'s requirements of nemformation in a schema
evolution environment we haveqgmosed thalefinition of partially derived classes:
classes thatay contain derived information agell asnon-derived information. The
base classesmre updated witlall the newinformation that they can contain arising out
of the partially derived classe3he partially derived classasay contain non-derived
information inthe intension ananoreoverunlike othersystems, irthe extension. The
objects of thepartially derived classaway cease to be derived or become derived in
response to the modifications.

» The information contained in the external schemas must be a subseinération
contained in the conceptusthema. If we want toclude partially derived classes in
some external schemi&ie non-derivednformation contained in such classes must be
included inthe conceptuadchemathat is tosay,the conceptuadchema must evolve.

In order to avoid unnecessary modifications of the conceptual schema the usstof a
environment for the definition of temporal external schemas has been proposed.

» Thedefinition of DCMs usingProlog in order tespecify differentaspects of OODBs
has beermproposed. The result of ttepecificationprocessusing this technique is an
executableprototype of thesystem. The use of this technique has beeposed
mainly due to thedifficulty of building prototypes of thenentioned elementsver
commercial OODBs.

8.2 Future work

Some of the topics of interest for future work are as follows:

» Study the subsumptiorelationships between class&efine asubsumes(junction
for a specific object model, i.e. BLOOM.

» Study the problem of determinirtige relative information capacitior object-oriented
models, that is to say, study the subsumption relationships between object schemas.

» If some temporal external schema containing non-derived information (new non-
derived classes and/or partially derived classes) is to be defined as an external schema,
the conceptuakchema has to be modified order to embodythe non-derived
information. Algorithms that automatically carput this process are going to be
proposed.

116

» Extend the externadchema definition methodology wrder to adapt it to use the
concepts of richer object oriented models as BLOOM [Castellarads &892].

117

118

Appendix A. Conceptual schema definition DCM

The following is the source code of the conceptual schema definition DCM developed:

CS_DEF.DAT
Input file.

csdefine(type("person",[]))
csdefine(typeproperty(“person”,"name",[type("string")]))
csdefine(typeproperty(“person”,"address",[setclass("addresses")]))
csdefine(type("employee",["person"]))
csdefine(typeproperty("employee”,"category"”,[type("string")]))
csdefine(typeproperty("employee”,"salary",[type("integer")]))
csdefine(type("address",[]))
csdefine(typeproperty("address”,"city",[type("string")]))
csdefine(class("people”,"person”,[]))
csdefine(class("clients","person”,["people"]))
csdefine(class("employees","employee”,["people"]))
csdefine(class("addresses","address",[]))

CS.DEF
Output file.

csproperty(50,"name",86)
csproperty(51,"address"”,87)
csproperty(52,“category",88)
csproperty(53,“salary"”,89)
csproperty(54,"“city",90)
cstype(37,"any",[1,[1,77)
cstype(38,"real",[37],[],78)
cstype(39,"integer",[38],[],79)
cstype(40,"character”,[39],[],80)
cstype(41,"string",[37],[],81)
cstype(43,"person”,[37],[51,50],83)
cstype(44,"employee",[43],[51,50,53,52],84)
cstype(45,"address",[37],[54],85)
cstypeproperty(43,50,[t(41)],91)
cstypeproperty(43,51,[c_(49)],92)
cstypeproperty(44,52,[t(41)],93)
cstypeproperty(44,53,[t(39)],94)
cstypeproperty(45,54,[t(41)],95)
cstypeproperty(44,50,[t(41)],112)
cstypeproperty(44,51,[c_(49)],112)
csclass(42,"objects",37,[],[49,46],82)
csclass(46,"people",43,[42],[48,47],96)
csclass(47,"clients",43,[461,[1,97)
csclass(48,"employees”,44,[46],[],98)
csclass(49,"addresses",45,[42],[1,99)

119

CS_GLDOM.PRO

global domains

file = idFile; timeFile; objectFile
id = integer

idList =id*

time = integer

domain = t(id); c(id); t_(id); c_(id)
signature = domain*

signatures = signature*

propertyName = symbol
typeName = symbol
className = symbol

120

CS_GLPRE.PRO

/
global predicates
/
Access to base facts.
/
propertyName(id,propertyName,time) -
(i,i,i)(i,0,i)(0,i,i)(0,0,i)
typeName(id,typeName,time) -
(i,i,i)(i,0,i)(0,i,i)(0,0,i)
typeSupertypes(id,idList,time) -
(i,i,i)(i,0,i)(0,i,i)(0,0,i)
typeAllProperties(id,idList,time) -
(i,i,i)(i,0,i)(0,i,i)(0,0,i)
typePropertyAtT(id,id,time) -
(i,i,i)(i,i,0)(i,0,i)(i,0,0)
(0,i,i)(0,i,0)(0,0,i)(0,0,0)
typeProperty(id,id,time) -
(i,i,i)(i,0,i)(0,i,i)(0,0,i)
typePropertySignature(id,id,signature,time) -
(i,i,i,i) (i,i,0,i)(i,0,i,i)(i,0,0,i)
(0,i,i,i)(0,i,0,i)(0,0,i,i)(0,0,0,i)
newTypeProperty(id,id,signature,time) -
(i,i,i,i)
className(id,className,time) -
(i,i,i)(i,0,i)(0,i,i)(0,0,i)
classSuperclasses(id,idList,time) -
(i,i,i)(i,0,i)(0,i,i)(0,0,i)
classType(id,id,time) -
(i,i,i)(i,0,i)(0,i,i)(0,0,i)
assertzTmpldList(idList) -
(i
retractTmp_IdList(idList) -
()(0)
/
Inconsistency verification.
/
inconsistency(time) -
|
inconsistencyZ(time) -
0]
/
Signatures.
/
signatureExtrictSubdomains(signature,signature,time) -
(i,i,i)
/
Types.
/
supertype(id,id,time) -
(i,i,i)
directSupertype(id,id,time) -
(i,i,i)
indirectSupertype(id,id,time) -
(i,i,i)
supertypeOfSomeOne(id,idList,time) -
(i,i,i)
redundantSupertypes(idList,time) -
(i.0)
typelnheritanceWithSomeOne(id,idList,time) -
(i,i,i)
typelnheritance(id,id,time) -
(i,i,i)

commonTypeProperty(id,id,id,time) -

121

(i,i,i,i)
sameTypeOrSubtype(id,idList,time) -
(ii,i)
deriveTypeProperties(id,idList,time) -
(i,0,i)
definedLowestCommonSupertype(id,id,time) -
(i,i,i)
lowestCommonSupertype(id,id,id,time) -
(i,i,i,i) (i,i,0,1)
greatestCommonSubtype(id,id,id,time) -
(i,i,i,i) (i,i,0,1)

Classes.

superclass_(iq_,id,time) -
directSupe(}};’lgss(id,id,time) -
indirectSugg’rzlass(id,id,time) -
superclass(g%%omeOne(id,idList,time) -
redundant(Sftgerclasses(idList.time) -
classlnherE;’%l)nceWithSomeOne(id,idList.time) -
classlnher?téfr?ce(id,id.time) -
commonCE;ggProperty(id,id,id,time) -
cIassesTyggg’(Ii)ciList,idList,time) -
derivec(lléos‘_;)SL_chlasses(id,idList.time) -
definedLO\(/;lg_s’It)CommonSupercIass(id,id.time) -
IowestCon(wlr":{gnSuperclass(id.id,id.time) -
(i,i,i,0)(i,i,0,i)
greatestCommonSubclass(id,id,id,time) -

(1,1,1,1)(i,i,0,i)

System primitives

Generate system identifier.

*
generateld(id) -
(0)

Get system time.

*
now(time) -

(0)

Id lists.

An Id is member of a list of Ids.

memberld(id,idList) -
@i.i)

Add a new Id to an Id list only if it is not included
yet.
*

addNewld(idList,id,idList) -
(i,i,0)

Intersection of two lists of identifiers.
*/

intersectionldList(idList,idList,idList) -
(i,i,0)

122

/*

Equal lists.
*

equalldList(idList,idList) -
(i.i)

/*

All the elements of a list are contained in another
list.
*/

allContainedldList(idList,idList) -
(i.i)

123

CS.PRO
Conceptual Schema Definition.

code = 4096

include "cs_gldom.pro"

domains
supertypes = typeName*
superclasses = className*
domainName = type(typeName);
class(className);
settype(typeName);
setclass(className)
signatureName = domainName*
csDefinitionTerm = type(typeName,supertypes);
typeProperty(typeName,propertyName,signatureName);
class(className,typeName,superclasses);
consulterror;
error
database

tmpldList(idList)
error(csDefinitionTerm)
csDefine(csDefinitionTerm)

csDefineClassName(id,className)
csDefineTypeName(id,typeName)
csDefineClass(id,className,id,idList,time)
csDefineType(id,typeName,idList,time)

csProperty(id,propertyName,time)
csType(id,typeName,idList,idList,time)
csTypeProperty(id,id,signature,time)
csClass(id,className,id,idList,idList,time)

include "cs_glpre.pro"

predicates
conceptualSchemaDefinition
systemComponentDefinition
nameDefinition
typeDefinition
supertypeNames2lds(supertypes,idList)
typeRoot(idList,idList)
propertyDefinition
typePropertyDefinition
signatureNames2lds(signatureName,signature)
classDefinition
superclassNames2lds(superclasses,idList)
classRoot(idList,idList)
removeDefinitionTerms
deriveDirectSubclassRelationship
deriveAllTypeProperties

goal
makewindow(1,7,7,",0,0,25,80),

write("\n Defining the Conceptual Schema..."),
conceptualSchemaDefinition,

write("\n\n\n To finish press the space bar, please."),
readchar(_),
removewindow.

clauses

124

Access to base facts.

propertyName(ldP,Property,T) :-
csProperty(IdP,Property,T1),
T1<=T.

typeName(ldT,Type,T) :-
csDefineType(IdT,Type,_,T1),
T1<=T.

typeSupertypes(IdT,IdTs,T) :-
csDefineType(IdT,_,1dTs,T1),
T1<=T.

typeAllProperties(1dT,IdPs,T) :-
csType(ldT,_, ,1dPs,T1),
Tl<=T.

typePropertyAtT(IdT,IdP,T) :-
csTypeProperty(IdT,IdP,_,T).

typeProperty(IdT,IdP,T) :-
csTypeProperty(IdT,IdP,_,T1),
T1<=T.

typePropertySignature(IdT,IdP,Signature,T) :-
csTypeProperty(ldT,IdP,Signature,T1),
T1<=T.

newTypeProperty(ldT,IdP,Signature,T) :-
assertz(csTypeProperty(ldT,ldP,Signature,T)),
|

className(ldC,Class,T) :-
csDefineClass(IdC,Class,_,_,T1),
T1<=T.

classSuperclasses(ldC,IdCs,T) :-
csDefineClass(ldC,_, ,1dCs,T1),
T1<=T.

classType(ldC,IdT,T) :-
csDefineClass(ldC,_,IdT,_,T1),
T1<=T.

assertzTmpldList(ldList) :-
assertz(tmpldList(ldList)),
|

retractTm;.)-IdList(IdList) -
retract(tmpldList(ldList)),
R

Conceptual Schema definition.

conceptualSchemaDefinition :-
assertz(error(consulterror)),
consult("cs_def.dat"),
retract(error(consulterror)),

systemComponentDefinition,
nameDefinition,
typeDefinition,
propertyDefinition,
typePropertyDefinition,
classDefinition,

not(error(_)),

now(T),
not(inconsistency(T)),
deriveDirectSubclassRelationship,
deriveAllTypeProperties,
now(T2),
not(inconsistency2(T2)),

removeDefinitionTerms,
save("cs.def"),
write("\n\n Conceptual Schema defined."),
1
conceptualSchemaDefinition :-
error(consulterror),

write("\n\n DEOOO: Sintax error in the input file."),
I

125

conceptualSchemaDefinition :-
(B

/*

Remove temporal definition terms in order to
mantain just the Conceptual Schema definition terms.
*/

removeDefinitionTerms :-
retract(csDefine()),
fail.

removeDefinitionTerms :-
retract(csDefineClassName(_,_)),
fail.

removeDefinitionTerms :-
retract(csDefineTypeName(_,)),
fail.

removeDefinitionTerms :-
retract(csDefineClass(_,_,_,_,_)),
fail.

removeDefinitionTerms :-
retract(csDefineType(_,_,_,_)),
fail.

removeDefinitionTerms :-
.

System components definition.

systemComponentDefinition :-
now(T1),
generateld(IdA),
assertz(csDefineType(IdA,any,[],T1)),
assertz(csDefineTypeName(ldA,any)),

now(T2),

generateld(ldR),
assertz(csDefineType(IdR,real,[IdA], T2)),
assertz(csDefineTypeName(ldR,real)),

now(T3),

generateld(ldl),
assertz(csDefineType(ldl,integer,[IdR], T3)),
assertz(csDefineTypeName(ldl,integer)),

now(T4),

generateld(ldCh),
assertz(csDefineType(IdCh,character,[1dl], T4)),
assertz(csDefineTypeName(ldCh,character)),

now(T5),

generateld(ldS),
assertz(csDefineType(ldS,string,[IdA], T5)),
assertz(csDefineTypeName(ldS,string)),

now(T6),

generateld(ldCl),
assertz(csDefineClass(IdCl,objects,|dA,[], T6)),
assertz(csDefineClassName(ldCl,objects)),

|

Temporal definition of names, this way there can be crossed
references.

/

nameDefinition :-
csDefine(type(Name,A_)),
not(error(_)),
assertz(error(type(Name,A_))),
not(csDefineTypeName(_,Name)),
retract(error(type(Name,A_))),
generateld(ldT),
assertz(csDefineTypeName(IdT,Name)),
fail.

nameDefinition :-
csDefine(class(Name,A_,B_)),
not(error(_)),
assertz(error(class(Name,A_,B_))),

126

not(csDefineClassName(_,Name)),
retract(error(class(Name,A_,B))),
generateld(ldC),
assertz(csDefineClassName(ldC,Name)),
fail.

nameDefinition :-
error(Term),
write("\n\n DEOO1: Type or class name already defined in:\n ", Term),
retract(error(Term)),
assertz(error(error)),
|

nameDefinition :-
.

Initial Type definition.

/*

typeDefinition :-
csDefine(type(Name,Supertypes)),
csDefineTypeName(IdT,Name),
not(error(_)),
assertz(error(type(Name,Supertypes))),
supertypeNames2lds(Supertypes,|dTSTMP),
typeRoot(IdTsTMP,IdTs),
retract(error(type(Name,Supertypes))),
now(T),
assertz(csDefineType(ldT,Name,ldTs,T)),
fail.
typeDefinition :-
error(type(_,_)),
error(Term),
write("\n\n DE002: Supertype name not defined in:\n ", Term),
|

typeDefini.tion -
R

Conversion from a list of supertype names to a list
of Ids.

/*

*
supertypeNames2Ids([],[]) :-

L
supertypeNames2lds([Name|L1],[IdT|L2]) :-

csDefineTypeName(IdT,Name),
supertypeNames2lds(L1,L2).

Add the type "any" as the parent of a type if it
hasn't any one specified.

*

typeRoot([],[IdA]) :-
csDefineTypeName(IdA,any),
|

typeRoot(I.c-iTs,Ide) -
I

Initial Property definition.

propertyDefinition :-
csDefine(typeproperty(_,Name,_)),
not(csProperty(_,Name,_)),
now(T),
generateld(ldP),
assertz(csProperty(IdP,Name,T)),
fail.

propertyDefinition :-
I

Initial Type Property definition.

typePropertyDefinition :-
csDefine(typeproperty(Type,Property,Signature)),
not(error(_)),

127

/*

assertz(error(typeproperty(Type,Property,Signature))),
csDefineTypeName(ldT,Type),
csProperty(ldP,Property,_),
signatureNames2lds(Signature,ldSs),

retract(error(typeproperty(Type,Property,Signature))),

now(T),

assertz(csTypeProperty(ldT,IdP,IdSs,T)),

fail.

typePropertyDefinition :-

error(typeproperty(_,_,_)),

error(Term),

write("\n\n DEO0O03: Type or class not defined in:\\n ", Term),

|

typePrope.r-tyDefinition -
L

Conversion from a signature list of domain names to
a signature list of Ids.

*

signatureNames2Ids([],[]) :-
[

signatureNames2Ids([type(Name)|L1],[t(IdT)|L2]) :-
csDefineTypeName(IdT,Name),
signatureNames2lds(L1,L2).
signatureNames2lds([settype(Name)|L1],[t_(IdT)|L2]) :-
csDefineTypeName(IdT,Name),
signatureNames2lds(L1,L2).
signatureNames2lds([class(Name)|L1],[c(IdC)|L2]) :-
csDefineClassName(IdC,Name),
signatureNames2lds(L1,L2).
signatureNames2lds([setclass(Name)|L1],[c_(IdC)|L2]) :-
csDefineClassName(IdC,Name),
signatureNames2lds(L1,L2).

Initial Class definition.

/*

classDefinition :-
csDefine(class(Class, Type,Superclasses)),
csDefineClassName(ldC,Class),
not(error(_)),
assertz(error(class(Class, Type,Superclasses))),
csDefineTypeName(ldT,Type),
superclassNames2lds(Superclasses,|dCsTMP),
classRoot(IdCsTMP,IdCs),
retract(error(class(Class, Type,Superclasses))),
now(T),
assertz(csDefineClass(ldC,Class,|dT,ldCs,T)),
fail.
classDefinition :-
error(class(_,_,_)),
error(Term),
write("\n\n DE004: Type or superclass name not defined in:\n ", Term),
|

classDefinition :-
R

Conversion from a list of superclass names to a
list of Ids.

*

/*

superclassNames2Ids([],[]) :-
|

superclaséNamesZIds([Name|L1],[|dC|L2]) -
csDefineClassName(IldC,Name),
superclassNames2lds(L1,L2).

Add the class "objects" as the parent of a type if
it hasn't any one specified.
*

classRoot([],[IdCI]) :-
csDefineClassName(ldCl,objects),
|

cIassRoot(idCs,ldCs) -
[}

128

Subclass relationship derivation.

deriveDirectSubclassRelationship :-
csDefineClass(ldC,Class,IdT,ldUs,T),
now(T1),
deriveClassSubclasses(ldC,ldDs,T1),
assertz(csClass(ldC,Class,|dT,ldUs,|dDs,T)),
fail.

deriveDirectSubclassRelationship :-
[

Type properties derivation.

deriveAllTypeProperties :-
csDefineType(ldT, Type,|dTs,T),
now(T1),
deriveTypeProperties(IdT,|dPs,T1),
assertz(csType(IdT,Type,ldTs,|dPs,T)),
fail.

deriveAllTypeProperties :-
1

include "cs_incon.pro"
include "cs_signa.pro"
include "cs_types.pro"
include "cs_class.pro"

include "oom_syst.pro"
include "oom_list.pro"

129

CS_INCON.PRO
Inconsistency verification.

clauses

/*

A property can only be defined once in a type.
*

inconsistency(T) :-
typePropertyAtT(IdT,IdP,T1),
typePropertyAtT(IdT,IdP,T2),
T1<>T2,
T1<=T,
T2<=T,

typeName(ldT,Type,T),
propertyName(IdP,Property,T),
write("\n\n INOO1: Property ",Property,

" defined more than once in type ", Type,"."),

/*

A type can't be its own supertype.

inconsistency(T) :-
typeName(ldT,Type,T),
supertype(ldT,IdT,T),
write("\n\n INOO2: Type ", Type," can't be its own supertype."),
|

/*

There can't be redundant supertypes in a type
definition.
*/

inconsistency(T) :-
typeSupertypes(IdT,IdTs,T),
redundantSupertypes(IdTs,T),
typeName(ldT,Type,T),
write("\n\n INOO3: Type ", Type," has redundant supertypes."),

/*

A property can't be defined in two subtypes not
related by inheritance.
*

inconsistency(T) :-
typeProperty(IdT1,1dP,T),
typeProperty(IdT2,1dP,T),
1dT1 <> 1dT2,
not(typelnheritance(ldT1,1dT2,T)),
not(commonTypeProperty(IdT1,1dT2,1dP,T)),

typeName(ldT1,Typel,T),

typeName(ldT2,Type2,T),

propertyName(ldP,Property,T),

write("\n\n INOO4: Property ",Property," is defined in types ",
Typel," and ", Type2,
"\n but they are not related by inheritance."),

/*

The domains of the property functions redefined in

a subtype must be contained within the domains of

the respective property functions of the supertype.
*/

inconsistency(T) :-
typePropertySignature(IdT1,ldP,Signaturel,T),
typePropertySignature(IdT2,ldP,Signature2,T),
1dT1 <> 1dT2,
supertype(ldT2,1dT1,T),
not(signatureExtrictSubdomains(Signaturel,Signature2,T)),

typeName(ldT1,Typel,T),

typeName(ldT2,Type2,T),

propertyName(IdP,Property,T),

write("\n\n INOO5: Property ",Property," is defined in types ",

130

/*

Typel," and ", Type2,"\n related by inheritance, but the ",
"respective domains are not extrict\n subdomains."),

A class can't be its own superclass.

/*

*/

inconsistency(T) :-
className(ldC,Class,T),
superclass(ldC,IdC,T),

write("\n\n INO11: Class ",Class," can't be its own superclass."),
1

There can't be redundant superclasses in a class
definition.

/*

*/

inconsistency(T) :-
classSuperclasses(ldC,IdCs,T),
redundantSuperclasses(IdCs,T),

className(ldC,Class,T),

write("\n\n INO12: Class ",Class," has redundant superclasses."),
I

All Superclass types of a class have to be
supertypes or the same type that the one of the
class.

*/

/*

inconsistency(T) :-
className(ldCobjects,objects,T),
classType(ldC,IdT,T),
IdC <> IdCobjects,
classSuperclasses(ldC,IdCs,T),
classesTypes(ldCs,IdTs,T),
not(sameTypeOrSubtype(ldT,IdTs,T)),

className(ldC,Class,T),
typeName(ldT,Type,T),
write("\n\n IN013: Some superclass of ",Class,
" has an incompatible type\n with ", Type,"."),

If two classes share properties, they have to be
inherited from a common class.

/*

*/

inconsistency(T) :-
classType(ldC1,IdT1,T),
classType(1dC2,1dT2,T),
IdC1 <> IdC2,
typeProperty(IdT1,1dP,T),
typeProperty(1dT2,1dP,T),
not(classlinheritance(IdC1,ldC2,T)),
not(commonClassProperty(IdC1,I1dC2,IdP,T)),

className(IdC1,Class1,T),

className(IdC2,Class2,T),

propertyName(ldP,Property,T),

write("\n\n INO14: Property ",Property," is defined in classes ",
Class1," and ",Class2,
"\n but they are not related by inheritance."),

Type Closure: "A type specialization hierarchy is
said to be closed under intersection, if and only
if for any two types t1, t2, there exists a third
type t which has exactly all properties common to
tl and t2: t = intersection(t1,t2)".

*

inconsistency2(T) :-
typeName(ldT1,Typel,T),
typeName(ldT2,Type2,T),
1dT1 <> 1dT2,
not(definedLowestCommonSupertype(ldT1,1dT2,T)),

write("\n\n INOO6: Type hierarchy not closed, the lowest common \n",

" supertype of ", Typel," and ", Type2," does not exist."),
1

131

/*

Class Hierarchy Closure: "A class hierarchy is said
to be closed under intersection if and only if for
any two classes C1 and C2, there must exist a third
class C3 which type is the intersection of C1 and
C2 types, and its content contents the union of the
respective contents". C3 = intersection(C1,C2).

*

inconsistency2(T) :-
className(IdC1,Class1,T),
className(IdC2,Class2,T),
IdC1 <> IdC2,
not(definedLowestCommonSuperclass(ldC1,ldC2,T)),

write("\n\n INO15: Class hierarchy not closed, the lowest common \n",

" superclass of ",Class1," and ",Class2," does not exist."),
[

132

CS_SIGNA.PRO
Signatures.

predicates
subdomain(signature,signature,time)
extrictSubdomainCondition(signature,signature,time)

signatureslintersection(signatures,signature,time)
domainlintersection(signature,signature,signature,time)
domainUnion(signature,signature,signature,time)

clauses

/*
The first signature domains are extrict subdomains
of the second signature given ones.
*
signatureExtrictSubdomains(Signaturel,Signature2,T) :-
subdomain(Signaturel,Signature2,T),

extrictSubdomainCondition(Signaturel,Signature2,T),
(B

/*

The first domain is subdomain of the second one.

*

subdomain([] 0. -
subdomam([Doma|n|L1] [Domain|L2],T) :-

subdomam(Ll L2,T).
subdomain([t(D1)|L1],[t(D2)|L2],T) :-

supertype(D2,D1,T),

|

subdomain(L1,L2,T).
subdomain(ft_(D1)|LL][t_(D2)|L2],T) =

supertype(D2,D1,T),

|

subdomain(L1,L2,T).
subdomain(t(LILL}{t_(PDIL2],T)

subdomam(Ll L2,T).
subdomain([t(D1)|L1],[t_(D2)|L2],T) :-

supertype(D2,D1,T),

|

subdomain(L1,L2,T).
subdomain([c(D1)|L1],[c(D2)|L2],T) :-

superclass(D2,D1,T),

|

subdomain(L1,L2,T).
subdomain([c_(D1)|L1],[c_(D2)|L2],T) :-

superclass(D2,D1,T),

|

subdomain(L1,L2,T).
subdomam([c(Dl)|L1] [c_(D1)|L2],T) :-

subdomam(Ll L2,T).
subdomain([c(D1)|L1],[c_(D2)|L2],T) :-

superclass(D2,D1,T),

L

subdomain(L1,L2,T).

/*

If the first domain is subdomain of the second one,
and this condition is true, the first subdomain is
EXTRICT subdomain of the second one.
*/
extrictSubdomainCondition([D|L1],[D|L2],T) :-
extrictSubdomainCondition(L1,L2,T),
I
extrictSubdomainCondition([t(D1)|_],[t(D2)|_],T) :-
supertype(DZ D1,T),

extrlctSubdomalnCondmon([t (DY)|_1.[t_(D2)|_1,T) :-
supertype(DZ D1,T),

extrictSubdomalnCondltlon([t(D1)|_],[t_(Dl)u,_) -

133

extrictSubaomainCondition([t(D1)|_],[t_(D2)|J,T) -
supertype(D2,D1,T),
I

extrictSubdomainCondition([c(Dl)u,[c(DZ)u,T) -
superclass(D2,D1,T),
|

extrictSubdomainCondition([c_(Dl)u,[c_(DZ)U,T) -
superclass(D2,D1,T),
|

extrictSubdomainCondition([c(Dl)u,[c_(Dl)u,_) -
|

extrictSubdomainCondition([c(Dl)u,[c_(D2)|J,T) -
superclass(D2,D1,T),
|

extrictSubdomainCondition(L|Ll],L|L2],T) -
extrictSubdomainCondition(L1,L2,T).

/*
Given a set of signatures, obtains the signature
intersection of them.
*
signaturesintersection([Signature],Signature,_) :-
R
signatureslintersection([Sig1|S],Signature,T) :-
signatureslintersection(S,Sig2,T),
domainlintersection(Sigl,Sig2,Signature,T).
/*
Given two domains, gets the domain intersection
of them.
*
domainlintersection([],[1.[1,_) :-
L
domainlintersection([D|L1],[D|L2],[D|L3],T) :-
L
domainlintersection(L1,L2,L3,T).
domainlintersection([t(D1)|L1],[t(D2)|L2],[t(D3)|L3],T) :-
greatestCommonSubtype(D1,D2,D3,T),
L
domainlintersection(L1,L2,L3,T).
domainlintersection([t_(D1)|L1],[t_(D2)|L2],[t_(D3)|L3],T) :-
greatestCommonSubtype(D1,D2,D3,T),
L
domainlintersection(L1,L2,L3,T).
domainlintersection([t(D1)|L1],[t_(D2)|L2],[t(D3)|L3],T) :-
greatestCommonSubtype(D1,D2,D3,T),
L
domainlintersection(L1,L2,L3,T).
domainlintersection([t_(D1)|L1],[t(D2)|L2],[t(D3)|L3],T) :-
greatestCommonSubtype(D1,D2,D3,T),
L
domainlintersection(L1,L2,L3,T).
domainlintersection([c(D1)|L1],[c(D2)|L2],[c(D3)|L3],T) :-
greatestCommonSubclass(D1,D2,D3,T),
L
domainlintersection(L1,L2,L3,T).
domainlintersection([c_(D1)|L1],[c_(D2)|L2],[c_(D3)|L3],T) :-
greatestCommonSubclass(D1,D2,D3,T),
L
domainlintersection(L1,L2,L3,T).
domainlintersection([c(D1)|L1],[c_(D2)|L2],[c(D3)|L3],T) :-
greatestCommonSubclass(D1,D2,D3,T),
L
domainlintersection(L1,L2,L3,T).
domainlintersection([c_(D1)|L1],[c(D2)|L2],[c(D3)|L3],T) :-
greatestCommonSubclass(D1,D2,D3,T),
L
domainlintersection(L1,L2,L3,T).
/*

Given two domains, gets the domain union of them.
*/

domainUnion([],[1,[1,_) :-
L
domainUnion([D|L1],[D|L2],[D|L3],T) :-
L
domainUnion(L1,L2,L3,T).

domainUnion([t(D1)|L1],[t(D2)|L2],[t(D3)|L3],T) :-
lowestCommonSupertype(D1,D2,D3,T),
R

134

domainUnion(L1,L2,L3,T).
domainUnion([t_(D1)|L1],[t_(D2)|L2],[t_(D3)|L3],T) :-

lowestCommonSupertype(D1,D2,D3,T),

|

domainUnion(L1,L2,L3,T).

domainUnion([t(D1)|L1],[t_(D2)|L2].[t_(D3)|L3],T) :-
lowestCommonSupertype(D1,D2,D3,T),
!

domainUnion(L1,L2,L3,T).

domainUnion([t_(D1)|L1],[t(D2)[L2].[t_(D3)|L3],T) :-
lowestCommonSupertype(D1,D2,D3,T),
|

domainUnion(L1,L2,L3,T).

domainUnion([c(D1)|L1],[c(D2)|L2],[c(D3)|L3],T) :-
lowestCommonSuperclass(D1,D2,D3,T),
!

domainUnion(L1,L2,L3,T).
domainUnion([c_(D1)|L1],[c_(D2)|L2],[c_(D3)|L3],T) :-

lowestCommonSuperclass(D1,D2,D3,T),

|

domainUnion(L1,L2,L3,T).
domainUnion([c(D1)|L1],[c_(D2)|L2],[c_(D3)|L3],T) :-

lowestCommonSuperclass(D1,D2,D3,T),

|

domainUnion(L1,L2,L3,T).
domainUnion([c_(D1)|L1],[c(D2)|L2],[c_(D3)|L3],T) :-

lowestCommonSuperclass(D1,D2,D3,T),

|

domainUnion(L1,L2,L3,T).

135

CS_TYPES.PRO
Types.

predicates
deriveTypeProperty(id,time)
typeProperties(id,id,signature,time)
typelnheritedProperties(id,id,signature,time)
inheritedProperty(id,id,time)
propertySignatureslintersection(idList,id,signature,time)
signaturesOfTypes(idList,id,signatures,time)
typePropertiesDomainUnion(id,id,id,idList,time)
lowerCommonSupertype(id,id,id,time)
greaterCommonSubtype(id,id,id,time)

clauses

/*

The first type is supertype of the second one.
*

supertype(ldT1,ldT2,T) :-
directSupertype(IdT1,1dT2,T),
|

supertypeddTl,lde,T) -
indirectSupertype(IdT1,1dT2,T),
I

/*

The first type is direct supertype of the second
one.
*/

directSupertype(IdT1,1dT2,T) :-
typeSupertypes(IdT2,1dTs,T),
memberld(IdT1,ldTs),
1

/*

The first type is indirect supertype of the second
one.
*/

indirectSupertype(IdT1,1dT2,T) :-
typeSupertypes(IdT2,1dTs,T),
supertypeOfSomeOne(ldT1,IdTs,T),
[}

/*

A type is supertype of some one of the types included
in the list.
*
supertypeOfSomeOne(IdT1,[IdT2|_],T) :-
supertype(ldT1,1dT2,T),
|

supertypebeomeOne(ldT,L|L],T) -
supertypeOfSomeOne(ldT,L,T).

/*

There is some redundant supertype in a list of types.
*/

redundantSupertypes([Id|L],_) :-
memberld(ld,L),
|

redundantéupertypes([ld|L],T) -
typelnheritanceWithSomeOne(ld,L,T),
!

redundantéupertypes(UL],T) -
redundantSupertypes(L,T).

/*

There is some inheritance relationship between a
given type and any one of a list.

*/
typelnheritanceWithSomeOne(IdT1,[IdT2|_],T) :-
typelnheritance(IdT1,1dT2,T),

|

typelnheritémceWithSomeOne(IdT,L|L],T) -
typelnheritanceWithSomeOne(IdT,L,T).

136

/*

There is an inheritance relationship between the
given types.

*
typelnheritance(ldT1,1dT2,T) :-
supertype(1dT1,1dT2,T),
!

typelnherifﬁnce(IdTl,IdTZ,T) -
supertype(1dT2,1dT1,T),
I

/*

The property is defined in a type common to both
of the types given.

*/
commonTypeProperty(1dT1,1dT2,1dP,T) :-
typeProperty(IdT3,IdP,T),
1dT1 <> IdT3,
1dT2 <> IdT3,
supertype(ldT3,1dT1,T),
supertype(ldT3,1dT2,T),
|

/*

A type is subtype of all the types of a list, or
it's the same type.

*

sameTypeOrSubtype(IdT,[IdT],_) :-
|

sameTypeOrSubtype(IdT,[IdT2],T) -
supertype(ldT2,1dT,T),
|

sameTypeOrSubtype(IdT,[IdT|L],T) :-
L
sameTypeOrSubtype(ldT,L,T).
sameTypeOrSubtype(IdT,[IdT2|L],T) :-
supertype(ldT2,1dT,T),
|

gameTypeOrSubtype(IdT,L,T).

/*

Given a type obtains the list of properties that it
has.

*/
deriveTypeProperties(ldT,IdPs,T) :-
assertzTmpldList([]),
deriveTypeProperty(IdT,T),
retractTmpldList(IdPs),
I

/*
Given a type stores the list of properties that it
has.

*/

deriveTypeProperty(IdT,T) :-
typeProperties(ldT,IdP,_,T),
retractTmpldList(IdPs),
assertzTmpldList([IdP|IdPs]),
fail.

deriveTypeProperty(_,_) :-
[

/*

Properties of a type (local or inherited).
*/
typeProperties(IdT,IdP,Signature,T) :-
typePropertySignature(ldT,ldP,Signature,T).
typeProperties(ldT,ldP,Signature,T) :-
typelnheritedProperties(IdT,IdP,Signature,T).

/*

Inherited properties of a type.

*/
typelnheritedProperties(IdT,IdP,Signature,T) :-
typeSupertypes(IdT,IdTs,T),
propertyName(ldP,_,T),
inheritedProperty(IdT,IdP,T),
propertySignaturesintersection(IdTs,IdP,Signature, T),
newTypeProperty(IdT,IdP,Signature,T).

137

/*

A property is inherited.
*

/*

inheritedProperty(IdT,IdP,T) :-
not(typeProperty(IdT,IdP,T)),
typeProperty(1dT2,1dP,T),
supertype(IdT2,IdT,T),
|

Intersection of the signatures of a property for a
set of types.
*/

/*

propertySignaturesintersection(ldTs,|dP,Signature,T) :-
signaturesOfTypes(ldTs,ldP,Signatures,T),
signatureslintersection(Signatures,Signature,T).

Given a set of types and a property, returns the
set of signatures of this property for the different
types.

*/
signaturesOfTypes([],_,[I,_) :-

1
signaturesOfTypes([IdT|L],IdP,[Signature|S],T) :-

typeProperties(IdT,IdP,Signature,T),
signaturesOfTypes(L,IdP,S,T),
I

signaturesOfTypes([_|L],IdP,S,T) :-
signaturesOfTypes(L,IdP,S,T).

/*

The lowest common supertype of two given types is
defined and is supertype of both of them or one of
them.

/*

*/
definedLowestCommonSupertype(IdT,IdT,_) :-
|

definedLo{/;/estCommonSupertype(IdTl,IdT2,T) -
supertype(ldT1,1dT2,T),
|

definedLo{/;/estCommonSupertype(IdTl,IdT2,T) -
supertype(ldT2,1dT1,T),
|

definedLowestCommonSupertype(IdT1,1dT2,T) :-
typeAllProperties(1dT1,ldPs1,T),
typeAllProperties(1dT2,1dPs2,T),
intersectionldList(IdPs1,ldPs2,IdPsl),
typeAllProperties(IdT3,IdPs3,T),
equalldList(IdPs3,1dPsl),
supertype(ldT3,1dT1,T),
supertype(ldT3,1dT2,T),
typePropertiesDomainUnion(IdT1,1dT2,IdT3,1dPsl,T),
|

The domains of the third type properties are the
union of the respective property domains of the
first and second given types.

*

/*

typePropertiesDomainUnion(_,_, ,[],) :-
|

typePropertiesDomainUnion(1dT1,1dT2,IdT3,[IdP|L],T) :-
typePropertySignature(IdT1,ldP,Signaturel,T),
typePropertySignature(IdT2,ldP,Signature2,T),
typePropertySignature(IdT3,ldP,Signature3,T),
domainUnion(Signaturel,Signature2,Signature3,T),
typePropertiesDomainUnion(1dT1,1dT2,IdT3,L,T).

Given two types gets the defined lowest common
supertype of them.
*

lowestCommonSupertype(ldT,IdT,IdT3,_) :-
L
IdT3 = IdT.
lowestCommonSupertype(ldT1,ldT2,1dT3,T) :-
supertype(ldT1,1dT2,T),
|

1dT3 = IdT1.

138

/*

lowestCommonSupertype(ldT1,IdT2,1dT3,T) :-
supertype(ldT2,1dT1,T),
|

IdT3 = 1dT2.
lowestCommonSupertype(ldT1,IdT2,1dT3,T) :-

typeName(ldT3,_,T),

supertype(ldT3,1dT1,T),

supertype(ldT3,1dT2,T),

not(lowerCommonSupertype(1dT1,1dT2,1dT3,T)),

|

Given two types and a proposed lowest common
supertype, cheks if a lower supertype exists.
*/

/*

lowerCommonSupertype(1dT1,1dT2,1dT3,T) :-
typeName(IdT4,_,T),
supertype(ldT4,1dT1,T),
supertype(ldT4,1dT2,T),
supertype(ldT3,1dT4,T),
|

Given two types gets the defined greatest common
subtype of them.
*

/*

greatestCommonSubtype(ldT,IdT,IdT3,_) :-
|

1dT3 = IdT.
greatestCommonSubtype(1dT1,1dT2,1dT3,T) :-

supertype(ldT2,1dT1,T),

|

1dT3 = IdT1.
greatestCommonSubtype(1dT1,IdT2,1dT3,T) :-

supertype(ldT1,1dT2,T),

|

IdT3 = 1dT2.
greatestCommonSubtype(1dT1,IdT2,1dT3,T) :-

typeName(IdT3,_,T),

supertype(ldT1,IdT3,T),

supertype(ldT2,1dT3,T),

not(greaterCommonSubtype(l1dT1,IdT2,1dT3,T)),

|

Given two types and a proposed greatest common
subtype, cheks if a greater subtype exists.
*/

greaterCommonSubtype(IdT1,1dT2,IdT3,T) :-
typeName(ldT4,_,T),
supertype(ldT1,1dT4,T),
supertype(ldT2,1dT4,T),
supertype(ldT4,1dT3,T),
|

139

CS_CLASS.PRO
Classes.

predicates
deriveClassSubclass(id,time)
lowerCommonSuperclass(id,id,id,time)
greaterCommonSubclass(id,id,id,time)

clauses

/*

The first class is superclass of the second one.
*/

superclass(1dC,1dC2,T) :-
directSuperclass(ldC,1dC2,T),
|

superclass(IdC,ldE:Z,T) -
indirectSuperclass(IdC,IdC2,T),
1

/*

A class is direct superclass of another.
*/

directSuperclass(ldC1,ldC2,T) :-
classSuperclasses(ldC2,Superclasses,T),
memberld(IdC1,Superclasses),
(B

/*

A class is indirect superclass of another.
*/

indirectSuperclass(IdC1,1dC2,T) :-
classSuperclasses(ldC2,Superclasses,T),
superclassOfSomeOne(ldC1,Superclasses,T),
1

/*
A class is superclass of some one of the classes
included in the list.

*

superclassOfSomeOne(ldC1,[IdC2|_],T) :-

superclass(ldC1,ldC2,T),
|

superclasébeomeOne(ldC,L|L],T) -
superclassOfSomeOne(ldC,L,T).

/*
There is some redundant superclass in a list of
classes.

*/

redundantSuperclasses([IdC|L],_) :-

memberld(IdC,L),
|

redundantéuperclasses([ldClL],T) -
classlinheritanceWithSomeOne(ldC,L,T),
[}

redundantSuperclasses([_|L],T) :-
redundantSuperclasses(L,T).

/*

There is some inheritance relationship between a
given type and any one of a list.

*/
classlinheritanceWithSomeOne(IdC1,[IdC2|_],T) :-
classinheritance(ldC1,1dC2,T),

|

classInheritanceWithSomeOne(IdC,[_|L],T) :-
classlinheritanceWithSomeOne(ldC,L,T).

/*

There is an inheritance relationship between the
given classes.
*

classinheritance(1dC1,1dC2,T) :-
superclass(ldC1,ldC2,T),

140

/*

cIassInhefiiance(ldCl,|dC2,T) -
superclass(ldC2,1dC1,T),
B

The property is defined in a class common to both
of the classes given.
*

/*

commonClassProperty(1dC1,1dC2,1dP,T) :-
typeProperty(IdT3,1dP,T),
classType(ldC3,1dT3,T),
1dC1 <> 1dC3,
1dC2 <> 1dC3,
superclass(ldC3,1dC1,T),
superclass(ldC3,1dC2,T),
|

Get the types of the classes given.
*/

/*

classesTypes([].[],_) :-
|

cIasseéfypes([ldC|LC],[IdT|LT],T) -
classType(IdC,IdT,T),
classesTypes(LC,LT,T).

Given a class obtains the list of its direct
subclasses.
*/

/*

deriveClassSubclasses(ldC,ldDs,T) :-
assertzTmpldList([]),
deriveClassSubclass(l1dC,T),
retractTmpldList(IdDs),
|

Given a class stores the list of its direct
subclasses.
*/

deriveClassSubclass(ldC1,T) :-
classSuperclasses(ldC2,IdCs,T),
memberld(IdC1,ldCs),
retractTmpldList(IdDs),
assertzTmpldList([IdC2|ldDs]),

fail.
deriveClassSubclass(_,_) :-
[}
/*
The lowest common superclass of two given classes
is defined and is superclass of both of them or one
of them.
*/
definedLowestCommonSuperclass(ldC,ldC,_) :-
[}
definedLowestCommonSuperclass(ldC1,ldC2,T) :-
superclass(ldC1,ldC2,T),
[}
definedLowestCommonSuperclass(ldC1,ldC2,T) :-
superclass(ldC2,1dC1,T),
[}
definedLowestCommonSuperclass(ldC1,ldC2,T) :-
classType(ldC1,IdT1,T),
classType(1dC2,1dT2,T),
lowestCommonSupertype(ldT1,IdT2,1dT3,T),
classType(1dC3,1dT3,T),
superclass(ldC3,1dC1,T),
superclass(ldC3,1dC2,T),
[}
/*

Given two classes gets the defined lowest common
superclass of them.

*

lowestCommonSuperclass(ldC,IdC,IdC3,_) :-
L
IdC3 = IdC.

lowestCommonSuperclass(ldC1,ldC2,1dC3,T) :-
superclass(ldC1,ldC2,T),

141

/*

!

IdC3 = IdC1.
lowestCommonSuperclass(ldC1,ldC2,1dC3,T) :-

superclass(ldC2,1dC1,T),

|

IdC3 = IdC2.
lowestCommonSuperclass(ldC1,ldC2,1dC3,T) :-

className(IdC3,_,T),

superclass(ldC3,1dC1,T),

superclass(ldC3,1dC2,T),

not(lowerCommonSuperclass(ldC1,l1dC2,IdC3,T)),

|

Given two classes and a proposed lowest common

/*

superclass, cheks if a lower superclass exists.
*

lowerCommonSuperclass(ldC1,1dC2,IdC3,T) :-
className(ldC4,_,T),
superclass(ldC4,1dC1,T),
superclass(ldC4,1dC2,T),
superclass(ldC3,1dC4,T),
|

Given two classes gets the defined greatest common
subclass of them.

/*

*

greatestCommonSubclass(ldC,IdC,IdC3,_) :-
|

1dC3 = IdC.
greatestCommonSubclass(ldC1,1dC2,1dC3,T) :-

superclass(ldC2,1dC1,T),

|

1dC3 = I1dC1.
greatestCommonSubclass(ldC1,1dC2,1dC3,T) :-

superclass(ldC1,ldC2,T),

|

IdC3 = IdC2.
greatestCommonSubclass(ldC1,IdC2,1dC3,T) :-

className(IdC3,_,T),

superclass(ldC1,ldC3,T),

superclass(ldC2,IdC3,T),

not(greaterCommonSubclass(ldC1,1dC2,1dC3,T)),

|

Given two classes and a proposed greatest common
subclass, cheks if a greater subclass exists.
*

greaterCommonSubclass(ldC1,ldC2,IdC3,T) :-
className(ldC4,_,T),
superclass(ldC1,1dC4,T),
superclass(ldC2,1dC4,T),
superclass(ldC4,1dC3,T),
|

142

OOM_SYST.PRO

System primitives.

generateld(id)
now(time)

domains
idReg = id(id)
timeReg = time(time)

predicates

lastld(id)
newld(id)

lastTime(time)
newTime(time)

clauses

[

Generate a new identifier.

*/

/*

generateld(ld) :-
lastld(1d1),
Id=1d1 + 1,
newld(ld),
|

Get the last generated Id.

/*

*/

lastld(ld) :-
openread(idFile,"oomid.dat"),
readdevice(Old),
readdevice(idFile),
readterm(idReg,id(Id)),
closefile(idFile),
readdevice(Old),
|

lastld(0).

Store the last generated Id.

*/

newld(ld) :-
openwrite(idFile,"oomid.dat"),
writedevice(Old),
writedevice(idFile),
write("id(",1d,")\n"),
closefile(idFile),
writedevice(Old).

[

Get the time.

/*

now(Time) :-
lastTime(T1),
Time =T1 + 1,
newTime(Time),
|

Get the last generated time.
*/

lastTime(T) :-

openread(timeFile,"oomtime.dat"),

readdevice(Old),
readdevice(timeFile),
readterm(timeReg,time(T)),
closefile(timeFile),
readdevice(Old),

|

IastTime(dj.

143

*

/*
Store the last generated Id.
*/

newTime(T) :-
openwrite(timeFile,"oomtime.dat"),
writedevice(Old),
writedevice(timeFile),
write("time(",T,")\n"),
closefile(timeFile),
writedevice(Old).

144

OOM_LIST.PRO

Id lists.
memberld(id,idList)
addNewld(idList,id,idList)

clauses

/*

An Id is member of a list of Ids.

/*

memberld(X,[X]_]) :-
1

memberld(X,[_|L]) :-
memberld(X,L).

Add a new Id to an Id list only if it is not included
yet.
*/

/*

addNewld(L,Id,L) :-
memberld(ld,L),
|

addNewld(L,Id,[Id|L]) :-
)

Intersection of two lists of identifiers.
*/

/*

intersectionldList([],_,[]) :-
I

intersectionldList([X|L1],L2,[X|L3]) :-
memberld(X,L2),
|

iﬁtersectionldList(Ll,L2,L3).
intersectionldList([_|L1],L2,L3) :-
intersectionldList(L1,L2,L3).

Equal lists.

/*

*

equalldList(L1,L2) :-
allContainedldList(L1,L2),
allContainedldList(L2,L1).

All the elements of a list are contained in another

list.
*/

allContainedldList([],_) :-
I

allContainedIdList([X|L1],L2) :-
memberld(X,L2),
allContainedldList(L1,L2).

145

146

Appendix B. OODB definition DCM

The following is the source code of the OODOt&finition DCM developed. It includes a
simplified version of the previous DCM.

OOSCHE.DEF
Input file.

dbbaseproperty(p(“address"))
dbbaseproperty(p("name"))
dbbaseproperty(p(“category"))
dbbaseclass(c("objects"))

dbbaseclass(c("people"))
dbbaseclass(c("addresses"))
dbbaseclass(c("clients"))
dbbaseclass(c("employees"))
dbdirectclassproperty(c("people"),p("address"))
dbdirectclassproperty(c("employees"),p("category™))
dbdirectclassproperty(c(“clients"),p("name"))
dbdirectinheritance(c("people"),c("objects"))
dbdirectinheritance(c("addresses"),c("objects"))
dbdirectinheritance(c("clients"),c("people"))
dbdirectinheritance(c("employees"),c("people™))
dbdirectaggregation(c("people"),c("addresses"),p("address"))

OOINST.DEF
Input file.

dbbaseobject(o("01"))

dbbaseobject(o("02"))

dbbaseobject(o("03"))

dbbaseobject(o("04"))

dbbaseobject(o("05"))

dbdirectclassobject(c("people”),0("0l1"))
dbdirectclassobject(c("clients"),0("02"))
dbdirectclassobject(c("employees"),o("02"))
dbdirectclassobject(c("addresses"),0("03"))
dbdirectclassobject(c("employees"),o("04"))
dbdirectclassobject(c("addresses"),o0("05"))
dbdirectobjectproperty(o("01"),p("address"),o([o("03")]))
dbdirectobjectproperty(o(“02"),p("address"),o([o("03"),0("05")]))
dbdirectobjectproperty(o("04"),p("address"),o([o("05")]))
dbdirectobjectproperty(o("02"),p("category"),v([v("boss")]))
dbdirectobjectproperty(o(“04"),p("category"),v([v("technician)]))

OODERI.DEF
Input file.

dbdefinedderivedclass(c("employees_"))
dbdirectderivation(c("employees_"),[c("employees")],preservation)
dbdirectclassproperty(c("employees_"),p("name"))
dbdirectclassproperty(c("employees_"),p("address"))
dbdirectaggregation(c("employees_"),c("addresses"),p("address"))

147

OOSELE.DEF
Input file.

/

dbclasssetselection("es1",[c("objects"),c("clients"),c("employees_")])
dbqualifiedclasssetselection("es2",[q(esc(c("objects"),nontransformable)),q(esc(c("clien
ts"),transformable)),q(esc(c("employees_"),nontransformable)),q(esc(c("addresses"),trans
formable)),q(esc(c("people"”),transformable))])
dbqualifiedclasssetselection("es3",[q(esc(c("objects"),nontransformable)),q(esc(c("clien
ts"),transformable)),q(esc(c("employees_"),transformable)),q(esc(c("addresses"),transfor
mable)),q(esc(c("people”),nontransformable))])

148

OODB.DAT
Output file.

rbaseproperty(p("address"),1)

rbaseproperty(p("name"),2)

rbaseproperty(p(“category"),3)

rbaseclass(c("objects"),4)

rbaseclass(c("people™),5)

rbaseclass(c("addresses"),6)

rbaseclass(c("clients"),7)

rbaseclass(c("employees"),8)
rdirectclassproperty(c(“"people”),p("address"),9)
rdirectclassproperty(c("employees"),p("category"),10)
rdirectclassproperty(c(“clients"),p("name"),11)
rdirectclassproperty(c("employees_"),p("name"),12)
rdirectclassproperty(c("employees_"),p("address"),13)
rdirectinheritance(c("people”),c("objects"),14)
rdirectinheritance(c("addresses"),c("objects"),15)
rdirectinheritance(c("clients"),c("people"),16)
rdirectinheritance(c("employees"),c("people"),17)
rdirectaggregation(c("people"),c("addresses"),p("address"),18)
rdirectaggregation(c("employees_"),c("addresses"),p("address"),19)
rbaseobject(o("01"),20)

rbaseobject(o("02"),21)

rbaseobject(o("03"),22)

rbaseobject(o("04"),23)

rbaseobject(o("05"),24)

rdirectclassobject(c("people"),0("01"),25)
rdirectclassobject(c("clients"),0("02"),26)
rdirectclassobject(c("employees"),0("02"),27)
rdirectclassobject(c("addresses"),0("03"),28)
rdirectclassobject(c("employees"),0("04"),29)
rdirectclassobject(c("addresses"),0("05"),30)
rdirectobjectproperty(o(“ol1"),p("address"),o([o("03")]),31)
rdirectobjectproperty(o(“"02"),p("address"),o([o("03"),0("05")]),32)
rdirectobjectproperty(o(“04"),p("address"),o([o("05")]),33)
rdirectobjectproperty(o("02"),p("category"),v([v("boss")]),34)
rdirectobjectproperty(o("04"),p("category"),v([v("technician")]),35)
rdefinedderivedclass(c("employees_"),36)
rdirectderivation(c("employees_"),[c("employees")],preservation,37)
rclasssetselection("es1",[c("objects"),c("clients"),c("employees_")],38)
rqualifiedclasssetselection("es2",[q(esc(c("objects"),nontransformable)),q(esc(c("client
s"),transformable)),q(esc(c("employees_"),nontransformable)),q(esc(c("addresses"),transf
ormable)),q(esc(c("people”),transformable))],39)
rqualifiedclasssetselection("es3",[q(esc(c("objects"),nontransformable)),q(esc(c("client
s"),transformable)),q(esc(c("employees_"),transformable)),q(esc(c("addresses"),transform
able)),q(esc(c("people"),nontransformable))],40)
rindirectinheritance(c("clients"),c("objects"),41)
rindirectinheritance(c("employees"),c("objects"),42)
rinheritedaggregation(c("clients"),c("addresses"),p("address"),43)
rinheritedaggregation(c("employees"),c("addresses"),p("address"),44)
rallclassproperties(c("objects"),[],45)
rallclassproperties(c("people"),[p("address")],46)
rallclassproperties(c("addresses"),[],47)
rallclassproperties(c(“clients"),[p("name"),p("address")],48)
rallclassproperties(c("employees"),[p("category”),p("address")],49)
rallclassproperties(c("employees_"),[p("name"),p("address")],50)
rallclassobjects(c("objects"),[o("01"),0("02"),0("03"),0("04"),0("05")],51)
rallclassobjects(c("people”),[o("01"),0("02"),0("04")],52)
rallclassobjects(c("addresses"),[0("03"),0("05")],53)
rallclassobjects(c(“clients"),[0("02")],54)
rallclassobjects(c("employees"),[0("02"),0("04")],55)
rallclassobjects(c("employees_"),[0("04")],56)

rtime(56)

149

%

%
% Domains.

%

%
domains

comparation

element

elements
difList

property
class
object
value
schema
edge
esClass

classQuality

evaluation

derSemantics

time

=eq;
ne

= p(property);
c(class);
o(object);
v(value);
e(edge);
g(esClass);
cp(element,elements); %Class with properties.
si(element,elements,elements)
%Subsumption Isomorfic classes with properties.

= element*
= di(elements,elements)

= symbol
= symbol
= symbol
= symbol
= symbol
= reference is_a(element,element)
= esc(element,classQuality) % External Schema Class

= transformable;
nonTransformable;
any

= o(elements);
v(elements)

= preservation;
generation

= integer

150

OODB.PRO

include "domains.pro"
include "elemlist.pro”

predicates
run
addTime
now(time)
inheritancelnconsistency
nondeterm inheritancelnconsistency(symbol)
findIndirectinheritance(element)
nondeterm therelsinheritance(element,element)
nondeterm looplninheritance(element,elements)
nondeterm inheritance(element,element)
classlInconsistency
nondeterm classlnconsistency(symbol)
findClassProperties
nondeterm hasClassProperty(element,element)
nondeterm superclassWithProperties(element,element,elements,element)
nondeterm class(element)
compareClasses(element,element,comparation)
nondeterm classProperties(element,elements)
nondeterm classProperty(element,element)
nondeterm classPropertiesintersection(element,element,elements)
objectInconsistency
nondeterm objectinconsistency(symbol)
findClassObjects
nondeterm containsClassObject(element,element)
nondeterm objectClassProperty(element,element,element)

objects(elements)
values(elements)

nondeterm classObjects(element,elements)
subsumesExtension(element,element)

aggregationinconsistency

nondeterm aggregationinconsistency(symbol)
findInheritedAggregation

nondeterm therelsAggregation(element,element,element)

nondeterm refinedAggregation(element,element,element)

nondeterm aggregation(element,element,element)

derivationInconsistency
nondeterm derivationInconsistency(symbol)
findDerivedClassObjects
classes(elements)
nondeterm loopInDerivation(element,elements)

classSetInconsistency
nondeterm classSetInconsistency(symbol)

qualifiedClassSetInconsistency

nondeterm qualifiedClassSetinconsistency(symbol)
rightQualifiedClasses(elements)
qualifiedClasses(elements,classQuality,elements)

nondeterm characteristicFunction(element,element)

151

database - oodb

dbBaseProperty(element)

dbBaseClass(element)
dbDirectClassProperty(element,element)
dbDirectlnheritance(element,element)
dbDirectAggregation(element,element,element)
dbBaseObject(element)
dbDirectClassObject(element,element)
dbDirectObjectProperty(element,element,evaluation)
dbDefinedDerivedClass(element)
dbDirectDerivation(element,elements,derSemantics)
dbGeneratedDerivedClass(element)
dbClassSetSelection(schema,elements)
dbQualifiedClassSetSelection(schema,elements)
dbExternalSchema(schema,elements,elements)

dbindirectinheritance(element,element)
dbinheritedAggregation(element,element,element)
dbAllClassProperties(element,elements)
dbAllClassObjects(element,elements)

database - roodb

goal

clauses

rBaseProperty(element,time)

rBaseClass(element,time)
rDirectClassProperty(element,element,time)
rDirectinheritance(element,element,time)
rDirectAggregation(element,element,element,time)
rBaseObject(element,time)
rDirectClassObject(element,element,time)
rDirectObjectProperty(element,element,evaluation,time)
rDefinedDerivedClass(element,time)
rDirectDerivation(element,elements,derSemantics,time)
rGeneratedDerivedClass(element,time)
rClassSetSelection(schema,elements,time)
rQualifiedClassSetSelection(schema,elements,time)
rExternalSchema(schema,elements,elements,time)

rindirectinheritance(element,element,time)
rinheritedAggregation(element,element,element,time)
rAlIClassProperties(element,elements,time)
rAlIClassObjects(element,elements,time)

rTime(integer)

run.

run :-
consult("oosche.def",0odb),
consult("ooinst.def",00db),
consult("ooderi.def",00db),
consult("oosele.def",00db),

not(inheritancelnconsistency),
not(classinconsistency),
not(aggregationinconsistency),
not(objectinconsistency),
not(derivationinconsistency),
not(classSetinconsistency),
not(qualifiedClassSetInconsistency),

addTime,

save("oodb.dat",roodb),
write("\n\nOK."),
1

152

addTime :

addTime :

addTime :

addTime :

addTime :

addTime :

addTime :

addTime :

addTime :

addTime :

addTime :

addTime :

addTime :

addTime :

addTime :

addTime :

dbBaseProperty(P),

now(T),
assertz(rBaseProperty(P,T)),
fail.

dbBaseClass(C),

now(T),
assertz(rBaseClass(C,T)),
fail.

dbDirectClassProperty(C,P),

now(T),
assertz(rDirectClassProperty(C,P,T)),
fail.

dbDirectlnheritance(C1,C2),

now(T),
assertz(rDirectinheritance(C1,C2,T)),
fail.

dbDirectAggregation(C1,C2,P),

now(T),
assertz(rDirectAggregation(C1,C2,P,T)),
fail.

dbBaseObject(0),

now(T),
assertz(rBaseObject(O,T)),
fail.

dbDirectClassObject(C,0),

now(T),
assertz(rDirectClassObject(C,0,T)),
fail.

dbDirectObjectProperty(O,P,E),

now(T),
assertz(rDirectObjectProperty(O,P,E,T)),
fail.

dbDefinedDerivedClass(C),

now(T),
assertz(rDefinedDerivedClass(C,T)),
fail.

dbDirectDerivation(C,Cs,S),

now(T),
assertz(rDirectDerivation(C,Cs,S,T)),
fail.

dbGeneratedDerivedClass(C),

now(T),
assertz(rGeneratedDerivedClass(C,T)),
fail.

dbClassSetSelection(S,Cs),

now(T),
assertz(rClassSetSelection(S,Cs,T)),
fail.

dbQualifiedClassSetSelection(S,Cs),

now(T),
assertz(rQualifiedClassSetSelection(S,Cs,T)),
fail.

dbExternalSchema(S,Cs,Es),

now(T),
assertz(rExternalSchema(S,Cs,Es,T)),
fail.

dbindirectinheritance(C1,C2),

now(T),
assertz(rIndirectinheritance(C1,C2,T)),
fail.

dbinheritedAggregation(C1,C2,P),

now(T),
assertz(rInheritedAggregation(C1,C2,P,T)),
fail.

153

%
%
%

addTime :-
dbAllClassProperties(C,Ps),
now(T),
assertz(rAllClassProperties(C,Ps,T)),
fail.

addTime :-
dbAllClassObjects(C,0s),
now(T),
assertz(rAllClassObjects(C,0s,T)),
fail.

addTime :-
1

%
% now(T) :- Obtain the time.
%

now(T) :-
retract(rTime(T1)),
L
T=T1+1,
assertz(rTime(T)).
now(1) :-
R
assertz(rTime(1)).
Inheritance.

%
% inheritancelnconsistency(N) :- Inheritance
% inconsistencies in the repository.
%
inheritancelnconsistency :-
inheritancelnconsistency(N),
write("\nInheritance Inconsistency: “,N,"\n"),
!
inheritancelnconsistency(a01) :-
dbDirectinheritance(C,_),
not(dbBaseClass(C)).
inheritancelnconsistency(a02) :-
dbDirectlnheritance(_,C),
not(dbBaseClass(C)).
inheritancelnconsistency(a03) :-
dbBaseClass(C),
dbDirectlnheritance(C,C).
inheritancelnconsistency(a04) :-
dbDirectlnheritance(C1,C2),
loopIninheritance(C2,[C1]).
inheritancelnconsistency(a05) :-
dbBaseClass(C1),
findIndirectinheritance(C1),
dbDirectlnheritance(C1,C2),
dbindirectinheritance(C1,C2).
inheritancelnconsistency(a06) :-
not(dbBaseClass(c(objects))).
inheritancelnconsistency(a07) :-
dbBaseClass(C),
compareClasses(C,c(objects),ne),
not(inheritance(C,c(objects))).

%

% findIndirectinheritance :- Find indirect inheritance

% relationships.

%

findIndirectinheritance(C1) :-
dbBaseClass(C1),
dbBaseClass(C2),
compareClasses(C1,c(objects),ne),
compareClasses(C1,C2,ne),
not(dbDirectinheritance(C2,C1)),
not(dbIndirectinheritance(C2,C1)),
dbDirectinheritance(C1,C3),
therelsinheritance(C3,C2),
not(dbIndirectinheritance(C1,C2)),
assertz(dblndirectinheritance(C1,C2)),
fail.

findIndirectinheritance(_) :-

154

%
%
%

%

% therelsinheritance(Class1,Class?2) :- Class1 and

% Class2 are related by inheritance.

%

therelsinheritance(C1,C2) :-
dbDirectlnheritance(C1,C2).

therelsinheritance(C1,C2) :-
dbDirectlnheritance(C1,C3),
therelsinheritance(C3,C2).

%
% loopIninheritance(Class,Classes) :- There is a loop
% in inheritance relationships: we have arrived to
% Class visiting Classes.
%
loopIninheritance(C,Cs) :-
includedElement(C,Cs).
loopIninheritance(C1,Cs) :-
dbDirectlnheritance(C1,C2),
loopIninheritance(C2,[C1|Cs]).

%
% inheritance(Class1,Class2) :- Classl is subclass of
% Class2.
%
inheritance(C1,C2) :-

dbDirectlnheritance(C1,C2).
inheritance(C1,C2) :-

dbindirectinheritance(C1,C2).

Classes.

%
% classinconsistency(N) :- Class inconsistencies in the
% repository.
%
classlnconsistency :-
classinconsistency(N),
write("\nClass Inconsistency: ",N,"\n"),
|
classinconsistency(b01) :-
dbDirectClassProperty(C,_),
not(class(C)).
classinconsistency(b02) :-
dbDirectClassProperty(_,P),
not(dbBaseProperty(P)).
classinconsistency(b03) :-
dbBaseClass(C1),
dbBaseClass(C2),
compareClasses(C1,C2,ne),
dbDirectClassProperty(C1,P),
dbDirectClassProperty(C2,P).
classinconsistency(b04) :-
findClassProperties,
dbBaseClass(C1),
dbBaseClass(C2),
compareClasses(C1,C2,ne),
not(inheritance(C1,C2)),
not(inheritance(C2,C1)),
classPropertiesintersection(C1,C2,Ps),
not(superclassWithProperties(C1,C2,Ps,_)).

%

% findClassProperties :- Find all the properties of

% classes.

%

findClassProperties :-
class(C),
findall(P,hasClassProperty(C,P),Ps2),
nonDuplicatedElements(Ps2,Ps1),
assertz(dbAllClassProperties(C,Ps1)),
fail.

155

findClassProperties :-
(B

%
% hasClassProperty(Class,Property) :- Class has Property.
%
hasClassProperty(C,P) :-
dbDirectClassProperty(C,P).
hasClassProperty(C1,P) :-
dbDirectClassProperty(C2,P),
inheritance(C1,C2).

%
% superclassWithProperties(Class1,Class2,Properties,Class3) :-
% Class3 is superclass of Class1 and Class2 and has
% Properties.
%
superclassWithProperties(C1,C2,Ps,C3) :-

inheritance(C1,C3),

inheritance(C2,C3),

classProperties(C3,Ps).

%
% class(Class) :- Class is a class.
%
class(C) :-
dbBaseClass(C).
class(C) :-
dbDefinedDerivedClass(C).
class(C) :-
dbGeneratedDerivedClass(C).

%
% compareClasses(C1,C2,Comparation) :- Comparation
% between two classes.
%
compareClasses(c(C1),c(C2),eq) :-

Cl=cC2,

|
compareClasses(c(C1),c(C2),ne) :-

Cl<>C2,

|

%
% classProperties(Class,Properties) :- Class has
% Properties.
%
classProperties(C,Ps) :-
class(C),
not(bound(Ps)),
dbAllClassProperties(C,Ps).
classProperties(C,Ps1) :-
class(C),
bound(Ps1),
dbAllClassProperties(C,Ps2),
equalElements(Ps2,Ps1).

%
% classProperty(Class,Property) :- Class has Property.
%
classProperty(C,P) :-
dbAllClassProperties(C,Ps),
includedElement(P,Ps).

%

% classPropertiesintersection(Class1,Class2,Properties) :-

% Classl and Class?2 have Properties in common.

%

classPropertiesintersection(C1,C2,Ps) :-
dbAllClassProperties(C1,Ps1),
dbAllClassProperties(C2,Ps2),
elementsintersection(Ps1,Ps2,Ps).

156

%
%
%

Aggregation.

%

% aggregationinconsistency(N) :- Aggregation

% inconsistencies in the repository.

%

aggregationinconsistency :-
aggregationinconsistency(N),
write("\nAggregation Inconsistency: ",N,"\n"),
I.

aggregationinconsistency(c01) :-
dbDirectAggregation(C,_,_),
not(class(C)).
aggregationinconsistency(c02) :-
dbDirectAggregation(_,C,_),
not(class(C)).
aggregationinconsistency(c03) :-
dbDirectAggregation(C,_,P),
not(classProperty(C,P)).
aggregationinconsistency(c04) :-
dbDirectClassProperty(C1,P),
dbDirectAggregation(C2,_,P),
compareClasses(C1,C2,ne),
not(dbDirectAggregation(C1,_,P)).
aggregationinconsistency(c05) :-
dbDirectAggregation(C1,C2,P),
dbDirectAggregation(C3,C4,P),
compareClasses(C1,C3,ne),
compareClasses(C2,C4,ne),
inheritance(C3,C1),
not(inheritance(C4,C2)).
aggregationinconsistency(c06) :-
dbDirectAggregation(C1,C2,P),
dbDirectAggregation(C1,C3,P),
compareClasses(C2,C3,ne).
aggregationinconsistency(c07) :-
findInheritedAggregation,
aggregation(C1,C2,P),
aggregation(C1,C3,P),
compareClasses(C2,C3,ne).

%

% findInheritedAggregation :- Find inherited

% aggregation relationships.

%

findInheritedAggregation :-
dbBaseClass(C1),
dbDirectAggregation(_,C2,P),
not(dbDirectAggregation(C1,C2,P)),
not(dbInheritedAggregation(C1,C2,P)),
therelsAggregation(C1,C2,P),
not(refinedAggregation(C1,C2,P)),
assertz(dblnheritedAggregation(C1,C2,P)),
fail.

findInheritedAggregation :-
|

%
% therelsAggregation(Class1,Class2,Property) :- There
% is an aggregation relationship between Class1 and
% Class2 in Property.
%
therelsAggregation(C1,C2,P) :-
dbDirectAggregation(C1,C2,P).
therelsAggregation(C1,C2,P) :-
inheritance(C1,C3),
dbDirectAggregation(C3,C2,P).

%
% refinedAggregation(Classl,Class2,Property) :- The
% aggregation relationship between Class1 y Class2
% has been redefined.
%
refinedAggregation(C1,C2,P) :-

inheritance(C3,C2),

therelsAggregation(C1,C3,P).

157

%
% aggregation(Class1,Class2,Property) :- There is a
% property function defined for class Class1 with the
% property label Property and the domain class Class2.
%
aggregation(C1,C2,P) :-

dbDirectAggregation(C1,C2,P).
aggregation(C1,C2,P) :-

dbinheritedAggregation(C1,C2,P).

%
% Objects.
%

%
% objectinconsistency(N) :- Object inconsistencies in
% the repository.
%
objectinconsistency :-

objectinconsistency(N),

write("\nObject Inconsistency: ",N,"\n"),

|

objectinconsistency(d01) :-
dbDirectClassObiject(C,),
not(dbBaseClass(C)).
objectinconsistency(d02) :-
dbDirectClassObiject(_,0),
not(dbBaseObject(0)).
objectinconsistency(d03) :-
dbBaseObject(0),
not(dbDirectClassObject(_,0)).
objectinconsistency(d04) :-
dbDirectClassObject(C1,0),
dbDirectClassObject(C2,0),
compareClasses(C1,C2,ne),
inheritance(C1,C2).
objectinconsistency(d05) :-
dbDirectObjectProperty(O,_,),
not(dbBaseObject(0)).
objectinconsistency(d06) :-
dbDirectObjectProperty(_,P,_),
not(dbBaseProperty(P)).
objectinconsistency(d07) :-
dbDirectObjectProperty(_,_,0(0s)),
not(objects(0s)).
objectinconsistency(d08) :-
dbDirectObjectProperty(_,_,v(Vs)),
not(values(Vs)).
objectinconsistency(d09) :-
dbDirectObjectProperty(O,P,v(Vs1)),
dbDirectObjectProperty(O,P,v(Vs2)),
not(equalElements(Vs1,Vs2)).
objectinconsistency(d10) :-
dbDirectObjectProperty(O,P,0(0s1)),
dbDirectObjectProperty(O,P,0(0s2)),
not(equalElements(0Os1,0s2)).
objectinconsistency(d11) :-
dbDirectObjectProperty(O,P,0()),
dbDirectObjectProperty(O,P,v()).
objectinconsistency(d12) :-
dbDirectObjectProperty(O,P,_),
not(objectClassProperty(O,_,P)).
objectinconsistency(d13) :-
dbDirectObjectProperty(O,P,0()),
dbDirectClassObject(C,0),
classProperty(C,P),
not(aggregation(C,_,P)).
objectinconsistency(d14) :-
dbDirectObjectProperty(O,P,v()),
dbDirectClassObject(C,0),
classProperty(C,P),
aggregation(C,_,P).
objectinconsistency(d15) :-
findClassObjects,
dbDirectObjectProperty(O,P,0(0Os1)),
dbDirectClassObject(C1,0),
classProperty(C1,P),
aggregation(C1,C2,P),

158

classObjects(C2,0s2),
not(includedElements(Os1,0s2)).

%
% findClassObijects :- Find all the objects of classes.
%
findClassObijects :-
dbBaseClass(C),
findall(O,containsClassObject(C,0),0s2),
nonDuplicatedElements(Os2,0s1),
assertz(dbAllClassObjects(C,0s1)),
fail.
findClassObijects :-
B

%
% containsClassObject(Class,Object) :- Object is member
% of Class.
%
containsClassObiject(C,0) :-
dbDirectClassObject(C,0).
containsClassObject(C1,0) :-
dbDirectClassObject(C2,0),
inheritance(C2,C1).

%

% objectClassProperty(Object,Class,Property) :- Object

% is member of Class that has Property defined.

%

objectClassProperty(O,C,P) :-
dbDirectClassObject(C,0),
classProperty(C,P).

%
% objects(Objects) :- Objects is a set of objects.
%
objects([O]Os])) :-

dbBaseObject(0),

|

Sbjects(Os).
objects([]) :-
1

%
% values(Values) :- Values is a set of values.
%
values([v()|Vs]) :-

|

;/’alues(Vs).
values([]) :-
1

%
% classObjects(Class,Objects) :- Class has Objects as
% members.
%
classObjects(C,0s) :-

class(C),

not(bound(Os)),

dbAllClassObjects(C,0s).
classObjects(C,0s1) :-

class(C),

bound(Os1),

dbAllClassObjects(C,0s2),

equalElements(0s2,0s1).

%
% subsumesExtension(Class1,Class?2) :- Class1 subsumes
% extesion of Class2. APROXIMACION INCORRECTA.
%
subsumesExtension(C1,C2) :-

classObjects(C1,0s1),

classObjects(C2,0s2),

includedElements(0s2,0s1),

159

%
%
%

Derivation.

%
% derivationInconsistency(N) :- Derivation
% inconsistencies in the repository.
%
derivationinconsistency :-
derivationinconsistency(N),
write("\nDerivation Inconsistency: ",N,"\n"),
|
derivationinconsistency(e01) :-
dbDirectDerivation(C,_,_),
not(dbDefinedDerivedClass(C)).
derivationinconsistency(e02) :-
dbDefinedDerivedClass(C),
not(dbDirectDerivation(C,_,_)).
derivationinconsistency(e03) :-
dbDirectDerivation(_,[],_).
derivationinconsistency(e04) :-
dbDirectDerivation(_,Cs,_),
not(classes(Cs)).
derivationinconsistency(e05) :-
dbDefinedDerivedClass(C),
dbBaseClass(C).
derivationinconsistency(e06) :-
dbDirectDerivation(C,Cs,_),
includedElement(C,Cs).
derivationinconsistency(e07) :-
dbDirectDerivation(C,Cs,_),
loopInDerivation(C,Cs).
derivationinconsistency(e08) :-
findDerivedClassObijects,
dbDefinedDerivedClass(C1),
class(C2),
compareClasses(C1,C2,ne),
dbAllClassProperties(C1,Ps1),
dbAllClassProperties(C2,Ps2),
equalElements(Ps1,Ps2),
subsumesExtension(C1,C2),
subsumesExtension(C2,C1).

%
% findDerivedClassObjects :- Definition predicates of
% derived classes.
%
findDerivedClassObijects :-
dbDefinedDerivedClass(C),
findall(O,characteristicFunction(C,0),0s),
assertz(dbAllClassObjects(C,0s)),
fail.
findDerivedClassObijects :-
|

%
% classes(Classes) :- Classes is a set of classes.
%
classes([C|Cs]) :-

class(C),

|

EIasses(Cs).
classes([]) :-
[}

%
% loopInDerivation(Class,Classes) :- Class is derived
% from a class in Classes which also is derived from
% Class.
%
loopInDerivation(C1,Cs1) :-
includedElement(C2,Cs1),
dbDirectDerivation(C2,Cs2,_),
includedElement(C1,Cs2),
|

160

%
%
%

loopInDerivation(C1,Cs1) :-
includedElement(C2,Cs1),
dbDirectDerivation(C2,Cs2,_),
loopInDerivation(C1,Cs2).

External Schema Class Set Selection.

%

% classSetInconsistency(N) :- Class set selection

% inconsistencies in the repository.

%

classSetInconsistency :-
classSetinconsistency(N),
write("\nClass Set Inconsistency: ",N,"\n"),
|

classSetinconsistency(f01) :-
dbClassSetSelection(_,[]).

classSetInconsistency(f02) :-
dbClassSetSelection(_,Cs),
not(classes(Cs)).

classSetinconsistency(f03) :-
dbClassSetSelection(_,Cs),
repeatedElement(_,Cs).

classSetinconsistency(f04) :-
dbClassSetSelection(S,Cs1),
dbClassSetSelection(S,Cs2),
not(equalElements(Cs1,Cs2)).

%
%

External Schema Qualified Class Set Selection.

%

%
% qualifiedClassSetInconsistency(N) :- Qualified class
% set selection inconsistencies in the repository.
%
qualifiedClassSetInconsistency :-
qualifiedClassSetInconsistency(N),
write("\nQualified Class Set Inconsistency: ",N,"\n"),
|
qualifiedClassSetInconsistency(g01) :-
dbQualifiedClassSetSelection(_,[]).
qualifiedClassSetInconsistency(g02) :-
dbQualifiedClassSetSelection(_,QCs),
qualifiedClasses(QCs,any,Cs),
not(classes(Cs)).
qualifiedClassSetInconsistency(g03) :-
dbQualifiedClassSetSelection(_,QCs),
qualifiedClasses(QCs,any,Cs),
repeatedElement(_,Cs).
qualifiedClassSetInconsistency(g04) :-
dbQualifiedClassSetSelection(S,QCs1),
dbQualifiedClassSetSelection(S,QCs2),
not(equalElements(QCs1,QCs2)).
qualifiedClassSetInconsistency(g05) :-
dbClassSetSelection(S,_),
dbQualifiedClassSetSelection(S,_).
qualifiedClassSetInconsistency(g06) :-
dbQualifiedClassSetSelection(_,QCs),
not(rightQualifiedClasses(QCs)).
qualifiedClassSetInconsistency(g07) :-
dbQualifiedClassSetSelection(_,QCs),
includedElement(q(esc(c(objects),transformable)),QCs).

%

% rightQualifiedClasses(QCs) :- Given a set of qualified

% classes, checks if they are righly qualified.

%

rightQualifiedClasses([q(esc(_,transformable))|QCs]) :-
!

rightQualifiedClasses(QCs).
rightQualifiedClasses([q(esc(_,nonTransformable))|QCs]) :-
!

rightQualifiedClasses(QCs).
rightQualifiedClasses([]) :-
)

161

%
%
%

%
% qualifiedClasses(QCs,Q,Cs) :- Given a set of qualified
% classes and a qualification, obtains the set of
% classes qualified this way.
%
qualifiedClasses([q(esc(C,_))|QCs],any,[C|Cs]) :-

!

ciualifiedCIasses(QCs.any,Cs).
qualifiedClasses([q(esc(C,Q))|QCs],Q,[C|Cs]) :-
!

ciuaIifiedCIasses(QCs.Q,Cs).
qualifiedClasses([_|QCs],Q,Cs) :-
!

ciuaIifiedCIasses(QCs.Q,Cs).
qualifiedClasses([],_,[]) :-
1

Characteristic Functions.

%

% characteristicFunction(Class,Object) :- Characteristic

% function of a class.

%

characteristicFunction(c(employees_),0) :-
dbDefinedDerivedClass(c(employees_)),
dbDirectDerivation(c(employees_),[c(employees)],preservation),
dbDirectClassObject(c(employees),0),
dbDirectObjectProperty(O,p(category),v([v(Category)])),
Category <> "boss".

162

%

%
%
%

ELEMLIST.PRO
List of Elements.

%

%

predicates

clauses

nondeterm includedElement(element,elements)
includedElements(elements,elements)
includeElement(element,elements,elements)

nondeterm repeatedElement(element,elements)
equalElements(elements,elements)
nonDuplicatedElements(elements,elements)
elementsintersection(elements,elements,elements)
elementsUnion(elements,elements,elements)
elementsDifference(elements,elements,elements)

%
% includedElement(Element,Elements) :- Element is
% included in the list Elements.
%
includedElement(E,[E|_]).
includedElement(E,[_|Es]) :-

includedElement(E,Es).

%
% includedElements(Es1,Es2) :- The list of elements Es1
% is included in the list Es2.
%
includedElements([E|Es1],Es2) :-
includedElement(E,Es?2),
|
includedElements(Es1,Es2).
includedElements([],_) :-
|

%
% includeElement(Element,Elementsl,ElementsO) :-
% Include the given Element in the set of Elements,
% if not included yet.
%
includeElement(E,Es,Es) :-

includedElement(E,Es),

|

includeElement(E, Es,[E|Es]) :-
)

%

% repeatedElement(Element,Elements) :- Element is

% repeated in the list of Elements.

%

repeatedElement(E,[E|ES]) :-
includedElement(E,Es).

repeatedElement(E,[_|Es]) :-
repeatedElement(E,Es).

%
% equalElements(Elements1,Elements2) :- Both sets have
% the same elements.
%
equalElements(Es1,Es2) :-
includedElements(Es1,Es2),
includedElements(Es2,Es1).

%
% nonDuplicatedElements(Es1,Es2) :- Given a list of
% elements obtains a new list without duplicates.
%
nonDuplicatedElements([E|Es1],Es2) :-
includedElement(E,Esl),
!

HonDupIicatedEIements(Esl,EsZ).

163

nonDuplicatedElements([E|Es1],[E|Es2]) :-
|

HonDupIicatedEIements(Esl,EsZ).
nonDuplicatedElements([],[]) :-
I

%
% elementsintersection(Es1,Es2,Es) :- Intersection
% of two lists of elements.
%
elementsintersection([E|Es1],Es2,[E|ES]) :-

includedElement(E,Es?2),

R

elementsintersection(Es1,Es2,Es).
elementsintersection([_|Es1],Es2,Es) :-

R

elementsintersection(Es1,Es2,Es).
elementsintersection([],_,[]) :-

1

%
% elementsUnion(Es1,Es2,Es) :- Union of two lists of
% elements.
%
elementsUnion([E|Es1],Es2,Es3) :-
includedElement(E,Es2),
|
elementsUnion(Es1,Es2,Es3).
elementsUnion([E|Es1],Es2,[E|Es3]) :-
|

élementsUnion(Esl.EsZ.EsS).
elementsUnion([],Es,Es) :-
[}

%
% elementsDifference(Es1,Es2,Es) :- Difference between
% two lists of elements.
%
elementsDifference([E|Es1],Es2,Es3) :-
includedElement(E,Es2),
|
elementsDifference(Es1,Es2,Es3).
elementsDifference([E|Es1],Es2,[E|ES3]) :-
|

élementsDifference(Esl,E52.Es3).
elementsDifference([],_,[]) :-
L

164

Appendix C. External schema definition DCM

The following is the source code of thexternal schema definitiotCM developed. Its
input file is the output file of the DCM in appendix B.

%
%
% OODBEE.DAT
% Output file

%
%

rbaseproperty(p("address"),1)

rbaseproperty(p("name"),2)

rbaseproperty(p(“category"),3)

rbaseclass(c("objects"),4)

rbaseclass(c("people™),5)

rbaseclass(c("addresses"),6)

rbaseclass(c("clients"),7)

rbaseclass(c("employees"),8)
rdirectclassproperty(c(“people”),p("address"),9)
rdirectclassproperty(c("employees"),p("category"),10)
rdirectclassproperty(c(“clients"),p("name"),11)
rdirectclassproperty(c("employees_"),p("name"),12)
rdirectclassproperty(c("employees_"),p("address"),13)
rdirectinheritance(c("people”),c("objects"),14)
rdirectinheritance(c("addresses"),c("objects"),15)
rdirectinheritance(c("clients"),c("people"),16)
rdirectinheritance(c("employees"),c("people"),17)
rdirectinheritance(c("clients"),c("g0"),58)
rdirectinheritance(c("employees_"),c("g0"),58)
rdirectinheritance(c("g0"),c("objects"),58)
rdirectinheritance(c("employees_"),c("g1"),59)
rdirectinheritance(c("clients"),c("g1"),59)
rdirectinheritance(c("g1"),c("objects"),59)
rdirectinheritance(c("g0"),c("people"),60)
rdirectaggregation(c("people"),c("addresses"),p("address"),18)
rdirectaggregation(c("employees_"),c("addresses"),p("address"),19)
rbaseobject(o("01"),20)

rbaseobject(o("02"),21)

rbaseobject(o("03"),22)

rbaseobject(o("04"),23)

rbaseobject(o("05"),24)

rdirectclassobject(c("people"),0("01"),25)
rdirectclassobject(c(“clients"),0("02"),26)
rdirectclassobject(c("employees"),0("02"),27)
rdirectclassobject(c("addresses"),0("03"),28)
rdirectclassobject(c("employees"),0("04"),29)
rdirectclassobject(c("addresses"),0("05"),30)
rdirectobjectproperty(o(“ol1"),p("address"),o([o("03")]),31)
rdirectobjectproperty(o("02"),p("address"),o([o("03"),0("05")]),32)
rdirectobjectproperty(o(“04"),p("address"),o([o("05")]),33)
rdirectobjectproperty(o("02"),p("category"),v([v("boss")]),34)
rdirectobjectproperty(o("04"),p("category"),v([v("technician")]),35)
rdefinedderivedclass(c("employees_"),36)
rdirectderivation(c("employees_"),[c("employees")],preservation,37)
rdirectderivation(c("g1"),[c("people")],preservation,59)
rgeneratedderivedclass(c("g0"),58)
rgeneratedderivedclass(c("g1"),59)
rclasssetselection("es1",[c("objects"),c("clients"),c("employees_")],38)
rqualifiedclasssetselection("es2",[q(esc(c("objects"),nontransformable)),q(esc(c("client
s"),transformable)),q(esc(c("employees_"),nontransformable)),q(esc(c("addresses"),transf
ormable)),q(esc(c("people"”),transformable))],39)
rqualifiedclasssetselection("es3",[q(esc(c("objects"),nontransformable)),q(esc(c("client
s"),transformable)),q(esc(c("employees_"),transformable)),q(esc(c("addresses"),transform
able)),q(esc(c("people"),nontransformable))],40)

165

rexternalschema("es1",[c("g0"),c("addresses"),c("objects"),c("clients"),c("employees_")]
[e(is_a(c("addresses"),c("objects"))),e(is_a(c("clients"),c("g0"))),e(is_a(c("employees
_").,c("90")).e(is_a(c("g0"),c("objects")))],58))
rexternalschema("es2",[c("clients"),c("addresses"),c("objects"),c("employees_"),c("gl")]
J[e(is_a(c("employees_"),c("gl"))),e(is_a(c("clients"),c("gl"))),e(is_a(c("gl"),c("objec
ts"))).e(is_a(c("addresses"),c("objects")))],59)
rexternalschema("es3",[c("g0"),c("employees_"),c("clients"),c("addresses"),c("objects"),
c("people")],[e(is_a(c("people"),c("objects"))),e(is_a(c("addresses"),c("objects"))),e(i
s_a(c("employees_"),c("g0"))),e(is_a(c("clients"),c("g0"))),e(is_a(c("g0"),c("people™)))
1,60)

rindirectinheritance(c("clients"),c("objects"),41)
rindirectinheritance(c("employees"),c("objects"),42)
rindirectinheritance(c("employees_"),c("objects"),58)
rinheritedaggregation(c(“clients"),c("addresses"),p("address"),43)
rinheritedaggregation(c("employees"),c("addresses"),p("address"),44)
rallclassproperties(c("objects"),[],45)
rallclassproperties(c("people”),[p("address")],46)
rallclassproperties(c("addresses"),[],47)
rallclassproperties(c(“clients"),[p("name"),p("address")],48)
rallclassproperties(c("employees"),[p("category”),p("address")],49)
rallclassproperties(c("employees_"),[p("name"),p("address")],50)
rallclassproperties(c("g0"),[p("name"),p("address")],58)
rallclassproperties(c("g1"),[p("name"),p("address")],59)
rallclassobjects(c("objects"),[o("01"),0("02"),0("03"),0("04"),0("05")],51)
rallclassobjects(c("people”),[o("01"),0("02"),0("04")],52)
rallclassobjects(c("addresses"),[0("03"),0("05")],53)
rallclassobjects(c(“clients"),[0("02")],54)
rallclassobjects(c("employees"),[0("02"),0("04")],55)
rallclassobjects(c("employees_"),[0("04")],56)
rallclassobjects(c("g0"),[0("02"),0("04")],58)
rallclassobjects(c("g1"),[o("01"),0("02"),0("04")],59)

rtime(60)

rid(1)

166

%

%
%
%

COMMREPO.PRO
Definition Repository.

%

%

predicates

now(time)

nondeterm inheritance(element,element,time)
updateNewlnheritanceRelationships(elements,time)
updateNewlnheritanceRelationships(elements,difList,time)
updateNewIndirectinheritanceRelationships(elements,time)
findIndirectinheritance2(element,time)

nondeterm therelsinheritance2(element,element,time)

nondeterm class(element,time)

nondeterm classProperties(element,elements,time)

nondeterm classPropertiesintersection(element,element,elements,time)
compareClasses(element,element,comparation)
directDerivation(element,elements,derSemantics,time)
generateDerivedClass(element,time)
newClassName(element)
associateClassesByDerivation(element,elements,time)

nondeterm classObjects(element,elements,time)
classObjectsUnion(element,element,element,time)
subsumesExtension(element,element,time)

nondeterm aggregation(element,element,element,time)

nondeterm classSetSelection(schema,elements,time)

nondeterm qualifiedClassSetSelection(schema,elements,time)

nondeterm externalSchema(schema,elements,elements,time)

defineExternalSchema(schema,elements,elements,time)

database - coodb

clauses

rBaseProperty(element,time)

rBaseClass(element,time)
rDirectClassProperty(element,element,time)
rDirectinheritance(element,element,time)
rDirectAggregation(element,element,element,time)
rBaseObject(element,time)
rDirectClassObject(element,element,time)
rDirectObjectProperty(element,element,evaluation,time)
rDefinedDerivedClass(element,time)
rDirectDerivation(element,elements,derSemantics,time)
rGeneratedDerivedClass(element,time)
rClassSetSelection(schema,elements,time)
rQualifiedClassSetSelection(schema,elements,time)
rExternalSchema(schema,elements,elements,time)

rindirectinheritance(element,element,time)
rinheritedAggregation(element,element,element,time)
rAlIClassProperties(element,elements,time)
rAlIClassObjects(element,elements,time)

rTime(integer)
rld(integer)

%
% now(T) :- Obtain the time.
%

now(T) :-
retract(rTime(T1)),
L
T=T1+1,
assertz(rTime(T)).
now(1) :-

L
assertz(rTime(1)).

167

%
% Inheritance.
%

%
% inheritance(Class1,Class2,T) :- Classl is subclass of
% Class2.
%
inheritance(C1,C2,T) :-

rDirectinheritance(C1,C2,T2),

T2<=T.
inheritance(C1,C2,T) :-

rindirectinheritance(C1,C2,T2),

T2<=T.

%
% updateNewlnheritanceRelationships(Edges,T) :- Given

% the Edges obtained in an External Schema, updates
% the repository with the new inheritance
% relationships obtained.

%

updateNewlnheritanceRelationships(Es,T) :-
updateNewlnheritanceRelationships(Es,dI(Cs1,[]),T),
nonDuplicatedElements(Cs1,Cs2),
updateNewlndirectinheritanceRelationships(Cs2,T).

updateNewlInheritanceRelationships([e(is_a(C1,C2))|Es],
dl(Cs1,Cs2),T) :-
not(inheritance(C1,C2,T)),
|

éssertz(rDirectlnheritance(Cl,CZ,T)),

updateNewlnheritanceRelationships(Es,dI(Cs1,[C1|Cs2]),T).
updateNewlnheritanceRelationships([_|Es],CsdI,T) :-

R

updateNewlnheritanceRelationships(Es,CsdI,T).
updateNewlnheritanceRelationships([],dI(Cs,Cs),_) :-

[

%
% updateNewIndirectinheritanceRelationships(Classes,T) :-
% Given the set of new classes related directly by
% inheritance, obtains the indirect inheritance.
%
updateNewIndirectinheritanceRelationships([C|Cs],T) :-
findIndirectinheritance2(C,T),
L
updateNewIndirectinheritanceRelationships(Cs,T).
updateNewIndirectinheritanceRelationships([],_) :-
R

%
% findIndirectinheritance2 :- Find indirect inheritance

% relationships.

%
findIndirectinheritance2(C1,T) :-
class(C1,T),
class(C2,T),

compareClasses(C1,c(objects),ne),
compareClasses(C1,C2,ne),
not(rDirectInheritance(C2,C1,_)),
not(rDirectInheritance(C1,C2,_)),
not(rindirectinheritance(C2,C1,_)),
rDirectinheritance(C1,C3,_),
therelsinheritance2(C3,C2,T),
not(rindirectinheritance(C1,C2,_)),
assertz(rIndirectinheritance(C1,C2,T)),
fail.

findIndirectinheritance2(_,_) :-
|

%
% therelsInheritance2(Class1,Class2,T) :- Class1 and
% Class2 are related by inheritance.
%
therelsinheritance2(C1,C2,T) :-
rDirectinheritance(C1,C2,T2),
T2<=T.

168

%
%

therelsinheritance2(C1,C2,T) :-
rDirectinheritance(C1,C3,T2),
T2<=T,
therelsinheritance2(C3,C2,T).

Classes.

%

%

% class(Class,T) :- Class is a class.

%

class(C,T) :-
rBaseClass(C,T2),
T2<=T.

class(C,T) :-
rDefinedDerivedClass(C,T2),
T2<=T.

class(C,T) :-
rGeneratedDerivedClass(C,T2),
T2<=T.

%
% classProperties(Class,Properties,T) :- Class has
% Properties.
%
classProperties(C,Ps,T) :-
class(C,T),
not(bound(Ps)),
rAllClassProperties(C,Ps,T2),
T2<=T.
classProperties(C,Ps1,T) :-
class(C,T),
bound(Ps1),
rAllClassProperties(C,Ps2,T2),
T2<=T,
equalElements(Ps2,Ps1).
classProperties(C,Ps,T) :-
class(C,T),
bound(Ps),
not(rAllClassProperties(C,_,_)),
assertz(rAllClassProperties(C,Ps,T)).

%

% classPropertiesintersection(Class1,Class2,Properties,T) :-

% Class1 and Class2 have Properties in common.

%

classPropertiesintersection(C1,C2,Ps,T) :-
classProperties(C1,Ps1,T),
classProperties(C2,Ps2,T),
elementsintersection(Ps1,Ps2,Ps).

%
% compareClasses(C1,C2,Comparation) :- Comparation
% between two classes.
%
compareClasses(c(C1),c(C2),eq) :-

Cl=C2,

|
compareClasses(c(C1),c(C2),ne) :-

Cl<>C2,

|

%
%

Derivation.

%

%
% directDerivation(C,Cs,Way,T) :- C class is derived
% from Cs classes in the way specified.
%
directDerivation(C,Cs,Way,T) :-
rDirectDerivation(C,Cs,Way,T2),
T2<=T,
1

169

%
% generateDerivedClass(Class) :- Defines a new generated
% derived class.
%
generateDerivedClass(C,T) :-
newClassName(C),
assertz(rGeneratedDerivedClass(C,T)).

%
% newClassName(Class) :- Generates a new class name.
%
newClassName(c(C)) :-

retract(rld(1d1)),

|

Id=1Id1+1,
assertz(rld(ld)),
str_int(Strid, Id),
concat("g",Strld,Nom),
C = Nom.
newClassName(c(g0)) :-
assertz(rld(0)).

%
% associateClassesByDerivation(C,Cs,T) :- Associate C
% class with Cs classes by the derivation relationship.
%
associateClassesByDerivation(C,Cs,_) :-
includedElement(C,Cs),
|

associateClassesByDerivation(C,Cs1,T) :-
rDirectDerivation(C,Cs2,preservation,T2),
T2<=T,
retract(rDirectDerivation(C,_,preservation,_)),
|

élementsunion(Csl,CsZ,Cs3),

assertz(rDirectDerivation(C,Cs3,preservation,T)).
associateClassesByDerivation(C,Cs,T) :-

|

assertz(rDirectDerivation(C,Cs,preservation,T)).

%
% Objects.
%

%
% classObjects(Class,Objects,T) :- Class has Objects as
% members.
%
classObjects(C,0Os,T) :-

class(C,T),

not(bound(Os)),

rAllClassObjects(C,0s,T2),

T2<=T.
classObjects(C,0s1,T) :-

class(C,T),

bound(Os1),

rAllClassObjects(C,0s2,T2),

T2<=T,

equalElements(0s2,0s1).
classObjects(C,Os,T) :-

class(C,T),

bound(Os),

not(rAllClassObjects(C,_,_)),

assertz(rAllClassObjects(C,0s,T)).

%

% classObjectsUnion(Class1,Class2,Class3,T) :- Class3

% contains the union of the set of objects of Class1

% and Class2.

%

classObjectsUnion(C1,C2,C3,T) :-
not(rAllClassObijects(C3,_,_)),
classObjects(C1,0s1,T),
classObjects(C2,0s2,T),
|

elementsUnion(Os1,0s2,0s3),
assertz(rAllClassObjects(C3,0s3,T)).

170

%
%
%

%
%
%

classObjectsUnion(C1,C2,C3,T) :-
classObjects(C3,0s3,T),
classObjects(C1,0s1,T),
classObjects(C2,0s2,T),
elementsUnion(0Os1,0s2,0s4),
equalElements(0s3,0s4),
|

%
% subsumesExtension(Class1,Class2,T) :- Class1 subsumes
% extesion of Class2. APROXIMATION.
%
subsumesExtension(C1,C2,T) :-
classObjects(C1,0s1,T),
classObjects(C2,0s2,T),
includedElements(0s2,0s1),
|

Aggregation.

%
% aggregation(Class1,Class2,Property,T) :- There is a
% property function defined for class Class1 with the
% property label Property and the domain class Class2.
%
aggregation(C1,C2,P,T) :-
rDirectAggregation(C1,C2,P,T2),
T2<=T.
aggregation(C1,C2,P,T) :-
rinheritedAggregation(C1,C2,P,T2),
T2<=T.

External Schemas.

%
% classSetSelection(S,Cs,T) :- Selection of classes
% to compose an External Schema.
%
classSetSelection(S,Cs,T) :-
rClassSetSelection(S,Cs,T2),
T2<=T.

%
% qualifiedClassSetSelection(S,QCs,T) :- Qualified
% selection of classes to compose an External Schema.
%
qualifiedClassSetSelection(S,QCs,T) :-
rQualifiedClassSetSelection(S,QCs,T2),
T2<=T.

%
% externalSchema(S,Cs,Es,T) :- Defined External Schema.
%
externalSchema(S,Cs,Es,T) :-
rExternalSchema(S,Cs,Es,T2),
T2<=T.

%
% defineExternalSchema(S,Cs,Es,T) :- Define an External
% Schema.
%
defineExternalSchema(S,Cs,Es,T) :-
assertz(rExternalSchema(S,Cs,Es,T)),
|

171

%
%
%
%
%
%

GESGEN.PRO
General External Schema Generation.

include "domains.pro"
include "elemlist.pro”
include "commrepo.pro”

predicates

run
generateExternalSchemas(time)

generateExternalSchema(elements,elements,elements,time)
propertyDecompositionHierarchyClosure(elements,elements,time)
propertyDecompositionHierarchyClosureDL (elements,difList,time)
classHierarchyClosure(elements,elements,elements,time)
classHierarchyClosure(elements,elements,difList,difList,time)

addLowestCommonSuperclass(element,element,elements,difList,
difList,difList,time)

nondeterm superclassWithPropertiesinSet(element,element,
elements,elements,element,time)

lowerSuperclassWithPropertiesIinSet(element,element,
elements,elements,element,time)

nondeterm superclassWithPropertiesinRepository(element,
element,elements,element,time)

lowersuperclassWithPropertiesInRepository(element,element,
elements,element,time)

eliminateReduntantEdges(elements,elements,time)
eliminateReduntantEdges(elements,elements, difList,time)
nondeterm indirectEdge(element,elements)

nondeterm definedEdge(element,elements)

generateQualifiedExternalSchema(elements,elements,elements,time)
qualifiedClasses(elements,classQuality,elements)
transfClassesRelatedByAggregation(elements,elements,elements,
elements,time)
transfClassesRelatedByAggregationDL(elements,elements,difList,
difList,time)
classesWithProperties(elements,elements,time)
classesWithPropertiesDL (elements,difList,time)
transfClassesPropDecompHierarchyClosure(elements,elements,
elements,elements,time)
transfClassesPropDecompHierarchyClosure(elements,elements,
difList,time)
classPropertyDecompositionClosure(element,elements,element,time)
classPropertyDecompositionClosure(element,elements,elements,
difList,time)

subsumtionlsomorficClasses(elements,elements,elements,time)
subsumtionlsomorficClassesDL(elements,difList,difList,time)
integrationOfTansformableClasses(elements,elements,elements,
elements,elements,time)
integrationOfTansformableClasses(elements,difList,difList,time)
transformableClassIntegration(element,elements,elements,
elements,elements,time)
branchTransformableClassintegration(element,elements,elements,
elements,elements,time)
branchTransformableClassiIntegrationDL(element,elements,difList,
difList,time)
integrateTransformableClass(element,element,elements,elements,
elements,elements,time)
leafTransformableClassintegration(element,elements,elements,
elements,elements,time)
subsumedBySomeClass(element,elements,time)
subsumingSuperclassPropertyUnion(element,element,elements,
elements,elements,time)
subsumingSuperclassPropertyUnionDL(element,element,elements,
elements,difList,time)
subsumingClassPropertyUnion(element,elements,elements,time)
subsumingClassPropertyUnionDL(element,elements,difList,time)
defineTransformableClass(element,element,time)
eliminateRedundantTransformableClasses(elements,elements,
elements,elements,elements,elements,time)
eliminateRedundantTransformableClasses(elements,elements,difList,
difList,time)

172

goal

clauses

exclusiveNodesEdge(element,elements)
unifyTransformableAndAddedClasses(element,element,element,time)
unifyClassesInSchema(element,element,element,elements,elements,
elements,elements,time)
unifyClassesInSchema(elements,element,element,difList,time)
obtainedFromTransformableClasses(elements,elements,elements,time)
obtainedFromTransformableClassesDL (elements,elements, difList,time)

run.

run :-
consult("oodb.dat",coodb),
now(T),
generateExternalSchemas(T),
save("oodbee.dat",coodb),
write("\n\nOK."),
|

%

%

%

% generateExternalSchemas(T) :- Generated all the

% defined external schemas.

%

generateExternalSchemas(T) :-
classSetSelection(S,Cs1,T),
not(externalSchema(s,_,_,T)),
now(T1),
generateExternalSchema(Cs1,Cs2,Es, T1),
defineExternalSchema(S,Cs2,Es,T1),
fail.

generateExternalSchemas(T) :-
qualifiedClassSetSelection(S,QCs,T),
not(externalSchema(s,_,_,T)),
now(T1),
generateQualifiedExternalSchema(QCs,Cs,Es, T1),
defineExternalSchema(S,Cs,Es, T1),
fail.

generateExternalSchemas(_) :-
|

%

%

%
% generateExternalSchema(Cs1,Cs2,Es,T) :- Given a set

% of classes Cs1, generates a correct External Schema
% with all the classes needed (Cs2) and the edges
% between them (Es).

%

generateExternalSchema(Cs1,Cs2,Es2,T) :-
includeElement(c(objects),Cs1,Cs3),
propertyDecompositionHierarchyClosure(Cs3,Cs4,T),
classHierarchyClosure(Cs4,Cs2,Es1,T),
eliminateReduntantEdges(Es1,Es2,T),

updateNewlnheritanceRelationships(Es2,T),
L

%
% propertyDecompositionHierarchyClosure(Cs1,Cs2,T) :-

% Given a set of classes Cs1 obtains the set of

% classes Cs2 closed according to the property

% decomposition hierarchy: "all classes that are being
% used in a external schema are also defined within

% the external schema"; adding the classes referenced
% and not included.

%
propertyDecompositionHierarchyClosure(Cs1,Cs2,T) :-
propertyDecompositionHierarchyClosureDL(Cs1,dl(Cs2,Cs1),T).

propertyDecompositionHierarchyClosureDL([C1|Cs1],dI(Cs2,Cs3),T) :-

aggregation(C1,C2, ,T),
not(includedElement(C2,Cs3)),

173

R
propertyDecompositionHierarchyClosureDL([C1,C2|Cs1],
dI(Cs2,[C2|Cs3]),T).
propertyDecompositionHierarchyClosureDL([_|Cs1],Cs2dI,T) :-
|

6ropertyDecompositionHierarchyCIosureDL(Csl,CdeI,T).
propertyDecompositionHierarchyClosureDL([],dI(Cs,Cs),_) :-
B

%

% classHierarchyClosure(Cs1,Cs2,Es,T) :- Given the set

% of classes Cs1, obtains the associated External

% Schema closed w.r.t. class hierarchy.

%

classHierarchyClosure(Cs1,Cs2,Es,T) :-
classHierarchyClosure(Cs1,Cs1,dl(Cs2,Cs1),dI(Es,[]),T).

classHierarchyClosure([C|Cs1],[C|Cs2],Cs3dl,Esdl,T) :-
|

EIassHierarchyCIosure([C|Csl].C52,Cs3dI,EsdI,T).
classHierarchyClosure([C1|Cs1],[C2|Cs2],dI(Cs3,Cs4),dI(Es1,Es2),T) :-

classPropertiesintersection(C1,C2,Ps,T),

|

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs6,Cs4),dI(Cs5,Cs1),
dI(Es3,Es2),T),
classHierarchyClosure([C1|Cs5],Cs2,dI(Cs3,Cs6),dI(Es1,Es3),T).
% Added classes are considered again in order to update
% all its inheritance relationships (Cs1 -> Cs5).
classHierarchyClosure([_|Cs1],[],dI(Cs2,Cs3),EsdI,T) :-
|

EIassHierarchyCIosure(Csl,Cs3.dI(C32.C33),EsdI,T).
classHierarchyClosure([],_,dI(Cs,Cs),dI(Es,Es),_) :-
1

%
% addLowestCommonSuperclass(C1,C2,Ps,Cs1dl,Cs2dl,Esdl,T) :-

% Given the classes C1, C2 and their common properties
% Ps, obtains the lowest common superclass (LCS) in

% order to update the sets of classes and edges adding
% the LCS class and its inheritance relationships with

% the classes given.

%
addLowestCommonSuperclass(C1,C2,Ps,dl(Cs1,Cs1),dI(Cs2,Cs2),
di(Es2,Es1),T) :-
classProperties(C1,Ps,T),
subsumesExtension(C1,C2,T),
includeElement(e(is_a(C2,C1)),Es1,Es2),
|

addLowestCommonSuperclass(C1,C2,Ps,dI(Cs1,Cs1),dI(Cs2,Cs2),
di(Es2,Es1),T) :-
classProperties(C2,Ps,T),
subsumesExtension(C2,C1,T),
includeElement(e(is_a(C1,C2)),Es1,Es2),
|

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs1,Cs1),dI(Cs2,Cs2),
dI(Es3,Es1),T) :-
superclassWithPropertiesinSet(C1,C2,Ps,Cs1,C3,T),
not(lowerSuperclassWithPropertiesIinSet(C1,C2,Ps,Cs1,C3,T)),
includeElement(e(is_a(C1,C3)),Es1,Es2),
includeElement(e(is_a(C2,C3)),Es2,Es3),
|

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs2,Cs1),dI(Cs4,Cs3),
dI(Es3,Es1),T) :-

superclassWithPropertiesinRepository(C1,C2,Ps,C3,T),
not(lowersuperclassWithPropertiesinRepository(C1,C2,Ps,C3,T)),
includeElement(C3,Cs1,Cs2),
includeElement(C3,Cs3,Cs4),
includeElement(e(is_a(C1,C3)),Es1,Es2),
includeElement(e(is_a(C2,C3)),Es2,Es3),
|

addLowestCommonSuperclass(C1,C2,Ps,dl(Cs2,Cs1),dl(Cs4,Cs3),

dI(Es3,Es1),T) :-

generateDerivedClass(C3,T),

classProperties(C3,Ps,T),

classObjectsUnion(C1,C2,C3,T),

includeElement(C3,Cs1,Cs2),

includeElement(C3,Cs3,Cs4),

includeElement(e(is_a(C1,C3)),Es1,Es2),

includeElement(e(is_a(C2,C3)),Es2,Es3),

174

%

% superclassWithPropertiesinSet(C1,C2,Ps,Cs,C3,T) :-

% C3 is superclass of C1 and C2, belongs to Cs and

% has properties Ps.

%

superclassWithPropertiesinSet(C1,C2,Ps,Cs,C3,T) :-
includedElement(C3,Cs),
classProperties(C3,Ps,T),
subsumesExtension(C3,C1,T),
subsumesExtension(C3,C2,T).

%
% lowerSuperclassWithPropertiesinSet(C1,C2,Ps,Cs,C3,T) :-

% C3 is superclass of C1 and C2, belongs to Cs and
% has properties Ps, but another class exists with
% the same properties that C3 and is subclass of C3.

%

lowerSuperclassWithPropertiesinSet(C1,C2,Ps,Cs,C3,T) :-
superclassWithPropertiesinSet(C1,C2,Ps,Cs,C4,T),
compareClasses(C4,C3,ne),

subsumesExtension(C3,C4,T),
(B

%

% superclassWithPropertiesinRepository(C1,C2,Ps,C3,T) :-

% C3 is superclass of C1 and C2 in the repository and

% has properties Ps.

%

superclassWithPropertiesinRepository(C1,C2,Ps,C3,T) :-
classProperties(C3,Ps,T),
subsumesExtension(C3,C1,T),
subsumesExtension(C3,C2,T).

%
% lowerSuperclassWithPropertiesinRepository(C1,C2,Ps,C3,T) :-

% C3 is superclass of C1 and C2 in the repository and
% has properties Ps, but another class exists with
% the same properties that C3 and subclass of C3.

%

lowersuperclassWithPropertiesinRepository(C1,C2,Ps,C3,T) :-
superclassWithPropertiesInRepository(C1,C2,Ps,C4,T),
compareClasses(C4,C3,ne),

subsumesExtension(C3,C4,T),
1

%

% eliminateReduntantEdges(Es1,Es2,T) :- Given a set of

% edges Esl, eliminates the redundant edges to obtain

% the set Es2.

%

eliminateReduntantEdges(Es1,Es2,T) :-
nonDuplicatedElements(Es1,Es3),
eliminateReduntantEdges(Es3,Es3,dI(Es2,[]),T).

eliminateReduntantEdges([E|Es1],Es2,Es3dI,T) :-
indirectEdge(E,Es2),
|

éliminateReduntantEdges(Esl,EsZ,Es3dI,T).
eliminateReduntantEdges([E|Es1],Es2,dI(Es3,Es4),T) :-
|

éliminateReduntantEdges(Esl,EsZ,dI(Es3,[E|Es4]),T).
eliminateReduntantEdges([],_,dI(Es,Es),_) :-
R

%

% indirectEdge(E,Es) :- E is an edge that is indirectly

% defined in the set of edges Es.

%

indirectEdge(e(is_a(C1,C2)),Es) :-
includedElement(e(is_a(C1,C3)),Es),
definedEdge(e(is_a(C3,C2)),Es).

175

%
%

%
% definedEdge(E,Es) :- The given edge E is defined
% directly or indirectly in the list of edges Es.
%
definedEdge(E,Es) :-

includedElement(E,Es).
definedEdge(E,Es) :-

indirectEdge(E,Es).

%
% generateQualifiedExternalSchema(QCs,Cs,Es,T) :- Given

% a set of qualified classes QCs, generates a correct
% External Schema with all the classes Cs needed and
% the edges Es between them.

%
generateQualifiedExternalSchema(QCs1,Cs,Es,T) :-
includeElement(q(esc(c(objects),nonTransformable)),QCs1,QCs2),

% NonTransformable and Transformable Classes.
qualifiedClasses(QCs2,nonTransformable,CsNT1),
qualifiedClasses(QCs2,transformable,CsT1),

% Property Decomposition Hierarchy Closure.
%

% Classes refered by NT classes become NT.
propertyDecompositionHierarchyClosure(CsNT1,CsNT2,T),

% T classes refered by NT classes become NT.
elementsDifference(CsT1,CsNT2,CsT2),

% T classes refered by T classes become NT.
transfClassesRelatedByAggregation(CsT2,CsNT2,CsT3,CsNT3,T),

% References of T classes to classes not included

% have to be supressed.

classesWithProperties(CsT3,CsTWPs1,T),

transfClassesPropDecompHierarchyClosure(CsTWPs1,CsT3,CsNT3,
CsTWPs2,T),

% Class Hierarchy Closure.

0 —
% NT classes hierarchy closure.
classHierarchyClosure(CsNT3,CsNT4,EsNT1,T),
eliminateReduntantEdges(EsNT1,EsNT2,T),

% Unification of T classes that contain the same objects.
subsumtionlsomorficClasses(CsTWPs2,ICsTWPs,CsT4,T),

% Integration of T classes.

integrationOfTansformableClasses(ICSTWPs,CsNT4,EsNT2,
Cs3,Es2,T),

eliminateReduntantEdges(Es2,Es3,T),

% T classes that can be replaced by auxiliary added clases.
eliminateRedundantTransformableClasses(CsNT3,CsT4,Cs3,Es3,
Cs,Es,T),

updateNewlnheritanceRelationships(Es,T),
R

%
% qualifiedClasses(QCs,Q,Cs) :- Given a set of qualified
% classes and a qualification, obtains the set of
% classes qualified this way.
%
qualifiedClasses([q(esc(C,_))|QCs],any,[C|Cs]) :-

!

ciualifiedCIasses(QCs.any,Cs).
qualifiedClasses([q(esc(C,Q))|QCs].Q,[C|Cs]) :-
!

ciuaIifiedCIasses(QCs.Q,Cs).
qualifiedClasses([_|QCs],Q,Cs) :-
!

ciuaIifiedCIasses(QCs.Q,Cs).
qualifiedClasses([],_,[]) :-
1

176

%
% transfClassesRelatedByAggregation(CsT1,CsNT1,CsT2,

% CsNT2,T) :- T classes refered by T classes become NT.
% Given the original T and NT sets of classes, obtains
% the new ones.

%
transfClassesRelatedByAggregation(CsT1,CsNT1,CsT2,CsNT2,T) :-
transfClassesRelatedByAggregationDL(CsT1,CsT1,dI(CsT2,[]),
dI(CsNT2,CsNT1),T).

transfClassesRelatedByAggregationDL([C1|CsT1],CsT0,CsT2dl,
dI(CsNT2,CsNT1),T) :-
aggregation(C2,C1,_,T),
includedElement(C2,CsTO0),
|

transfClassesRelatedByAggregationDL(CsT1,CsT0,CsT2dl,
dI(CsNT2,[C1|CsNT1]),T).
transfClassesRelatedByAggregationDL([C|CsT1],CsTO,
dl(CsT2,CsT3),CsNTdI,T) :-
|
transfClassesRelatedByAggregationDL(CsT1,CsTO,
dI(CsT2,[C|CsT3]),CsNTdI,T).
transfClassesRelatedByAggregationDL([],_,dI(CsT,CsT),
dI(CsNT,CsNT),) :-
|

%

% classesWithProperties(Cs,CsWPs,T) :- Given a set of

% classes Cs returns a set of classes with properties.

%

classesWithProperties(Cs,CsWPs,T) :-
classesWithPropertiesDL(Cs,dI(CsWPs,[]),T).

classesWithPropertiesDL([C|Cs1],dl(CsWPs,Cs2),T) :-
classProperties(C,Ps,T),
|

EIassesWithPropertiesDL(Csl,dI(CsWPs,[cp(C,Ps)|C52]),T).
classesWithPropertiesDL([],dI(CsWPs,CsWPs),_) :-
1

%
% transfClassesPropDecompHierarchyClosure(CsTWPs1,CsT,

% CsNT,CsTWPs2,T) :- Given a set of classes with their
% properties, deletes the properties that reference
% classes not included in the sets of NT and T classes.

%
transfClassesPropDecompHierarchyClosure(CsPs1,CsT,CsNT,
CsPs2,T) :-
elementsUnion(CsT,CsNT,AlICs),
transfClassesPropDecompHierarchyClosure(CsPs1,AllCs,
di(CsPs2,[]),T).

transfClassesPropDecompHierarchyClosure([CP1|CsPs1],AlICs,
dIi(CsTWPs,CsPs2),T) :-
|
classPropertyDecompositionClosure(CP1,AllICs,CP2,T),
transfClassesPropDecompHierarchyClosure(CsPs1,AllCs,
dI(CsTWPs,[CP2|CsPs2]),T).
transfClassesPropDecompHierarchyClosure([],_,

dI(CsTWPs,CsTWPs),) :-
B

%
% classPropertyDecompositionClosure(CP1,Cs,CP2,T) :-

% Given a class with its properties, deletes the

% properties that don't reference the set of classes
% also given; returns the class with the properties
% that remain.

%
classPropertyDecompositionClosure(cp(C,Ps1),Cs,cp(C,Ps2),T) :-
classPropertyDecompositionClosure(C,Ps1,Cs,dI(Ps2,[]),T).

classPropertyDecompositionClosure(C1,[P|Ps1],Cs,Ps2dI,T) :-

aggregation(C1,C2,P,T),
not(includedElement(C2,Cs)),
L

177

classPropertyDecompositionClosure(C1,Ps1,Cs,Ps2dl,T).
classPropertyDecompositionClosure(C,[P|Ps1],Cs,dI(Ps2,Ps3),T) :-
|

ElassPropertyDecompositionCIosure(C,Psl,Cs,dI(PsZ,[PlPs3]).T).
classPropertyDecompositionClosure(_,[],_,dI(Ps,Ps),) :-
(B

%

% subsumtionlsomorficClasses(CsPs,ICsPs,Cs,T) :- Given

% a set of classes with properties, obtains isomorfic

% groups of classes using the subsumtion relationship.

%

subsumtionlsomorficClasses(CsPs,ICsPs,Cs,T) :-
subsumtionlsomorficClassesDL(CsPs,dI(ICsPs,[]),

di(Cs,[]),T).

subsumtionlsomorficClassesDL([cp(C1,Ps1)|CsPs1],
dI(ICsPs1,ICsPs2),Csdl,T) :-
includedElement(si(C2,Ps2,Cs2),ICsPs2),
subsumesExtension(C1,C2,T),
subsumesExtension(C2,C1,T),
|
elementsDifference(ICsPs2,[si(C2,Ps2,Cs2)],ICsPs3),
elementsUnion(Ps2,Ps1,Ps3),
subsumtionlsomorficClassesDL(CsPs1,
di(ICsPs1,[si(C2,Ps3,[C1|Cs2])|ICsPs3]),Csdl,T).
subsumtionlsomorficClassesDL([cp(C,Ps)|CsPs],dI(ICsPs1,ICsPs2),
dI(Cs1,Cs2),T) :-
|
subsumtionlsomorficClassesDL(CsPs,dI(ICsPs1,
[si(C,Ps,[C])|ICsPs2]),dI(Cs1,[C|Cs2]),T).
subsumtionlsomorficClassesDL([],dI(ICsPs,ICsPs),dI(Cs,Cs),_) :-
|

%
% integrationOfTansformableClasses(ICsTWPs,CsNT,EsNT,Cs,

% Es,T) :- Given the set of T classes and the
% schema of NT classes, integrates the T classes
% obtaining the new schema.

%
integrationOfTansformableClasses(ICsTWPs,CsNT,EsNT,Cs,Es,T) :-
integrationOfTansformableClasses(ICSTWPs,
dI(Cs,CsNT),dI(Es,ESNT),T).

integrationOfTansformableClasses(ICsTWPs1,dl(Cs1,Cs2),
di(Es1,Es2),T) :-
includedElement(si(C,Ps,Cs),ICSTWPs1),
not(subsumedBySomeClass(C,ICsTWPs1,T)),
|

elementsDifference(ICSTWPsL1,[si(C,Ps,Cs)],ICsTWPs2),
transformableClassIntegration(si(C,Ps,Cs),Cs2,Es2,Cs3,Es3,T),
integrationOfTansformableClasses(ICsTWPs2,dI(Cs1,Cs3),
di(Es1,Es3),T).
integrationOfTansformableClasses([],dI(Cs,Cs),dI(Es,Es),_) :-
|

%
% transformableClassintegration(si(C,Ps,Cs),Cs1,Es1,Cs2,

% Es2,T) :- Given a T class, the set of classes
% integrated and the edges between them, integrates
% the class obtaining a new set of classes and edges.

%
transformableClasslIntegration(si(C1,Ps1,Cs1),Cs2,Es2,
Cs3,Es3,T) :-
includedElement(C2,Cs2),
subsumesExtension(C1,C2,T),
!
branchTransformableClassintegration(si(C1,Ps1,Cs1),
Cs2,Es2,Cs3,Es3,T).
transformableClasslIntegration(si(C1,Ps1,Cs1),Cs2,Es2,
Cs3,Es3,T) :-
|
leafTransformableClassintegration(si(C1,Ps1,Cs1),
Cs2,Es2,Cs3,Es3,T).

%
% branchTransformableClassIntegration(si(C1,Ps1,Cs1),

178

% ,Cs2,Es2,Cs3,Es3,T) :- Transform and integrate the
% given class in a branch of the class hierarchy.
%
branchTransformableClassintegration(si(C1,Ps1,Cs1),
Cs2,Es2,Cs3,Es3,T) :-
branchTransformableClassIntegrationDL(si(C1,Ps1,Cs1),Cs2,
dI(Cs3,Cs2),dI(Es3,Es2),T).
branchTransformableClassiIntegrationDL(si(C1,Ps1,Cs1),[C2|Cs2],
dI(Cs3,Cs4),dI(Es1,Es2),T) :-
subsumesExtension(C1,C2,T),
|
integrateTransformableClass(si(C1,Ps1,Cs1),C2,Cs4,Es2,
Cs5,Es3,T),
branchTransformableClassIntegrationDL(si(C1,Ps1,Cs1),Cs2,
dI(Cs3,Csb5),dI(Es1,Es3),T).
branchTransformableClassintegrationDL(C,[_|Cs],Csdl,Esdl,T) :-
|
branchTransformableClassintegrationDL(C,Cs,Csdl,EsdI,T).

branchTransformableClassiIntegrationDL(_,[],dl(Cs,Cs),dI(Es,Es),_) :-
1

%
% integrateTransformableClass(si(C1,Ps1,Cs1),C2,Cs2,Es2,

% Cs3,Es3,T) :- Given a transformable class C1 that
% subsumes C2 class, and a schema, transforms and
% integrates the transformable class in the schema.

%
integrateTransformableClass(si(C1,Ps1,Cs1),C2,Cs2,Es2,
Cs3,Es3,T) :-
subsumingSuperclassPropertyUnion(C1,C2,Cs2,Es2,Ps3,T),
elementsUnion(Ps1,Ps3,Ps4),

classProperties(C2,Ps2,T),
elementsintersection(Ps2,Ps4,Ps5),

defineTransformableClass(si(C1,Ps5,Cs1),C3,T),
includeElement(C3,Cs2,Cs4),
classHierarchyClosure([C3],Cs2,dI(Cs3,Cs4),

dI(Es3,Es2),T),
|
% Add to the T class C1 the properties of the superclasses of
% C2 class that subsume C1; the new class will have all these
% properties intesectioned with C2 properties (it is a C2
% superclass), this is the class to integrate by inheritance
% in a closed schema.

%
% leafTransformableClassintegration(si(C1,Ps1,Cs1),

% Cs2,Es2,Cs3,Es3,T) :- The given transformable class,
% that doesn't subsume any of the existing classes, is
% integrated in the class hierarchy.

%
leafTransformableClassintegration(si(C1,Ps1,Cs1),
Cs2,Es2,Cs3,Es3,T) :-
subsumingClassPropertyUnion(C1,Cs2,Ps2,T),
elementsUnion(Ps1,Ps2,Ps3),

defineTransformableClass(si(C1,Ps3,Cs1),C2,T),

includeElement(C2,Cs2,Cs4),

classHierarchyClosure([C2],Cs2,dI(Cs3,Cs4),
dI(Es3,Es2),T),

|

%
% subsumedBySomeClass(C,ICsTWPs,T) :- The given a class
% is subsumed by some class from the given list.
%
subsumedBySomeClass(C1,[si(C2,_,)|_],T) :-
compareClasses(C1,C2,ne),
subsumesExtension(C2,C1,T),
|

subsumed.éySomeCIass(C,L|ICsTWPs],T) -
!

éubsumedBySomeCIass(C,ICsTWPs,T).

%
% subsumingSuperclassPropertyUnion(C1,C2,Cs,Es,Ps,T) :-

179

% Ps is the union of the properties of the superclasses
% of C2 class that subsume C1 class.
%
subsumingSuperclassPropertyUnion(C1,C2,Cs,Es,Ps,T) :-
subsumingSuperclassPropertyUnionDL(C1,C2,Cs,Es,
di(Ps,[]),T).

subsumingSuperclassPropertyUnionDL(C1,C2,[C3|Cs],Es,
di(Ps1,Ps2),T) :-
definedEdge(e(is_a(C2,C3)),Es),
subsumesExtension(C3,C1,T),
classProperties(C3,Ps3,T),
elementsUnion(Ps2,Ps3,Ps4),
|

gubsumingSupercIassPropertyUnionDL(C1,C2,Cs,Es,
di(Ps1,Ps4),T).
subsumingSuperclassPropertyUnionDL(C1,C2,[_|Cs],Es,PsdI,T) :-
|

gubsumingSupercIassPropertyUnionDL(Cl,Cz,Cs,Es,PsdI,T).
subsumingSuperclassPropertyUnionDL(_,_,[],_,dI(Ps,Ps),_) :-
[

%

% subsumingClassPropertyUnion(C1,Cs,Ps,T) :- Ps is the

% union of the properties of the classes of Cs that

% subsume C1 class.

%

subsumingClassPropertyUnion(C1,Cs,Ps,T) :-
subsumingClassPropertyUnionDL(C1,Cs,dI(Ps,[]),T).

subsumingClassPropertyUnionDL(C1,[C2|Cs],dI(Ps1,Ps2),T) :-
subsumesExtension(C2,C1,T),
classProperties(C2,Ps3,T),
elementsUnion(Ps2,Ps3,Ps4),
|

gubsumingCIassPropertyUnionDL(Cl,Cs,dI(Psl,Ps4),T).
subsumingClassPropertyUnionDL(C,[_|Cs],Psdl,T) :-
|

gubsumingCIassPropertyUnionDL(C,Cs,Psdl,T).
subsumingClassPropertyUnionDL(_,_,dI(Ps,Ps),_) :-
[

%
% defineTransformableClass(si(C1,Ps1,Cs1),C2,T) :- Given

% a transformed transformable class C1, defines this
% class in the repository (if not defined yet) and
% returns it in C2.

%
defineTransformableClass(si(C1,Ps1,Cs1),C2,T) :-
classProperties(C2,Ps1,T),
subsumesExtension(C2,C1,T),
subsumesExtension(C1,C2,T),
|
associateClassesByDerivation(C2,Cs1,T).
defineTransformableClass(si(C1,Ps1,Cs1),C2,T) :-
generateDerivedClass(C2,T),
classProperties(C2,Ps1,T),
classObjects(C1,0s1,T),
classObjects(C2,0s1,T),
|

éssociateCIassesByDerivation(Cz,Csl,T).

%
% eliminateRedundantTransformableClasses(CsNT,CsT,

% Csl,Esl1,Cs2,Es2,T) :- Given the sets of NT and T
% classes and the schema obtained, eliminate the
% redundant classes of the schema, obtaining a new one.

%
eliminateRedundantTransformableClasses(CsNT,CsT,Cs1,Es1,
Cs2,Es2,T) :-
% Classes added to the schema.
elementsDifference(Cs1,CsNT,Cs3),
elementsDifference(Cs3,CsT,Cs4),
obtainedFromTransformableClasses(Cs4,CsT,CsT2,T),
elementsUnion(CsT,CsT2,CsTnew),
elementsDifference(Cs4,CsT2,CsAdd),
eliminateRedundantTransformableClasses(CsAdd,CsTnew,
dl(Cs2,Cs1),dI(Es2,Es1),T).

180

eliminateRedundantTransformableClasses([C1|Cs],CsT,
dl(Cs2,Cs1),dI(Es2,Es1),T) :-
exclusiveNodesEdge(e(is_a(C1,C2)),Esl),
includedElement(C2,CsT),
|

unifyTransformableAndAddedClasses(C2,C1,C3,T),
unifyClassesInSchema(C2,C1,C3,Cs1,Es1,Cs3,Es3,T),
eliminateRedundantTransformableClasses(Cs,CsT,
dI(Cs2,Cs3),dI(Es2,Es3),T).
eliminateRedundantTransformableClasses([_|Cs],CsT,Csdl,Esdl,T) :-
|

éliminateRedundantTransformabIeCIasses(Cs,CsT,CsdI,EsdI,T).
eliminateRedundantTransformableClasses([],_,dI(Cs,Cs),
di(Es,Es),_) :-
[

%

% obtainedFromTransformableClasses(Cs1,CsT,Cs2,T) :-

% Cs2 are the classes from Cs1 that have been obtained

% from the set CsT of T classes given.

%

obtainedFromTransformableClasses(Cs1,CsT,Cs2,T) :-
obtainedFromTransformableClassesDL(Cs1,CsT,dI(Cs2,[]),T).

obtainedFromTransformableClassesDL([C|Cs1],CsT,dl(Cs2,Cs3),T) :-
directDerivation(C,Cs4,preservation,T),
not(elementsintersection(CsT,Cs4,[])),
|

SbtainedFromTransformableCIassesDL(Csl,CsT.dI(CsZ.[C|C33]),T).
obtainedFromTransformableClassesDL([_|Cs1],CsT,Csdl,T) :-
|

BbtainedFromTransformabIeCIassesDL(Csl,CsT,CsdI,T).
obtainedFromTransformableClassesDL([],_,dI(Cs,Cs),_) :-
[

%
% exclusiveNodesEdge(e(is_a(C1,C2)),Es) :- The given

% edge is the only one that has class C1 as the
% starting class, and also is the only one that has
% C2 as the ending class.

%
exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-
includedElement(e(is_a(C1,C2)),Es),
includedElement(e(is_a(C1,C3)),Es),
compareClasses(C3,C2,ne),
|
fail.
exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-
includedElement(e(is_a(C1,C2)),Es),
includedElement(e(is_a(C3,C2)),Es),
compareClasses(C3,C1,ne),
|
fail.
exclusiveNodesEdge(e(is_a(C1,C2)),Es) :-
includedElement(e(is_a(C1,C2)),Es),
|

%
% unifyTransformableAndAddedClasses(CT,CA,C,T) :- Given

% a T class CT, and an added class CA, unifies them
% in a new class C which has the properties of CA and
% the objects of CT.

%
unifyTransformableAndAddedClasses(CT,CA,C,T) :-
classProperties(CA,Ps,T),
|

aefineTransformabIeCIass(si(CT,Ps.[CT]),C.T).

%

% unifyClassesInSchema(C1,C2,C3,Cs1,Es1,Cs2,Es2,T) :-

% Given two classes C1 and C2 that are unified in C3,

% and a schema, reflects this fact in the schema.

%

unifyClassesInSchema(C1,C2,C3,Cs1,Es1,Cs2,Es2,T) :-
elementsDifference(Cs1,[C1,C2],Cs3),
elementsUnion(Cs3,[C3],Cs2),

181

unifyClassesInSchema(Es1,e(is_a(C2,C1)),C3,
di(Es2,[]),T).

unifyClassesInSchema([E|Es],E,C,Esdl,T) :-
|

unifyClassesIinSchema(Es,E,C,Esd|,T).
unifyClassesInSchema([e(is_a(C1,C4))|Es],
e(is_a(C2,C1)),C3,dI(Es2,Es1),T) :-
|
unifyClassesInSchema(Es,e(is_a(C2,C1)),C3,
di(Es2,[e(is_a(C3,C4))|Es1]),T).
unifyClassesInSchema([e(is_a(C4,C2))|Es],
e(is_a(C2,C1)),C3,dI(Es2,Es1),T) :-
|
unifyClassesInSchema(Es,e(is_a(C2,C1)),C3,
di(Es2,[e(is_a(C4,C3))|Es1]),T).
unifyClassesInSchema([E1|Es],E2,C,dI(Es2,Es1),T) :-
|

unifyClassesinSchema(Es,E2,C,dI(Es2,[EL|Es1]),T).
unifyClassesIinSchema([],_,_,dI(Es,Es),_) :-
)

182

Appendix D. List of publications

The following is a list of the publications where work reported in this thesis is presented:

» J. Samos,“Definicion de Vistas en Bases d®atos Orientadas a Objectos,”
Universitat Politecnica de Catalunya, Departament de Llenguatges i Sistemes
Informatics, Report LSI-93-19-T, May 1993.

This report introduces the concept 6¥iew” with the different meaningsised by
other authorqderived class and external schema), and preskeatsain problems
and uses of theefinition of derived classes and external schemas. rieladed to
chapters 1 and 2.

» J. Samos, “Esquemas Externos en Bases de Datos Orientadas a Objectos,” Universitat
Politecnica de Catalunya, Departament de Llenguatges i Sistemes InforRegiost
LSI-95-26-R, May 1995.

In this report thefirst proposal ofthe new externatchema definition methodology;
the concepts of transformable and non-transformable classes are first defined in it. It is
related to chapters 2, 5 and 6.

» J. Samos;Definition of External Schemas in Obje@riented DatabasesProc. Int'l
Conf. on Object Oriented Information Systems, Springgr, 154-166,Dublin,
December 1995.

This is ashortened version dhe previougeport,focused on the new methodology
of definition of external schemas. It is mainly related to chapter 5.

» J. Samos, J. Sistathefinition of Deductive Conceptual Models of OODB#{oc.
Int'l Workshop on Database and Expe3ystems Applications|EEE Computer
Society Press, pp. 313-318, Zurich, September 1996.

This paper proposes thdefinition of deductiveconceptual models as a prototyping
tool, specially suitabldéor the specification of different components GODBs. It is
covered by chapter 4.

* J. Samos, F. SaltofExternal Schema Generation Algorithrfar Object Oriented
Databases,Proc.Int’l Conf. on Object Oriented Information Systems, Springer, pp.
317-332, London, December 1996.

In this papertwo external schema generation algorithare proposedihey are
defined agart of adeductive conceptual model, in tfeem of derived predicates. It
is related to chapter 5, section 4.

183

» J. Samos, F. SaltofPefinition of Derived Classes i®ODBs Usingboth Object
Preserving and Object Generating Semantics,” submitted for publication.

In this paper th@roblems involved inhe definition of derived classeme studied; the
concept ofpartially derived class is defined;paoposal is made for transmitting the
modifications between derived and base classes. It is retetiedy to chapter 6, and
also to chapter 7.

184

Glossary of terms

Aplication administrator
Attribute-identifiable class
Base class

Base object

Classification

Conceptual schema
Core attributes

Data dictionary

Data relativism

DCM

Derivation relationship

Derivation relationship of
identity

In order to define an external scherta user of the information
contained in the data dictionary is thpplication administrator-
through the external schema definition system.

We define a class aattribute-identifiable if its objects can be
identified using a set of its attributes (withotyipe restriction).
Derived classesire attribute-identifiable: theiobjectscan also be
identified by their core attributes.

The classes from which a derived class is directly defiagsl its
base classeshey can be derived or non-derived classes.

The objects in base classt®t participate in thealefinition of a
derived object are itsase objects

Classificationis the process otaking anew class description and
putting it where it belongs in the class hierarchy.

The conceptual schem# a logical representation of the reality
modeled bythe database; itlescribesthe relevantaspects of the
universe of discourse.

It can beconsideredhat theobjectidentifier of a derivedbject is
generated from a set of its attributes, these attritareegsalledcore
attributes

The systems of conceptuahd externaschema definition arbased

on adata dictionary The universe of discourse of the data dictionary
is all information in the management amgk ofthe databassystem
-including the management and use of schemas.

Data relativismis the general activity of structuring the same data in
differentways. In objecschemas, theoncept ofdata relativism is
implemented defining external schemas and derived classes.

Deductive conceptual model.

A derivation relationshigs defined between a derived classl the
set of itsbase classeslhe derivation relationshiplefines how to
obtain a derived class from itsase classes; it establishes the
correspondence betwedhe base objectand thederived objects.
The derivation relationship igsed to integrat¢he derived classes
into the data dictionary.

A base class igelated through aerivation relationship of identity

to a derived class ithe objects ofthe base clasparticipate in the
definition of the identity of the objects of the derived class.

185

Derivation relationship of
value

Derived class

Derived object

Dynamic derivation
relationship

Dynamic derived class

Enterprise administrator

Equivalence preservation
property

Extension (of a class)

External schema

External schema definition
system

Inheritance closure

Integration of derived
classes

Intension (of a class)

A derivation relationship of valuexistingbetween a base class and
a derived class only the objects ofthe base class doot participate
in the definition of the identity of the derived objects.

Derived classeare defined from previously existing classes (derived
or non-derived); derived classasfer views of the information
contained in theclasses from which thewre defined.Derived
classesaredefinedduring thelifetime of the database in order to be
included in some external schema or in the conceptual schema.

The objects contained in a derived classdemrved objects

A dynamic derivation relationshijg made up of a static derivation
relationship and a translator gpdatepolicy thatdetermines how to
transmit the modifications that are made todhgcts ofthe derived
class into modifications to the objects in the base class.

The derived class defined by a dynamic derivation relationship is a
dynamic derived class

In order to definghe conceptual schema the user of the information
contained in the data dictionary is thaterprise administratorby
means of the conceptual schema definition system

In the transmission of modifications froafjects of derived classes
to the correspondingobjects in base classethe equivalence
preservation propertyas to béulfilled: correct changes in thease
objectshave to be produced in order to provitie desired updates
in derived objects.

The extensionof a class is its set of occurrences, the sethgcts
included in it.

External schemasffer views ofthe information contained in the
conceptual schema; they allothe end-user to concentrate on a
logical representation of data adapted their particular
requirements.

The definition of external schemas is carried out by dkernal
schema definition system

The objectschema requirethat for eachpair of classes of ithat
have some property in common, a superclass of them whighas
all the propertiegommon to both classéms to bealso included in
the objectschema (thigproperty is callednheritance closureof the
object schema).

Integration of derived classesefers to two different scopes:
integration of derivedlassesand previouslyexisting classes in the
data dictionary (or in the conceptual schema playing the role of data
dictionary) and integration of @et of classes (deriveahd/or non-
derived) to form an external schema.

The intensionof a class is made up of the set of propertiethaf
class.

186

Internal schema Theinternal schemas a physical representation of the dstared
into the database.

Local extension (of a A partially derived class’'éocal extensiorcontains the non-derived

partially derived class) elementghat aredefined both irthe class’s intension awell as its
extension.

Logical association The relationshigexpressed bway ofthe conditionglefined in order

to associate objects tfie base classes to define a derived object is
termedlogical association

Logical data independence External schemagrovidelogical data independencgnany aspects
of the conceptual schenmaay bechanged without having tmodify
the views of the conceptual schema offered by external schemas).

Non-derived class Non-derived classeare definedduring the initial definition of the
conceptual schema (tan contain non-derivednd also derived
classes).

Non-required property The properties of transformabbdtassescan be required ithey are
referenced by a non-transformable classnon-requiredin other
case.

Non-side effect external A non-side effect external scheiisaan external schema which is re-

schema computed dynamically sthat conceptual schema modifications are
(whenever possible) “filtered out” from applicationsing the
external schema.

Non-transformable class The classes selected to compose the external schema quaalified
as non-transformableto indicate thatthey cannot bemodified
automatically, in thesense ofidding or removing properties in the
external schema generation process.

Object generating semantics derived class defined lybject generating semanticentains new
objects generated from the objects of its base classes.

Object preserving semanticé derived class defined bgbject preserving semantiasan only
contain objects of its base classes.

OoID Object identifier.

O0ODB Object-oriented database.

Operation consistency For each method of modification of thase classes @he derived
relation class, an associated operation is defined the derivation

relationship which issun each time the corresponding method is
used, each modification method having defined operation
consistency relationin the derivation relationship, which is
responsible fomaintaining theconsistency betweethe base classes
and the derived class.

Partially derived class Partially derived classesre derived classethat can contain non-
derived information in their intension as well as in their extension.

187

Physical data independencé'he distinctionbetweenthe the conceptual scheraad the internal

Property

Required property

Schema closure

Static derivation
relationship

Static derived class

Subsumption relationship

schema providephysical data independendgeany aspects fo the
physical implementatiomay bechanged without having tmodify
the abstract vision of the database).

The set ofpropertiesor the intension of a class defined as the
union of its set of attributes and its set of methods.

The properties of transformabbdtassescan berequired if they are
referenced by a non-transformable class, or non-required in other
case.

A requirement that externadchemas have to fulfil ischema
closure every class referenced by some class included exgeamnal
schema has to be also included in the same external schema.

A static derivation relationships defined betweethe set ofbase
classesand aderived class,and establishes theorrespondence
between the base objects and the derived objects.

The derived class defined by a static derivation relationship is a
static derived class

Classc, is said to subsume clasg denotedsubsumds;, ¢,), if and
only if ¢; can bedefined as a superclass @fin a class hierarchy
correctly defined.This means that thé/pe associated to; is a
supertype ofthe type of ¢c;; and, theset of objects ofc; always
contains the set of objects @f

Temporal external schema Temporal external schemase external schemalat include non-

Test environment

Three-level architecture

Transformable class

Translator

Update policy

derived information withoubaving the conceptual scheratiected,;
they can be defined in the test environment.

In order to avoidthe continual modification of theonceptual
schema, the availability of st environmenis veryuseful. Inthis
environment, temporal external schemas caddbmedthatinclude
non-derived information without having the conceptual schema
affected.

The ANSI/SPARC three-level architectureclassified database
fuctionalities into physical, logicahnd externalevels; information
at these levels is represented the internal, conceptual, and
external schemas respectively.

The classes selected to compose the external schema aqaalified
astransformableto indicatethattheycan bemodified automatically,

in the sense of adding or removing properties in the external schema
generation process.

A dynamic derivation relationshils made up of a static derivation
relationship and #&anslator or update policythat determines how
to transmit themodificationsthat aremade to theobjects of the
derived class into modifications to the objects in the base class.

See translator.

188

Value-identifiable class

View

A class is defined to b&alue-identifiableif its objects can be
identified using a set of its attributéisat only can bevalues (not
object identifiers).

A view is a simplifying abstraction of a complex structure. In

OODBs, somauthors identifythe term“view” with the concept of
schema,; others consider it just a class.

189

190

Bibliography

[Abiteboul & Bonner, 1991]

[Abiteboul & Hull, 1988]

[Abiteboul etal., 1995]

[Alhajj & Arkun, 1993]

[Andany etal., 1991]

S. Abiteboul, A. Bonner, “Objects and VieWw&dc.
ACM SIGMOD Int'l Conf. on Management of Data
pp. 238-247, Denver, 1991.

S. Abiteboul, R. Hull, “Restructuring Hierarchical
Database ObjectsTheoretical Computer Sciencg?2,
pp. 3-38, 1988.

S. Abiteboul, R. Hull, V. Vianu, Foundations of
DatabasesAddison-Wesley, 1995.

R. Alhajj, M. Arkun, “An Object Algebrafor Object-
Oriented Database SystemBATABASEVvol. 24, no.
3, pp. 13-22, August 1993.

J.Andany, M.Léonard, C. Palisser, “Management of
Schema Evolution In DatabaseRfoc. Int’l. Conf. on
Very Large Databasespp. 161-170, Barcelona,
September 1991.

[Andersen & Reenskaug, 1993] J. Andersen, T. Reenskaug, “Operati@estoim an

[ANSI/X3/SPARC, 1975]

[ANSI/X3/SPARC, 1986]

[Barclay & Kennedy, 1993]

OODB,” OOPS Messenggewol. 4, no. 1, pp. 12-25
January 1993.

ANSI/X3/SPARC Study Group onDatabase
Management Systems, “Interim eport,” ACM
SIGMOD, bulletin 7, no. 2, 1975.

ANSI/X3/SPARC Database System Stu@soup,
“Reference Model for DBMS Standardisation,”
SIGMOD Recordvol. 15, no. 1, pp. 19-58, &fch
1986.

P. Barclay, J. Kennedy, “Viewi@pjects,” 11th

British National Conf. on Database$pringer, pp.
93-109, Keele, July, 1993.

191

[Bertino, 1992]

[Bertino etal., 1996]

[Bratsberg, 1992]

[Breche etl., 1995]

[Buchheit etal., 1994]

[Castellanos edl., 1992]

[Costal etal., 1989]

[Dayal, 1989]

[Diaz etal., 1991]

[Ferrandina eal., 1995]

E. Bertino, “A ViewMechanismfor Object-Oriented
Databases,Proc. Int'l Conf. on Extending Database
Technology Springer, pp. 136-151Yienna, March
1992.

E. Bertino, B. Catania, Garcia-Molina, G. Gerrini,
“A Formal Model of Views for Object-Oriented
Database Systems,” submitted for publication.

S. BratsberdgUnified Class Evolution by Object
Oriented Views,” Proc. Int'l Conf. on the Entity-
Relationship Approach pp. 423-439 ,Karlsruhe,
October 1992.

P. Breche, F-errandina, M. Kuklok, “Simulation of
Schema Change using Viewsroc. Int'l Conf. on
Database and Expert Systems Applicatigos. 247-
258, London, September 1995.

M. Buchheit, M. Jeusfeld, WNutt, M. Staudt,
“Subsumption between Queries to Object-Oriented
Databases,Information Systemsvol. 19, no. 1, pp.
33-54, 1984.

M. Castellanos, F. Saltor, M. Garcia, ‘Banonical
Model for the Interoperatibility amongObject
Oriented and Relational Models,”Proc. Int’l.
Workshop on Distributed Object Managemepp.
309-314, Edmonton, Aug. 1992.

D. Costal, J. Pastor, M. SanchtDeductive
Conceptual Modelling of Systems Usingrolog,”
Proc. IFIP Working Conf.pp. 41-57, Barcelona, May
1989.

U. Dayal, “Queries and Views in an Object-Oriented
Data Model,”Proc. 2nd Int’l. Workshop on Database
Programming Language4989.

O.Diaz, N. Paton, P.Gray, “Rule Management in
Object Oriented Databases: Wniform Approach,”

Proc. Int'l. Conf. Very Large Databasegsp. 317-326,
Barcelona, Sep. 1991.

F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, J.
Madec, “Schema and Database Evolution the G
Object Database Systen®roc. Int’l. Conf. onVery
Large Database9p. 170-181, Zirich, Sep. 1995.

192

[Gardarin & Yoon, 1996]

[Gentile & Zicari, 1994]

[Geppert etl., 1993]

[Gottlob etal., 1988]

[Gray etal., 1992]

[Gustafsson edl., 1982]

[Heiler & Zdonik, 1988]

[Heuer & Sander, 1991]

[Heuer & Scholl, 1991]

G. Gardarin, Y.00n, “On the Power ofViews in
Hypermedia DatabasesProc. Engineering Systems
Design and Analysis Canpfvol. 2, pp. 31-40,
Montpellier, July 1996.

M. Gentile, R. Zicari, “ Updating Views in Object
Oriented Database System&foc. Int'l. Symposium
on Adavanced Database Technologies and their
Integration Nara, Japan, October, 1994,

A. Geppert, S. Scherrer, K.R. DittrichDerived
Types and SubschemaBowards Better Support for
Logical Data Independence in Object-Oriented Data
Models,” Univ. Zirich,Institut fir Informatik, Tech.
Rep. 93.27, June, 1993.

G. Gottlob, P.Paolini, R. Zicari, “Properties and
Update Semantics of Consistent Views,/ACM
Transactions on Database Systen. 13, no. 4, pp.
486-524, December 1988.

P. Gray, K.Kulkarni, N. Paton, Object-Oriented
Databases. A Semantic Data Model Apprgach
Prentice Hall, 1992.

M.R. Gustafsson, TKarlsson, J. Bubenko, “A

Declarative Approach to Conceptual Information
Modelling,” Information Systems Design
Methodologies: A ComparativReview pp. 93-143,

T. Olle, H. Sol, A.Verrijn-Stuart (Eds.), North-

Holland, Amsterdam, 1982.

S. Heiler, S. Zdonik, “Views,dba Abstraction, and
Inheritance in the FUGUE @&@a Model,” Proc. 2nd

Int'l. Workshop on OODBSSpringer, FRG, Sep.,
1988.

A. Heuer, P. Sandd?reserving and Generating
Objects in the LIVING IN A LATTICE Rule
Language,” Proc. Intl IEEE Conf. on Data
Engineering pp. 562-569, Kobe, April 1991.

A. Heuer, MScholl, “Principles of Object-Oriented
Query Languages,” Proc. Gl-Fachtagung
“Datenbanksysteme in Biro, Technik und
Wissenschaft’ pp. 178-197, SpringeKaiserslautern,
March 1991.

193

[Hull, 1986]

[Hull & Yap, 1984]

[Hull etal., 1991]

[Kifer etal., 1992]

[Kim, 1989]

[Kim & Kelley, 1995]

[Kimura & Tsuruoka, 1991]

[Lemke, 1995]

[Miller et al., 1994]

[Monk, 1994]

R. Hull, “Relative Information Capacity dsimple
Relational Database Schemats&5IAM Journal of
Computing vol. 15, no. 3, pp. 856-886, August 1986.

R. Hull, C. ¥ap, “The Format Model: A Theory of
Database OrganizationJournal of the ACMvol. 31,
no. 3, pp. 518-537, July 1984.

R.Hull, S. Widjojo, D. Wile, M. Yoshikawa, “On
Data Restructuring and Merging with Object Identity,”
IEEE Data Engineering vol. 14, no. 2, pp. 18-22,
June 1991.

M. Kifer, W. Kim, Y. Sagiv, “Querying Object-
Oriented Databases” Proc. ACM SIGMOD
Conference on Management of Dagap. 393-402,
San Diego, 1992.

W. Kim, “A model of Queriedor Object-Oriented
Databases,” Proc. Intl Conf. on \ry Large
Databasespp. 423-432, Amsterdam, August 1989.

W. Kim, W. Kelley, “On View Support in ®ject-
Oriented Database SystemsModern Database
Systems: the Object Model, Interoperability, and
beyond W. Kim (Ed.), pp. 108-129ACM Press,
1995.

Y. Kimura, KTsuruoka, “AView Class Mechanism
for Object-Oriented Database Systembit'l Symp.
on Database Systems for Advanced Applicatipps
269-273, Tokyo, April 1991.

T. Lemke, “DDL = DML ? An Exercise Reflective

Schema Management for Chimera,”
IDEA.WP.22.0.003, http://www.ecrc.de/IDEA/,
March 1995.

R. Miller, Y. loannidis, R. Ramakrishnan, “Schema
equivalence in Heterogeneous SystemsBridging
Theory and Practice,Information Systemsvol. 19,
no. 1, pp. 3-11, 1994.

S. Monk, “View Definition in an Object-Oriented

Database,” Information and Software Technolqgy
vol. 36, no. 9, pp. 549-554, 1994.

194

[Monk & Sommerville, 1993]

[Naja & Mouaddib, 1995]

[Olivé, 1989]

[Peters & Ozsu, 1995]

[Quer & Olivé, 1994]

[Ra & Rundensteiner, 1995]

[Rundensteiner, 19923a]

[Rundensteiner, 1992Db]

[Rundensteiner, 1992c]

[Rundensteiner & Bic, 1992]

S. Monk, Y.Sommerville, “Schema Evolution in
OODBs Using Class VersioningSIGMOD Recorgd
vol. 22, no. 3, pp. 16-22, September 1993.

H. Naja, N. Mouaddib, “The Multiple Representation
in an Architectural Application,Proc. Int’l. Conf. on
Database and Expert Systems Applicatigns. 237-
246, London, September 1995.

A. Olivé, “Onthe Design and Implementation of
Information Systems from Deductive Conceptual
Models,”Proc. Int’'l. Conf. Very Large Databasesp.
3-11, Amsterdam, August 1989.

R. Peters, M. Ozs@xiomatization of Dynamic
Schema Evolution in Objectbase®toc. Int'l IEEE
Conf. Data Engineeringpp. 156-164, Tapei, dtch
1995.

C. Quer, AOlivé, “Determining Objectnteraction in
Object-Oriented Deductive Conceptual Models,”
Information Systemsyol. 19, no. 3, pp. 211-227,
1994.

Y. Ra, E. Rundensteiner, “A Transparent Object-
Oriented Schema Change Approach UsiNgw
Evolution,” Proc. Intl IEEE Conf. on Data
Engineering pp. 165-172, Taipei, March 1995.

E. Rundensteiner, “MultiView: A Methodology for
Supporting Views in Object-Oriented Databases,”
Univ. of Cal., Irvine, Tech. Rep. #92-07, Jan. 1992.

E. Rundensteiner, “A ClassgrationAlgorithm and
its Application for Supporting Consistent Object
Views,” Univ. of Cal., Irvine,Tech. Rep. #92-50, May
1992.

E. Rundensteiner, “MultiView: A Methodology for
Supporting Views in Object-Oriented Databases,”
Proc. Int'l Conf. on ¥ry Large Databasesp. 187-
198, Vancouver, Aug. 1992.

E. Rundensteiner, L. Bic, “Automatic View Schema

Generation in Object-Oriented Databases,” Univ. of
Cal., Irvine, Tech. Rep. #92-15, Feb. 1992.

195

[Samos, 1995]

[Santos, 1995]

[Santos etl., 1994]

[Schewe eal., 1992]

[Schmolze & Lipkis, 1983]

[Scholl etal., 1992]

[Scholl & Schek, 1991]

[Shaw & Zdonik, 1990]

[Skarra & Zdonik, 1986]

[Sterling & Shapiro, 1986]

J. Samo®Pefinition of External Schemas in Object
Oriented Databases,Proc. Intl Conf. on Object
Oriented Information Systemgp. 154-166,Dublin,
Dec. 1995.

C. SantosDesign and Implementation of Object-
Oriented Views,"Proc. Int'l Conf. on Database and
Expert Systems Applicatigngp. 91-102, London,
Sep. 1995.

C. Santos, 3\biteboul, C. Delobel, “Virtual Schemas
and Bases,Proc. Int'l Conf. on Extending Database
Technologypp. 81-94, Cambridge, March 1994.

K. Schewe, JSchmidt, I. Wetzel, “Identification,

Genericity and Consistency in Object-Oriented
Databases,”Int'l Conf. on the Entity-Relationship

Approach pp. 341-356, Karlsruhe, Oct. 1992.

J. Schmolze, T. Lipkis, “Classificatioriie KL-ONE
Knowledge Representation Systenifie Eigth Int'l.
Joint Conf. on Artificial Inteligencgevol. 1, pp. 330-
332, Aug. 1983.

M.H. Scholl, C. Laasch, C. Rich, H. Schek, M.
Tresch, “The COCOON Object ModelPniv. Ulm,
Faculty of Computer Science, Rep. #193, Dec. 1992.

M. Scholl, H. Schek, “Supporting Views in Object-
Oriented DatabasesJEEE Data Engineering vol.
14, no. 2, pp. 43-47, June 1991.

G. Shaw, S. Zdonik, “A Query Algebica Object-
Oriented DatabasesProc. Int'l IEEE Conf. onData
Engineering pp. 154-162, Los Angeles, 1990.

A. Skarra, S. Zdonikhe Management of Changing
Types in an Object-Oriented DatabasByoc. Int'l.
Conf. on Object-Oriented Programming Systems and
Languages Applicationgp. 383-495, Portland, Sep.
1986.

L. Sterling, E. Shapifithe Art of Prolog. Advanced
Programming Technique3he MIT Press, 1986.

196

[Tanaka etl., 1988]

[Tresch, 1991]

[Tresch & Scholl, 1992]

[Tresch & Scholl, 1993]

K. Tanaka, M. Yoshikawa, Kishihara, “Schema
Virtualization in Object-Oriented DatabaseBfoc. of

the 4th Int'l. Conf. on Data EngineeringlEEE

Computer Society Press, pp. 23-30, Feb., 1988.

M. Tresch, “A Framework for Schema Evolution by
Meta ObjectManipulation,” Proc. Int'l Workshop on
Foundations of Models and Languages for Data and
Objects pp. 1-13, Aigen, Sep. 1991.

M. Tresch, M. Scholl, “Meta Object Management and
its Application to Database EvolutionProc. Int’l.
Conf. on Entity-Relationship Approacpp. 299-321,
Karlsruhe, Oct. 1992.

M. Tresch, M. ScholiSchema Transformation

without Database ReorganizatiolgTGMOD Record
vol. 22, no. 1, pp. 21-27, March 1993.

197

