3. SIMULACIÓ DISCRETA DE CULTIUS DE LLEVATS

3.1. INTRODUCCIÓ

El llevat *Saccharomyces cerevisiae* es troba relacionat amb diferents i importants processos industrials. Són àmpliament usats en els processos fermentatius per a l'elaboració de begudes alcohòliques i en la formació preferent d'etanol a partir de subproductes o productes residuals de certes indústries. S'han utilitzat també en la indústria per a la generació de biomassa, ja que la biomassa de llevats esdevé cada cop més una font d'un seguit de productes biològics per a la indústria alimentària, bioquímica o farmacèutica.

Hi ha gran quantitat de bibliografia sobre diversos tipus de models matemàtics aplicats a cultius de llevats. Bona part d'aquests models fan referència a fermentacions alcohòliques ocasionades pel llevat *Saccharomyces cerevisiae*.

La majoria d'aquests models, talment com esdevé en general en els models matemàtics aplicats a cultius bacterians, no tenen en compte les diferències entre les cèl·lules d'un cultiu. Consideren el caldo del cultiu i a la biomassa que forma la població cèl·lular com una entitat contínua. Els models no estructurats analitzen els cultius de llevats mitjançant variables característiques de l'entorn macroscòpic del procés. Altres models, com els models estructurats, sí que tenen en compte algunes de les característiques diferencials de les cèl·lules del cultiu, per exemple cèl·lules mares i cèl·lules filles, cosa que en aquest cas, a diferència dels cultius bacterians, és força important i interessant. Alguns d'aquests models també tenen en compte certes característiques dels componentes de la biomassa de la cèl·lula, dividint la biomassa de la cèl·lula en diferents compartiments, i fins i tot fan ús del comportament de les vies metabòliques de la cèl·lula viva. De fet, cada nou model proposat pretén ofrir el que ja ofereixen els altres models anteriors i alguna cosa més, o bé pretén estudiar aquells factors nous que no han estat abordables fins llavors.

Nosautes propsoem aplicar la metodologia de la simulació discreta a aquest tipus de cultiu microbí: un cultiu de llevats. L'objectiu d'aquest capítol és modelitzar l'activitat biològica i metabòlica del llevat *Saccharomyces cerevisiae* i avançar en la comprensió del seu comportament utilitzant aquesta metodologia.

Ha estat necessari fer primer una recerca d'informació (Xifré, 1992) sobre la citologia, reproducció, creixement, metabolisme, nutrició, inhibició i viabilitat cèl·lular d'aquest llevat,
per tal de poder elaborar un model de comportament individual per a la simulació. S'han recollit també dades experimentals per tal de validar els resultats obtenits en les primeres simulacions fetes amb l'aplicació del model dissenyat.

Amb aquestes bases biològiques del llevat expressades de forma que serveixin de referència per a l'elaboració del model de llevat per a la simulació, s'ha dissenyat el model del comportament individual d'aquest microorganisme, s'ha adaptat el programa general de simulació a aquest comportament específic en l'entorn en què habitualment es troba sotmes a en règim d'explotació.

La bondat del model propost ha estat assajada amb èxit, validant-se el model individual de comportament del llevat. S'ha testat aquest amb l'estudi d'una fermentació alcohòlica a partir de glucosa com a substrat, obtenint tots els resultats que s'asseoleixen amb els models matemàtics convencionals, i a més s'ha controlat l'energia de manteniment del cultiu, la distribució de masses, la distribució d'èdus genealògiques i les característiques (massa i durades) de les dues fases en què es divideix el cicle cel·lular del llevat. S'ha reproduït correctament el comportament de la ceba de producció de calor de diverses fermentacions experimentals (Castillo, 1991), on s'ha introduït la inhibició del metabolisme per la concentració d'etanol, i s'ha analitzat el fenomen inhibitori per excess de substrat.

En algunes varietats de llevats cervesers emprades per a la fermentació de la cervesa, s'observa un fenomen que es coneix amb el nom de floculació i, com es veurà més endavant, és de gran importància. També es farà un estudi d'aquest procés de floculació que involucra a les cèl·lules d'alguns llevats (Saccharomyces cerevisiae i Saccharomyces carlsbergensis), pel qual s'elaborarà un model que serà implementat en el simulador, i validat posteriorment amb l'obtenció d'alguns resultats comparables amb els d'experiències reals.

3.2. ALGUNES CARACTERÍSTIQUES GENERALS DELS LLEVATS

3.2.1. INTRODUCCIÓ

No es pretén presentar en aquest apartat un tractament exhaustiu sobre la biologia del llevats. Únicament s'èsserà sobre aquells aspectes que permetin introduir, exenció i justificar e model elaborat. De forma esquemàtica els punts que considerem més importants són:

- el cicle cel·lular del llevat,
- el transport i utilització dels diferents substrats per part del microorganisme,
- el fenomen inhibitori del seu creixement.
Una descripció exhaustiva i més completa que la que presentem a continuació es pot trobar en el treball bibliogràfic previ realitzat per en Xifré (1992), d'on s'han extret les bases considerades imprescindibles i importants per enquadrar de forma correcta i entendida el model i la simulació de llevats.

El llevat, quan intervé en diferents processos industrials, es troba en medis i està somès a condicions de cultiu, que no es corresponen a les que serien les habituals en un creixement en condicions "salvaxes". De fet, en alguns processos d'interès industrial, el comportament del llevat presenta distorsions, entre les que es poden destacar una major incidència del fenomen inhibitori sobre el creixement de la seva població, una mortalitat cel·lular molt més acusada, i una possibilitat pràcticament nul·la de completar el seu cicle biològic mitjançant la seva reproducció sexual (assolida amb l'escoradament). Així, és de gran importància definir i conèixer cadascun dels possibles entorns en els quals es pot aplicar el model de simulació que presentem.

Els llevats S. cerevisiae són organismes unicel·lars amb una forma externa que pot variar entre l'esfèrica, oval o el liposòdial. Les dimensions de les cel·lules d'aquesta espècie també són molt variables i es poden situar entre 2.5 - 10 µm d'amplada i 4 - 21 µm de llargada. La geometria de la cel·lula, com ja hem constatat en l'estudi dels bacteris de la iogurt (apartat 2.9.) és important, ja que permet relacionar volum i àrea superficial. Discutirem més endavant la seva consideració en el plantejament del model de simulació.

Una característica important d'aquestes poblacions microbianes és la seva asimetria, la dualitat de mides, amb la presència de cel·lules grans (les mares) i de cel·lules petites (les filles), les quals tenen cicles cel·lulars de durades diferents. També es constitueix una distribució d'edats típica en el conjunt de llevats que configuren un cultiu, l'existència de cel·lules més velles i d'altres de joves, condiciona el desenvolupament conjunt d'aquest sistema.

3.2.2. CREIXEMENT I REPRODUCCIÓ

Es pot evaluar el creixement d'una població de dues formes diferents, amb l'increment en el nombre d'individus i amb l'increment de la biomass. No obstant això l'increment en el nombre d'individus té un terme més específic: reproducció. Els llevats tenen en el transcurs del seu cicle biològic, a més de la reproducció sexual, la possibilitat d'una reproducció asexual, també anomenada vegetativa. És precisament aquesta darrera forma la que fa possible una colonització més o menys ràpida del medi, mentre que la reproducció sexual és una font de variació genètica i alhora una manera de resistència de l'individu a condicions ambientals que li són adverses per al seu creixement. En aquest treball centrarem el nostre interès en la reproducció vegetativa, la qual es realitza mitjançant gemmació o fissió.
3.2.2.1. Una forma de reproducció

El procés de gemmació multilateral és la forma de reproducció asexual que utilitza el llevat. Aquest és un fenomen ciclic (cicle cel·lular o de gemmació) on la formació inicial d’una gemma, l’increment de la seva grandària i, finalment la seva separació física de la cèl·lula mare, conduceixen a l’aparició d’un nou llevat, una cèl·lula filla. Les dues cèl·lules resultants al final d’aquest cicle cel·lular són de grandàries diferents. No es produeix mai més d’un procés de gemmació en una cèl·lula de forma simultània.

La vistó d’una cèl·lula al microscòpic electrònic mostra que la seva superfície no és uniforme en tota la seva extensió, sinó que presenta zones circulars rodejades d’una protuberància en forma d’anell que desaigua per damunt de la superfície de la paret. La separació de la gemma, ja formada com una nova cèl·lula, seixa tant en la paret de la cèl·lula mare com en la paret de la cèl·lula filla una zona circular específica. Aquestes zones són les cicatrices de la gemmació, les quals no desapareixen posteriorment, sinó que romanen durant tota la vida de la cèl·lula. La zona afectada de cicatrices s’ha constatat que no resulta hàbil per al naixement d’una nova gemma (Xifré, 1992), això implica que la quantitat de gemmes que pot produir una cèl·lula és limitada. El màxim nombre de gemmes que pot donar un llevat es troba relacionat amb la mesura de la seva superfície cel·lular i amb la grandària de les cicatrices. Per alguns autors el diàmetre mitjà d’una cicatritz és de 2 μm, i equivul a una àrea cicatrizada de 3.14 μm², el qual sembla romandre constant al llarg de la vida d’una cèl·lula.

3.2.2.2. El cicle cel·lular

El cicle cel·lular, que fa referència de manera exclusiva al cicle de reproducció vegetativa o asexual, es caracteritza per un seguit d'esdeveniments ordenats que es repeteixen de forma constant en cada nova duplicació de la cèl·lula. Alguns autors (Xifré, 1992) agrupen aquests esdeveniments en quatre períodes correlatius anomenats fases del cicle cel·lular i que tenen una durada temporal variable:

1) Fase G1

És el període inicial que comença amb la independència i separació física de la cèl·lula filla respecte de la cèl·lula mare. Alguns autors classifiquen al període que compren aquests dos esdeveniments com la fase G1'. Sembla ser que durant aquesta fase té lloc l'acumulació de reserves necessàries per tal que la cèl·lula escomit a nou cicle cel·lular amb garanties d'èxit. La sortida de la fase G1 sembla dependre de l'estat de la cèl·lula i de la grandària de la mateixa, la qual alguns autors la qualifiquen com massa crítica. Amb el començament de la síntesi de l'ADN i l'inici del mecanisme implicat amb l'emergència de la gemma (entre altres factors) s'assenyala el final d'aquesta fase.

2) Fase S

Periòde dins del qual té lloc la síntesi del nou ADN i que sembla solapar-se amb la detecció de l'emergència de la gemma.

3) Fase G2

Representa el temps necessari per passar des del final de la síntesi del nou ADN fins a l'inici de la mitosi. De forma similar a la missió de la fase G1 respecte a la fase S, la fase G2 prepara a la cèl·lula de manera que aquesta pogui completar la fase següent o fase M. Es contempla la possibilitat de l'aconsegüiment d'un temps mínim per a la fase G2 abans de la divisió nuclear.

4) Fase M

Periòde de temps en el que es realitza el procés de la divisió nuclear i que és difícil separat-lo de la fase G2.

<table>
<thead>
<tr>
<th>Fases</th>
<th>Tiempo de generación del cultivo</th>
<th>Mitjana per a les célules mares</th>
<th>Desviación estandar</th>
<th>% del tiempo del ciclo celular</th>
<th>Mitjana per a les célules filles</th>
<th>Desviación estandar</th>
<th>% del tiempo del ciclo celular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cicle celular</td>
<td>96.9</td>
<td>72.6</td>
<td>4.6</td>
<td>11.7</td>
<td>99.9</td>
<td>3.0</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>121.5</td>
<td>87.2</td>
<td>10.3</td>
<td>14.0</td>
<td>99.9</td>
<td>29.3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>142.0</td>
<td>98.4</td>
<td>8.3</td>
<td>174.4</td>
<td>201.4</td>
<td>53.2</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>160.0</td>
<td>228.9</td>
<td>14.7</td>
<td>281.0</td>
<td>56.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>96.9</td>
<td>9.7</td>
<td>2.2</td>
<td>13.0</td>
<td>9.0</td>
<td>1.6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>121.5</td>
<td>12.6</td>
<td>3.1</td>
<td>14.0</td>
<td>11.5</td>
<td>3.9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>142.0</td>
<td>11.9</td>
<td>3.7</td>
<td>12.0</td>
<td>11.5</td>
<td>2.4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>160.0</td>
<td>13.0</td>
<td>4.1</td>
<td>14.0</td>
<td>14.0</td>
<td>5.5</td>
<td>7</td>
</tr>
<tr>
<td>Període de meigament</td>
<td>96.9</td>
<td>5.6</td>
<td>3.7</td>
<td>12.0</td>
<td>47.5</td>
<td>25.1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>121.5</td>
<td>13.2</td>
<td>4.5</td>
<td>15.0</td>
<td>62.6</td>
<td>27.1</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>142.0</td>
<td>11.2</td>
<td>3.4</td>
<td>12.0</td>
<td>30.5</td>
<td>31.0</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>160.0</td>
<td>15.1</td>
<td>8.3</td>
<td>14.0</td>
<td>169.2</td>
<td>53.1</td>
<td>51</td>
</tr>
<tr>
<td>S</td>
<td>96.9</td>
<td>36.1</td>
<td>5.8</td>
<td>50.0</td>
<td>41.5</td>
<td>6.4</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>121.5</td>
<td>44.9</td>
<td>5.8</td>
<td>54.0</td>
<td>48.8</td>
<td>7.2</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>142.0</td>
<td>53.3</td>
<td>7.7</td>
<td>54.0</td>
<td>53.9</td>
<td>10.7</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>160.0</td>
<td>58.7</td>
<td>7.2</td>
<td>54.0</td>
<td>56.5</td>
<td>13.4</td>
<td>32</td>
</tr>
<tr>
<td>G2</td>
<td>96.9</td>
<td>8.8</td>
<td>2.2</td>
<td>12.0</td>
<td>8.4</td>
<td>1.7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>121.5</td>
<td>8.5</td>
<td>1.9</td>
<td>10.0</td>
<td>9.2</td>
<td>2.0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>142.0</td>
<td>2.9</td>
<td>1.8</td>
<td>9.0</td>
<td>9.6</td>
<td>1.9</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>160.0</td>
<td>2.9</td>
<td>2.1</td>
<td>9.0</td>
<td>9.6</td>
<td>2.3</td>
<td>5</td>
</tr>
<tr>
<td>M</td>
<td>96.9</td>
<td>9.7</td>
<td>4.1</td>
<td>13.0</td>
<td>11.1</td>
<td>3.8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>121.5</td>
<td>11.1</td>
<td>3.1</td>
<td>9.0</td>
<td>9.6</td>
<td>3.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>142.0</td>
<td>12.4</td>
<td>3.2</td>
<td>12.0</td>
<td>16.9</td>
<td>4.7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>160.0</td>
<td>10.2</td>
<td>3.4</td>
<td>9.0</td>
<td>10.8</td>
<td>2.9</td>
<td>5</td>
</tr>
</tbody>
</table>

No totes les cèl·lules del cultiu inverteixen el mateix temps per a duplicar-se. Les cèl·lules filles, la grandària de les quals en separar-se de la cèl·lula mare és inferior a la grandària de les seves progenitors, tenen una durada del primer cicle cel·lular més llarga. Respecte a la durada estimada de cadascuna de les diferents fases del cicle cel·lular sembla que hi ha acord en que la fase G1 és la que mostra major variabilitat depenent del temps de generació del cultiu (o de la velocitat de creixement), ahora que es pot apreciar que la variabilitat d'aquesta fase G1 és petita en les cèl·lules mares però gran en les cèl·lules filles. Experimentalment s'ha constatat també que, en augmentar el temps de generació del cultiu, la durada de la fase G2 s'incrementa suauament, mentres aquesta fase pràcticament constant i similar tant pel que fa a les cèl·lules mares com pel que fa a les cèl·lules filles. Respecte a la durada de les altres fases sembla que es mantenen valors constants, malgrat no hi ha unanimitat sobre aquest punt. El seguiment experimental d'aquestes fases presenta certes dificultats, com a resultat d'aquesta problemàtica apareixen discrepàncies d'opinió.

Així, alguns autors (Xifré, 1997) proposen estudiar el comportament del cicle cel·lular amb una simplificació, dividint el mateix en dos períodes més fàcilment identificables i que permetin una major ordenació en el seu estudi:

(1) El període de no gemmació

S'inaicia amb la separació física de les dues cèl·lules resultants de la reproducció vegetativa i finalitza amb l'emergència de la gemma (per tant compren gran part de la fase G1 i una petita fracció inicial de la fase S)

(2) El període de gemmació

Compren des de l'emergència de la gemma fins la separació física de les dues cèl·lules (com la major part de la fase S, les fases G2 i M, i part de la G2)

FIGURA 3.3. Model del cicle cel·lular del lleuat S. cereasis: període de no gemmació (t1), període de gemmació (B), temps de generació de les cèl·lules mares (P), període de no gemmació de les filles (t2), temps de generació de les filles (D). Font: Hartwell i Unger (1977) d'acord amb Xifré, 1992.
FIGURA 3.4. Seqüència de fotomicrografies de cèl·lules de *S. cerevisiae* creixent sobre un nacl d'agar. Les lletres a, b, c, d, e, f i g indicen el sentit de progressió de la seqüència. La barra representa 5 μm. Les fotos es van fets a intervals de 30 min des de a fins f. L'interval de temps és de 90 min entre f i g. Font: Robinow i Johnson (1991) dins de Xifré, 1992.

FIGURA 3.5. Diagrama per a la definició del temps de generació de les cèl·lules mares i filles a partir de fotomicrografies efectuades a intervals regulars de temps. Primera generació de la cèl·lula mare (P₁), segona generació (P₂). Temps de generació de la filla (D). Període de gemmació de la primera i segona generació de la cèl·lula mare (A) i (A') respectivament. Font: Hartwell i Unger (1977) dins de Xifré, 1992.

Experimentalment s'ha constatat una dependència de les durades d'aquests dos períodes, el de gemmació i no gemmació, en funció del temps de generació del cultiu i en funció del tipus de cèl·lula (mare o filla), així com es pronostica l'existència d'un període de no gemmació mínim.

<table>
<thead>
<tr>
<th>Període</th>
<th>Temps de generació del cultiu</th>
<th>Mitjans per a les cel···lules mares</th>
<th>Desviació estàndard</th>
<th>Mitjans per a les cel···lules filles</th>
<th>Desviació estàndard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciclo cel···lular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>72.6</td>
<td>6.4</td>
<td>117.7</td>
<td>27.8</td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>87.2</td>
<td>10.3</td>
<td>140.9</td>
<td>29.3</td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>98.4</td>
<td>9.3</td>
<td>174.8</td>
<td>33.1</td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>126.9</td>
<td>14.2</td>
<td>205.1</td>
<td>56.7</td>
</tr>
<tr>
<td>Període de gemmacció (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>8.6</td>
<td>3.7</td>
<td>47.5</td>
<td>25.3</td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>13.2</td>
<td>4.8</td>
<td>62.3</td>
<td>27.1</td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>11.5</td>
<td>3.3</td>
<td>85.5</td>
<td>31.0</td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>15.1</td>
<td>8.1</td>
<td>103.9</td>
<td>33.1</td>
</tr>
<tr>
<td>Període de gemmacció (D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>65.5</td>
<td>6.0</td>
<td>68.4</td>
<td>7.6</td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>71.3</td>
<td>9.4</td>
<td>79.6</td>
<td>8.2</td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>56.9</td>
<td>8.4</td>
<td>94.6</td>
<td>12.3</td>
</tr>
<tr>
<td>96.9</td>
<td>121.5</td>
<td>93.8</td>
<td>12.1</td>
<td>101.2</td>
<td>15.3</td>
</tr>
</tbody>
</table>

3.2.2.3. Distribució poblacional d'edats genealògiques

Es defineix com edat genealògica el nombre de gemmes que una cel····lula ha produït. Així una cel····lula fills té una edat genealògica 0 fins al moment que s'ha reproduït per primera
végada, i una cèl·lula mare per exemple que hagi produït dues gemmes se li assignarà una ètat genealògica 2.

Una qüestió important és comètix si existeix alguna relació entre la durada del cicle cel·lular i el nombre de gemmes produïdes. Diversos autors coincidixen en que per a un mateix temps de generació els valors de les durades del cicle cel·lular de les cèl·lules males d'ètat genealògica n (petit) es distribueixen en un histògrafo de freqüències al volant d'un valor mig que no difereix sensiblement del que correspon a les cèl·lules d'ètat genealògica n+1, mentre que altres autors discrepen, suposant que cada generació genealògica superior té una durada del cicle cel·lular inferior al de la generació genealògica precedent, variació que es produeix únicament en el període de no gemmació (el de gemmació és idèntic) (Xifré, 1992).

FIGURA 3.7. Representació gràfica del temps de generació de les males i les filles de diferents ètats genealògiques (T_m i T_n). La línia grisada representa el període de gemmació el qual és suposat d'igual durada per a totes les cèl·lules i generacions. Les línies fines representen els períodes de no gemmació els quals es suposen de menor durada a cada generació. Font: Vanoni et al. (1983) dins de Xifré, 1992.

Si la gemmació produeix dues cèl·lules iguals, les fraccions de cèl·lules de les diferents ètats genealògiques formaran sèries geomètriques. Hi hauria una meitat més de cèl·lules de la generació k+1 que de la generació k. Aquesta observació esdevindria d'autentic velocitat del creixement. En la pràctica, fins i tot en les poblacions considerades simètriques, les variacions en el temps del cicle cel·lular de cada cèl·lula individual duraren més muntanyament la seva distribució genealògica. A més, en el cas del llèvat *S. cerevisiae* el temps del cicle de les cèl·lules filles és, en mitjana, més llarg que el de les cèl·lules males. Si afgem altres possibles variacions de tipus general que es poden produir en les durades dels cicles cel·lulars, la distribució de la població per ètats és complexa. És una distribució assimètrica.

Són diversos els models que han intentat explicar aquesta distribució poblacional (Xifré, 1992). La presentació d'alguns d'ells permetrà analitzar i entendre les dificultats d'estudí en el plantejament d'aquest tema, les simplificacions que es fan per abordar-lo i les seves limitacions. Posteriorment, amb l'elaboració del model de simulació, la seva implementació i l'obtenció de resultats, discutirem i valorarem els avantatges i possibilitats que ofereix aquesta metodologia per a l'estudi d'aquestes poblacions. Per exemple, un model de distribució poblacional de les cèl·lules d'un cultiu de *S. cerevisiae* de Hartwell i Unger
(1977) es troba fonamentat en dues afirmacions: les cèl·lules han d'assolir una grandària mínima abans d'iniciar una nova gemmació, i en augmentar el temps de generació del cultiu disminueix la massa que les cèl·lules filles assoleixen en separat-se de les seves progenitors. Aquests autors només consideren el conjunt de cèl·lules formats per dos grups: el de les cèl·lules filles que encara no han iniciat la gemmació, i el de les cèl·lules mares, que inclou a aquelles cèl·lules que es troben realitzant la primera gemmació. Només contemplen dues edats genealògiques possibles. Per al disseny d'aquest model s'assumeixen una sèrie d'aproximacions: la població presenta un creixement exponent. Els cèl·lules mares tenen el mateix temps de generació mitjà (P) igual que el grup de les filles (D) (implicàt en que la velocitat de creixement, el temps que s'invertiria la formació d'una nova generació seria el mateix a aïllats o baixes velocitats de creixement), i totes les cèl·lules són "immortals".

Lord i Wheals (1980) modifiquen el model bàsic de Hartwell i Unger (1977) per tal de convertir-lo en un model de distribució poblacional per edats genealògiques (figura 3.8).

FIGURA 3.8. Freqüència relativa teòrica de les cèl·lules de diferent edat genealògica en funció del temps de generació (t) del cultiu. Les cobres són estatudes utilitzant el model de Lord i Wheals (1980). Freqüència de les cèl·lules filles, D, i de les cèl·lules mares d'edat i, F. Font: Lord i Wheals (1980) dins de Xifré, 1992.
3.2.2.4. El creixement de la gemma

Sembla ser que, tot i l'heterogeneïtat existent en la grandària de les cèl·lules que es troben en un mateix estadi del cicle cel·lular, en un creixement equilibrat tots els components macromolècules de les cèl·lules són doblats en els transcers de cadascun cicle cel·lular. Sembla també que tant la biomassa en pes sec com el volum i l'àrea de la paret cel·lular s'incrementen continuament al llarg d'aquest cicle, la majoria de les molècules formadores de la biomassa són sintetitzades de manera contínua.

Durant el període de no gemmació es produeix un increment significatiu de biomassa tant en les cèl·lules recent nascudes com en les cèl·lules que ja han produït gemmes. Durant el període de gemmació l'increment de la biomassa es dóna majoritàriament en la gemma. Dades experimentals semblen constatar un creixement lineal en el volum mitjà i en l'àrea superficial mitjana de les cèl·lules a través de les successives generacions, en augmentar l'edat genealògica. El que és cert és que s'observa un increment mitjà de volum d'una cèl·lula en cada generació.

En davallar la velocitat de creixement la relació entre el volum de les cèl·lules mares i el de les cèl·lules filles en néixer augmenta de manera substantial, així com en augmentar molt aquesta velocitat de creixement la relació entre els seus volums s'aproparà a 1, malgrat que és una suposició generalitzada a la que la gemma no assoleix completament la grandària de la cèl·lula mare en el moment de la divisió.

Dades experimentals semblen suggerir l'existència d'un voluc mitjà mínim quan les velocitats de creixement són notablement baixes. En la figura 3.9, s'observa que per a temps de generació del cultiu comprats entre 126 min i 180 min, la grandària mitjana en funció del temps de generació del cultiu segueix un comportament lineal (decreixent). Per a valors superiors de temps de generació, entre 180 min i 540 min, la grandària mitjana de les cèl·lules del cultiu roman estable indicant, com ja hem avançat, l'existència d'un possible volum mitjà mínim.

Trebals experimentals de diversos autors mostren que el creixement i la divisió cel·lular són coordinats entre si. Ha d'existir un mecanisme que acobia el cicle de creixement amb la divisió de l'ADN i que ha de prevenir dues menes de desequilibris possibles dins del cultiu: cèl·lules extremadament petites o extremadament grans. Sembla ser que el mecanisme anomenat "start", que alguns autors proposen, pot explicar alguns fets observats experimentalment. El funcionament exacte d'aquest mecanisme és encara desconegut, malgrat que hi ha consens general en relacionar-lo amb una massa cel·lular mínima o massa crítica.

S'ha constatat que existeix una relació inversa entre la grandària de la cèl·lula i el temps que tarda en iniciar la gemmació. Les cèl·lules petites creixen durant un interval de
temps major abans de gemmar que cèl·lules de grandària superior. Aquesta afirmació pot ser explicada per la hipòtesi de que algun punt primerenc del cicle cel·lular, previ a l'emergència de la gemma, requereix l'assoliment d'alguna grandària mínima crítica per tal d'executar-se el pas al seu través. Aquesta és una hipòtesi utilitzada en alguns models.

![Gràfic](image)

FIGURA 3.9. Variació del volum cel·lular mig d'una població de *S. cerevisiae* en funció del temps de generació (t) del cultiu. Font: Johnston i al. (1979) dins de Xifré, 1992.

De la consideració d'un seguit de característiques que es poden relacionar amb el mecanisme "start" (Xifré, 1992), es poden extreure dues conclusions:

- el factor limitant de la velocitat de proliferació d'un cultiu és el creixement i no el progrés a través dels successius passos del cicle cel·lular

- s'ha comprovat que el creixement fins a una grandària crítica és, en absència d'altres restriccions, l'únic requeriment per tal de traspasar el punt "start" i no un requeriment per a qualsevol pas del cicle cel·lular.

La grandària crítica per superar el punt "start" sembla dependre de la velocitat de creixement del cultiu. Tyson, Lord i Wheals (1979) han deduït que el volum en el punt "start" varia suauament des de 17 μm³ a un temps de generació de 75 min. Mentre que la majoria dels canvis de volum a l"start" tenen lloc a temps de generació superiors a 100 min. Segons aquests autors a baixes velocitats de creixement el volum a l"start" pot ser un 63% del volum que s'assoleix a altres velocitats de creixement. Segons altres autors (Xifré, 1992) el volum d'una cèl·lula a l'inici de la gemmació és proporcional a la velocitat de creixement quan el temps de generació d'un cultiu és més gran de 180 min. Per a temps de generació inferiors, aquest volum és independent de la velocitat de creixement del cultiu, suggerint l'existència d'una grandària crítica mínima, com s'observa en la figura 3.10.
FIGURA 3.10. Relació entre el temps de generació (t) del cultiu i l'edat genealògica de les cèl·lules en relació amb el volum mitjà a l'inici de la gernació. Els símbols o, O, V fan referència a cèl·lules amb 0, 1, 2, i 3 o més cicatrius de gernació. Font: Johnston i al. (1979) dins de Xifré, 1992.

Hartwell i Unger (1977) suposen que la grandària crítica de les cèl·lules filles a l'"start" serà similar a la de les cèl·lules mares que les han originat. Altres autors demostren l'existència d'una distribució de grandàries, de forma aproximadament normal, dins un interval comprès entre 15 µm³ i 60 µm³ i amb un coeficient de variació del 25%, per a aquelles cèl·lules filles que inician la gernació (figures 3.11. i 3.12.). S'ha demonstrat experimentalment que algunes d'elles, prop d'un 15%, són fins i tot de grandària superior a la grandària mitjana que les seves mares tenen en iniciar la gernació següent. Són diversos els autors que han constatat que les cèl·lules mares, en el moment de la divisió, ja tenen la grandària crítica o es troben per sobre de la mateixa. Aquest fet suggereix que la grandària d'una cèl·lula mare a l'inici de la gernació podria ser funció de la seva edat genealògica. Com es comprova amb la gràfica de la figura 3.10., s qualsevol velocitat de creixement del cultiu, aquelles cèl·lules amb més cicatrius de gernació inicien la formació de la nova genma a una grandària superior a la que tenen aquelles cèl·lules amb menys cicatrius.

Models bàsics de coordinació entre el cicle cel·lular i el creixement, acceptats per la majoria d'autors, suposen que les cèl·lules d'un cultiu en creiximent equilibrat requereixen assolir una grandària crítica per tal de traspasar el mecanisme "start". L'aplicació a l'estudi del creixement i la reproducció cel·lular del model basat en la hipòtesi de la massa crítica ha donat resultats prou fiables en molts assajos de laboratori. L'hipòtesi observada per la proliferació de les cèl·lules és depenent, en gran mesura, de la grandària de les filles en néixer. Les cèl·lules de grandària inferior a 20 µm³ no gernaran fins que hagin crescut. Les cèl·lules compreses entre 20 i 40 µm³ mostren una major probabilitat d'iniciar la gernació immediatament en augmentar la seva grandària.

3.2.2.5. Granulària i envelliment de les cèl·lules

En contrast amb altres microorganismes com els bacteris, les cèl·lules del llevant \textit{S. cerevisiae} no són "potencialment immortals". De fet aquestes cèl·lules moriràs després d'haver produït un cert nombre de germes. Alguns models (Xifré, 1992) per a la formació de biomassa i la coordinació entre aquesta formació i el cicle cèl·lular no tenen en compte aquesta realitat. Altres treballs proposen diverses hipòtesis per intentar explicar la mort d'aquestes cèl·lules com a conseqüència de l'envelliment.

La manca d'àrea lliure per gemmar no sembla ser el motiu de la mortalitat. Observacions experimentals recol·liten el fet que l'increment de l'àrea de la paret de la cèl·lula és sin vegades l'increment de l'àrea cicatrizada, així en cada nova generació es veu més que compensada aquella àrea cicatrizada per l'increment absolut per l'àrea total de la paret cèl·lular. Hi ha autors que assignen a aquestes zones cicatrizades una pèrdua de permeabilitat i certa dificultat per al transport de nutrients. Experiències realitzades per estudiar la relació entre la presència de zones cicatrizades i la seva permeabilitat, mostraren que cèl·lules amb dues vegades més de quitina acusatuda en la seva paret cèl·lular tenen un comportament similar, respecte al seu envelliment, que cèl·lules testimoni amb nivells normals de quitina. Per tant tampoc sembla que la pèrdua de permeabilitat de la paret cèl·lular pugui explicar l'envelliment de les cèl·lules.

![Diagrama de volum i àrea superficial de \textit{S. cerevisiae}](image)

FIGURA 3.13. Increment del volum i de l'àrea superficial en \textit{S. cerevisiae} en funció de la seva edat esen
Una altra hipòtesi, la més interessant, assumeix que la cèl·lula necessita una quantitat d'energia mínima per tal de garantir el manteniment de la seva biomassa. L'àrea superficial limita l'intercanvi de nutrients i metabòlits entre el seu interior i el seu exterior. Aleshores la relació entre la seva àrea superficial i el seu volum es pot traduir en la relació entre la seva capacitat de captar energia del medi exterior i l'energia necessària per a l'increment i el manteniment d'aquesta biomassa. Dos resultats experimentals semblen avalar aquesta hipòtesi. D'una banda, s'ha comprovat que cèl·lules bloquejades experimentalment mitjançant factors de conjugació o bloquejades experimentalment a l'inici de la fases S, incrementen contínuament la seva biomassa. Aquest increment es veu frenat quan aquestes cèl·lules amb creixement anormal arriben a ser entre 2 i 3 vegades més grans que la grandària mitjana del cultiu. Aquest fet sugereix doncs l'existència d'una grandària màxima a partir de la qual no es pot garantir el manteniment energètic mínim. D'altra banda s'ha comprovat que els dos o tres últims cicles cèl·lulars assimilats per les cèl·lules abans de la seva mort són extremadament llargs en durada. Aquest fet sugereix també que el retard en la durada del cicle cèl·lular podria ser degut a la limitació energètica motivada per la disminució de la relació superfície/volum de les cèl·lules. La possibilitat de l'existència d'un o vari factors d'enveliment acumulats en la cèl·lula no està determinada.

En la figura 3.14. (confeccionada amb les dades de la figura 3.13.) es representa hipotèticament l'energia de manteniment d'una cèl·lula per unitat de massa i unitat de temps per una recta horizontal. Es pot suposar que la quantitat d'energia total assolida per unitat de massa i unitat de temps, és proporcional a la relació superfície/volum (V), E = C.S/V. Es pot comprovar que la curva que representa aquesta energia esdevé decreixent a cada nova generació, apropant-se de forma assimptòtica a la recta horizontal. No es podria produir creixement quan l'energia captada sigui igual a l'energia de manteniment.

El fet de la permanència de les ciòstries de gemmació al llarg de la vida d'una cèl·lula pot ser important en el procés d'enveliment de les cèl·lules com ja hem discutit, per una banda en relació a l'intercanvi de solut i per l'altra a la possibilitat de reproducció. Experimentalment, mitjançant micromanipulació sobre un conjunt de cèl·lules, diversos autors han aconseguit un valor mitjà en el nombre de gemmes a l'entorn de 24 i altres a l'entorn de 30, alhora que s'ha observat que la majoria de les cèl·lules en deixar d'efectuar la gemmació presentava senys de ser mortes, sense explicar si aquest nombre de gemmes aconseguides per cèl·lula corresponien a la màxima quantitat de gemmes possibles per a la superfície total de la seva pare de.

3.2.3. NUTRICIÓ I METABOLISME

Per facilitar les bases biològiques per a la simulació dels processos fermentatius del lleut S. cerevisiae, s'analitzen preferentment aquelles vies metabòliques en les quals hi
intervenen els sucres fermentables que produeixen energia i etanol.

El llevat pot utilitzar, com a sucres més representatius dels processos industrials, la glucosa, la fructosa i la maltosa. En fermentacions vínicas la glucosa i fructosa inicialment es troben en el most a concentracions similars i són consumides de forma simultània. Els dos sucres utilitzen els mateixos sistemes transportadors. Altament sembla que la taxa de consوم de la fructosa es sensiblement inferior a la taxa de consom de la glucosa. Aquest fet sembla motivar per una inhibició mútua del seu transport i de caire competitiu. En fermentacions de cervesa, el substrat bàsic és la maltosa. Tanmateix però, inicialment en el most hi és sempre present una certa quantitat de glucosa. Ambdós sucres tenen sistemes transportadors diferents. Els sistemes transportadors de la maltosa són indubles mentre que els sistemes transportadors de la glucosa són constitutius. L'existència inicial de glucosa en el most inhibeix la síntesi dels sistemes transportadors de la maltosa. En aquest cas, el consum dels dos nutrients es realitza de forma consecutiva.

FIGURA 3.14. Relació entre la capacitat de captar energia d'una cèl·lula de _Saccharomyces cerevisiae_ i l'energia necessària per al manteniment de la seva biomassa al llarg de successives generacions. Volum de la cèl·lula, (a). Superfície de la cèl·lula, (s). Energia captada (suposada) per unitat de temps i unitat de massa, (E). Energia de manteniment (suposada) per unitat de temps i unitat de massa (→). Gràfica confeccionada a partir de les dades de la figura 3.13.

3.2.3.1. Creixement de doble etapa

Quan el llevat _Saccharomyces cerevisiae_ creix sobre un substrat amb una concentració moderada de glucosa (10–30 g/l) es produeix un creixement de doble etapa o creixement diàuxic. Durant la primera etapa la glucosa és preferentment fermentada produint-se alcohol. El comportament
del cultiu durant aquesta etapa mostra les típiques fases de latència, creixement exponencial i fase estacionària. Un cop esgotada la glucosa del medi, el lleuat passa a utilitzar l'alcohol produït durant la primera etapa com a font d'energia per a un segon creixement. L'alcohol és utilitzat de forma necessàriament oxidativa. En condicions anaeròbiques estrictes per manca d'oxigen en el medi o amb concentracions elevades d'etanol, aquest segon creixement no es produceix.

La fase estacionària de la primera etapa del creixement passa a ser una segona fase de latència en la qual els lleuats sintetitzen els enzims necessaris per a l'oxidació de l'etanol. Seguidament es produeix una segona fase de creixement exponencial la qual és menys pronunciada que la primera. Per exemple, un valor per a al temps de generació és la fase fermentativa sol ser 92–105 min, mentre que per la fase oxidativa de l'etanol està entre 231 i 415 min. La segona fase estacionària arriba amb l'esgotament de l'alcohol del medi.

3.2.2. Efecte Crabtree

En un ambient aeròbic els lleuats del gènere *Saccharomyces* realitzen el catabolisme de la glucosa mitjançant les dues vies, la via oxidativa i la via fermentativa, de forma simultània. És un fet important que aquest lleuat presenta una peculiar forma de catabolisme dels sucres. Més enllà d'una determinada concentració de glucosa en el medi de cultiu la via fermentativa predomina, i fins i tot reprimeix, sobre la via oxidativa del catabolisme d'aquest sucre.
En un cultiu de *S. cerevisiae* si la concentració de glucosa en el medi de cultiu és molt baixa i hi ha condicions aeròbiques, el catalòbisme de la glucosa és realitzat mitjançant la via oxidativa. Els productes finals d'aquest catalòbisme són CO₂ i H₂O. Ara bé, tot i que el dipòsit del cultiu estigué ben airejat, si el medi de cultiu és molt ric en glucosa el catalòbisme de la mateixa es realitza de forma majoritària mitjançant la seva fermentació, el resultat de la fermentació és etanol i CO₂. Aquest fenomen, determinat per un notable increment de la via fermentativa respecte a la via respiratòria es front una concentració alta de sucre sàpidament metabolitzables, es coneix com l'efecte Crabtree o més recentment repressió catalòbica.

S'africa que a concentracions de glucosa per sota de 50-130 mg/l però per sobre de 10 mg/l, el metabolisme és purament oxidat, l'efecte Crabtree no és aparent. A concentracions més altes el metabolisme és predominantment fermentatí. A concentracions per sota de 10 mg/l s'han observat comportaments eròtics en el creixement del cultiu. Sembla ser que l'efecte Crabtree es manifesta quan la relació del contingut en glucosa del medi supera el valor de 0.4% pes/volúms. Per exemple sembla ser que en els processos de formació de biomassa per evitar fermentacions la concentració de glucosa en el medi de cultiu s'ha de mantenir per sota de 0.1%.

No tots els sucre capaços de ser fermentats pel llevat *S. cerevisiae* tenen la mateixa incicència respecte al fenomen en qüestió. Els sucre més ràpidament metabolitzables, com la glucosa, fructosa i sacrosa, tenen una incicència d'a dica en l'aparició de l'efecte Crabtree.

En un ambient aeròbic els llevats del gènere *Saccharomyces* realitzen el catalòbisme de la glucosa mitjançant les dues vies, la via oxidativa i la via fermentativa, de forma simultània. Depenent de la majoria en la contribució al catalòbisme de cada una de les dues vies descrites, els llevats es poden dividir en dos grups:

- Llevats respiratoris: només fermenten un màxim del 30% de la glucosa metabolitzada en ambient aeròbic
- Llevats fermentatius: en ambient aeròbic, la respiració representa menys del 10% del metabolisme de la glucosa. Aquest grup conté l'espècie *S. cerevisiae* i són anomenats Crabtree positius. A més la respiració és particularment baixa en els llevats floculants emprats en la fermentació baixa (o "lager") de la cerveza.

En els llevats Crabtree positius, la taxa del catalòbisme de la glucosa sol ser alta i la taxa del consum d'oxigen és baixa.

Un paràmetre important per conèixer si el metabolisme dels llevats és predominantment oxidatiu o fermentatí és el quocient respiratori (QR = CO₂/O₂). Aquest
El quocient es calcula determinant en el cultiu la taxa de generació del CO₂ i la taxa de consum d'O₂. Un catabolisme parament oxidatiu (veure figures 3.16. i 3.17.) dóna un Qₐ entre 0.9 i 1.0, valors que coincideixen amb la productivitat màxima de biomassa en el cultiu continu. Quan el catabolisme és preferentment fermentatiu, els valors normals de Qₐ solem ser més grans que 1. Si el subrat a metabolitzar és l'etanol, aquest es degradat únicament per via oxidativa, en aquest cas el quocient respiratori es menor que 0.9.

FIGURA 3.16. Cultiu continu de *S. cerevisiae* en un medi que conté 30 g/l de glucosa. Ordinades: Y₁, Velocitat de consum d'oxigen (3); Y₂, Velocitat de producció de CO₂ (2); Y₃, Quocient respiratori (1); Y₄, Concentració de biomassa (4); Y₅, Glucosa (6) i etanol (5). Font: Flechter i al. (1987) dins de Xifré, 1992.

3.2.3.3. Transport de nutrients

Es suposa que el pas dels salts a través de la membrana cel·lular és per simple difusió. S'ha suggerit que la cicatçura que es troba en la superfície cel·lular podria no ser tant activa per a l'intercanvi de substrat entre la cel·lula i el seu entorn com altres zones de la paret (Xifré, 1992). Si aquesta possibilitat fos certa la superfície cel·lular apta per a l'intercanvi disminuiria a través de les successives germinacions.

3.2.4. INHIBICIÓ I VIABILITAT CEL·LULAR

3.2.4.1. Activitat cel·lular

La desacceleració i la parada de l'activitat dels lleuats, així com el manteniment estacionari i l'empobriment del seu desenvolupament es coneix com inhibició. Segons diversos autors una fermentació disminueix en intensitat bàsicament per dues raons: la formació de substàncies tòxiques capaces de frenar l'activitat normal dels lleuats i les variacions en la concentració dels substrats bàsics per al seu metabolisme (sucres, nitrogen assimilable, oxigen...). Però cal tenir en compte que altres factors com per exemple la temperatura, la concentració inicial de sucres, el pH, el SO$_2$, o concentració elevada de les cèl·lules, entre altres, poden també incidir en l'activitat dels lleuats. Sovint l'acció d'aquests factors té un caire sinèrgic sobre els efectes provocats per les dues causes principals d'inhibició.

La figura 3.18 mostra un exemple de fermentació esponential del mot de ratí. Es pot veure com la viabilitat de les cèl·lules del cultiu decreix ràpidament quan s'ha assolit la fase estacionària del cultiu. Tot i així la fermentació dels sucres continua encara amb una taxa...
força reduïda. És evident doncs que la davallada tant de la taxa del creixement com de la taxa de fermentació no és solament deguda a la disminució de l'activitat cel·lular, sinó que la viabilitat cel·lular és força important. Moltes vegades el fenomen de la inhibició es sol analitzar globament, tot contemplant l'acció de la viabilitat cel·lular de manera implícita.

FIGURA 3.18. Gràfic d'una fermentació exponencial d'un most de raïm ambaltes concentracions de sucre inicials. Ordinades: Y₁ Concentració cel·lular. Y₂ Quantitat de sucre fermentat. (1) Sucre fermentat. (2) Cèl·lules totals. (3) Cèl·lules viables. (a) Fase de creixement exponencial (b) Fase quiescència. (c) Fase decreixent. Fons: Lafon–Laforcade i al. (1979) dins de Xifré, 1992.

3.2.4.2. Inhibició i substrat

L'opinió general és que la velocitat del creixement d'un cultiu de llevats és funció de la concentració del substrat límit en el medi de cultiu sempre que l'acció inhibidora d'altres factors sigui baixa. Ja hem relacionat aquest fet amb la velocitat de transport dels nutrients cap a l'interior de la cèl·lula. No obstant això, cal tenir en compte que els substrats poden produir problemes en el creixement dels llevats per altres motius.

Per exemple poden existir problemes per excés de substrat. Diferents autors pronostiquen un augment de la inhibició de la fermentació en front concentracions de sucre superiors al 14% en el medi de cultiu. Aquesta acció inhibidora és especialment aparent en el cas de les fermentacions industrials de mostos procedents de raïres parcialment deshidratats (degut a la podridura noble o al seu assecat al sol). S'informa també que els nivells típics de sucre continguts en el most de raïm són suficientsment alts per tal de causar una suavització...
del creixement dels lleuats.

Diversos treballs experimentals realitzats, dels que hem presentat els resultats (figures 3.19-3.23.), mostren que la velocitat específica del creixement d’un cultiu en front de concentracions creixents de sucre inicials disminueix de valor a l’augmentar la concentració de sucre. Aquest fenomen és comportament, que ja es manifesta per a quantitats de sucre inicials relativament baixes, és el que es coneix com inhibició per excés de substrat inicial.

Aquest fenomen es comporta de manera diferent en funció de que la fermentació sigui aeròbica o anaeròbica i depèn també de la varietat de lleuat utilitzat en la fermentació. S’ha comprovat una disminució de la velocitat de creixement del cultiu en front concentracions inicials creixents de glucosa en *S. cerevisiae* i *S. bayanus*. Si bé el rendiment final en etanol és similar per ambdues varietats el lleuat *S. bayanus* tarda menys temps en fermentar els sucre a etanol que el lleuat *S. cerevisiae* i té un rendiment superior en biomassa.

![Figura 3.19. Velocitat específica del creixement de cultius de *S. cerevisiae* per a diferents concentracions inicials de sucre reduïts.](image)

![Figura 3.19. Velocitat específica del creixement de cultius de *S. cerevisiae* per a diferents concentracions inicials de sucre reduïts.](image)

Diversos autors (Xifré, 1992) en estudiar aquest comportament dels cultius el relacionen amb el comportament de les reaccions enzimàtiques inhibides per un excés de substrat. Per al cas més simple d’inhibició enzímàtica per excés de substrat el mecanisme d’actuació es pot descriure de la següent manera. L’enzim s’acoblà a una molècula de substrat pel seu lloc reactiv per tal de realitzar la reacció. Seguidament es pot donar el cas que una segona molècula de substrat s’acoblà a un altre lloc no reactiv de l’enzim. En aquest cas el
complex format per l'enzim i les dues molècules de substrat resulta inactiu fins que aquest complex format no es torzi a desfer. Per intentar extrapol·lar aquest mecanisme al comportament del nostre cultiu experimental podriem fer la següent interpretació del que esdevé: les molècules transportadores dels sucres tenen una actuació similar a la que tenen els enzims, podent suggerir que un mateix transportador pot acoblar alhora dues molècules de sucre i produir la inactivació momentània del sistema transportador. La cellula disposa d'un nombre limitat de transportadors i la possibilitat de que es produeixi aquest fenomen creixerà amb l'aiguament del nombre de molècules de sucre present a l'entorn d'aquesta.

FIGURA 3.20. Velocitat específica del creixement (μ) de cultius de *S. cerevisiae* i *S. bayanus* per a diferents concentracions inicials de glucosa. Gràfica confeccionada amb dades extrutes de Stephaiano i Goma (1983) dins de Xifrè, 1992.

FIGURA 3.21. Velocitat específica de producció d'etanol en cultius de *S. cerevisiae* i *S. bayanus* per a diferents concentracions inicials de glucosa. Gràfica confeccionada amb dades extrutes de Stephaiano i Goma (1983) dins de Xifrè, 1992.

També es destaca el fenomen d'inhibició mútua presentat pels dos sucre majoritaris del most de raïm: la glucosa i la fructosa. Sembla que aquesta inhibició és de cairé competitius i és mínima a baixes concentracions però notable a concentracions més elevades.
3.2.4.3. Inhibició i etanol

En un cultiu de *S. cerevisiae* l'etanol és la causa principal del fenomen inhibitoris. No obstant això, si la concentració del mateix en el medi de cultiu no és elevada, el llevat pot utilitzar-lo i la vegada com a substrat per al creixement del cultiu, un cop esgotats els sucres fermentables i en condicions aerobiques. Sembla que la concentració d'etanol per sota de 40 g/l no afecta a la fermentació de la glucosa i per sota de 2 g/l no afecta a l'oxidació de la mateixa.

A partir de certes concentracions d'etanol produït paralitza l'activitat dels llevats. Una fermentació tipica de most de nàin pot produir una concentració d'etanol en el medi de 90 a 125 g/l. A aquest nivells de presència l'etanol és una causa clara i determinant de la reducció del creixement del cultiu. Ara bé, diferents varietats del llevat *S. cerevisiae* mostren diferents graus de sensibilitat a la mateixa concentració d'etanol en el medi.

A nivell general els alcoholls desnaturalitzen les proteïnes i aquesta propietat pot comptar en l'activitat microbiana. S'ha trobat també que l'etanol inhibeix directament la síntesi de les proteïnes.

VARI AUTORS PROPOSON QUE, A NIVELL GENERAL, L'ETANOL PRODUI'T PELS LLEVATS OCASIONA UNA INHIBICIÓ DE CAIXA NO COMPETITIVA SOBRE LA VELOCITAT ESPECIFICA DEL CREIXEMENT "μ" DEL CULTIU, ALTRES AUTORS DEMOSTREN QUE L'EFECTE D'INHIBICIÓ NO COMPETITIVA ES PRODUEIX DE MANERA MÀS PARTICULAR EN L'ACTIVITAT DE VARIS SISTEMES DE TRANSPORT DE NUTRIENTS DEL LLEVAT *S. cerevisiae*. TAMMAINEIX LES BASES MOLÈCULARS D'ESTA INHIBICIÓ ROMANEN EN PART DESCONEGudes, A L'IGUAL QUE LA RAÓ PER LA QUè ALGUNS LLEVATS SÓN MÉS TOLEntS QUE ALTRES ALS EFECTES TOXICS DE L'ETANOL. S'HA TROBAT QUE L'ETANOL INHIBEIX EL TRANSPORT DE LA GLUCOSA. SE SUPosa que l'acció de l'etanol és efectiva des del primer moment de la fermentació. TAMMAINEIX però treballs experimentals mostren una concentració mínima inhibïòria de 0.33 mol/l d'etanol. L'acció inhibitori augmenta de forma exponencial amb la concentració d'etanol en el medi, la qual recau directament sobre la velocitat màxima del transportador.

S'argumenta que ja que el transport de la glucosa és per difusió facilitada, les causes de la inhibició podrien ser dues: canvis en l'entorn lipídic del transportador en la membra plasmàtica amb canvis en la permeabilitat de la mateixa, i l'acció directa de l'etanol sobre el transportador.

També s'ha trobat que la maltosa, sucre representatiu de les fermentacions cerveseres, és inhibida per l'etanol de manera no competitiva. L'acció recau directament sobre la velocitat màxima de transport i varia de forma exponencial amb la concentració d'etanol en el medi, a partir d'una concentració mínima.

Yaris autors suggerixen que l'acumulació d'etanol al medi afecta negativament a la força motora dels protons, ja sigui afectant al potencial de membra o al gradient de protons, o bé a les dues causes alhora. El resultat d'aquesta acció de l'etanol serà una disminució de la capacitat energètica dels sistemes de transport actiu per realitzar la seva funció.

Sembla ser que tot i que les diverses causes inhibidores atribuïdes a l'etanol presenten per a cada cas concret un comportament exponencial, els efectes globals de l'etanol sobre el creixement del cultiu no sembla ser un model fàcil d'intuir. La cinètica general del cultiu podria estar, per exemple, altament distorsionada pels efectes de l'etanol sobre la temperatura letal i sobre la relació entre la temperatura ambiental i el creixement. Un seguit d'autors suggerixen que la concentració d'etanol afecta de manera global a la velocitat específica del creixement μ, on μ = f(E, μ_{max}, E_{max}) amb E és la concentració d'etanol en el medi, i E_{max} la concentració màxima d'etanol possible per a la viabilitat dels llevats, proposant-se relacions respecte E de tipus exponencial, lineal, hiperbòlic i parabòlic.

El fet comprovar que l'etanol afgit al medi de cultiu és menys tòxic que l'alcohol produt durant la fermentació (figura 3.25.) fa suposar que en la causa de la mortalitat cel·lular hi hagi quelcom més que la simple inhibició del transport de nutrients.

Alguns treballs han atribuït la mortalitat de les cel·lules a l'acumulació interna d'etanol durant el procés fermentatiu. En aquests treballs s'ha sugerit que la permeabilitat de la paret i de la membrana cel·lular al pas de l'etanol presenta limitacions. Es posa també que, durant la fase de creixement en la qual la taxa de fermentació és alta, la velocitat de sortida de l'etanol cap a l'exterior de les cel·lules és inferior a la velocitat de producció del mateix. Per tant, en aquesta fase hi ha acumulació d'etanol intracel·lular.

La temperatura és un factor decisiu en l'increment de la velocitat de fermentació, per tant s'explicaria que a altes temperatures (propers als 30°C) els efectes de l'etanol sobre la viabilitat cel·lular siguin més dramàtics. Una concentració inicial de sucres alta també desencadenaria una taxa de fermentació superior. Nivells alts d'oxygen dissolt podrien reduir aquesta taxa de fermentació, mentre que una alta concentració cel·lular en el fermentador implicaria que la concentració real de l'etanol i dels sucres en la fase ablòtica del medi de cultiu seria superior a la calculada respecte al volum total del cultiu.

Alguns autors afirmen no obstant que l'acumulació d'etanol intracel·lular té lloc principalment en les primeres etapes de la fase exponencial del creixement (figura 3.26.). Implicitament aquests autors suggerixeixen que aquest fet implica d'alguna manera una major o menor mortalitat de les cel·lules del cultiu en la fase estacionària. També altres autors
comproven que l'acumulació d'etanol intracel·lolar és més alta en *S. cerevisiae* que en *S. bayanus*, relacionen això amb la major sensibilitat a l'etanol i a la concentració inicial de sucre mostrada per *S. cerevisiae* amb la menor habil·litat per eliminar l'etanol intracel·lolar durant el període en el qual té lloc una alta taxa de fermentació.

3.2.4.4. Altres probables factors d'inhibició

Existeix una temperatura mínima específica per cada roca concreta de lleuat, per sota de la qual no hi ha desenvolupament de la població del cultiu. Dins de l'interval de temperatures definit per l'óptima per al creixement i la màxima que poden suportar els lleuats, l'increment de la temperatura repercuteix en una disminució dràstica de la velocitat específica del creixement.

També amb l'increment de la temperatura els efectes de la concentració de l'etanol sobre l'activitat de la població de lleuats d'un cultiu es fan més dramàtics, incidint directament sobre la viabilitat de les cèl·lules, i en major mesura si, a més es donen condicions de tanca d'oxigen o excés de sucre.

Tol i que el metabolisme dels lleuats, en condicions normals de cultiu, és preferentment fermentatiu, els lleuats tenen uns requeriments mínims d'oxigen molecular. S'ha
constatat que en un most en fermentació, les colònies de lleuats són més denses en la zona en contacte amb l'aire. Mentre que en absència completa d'aire, només es produeixen algunes generacions i la seva reproducció s'atura. També és conegut que una deficiència d'oxigen al començament de la fermentació provoca una fase de latència prolongada. El tractament mecànico dels raïms per tal d'extreure el most assegura un airejat útil per tal d'arrencar la fermentació. Sembla que el consum més gran d'oxigen té lloc en els primers estats de la fermentació. És també clar que en front un creixement ràpid hi ha problemes per mantenir suficient oxigen dissoit en el medi, especialment a altes temperatures.

És important indicar que a més dels factors d'inhibició descrits fins ara, i que no entrarem a discutir, dins el medi de cultiu en fermentació existeixen un seguit de molècules i altres productes diversos amb diferent capacitat d'actuar com a inhibidors, alguns són originaris del most de la fermentació, altres són productes durant el procés metabòlic, i altres poden ser afegits al most abans d'iniciar-se l'activitat fermentativa amb finalitat protectora.

3.2.4.5. Algunes causes de mortalitat

La taxa de creixement efectiva o real del cultiu està forçada per dues taxes que interaccionen: la taxa de creixement de les cèl·lules viables i la taxa de mort. Realment es consta que hi ha relativament pocs estudis respecte a la fase decreixent o de mort d'un cultiu de lleuats.

Alguns autors afirmen que el nombre de cèl·lules viables del cultiu decreix de forma exponencial a llarg del temps. Cal suposar que la taxa de mort es trobarà subjecta en gran mesura a les condicions ambientals del cultiu: concentració d'etanol, temperatura, nivell d'oxigen dissoit en el medi, concentració de cèl·lules en el cultiu,... les quals tenen gran importància en el fenomen de mortalitat cel·lular. D'un conjunt d'experiències realitzades es dedueix un augment substancial de la mortalitat celular quan concorren més d'un d'aquests factors negatius alhora.

Sembla que la importància de l'etanol en la mort de les cèl·lules sovint s'ha confós amb el seu paper d'inhibidor del creixement. Algunes autors proposen que el nombre de cèl·lules viables d'un cultiu de *Saccharomyces* decreix quasi linealment en funció de la concentració d'etanol en el medi de cultiu i del temps de durada de la fermentació. Diversos autors citen que les altes concentracions de sucre en el medi de cultiu (per exemple per sobre del 14%) causen mortalitat de cèl·lules degut a la plasmolisi de les mateixes. Altres però han constatat que l'efecte d'aquestes concentracions inicials es troba íntimament ligat amb la disponibilitat d'oxigen en el medi i amb la temperatura de fermentació, factors aquests que conjuga donen diferent percentatge de viabilitat en un cultiu.
Es suggereix que la quantitat d'oxigen disponible a l'inici de la fermentació, i no la manca d'aquest en les fases més tardanes és el desencadenant de la mortalitat cel·lular. El fet de la manca d'oxigen inicial no sembla influir en la velocitat del creixement, però és crític per a la viabilitat de la població al final de la fermentació si el medi de cultiu no conté certs àcids grassos (imprevistibles quan el cultiu és estrictament anaeròbic i els quals requeririen per a la seva síntesi la presència d'oxigè). La manca inicial d'oxigè pot afectar doncs a les generacions posteriors. Si les condicions de manca d'oxigen en la fase inicial del creixement es prolonga les cel·lules morren per asfixia.

Alguns treballs han atribuït la mortalitat de les cel·lules a l'acumulació interna d'etanol durant el procés fermentatiu. S'ha suggerit que la permeabilitat de la paret i de la membrana cel·lular al pas de l'etanol presenta limitacions. Es postula també que durant la fase de creixement en la qual la taxa de fermentació és alta, la velocitat de sortida de l'etanol cap a l'exterior de les cel·lules és inferior a la velocitat de producció del mateix. Per tant en aquesta fase hi ha acumulació d'etanol intracel·lular, no havent unanimitat entre els autors consultats sobre quin és el seu paper i efecte sobre enzims claus per a l'obtenció d'energia.

3.3. MODELLITZACIÓ I SIMULACIÓ

3.3.1. DESCRIPCIÓ DEL SISTEMA

En el capítol anterior "Simulació discreta de cultius bacterians" s'ha mostrat com aquesta metodologia desenvolupada i fonamentada en la simulació discreta permet (en el cas dels bacteris) representar acuradament cada un dels esdeveniments i interrelacions que tenen lloc dins d'un cultiu a nivell microscòpic, aconseguint aleshores pel cultiu el comportament a nivell macroscòpic que s'observa experimentalment. En aquest estudi de cultius de llevats l'estratègia a seguir serà similar a la utilitzada en el cas dels bacteris.

El sistema amb el que treballarem està format per una fase abiótica (un espai tridimensional reticulat on es troben partícules de substàncies diverses) i una biòtica (els llevats o individus amb les seves característiques).

El sistema pot representar un cultiu tancat (cultiu discontinu) o un cultiu obert (cultiu continu o cultiu amb mencès entrades periòdiques de nutritiu). Respecte a les partícules de substrat es considera una redistribució uniforme en el medi cada cert nombre de passos de temps. En aquest sistema no es contempla la diuïsió d'aquestes partícules, essent aleshores aquest mecanisme una alternativa per poder correger la desuniformització de concentracions que esdevé durant l'evolució igual que pot succeir en un sistema real (en els sistemes reals...
l’agitació pot ser mecànica i/o esportània).

Es dissenyarà el model de llevat a un nivell general i mitjançant senzilles modificacions es podrà adaptar a casos particulars i diferenciar que es vulguen estudiar, és fàcilment modificable per tal de reflectir situacions sofisticades. Les diferents parts de que consta es contrasten amb les bases biològiques del llevat *S. cerevisiae* exposades de forma esquemàtica en els apartats anteriors.

El model reflectirà alguns dels aspectes o consideracions ja introduïdes, descrits i utilitzades pels bacteris, i per a les que hem constatat la seva validesa. Mentre que en altres parts el planteig es realitzarà per primera regada des d’aquesta metodologia discreta i d’acord amb les característiques propies del llevat.

A nivell general totes les cèl·lules de la mateixa espècie que formen una població teren un comportament similar, pel que dissenyaré un model de comportament vàlid per a totes les cèl·lules del sistema. L’heterogeneïtat de la població, la població d’un cultiu de llevats no és homogènia, no només homogènia en el model general de comportament sinó en altres causes com poder ser les seves característiques individuals en un instant de temps donat, el seu estat dins del cicle cel·lular o les condicions mediambientals del seu entorn.

3.3.2. MODEL DEL COMPORTAMENT DEL LLEVAT

3.3.2.1. Moviment

Aquesta és una de les activitats vitals del microorganisme on s’ha considerat la mateixa modelització utilitzada ja en els bacteris (apartat 2.2.1.).

3.3.2.2. Consom de nutrients

Es suposa que aquest consum de parts de nutrient per part dels llevats es realitza dins de cultius creixent a temperatura constant. Recordem que en l’apartat 2.5.2. s’ha estudiat la relació entre la temperatura i la velocitat de creixement, altres que tot això és relacionada en la simulació amb el radi d’acció que determinava l’entorn on el microorganisme podia captar les parts de nutrient. Així considerem que el radi D_{max} que determina aquesta regió és constant (i també el percentatge k d’aquestes que pot assolir).

Es considera per a la modelització de la captació de parts de nutrients del modi la cinètica de Blackman en la forma ja introduïda en el cas dels bacteris en l’apartat 2.2.2., on $U_1 = z_i m^n$, on z_i és un valor aleatori de la distribució de probabilitats $N(U_{max}, a_i)$,
La capacitat màxima de consum, \(m \), és la massa del llevat i \(\alpha \) és el coeficient que relaciona, d'acord amb la seva geometria, el volum cel·lular amb la superfície cel·lular.

Les utilitzacions diferents que pot fer un llevat dels diversos tipus de nutrients són facilment modelitzables amb aquesta metodologia i amb el simulador base desenvolupat (veure annex 1 i annex 2). Es pot representar una certa preferència d'un substrat sobre un altre mitjançant la definició de \(s \), \(k \), i \(U_{\text{m}} \), que s'assigna per a cada classe de nutrients. També es pot incloure l'ordre (simultani o seqüencial) en que es passaran a consumir els diferents nutrients del medi.

Un cultiv de llevats es pot trobar creixent amb dos classes de nutrients com a font de carboni i d'energia, per exemple glucosa més maltosa, o bé glucosa més etanol. S'utilitza de forma majoritària aquell nutrient que permet una velocitat de creixement més elevada. Per tal de no metabolitzar el segon nutrient s'inhibeix la síntesi dels enzims necessaris. En esgotar-se el primer nutrient s'inicia una fase de latència, transcurre un període de temps, abans que es comenci a utilitzar el segon nutrient. Es té aleshores un creixement en doble etapa o una diància del creixement, ja modelitzat amb la simulació discreta i implementat en el simulador base (veure annex 1 i annex 2). Cal insistir que la messura d'esperar un nombre de passos de temps en la simulació (aquest temps de latència en la simulació) afecta a cada cel·lula de forma individual per tal d'aproparnos al que és el mecanisme real i discret, i no de forma col·lectiva a tota la població que podria suggerir un estudi de tipus contínu i globalizador.

Finalment en cultius amb dues varietats diferents del llevat S. cerevisiae creixent simultàniament (cas de les fermentacions víniques) existeix una certa preferència de creixement d'una varietat sobre l'altra. Aquest fet també es pot simular, per exemple assignant valors diferents als paràmetres que configuren el consum de partícules de nutrient.

3.3.2.3. Limitacions al consum de nutrients

Si una cel·lula no tingués cap impediment per tal de realitzar el consum de partícules de nutrient, tornés la concentració d'aquestes en el medi limitarà la possibilitat d'aconseguir aquest valor \(U_1 \). No obstant, la informació bibliogràfica recollida mostra que el consum màxim es pot veure condicionat també per tot un seguit de factors, els quals fan davallar e' seu valor.

És important insistir que de la suposició inicial d'un valor màxim de partícules possibles per captar \(U_{\text{m}} \), en l'apartat anterior ja s'ha avaluat una limitació que considerem pròpia dels microorganismes, la superfície o àrea cel·lular que envolta la seva biossassa, i la qual en el cas del llevats és representada per \(m^2 \) amb \(\alpha = 1.1 \) en un intent d'aproximació a la forma geomètrica que tenen els llevats. Assenyalar que de fet en el consum no s'utilitza
un valor constant sié el valor aleatori que s'obté de la distribució de probabilitats \(U_{\text{dis}} + N(0, \sigma_1) \) amb l'objectiu de contemplar i introduir en la simulació la variabilitat que s'observa en els sistemes reals, posar deguda a factors desconeguts o no controlables, o bé deguda a l'atzar en el seu sentit més absolut. Aquesta tècnica o manera d'actuar s'utilitzarà de forma reiterada en altres parts del model.

La proposta de model que esboçem respecte a l'existència d'altres limitacions es considera com a factors penalitzadors del consum:

- L'edat geològica de la cèl·lula o individú, CIC, la qual correspon al nombre de cicatrícis que presenta la seva part cel·lular o nombre de gemmes produïdes.

- La concentració de sucre present en el medi de cultiu o nombre de partícules de nutrient, NUT.

- La concentració d'àcid o nombre de partícules d'aquestes en el medi, ETA.

La següent expressió asegnarà de forma individual la quantitat màxima de partícules de nutrient \(U \) que pot arribar a assolir:

\[
U = U_{\text{lim}} (1 - K_1 \text{CIC} - K_2 (NUT + z_2) - K_3 (ETA + z_3))
\]
on \(z_2 \) i \(z_3 \) són valors aleatoris de les distribucions \(N(0, \sigma_1) \) i \(N(0, \sigma_2) \) respectivament, i \(K_1, K_2 \) i \(K_3 \) constants.

La utilització de les distribucions de probabilitat normals pot plasmar els efectes d'aquesta diversitat d'indivídues i de comportaments característica d'un cultiu real. S'ha comentat que l'àrea cicatritzada de la cèl·lula pot presentar una dificultat afrontada per al transport dels nutrients. Malgrat hi ha opinions contràries a aquesta hipòtesi, la mateixa no deixa de tenir una certa coherència, per la qual cosa és un dels factors (no l'únic) considerat en el nostre model. En l'equació donada també es té en compte el fet d'una certa inhibició en el consum de nutrients motivada per una concentració elevada de sucre en el medi de cultiu, en la qual es fa ús d'una componenda aleatoriària de l'acció del fenomen per actuar a nivell de cada cèl·lula de forma individualitzada. La constatació del fet experimental de l'existència d'una inhibició en la velocitat del creixement dels cultius \(S. cerevisiae \) motivada per un excés de sucre inicials, té certa importància sobre tot en fermentacions víniques ja que el contingut inicial de sucre en el most de raïm és considerable. S'ha suposat en el nostre model, atenent a les observacions i comentaris de l'apartat 3.2.4.2., una acció aplicada sobre cada cèl·lula de caire lineal i afectada d'atzar. En el model de consum, el consum màxim fixat per una cèl·lula per unitat de massa i unitat de temps es veu limitat de forma lineal, i amb una component
d'atzar, amb la concentració del nutrient present en el medi de cultiu. El mateix tipus de comportament inhibeix i hem considerat per reflectir l'acció de l'etanol sobre el consum de substrat. El desenvolupament d'un cultiu de llevats presenta dificultats quan s'acumula etanol en el medi, i aquestes s'agreuge en augmentar la concentració d'aquest, interpretant-se que de forma principal el seu efecte recau sobre el transport dels diferents nutrients. En contemplar el fenomen des d'una veu microscòpica, a nivell d'individu, el model contempla una inhibició de caire lineal, directament proporcional a la quantitat d'etanol present alhora que afecta per una component aèria.

3.3.2.4. Metabolisme i productes residuals

a) Augment de biomass

Per al creixement de la cèl·lula mitjançant l'augment de massa a partir dels nutrients s'utilitzarà el mateix model elaborat pels bacteris (apartat 2.2.2.), on part de les partícules de substrat consumides es destinen pel manteniment de la pròpia cèl·lula i la resta es destina a l'increment de biomass.

Al rendiment, que podem suposar un paràmetre constant al llarg del procés, se li poden assignar diferents valors per a cada una de les font de carboni i d'energia que puguin utilitzar els llevats per al seu metabolisme. També tindrà diferents valors si la via catabòlica preferent és l'oixidació dels sucres o la fermentació dels mateixos. Igualment es pot suposar que el seu valor serà diferent per cada soca de S. cerevisiae.

b) Producció de l'etanol i dissipació de la calor

Sens dubte, el principal producte "residual o secundari" d'un procés fermentatius portat a terme per aquest llevat és l'etanol (objectiu moltes vegades del procés). Així com succeeix en tot procés biològic, es desprèn també una important quantitat de calor, la qual pot ser responsable d'un notable increment de temperatura en el medi de cultiu (amb importants repercusions).

En aquest model es proposa que la producció d'etanol (producte resultant, final o residual) i la producció de calor, són ambdós directament proporcionals a la quantitat de partícules de nutrient consumides, amb el mateix esquema que l'utilitzar en el cas dels bacteris (apartat 2.2.2.), on el producte resultant s'identifica amb l'etanol.

La proposta de calcular la quantitat d'etanol produït a partir del substrat consumit (i no a partir de la formació de nova biomass o de la utilitzada per al manteniment cèl·lular) es justifica a partir de la seva producció. L'etanol es produeix
a partir del piruvat per tal de reciclar les molècules de NADH a NAD. Per tant és indiferent que aquesta acció sigui aprofitada per l'increment en biomassa o pel propi manteniment celular.

Sens dubte el terme del rendiment de l'etanol pot presentar variacions al llarg del procés. D'una banda el llevat S. cerevisiae pot oxidar part dels sucre i fermentar la resta. Tanmateix però, en una fermentació típica el procés oxidatiu dels sucre és mítir i fins a cert punt menyspreable. També és cert que la variació de la temperatura del medi de cultiu pot produir un equilibri diferent entre les reaccions catalòbiques, essent un factor important. Com una primera aproximació, considerem que aquesta és manté constant, i per tant també és té un rendiment per al etanol de valor constants.
Una perspectiva immediata a estudiar seria introduir la seva variació respecte aquests factors.

Respecte al coeficient d'entalpia en la producció de calor es pot tenir en compte un raonament similar a l'exposat pel terme de rendiment en etanol.

L'activitat metabòlica del llevat S. cerevisiae produiré també un seguit de productes residual com el CO₂, el glicerol, l'àcid succínic, l'àcid acètic, alcohols superior...; alguns dels quals tenen sens dubte una importància qualitativa segons sigui l'objectiu del procés que es desencadenà. Per exemple en les fermentacions per a la producció de begudes alcohòliques el glicerol, l'àcid succínic i l'àcid acètic tenen una força importància qualitativa, encara que en valor quantitatiu respecte l'etanol es trobin per sota. La consideració de diferents productes finals és una atra de les possibilitats immediates a considerar en una posterior sofisticació del model.

3.3.2.5. Viabilitat

Per primera vegada amb aquesta metodologia desenvolupada s'ha modelat la mortalitat cellular, la mort dels individus del sistema que tenim.

La mortalitat cellular durant el procés fermentatius és un fet força important per a tenir en compte. Sovint el fenomen inhibitori del creixement d'un cultiu es contempla des d'una visió global en la qual la mortalitat cellular hi actua de forma implícita. No sembla clara la descripció detallada d'un mecanisme que expliqui les causes reals d'aquesta mortalitat, trobant-se relacionat amb la concentració d'etanol i la durada de la fermentació.

La proposta del model ha de contemplar la mortalitat cellular des d'una vessant o visió discreta i a nivell d'individu. Els factors que considerem i controlem per aquest són:
a) Existència d'una energia mínima i suficient per mantenir el seu metabolisme intern.

b) Magnitud del període temporal en el que no assoleix aquesta energia mínima.

c) Una component aleatòria o azar.

Si una cèl·lula qualsevol del cultiu en un pas de temps so troba suficient nutrient al seu voltant per tal de garantir el seu propi manteniment, per obtenir aquesta energia mínima, se li assigna un índex anomenat de mortalitat E_M:

1) Aquest índex augmenta de forma discreta en cada pas de programa en el qual la cèl·lula no trobi nutrient suficient per poder consumir:

$$E_M \rightarrow E_M + 1$$

2) Aquest índex disminueix en el pas de temps que la cèl·lula pot aconseguir nutrient de neu:

$$E_M \rightarrow E_M - 1$$

3) Periòdicament, en cada pas de temps es controla si E_M és troba per sobre d'una valor aleatori z extrat d'una distribució normal $N(H_0, \sigma^2)$, on H és el temps mig límit que una cèl·lula pot suportar en condicions adverses. Si

$$E_M > z$$

es produceix la baixa de l'individu del sistema.

Sens l'existència de causas externes al cultiu que causin directament la mort de la cèl·lula, el mecanisme que proposem a continuació sembla apropiat per explicar aquest fenomen, doncs es considera els factors anteriors, indirectament o implicitament es té en compte les causes principals que els diversos autors han relacionat:

- l'exèc d'etanol en el medi
- la concentració del substrat limitat del medi
- la relació superfície-volum de la cèl·lula
- l'edat genealògica de la cèl·lula (nombre de gemmes o cicatricis),

les quals redueixen la capacitat de captació de nutrients per part de la cèl·lula. La magnitud
amb que actúin aquests factors adversos serà determinant per a la viabilitat de l'individu atès que reduiran el subministrament d'energia.

Una cèl·lula incrementa la seva biomassa si la quantitat de nutriment captat del medi ultrapassa el morint necessari per al seu manteniment. Si el nutriment captat només pot garantir el metabolisme intern aleshores la cèl·lula romandrà viva però no es reproduirà. Si el substrat captat del medi no garanteix aquesta primera necessitat, la cèl·lula haurà de consumir productes de reserva. Si aquesta situació s'allarga la cèl·lula es veurà obligada a degradar part de la seva biomassa estructural i finalment morirà.

Des d'una perspectiva a nivell microscòpic es pot suposar que una cèl·lula pugui accedir momentàniament a partícules de nutriment i sigui capaç de restaurar la seva estructura i acumular reserves d'energia.

En el creixement de la cèl·lula el valor del terme de manteniment augmenta proporcional a la biomassa d'aquesta, a més que també ho fa la superfície cel·lular que engloba aquesta massa, i en conseqüència la seva capacitat de captar nutrients. No obstant la relació entre la superfície cel·lular i el seu volum esdevé en el temps inferior. La necessitat energètica per al manteniment creix més de pràctica que la seva capacitat de transport. Aquesta constatació prosaïstica, que en absència d'altres causes que dificultin el transport de nutrients, la cèl·lula arribarà a assolir una grandària màxima a partir de la qual deixarà de creixir i de reproduir-se.

La utilització d'una distribució aleatòria normal, ja utilitzada en altres parts del model, permet la introducció de l'azar, característica pròpia dels sistemes reals.

3.3.2.6. Reproducció

Una part força important d'aquest model de llvats que elaboren és el disseny del seu cicle cel·lular, el qual ha de comprendre un període de temps durant el que la cèl·lula es prepara per a la reproducció i un període en el que hi ha la formació d'un nou individu. La forma de multiplicació d'aquestes cèl·lules (individus) és un dels aspectes més diferenciadors respecte a la reproducció dels bacteris (ja modelada i simulada), i el responsable d'una de les característiques pròpies de l'espècie S. cerevisiae, la formació de poblacions asimètriques.

Maigrat els llvats poden presentar la reproducció sexual, en els cultius industrials la seva forma de reproducció és bàsicament la reproducció vegetativa, per la qual cosa aquest primer model només contemplarem com única forma possible de multiplicar-se aquesta darrera forma, la asexual.
El comportament del cicle cel·lular del llevat es presenta com un fet complex. Els treballs consultats analitzen un o altre esdeveniment d'aquest cicle de manera més o menys separada del comportament global, augmentant així els seu grau de complexitat. Es fa doncs necessari realitzar un apropament global d'aquest cicle des d'una vessant més simplificada, un primer model senzill que sigui capaç de sintetitzar les diferents pautes analitzades anteriorment. No s'iniciarà en cap cèl·lula un nou cicle cel·lular abans que el cicle precedent no s'hagi acabat completament.

El model del cicle cel·lular es dissenya a partir de la divisió del mateix en dos períodes clarament diferenciatius, amb una divisió que serà el punt de canvi:

- El període de no genciació que serà identificant com la fase 1.
- El període de genciació que anomenarem fase 2.

1) Fase 1

Es considera que en aquesta fase la cèl·lula es prepara per poder iniciar una nova genciació, és el període de no genciació.

L'inici de la genciació ve determinat pel canvi de fase. Les condicions que s'han d'avaluar i que determinaran aquest canvi per entrar en la nova fase són:

a) Assolir una massa cel·lular mínima M_C que anomenem massa de canvi.

b) Assolir un creixement (en biomassa) mínim durant aquesta fase 1 que anomenem $IM1$.

El mecanisme a nivell individual que implementem així mateix aquestes dues consideracions del model utilitzarà, no obstant, una component aleatòria o d'atzar (ja utilitzada en altres parts). Les pautes a seguir en aquest control són:

- En iniciar la fase 1 es determina per a l'individu una massa M_x, massa que ha de tenir la cèl·lula en el moment de produir-se el canvi de fase, i la qual serà funció de les característiques individuals:

 A) Si la massa M_x en que inicia la fase 1 compleix la desigualtat

 $M_x \geq M_C - IM1$

 aleshores

 $M_x = M_C + z_1$
on \(z_e \) és un valor extret de la distribució de probabilitats normal \(N(0,\sigma) \).

B) Si la massa \(M_{II} \) en que inicia la fase 1 compleix la desigualtat

\[
M_{II} > M_C - IM1
\]

aleshores

\[
M_f = M_{II} + IM1 + z_g
\]

on \(z_g \) és un valor extret de la distribució de probabilitats normal \(N(0,\sigma_g) \).

En el moment en que la massa individual \(m \) citrapassar aquesta valor \(M_f \) \((m > M_f) \) la cél·lula efectuarà el canvi de fase.

En el model, per al compliment de la fase 1 no es requereix un temps determinat. El control radica en l'assoliment d'una massa mínima per part d'aquelles cél·lules que siguin notablement petites, (són les que es trobarien en el cas A anterior) i en l'assoliment d'un increment de massa mínim per part d'aquelles cél·lules que en el moment de la separació o gemmació ja siguin considerablement grans (les que es regiran per la condició B).

Amb les cél·lules filles en separar-se de la cél·lula mare poden tenir masses molt inferiors a la massa del canvi (cas A) o bé, per a maris amb massa força grans poden tenir una massa inicial suficientment gran (cas B). Respecte a les cél·lules maris és molt probable que per iniciar una nova gemmació hagin de sintetitzar alguna cosa i en una quantitat mínima. Això justificaria un seguit d'èvidències experimentals: a) l'existència d'un període de no gemmació sempre present fins i tot a altes velocitats de creixement, b) el fet que les maris presentin una massa crítica creixent a través de les successives gemmacions, i c) el fet que les maris tinguin una durada del període de no gemmació inferior tal com augmenti la seva grandària.

La dispersió de grandàries de les cél·lules filles i de les cél·lules maris a l'inici de la gemmació i la dispersió en la durada dels seus cicles cel·lulars pot estar garantida pel tractament individual i particular que té el mecanisme i per la utilització de generadors de nombres aleatoris.

2) Fase 2

La fase 2 o període de formació de la nova gamma és la part menys flexibl del cicle cel·lular.
L'evolució al llarg de la mateixa es troba sota un control de temps i, a la vegada, a un control de creixement de la biomassa. S'han d'avaluar i determinar dues condicions per poder finalitzar aquesta fase amb la separació física de les dues cèl·lules, les quals es basen en la consideració de dos paràmets:

a) Un increment mínim de biomassa $IM2$.

b) Un període de temps mínim T_2.

El mecanisme individual que implemementem relacionat amb aquestes consideracions incorpora, a l'igual que en la fase 1, l'ús de variables aleatòries. Una cèl·lula finalitzarà el seu cicle cel·lular quan:

- hagi assolit un increment mínim de biomassa Δm determinat per

$$\Delta m = IM2 + z_r$$

on z_r és un valor extret de la distribució de probabilitats normal $N(0, \sigma_r)$.

- hagi transcorregut des de la seva entrada en la fase 2 un nombre de passos de temps Δt determinat per

$$\Delta t = T_2 + z_a$$

on z_a és un valor extret de la distribució de probabilitats normal $N(0, \sigma_a)$.

Al final de la fase 2 el conjunt format per la cèl·lula mare i la cèl·lula filla tindrà una massa m_3. Aquesta biomassa es distribueix de la seguint forma:

$$m_F = q \Delta m + z_p$$

$$m_M = m_3 - m_F$$

on q és una constant que dona el tant per u, determinant el percentatge de massa que obtindrà la cèl·lula filla i z_p és un valor extret de la distribució de probabilitats normal $N(0, \sigma_p)$. Amb la utilització de q es garanteix un cert creixement de la cèl·lula mare durant la fase 2.

La primera condició imposada es justifica pel fet que una cèl·lula requereix necessàriament un seguit de molècules biològiques i estructurals mínimes per tal de poder existir com una entitat viva independent. Per tal d'aconseguir aquesta massa mínima no es fixa
cap durada temporal màxima. En condicions de manca de nutrients o d' efectes inhibitoris notables del medi de cultiu la cèl·lula creixerà més lentament i necessitarà més temps per tal d'assolir l'increment de massa mínim.

La segona condició té en compte el fet que l'aument en la velocitat del creixement del cultiu té un límit temporal; fins i tot en condicions òptimes del cultiu. El conjunt de processos bioquímics necessaris al llarg de la fase 2 requereixen temps mínim per a la seva execució i no es poden realitzar en menys temps.

Així doncs en condicions òptimes de cultiu el factor limitant serà la durada mínima de la fase 2, i en condicions crítiques el factor limitant serà aconseguir l'increment mínim de massa. La durada de la fase 2 per a les cèl·lules mares i per a les cèl·lules filles pot ser igual en condicions òptimes, mentre que aquests períodes poden ser diferents en condicions desfavorables.
FIGURA 3.27. Diagrama de flux d'un pas de programa per al model de comportament cel·lular del llevat Saccharomyces cerevisiae.
3.4. RESULTATS I DISCUSSION

3.4.1. INTRODUCCIÓN

Amb la implementació del model de llevat elaborat utilitzant la simulació, l'objectiu és comprovar i defensar la validesa d'aquest. També aquesta metodologia permetrà presentar una nova perspectiva per a l'anàlisi del comportament dels cultius de llevats, accessible només a partir del seu ús.

La primera proposta és la simulació d'un cultiu de llerats amb les següents característiques:

1. Fermentació de glúcosa en cultiu tascat.
2. Una quantitat inicial \(C_0 \) de partícules de glúcosa com a font de carbohidrats i d'energia, de les quals al final del procés en quedarà el 7,5% d'aquestes, com a partícules de glúcosa residual no fermentada.
3. La resta de nutriments es considera en exèrcs.
4. Una sola varietat del llerat \(S. cerevisiae \).
5. Temperatura constant.

Es considera que la concentració inicial de substrat amb la que treballarem \(C_0 \) és la que correspon normalment a les fermentacions víniques. Es suposa suficientment alta per tal de considerar únicament la fermentació de la mateixa. Una diferència entre la fermentació proposada i una fermentació vínica típica és que en aquesta última els sucers fermentables representen una barreja de glúcosa i fructosa aproximadament en la mateixa proporció. En aquesta primera etapa d'estudi, com l'objectiu no és analitzar una fermentació vínica típica, sinó demostrar la validesa del model, només considerarem la glúcosa amb la finalitat de simplificar el procediment. La resta de condicions esmentades s'imposen amb el mateix criteri.

Existeix un interès preferent per comprovar la validesa qualitativa del model de mortalitat cel·lular. Les constants que són necessàries d'introduir en el model permeten ajustar la situació final a la que el sistema pot arribar. Per exemple en les fermentacions víniques es podes contemplar diverses situacions, la parada d'activitat del cultiu pot ser deguda majoritàriament a la manca de nutrients o bé, si resta una quantitat apreciable de sucers per fermentar, atencions s'associen, de forma majoritària, a la mortalitat cel·lular, un dels aspectes introduts en el nostre model. És en aquest sentit com s'ha d'estendre el motiu de la imposició anterior.
Per poder investigar el funcionament d'un sistema cal realitzar una acurada descripció qualitativa primer, i aquesta analisi qualitativa permetrà passar a un posterior analisi quantitatiu. Malgrat la simulació proposada possibilita aquests dues opcions, en aquest treball realitzarem només un estudi qualitatiu en l'intent d'avançar en la comprensió del comportament dels cultius de *S. cerevisiae*.

S'estudiarà, compararà i discutirà l'evolució de diverses variables involucrades en l'evolució del procés a estudiar, i controlades per la simulació. Es distingirà entre magnituds mesurables del cultiu, resultants de tipus global (variables macroscòpiques), i magnitudes que reflecteixin el comportament del cultiu des d'una visió discreta i microscòpica, variables de tipus individual.

També s'aplicarà la simulació en dos casos concrets addicionals (i dels que es disposen de dades experimentals) per tractar:

a) L'anàlisi des d'una visió discreta del comportament de la corba de la calor dissipada (corba potència–temps o corba p–t).

b) L'estudi del fenomen inhibitori per excess de substrat.

3.4.2. MAGNITUDS DE TIPO GLOBAL D'UN CULTIU

En aquest punt s'inclouen per a la seva anàlisi i discursió aquells paràmetres que són considerats representatius de l'evolució global del cultiu al llarg del procés. Respecte a una revisió bibliogràfica sobre cultius de lleus referents a altres models elaborats i a proves experimentals realitzades. Les variables que presenten amb aquesta simulació és possible classificarles en tres grups:

1. Paràmetres molt usuals i fàcilment mesurables de forma experimental mitjançant mètodes físics o químics:
 - la variació de la concentració del substrat limitant (glucosa)
 - la variació de la concentració del metaboliti resultant del procés (etanol)
 - la variació de la concentració de biomasse o del nombre total d'individus del cultiu.
2. Paràmetres més usals que per a la seva mesura requereixen tècniques més específiques, per exemple:

- la variació en el nombre d'individus viabils o de la biomass viable.

3. Paràmetres poc usals i impossibles de controlar i mesurar en cultius no estrictament dissenyats experimentalment per a tal finalitat, per exemple:

- la producció de la calor dissipada.

FIGURA 3.28. Evolució del nombre de partícules de nutrient present en una simulació d'una fermentació per llevats d'un cultiu de glucosa.

Per ampliar l'anàlisi del model elaborat es presenten tres gràfiques addicionals en les que es contrasta, utilitzant una escala normalitzada:

- la biomass total i el nombre total d'individus
- la biomass viable i el nombre d'individus viabils
- la biomass total i la quantitat d'etanol produït.

Com una referència més la figura 3.38, presenta les dades experimentals d'una fermentació de glucosa per una soci de S. cerevisiae, per comparar amb els resultats simulats de la gràfica de la figura 3.37. anterior.
FIGURA 3.29. Evolució del nombre de partícules d'etanol presents en una simulació d'una fermentació per llevats d'un culiu de glucosa.

FIGURA 3.30. Evolució de la biomassa corresponent a una simulació d'una fermentació per llevats d'un culiu de glucosa (unitats arbitràries).
FIGURA 3.31. Evolució del nombre d’individus present en una simulació d’una fermentació per llevats d’un cultiu de glucosa.

FIGURA 3.32. Evolució de la biomassa viable corresponent a una simulació d’una fermentació per llevats d’un cultiu de glucosa (unitats arbitràries).
FIGURA 3.33. Evolució del nombre d'individus viables presents en una simulació d'una fermentació per llevats d'un cultiu de glucosa.

FIGURA 3.34. Dissipació de calor per unitat de temps en una simulació d'una fermentació per llevats d'un cultiu de glucosa (unitats arbitràries).
FIGURA 3.35. En una simulación d'una fermentació per llevats d'un cultiu de glucosa, utilitzant una escala normalizada per a la representació: 1. Biomassa total. 2. Individus totals.

FIGURA 3.36. En una simulació d'una fermentació per llevats d'un cultiu de glucosa, utilitzant una escala normalizada per a la representació: 1. Biomassa viable. 2. Individus viatges.
FIGURA 3.37. En una simulació d'una fermentació per llevats d'un cultiu de glucosa, utilitzant una escala normalitzada per a la representació: 1. Biomassa total. 2. Etanol.

FIGURA 3.38. Evolució de la concentració de nutrients (●), de la concentració d'alcohol (◇) i de la concentració de biomassa (+) en una fermentació experimental d'un cultiu de glucosa per una soca de S. cerevisiae. Font: Moresi (1984) dins de Xifré, 1992.
Els resultats obtinguts amb la simulació i mostrats en les figures 3.28–3.34 són comparables qualitativament al resultats típics experimentals consigrants. En particular les gràfiques de les figures 3.28., 3.29 i 3.30, es poden comparar amb els resultats experimentals de la figura 3.38. Aquestes observacions permeten afirmar que el model de simulació utilitzat proporciona resultats força viables des de la vessant qualitativa. Una vegada més amb la simulació discreta, amb el control del comportament de cadascun dels individus de la població, reproduïm els resultats globals anteriors.

En tots les gràfiques mostra des en les figures 3.28–3.34, es poden observar 5 fases de comportament, les fases de les quals són difícils de delimitar amb exactitud. No obstant això, de forma aproximada i atenent a les unitats utilitzades en els eixos d'absisses (passos de temps o passos de program), considerarem una divisió i classificació de les etapes o fases diferenciades:

1. Fase de latència

Des del primer pass de temps fins aproximadament el pass 50, en aquesta fase esdevé l'adaptació de les cèl·lules de l'únicul a les condicions ambientals del medi de cultiu. L'únicul inicial d'aquesta simulació correspon a 10 individus. La seva massa mitjana és aproximadament de 160 unitats de massa (unitats arbitràries de la simulació). Durant aquesta fase s'observa una variació de la massa mitjana de les cèl·lules (veure la figura 3.35), i per tant també una variació de la distribució de masses del cultiu. Les cèl·lules incrementen la seva massa.

2. Fase de creixement exponencial

Des del pass de temps 50 fins al pass 200 aproximadament. En aquesta fase el cultiu es desenvolupa amb un comportament descrit com exponencial en els estudis de microbiologia aplicats a en cultiu tancat. En els mateixos estudis defineixen aquest creixement com el corresponent a una fase de creixement equilibrat. Posteriorment en l'apartat corresponent a l'anàlisi dels paràmetres de tipus microscòpic del cultiu es constatarà que aquests equilibris no s'assoleix en cap moment de l'evolució del cultiu simulat. Malgrat en aquesta fase el cultiu creix apparentment sense limitacions importants, en el sistema que simulen existeix una limitació deguda a la inhibició per excés de substrat.

3. Fase de creixement lineal

Aproximadament des del pass de programa 200 al pass 400. En aquesta fase el creixement del cultiu comença a tenir limitacions, fenamentalment degudes al
progressiu augment d'etanol en el medi. Tot i això, el metabolisme global del cultiu segueix funcionant, i el creixent del sistema s'observa. Els efectes d'aquestes limitacions són però detectables a nivell del comportament cel·lular (serà discutit en l'apartat 3.4.3.), impedint aleshores que el cultiu segueixi evolucionant amb una cinètica exponencial.

4. Fase de disminució del metabolisme

Des del pas de temps 400 fins al pas 1600 aproximadament. En aquesta fase els factors limitants actuen de forma dràstica. Per una part, la concentració d'etanol assolida provocarà que les cèl·lules no puguin consumir nutrients de forma apropiada per al seu manteniment. Per altra part, la concentració limitant de nutrient condiciona el consum, presentant-se també dificultats en el manteniment de la seva activitat vital. En un medi amb aquestes condicions, les cèl·lules del cultiu comencen a ser no viables, no assoleixen suficient nutrient per garantir l'energia necessària per al manteniment de la seva pròpia biomassa. El metabolisme del conjunt del cultiu davalla com a conseqüència de l'escotament del nutrient energètic i de la progressiva mortalitat cel·lular.

5. Fase final

A partir del pas 1600 fins a la parada total de l'activitat del cultiu. En aquesta fase encara queden en el cultiu algunes cèl·lules viables, les quals segueixen metabolitzant nutrients, bàsicament per al manteniment de la seva biomassa. Tot i així, el metabolisme global del cultiu segueix disminuint com a conseqüència de la mort progressiva d'aquestes cèl·lules. Finalitzada l'activitat del cultiu resta una quantitat remanent de nutrient no fermentat, quantitat ja indicada en el punt 2. de l'apartat 3.4.1. on s'han fixat les característiques del tipus d'evolució que simulen. Si la concentració inicial de substrat (sucré) hagués estat més baixa, el nutrient s'hauria esgotat completament.

Els resultats de la simulació possibiliten alhora aprofundir en l'estudi del comportament global del cultiu mitjançant la manipulació i transformació de les dades obtingudes. Les gràfiques de les figures 3.35., 3.36. i 3.37., on s'ha utilitzat una escala d'ordenades normalitzada (0—1) mostren un tractament comparat de paràmetres que es troben relacionats. Les figures 3.35. i 3.36. mostren, per una part, la diferència existent entre la corba de biomassa total acumulada i la corba dels indívidus totals acumulats, i per altra part, entre la biomassa viable i el nombre d'individus viables. Aquesta diferència es pot explicar a partir de l'evolució de la massa mitjana de la població al llarg del procés (figura 3.39). Primer, quan el creixement esdevé amb poques limitacions, la massa mitjana creix. La biomassa del cultiu creix més si el nombre d'individus. Quan les limitacions són importants, la
massa mitjana decreix. El nombre d'individus a les fases evolucionàries forma més ràpida que la massa total del cultiu. La figura 3.37 mostra de forma comparada la diferència entre la biomassa forçada (relacionada amb l'anabolisme) i l'etanol produït (relacionat amb el cataloolisme). La diferència entre ambdues cases reflecteix l'energia gastada en el manteniment de les cèl·lules.

3.4.3. MAGNÍTUDS DE TIPUS INDIVIDUAL

En aquest apartat i en el següent farem referència a un conjunt de paràmetres, usualment no controlats en formulacions de models contínuos, però que són poden deduir o obtenir mitjançant tècniques o proves experimentals. Podem classificar-los en dos grups de caire diferència que indica ab a continuació:

A) Paràmetres o variables que aporten informació sobre el comportament dels individus de la població, però relacionada directament amb el comportament global del cultiu: paràmetres microscòpics globals. Els resultats obtinguts amb la simulació possibiliten de forma molt senzilla un seguiment de la seva evolució al llarg de tot el procés.

B) Paràmetres o variables que aporten informació referent als individus de la població, però amb una visió més discretitzada i individualitzada: paràmetres microscòpics poblacionals. Els resultats obtinguts amb la simulació per aquests paràmetres són puntuals, d'algún període determinat del procés, i es presenten en forma de distribucions. Es discutiran en el següent apartat (3.4.4.).

Els paràmetres o variables que incloureïem en el primer grup (A), els paràmetres microscòpics globals controlats amb la simulació, i dels que a continuació mostrem gràficament la seva evolució temporal són:

- La massa mitjana de les cèl·lules de la població: biomassa viable dividida pel nombre d'individus viables del sistema.

- El consum mig de nutrient: partícules de nutrient metabolitzades en un pas de temps dividides pel nombre de cèl·lules viables del sistema.

- L'energia de manteniment global del cultiu: nombre de partícules de nutrient metabolitzades que no són utilitzades per a la producció de nova biomassa.

- L'energia de manteniment per unitat de biomassa viable i per individu viable.
FIGURA 3.39. Evolució de la biomassa mitjana corresponent a una simulació d'una fermentació per llevats d'un cultiu de glucosa (units arbitràries).

FIGURA 3.40. Evolució del consum mig (nombre de partícules) corresponent a una simulació d'una fermentació per llevats d'un cultiu de glucosa.

En la gràfica de la figura 3.39, es pot observar com en la fase de latència es produeix un increment de la massa mitjana. En aquesta fase, el cultiu s'adapta a les condicions
meçambients. Si les condicions inicials de l'ènóci foson tals que la corresponent massa mitjana assolís valor grans, seria d'esperar una davallada d'aquesta, mentre que en el cas de tenir una massa mitjana inicial a l'entorn de 45% unitats de massa (units arbitràries de la simulació), s'hauria d'observar una fucctuació maninguda al voltant d'aquest valor durant la fase de latència. L'evolució temporal que s'observa és la simulació per a la massa mitjana no sembla que estigués de forma continuada, per la qual cosa s'observa que aquest cultiu simulat no es produeixi un període de creixement equilibrat. Durant la fase de creixement lineal, la massa mitjana davalla progressivament i de manera molt important. Això és degut a l'efecte inhibidori de l'urànol sobre el consum del nutrien. La variació de la massa mitjana en front aquestes fluctuacions del medi de cultiu ja ha estat estudiat per en Cazzador i Mariani (1988). A partir del pas de temps 400 (aproximadament) el metabolisme global del cultiu deixa de créixer, la massa mitjana continua disminuint però de forma més lenta. Es pot suposar que la distribució de masses s'està aprofitant a la seva forma extrema i per això la variació és menor. A partir del temps 1600 la massa mitjana oscil·la i seqüència de baixa quantitat de cèl·lules presents en la simulació.

Amb la gràfica de la figura 3.40. es pot observar que existeix una correlació important entre el començ mig i la massa mitjana del cultiu. Aquesta observació reflecteix el fet que en el model es considera el consum de partícules de nutrien per unitat de massa i unitat de temps (UT) com directament proporcional a m^2. Cal assenyalar que aquesta observació indica la importància d'utilitzar la massa mitjana de la població com un paràmetre per mesurar la intensitat del metabolisme individual. Tot i això, s'observa que les gràfiques 3.39. i 3.40. no són proporcionals. La disminució del consum mig és la causa de la mortat de les cèl·lules. A partir del pas 400 aproximadament, el consum mig és molt baix, feix que coincideix també amb una ràpida disminució de la massa viable de dels individus viables de la població (figures 3.32. i 3.33.).

En la gràfica de l'energia de manteniment de la figura 3.41. es reflecteix l'existència de les diferents fases del creixement del cultiu (latència, exponential, lineal,...) de forma similar a les gràfiques ja analitzades de l'apartat 3.42. A partir del pas de temps 400 (aproximadament) es produeix una ràpida disminució de l'energia de manteniment correlacionada amb l'augment de la mortat de cèl·lular (figures 3.32. i 3.33.).

Les gràfiques de les figures 3.42. i 3.43. mostren l'evolució temporal de l'energia de manteniment per unitat de biomassa viable i per individus viables respectivament. S'aprecia una important diferència entre les dues gràfiques en els primers 300 passos de temps, diferència deguda a l'evolució de la massa mitjana. En l'evolució de l'energia de manteniment per unitat de biomassa visible (figura 3.42.) la variable es manté mes o menys constant durant el període esmentat, mentre que al mateix temps, degut a l'evolució de la massa mitjana, l'energia de manteniment per individus creix. Les oscil·lacions finals mostrades en ambdues gràfiques són importants degut al nombre petit d'individus presents en el sistema.
FIGURA 3.41. Evolució de l'energia de manteniment global (unitats arbitràries) corresponent a una simulació d'una fermentació per lleuats d'un cultiu de glucosa.

FIGURA 3.42. Evolució de l'energia de manteniment per unitat de biomassa viable (unitats arbitràries) corresponent a una simulació d'una fermentació per lleuats d'un cultiu de glucosa.
FIGURA 3.43. Evolució de l'energia de manteniment per individu viable (unitats arbitràries) corresponent a una simulació d'una fermentació per llevats d'un cultiu de glucosa.

FIGURA 3.44. Evolució contrastada de l'evolució de l'energia de manteniment (1) i de l'energia total utilitzada (2) (unitats arbitràries) corresponent a una simulació d'una fermentació per llevats d'un cultiu de glucosa. La diferència en cada pas de temps correspon a l'energia utilitzada en la producció de nova biomassa.
La gràfica de la figura 3.44. permet comparar la energia total de la població amb l'energia utilitzada en el manteniment de les cèl·lules del cultiu. La diferència existent entre la corba de l'energia total i la corba de l'energia de manteniment correspon a l'energia invertida en la producció de nova biomassa. S'observa que a partir del pas de temps 400, les figures 3.32. i 3.33. demostren que tant la biomassa viable com el nombre d'individus viabes disminueixen, malgrat encara s'està produint nova biomassa i, per tant, nous individus.

3.4.4. DISTRIBUCIONS DE DIVERSES VARIABLES

Presentem a continuació diversos resultats que reflecteixen el comportament i l'estat del cultiu des d'una visió microscòpica, i que correspondrien als paràmetres o variables classificades dins del grup (B) de l'apartat anterior, els paràmetres microscòpics poblacionals.

A partir d'un conjunt de dades extretes de les característiques pròpies de tots els individus que configuren el sistema en un moment de temps determinat, s'obtenen les distribucions de les variables que volim estudiar. Aquestes es troben principalment relacionades amb el comportament del cicle cel·lular i són un reflet de l'estat de la població del cultiu en un moment determinat del procés fermentatiu.

Els paràmetres que contemplen són:

- la distribució de masses
- la distribució d'edats genealògiques
- la duració de les fases del cicle cel·lular (fase 1 i fase 2)
- la distribució de masses al final de la fase 1 i de la fase 2 del cicle.

a) Distribucions de masses

Respecte a la seva grandària, les cèl·lules del cultiu es distribueixen aproximadament de forma normal, obtenint-se una distribució de freqüències aproximadament gausiana (figura 3.45.). S'ha comprovat també que la grandària mitjana canvia en variar la velocitat del creixement d'un cultiu, especialment a velocitats altes (figura 3.9.). També proves experimentals realitzades per diversos autors (Xifré, 1992) permeten afirmar que la distribució poblacional esbiaixada d'un cultiu de llevats recobra la seva forma normal un cop es van desapareguer les causes que han motivat la pertorbació d'aquesta distribució, com es constata en la gràfica de la figura 3.46.. Aquest fet sembla corroborar l'existència d'un mecanisme que coordina el creixement general de la cèl·lula amb el procés de divisió cel·lular i que ja hem analitzat i considerat en els apartats 3.2.2.4. i 3.3.2.6.

FIGURA 3.46. Distribucions de volums cel·lulars d'un cultiu de *S. cerevisiae* a diferents temps, després que les cel·lules sota soses prèviament a una desnutrició en nitrogen foren introduïdes en un medi de cultiu fresc. 1. Distribució de volums en condicions de desnutrició de nitrogen. 2. Distribució transitoria durant l'etapa d'adaptació al medi de cultiu fresc. 3. Distribució final de la població en cop adaptada al medi de cultiu fresc. Font: Johnston i al. (1977) dins de Xifré, 1992.

En les figures 3.47. i 3.48. es presenten les distribucions de massa del nostre sistema simulat corresponents a dos períodes de temps determinats de l'evolució que tenim. La primera distribució (figura 3.47.) correspon a la distribució de masses d'un període temporal
que es situa en les primeres etapes de la fase lineal on es suposa que les condicions del cultiu són bones. La distribució de granàries d'aquest període mostra una forma aproximadament acamada, on les masses més probables són superiors a la classe de massa mínima controlada. Mentre que es la distribució de masses de la figura 3.48., corresponent a la que presenta la població en el pas de temps 400, mostra un aspecte força diferent, de forma aproximadament exponencial. En aquest instant de temps el cultiu ja ha sofert limitacions per al seu creixement, produint-se una disminució de la massa mitjana. Es constata que la classe de massa més probable és la classe corresponent a la mínima massa possible.

FIGURA 3.47. Histograma de la distribució de masses (units arbitràries) corresponents al final de la fase exponencial en una simulació d’una fermentació per llevant d’un cultiu de glucosa. Resultat obtingut realitzant la mitjana de les distribucions de masses des del pas de temps 250 fins al pas de temps 260.

Durant la fase de creixement lineal del sistema simulat, la campana de la distribució de masses ha desplaçat la seva massa modal cap a les granàries inferiors, fins assolir una forma extrema. Aquest comportament és comparable al presentat en la gràfica experimental de la figura 3.46..

A partir d’aquest moment temporal (pas 400) la distribució de masses només variarà disminuint lentament el valor corresponent a la seva massa mitjana (figura 3.39.), reduint-se l’ocupació d’aquestes classes de massa de valors grans.
b) Distribucions d'edats genealògiques

En les figures 3.49. i 3.50. es presenten les distribucions d'edats genealògiques de la població simulada. La distribució de la figura 3.49. correspon a l'estat del sistema en el període comprès des del pas de temps 250 fins al pas 260, on el cultiu es troba en les primeres etapes del creixement lineal, amb bones condicions per al creixement. S'observa que les cèl·lules filles representen el 65% del total de les cèl·lules que configuren la població, mentre que amb l'augment de l'edat genealògica la presència de les cèl·lules mares és cada vegada menor. La distribució de la figura 3.50. correspon a l'estat del sistema en el pas 400. En aquest instant ja existeixen importants limitacions en el cultiu per al seu creixement, representant les cèl·lules filles aproximadament el 75% del total de la població. El model de simulació ha permès reproduir el tipus de distribució simètrica característica d'un cultiu real de llevats.

Els percentatges mostrats per la figura 5.49. són comparables amb els que altres autores presenten per a cultius particulars (figura 3.8.). Els percentatges mostrats en la figura 3.50. corresponen a condicions de cultiu molt limitants, i no podem comparar-los amb dades experimentals ja que no s'ha disposat d'assajos de cultius tancats. Tanmateix, d'acord amb el
que afirma diversos autors (Xifré, 1992) en condicions limitades del cultiu, el nombre de cèl·lules filles serà notablement més elevat que en condicions bones pel cultiu. El model, en aquest sentit, també s'ajusta al comportament esperat.

FIGURA 3.49. Histograma de la distribució d'edats genealògiques al final de la fase exponencial en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultat obtingut realitzant la mitjana de les distribucions d'edats des del pas de temps 250 fins al pas de temps 260.

FIGURA 3.50. Histograma de la distribució de masses corresponent al final de la fase lineal en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultat obtingut amb la distribució del pas de temps 261.
c) Estudi de les fases del cicle cel·lular

Les distribucions analitzades en els dos punts anteriors demostraven que el comportament del model cel·lular elaborat per al llenguat *S. cerevisiae* reproduïa en la forma esperada el comportament de dos paràmeters importants i característics d'aquest tipus de sistema. A continuació passem a l'anàlisi i la discursió del mecanisme bàsic del model en relació al cicle cel·lular, el qual és en grao manera el responsable dels comportaments macroscòpics i microscòpics analitzats fins ara.

Cal indicar que per a l'anàlisi experimental dels paràmeters que es discutiran a continuació, es requereixen tècniques de laboratori laborioses i complicades, ja que el seguiment de la reproducció i el desenvolupament d'un molt reduït nombre de cèl·lules sobre un medi de cultiu particular és específic, necessita d'instrumentació especialitzada. La simulació ens permet abordar fàcilment aquest tipus d'estudi.

1) Duració de la fase I o duració del període de na gemmació

Els resultats referents a aquest paràmètre i obtinguts amb la simulació es presenten en les figures 3.51.-3.56. Les distribucions presentades abasten el període del cultiu comprès des del primer pas de temps fins al pas 400. En aquestes gràfiques es pot observar que les cèl·lules fitxes sempre presenten una durada de la fase I notablement superior a la durada de les cèl·lules mares. Les cèl·lules fitxes tenen una massa inferior a la que es requereix per al canvi de fase, així que necessiten durant un cert període de temps, augmentar la seva massa fins arribar a la màxima demanada. Aquests resultats són com els que diversos autors (Xifré, 1992) esperaven per a una població asimètrica.

Les cèl·lules mares de qualsevol edat genealògica sempre tenen una durada (diferent de zero) per a la fase I, constatació que es troba d'acord amb les afirmacions que fan diversos autors. L'absència de casos comptabilitzats de cèl·lules mares d'edats genealògiques avançades en les gràfiques de les figures 3.51., 3.54. i 3.55. es deu al fet de treballar en aquesta simulació amb un nombre finit i relativament reduït de cèl·lules. En cap cas es pot atribuir aquest fet a la no existència de fase I per a cèl·lules d'edat genealògica grans.

En condicions bone de cultiu les cèl·lules mares mostraven una llegera distinació en la durada de la seva fase I en augmentar la seva edat genealògica, sempre que aquesta no sigui excesivament gran. S'observa en aquest cas una davallada de tipus aproximadament lineal mentre que per a les cèl·lules d'edat genealògica molt avançada es constata un augment en la durada de la fase I, comportaments aquests ja constats experimentament per diversos autors (Xifré, 1992). Es pot explicar aquesta darrera observació a partir del fet que la
grandària assolida per aquestes cèl·lules implica una relació S/V (Superfície/Volum) o Superfície/Massa menor que la resta de les mares. Aquest condicionant fa que inverteixin més energia per al manteniment de la seva massa que per a la formació de nova biomassa. Recordem que en el model hem imposat un increment mínim de massa per al canvi de fase independent de l'edat genealògica, de forma que per aquestes darreres cèl·lules el temps que necessiten és major.

La gràfica de la figura 3.56. mostra l'evolució temporal de la durada mitjana de la fase 1 de les cèl·lules filles i de les cèl·lules mares. S'observa que la durada mitjana corresponent a les files sempre és superior que la durada mitjana corresponent a les mares, amb una diferència entre elles que augmenta lleugerament durant l'evolució del sistema. Les dues classes o grups de cèl·lules mantenen aproximadament constant la durada de la fase 1 durant els primers 300 passos de temps, relacionat amb l'assoliment d'un increment de massa mínim durant aquesta fase. Després, els dos grups de cèl·lules allarguen de forma més o menys lineal la durada de la fase 1, la qual cosa reflecteix el fet que totes les cèl·lules tenen cada vegada més condicionants limitants per a la formació de nova biomassa. El creixement de la durada de la fase 1 en front de l'increment en la durada del temps de generació del cultiu postulat i demostrat per diferents autors (Xifré, 1992) s'evidencia amb els resultats obtinguts amb la simulació de la figura 3.56.

FIGURA 3.51. Durada de la fase 1 (periode de no gommació) al final de la fase exponencial per a cada edat genealògica en una simulació d'una fermentació per llevats d'un cultiu de glaucoma. Resultat (mitjana) obtingut controlant les durades de la fase 1 de totes les cèl·lules que han finalitzat la fase 1 entre els passos de temps 250 i 260.
FIGURA 3.52. Durada de la fase 1 (periode de no gremació) per a cada edat geonadòpica en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultat (mitjana) obtingut controlant les durades de la fase 1 de totes les cèl·lules que han finalitzat la fase 1 entre els passos de temps 290 i 300.

FIGURA 3.53. Durada de la fase 1 (periode de no gremació) per a cada edat geonadòpica en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultat (mitjana) obtingut controlant les durades de la fase 1 de totes les cèl·lules que han finalitzat la fase 1 entre els passos de temps 380 i 390.
FIGURA 3.54. Durada de la fase 1 (periode de no gemmació) per a cada edat genealògica en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultats (mitjana) obtingut controlant les durades de la fase 1 de totes les cèl·lules que han finalitzat la fase 1 entre els passos de temps 390 i 400.

FIGURA 3.55. Durada de la fase 1 (periode de no gemmació) al final de la fase lineal per a cada edat genealògica en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultats (mitjana) obtingut controlant les durades de la fase 1 de totes les cèl·lules que han finalitzat la fase 1 entre els passos de temps 400 i 401.
FIGURA 3.56. Desviada mitjana de la fase 1 (periode de no gemacció) de totes les cèl·lules del cultiu al llarg del temps. La curva superior (a) correspon als individus d'edat genealògica zero i la curva inferior (b) als individus d'edat genealògica diferent de zero. Resultat corresponent a una simulació d'una fermentació per llevats d'un cultiu de glucosa.

2) Massa final de la fase 1 (periode de no gemacció) o massa de canvi de fase 1

La massa de canvi fa referència a la massa assolida per la cèl·lula en el moment d'iniciar la formació de la gemma. En les gràfiques de les figures 3.57.-3.59, es mostra la distribució segons les edats genealògiques de les cèl·lules de la seva massa de canvi en tres períodes temporals diferents de l'evolució del cultiu des de l'inici fins al pas de temps 400. S'observa que es els moments controlats, aquesta massa augmenta de forma aproximadament lineal amb l'edat genealògica, comportament aquest ja constatat amb resultats experimentals (Xiré, 1992).

Les diferències qualitatives de comportament entre les tres distribucions no són molt importants, mostrant també magnituds semblants per a aquesta massa. En els primeros períodes del creixement del sistema sembla constatar-se una estabilització en el valor d'aquesta massa quan augmenta l'edat genealògica.
FIGURA 3.57. Massa final de la fase 1 (periode de no gemmació) o massa de canvi de fase per a cada edat genealògica corresponent al final de la fase exponencial en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultat (mitjana) obtingut controlant les masses de totes les cèl·lules que han finalitzat la fase 1 entre els passos de temps 250 i 260.

FIGURA 3.58. Massa final de la fase 1 (periode de no gemmació) o massa de canvi de fase per a cada edat genealògica en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultat (mitjana) obtingut controlant les masses de totes les cèl·lules que han finalitzat la fase 1 entre els passos de temps 280 i 300.
FIGURA 3.99. Massa final de la fase 1 (periode de no gemmació) a mass de canvi de fase per a cada edat genealògica corresponent al final de la fase lineal en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultat mitjà obtingut controlant les masses de totes les cèl·lules que han finalitzat la fase 1 entre els passos de temps 400 i 401.

3) Duració de la fase 2 o duració del període de gemmació

Les gràfiques de la figures 3.60–3.66. mostren els resultats obtinguts amb la simulació de la variable que controla la duraça, en passos de temps, de la fase 2 o fase de gemmació. Aquestes distribucions absten el període temporal des de l'inici fins al pas de programa 400.

Respecte a la durada de la fase 2 diversos autors (Xifré, 1992) han postulat que:
- varia de forma lineal en front variacions del temps de generació del -cultiu
- aquesta variació és menys acusada que la variació experimentada en la durada de la fase 1 per les cèl·lules filles, també així sembla que pot ser inferior, igual o superior a la variació de la fase 1 experimentada per les mares
- es suposa de durada estàtica per mares i filles.

En el model de cicle cel·lular elaborat pels llevats (per a la simulació) la fase 2 és caracteritzada mitjançant un temps de durada mínim i un increment de massa mínim (a nivell individual). A continuació discutirem si aquests dos condicionants essencials permeten reproduir les característiques observades experimentalment per aquesta fase.

Si les condicions on es desenvolupa el cultiu són optimes, la durada de la fase 2 es regirà pel temps mínim exigits per a la seva finalització, esperant aleshores una durada
constant per a la fase 2 per a totes les cèl·lules del sistema. Es pot observar que les gràfiques de les figures 3.60. i 3.61. reflecteixen aquest comportament, establint-se la durada d’aquesta fase a l’extrem de 12 passos de temps. Les oscil·lacions que s’observen al seu voltant són la conseqüència de la utilització de variables aleatòries, de la introducció d’una component d’atzar.

Quan les condicions del cultiu deixen de ser òptimes, les cèl·lules més petites es règimen pel condicionant de l’increment de massa mínim. Es constata en la figura 3.62. i 3.63. que les cèl·lules petites (edat genealògica 0), les cèl·lules més petites, romanen un temps major en la fase 2. Mentre que quan les condicions pel creixement es fan extremes la durada de la fase 2 s’allarga per a totes les cèl·lules del cultiu (per sobre de 12 passos de temps) com es pot veure en les figures 3.64. i 3.65. També indica que aquest allargament de la fase 2 en condicions de cultiu extremes depèn de l’edat genealògica de la cèl·lula. En les figures 3.64. i 3.65. es pot comprovar com l’allargament disminueix a mesura que augmenta l’edat genealògica fins assolir edats comprès entre 7 i 9. Tanmateix, a partir d’aquestes edats genealògiques la durada de la fase 2 augmenta de nou, observant-se per exemple un durada considerablement gran per a l’edat 19 de la figura 3.64., la qual es pot atribuir a la disminució de la relació superfície/volum (fet que arribar a provocar la desupercisió de cèl·lules d’edats majors, figura 3.65.)

![Figure 3.60](image)

FIGURA 3.60. Durada de la fase 2 (periode de germinació) per a cada edat genealògica en una simulació d’una fermentació per llavors d’un cultiu de glucona. Resultat (mitja) obtingut controlant les durades de la fase 2 de totes les cèl·lules que han finalitzat aquesta entre els passos de temps 220 i 230.
FIGURA 3.61. Durada de la fase 2 (periòde de gemmació) per a cada edat genealògica corresponent al final de la fase exponencial en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultat (mitjana) obtingut controlant les durades de la fase 2 de totes les cèl·lules que han finalitzat aquesta entre els passos de temps 250 i 260.

FIGURA 3.62. Durada de la fase 2 (periòde de gemmació) per i cada edat genealògica en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultat (mitjana) obtingut controlant les durades de la fase 2 de totes les cèl·lules que han finalitzat aquesta entre els passos de temps 330 i 340.
FIGURA 3.63. Durada de la fase 2 (periode de g ermacció) per a cada etat ge neralítica en una simulació d'una fermentació per lèvats d'un cultiu de glucosa. Resultat (mitjana) obtingut controlant les durades de la fase 2 de totes les cèl·lules que han finalitzat aquesta entre els passos de temps 350 i 260.

FIGURA 3.64. Durada de la fase 2 (periode de g ermacció) per a cada etat ge neralítica en una simulació d'una fermentació per lèvats d'un cultiu de glucosa. Resultat (mitjana) obtingut controlant les durades de la fase 2 de totes les cèl·lules que han finalitzat aquesta entre els passos de temps 390 i 400.
FIGURA 3.65. Durada de la fase 2 (periòde de gemmació) al final de la fase liniar per a cada edat germinal en una simulació d'una fermentació per llebots d'un cultiu de glucosa. Resultat (mitjana) obtingut controlant les durades de la fase 2 de totes les cèl·lules que han finalitzat la fase 2 entre els passos de temps 400 i 401.

FIGURA 3.66. Durada mitjana de la fase 2 (periòde de gemmació) de totes les cèl·lules d'un cultiu al llarg del temps en una simulació d'una fermentació per llebots d'un cultiu de glucosa. Resultat (mitjana) obtingut controlant les durades de la fase 2 de totes les cèl·lules que han finalitzat aquesta.
La figura 3.66. mostra l'evolució temporal de la durada mitjana de la fase 2. S'observa que fins arribar al pas 400 aproximadament aquest valor es manté constant, l'evolució d'aquesta variable és molt estable a excepció d'un primer període d'adaptació. Aquest fet reflecteix el condicionant per a la fase 2 d'un temps mínim. A partir d'aquests 400 passos en l'evolució, s'observa un creixement de tipus lineal en la durada mitjana de la fase 2, reflectint aleshores el condicionant real de les cèl·lules per a finalitzar la fase 2, l'adquisició d'un increment de massa mínim, difícil d'assolir quan les condicions del cultiu no són bones.

Aquests resultats simulats permeten, de forma general, conjugar els postulats característics de la fase 2 mencionats anteriorment en l'inici de la discursió d'aquest apartat. La figura 3.66. permet constatar un increment lineal de la seva durada en front de la variació en el temps de generació del cellíu, si considerem que en canviar les condicions del cultiu (de bones a extremes) canvia de forma notable i regular el seu temps de generació. Per a les cèl·lules files la variació que experimenta la durada mitjana de la fase 2 és inferior a la variació de la durada mitjana de la fase 1 i, mentre que és semblant pel que fa a les cèl·lules mares.

4) Massa final de la fase 2 (periode de gemmacció)

FIGURA 3.67. Masses finals de la fase 2 (periode de gemmacció) per a cada edat genealògica corresponent al final de la fase exponencial és una simulació d'una fermentació per llargs d'un cultiu de glòxina. Resultat (mitjana) obtingut controlant les masses de totes les cèl·lules que han finalitzat la fase 2 entre els passos de temps 250 i 260, i on es distingeix entre les cèl·lules mares i les cèl·lules files del sistema.
FIGURA 3.68. Masses finals de la fase 2 (periode de gemmacció) per a cada edat genealògica en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultat (mitjana) obtingut contrastant les masses de totes les cèl·lules que han finalitzat la fase 2 entre els passos de temps 390 i 400, i on es distingeix entre les cèl·lules mares i les cèl·lules files del sistema.

FIGURA 3.69. Masses finals de la fase 2 (periode de gemmacció) per a cada edat genealògica corresponent al final de la fase lineal en una simulació d'una fermentació per llevats d'un cultiu de glucosa. Resultat (mitjana) obtingut contrastant les masses de totes les cèl·lules que han finalitzat la fase 2 entre els passos de temps 400 i 420, i on es distingeix entre les cèl·lules mares i les cèl·lules files del sistema.
En les figures 3.67.–3.69. es presenten els resultats obtinguts en relació a la massa que tenen les cèl·lules en finalitzar la fase 2. En acabar el període de gemmació i entrada en la separació física entre la cèl·lula (cèl·lula mare) i la gemma (cèl·lula filla).

Es constata que les masses de les cèl·lules mares al final de la fase 2 augmenten amb l'edat genealògica, la qual cosa s'explica relacionant-la amb la massa que aquestes cèl·lules tenen en iniciar la fase 2 per edat genealògica (figures 3.57.–3.59). Altament l'increment de massa de la cèl·lula durant la fase 2 depèn de la massa d'aquesta (i indirectament de l'edat genealògica). També cal considerar que una part de l'increment de massa assolida durant aquesta fase es destina a l'increment de massa de la mare. No obstant això es comprovar que la grandària associada al final de la fase 2 per cada edat genealògica es manté aproximadament constant al llarg de totes l'evolució del cultiu, de forma similar al comportament observat per a les masses al final de la fase 1.

Respecte a les cèl·lules filles es poden constatar dos comportaments diferents. Per una part, es un cultiu amb condicions òptimes pel creixement, les masses de les cèl·lules filles augmenten en relació a l'edat genealògica de les seves mares quan aquesta no és excessivament gran (figures 3.67.). En aquest tipus de comportament el factor clau és el temps mínim per a la consecució de la fase 2. Tantmateix, a partir de l'edat genealògica 9 les filles presenten una granària semblant. Per altra part, quan les condicions del cultiu comencen a ser limitants pel seu desenvolupament s'observa que totes les cèl·lules filles tenen aproximadament la mateixa grandària (figures 3.68. i 3.69.). En aquest cas la condició que determina la finalització d'aquesta fase és l'increment mínim de massa, la qual cosa s'observa de forma independent a l'edat genealògica.

3.4.5. OSCIL·LACIONS EN LA CORBA DE DISSIPACIÓ DE CALOR

La dissipació d'energia en forma de calor per part d'un cultiu microbí a (o corba potència–temps), la qual reflecteix, fonamentalment, les característiques de l'activitat catabòlica en les diferents fases de la seva evolució, proporciona una valiosa i important informació per poder entendre i interpretar el comportament del sistema.

En el treball experimental realitzat pel nostre grup a la Facultat de Física (UB) "Caracterització microcalorimètrica de diverses soques de Saccharomyces cerevisiae" (Castillo, 1992) s'han realitzat mesures microcalorimètriques amb diverses soques d'aquesta llevat. El comportament observat va ser qualitativament semblant en totes elles, reconeixen-se les cinc fases indicades i discutides en l'apartat 3.4.2. (fase de latència, de creixement exponencial, de creixement lineal, de disminució del metabolisme i fase final). Aquestes fases es poden reconèixer en les gràfiques experimentals de les figures 3.70. i 3.72. corresponents
a dues de les soques, així com en la figura 3.34. ja presentada, on es representa la corba potència–temps (corba p–t) d'una simulació d'un cultiu de llevats.

Figura 3.71. Corba potència–temps (dissipació de calor per unitat de temps) obtinguda mitjançant simulació (unitats arbitràries) d'una fermentació per llevats d'un cultiu de glucosa.

FIGURA 3.73. Curva potència-temps (dissipació de calor per unitat de temps) obtinguda mitjançant simulació (univers arbitràries) d'una fermentació per lleïvats d'un cultiu de glucosa.
Aquests resultats experimentals mostren una característica altament sorprenent en el tipus de corba p-t: l'existència de petites oscil·lacions de freqüència elevada. Comencem a aparèixer aquestes oscil·lacions en el període corresponent en la fase lineal del creixement del cultiu, són més importants i evidents a partir de l'assoliment de la màxima dissipació de calor i, disminueixen de forma progressiva.

Si la calorimetria permet reflectir l'activitat catabòlica d'un cultiu, és d'esperar que aquestes oscil·lacions siguin el reflex o conseqüència de fluctuacions en l'activitat catabòlica de les cèl·lules del cultiu. Amb un model continu, el tipus de corba obtinguda per a la dissipació de calor seria similar a les que s'obtenen per a altres paràmetres macroscòpics (biomassa, substrat, etanol, ...), una corba regular amb un màxim i en la que es podrien identificar les cinc fases del comportament del cultiu durant la fermentació. Així, per a un model analític resulta difícil d'interpretar l'aparició d'aquestes petites fluctuacions sobreposades a l'evolució mitjana de la corba p-t. La metodologia utilitzada en les nostres simulacions, fonamentada en la simulació discreta, controla el comportament o activitat de cadascuna de les cèl·lules que configuren el sistema, la qual cosa permetrà reproduir aquestes oscil·lacions i donar una interpretació microscòpica de la seva aparició.

Les figures 3.7.1 i 3.7.3. mostren les evolucions corresponents a la dissipació de la calor de dues simulacions. S'observa que han reproduït reòlt satisfactòriament les corbes experimentals de les figures 3.70. i 3.72., respectivament.

L'aparició d'aquestes petites oscil·lacions sobreposades al que és la forma de l'evolució de la corba p-t, amb la simulació, no és difícil d'interpretar, donat que coneixem de forma explícita i detallada el model de cèl·lula utilitzat en aquest sistema. Si podem conèixer i entendre aquest comportament oscil·latori dels resultats de la simulació, podem suggerir una possible interpretació pèl que s'ha observat en els sistemes reals.

En la simulació, el catablisme d'una cèl·lula ve condicionat per la quantitat de nutrient que pot arribar a assimilar d'acord amb l'expressió introduïda en l'apartat 3.3.2.3. (i també referenciada en l'apartat 3.3.2.2.). D'acord amb aquesta expressió dues cèl·lules que es troben exactament amb les mateixes condicions mediambientals (igual entorn) i tinguin idèntiques caracteritzacions (mateixa grandària, mateixa edat genètica, ...), assimilarien, no obstant, quantitats diferents de nutrient. Aquesta diversitat és conseqüència de la utilització que fem de tres variables alçatòries normals (distribucions gaussiàs) en la determinació de la quantitat de nutrient màxim que pot utilitzar cada cèl·lula. En les simulacions realitzades, la dispersió que es fixa per aquest atzar és la mateixa en les tres situacions on interven; en la determinació inicial de la quantitat de partícules de nutrient per al consum, en el terme d'inhibició en funció de la concentració de substrat, i en el terme d'inhibició en funció de la concentració d'etanol. Si la magnitud d'aquest “atzar” es sempre igual, la seva importància
esdevindrà segons sigui el valor del cosinus final que una cèl·lula pot tenir, de forma que s'evidenciarà en aquells moments en què els fenòmens de dèficit inhibitori reduiran de manera important la quantitat de partícules de nutrient que pot assimilar una cèl·lula. En aquestes situacions que estudiem, la principal causa en la disminució de la utilització de substrat és l'augment de la concentració d'etanol en el medi de cultiu.

Aquestes darreres observacions i discussions realitzades en base al model de simulació, suggeririen que les oscil·lacions experimentals són el reflex de la diversitat de comportaments entre les cèl·lules reals que formen un cultiu. Probablement aquesta diversitat es mostra macroscopicament únicament quan l'assimilació individual es fa petita, podent aleshores relacionar aquest fet amb l'aparició d'aquestes petites oscil·lacions experimentals. Una possible explicació pot recaure en la inhibició de la major part dels sistemes transportadors de sucs situats a la membrana celular (o d'un gran nombre d'aquests transportadors), disminuint aleshores de forma intermitent i momentània la captació i assimilació de nutrient. Cadascun del transportadors es pot veure temporalment inhibit per una àmplia flor d'etanol, i actuar-se posteriorment. En augmentar la concentració d'etanol, la probabilitat d'aquesta interacció augmenta de forma lineal, disminuint aleshores la intensitat de l'activitat metabòlica.

Aquesta explicació es troba en consonància amb el suggeriment que fan diversos autors (Xifré, 1992), on s'indica la possibilitat de que els fenòmens inhibitoris siguin consecutius de la disminució del nombre de transportadors situats a la membrana de la cèl·lula.

3.4.6. INHIBICIÓ PER EXCÉS DE SUBSTRAT

S'han realitzat diversos treballs experimentals per estudiar la relació entre el creixement d'un cultiu i la concentració inicial de sucs en el medi, els resultats dels quals indiquen que la velocitat específica del creixement en un cultiu disminueix en augmentar la concentració de sucs (figures 3.19. i 3.20.). Aquest comportament dels llevats qualificat d'inhibició per l'excés de substrat inicial ja ha estat presentat anteriorment (apartat 3.2.4.2.) i s'ha considerat en l'elaboració del model de simulació (apartat 3.3.2.3.).

L'objectiu d'aquest apartat és avaluar aquest fenomen i comparar el seu efecte des de la vessant experimental i la simulació. Per assajar la validesa de la proposta feta en el model en relació a la inhibició per excés de substrat s'han escrit dos proves experimentals de les que presentem els resultats obtinguts en les gràfiques de les figures 3.74. i 3.76.. Les concentracions inicials de sucs utilitzades en els cultius es poden considerar elevades per tal de que la inhibició es manifesti.

En aquestes gràfiques experimentals (figures 3.74 i 3.76.) s'observa que en augmentar la concentració de sucres, la fase de latència s'allarga i la velocitat de producció del diòxid de carboni (CO₂) és cada vegada menor.

Amb les simulacions hem reproduït qualitativament aquests resultats experimentals. Els resultats obtinguts amb les diverses simulacions de cultiu per a la quantitat de partícules de CO₂ produïdes es presenten en les gràfiques 3.75 i 3.77. La gràfica de la figura 3.78. presenta...
l'evolució del nombre d'individus viables del sistema simulat corresponent a les simulacions de la figura 3.77.

Es constata que els resultats obtinguts amb la simulació són qualitativament comparables als resultats experimentals. La similitud entre les evolucions de les figures 3.74, i 3.75, i entre les evolucions de les figures 3.76 i 3.77 és evident.

FIGURA 3.78. Evolució del nombre d'individus viables de les simulacions de fermentacions corresponents als casos presentats en la figura 3.77. anterior.

El cultiu representat per la corba etiquetada amb 1 correspon a la concentració més baixa de sucre inicial. Es pot comprovar com el nombre de cèl·lules viables d'aquest cultiu tenen un creixement ràpid i elevat, seguit d'una petita davallada, la qual sobradament s'atura. Aquesta parada busca en l'evolució temporal del nombre de cèl·lules viables correspon a la parada de l'activitat del cultiu, deguda únicament a l'esgotament dels sucrets fermentables, mantenint-se la viabilitat cel·lular alta.

El cultiu identificat amb la corba 2 correspon a una concentració una mica més elevada de sucre inicials. La corba dels individus viables presenta un creixement sensiblement inferior i una mortalitat molt més acusada. Tament exí però, la corba també finalitza de forma brusca. Aquest comportament és similar al presentat per la corba 1, la finalització de sucrets fermentables atura l'activitat del cultiu, no obstant, en aquest darrer cas la mortalitat de les cèl·lules és considerable.

El cultiu numero 3 correspon a una concentració de sucres notablement més elevada que les dues anteriors. Es pot comprovar com la corba de les cèl·lules viables presenta un
creixem molt inferior al observat en les dues situacions anteriors. Una possible interpretació per aquesta constatació és la dificultat que tenen les cèl·lules per a la seva reproducció, condicionada aquesta a l'assimilació de nutrient. Es pot suposar que la concentració elevada de sucre límits de forma important la captació dels mateixos. Altrament, la mortalitat cel·lular s'estén durant tota l'evolució, efectuant al cap d'un cert temps a totes les cèl·lules del cultiu. Aquest atura la seva activitat malgrat no s'arriben a esgotar els sucres fermentables, com a conseqüència de la mort de totes les cèl·lules. Una discussió similar es pot fer per al cultiu 4, indicant que com la concentració inicial de sucre esdevé excesiva, els efectes d'aquest anteriorment són més dràstics.

Amb el model implementat en el simulador, els resultats obtinguts, que reproduceixen correctament les costatacions experimentals, permeten validar el mecanisme (discret) introduït per al fenomen de la inhibició.

3.5. AGREGACIONS MICROBIANES: LA FLOCULACIÓ

3.5.1. INTRODUCCIÓ

Després d'haver modelat i simulat els sistemes formats per llevats, en particular el Saccharomyces cerevisiae, en aquest apartat s'intenta aprofundir en el coneixement de les agregacions microbianes, i en particular en la floculació de llevats cervesers. A més de l'interès purament científic, per poder aconseguir un increment en l'eficiència i rendiment dels processos industrials és necessari un coneixement profund del comportament biològic dels microorganismes que hi puguin prendre part. Una interpretació acurada del comportament d'aquests a nivell microscòpic possibilitaria una comprensió i un control del cultiu des d'una perspectiva global o microscòpica.

Per poder abordar l'elaboració del model ha estat necessari realitzar una recerca d'informació sobre el comportament dels llevats Saccharomyces cerevisiae i Saccharomyces carlsbergensis en la floculació cervesera, i fer una recollida de dades experimentals (Pardinilla, 1995). Posteriorment, amb l'implementació del model utilitzant la metodologia de la simulació discreta, s'han obtingut resultats que han estat contrastats amb els observats experimentalment.

Amb l'objectiu de conceixer el context en el que treballarem, de forma ràpida i esquemàtica es presentaran alguns conceptes relacionats amb el més de l'agregació microbiana, i dins d'aquest, amb el procés de floculació del llevats cervesers. Es farà referència, principalment, a alguns dels seus aspectes físics.
Es pot definir l'agregació cel·lular com l'agrupament de cèl·lules per formar una associació multicel·lular, raonablement estable i continua, sota utes condicions fisiològiques determinades, i compatible amb el cicle de vida de l'organisme. Per a qualsevol sistema d'agregació cel·lular hi ha dues components bàsiques: el moviment físic per permetre que les cèl·lules s'unxin i l'estabilitat dels contactes multicel·lulars per què sigui observable experimentalment (encara que aquests contactes poden ser reversibles i transitòris).

El mecanisme de la flocculació, agregació espontània de cèl·lules individuals de llevat per formar agregats anomats flocs, encara és ple d'incògnites. La propietat que tenen cerques varietats de llevats (Saccharomyces cerevisiae i Saccharomyces carlsbergensis, les més conegudes) d'adherir-se per formar flocs (que poden ser també dispersables), que posteriorment es separen del medi en el que es troben suspensos per sedimentació o ascensió a la superfície, és de força interès per a la indústria cervesera. Un bon llevat es troba dispers durant la major part de la fermentació de la cervesa. Quan el seu paper en el procés pràcticament ha finalitzat, es separa de la suspensió formant flocs. Aquest fenomen és d'una gran importància, ja que cal tenir en compte que la fermentació és funció de la concentració de cèl·lules actives en contacte amb el substrat. Quan el llevat floca, aquest contacte es treu, ja que la superfície efectiva d'un floc és molt menor que la superfície total de les cèl·lules que el formen. És important que la flocculació, un cop finalitzada la fermentació primària, es produeixi en el moment escaient, quan el contingut de sucre residual és i la quantitat d'alcohol sigui les desitjades.

La flocculació en les cerveseries es produeix quan la fermentació primària està quasi acabada. La majoria dels sucre han estat metabolitzats pels llevats, el valor del pH ha assolit un mínim, la temperatura ha disminuït, i la gravetat s'ha situat molt a prop del valor desitjat. Si s'empla un llevat flocciant, el nombre de cèl·lules individuals en suspensió en el medi disminueix, es formen agrupacions d'un centenar o més d'aquestes cèl·lules. Aquestes agrupacions s'aglutinen amb intensitat i es depositen al fons o bé a la superfície del tanc de fermentació. Generalment, quan la quantitat de nutrients desapareix és quan s'afavoreix el procés de flocculació en la cervesa. En el moment que les cèl·lules aturen el seu procés de divisió, al final de la fase exponencial de creixement, degut a una limitació en algunes de les seves fonts (principalment de nitrogen), la capacitat de poder floacular s'incrementa ràpidament. També és important assenyalar que l'inici de la flocculació depèn no només de la concentració d'elements en el medi, alguns ja estudia o d'altres encara no descoberts, sinó també de l'ús que en facin d'aquests els llevats. Algunes aspectes implicats en l'activació d'aquest procés es coneixen, mentre que altres romanen encara per descobrir.

Darrerament, els investigadors han reconegut el valor dels principis bàsics del camp col·loidal, i han desenvolupat les seves investigacions a l'entorn d'aquest procés tenint-los en compte. Podriem dir que en el passat es donava més importància a l'aspecte biològic (i bioquímico), que no pas als aspectes físics i químics de la flocculació dels llevats. Els mètodes
més recents d'estudi es basen en el fet que la floculació és un procés on la població de llevats, que inicialment consisteix en cèl·lules individuals, es transforma en dues fraccions, la floculada (flocs) i les cèl·lules que romanen lliures, essent aquest un procés contínu. Aquests tipus d'agregats poden ser quantitativament caracteritzats, per exemple, atenent a la taxa i a l'extensió de la floculació.

En una primera aproximació podem pensar que els sistemes es poden observar macroscopicament o microscopicament. Però és evident que aquesta és una divisió massa simple, els sistemes es poden observar des de diferents perspectives en funció de la grandària dels objectes que es volen estudiar. Les dimensions d'observació de les partícules elementals són clarament diferents de les dimensions atòmiques, o les dimensions atòmiques són ben diferents de les dimensions espacial pròpies de macromolècules, de cèl·lules. Les dimensions cel·lulars són ben diferents de les dimensions dels flocs, que són constituïts per un nombre molt gran de cèl·lules, que poden arribar a ser de l'ordre de 10^9. En simulacions de dinàmica molecular no s'acostuma a considerar les longituds pròpies de partícules elementals. En simulacions bacterianes no considerem, normalment, dimensions atòmiques. En proposar-nos simulacions bacterianes, no podem utilitzar els ordres de magnitud espacials de cèl·lules. Si l'objectiu és avançar en un mètode d'estudi del comportament dels flocs, ens cal dissenyar un simulador específic. No podem connectar, fàcilment, un model de cèl·lula de llevat amb un model de formació i disgregació de flocs. En les simulacions de cultius de llevats, amb els ordinadors actuals així que tenim accés, podem simular sistemes de l'ordre de 10^9 cèl·lules, el qual és un ordre de magnitud clarament diferent al que interven en un procés de floculació. L'elaboració d'un simulador específic per a l'estudi de la floculació no s'ha d'interpretar com una limitació de la simulació de llevats, sinó com un exemple de la metodologia de la simulació discreta: cal estudiar independentment els sistemes d'ordres de magnitud espacial diferents. En la simulació de flocs controllem el nombre de cèl·lules de cada floc, però no controlarem les característiques individuals de cadascuna de les cèl·lules.

3.5.2. ALGUNES FONAMENTS FÍSICS, QUÍMICS I BIOLÒGICS PER A LA SIMULACIÓ DE LA FLOCULACIÓ

Una exposició ràpida d'alguns dels fonaments físics, químics i biològics sobre la floculació, i d'alguns resultats experimentals, possibilitarà entendre i justificar el model que formularem en el següent apartat.

La floculació pot ser estudiada com un procés constituit per tres esdeveniments fonamentals:

1) Inicialment s'ha d'establir el contacte cèl·lula–cèl·lula, i per tant cal vèncer les forces de repulsió existents. Això s'aconsegueix mitjançant l'agitació del
modi, la qual dóna a les cèl·lules sufficient energia per vèncer les forces electrostàtiques, i permetre les col·lisións que facilitaran l'establiment d'estilaços. S'ha observat que sense agitació les cèl·lules no flocculen. L'agitació causa una ràpida i progressiva flocculació, però si en qualsevol moment es interromp, la flocculació queda atrdita (figures 3.79 i 3.80).

2) Posteriorment és necessària la formació d'estilaços entre les cèl·lules.

3) Finalment esdevé la recoll·locació de les cèl·lules per formar els flocs.

Les teories de la freqüència de la col·lisió van ser desenvolupades amb sistemes col·loidals clàssics, on la taxa de flocculació és limitada només per la freqüència col·lisió – particula, la qual és afectada per la granàrdia de la particula. Dissotnament, les partícules biològiques no obedeixen aquestes normes, ja que el seu comportament és més complicat. Un cop les càrregues de la superfície han estat neutralitzades, existeixen encara altres factors que causen la repulsió entre les cèl·lules.

Donades unes determinades forces de repulsió entre partícules, la força o energia de col·lisió pot jugar un paper important a l'hora de determinar la taxa d'efectivitat de les col·lisións. Una alta freqüència de col·lisió pot ser irrellevant si no n'hi ha cap que tingui sufficient energia per vèncer les forces de repulsió. Consideracions fetes sobre les gràfiques que es troben a continuació han permès arribar a aquestes conclusions:

1) Hi ha un punt mínim d'agitació per a que la flocculació es produueixi. Experimentalment s'ha observat que per sota d'un límit en el règim d'agitació no es produeix flocculació, i per sobre d'aquest mínim s'indueix ràpidament.

2) El nombre de col·lisións entre les partícules d'un fluid pot expressar-se \(n = c \cdot t^2 \), on \(n \) és el nombre de col·lisións, \(c \) és una constant, i \(t \) representa la temperatura o l'agitació. Es comprova experimentalment que la taxa de flocculació no segueix aquest comportament (figura 3.80).

3) Si el punt mínim d'agitació reflexa la necessitat de vèncer la repulsió entre cèl·lules, es augmentarà la repulsió per un increment a la carrega superficial cellular (per exemple augmentant el valor del pH), cal esperar que aquest punt mínim s'incrementi, tal com experimentalment s'ha constatat i es pot observar en figura 3.81.

4) S'ha comprovat experimentalment que per una taxa concreta d'agitació, en la qual la freqüència de col·lisió és constant, la taxa de flocculació a diversos pH és substancialment diferent tal com mostra la gràfica de la figura 3.81.
FIGURA 3.79. Evolució de la concentració de cèl·lules lliures en suspensió del llevant \(S. \) cerevisiae a pH 4.5 i concentració de \(\text{Ca}^{2+} \) 10 mM. Les mostres es deixaren reposar (○) i posteriorment s'agitaren a 80 rpm (●), o s'agitaren continuament a 80 rpm (□) i després d'un minut s'atura l'agitació (■). Font: Stratford i Keenan (1987) dins de Pardinilla, 1995.

FIGURA 3.80. Efecte de l'agitació en la taxa inicial de floculació de \(S. \) cerevisiae a pH 4.5. La densitat cèl·lular inicial és de 6 mg per sec ml\(^{-1}\). No es detecta floculació per neta de les 40 rpm. La línia discontinua indica l'increment de freqüéncia de les col·lisións cèl·lula-cèl·lula, elaborada a partir de la fórmula \(n = c \times \tau \), on \(n \) és el nombre de col•lisións, \(c \) és una constant i \(\tau \) és la velocitat d'agitació. Font: Stratford (1992) dins de Pardinilla, 1995.

La taxa inicial de floculació depèn en principi de l'agitació del medi, també del quadrat de la concentració de cèl·lules (figura 3.83.), i probablement de la massa de les partícules. Si aquests valors són constants, la taxa inicial de floculació dependrà de la repulsió entre partícules. Per mesurar la repulsió cèl·lula-cèl·lula, es pot determinar el llindar mínim d'agitació a partir del qual es produeix la floculació.
FIGURA 3.81. Interacció de l'agitació i el valor del pH sobre la taxa inicial de floculació de S. cerevisiae. La densitat celular inicial és de 6 mg pes sec m\(^{-3}\). El valor de pH 2 està indicat per (c), pH 7 (●), i pH 9 (□). A 80 rpm (---) les taxes de floculació difereixen respecte al valor del pH, encara que les freqüències de col·lisió són idèntiques. Font: Stratford (1992) dins de Pardinnia, 1995.

L'extensió de la floculació es pot determinar mitjançant la taxa de les cèl·lules floculades respecte a les lliures. Aquesta relació és independent de la concentració cellular, i pot ser considerada com una constant d'equilibri. L'equilibri és un balanç entre les forces que intervenen en el procés de destrucció dels flocs i les forces intercel·lulars que els uneixen. El punt d'equilibri pot ser emprat com a un indicador directe, donades unes condicions d'agitació, de la força dels enllaços establets en la floculació.

Sota l’efecte d’una agitació continuada, el procés s’inicia amb una elevada taxa de floculació, que ràpidament disminueix fins a arribar a un estat d’equilibri, en el qual la floculació aparentment s’atura, encara que no totes les cèl·lules han floculat. El temps necessari per arribar a aquest estat estable del procés varia depenent del grau d’agitació i de la varietat del llevat. S’ha suggerit, basant-se en un conjunt d’observacions que enumerarem a continuació, que aquest estat estable és en realitat un equilibri dinàmic que s’asseolix quan la floculència s’equilibra amb les forces de cisallament.

Les observacions a tenir en compte són:

1) La fracció de cèl·lules lliures és floculant, ja que si les cèl·lules es separen i es concentren per centrífugació, la floculació succeeix de forma similar que en la suspensió original.

2) Si la fracció de cèl·lules lliures és extreta d’una suspensió de llevats floculants que ja ha arribat a l’equilibri, i substituïda per una solució tancada, algunes cèl·lules es desprenen ràpidament dels flocs, i per tant es torna a restaurar la fracció de cèl·lules lliures.
3) La fracció de cèl·lules individuals és constant respecte a la totalitat de cèl·lules. Per a una determinada agitació, hi ha una taxa constant de cèl·lules lliures respecte a les floculades.

En aquest equilibri del sistema intervé la taxa d'agitació amb dos efectes antagonístics, en el procés de floculació i en el de defloculació on hi ha les forces de cisallament. Si la floculació es produeix sota condicions d'agitació vigorosa, l'equilibri s'asseola més ràpidament, la proporció de cèl·lules lliures s'incrementa, i la constant d'equilibri es veu alterada. La mida o grandària dels flocs també es veu afectada, és sensiblement menor a mesura que s'incrementa l'agitació. Experimentalment s'observa que els flocs assoleteixen unes determinades grandàries en funció del valor de l'agitació. Per tant aquest paràmetre dóna lloc a dos efectes diferents: facilita l'agregació però també limita el creixement dels flocs. Aquesta limitació és deguda a les forces de cisallament. Sembla que els flocs van creixent fins arribar a una grandària màxima permesa per l'agitació, i si la superen, les forces de cisallament la disminueixen, bé per fractura o bé per erosió de les cèl·lules de la superfície. Per a condicions d'agitació suficientment extremes, els flocs poden ser totalment dispersats en cèl·lules lliures.

Una altra característica dels efectes de l'agitació en la floculació és la morfologia dels flocs, els quals poden anar adquirint diferents formes geomètriques, amb gran variabilitat en mides i formes, segons siguin les condicions del medi i les varietats de llevats implicades. Sembla ser que la gravetat és un factor important a considerar en aquest procés, així com la compressió dels flocs quan es troben sotmesos a una agitació continuada.

Milsions de cèl·lules s'agrupen per formar flocs quan s'inicia la floculació. Una imatge visual d'aquest procés correspon a un engrandiment progressiu dels flocs. Primer, es van formant flocs de petita mida, i després, la van incrementant a mesura que les cèl·lules s'adihereixen a les seves superfícies. D'aquesta forma el floc de major grandària esdevenen cada vegada més grans, ja que en desplaçar-se van "recollint" totes les cèl·lules que troben en el seu camí. Un model per a la floculació com aquest ja va ser intuït per en Calleja (1987), en entendre l'agregació com un procés d'adició. Però des del punt de vista de la floculació dels llevats cerversers, hi ha certs aspectes que no poden ser explicats per aquest model i que experimentalment s'han evidenciat (Pardínilla, 1995).

S'ha proposat un nou model de floculació anomenat teoria de la cascada, en el qual són només partícules de grandària similar les que col·lisionen. Les cèl·lules individuals es combinen per formar doblets, els quals es combinen per formar grups de quatre, i posteriorment de 8, 16,..., tal com es pot observar en la figura 3.84. Les col·lisions entre partícules de diferent grandària són poc freqüents, ja que el moviment dels flocs dóna lloc a la formació d'ones en el medi líquid que els envolta, ones que empenyen les partícules de menor grandària fora del seu camí, evitant d'aquesta manera col·lisionar. D'aquesta forma els flocs es van adherint a d'altres de similar mida, fins assolir una mida màxima determinada per
les forces de cisallament produïdes per l'agitació. Aquesta teoria permet donar explicació a
quesions que el model d'addició no resolria (Pardínilla, 1995). És relaciona la teoria de la
cascada amb la florulació fractal, un floc format a partir d'agrupacions dins d'agrupacions
forma una estructura fractal que mostra una simetria pròpia, repetida en diferents escales. En
aquest model, els flocs petits, amb l'agitació i els consèquents xocs, es combinen ràpidament
amb flocs de grandària similar, en una reacció anomenada cascada, formant estructures
fractals. Aquestes estructures són, no obstant, un fenomen transitòri, ja que les col·lisions
produïdes per l'agitació també provoquen un reordenament de les cel·lules, una compactació
i compressió dels flocs.

FIGURA 3.84. Diagrama que il·lustra la teoria de la cascada en la formació de flocs. Font: Stratford

Per finalitzar, indicar que existeixen factors ambientals relacionats amb la florulació,
i que han estat estudis per diferents investigadors (Pardínilla, 1995):

- la presència dels ions inorgànics, en especial les sales de calci i magnesi que,
de forma general, a elevades concentracions inhibeixen la florulació, i a
moderas les incrementen

- l'efecte de l'etanol sobre aquest procés, que alguns autors consideren com un
agent florulant

- la inhibició que provoquen els sucers

- els efectes del pH del medi o d'una determinada temperatura sobre la
florulació.

Resten per exbrinar encara alguns dels aspectes que activen i condicionen el procés
de florulació, i existeixen també altres qüestions per a les que els científics encara no han
arribat a un acord unànim.
3.5.3. MODELITZACIÓ I SIMULACIÓ

El projecte d'elaborar un model per al funcionament del procés de fluculació, i posteriorment implementar-ho en un simular fort ús de la metodologia de la simulació discreta, és força ambiciós per la complexitat que involucra aquest procés. Entenem que un estudi profund que conegui els aspectes de tipus físic, químic i biològic seria objecte d'una investigació i experimentació que ultrapassaria els objectius fixats en aquest treball.

Hem opat només per iniciar el que pot ser una línia de recerca amb moltes possibilitats. El model que es presenta a continuació no ha tingut en compte aspectes de tipus biològic o químic, ja que s'ha modelitzat la fluculació des d'una vessant física. Cal, no obstant, assenyalar que ampliacions o sofisticacions posteriors, on es tinguin en compte altres tipus de relacions o paràmetres no contemplats en aquesta primera aproximació, poden ser adaptades en el nostre simulador, essent aquesta una de les nostres perspectives futures. La metodologia de la simulació discreta no és rígida, i és susceptible de ser millorada de forma progressiva, en funció de les diferents questions a estudiar.

La primera aproximació que realitzem a aquest fenomen, com ja hem avançat, és des d'una perspectiva física, on caldrà considerar els paràmetres físics que intervenen i les seves possibles interaccions al llarg del procés.

Mantenim l'estructura general desenvolupada fins ara per a aquesta metodologia:

A) Un sistema format per individus o elements de dos tipus diferents:
 - cèl·lules fliores
 - flocs (un conjunt format per un nombre determinat i controlat de cèl·lules fliores identificades)

B) Un domini en l'espai tridimensional que consisteix en un cub reticulat (amb condicions periòdiques de contorn) on es troben aquests elements i es mouen.

C) Unes regles de comportament-moviment individual (per a cèl·lules i flocs)

D) Ures regles o mecanismes d'interacció entre els diferents elements
 - cèl·lula amb cèl·lula
 - cèl·lula amb floc
 - floc amb floc

Aquest model es fonamenta principalment en l'assignació i descripció de regles de comportament-moviment individual i de les relacions que s'estableixen entre ells: xoc o
col·lisions, enllaçaments i/o disgregacions, possibilitant així l'estudi de tots els elements actuant conjuntament. No s'ha incorporat en aquesta estructura el metabolisme i el cicle cel·lular per a aquestes cèl·lules (estudiats en els anteriors apartats d'aquest capítol).

En el model hem considerat:

1) L'agitació

L'agitació \(A \) a la que es troba somèris el medi on evoluciona el sistema és un factor necessari per a que es produeixi la floculació (apartat 3.4.2.). És un paràmetre que fixarem a l'inici del procés, i que és mantindria constant al llarg de tota l'evolució. Aquesta variable condicionarà el comportament del sistema i generarà resultats diferents, de forma que pot ser contrastat el seu efecte assignant-li valors diferents (es pot entendre com un factor energètic). La energia que necessiten els elements que col·lisionen i que ha d'ésser tal que permeti vèncer les forces de repulsió que existeixen entre ells, pot ser aportada per l'agitació i interpretada com energia cinètica.

2) Moviment dels elements

Els elements de l'sistema no resten estàtics en un posició, es mouen de forma contínua. El moviment de cèl·lules i flocs és provocat per l'agitació. Es considera un moviment actiu a l'atzar, sense tropismes. Hem considerat que qualsevol partícula (cèl·lula o floc) es pot traslladar a l'atzar, a qualsevol punt de l'espai que es trobi dins de l'àrea d'acció determinada per un paràmetre \(R \). En una primera aproximació hem considerat que \(R \) és constant, \(R = k \).

Existeixen alternatives immediates per a aquesta part del model, no difícil d'avaluar, i que estan pendents de ser contrastades. Fan referència a no considerar el paràmetre \(R \) constant:

a) Que sigui funció de la taxa d'agitació \((A) \), per a una major taxa, major radi de moviment, \(R = KA \).

b) Una altra possibilitat seria considerar-lo funció de la taxa d'agitació \((A) \) i de la massa \((m) \) de l'element en moviment, \(R = K (A/m)^{1/2} \).

3) Col·lisions entre els elements

Les col·lisions entre els elements que configuren el sistema, conseqüència del moviment d'aquests, són imprescindibles per a que es puguin establir els enllaçaments.
d'elements per formar floccs o les disgregacions d'aquesta. Hem considerat que els xoc entre els elements es poden avaluar en el canvi de posició que ocasiona el moviment. En produir-se el desplaçament d'un element (l'emissor), i en ocupar una nova cel·la del cub reticulat, té probabilitat aleshores de xocar amb algun element (el receptor) que ocupi aquella posició. Aquesta probabilitat de col·lisió l'hem suposat funció de la grandària de l'emissor i del grau d'ocupació de la cel·la. La tria de l'element receptor, de l'element que reb l'impacte, es realitza aleatoriament, toinant en compte les mides de cadascun dels que serien possibles receptors.

També hem considerat que no sempre que esdevingui un xoc entre elements s'establirà entre ells un enllaçament o s'obtindrà una disgregació. A l'element emissor se li assigna una energia de forma aleatòria sota una determinada distribució. S'estableixen uns valors mínim i màxim d'aquesta per tal de poder comparar amb la que té l'emissor. Només per aquells elements amb una energia dins del rang prefixat serà facilitat passar a controlar un possible enllaçament i/o disgregació.

Hem optat per comparar dues hipòtesis diferents referents a les possibilitats de xoc:

H1) Només col·lisionaran elements que tinguin grandàries similars, dins d'un interval de valors. Contrem amb el nombre de cèl·lules lliures que configura cada element, les mides de l'element emissor i de l'element receptor, i aquestes determinaran si es produeix o no el xoc.

H2) No es considera cap restricció de mides per als elements que xoquen.

4) Enllaçament d'elements

Quan es produeix un xoc entre dos elements, hi ha la possibilitat que s'estableixin enllaços entre ells, de forma que es crea un nou element de grandària la suma de les dels floccs que intervenen.

Hem considerat que no sempre que es produeix un xoc, esdevé un enllaçament entre els elements implicats. Són diversos els factors que poden prendre part. Hem assignat un paràmetre lligat a aquest fet, i que anomenem probabilitat d'enllaçament PE. Aquesta variable ha d'estar relacionada amb l'agilitat, ja que és la que permet l'inici de la floculació, sempre que es trobi per sobre d'un valor mínim \(A_o \). Es pot definir \(PE \) com

\[
P E = \begin{cases}
0 & \text{si} \ A < A_o \\
\int f (A, A_0) & \text{si} \ A > A_o
\end{cases}
\]

No obstant, en aquest primer model, una simplificació d'aquesta situació és la que hem utilitzat, assignant a \(PE \) un valor constant,
PE = k_2,
constant propera a 1 si es consideren les condicions òptimes per l'agregació, i suposant que sempre tenim una agitació A superior a A_0.

Resta oberta la possibilitat d'utilitzar una probabilitat PE variable, per exemple, proporcional a l'agitació,

\[
PE = \begin{cases}
0 & \text{si } A \leq A_0 \\
K(A - A_0) & \text{si } A > A_0
\end{cases}
\]
de forma que en augmentar la taxa d'agitació s'incrementa les possibilitats d'enllaçament.

5) Disgregació de flocs

S'observa que en el procés de floculació no hi ha un augment continuat en la grandària dels flocs, es produeixen trencaments o separacions d'aquests, ruptures per algun punt de la seva estructura, s'estabilitza el seu creixement, i ja no augmenta més la seva mida. Quan s'incrementa l'agitació, la grandària dels flocs disminueix i poden fins i tot arribar a dispersar-se totalment, tenint aleatoriament una població de cèl·lules individuals.

Considerant els factors que poden intervenir en la disgregació, hem assignat una probabilitat de disgregació PD per als elements tipus floc de la forma

\[PD = g(A,m),\]
funció de l'agitació A i de la mida de l'element implicat m. Si m representa el nombre de cèl·lules lliures que configuren el floc, i k és una constant, la probabilitat de ruptura del floc que utilitzem en el nostre model és

\[PD = k_3 A m.\]

Si es produeix el trencament, hem suposat que aquest esdevé, en una primera aproximació, en un punt de la seva estructura triat a l'atzar. Així obtenem dos nous flocs de grandàries i configuracions aleatòries.

Les possibles situacions en les que es pot produir ruptura, necessàriament posterior a l'esdeveniment de la col·lisió, són així:

a) Els elements (emissor i receptor) s'han enllaçat i, posteriorment, s'anàlitz la possibilitat que el floc resultant es disgregui
b) No s'enlacen els elements, i aleshores s'avalua la possibilitat de segregació, sempre que es tació de flocs. La segregació pot produir-se en l'emissor, en el receptor, o en l'emissor i receptor al mateix temps.

Per a cadascun dels casos es calculen les probabilitats implicades.

Aquesta hipòtesi formulada, i utilitzada en el nostre model, referent al punt sobre el qual recau el trencament del floc és susceptible de ser sofisticada. Poden existir altres maneres de procedir en la segregació o ruptura d'un floc. Sembla raonable, i és una perspectiva immediata pel simulador, considerar que la tria del punt de ruptura estarà condicionada per un repartiment més o menys equitatiu de les cèl·lules individuals que el formen. Es pot fixar un rang de probabilitats (mínima i màxima) o de possibilitats que condicionarien d'algun forma les mides dels flocs resultants. També existeix la possibilitat de contemplar una segregació espontània en els flocs.

3.5.4. UN NOU SIMULADOR

En el següent esquema es presenten les diferents parts del simulador en s'ha implementat el model elaborat:

A) Entrada de dades per caracteritzar el sistema.

B) Descripció del sistema.

C) Condicions periòdiques de contorn pel domini espacial i matrius d'interacció per a les cèl·lules del domini cúbic.

D) Configuració inicial del sistema.

E) Pas de programa: realització de les diferents accions–controls sobre els elements del sistema.

F) Sortida de dades.

El nucli o programa principal que configura el conjunt d'accions controlades sobre cada un dels elements que formen el sistema, i realitzades en cada pas de temps o pas de programa (figura 3.85), s'esquematitzarà a continuació:

E1) Es crea una llista aleatòria amb tots els elements de la població: cèl·lules lliures i flocs.
E2) De forma seqüencial es procedeix a controlar cada element de la llista elaborada. Es vegar-se aquesta llista el programa prepara un nou pas de programa.

Es caracteritza l'element amb el que es procedirà a efectuar les diferents accions:

- cèl·lula lliure o floc
- posició espacial (x,y,z) que ocupa
- en cas de tenir un floc:
 - la seva grandària
 - la seva composició, identificant les cèl·lules lliures que el configuren.

E3) Es considera la possibilitat de que l'element caure en la seva posició, passi a ocupar una altra cèl·la de forma aleatòria i dins d'una àrea d'abast fixada (moviment).

E4) Es controla la possibilitat de que, com a conseqüència del desplaçament d'aquest l'element, l'emissor, esdevingui un xoc o col·lisió amb un altre element, el receptor, de la nova cella que ha passat a ocupar. Es tenen en compte cadascuna de les probabilitats assignades als elements implicats (emissor i receptor).

E5) S'avalua l'esnergia de l'element emissor, que haurà de trobar-se dins d'un rang prefixat, per poder passar a controlar la possibilitat d'enllaçament i/o desgregació.

E6) Procedeix l'enllaçament dels dos elements, es controla la possibilitat d'una posterior desgregació del nou floc obtingut.

E7) Sense haver esdevingut enllaçament, es controla la possibilitat de tenir desgregació dels elements que han col·lisionat. Es consideren cadascuna de les probabilitats, la de l'emissor i la del receptor.

E8) En cas d'obtenir desgregació (una o dues), s'actualitzen les característiques dels nous elements obtinguts (grandària, composició i localització).

Tota la informació obtinguda entre els passos E3 i E7, és actualitzada i emmagatzemada en les variables que donen la configuració actual del sistema.

E9) Les dades de tipus temporal escolides per analitzar són guardades en un fitxer de sortida, per a un posterior anàlisi.
FIGURA 3.85. Diagrama de flux d'un pas de programa de la simulació discreta aplicada a la flocculació de lleuats cervesers.
3.5.5. RESULTATS I DISCUSIÓ

El model de la dinàmica de la floculació (des d'una vessant física) exposat en l'anterior apartat, i la seva implementació s'ос d's de la metodologia de la simulació discreta, configuren el simulador que ha permès obtenir els diversos resultats que mostrem. L'objectiu és validar-lo, comprovar les seves posibilitats, i presentar-lo com una alternativa d'estudi d'aquest procés.

Com ja hem indicat (apartat 3.5.2.) existeixen dues teories per a la formació de flocs, el model d'addició i el model de la cascada. Un dels objectius particulars és poder comparar els resultats que s'obtenen mitjançant la simulació en ambdós casos. Així, hem fet ús del model elaborat, utilitzant cadascun de les dues variants ja indicades (apartat 3.5.4.) per a la possibilitats de xocs o col·lisions entre elements, i que es troben relacionades amb les dues teories anteriors:

H1) Imposen restriccions de grandàries, és a dir, només es poden produir col·lisions entre elements del sistema que tinguin grandàries similars, dins d'un rang prefixat, hipòtesi corresponent a la teoria de la cascada.

H2) No considerem cap tipus de restricció en les mides dels elements per a que puguin xocar, per tant, poden col·lisionar elements de grandàries qualsevol, hipòtesi corresponent a la teoria de l'addició.

Les condicions inicials amb les que treballen són les d'una població de llevats formada per cél·lules lliures, que es troba al final del seu creixement exponentzial, i que per tant inicia el procés de floculació. Hem variat el valor del paràmetre agitació i hem generat diferents evolucions pel sistema, amb l'objectiu, en aquesta primera etapa, d'observar l'efecte de la intensitat de l'agitació en:

1. la distribució de mides o grandàries dels elements que configuren el sistema
2. la grandària mitjana dels flocs del sistema.

Es compararan els resultats obtinguts en les diferents simulacions amb els diversos resultats experimentals utilitzant sistemes reals.

1) Distribucions de grandàries

Les gràfiques de les figures 3.86.A, 3.87.A i 3.88.A mostren la distribució de grandàries (diàmetre) dels flocs de tres experiències reals realitzades amb diferents cultius de llevats modificant el paràmetre agitació.
Hem realitzat una sèrie de simulacions per establir comparacions a nivell qualitatiu amb els resultats experimentals. Amb les dades que el simulador permet obtenir de tots els elements del sistema, s’ha procedit a obtenir distribucions de freqüències per a la variable diàmetre del floc (relacionada amb la grandària de l’element que hem suposat de geometria...
esfèrica). Considerem el volum del floc com el nombre d'individus que el formen (NIF) i aleshores, el diàmetre corresponent és \((3/\pi)^{1/3} NIF^{2/3}\). Per a diferents valors del paramètro agitació, obtenim diversos comportaments en la distribució de mides dels elements del sistema simulat (gràfiques de les figures 3.86.B, 3.87.B i 3.88.B.). Des del punt de vista qualitatiu, aquestes poden ser comparades amb els resultats obtinguts en les experiències reals.

FIGURA 3.87. Efecte de la intensitat de l'agitació en la distribució de mides (diàmetre) dels flocs del lluat Saccharomyces cerevisiae. A. Experimental: (□) 250 rpm; (●) 500 rpm; (○) 750 rpm; (■) 1000 rpm. Font: Heenan i al. (1984) dins de Pardillà, 1995. B. Simulació: (a) amb restricció de gràndaries per a les col·lisions, (b) sense restriccions.
FIGURA 3.88. Efecte de l'agitació en la distribució de mides (diameter) dels flocs del llevat Saccharomyces cerevisiae. A. Experimental: (o) 250 rpm, (●) 500 rpm, (□) 750 rpm, (■) 1000 rpm. Font: Brohan i al. (1984) dins de Pardinià, 1995. B. Simulació: (a) amb restriccions de grandàries per a les col·lisions, (b) sense restriccions.

Observant el conjunt de gràfiques anteriors (figures 3.86, 3.87 i 3.88), podem afirmar que els resultats simulats que corresponen a la hipòtesi H1, col·lisions considerant la restricción de grandàries, són més semblants als obtinguts experimentalment que els corresponents a la hipòtesi H2, xocs sense tenir en compte les grandàries dels elements, sense
imposar restriccions. Aquests darrers resultats simulats no s'ajusten al que és el comportament real, ja que s'observen distribucions de grandàries força més simètriques respecte a la mitjana que les experimentals. Mentre que els resultats simulats que obtenim considerant la proposició H1 corresponen a distribucions no simètriques, amb un aspecte esbiaixat i més similar al que presenten les dades reals.

2) Grandària mitjana

La gràfica de la figura 3.82, permet avaluar la mitjana de les grandàries dels flocs en el procés de floculació per a les diferents velocitats de revolució a les que s'ha comiat el medi en un sistema real. Volem comparar-la amb els resultats que han donat les simulacions realitzades. En el nostre model hem enès el paràmetre agitació com un perímetre energètic (relacionat amb la energia cinètica), així, en la simulació, relacionaren la mitjana de les grandàries dels flocs (nombre de cèl·lules lliures que el formen), amb l'arrel quadrada de l'agitació.

FIgURA 3.89. Efecte de la intensitat de l'agitació en la grandària dels flocs (nombre de cèl·lules per floc) en la simulació del procés de floculació de lluïsos. (a) amb restriccions de grandàries per a les col·lisions. (b) sense restriccions.
En les dades obtingudes experimentalment (figura 3.89.) s'observa un valor de velocitat d'agitació que determina, de forma important i sobtada, un canvi en les grandàries dels flocs (representada en escala logarítmica), de manera que per sota un cert valor llindar, petits canvis en la velocitat d'agitació donen lloc a grans modificacions en la mitjana de les mides dels flocs, mentre que per sobre d'aquest valor llindar canvis en el paràmetre agitació donen lloc només a petites variacions en les mides dels flocs. Aquest comportament es reproduceix amb les dades obtingudes amb la simulació que contempla la hipòtesi H1 (restricció de grandàries en els xocs) i representades en la gràfica de la figura 3.89(a), ja que al voltant del valor 3 (unitats de la simulació arbitràries), també s'observa un canvi sobtat en el comportament de la mitjana de les grandàries. La gràfica de la figura 3.89(b) no s'ajusta a aquest tipus de comportament descrit. L'evolució que segueixen és força regular, de tipus exponencial, on no s'observa cap salt o canvi quantitatiu important i brusc en l'aspecte de les dades representades.

Podem, per tant, concloure que els estudis realitzats validen el model de floculació que incorpora la hipòtesi de que només els flocs de grandàries similars poden col·lisionar, i per tant, són només aquests els que tenen possibilitats d'enllaçar-se i/o ocasionar ruptures o desgregacions, posteriors al xoc, i com a conseqüència d'aquest. La teoria o model de la cascada sembla explicar de forma més satisfactoria el procés de la floculació. Els resultats obtinguts demostren que s'ha introduït de forma escaient el paper que té l'agitació en aquest procés.

3.6. CONCLUSIONS

1. S'ha demostrat la potència i versatilitat de la metodologia discreta desenvolupada en ser utilitzada per primera vegada en aquest nou tipus de sistema viu: un cultiu de lleuvats.

2. S'ha formulat un model de comportament per a una cèl·lula de lleuat de Saccharomyces cerevisiae aplicable a la simulació de processos fermentatius.

3. Respecte a l'esquema general del simulador base detallat, s'han introduït novetats importants relacionades amb el model de lleuat, principalment amb el metabolisme, la reproducció, i la viabilitat de les cèl·lules.

4. En la modelització del metabolisme de la cèl·lula de lleuat s'han introduït aspectes diferenciadors i propis d'aquest sistema (novetats respecte del model de bacteri):
5. S'ha modelitzat, per primera vegada, el cicle cel·lular d'una cèl·lula de llevat per a la reproducció de tipus vegetatiu (la gemmació), dividint aquest en dues fases:

- fase 1 o període de no gemmació, que finalitza quan una cèl·lula complex ahora dues condicions: assolir una determinada massa ("stan") i haver, des de la gemmació, incrementat la seva massa un valor mínim
- fase 2 o període de gemmació, que finalitza en el moment que la cèl·lula hagi aconseguit un increment mínim de massa i hagi transcorregut un temps mínim en aquesta fase.

6. S'ha adaptat el simulador base per a la implementació d'aquest model de llevat.

7. S'ha constatat la validesa de la metodologia i la bondat del model amb l'obtenció de resultats consistents amb l'experiència realitzant diferents tipus de simulacions:

a) Per a una simulació corresponent a una fermentació d'un cultiu tancat amb una concentració inicial de substrat:

- s'han obtingut els resultats que un model continu permet assolir

- i ahora, s'ha controlat:
 - la dissipació de calor del sistema
 - l'energia de manteniment (individual i global)
 - la distribució de masses del cultiu
 - la distribució d'edats genealògiques del cultiu
 - les masses i les durades característiques de cadascuna de les dues fases del cicle cel·lular.

b) S'han reproduït qualitatiuament els diversos comportaments de la corba p-t observada experimentalment, interpretant-se la inhibició del metabolisme deguda a la concentració d'etanol introïuda en el model (de tipus lineal creixent a nivell individual), incidint en la importància de la discretització del sistema.
c) S'han reproduït qualitativament el diferents comportaments del cultiu observats experimentalment per a diferents concentracions iniciais de substrat, interpretant-se la inhibició del metabolisme en altes concentracions de sucre introdúscida en el model (de tipus lineal creixent a nivell individual). La finalització d'una fermentació pot ser deguda a l'esgotament del nutrient o a la manca de viabilitat de les cèl·lules.

8. S'ha formulat un model per a la dinàmica de la floculació de llevats crescend des de la vessant física d'aquest procés d'agregació microbiana, on s'ha considerat:

- Un paràmetre de tipus energètic, l'agitació, necessari per a que es produeixin la floculació en vèncer les forces de repulsió que mantenen les cèl·lules separades en el medi.

- Un mecanisme mitjançant el qual els elements del sistema en moviment, les cèl·lules llises i els flocs, col·lisionen i tenen possibilitat d'envançar-se.

- Un mecanisme que controla la possibilitat de degregació dels flocs.

9. S'ha implementat en un nou simulador el model de simulació discreta del procés de la floculació, on s'ha abordat l'estudi del sistema a una escala diferent de la utilitzada en la simulació de llevats. S'han estudiat les distribucions de gràndies dels flocs en funció del paràmetre agitació. S'han avaluat amb la simulació dues teories de formació de flocs, discernint la viabilitat de la teoria de la casada en la formació de flocs en front de la teoria d'adició, en reproduir de forma més satisfactòria determinats resultats experimentals.

3.7. PERSPECTIVES DE LA SIMULACIÓ EN ELS CULTIUS DE LLEVATS

La utilització progressiva del model i del simulador de llevats en l'estudi de qüestions diverses relacionades amb aquest cultiu pot oferir moltes possibilitats. Actualment que el seu ús, permet la sofisticació progressiva del model de llevat i l'adequació del medi a unes condicions específiques i determinades, d'acord amb les necessitats de l'aplicació particular. Això ja s'ha constatat amb la simulació dels cultius bacterians, el primer sistema abordat i tractat fent ús d'aquesta metodologia.
Algunes possibles millores de tipus general en el model de llavors presentat, i que poden ser introduïdes en el simulador sense alterar de forma substancial la seva estructura són, per exemple:

a) Introduir variabilitat en el rendiment de biomassa i d'etanol en relació al factor temperatura del cultiu.

b) Considerar la producció d'altres productes finals del metabolisme com poden ser el CO₂, el glicerol, i alguns àcids, productes representatius per a determinats processos, a més de l'etanol ja controlat.

Aplicacions industrials interessants d'abordar i relacionades amb els cultius de llavors, factibles pel marc en el que es troba treballant el grup de recerca (ESAB), i abordables des d'aquesta perspectiva són, per exemple:

a) per a cultius tancats (discontinu o per carregues)
 - estudi particular de determinades fermentacions viniques
 - fabricació de la cervesa i les seves característiques
 - fermentacions ràpides, processos anàlegs a l'obtenció exclusiva d'etanol

b) per a cultius en dipòsit alimentat ("fed-batch"), on es suma una barreja nutritiva de forma contínua o en petits intervals al llarg del procés de creixement
 - processos per a l'obtenció de biomassa (els llavors de panificació)

c) per a cultius contínus importants per a l'estudi experimental i per a la reducció substancial dels costos de determinats processos
 - cultius contínus amb entrada no contínua de medi fresc
 - cultius contínus amb reciclatge de cèl·lules (sistema multifase)
 - cultius contínus amb cèl·lules fixades

Les pausen del comportament biològic i metabòlic del llavor Saccharomyces cerevisiae analitzades han permès formular un model del comportament del seu cicle cèl·lular. Tot i així, la majoria d'aquestes pausen són fruit d'assajos experimental de laboratori, els quals solen realitzar-se en un entorn i unes condicions de cultiu sovint força diferents d'aquelles que es solen donar en cultius industrials. Definir el marco industrial més comú diès el qual es podria aplicar aquest model és una tasca força interessant, la qual podria revertir en estudis posteriors d'aplicacions industrials.
Amb referència a la floculació, es disposa d'informació suficient (Pardinilla, 1995) per millorar i sofisticar progressivament el model utilitzat en la simulació. Com s'ha dit, aspectes de caire químic o biològic que no han estat recollits en aquest primer model permetrien incorporar altres paràmetres importants. Entenen que aquest és el principi d'una tasca molt més ampla i ambiciosa.

Seria molt interessant poder conjugar el creixement d'un cultiu de lleuats amb el procés de floculació. El treball realitzat al voltant d'aquest procés no es pot considerar un treball aïllat, sinó una ampliació a la tasca desenvolupada en la modelització de lleuats. La floculació s'ha d'entendre com una continuació del comportament de Saccharomyces cerevisiae i Saccharomyces carlsbergensis quan finalitza la fermentació. És l'inici d'un estudi més ampli en el que s'inclouria l'ampliació i perfeccionament del model a mesura que es poguin annexar noves dades al voltant de la floculació. En la recerca bibliogràfica previa a l'elaboració del model s'han explicitat altres qüestions (no contemplades en aquesta primera etapa) que es poden tenir en consideració posteriorment, com per exemple:

a) La influència de la presència de calci en el medi. El calci és imprescindible per a la floculació.

b) L'efecte dels sucres.

c) L'inici de la floculació relacionat amb l'esgotament de nutrients del medi i amb l'aturada de les reproduccions.

d) La relació dels mecanismes de la floculació amb factors propis de l'estructura de la paret cel·lular del lleuat.

L'obtenció d'altres paràmetres relacionats amb aquest procés permetria poder comparar resultats de la simulació amb resultats experimentals.

També, per altra banda, la teoria de la cascada en el procés de floculació, relaciona la configuració dels flocs amb la creació d'estructures fractals. Resta per tant oberta la possibilitat d'aprofundir en aquesta qüestió.