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Abstrat
Swithing power onverters are known to be appropriate solutions to supply energyto eletroni devies owing to their high e�ieny and low ost. Their extensiveuse in the last deades has motivated researhes to improve their designs and to godeeply into the omprehension of their behavior whih, like most power eletronidevies, exhibit nonlinear dynamis. More reently, eletroni equipments ontainingmultiple loads have been arisen suh as PDA, mobile phones, MP3... These appli-ations frequently require multiple supplies with di�erent polarities. Single-IndutorMultiple-Input Multiple-Output (SIMIMO) swithing d-d onverters are beomingas solutions to supply low power devies as LCD displays and to harge batteries dueto the signi�ant redution of size beause the use of a single indutor.The inherent swithing nature of these systems lassi�es their dynamis into the �eld ofVariable Struture Systems (VSS), whih are also known as Pieewise-Smooth (PWS)systems. Due to the fat that their dynamis annot be ompletely explained with thelassial smooth theory, in the last years a lot of e�ort has been addressed towardsthe researh on a theory of non-smooth dynamis motivated by di�erent �elds ofappliation.This dissertation deals with the dynamial haraterization of SIMIMO onverters,whih an help us to prove their viability. Two strategies of ontrol, both of thembased on the widely used Pulse Width Modulation (PWM) ontrol, are disussed. Inthe �rst alternative, the ontrol is used to regulate a Two-Input Two-Output (SITITO)onverter with opposite polarity. The two required modulating signals are generatedsynhronizely. This strategy of PWM ontrol is alled in this work Single PhaseControl (SPC) in ontrast to a seond strategy, whih is noted here as InterleavedControl (IC), apable of driving a generalized single indutor multiple-input multiple-output onverters. This ontrol is based on the use of various modulating signals,equal to the number of outputs, whih are progressively time delayed.v



viThe dynamis of the SIMIMO onverters, just like of the basi d-d onverters,presents a rih variety of nonlinear phenomena, whih overs from smooth bifura-tions, suh as period-doubling, Saddle-Node or Hopf bifurations, to non-smooth bi-furations. After proving the existene of stable dynamis if appropriate parametersare seleted, this dissertation will deal with the investigation of models to analyze theomplex dynamis of the onverter in a wide range of parameters. Several models areproposed and analyzed in this work. Averaged models, from whih slow sale instabilityondition an be determined, and disrete-time models, able to prove fast sale insta-bilities, are used in a omplementary way. Besides this, several approahes of thesemodels will be established and validated. Their usefulness will be proved not onlyin the predition of the stability, but also in the haraterization of the non-smoothbifurations presents in this onverter. It will be shown that simple one-dimensionalPieewise-Linear (PWL) models provide analytial expressions for the existene andstability onditions of �xed points of the disrete-time models. Furthermore, higherdimensional maps are developed to improve the auray of the preditions obtainedby means of one-dimensional maps and averaged models.The disrete-time analysis of a SITITO onverter driven by eah of the two strategiesof ontrol has revealed that its dynamis an be modeled by a PWL map with threetrams in a spei� range of parameters. To our best knowledge, the literature onPWL maps inludes ontinuous and disontinuous maps but is limited to two trams.Therefore, this dissertation is a ontribution in the �eld of non-smooth dynamis inbase to the unfolding of spei� dynamis of three-piee maps.Conerning the IC ontrol, a generalized analysis of the stability is obtained for aSIMIMO onverter with a generi number of loads. The stability analysis of the one-dimensional model has revealed the existene of a type of non-smooth bifuration,whih has been lassi�ed in this dissertation as a non-smooth pithfork owing to theappearane of two new �xed points after undergoing the bifuration. Detailed analysisin higher dimensional maps assoiates this bifuration to a Neimark-Saker, whoseexistene annot be predited by averaged models.This dissertation also inludes some experimental results obtained with a SITITOd-d onverter prototype, to validate some of the senarios found in the analysis.
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Chapter 1
Introdution

1.1 MotivationNowadays, swithing power onverters are widely used in eletroni devies as powersupplies, motor ontrols, light ontrols, et. Their bene�ts rely in their high e�ieny,in ontrast to linear ampli�ers, jointly with their small size and low ost. This fat hasmotivated the researh of di�erent strategies of ontrol and the study of the dynam-is of the swithing onverters in di�erent forms of energy transformation: AC/AC,AC/DC, DC/AC and DC/DC.The simplest on�gurations of d-d swithing onverters are based on the transfereneof energy from an unregulated soure to an indutor and from this to the load. Thebuk, boost and buk-boost are illustrations of these simple swithing regulators (seeFig. 1.1). The buk or step-down onverter redues the output voltage regardingto the soure while the boost or step-up onverter inreases this voltage. The buk-boost permits the regulation of lower and higher voltages, although in the simpleston�guration the output voltage is inverted. They permit the onversion of the energyfrom one level to another avoiding, theoretially, losses in their omponents. Thus,the aim of the regulation is to fore the averaged output voltage to a desired value inpresene of external disturbanes. This onversion an arry an inrease or dereasein the input soure, inluding a feasible inversion of its polarity. The regulation isahieved by alternating suitably the operation of the onverter between two topologies,by means of a ontrolled swith S (ON or OFF). In addition, the presene of diodes inthe iruitry of the onverters fores the indutor urrent to be positive. Hene,the onverter operates in Disontinuous Condution Mode (DCM) when the indutor1



2 Chapter 1. Introdution
DVIN

S LiL

Cv R(a) Buk
D

VIN S

LiL

Cv R(b) Boost
D

VIN

S

L

iL

Cv R() Buk-BoostFigure 1.1. Shematis of the three basi power d-d onverters.
urrent drops to 0 during the swithing yle. Otherwise, the onverter is said to beoperating in Continuous Condution Mode (CCM).The most extended strategy of ontrol used in the literature is the Pulse Width Modu-lation (PWM) [64, 69, 83℄, whose struture inludes the following elements: an externallok �xing the swithing period, a sawtooth signal synhronized with the lok, anoutput voltage error obtained as a linear ombination of the apaitor voltage andthe indutor urrent and a omparator, whose inputs are the voltage error and thesawtooth signal. The resulting ontrol signal of this omparator determines the dutyyle of the ontrolled swith S, whih is de�ned as the ratio of the ON state to theperiod of an external modulated signal T .Two approahes of PWM ontrol are ommonly used in d-d onverters: VoltageMode Control (VMC) and Current Mode Control (CMC). In the �rst ase, the regula-tion is reahed diretly as the result of the omparison between the voltage error andthe sawtooth signals, whih will establish the state ON or OFF of the swith. Conversely,in CMC the indutor urrent is added to the feedbak thus foring the addition of abistable �ip-�op to avoid sliding dynamis.



1.1. Motivation 3Besides the basi d-d swithing regulators, onverters inluding more omplex on-�gurations have been emerged, whih inlude multiple ative omponents [19, 54, 36,53, 12℄. Converters omposed by multiple ells (multi-ell onverters) an supply highvoltages regarding to the input soure [42, 99℄. There exists another group of on-verters omposed by parallel onnetions of the same elemental onverter, whih allowsupply high urrent in the loads [60, 59℄. In most appliations, only a single stabilizedoutput is required. Nevertheless, reent appliations as mobile phones, MP3 playersPDA and GPS often inlude several loads as LCD displays, memories, universal seriesbus (USB) or hard drives, whose operation require di�erent voltages. These require-ments ould be solved by using several independent d-d onverters, whih lead toan inrement in the number of magneti omponents and swithes.Conversely, in the range of lower power appliations a new struture that uses a singleindutor shared by several outputs is now emerging. These Single-Indutor Multiple-Input Multiple-Output (SIMIMO, also known as SIMO in the literature) onvertersare useful when multiple outputs must be regulated and, despite the management oflow power, a high e�ieny is also required. From 2001, there exist some di�erentregistered patents of d-d onverters using a single indutor. Moreover, some in-tegrators using this kind of onverter have been ommerialized: Texas Instruments(TPS65136), whih are used in AMOLED displays of mobile phones or SmartPhonedevies, and Maxim (MAX685) for omponents of digital ameras, amorder andnotebooks. Di�erent topologies of SIMIMO onverters exist depending on the ombi-nation of elemental onverters and ontrol [75, 67, 100, 95, 104℄. Conerning the reg-ulation of the onverter, the simplest strategy is based on time multiplexing [79, 80℄,whih assigns an ative interval for eah hannel. Nevertheless, in order to guaran-tee the stability and avoid the regulation interferene among hannels, the onvertermust operate partially in DCM in the time interval assoiated to every hannel. Asa result, eah output is independently ontrolled despite sharing the indutor. Apseudo-ontinuous ondution mode is proposed in [78℄, whih uses a onstant valuefor the indutor urrent to operate in CCM. Besides the analog ontrols mentioned,in [103℄ a digital ontrol is proposed to regulate the onverter is CCM whih reduesthe ross-regulation problem.Finally, the ontrol proposed in [15℄, based in PWM, allows the operation in CCMand permits the generalization of the ontrol to regulate a SIMIMO onverter with anarbitrary number of outputs. This thesis deals with the study of the viability of thistype of onverters jointly with the analysis of their dynamial behavior.



4 Chapter 1. Introdution1.2 Nonlinear phenomena in power eletroni on-vertersThe dynamis of power eletronis systems is known to be highly nonlinear [43℄. Arih variety of phenomena, for instane subharmonis, quasiperiodiity and haotidynamis, has been reported in systems that inlude swithes, saturations or evenhysteresis. In partiular, the operation of the swithing regulators is haraterized bytransitions between di�erent topologies, whih lassi�es these systems into the groupof Variable Struture Systems (VSS) also known as Pieewise-Smooth (PWS) systems.Consequently, despite the fat that eah topology an be desribed by means of a setof smooth equations, the existene of boundaries inreases the omplexity of theirbehavior. Atually, it is known that PWS dynamis annot be analyzed by using thewell-known theory of smooth systems. Apart from the bifurations harateristi ofsmooth systems, PWS systems an exhibit bifurations whih are exlusive of them. Asan example, we an mention the border-ollision bifurations. There exists an extensiveliterature reporting the nonlinear phenomena in power eletronis, inluding somerelevant books [107, 11, 34℄. A more spei� literature about non-smooth phenomenaan be found in Chapter 3.Let us now present a brief review of the earlier works dealing with nonlinear phenomenain power eletronis. The �rst foussing in power eletroni onverters appeared atthe beginning of the Eighties. In 1980, Baillieul proved in [6℄ the existene of haotidynamis in power eletroni iruits. Few years later, Brokett and Wood showedin [16℄ the existene of haos in a d-d onverter. Chua, in a speial issue in [24℄,presents a study of haos in power eletronis.A �rst analysis of these nonlinear phenomena was presented in 1988 by Hamill andJe�eries [56℄. Herein, the authors showed, by means of a one-dimensional disrete-timemap, the existene of subharmonis, bifuration and haos dynamis in a �rst-orderPWM voltage ontrol onverter. Later, Je�eries in [63℄ shows that a RL-diode iruitan exhibit a great variety of nonlinear senarios despite being haraterized by simplesystems. In 1989, Krein and Bass proved analytially and experimentally the existeneof multiple limit yles [70℄ and later the same authors reported in [71℄ three typesof instability in d-d power eletroni onverters: unboudness, hattering and haos.The phenomenon of hysteresis is also mentioned in the work.In [26, 27℄, Deane and Hamill proved experimentally the existene of haos in a Bukonverter. Fossas and Olivar in [49℄ analyzed the stability by means of harateristimultipliers of the one and two-periodi orbits in the Buk onverter, in whih anstrange attrator is shown as dynamis. In 1998 di Bernardo [32℄ introdues a newdisrete-time map related to the asynhronous swithing to identify the presene ofperiodi orbits and bifurations in the basi swithing regulators. The nonlinearity hasalso been proved in onverters with sliding mode ontrol. Calvente in 1996, showed



1.2. Nonlinear phenomena in power eletroni onverters 5in [20℄ the existene of subharmonis and haoti behavior in a Boost onverter usingthis ontrol. Later, El Aroudi in [39℄ inluded a deep analysis of the period-two orbit.The ourrene of nonlinear phenomena and haos in swithing regulators operatingin DCM was reported by Tse in 1994 for buk [105℄ and boost [106℄ onverters.Conerning the non-smooth phenomena, in 1998 Yuan demonstrated in a work fo-ussed in the Buk onverter [111℄, that most bifurations whih were produed ind-d onverters are due to a border-ollision bifurations. Sine then, non-smoothphenomena in power eletronis has attrated the attention of many researhes. Wean mention the works published in this deade by Banerjee in [10℄, where a one-dimensional disrete-time analysis is used to study the border-ollision bifurationsin Buk and Boost onverters. In [94℄, Parui presented these bifurations in PWSmaps whih are two-dimensional in one side of the boundary and one-dimensional inthe other. Zhusubaliyev [113℄ detailed the quasiperiodiity and border-ollisions in atwo-side PWM buk onverter. We �nally mention the works in [23, 13, 38, 2℄.More reently, in 2008, Giaouris in [51℄ have reported a Filippov's method to analyzethe dynamis of the swithing onverters, whih is useful when the Poinaré mapannot be determined.The study of the nonlinear phenomena has not been restrited to the elemental onvert-ers. This behavior has also been reported by Iu in parallel-onneted buk onverters[60℄ and parallel-onneted boost onverters using averaged models [61℄, whih wasalso studied by Mazumder in [81℄. Finally, more reently, Robert analyzes multi-elld-d onverters in [99℄.The modelling of swithing onverters has evolved from two methods: averaged anddisrete-time models. The averaging approah for modelling swithing onverters wasdeveloped in 1976 by Milddlebrok and �uk [82℄ and has been ommonly used in thestability analysis of swithing regulators beause it provides simple expressions andmakes the analysis easier. Nevertheless, it only ontains information about the slow-frequeny or slow-sale dynamis and thus, it is unable to predit many non-smoothphenomena. To deal with them, disrete-time models are employed to explain higherperiodi orbits, quasiperiodiity or haoti dynamis, inluding both existene andstability properties [35℄. When the ontinuous time system uses a �xed frequenymodulating signal, the strobosopi or Poinaré map arises as a pratial tool, retain-ing aurately the information of the dynamial properties of the original ontinuoussystem.



6 Chapter 1. Introdution1.3 Organization and ontribution of this disserta-tionTaking into onsideration that part of the analysis is foused in the non-smooth phe-nomenon, Chapter 2 presents an overview of the pieewise-smooth dynamis inludingthe analysis of the dynamis of a pieewise ontinuous linear maps with two piees.This hapter inludes also a brief review of the basi onepts and bifurations insmooth dynamial systems. Some relevant literature dealing with non-smooth sys-tems is also provided in this hapter. The nomenlature whih will be used in thefollowing hapters is introdued here.As it will be proved in Chapters 4 and 5, the disrete-time model whih desribesthe dynamis of the onverter is omposed by three piees in ertain range of theparameters. In order to understand the possible senarios given in this map, a three-piee pieewise-linear map is analyzed in a restrited set of parameters in Chapter3. This ontribution an be understood as an extension of the analysis of the two-piee map, whih has been published in English literature in [31℄. Expressions for theexistene and stability of the one and two-periodi orbits will be obtained in order todetermine the possible patterns of bifuration. This work was partly realized in theUniversity Federio II in Naples, under the supervision of professor Mario di Bernardo.The results obtained have been presented in the Spanish onferene [87℄ and a reportis still on preparation.In Chapter 4, a Single-Indutor Two-Input Two-Output (SITITO) power eletroni d-d onverter is introdued jointly with the �rst strategy of ontrol SPC. The onverteris governed by means of a pulse width modulation (PWM) with a double voltagefeedbak, whih inludes a Proportional Integral (PI) term. Its dynamis is analyzedby using averaged models [14℄. Moreover, several disrete-time models, one and �ve-dimensional, have been developed in order to understand the bifurations produed byfast dynamis. Some relevant results will be disussed onerning the disrete analysis.Finally, the senarios found are ompared with the results obtained in Chapter 3.Part of the study developed in this hapter has been published in the internationalonferenes [84℄ and [85℄, and the report [88℄.Chapter 5 deals with the seond strategy of ontrol, whih will be named InterleavedControl (IC). This ontrol is able to drive a SIMIMO d-d onverter whih was �rstlyproposed in [15℄ and analyzed by means of averaging tehniques. My ontributionin this hapter inludes the development of a generalized disrete-time model withdi�erent degrees of approah jointly with a generalized existene and stability analysisof the main mode of operation. The one-dimensional analysis reveals an unommonbifuration, whih has been alled non-smooth pithfork bifuration. Moreover, thehigher dimensional map has also revealed a signi�ant deviation in the predition ofsome bifurations. The results obtained in this hapter have been reported in the



1.3. Organization and ontribution of this dissertation 7international onferenes [40℄ and the reports [41℄ and [86℄. This last report is still onpreparation.In Chapter 6, several experimental measurements are provided. A prototype of SIM-IMO onverter has been built in the laboratory, whose ontrol board permits theprogramming of di�erent strategies of ontrol without the needed of any hange in thepower stage. This prototype has allowed us to prove the nonlinear dynamis of bothontrols analyzed in this dissertation.Finally, onlusions and future works will be given in Chapter 7.





Chapter 2
Pieewise-smooth dynamial systems

The main objetive of this hapter is to provide an overview of thetheory of pieewise-smooth dynamial systems. Our disussion beginswith a brief introdution of the basi onepts of the well-developedsmooth theory, onneting then with the pieewise-smooth theory. Thelast part of this hapter onerns with the study and lassi�ationof the non-smooth bifurations, whih undergo in one-dimensionalpieewise-linear maps.
2.1 Brief review of smooth dynamial systemsThe lassial theory of dynamial systems helps us to understand the behavior of dy-namial systems in many areas suh as physis, biology, engineering and eonomis.There exists a well established theory for dynamial systems su�iently smooth re-ported in diverse reports and books. For instane, we an mention the books ofKuznetsov [74℄ and Wiggins [109℄. The objetive of this setion is to introdue somebasi nonlinear onepts and notation for the two lasses of dynamial systems: �ows(ontinuous-time) and maps (disrete-time).Let us onsider the following vetor �eld or �ow in the form of an ordinary di�erentialequation

ẋ = f(x, t, µ),9



10 Chapter 2. Pieewise-smooth dynamial systemswhere x ∈ D ⊂ R
n, t ∈ R

1, µ ∈ V ⊂ R
p, t stands for the independent variable time,

x is the vetor of state variables or phases, the subset D is alled phase spae, beingommonly D = R
n and µ is the vetor of parameters or �xed oe�ients of the system.A system that does not depend expliitly on time will be alled autonomous.A trajetory Φ(x0, t) is said to be a solution of the �ow with given initial ondition

x0. A phase portrait refers to the set of trajetories of the �ow in the phase state.Similarly, let us onsider also the following map or disrete-time system
x 7→ g(x, µ),where x ∈ D ⊂ R

n and µ ∈ V ⊂ R
p.A map is a dynamial system where time is disrete. They are also known as dif-ferene equations or iterated maps. Maps are used to model natural or tehnialphenomena suh as eletronis, eonomist and population dynamis. Nevertheless,disrete-time models an also arise from analyzing di�erential equations through theso-alled Poinaré maps. Let us onsider the following �ow

ẋ = f(x),where x ∈ R
n. Let us also onsider the (n − 1)-dimensional surfae S, whih istransversal to all trajetories of f . Then, we an de�ne the Poinaré map (see Fig.2.1) as follows

P : S → S,where
x 7→ P (x).Despite the di�ulty in �nding an expliit expression of P , Poinaré maps an turndi�ult problems in di�erential equations into easier problems. The analysis of exis-tene and stability of limit yles of �ows is given by the study of �xed points in thePoinaré map, whih is demonstrated to be equivalent.2.1.1 Invariant setsAn invariant set an be de�ned as a set that evolves to itself under the dynamis.We an also de�ne an attrator of a dynamial system as a subset of the state spaeto whih orbits tend as time inreases. When more than one attrator oexists inthe phase spae, the basin of attration an be de�ned as the set of initial onditionsleading to long-time behavior that approahes that attrator. The following list showsmost important attrators in ontinuous-time dynamial systems:
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P (x)

x

Figure 2.1. Poinaré mapping.� Equilibrium points: x∗ is said to be an equilibrium point of f if f(x∗) = 0.� Limit yles: A limit yle orresponds to a periodi orbit with period T thatsatis�es Φ(x0, T ) = x0, being x0 the initial ondition and T the smallest time forwhih the ondition is ful�lled. In the phase spae, the limit yle orrespondsto a losed urve.� Invariant tori or quasiperiodi orbit: This attrator ontains a �nite numberof inommensurable frequenies. The trajetories move on the surfaes of a torus.� Chaos: This behavior is haraterized by having an aperiodi and, apparently,random trajetory, whih is unpreditable in the long term due to its sensitivityto initial onditions.We an mention also other invariant set as suh homolini or heterolini orbits whihonnet a single equilibrium point with itself or two equilibrium points respetively.These invariant sets are involved in the boundary of basins of attration.Conerning disrete-time models, the feasible invariant sets are:� Fixed point: x∗ is said to be a �xed point of f if f(x∗) = x∗. This invariantset orresponds to a losed orbit of a �ow.� Periodi orbit: (x∗1, x
∗

2, ..., x
∗

k) is a k-periodi orbit, being k > 0, of the map fif fk(x∗1) = x∗1. In fat, a n-periodi orbit is a �xed point of the nth-iteration ofthe map.� Invariant yle: The orresponding invariant set in �ows of a torus.� Chaos



12 Chapter 2. Pieewise-smooth dynamial systemsIt is important to remark that another advantage of the use of Poinaré maps isthat the orresponding invariant sets in maps are simpler than in the ontinuous-timemodel.2.1.2 Stability of �xed pointsIn order to deal with the stability of �xed points, we will onsider nonlinear au-tonomous systems or maps su�iently smooth. The stability is proven to be equiva-lent to the stability of a linearization of the system in the neighborhood of the �xedpoint.Let us onsider the map
x 7→ P (x),where x ∈ R

n with x∗ as a �xed point of the map and then x∗ = P (x∗). Let us alsoonsider the perturbation
x = x∗ + ǫ.Then, for small ǫ, the map an be approahed in the neighborhood of the �xed point

x∗ by the �rst term of its Taylor expansion in x∗. Therefore,
x∗ + ǫ′ = P (x∗ + ǫ) = P (x∗) + [DP (x∗)]ǫ+O(‖ǫ‖2),where DP is the Jaobian matrix of P at the �xed point x∗. The element ij of the

DP matrix is de�ned as
DPij =

∂Pi

∂xj

.Then, we obtain
ǫ′ ≈ [DP (x∗)]ǫ.The set of multipliers {λj , j = 1..n} of a �xed point x∗ refers to the eigenvalues ofthe Jaobian matrix DP of the linearized map P assoiated at this point. The loalstability of this �xed point x∗ is guarantied so long as

|λj | < 1 ∀j ∈ [1, n].Similar analysis an be developed to determine the stability ondition of an equilibriumpoint x∗ of a �ow. In this ase, due to the solutions of the linearized system an beexpressed as a omposition of exponential funtions, the stability of x∗ is ful�lled ifRe λj < 0 ∀j ∈ [1, n].



2.1. Brief review of smooth dynamial systems 132.1.3 Bifurations of the �xed pointsA bifuration is said to our when a topologial hange in the phase portrait isprodued under variation of some parameters of the system. The set of parametervalues at whih a bifuration appears is alled a bifuration point.We must also introdue the onept of odimension of a bifuration, whih orrespondsto the number of the independent parameters whih determine the bifuration.Many kind of bifurations an our in smooth systems and an extended lassi�ationan be found in [74℄. In what follows, we will fous on the odimension-one bifurationsof the �xed points for both �ows and maps. Conerning disrete-time models, thebifurations are yielded when one of the multipliers beomes nonhyperboli, namely,it is plaed in the unit yle. This situation an be reahed when DP has an eigenvalueequal to 1, −1, or a omplex onjugate pair with unit modulus sine the remainingeigenvalues have moduli not equal to 1 (see Fig. 2.2). Otherwise, the bifurationsin �ows our when the real part of the greatest eigenvalue beomes 0, being real oromplex. The main bifurations are listed below:� Saddle-Node bifuration: Several bifurations an appear in maps when areal eigenvalue beomes 1. In the Saddle-Node or Fold bifuration, one multiplierof two �xed points (a pair of stable and unstable �xed points) tends to 1 as oneparameters is varied reahing the nonhyperboliity simultaneously at the ritialpoint, where these points ollide and disappear (see Fig. 2.2a). This phenomenonan also our in �ows when two equilibria (one stable and one unstable) havereal eigenvalues whih simultaneously tend to 0.� Transritial bifuration: In ontrast to the fold bifuration, in the transrit-ial bifuration a pair of stable and unstable �xed points ollides at the ritialbifuration point but not disappear. After the bifuration, both �xed point existbut with the stability interhanged.� Pithfork bifuration: This bifuration is also deteted when a real eigenvalueof a �xed point x∗ beomes 1 while the remainder of eigenvalues are insidethe unit yle. There exist two kinds of bifurations. In the subritial ase,two unstable �xed points whih oexist together with the stable �xed point x∗ollapse at the ritial bifuration point, when x∗ beomes unstable. Similarly,in the superritial ase a pair of stable �xed point appear after the ritial pointand oexists with the unstable x∗.Both transritial and pithfork bifurations an also be given for equilibriumpoints in �ows.� Neimark-Saker/Hopf bifuration: In the Neimark-Saker bifuration, apair of omplex onjugate eigenvalues rosses the unit yle and their module



14 Chapter 2. Pieewise-smooth dynamial systemsbeomes greater than 1 (see Fig. 2.2b). Around the bifuration, an invariantyle appears, whih an be stable (superritial ase) or unstable (subritialase). This bifuration an only appear in maps with dimension greater than 1.Notie that this bifuration an be produed in a Poinaré map of a limit yle,generating a two-dimensional torus in its orresponding ontinuous-time system.The Hopf bifuration is the analog of this bifuration in �ows, thus involvingthe appearane of a limit yle at the time that an equilibrium point with om-plex eigenvalue beomes unstable. Similarly, only ontinuous-time systems withdimension greater than 1 an present a Hopf bifuration.� Flip or period-doubling bifuration: This bifuration is given when one realeigenvalue rosses the unit yle beoming less than −1. This bifuration has
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(d) Pithfork and TransritialFigure 2.2. Possible bifurations of the �xed point in maps.



2.2. Pieewise-smooth systems 15assoiated a Pithfork bifuration in the seond order map P 2(x, µ). In ontrastto the mentioned bifurations, the �ip bifuration does not have analogy withbifuration of equilibrium points of �ows.
2.2 Pieewise-smooth systemsThough the smooth theory is well established and explains properly low dimensionnonlinear smooth systems, many appliations in engineering or biologial systems ex-hibit diverse bifuration phenomena whih are inexpliable in the frame of the lassismooth bifuration theory. We an mention, for instane, eletronis iruits ontain-ing diodes or transistors [11℄, mehanial systems involving impats, stik-slip motionin osillators with frition and hybrid dynamis in ontrol systems. These systems aregoverned by smooth �ows whih are interrupted when some event is produed. There-fore, these proesses annot be desribed by means of simple systems of di�erentialequations and require di�erent mathematial formalisms as pieewise-smooth systems.The non-smooth systems are known to exhibit a rih variety of bifurations whihhas attrated the attention of many researhers; their results have been reported inan extensive literature. The earliest works in whih the non-smooth phenomena werereported were published in Russian. We refer to the works of Andronov [1℄ in equi-librium bifurations and Feigin [44, 45, 46℄ in the lassi�ation of C-bifurations. InEnglish literature, we must mention the work of Brogliato [17, 18℄ in mehanial sys-tems, Zhusubaliyev & Mosekilde [112℄ in ontrol and eletronis systems, Tse [107℄,Leine [76℄, Kunke [72℄, Banerjee [7℄ and Peterka [96℄ in impating systems, wherethe desription of examples exhibiting non-smooth dynamis an be found. Morereently, di Bernardo et al. presents in [29℄ general tehnis for analyzing the bi-furations whih are unique in pieewise-smooth dynamial systems (also known asdisontinuity-indued bifurations).Alternatively, the dynamial behavior of these systems has also been studied by usingother formalisms, suh as di�erential inlusions [62, 28℄ or omplementary systems[57℄, whih have been useful to desribe mehanial systems and a mature analytialtheory an be found in [17℄.This setion deals with the lassi�ation of the di�erent non-smooth phenomena. Wewill provide some of the most relevant results found in the bibliography, mainly indisrete-time models. Similarly to the smooth theory, this setion does not provideformal de�nitions and lassi�ation of non-smooth systems, whih an be found in thereferenes given. Nevertheless, a detailed analysis of pieewise-linear maps with twopiees will be developed here, whih will be extended for three-piee pieewise-linearmaps in Chapter 3.
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Σij(b) PWS Maps bb

Sj

Si

Σij() Hybrid PWSFigure 2.3. Trajetories of the state variable in di�erent lasses of pieewise-smooth systems.2.2.1 Classi�ation of the pieewise-smooth systemsWe an desribe a pieewise-smooth (PWS) system as a dynamial system omposedby a set of ordinary di�erential equations or maps, whih are assoiated to a di�erentregions in the phase spae.Figure 2.3 shows the evolution of a state variable both for �ows (see Fig. 2.3a) andfor PWS maps (see Fig. 2.3b). Besides these, there exist systems whose dynamisneeds to be modelled by using both formalisms: �ows and maps. These proesses willbe alled hybrid systems (see Fig. 2.3). The disontinuity boundary Σij is de�ned asthe intersetion between two sets, Si and Sj . Σij is also known as disontinuity set orswithing manifold (�ows) or border (maps).The PWS systems an be lassi�ed depending on their degree of non-smoothness arossthe boundary. The disontinuity an be found in the state, vetor �eld or higherderivatives, distinguishing the systems in PWS ontinuous, Filippov, or impatingsystems:� Pieewise-smooth ontinuous systemsIn the �rst lass onsidered, the vetor �eld haraterizing the dynamis of thesystems is ontinuous at the boundary (see Fig. 2.4a) whereas higher derivativesare disontinuous. Consequently, the boundary annot at as an attrator orrepeller in both sides at the same time whih avoids the sliding dynamis.� Filippov systemsThis lass overs those PWS systems whose disontinuity is given in the vetor�eld. Due to the normal omponent of the vetor �eld an have opposite signin the neighborhood of the boundary, these systems an permit the sliding dy-namis. The sliding motion appears when the trajetories hit the boundary butare fored to ontinue their evolution in part of the swithing manifold, whihan beome part of a periodi solution of the system. The omplexity of this
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Σij(b) Filippov systems Sj
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Σij() Impating systemsFigure 2.4. Classi�ation of PWS �ows depending on their degree of non-smoothness.phenomenon is given by the loss of information on the initial onditions and theirdynamis an be studied by using Filippov's onvex [48℄ or Utkin's equivalentontrol [108℄ methods.One of the examples of Filippov systems are the swithing d-d onverters [11℄analyzed in this thesis. Besides these, Filippov systems arise in osillators withdry frition or relay-feedbak systems.� Impating systemsIn impating systems, the swithing manifold ats as a hard boundary as theregion Sj in the phase spae is forbidden (see Fig. 2.4). Therefore, the dynamisof the impating systems an be desribed by a smooth �ow and a map whihmodi�es the trajetory instantaneously when the trajetory hits the boundary.A great variety of examples an be found in mehanial systems as suh theimpats osillators, whose state variables are the position and veloity and theimpat implies a hange in the sign of the veloity. This phenomenon has drawnthe attention of many researhers in the last deades sine the early work ofPeterka [96℄.PWS maps an also be lassi�ed depending on their non-smoothness. Figure 2.5illustrates the diagrams of three one-dimensional pieewise-smooth maps with di�erentdisontinuity degrees. In Fig. 2.5a, and Fig. 2.5b pieewise-linear ontinuous anddisontinuous maps have been depited respetively. The �rst map has a disontinuousderivative whereas in the seond ase the map presents a jump in the state. Anotherexample of PWS maps is illustrated in Fig. 2.5, whih presents a frational degree ofdisontinuity [29℄.The non-smooth theory for one and two-dimensional smooth ontinuous maps beganwith the works developed by Feigin [44, 45, 46℄. An English review of these workswere translated into English by di Bernardo in 1999 [31℄. It must also be mentionedthe works of Nusse and Yorke in [89, 91, 90℄.
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xn

xn+1

(a) PWL ontinuous xn

xn+1

(b) PWL disontinuous xn

xn+1

() Square-root PWSFigure 2.5. Examples of one-dimensional pieewise-smooth maps.Disontinuous maps arise from Poinaré maps applied to systems involving impatosillators with multiple impats. More examples an be found in the modelling ofirregular heartbeats [66℄, other biologial systems and swithing d-d onverters [93℄.The works of Lo Faro [77℄ and Qu et al. [97℄ show the existene of period-adding se-nario and multiple devil's stairases in these systems respetively are proved. Avrutinstudied a quadrati map with a gap in [3, 4, 5℄. Regarding the development of theoryfor disontinuous maps, this is still in the �rst stage. Some results in one-dimensionalmaps an be found in [65, 93, 68℄. Reently, Hogan et al. in [58℄ developed a lassi�a-tion strategy of the pieewise-linear disontinuous map as extension for disontinuousmaps of the lassi�ation done by Feigin. The work is ontinued by Dutta et al. in[37℄.2.2.2 Bifurations in PWS systemsNon-smooth systems an exhibit a great variety of bifurations, inluding those seenin smooth systems. Nevertheless, in what follows, we will only pay attention to thosebifurations whih are unique in pieewise-smooth systems and are alled Disontinu-ity Indued Bifurations (DIB) [29℄. This lass of bifurations has also been mentionedin the bibliography as C-bifurations, non-smooth bifurations or disontinuous bifur-ations.We will onsider as a DIB any topologial hange involving invariant sets and theirswithing manifolds in the phase spae. Namely, a DIB inludes interations of �xedpoints, equilibrium points and limit yles with the system swithing manifolds. Figure2.6 shows some representative bifurations in PWS systems for �xed points in PWSmaps and equilibrium points and limit yles in PWS �ow.� Border-ollisions (BC)This bifuration appears when a �xed point or a higher-periodi orbit of apieewise-smooth map hits the boundary Σ at a ritial parameter value. Thislass of bifurations will be analyzed in detail in this dissertation.
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20 Chapter 2. Pieewise-smooth dynamial systems� Boundary equilibrium bifurations (BEB)In pieewise-smooth �ows, the simplest non-smooth bifuration ours whenan equilibrium point hits the boundary Σ (see Fig. 2.6a). There not exists aomplete strategy of lassi�ation of the possible senarios. The existene ofdi�erent senarios after a BEB was �rstly reported by Bautin & Leontovihand also shown in [50, 76℄. In [33℄ an extension of the Feigin's lassi�ationis presented and extended. Regarding Filippov systems, an overview of thephenomena in planar systems by Kuznetsov et al. in [73℄ is presented.We will give few examples of the feasible phenomena after undergoing a BEB.When a boundary equilibrium in a PWS system is perturbed, this invariant setan persist or disappear in a non-smooth fold. More omplex senario is givenwhen a limit yle appears after a BEB. These phenomena an also be seen inFilippov or Hybrid systems with sliding, but there inlude new phenomena forinstane pseudo-equilibria.� Grazing bifurations of limit ylesA grazing bifuration ours when a limit yle of a �ow beomes tangent to thedisontinuity boundary (see Fig. 2.6b). This phenomenon is ommonly seen inappliations modelled with PWS systems.One of the tehnique used to study these non-smooth bifurations is based inthe use of Disontinuity Mappings [25℄. This map was introdued by Nordmarkin 1999 and now there exists a strategy to derive this map in n-dimensionalsystems.� Sliding bifurationsAnother lass of DIBs overs the interations between equilibrium points or limityles with sliding regions. In Fig. 2.6, a limit yle with part of its orbit in theswithing boundary is generated after the sliding bifuration. Some examples ofthis dynamis an be seen in ertain models of the basi d-d onverters, suhas the Buk onverter [92℄.A lassi�ation of sliding bifurations of equilibrium points in planar FilippovSystems an also be found in [73℄. Conerning bifurations of limit yles, earlyresults were presented in [47℄.� Boundary intersetion rossing/orner ollisionFinally, we onsider another kind of DIB given when an equilibrium point orlimit yle hits a (n− 2)-dimensional surfae formed by the intersetion of twodi�erent disontinuity manifolds (see Fig. 2.6d).Some dynamis observed in d-d onverters an be yielded by the intersetionof a limit yle with a orner in a swithing manifold. An example of thisphenomenon an be seen in [11℄, where a Buk onverter exhibits a suddentransition from a periodi orbit to a large-amplitude haos undergone by a orner-ollision bifuration.



2.2. Pieewise-smooth systems 212.2.3 Pieewise-smooth ontinuous mapsWe now onsider the family of maps whih are loally ontinuous pieewise-linearand draw our attention to a loal region in whih there exists only one boundary.Therefore, we an de�ne the following map
x 7→ f(x, µ) =

{
FA(x, µ), if H(x, µ) ≤ 0,

FB(x, µ), if H(x, µ) > 0.
(2.1)where x ∈ D ⊂ R

n, FA, FB : R
n × R 7→ R

n, µ ∈ R and H : R
n 7→ R are su�ientlysmooth and di�erentiable funtions of x. The ondition H(µ) = 0 de�ne impliitlythe boundary

ΣAB = {x ∈ D : H(x, µ) = 0},whih divides the region D into
SA = {x ∈ D : H(x, µ) ≤ 0},
SB = {x ∈ D : H(x, µ) > 0}.De�nition. x∗i is said to be an admissible �xed point of (2.1) if x∗i = Fi(x

∗

i ) and
x∗i ∈ Si. Otherwise, x∗i is onsidered a virtual �xed point if x∗i = Fi(x

∗

i ) and x∗i ∈ Sjbeing j 6= i for i = A or i = B.De�nition. x∗ij is said to be a boundary �xed point if Fi(x
∗

i ) = Fj(x
∗

j ) of (2.1), namely,
xij ∈ Σij , being i 6= j for i, j = A or i, j = B.Notie that these de�nitions an be extended easily to pieewise-smooth maps withmultiple borders. For the sake of larity, the stable and unstable �xed points will bedenoted by upper (i. e. A, B, ...) and lower ( i. e. a, b, ...) ase letters respetively.After undergoing the BC bifuration, there exist four main senarios involving �xedpoints or higher dimensional periodi orbits, whih will be de�ned as follows:� Persistene: At the border-ollision point, admissible and virtual �xed pointsplaed in Si turn into virtual and admissible �xed points in Sj.� Non-smooth fold: Two admissible �xed points x∗i and x∗j , being i 6= j ollapseat bifuration point as the parameter is varied.
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x∗ji() Non-smooth period-doublingFigure 2.7. Feasible senarios in a PWS map. Solid and dashed lines represent the evolution ofthe admissible and virtual �xed points in the phase spae, respetively, under the variation of µ.� Non-smooth period-doubling: After the �xed point x∗i hits the boundary, aperiodi orbit whih has one �xed point in eah region, appears.� Non-smooth period multiplying: Similarly to non-smooth periodi orbit, a

n-periodi orbit branhes after the border-ollision bifuration.� Chaos: Emerges when no others attrators are possible and the system doesnot diverge.An appropriate normal form will be de�ned in order to develop a strategy of lassi�-ation. This map an be obtained after linearizing (2.1) in the neighborhood of thebifuration point and introduing a hange of o-ordinates. The resulting normal formorresponds to a n-dimensional pieewise-linear map given by
x 7→ f(x, µ) =

{
NAx+Mµ if CTx ≤ 0,

NBx+Mµ if CTx > 0,
(2.2)where

NA =
∂FA

∂x
, NB =

∂FB

∂x
,

M =
∂FA

∂µ
=
∂FB

∂µ
, CT =

∂H

∂x
,evaluated at x = 0 and µ = 0.De�nition. σ+

A (σ+

B) are de�ned as the number of real eigenvalues of NA (NB) greaterthan 1. Similarly, σ−

A (σ−

B ) are said to be the number of real eigenvalues of NA (NB)less than −1.After having de�ned these parameters, we an present the theorem introdued byFeigin in [44, 45℄. The appearane of the following senarios when the BC ours willbe given if the following onditions are ful�lled:



2.3. Example: Analysis of a one-dimensional PWL map 23� Persistene: σ+

A + σ+

B is even.� Non-smooth fold: σ+

A + σ+

B is odd.� Non-smooth period-doubling: σ−

A + σ−

B is odd.The theorem will help us to analyze the non-smoothness of a one-dimensional PWLmap with two piees.
σ−

A + σ−

B σ+

A + σ+

B σ+

AA + σ+

AB Senarioseven even A↔ Beven odd A, b↔ ∅odd even even A↔ b, AB; A↔ b, abodd even odd A, ab↔ B; A, ab↔ bodd odd even A, b↔ AB; A, b↔ abodd odd odd A, b, ab↔ ∅Table 2.1. Classi�ation of the border-ollision bifurations2.3 Example: Analysis of a one-dimensional PWLmapThis setion deals with the analysis and lassi�ation of the border-ollision bifura-tions of the �xed points and higher periodi orbits of the simplest pieewise-linearontinuous map omposed by two piees. The results presented in this study are on-sidered as a �rst stage to understand the results presented in Chapter 3, where weanalyze a PWL map omposed by three piees.Let us onsider the following pieewise-linear map:
x 7→ f(x) =

{
αx + µ if x ≤ 0,

βx + µ if x > 0,
(2.3)where x ∈ R and α, β and µ are real parameters of the system.Aordingly with (2.1) and (2.3), we obtain

FA(x) = αx + µ and FB(x) = βx+ µ,
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a(d) ∅ ↔ a, b (α = 1.5, β = −1.5).Figure 2.8. Illustrations of the map (2.3) for di�erent values of α, β and µ, representing the fourpossible senarios.
H(x) = x.and hene

SA = {x ∈ R : x ≤ 0},
SB = {x ∈ R : x > 0}.Without loss of generality, the parameters α and β will be restrited to positive andnegative values respetively.2.3.1 Existene and stability of �xed pointsThe feasible �xed points of (2.3), whih will be alled x∗A and x∗B using the nomenla-ture proposed above, an be obtained applying FA(x∗A) = x∗A and FB(x∗B) = x∗B and
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Figure 2.9. Possible senarios for the one and two-periodi orbits of (2.3).hene,
x∗A =

µ

1 − α
and x∗B =

µ

1 − β
,whih will be admissible if

x∗A < 0 (2.4)and
x∗B > 0. (2.5)Therefore, from (2.4) and (2.5), x∗A and x∗B will exist for negative and positive valuesof µ respetively. Dealing with their stability, x∗A and x∗B will be stable provided that

α < 1 and β > −1 respetively. Then, four di�erent non-smooth senarios an takeplae as the parameter µ is varied depending on the parameters α and β:
A↔ B, A↔ b, ∅ ↔ a,B and ∅ ↔ a, b,where now the symbol ↔ means the variation of µ from negative to positive values.In Fig. 2.8, four diagrams representing the possible senarios have been depited fordi�erent values of the parameters.2.3.2 Existene and stability of period-two orbitsLet us now study the existene and stability of period-two orbits. As a result of thelinearity of the funtions FA and FB , orbits suh as AA, aa, BB and bb annot appear.



26 Chapter 2. Pieewise-smooth dynamial systemsConsequently, the period-two orbits must have the forms AB or ab, whih means thatone solution must be plaed in SA (x∗AB) whereas the other solution must be in SB(x∗BA). From the set of equations
x∗BA = αx∗AB + µ,

x∗AB = βx∗BA + µ,the following solution is straight forward,
x∗AB = µ

1 + β

1 − αβ
and x∗BA = µ

1 + α

1 − αβ
.The existene of the period-two orbit is guaranteed if x∗AB < 0 and x∗BA > 0. Hene,the orbit will only exist for positive values of µ if β < −1.Finally, the eigenvalue assoiated to the seond iteration of (2.3) orresponds to αβand thus, the stability will be proved if αβ > −1.The di�erent senarios whih an our have been depited in Fig. 2.9 where theondition of existene and stability have been plotted in the parameter spae {α, β}.2.3.3 Existene and stability of higher periodi orbitsAssuming the restritions of the parameters given above, it has been proved that onlythe higher periodi orbits with the form Ak−1B and ak−1b an exist [31℄. These orbitsare omposed by one point plaed in the region SB, whih must be positive to ful�lthe existene ondition, whereas the remainder points belong to the region SA andmust be positive. The possible senarios present at the border-ollision are proved tobe

A↔ b, ab, ..., ak−2b, Ak−1B,

A↔ b, ab, ..., ak−2b, ak−1b,

∅ ↔ a, b, ab, ak−1b.Therefore, only the periodi orbits Ak−1B an be stable in the map. Let us nowdevelop the existene ondition of this attrator.Assuming that the points omposing the k-periodi orbit are given by
x∗B, x∗A1

, x∗A2
, ... , x∗Ak−1

,the following set of equations an be easily obtained:
x∗A1

= βx∗B + µ, (2.6)
x∗Aj

= αx∗Aj−1
+ µ for 2 ≤ j ≤ k − 1, (2.7)

x∗B = αx∗Ak−1
+ µ. (2.8)



2.3. Example: Analysis of a one-dimensional PWL map 27The k-periodi orbit will exist provided that the following onditions are ful�lled:
x∗B ≥ 0, x∗A1

≤ 0, x∗A2
≤ 0, ... , x∗Ak−1

≤ 0.Let us suppose that x∗Ak−1
≤ 0. Then, taking into aount that

x∗Ak−2
=
x∗Ak−1

− µ

α
,and α > 0 and µ > 0, it is easy to prove that all points plaed in SA are also negative.Moreover, aording (2.6), x∗B will positive as β < 0. Therefore, the existene will beguaranteed if x∗Ak−1

≤ 0. From (2.6), (2.7) and (2.8), the expression for x∗Ak−1
an befound and is expressed as follows

x∗Ak−1
= µ

1 + α+ ...+ αk−2 + αk−2β

1 − αk−1β
≤ 0. (2.9)Taking into aount that 1 − αk−1β is positive, (2.9) will be ful�lled if

β < −
(

1 +
1

α
+

1

α2
+ ...+

1

αk−2

)
=

1 − αk−1

αk−1 − αk−2
.Let us de�ne the funtion ψk(α) as

ψk(α) =
1 − αk−1

αk−1 − αk−2
. (2.10)The existene of the k-periodi orbit Ak−1B/ak−1b is guarantied if µ > 0 and

β < ψk(α).Regarding the stability ondition, it an be obtained from the eigenvalue of the iter-ated map. It is easy to prove that this eigenvalue orresponds to αk−1β and hene,onsidering the following de�nition of the funtion φk(α) as
φk(α) = − 1

αk−1
, (2.11)the k-periodi orbit will be stable so long as

β > φk(α).Curves (2.10) and (2.11) have been depited in Fig. 2.10 for k = 2..4, togetherwith α = 1 and β = −1, to summarize the di�erent senarios studied in this setion.
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Figure 2.10. Possible senarios for the k-periodi orbits of (2.3) in the parameter spae {α, β}.Funtions ψk(α) and φk(α) have been plotted using dashed and solid lines respetivelyand olored zones stands for regions in whih an stable orbit exists. Notie that stablesolutions an only take plae if α < 1. Moreover, for values of α greater than one, theexistene of a is restrited to positive values of µ.The study of the existene of these periodi orbits reveals that stable �xed points andhigher-periodi orbit annot oexist.2.3.4 Robust haos. Bifuration diagramsNumerial simulations of the map (2.3) reveal the presene of haoti attrators in theone-dimensional PWL ontinuous map (see Fig. 2.11d). Their appearane is restritedto zones in whih any �xed point or periodi orbit is stable. It is proved that underthe onditions
ψk−1(α) < β < ψk(α) and β > φk(α),the map exhibits robust haoti dynamis [31℄. Robust means the no existene ofperiodi windows, in ontrast to nonlinear smooth systems suh as the logisti map.
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(a) A ↔ B (β = −0.5) (b) A ↔ b, AB (β = −1.5)

() A ↔ b, ab (β = −2.5) (d) A ↔ b, ab, A2B (β = −3.5)Figure 2.11. Bifuration diagrams using µ as the varying parameter and onsidering α = 0.5.To onlude, some relevant bifuration diagrams have been depited in Fig. 2.11 using
µ as varying parameter. Persistene, non-smooth period-doubling, robust haos andperiod-three orbit are illustrated in 2.11a, 2.11b, 2.11 and 2.11d respetively.





Chapter 3
Non-smooth dynamis of a three-pieepieewise-linear map

This hapter deals with the study of the dynamis of a three-pieeontinuous pieewise-linear map. Expressions for the existene andstability of the �xed points and period-two orbits are determined in arestrited set of parameters jointly with an extended lassi�ation ofthe border-ollision bifurations. The basins of attration in those setof parameters in whih oexistene of attrators an be found are alsodetermined. This analysis will help us to understand the dynamis ofthe SIMIMO onverter under both SPC and IC ontrols, whih willbe disussed in the following hapters.
3.1 De�nition of the mapLet us onsider the following three-piee pieewise-linear map

x 7→ f(x) =






FA(x, φ) if x ∈ SA,

FB(x, φ) if x ∈ SB,

FC(x, φ) if x ∈ SC ,

(3.1)where x ∈ D ⊂ R and Fi : R × R
5 7→ R, being i ∈ {A,B,C}.31



32 Chapter 3. Non-smooth dynamis of a three-piee pieewise-linear map

xn

xn+1

µ

µ− γτ

τ

Figure 3.1. The three-piee pieewise-linear map.The expressions for the linear funtions will be expressed as follows
FA(x, α, µ) = αx + µ, (3.2)

FB(x, α, β, µ) = (α+ β)x + µ, (3.3)
FC(x, α, β, γ, µ, τ) = (α+ β + γ)x+ µ− γτ. (3.4)Notie that the de�nition of the parameters onsidered here, where β (γ) orrespondsto the di�erene between the slopes of FA and FB (FB and FC). This property permitsto provide simpler expressions for the restrition of the parameters when adapting thedisrete-time model to the SIMIMO onverter in following hapters.The regions are de�ned as

SA = {x ∈ D : x ≤ 0}, (3.5)
SB = {x ∈ D : 0 < x ≤ τ}, (3.6)
SC = {x ∈ D : x > τ}, (3.7)and it is easy to prove that the boundaries are desribed by

ΣAB(x) = {x ∈ D : x = 0},
ΣBC(x) = {x ∈ D : x− τ = 0}.Therefore, the pieewise-linear map proposed here will be desribed by �ve parameters,whose domains are summarized in Table 3.1.Let us now explain the signi�ane of the restritions applied to the parameters.Firstly, α will be always onsidered positive and less or equal than one, thus the
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α [0, 1]

β (−∞, 0]

γ (−∞,∞]

µ (−∞,+∞)

τ (0,∞)Table 3.1. Domain of the parameters α, β, γ, µ, τ . The parameters must also ful�l the ondition
α + β + γ ≤ 1.

0

−1

−2

−3

0 1
α

β

A↔ B

A↔ b

Figure 3.2. Behavior of the �xed points x∗

A and x∗

B in the planar spae {α, β}. µ ∈ (−∞, µ0
AB) ↔

µ ∈ (µ0
AB , µ0

BC).
slope of FA will be always positive. Moreover, β is negative and onsequently, theslope of FB will be always less than the slope of FA, despite being positive or nega-tive, but less than 1. Finally, although γ an be positive or negative, the third slope(α + β + γ) must be less than 1.Conerning the de�nition of the boundaries, the �rst border has been plaed at x = 0in order to simplify the analysis and ensure the ontinuity of the map. In the same way,the seond boundary is plaed at x = τ , whih will be always positive to guaranteethat the map is divided into three piees.



34 Chapter 3. Non-smooth dynamis of a three-piee pieewise-linear map3.2 Existene and stability of �xed pointsThe map (3.1) presents the following �xed points:
x∗A =

µ

1 − α
,

x∗B =
µ

1 − (α+ β)
,

x∗C =
µ− γτ

1 − (α+ β + γ)
.Notie that the �xed point x∗A is not de�ned when α = 1. These �xed points willundergo a border-ollision bifuration when they hit any of the boundaries of themap, whih means that any of the following onditions ΣAB(x∗A) (or ΣAB(x∗B)) or

ΣBC(x∗B) (ΣBC(x∗C)) is ful�lled. Using µ as a varying parameter, the �xed points willross the boundaries ΣAB and ΣBC at the ritial values µ0
AB and µ0

BC respetively,given by (see Fig. 3.3)
µ0

AB = 0,

µ0
BC = τ(1 − (α+ β)).Let us now study the existene onditions of the �xed points. Firstly, x∗A will be anadmissible �xed point if x∗A < 0 and, taking into aount that 1− α > 0, x∗A will onlyexist if µ < 0. Moreover, its stability is always guarantied beause the range of α.Similarly, the �xed point x∗B will exist if x∗B > 0 and x∗B < τ . Considering that

1 − (α + β) > 0, the existene of x∗B will be proved if µ > µ0
AB and µ < µ0

BC ,whose value is always higher than µ0
AB and thus, x∗B is an admissible �xed point if

µ0
AB < µ < µ0

BC . In addition, its stability will be proved when α+ β > −1.Finally, the �xed point x∗C will be an admissible �xed point if x∗C > τ . Therefore,onsidering that α+ β + γ < 1, the existene ondition will be ful�lled if
µ− γτ > τ(1 − (α+ β + γ)),and hene, x∗C will exists if

µ > µ0
BC .The stability of x∗C is guaranteed if α+ β + γ > −1.These results have been summarized in Fig. 3.2 and Fig. 3.4, in whih the existeneand stability onditions have been depited in the two-parameter spae {α, β} and {α+

β, γ} respetively. Some remarkable onlusions an be obtained from our analysis:the attrator A is always presented for negative values of µ and none of the three �xedpoints an oexist in a given set of parameters.
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Figure 3.4. Behavior of the �xed points x∗

B and x∗

C in the planar spae {α + β, γ}. µ ∈
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AB , µ0

BC) ↔ (µ0
BC , +∞).



36 Chapter 3. Non-smooth dynamis of a three-piee pieewise-linear map3.3 Existene and stability of two-periodi solutionsPeriod-two solutions of the map (3.1) orrespond to the pair of �xed points of theseond iterative maps given by
Fi(Fj(x, α, β, γ, µ, τ)) and Fj(Fi(x, α, β, γ, µ, τ)), (3.8)where i, j an be A, B or C. These orbits, whih will be named (x∗ij , x

∗

ji), are admissibleif x∗ij ∈ Si and x∗ji ∈ Sj . Beause of the linearity of the map, the two-periodi orbits
(x∗ii, x

∗

ii), whih have both �xed points in the same region, annot be admissible.Therefore, only three possible two-periodi orbits an be found in this three-pieemap: (x∗AB , x
∗

BA), (x∗BC , x
∗

CB) and (x∗AC , x
∗

CA). In this setion, the existene andstability of eah of these possible attrators will be analyzed in detail.3.3.1 Two-periodi orbit (x∗
AB, x∗

BA)The orbit (x∗AB , x
∗

BA) has its �xed points plaed in the regions SA and SB respetively.Therefore, from (3.5) and (3.6), the onditions of existene of x∗AB and x∗BA are givenby
x∗AB < 0, (3.9)

x∗BA > 0 and x∗BA < τ (3.10)respetively, where the expressions of both points x∗AB and x∗BA are expressed asfollows
x∗AB =

1 + α+ β

1 − α(α+ β)
µ, x∗BA =

1 + α

1 − α(α + β)
µ.Considering the domain of the parameters, the expressions 1 − α(α + β) and 1 + αare always positive and thus, the �rst part of the ondition (3.10) an only be ful�lledfor µ > µ0

AB . Moreover, from the ondition (3.9) and assuming positive values of µ,the following ondition must be also ful�lled to guarantee the existene of the periodisolution:
α+ β < −1.Notie that this inequality orresponds to the instability ondition of the �xed point

x∗B seen above. Finally, the �rst part of the ondition (3.10) implies that
µ < τ

1 − α(α + β)

1 + α
= µ1

BC . (3.11)
µ1

BC is de�ned as the ritial value of µ at whih the point x∗BA reahes the boundary
ΣBC (see Fig. 3.3b). Notie that µ1

BC < µ0
BC . Conerning the stability of the two-periodi orbit, it is guaranteed if

α(α + β) > −1. (3.12)
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A↔ b, AB

A↔ b, ab

Figure 3.5. Existene and stability of x∗

A and x∗

B and two-periodi orbit (x∗

AB, x∗

BA) in theplanar spae {α, β}. µ ∈ (−∞, µ0
AB) ↔ (µ0

AB, µ1
AB). Solid and dotted lines orrespond to theonditions α + β = −1 and α(α + β) = −1 respetively.All these results are summarized in Fig. 3.5, in whih the urves of existene andstability for the �xed points A and B and the two-periodi orbit AB/ab are plotted.3.3.2 Two-periodi orbit (x∗

BC , x∗
CB)Similarly, the periodi orbit (x∗BC , x

∗

CB) has the �xed points in the regions SB and SCrespetively. Therefore, this two-periodi orbit will exist so long as
x∗BC > 0, x∗BC < τ and x∗CB > τ, (3.13)where the expressions of the �xed points of the attrator an be easily obtained from(3.3), (3.4) and (3.8) and are given by

x∗BC =
µ(1 + α+ β + γ) − γτ

1 − (α+ β)(α + β + γ)
and x∗CB =

µ(1 + α+ β) − γτ(α + β)

1 − (α+ β)(α + β + γ)
.From the two last onditions of (3.13), we obtain the following inequalities:

xBC − τ =
(1 + α+ β + γ) (µ− τ (1 − (α+ β)))

1 − (α+ β)(α + β + γ)
=

(1 + α+ β + γ)
(
µ− µ0

BC

)

1 − (α+ β)(α+ β + γ)
< 0

xCB − τ =
(1 + α+ β) (µ− τ (1 − (α+ β)))

1 − (α + β)(α+ β + γ)
=

(1 + α+ β)
(
µ− µ0

BC

)

1 − (α+ β)(α + β + γ)
> 0. (3.14)
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Figure 3.6. Existene and stability of x∗

B, x∗

C and the two-periodi orbit (x∗

BC , x∗

CB) in theplanar spae {α + β, γ}. µ ∈ (µ0
AB, µ0

BC) ↔ (µ0
BC , µ1

AB) if µ1
AB > µ0

BC or µ ∈ (µ0
AB, µ0

BC) ↔

(µ0
BC , +∞) if µ1

AB < µ0
BC .whih have been fatorized to make the analysis easier. Notie that the existene ofthis periodi orbit requires that 1 + α+ β + γ and 1 + α+ β must have di�erent sign.Hene, the orbit BC/bc will existif γ < 0, and α+ β + γ < −1 and α+ β > −1, (3.15)or if γ > 0, and α+ β + γ > −1 and α+ β < −1. (3.16)These results are illustrated in Fig. 3.6, where the ritial onditions α+ β + γ = −1and α+β = −1 have been depited using blue lines. Moreover, in the region olored inblue, the set of parameters ful�l (3.15) and (3.16) and therefore, the orbit (x∗BC , x

∗

CB)is admissible.Let us now fous in the range of µ whih guaranties the existene of the two-periodiorbit. For (3.15), when the denominator of (3.14) is negative, the admissibility is givenwhen µ < µ0
BC . Therefore, if γ < 0, the existene of the orbit is given by

µ < µ0
BC and 1 − (α+ β)(α + β + γ) < 0,

µ > µ0
BC and 1 − (α+ β)(α + β + γ) > 0.
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µ < µ0

BC and 1 − (α+ β)(α + β + γ) > 0,

µ > µ0
BC and 1 − (α+ β)(α + β + γ) < 0.In Fig. 3.6, the di�erent senarios have been represented speifying the di�erentobits whih are admissible in both sides of the border-ollision bifuration at theritial value of µ = µ0

BC . The results obtained are harateristi of a two-piee PWL,beause only one boundary has been taken into aount. Notie also the symmetry isthe di�erent senarios illustrated in Fig. 3.6.Nevertheless, due to the map (3.1) is omposed by three piees, there exists anotherboundary when the �xed point x∗BC reahes ΣAB (x∗BC = 0). Therefore, from the �rstondition of (3.13), when 1 − (α+ β)(α + β + γ) > 0 and α+ β + γ > −1, we obtainthe ondition
µ >

γτ

1 + α+ β + γ
= µ1

AB. (3.17)The ritial value µ1
AB is de�ned as the value of µ for whih x∗BC reahes the boundary

ΣAB (see Fig. 3.3). Therefore, onsidering all the solutions of the �rst ondition of(3.13) it is obtained:if 1 − (α+ β)(α + β + γ) > 0, and α+ β + γ > −1 and µ > µ1
AB,if 1 − (α+ β)(α + β + γ) > 0, and α+ β + γ < −1 and µ < µ1
AB,if 1 − (α+ β)(α + β + γ) < 0, and α+ β + γ > −1 and µ < µ1
AB,if 1 − (α+ β)(α + β + γ) < 0, and α+ β + γ < −1 and µ > µ1
AB.In order to establish the range of µ where the orbit is admissible in eah region of theparameter spae, it is required to determine the relation between both ritial values

µ0
BC and µ1

AB. Hene, from µ1
AB < µ0

BC , the following ondition is obtained:
1 − (α+ β)(α + β + γ)

1 + α+ β + γ
> 0.Therefore, the orbit (x∗BC , x

∗

CB) will be admissible so long asfor 1 − (α+ β)(α + β + γ) > 0 and α+ β + γ > −1, µ1
AB < µ < µ0

BC ,for 1 − (α+ β)(α + β + γ) > 0 and α+ β + γ < −1, µ0
BC < µ < µ1

AB,for 1 − (α+ β)(α + β + γ) < 0 and α+ β + γ > −1, µ0
BC < µ < µ1

AB,for 1 − (α+ β)(α + β + γ) < 0 and α+ β + γ < −1, µ1
AB < µ < µ0

BC .



40 Chapter 3. Non-smooth dynamis of a three-piee pieewise-linear mapIt is important to remark that µ1
AB an be negative (and then µ1

AB < µ0
AB) for negativevalues of γ and α+β+ γ > −1 or for positive values of γ and α+ β+ γ < −1. Notiethat is this region in the parameter spae, the orbit (x∗BC , x

∗

CB) annot exist.Finally, the stability of the orbit BC/bc will be given if the following ondition isful�lled:
−1 < (α + β)(α+ β + γ) < 1.Notie that the ondition (α+β+ γ)(α+β) = 1 has also taken part in the analysis ofthe existene of the orbit. The ondition (α+β+γ)(α+β) = −1 has been representedin Fig. 3.6 using a dotted line.3.3.3 Two-periodi orbit (x∗

AC , x∗
CA)The �xed points of the last two-periodi orbit (x∗AC , x

∗

CA) are given by the expressions
x∗AC =

µ(1 + α+ β + γ) − γτ

1 − α(α + β + γ)
and x∗CA =

µ(1 + α) − αγτ

1 − α(α+ β + γ)
,whose existene onditions, taking into aount that x∗AC and x∗CA are in SA and SCrespetively, an be expressed as

x∗AC < 0 and x∗CA > τ. (3.18)From the �rst part of (3.18), and taking into aount that 1 − α(α+ β + γ) is alwayspositive, the (x∗AC , x
∗

CA) period-two orbit will exist if
α+ β + γ < −1 and µ > µ1

AB,or
α+ β + γ > −1 and µ < µ1

AB.From the seond part of the ondition (3.18), we obtain a omplementary existeneondition, expressed as
µ > τ

(
1 − α(α + β)

1 + α

)
= µ1

BC .Finally, the stability is given by the ondition α(α+β+γ) > −1 and thus, (x∗AC , x
∗

CA)will be stable (attrator AC) if
γ > − 1

α
− (α+ β).



3.3. Existene and stability of two-periodi solutions 41

0

1

2

3

−1

−2

−3

−1−2−3−4
β

γ

1
b2 b3
b 4b

5
b 6b

7 b

8 b

9 b

10
b

11b 12
b

13
b 14

b

15b 16b

Figure 3.7. Existene and stability of the period 1 and 2 orbits in the parameter spae {β, γ} for
α = 0.5. The di�erent attrators of eah region are summarized in the Tables 3.2, 3.3, 3.4, 3.5and 3.6. The grey dots represent the sets of parameters used in Figs. 3.8 and 3.9.All these results are summarized in Fig. 3.7, where the existene and stability urves ofperiod-one and two orbits split the parameter spae {β, γ} into sixteen zones. Thoughthese urves have been obtained using the value α = 0.5, the value of this parameterdoes not hange qualitatively the regions in the parameter spae {β, γ}. Eah regionhas di�erent attrators depending on the parameter µ, whih are resumed in Tables3.2, 3.3, 3.4, 3.5 and 3.6 depending on the relationship between the ritial values µ0

AB,
µ0

BC , µ1
AB and µ1

BC .To sum up, we summarized the most important results whih an be obtained in theanalysis of the existene and stability of the period 1 and 2 orbits:� For µ < 0, there is only the attrator A.� Only the attrators C and AC an exist for higher values of µ.� The attrator AC appears in all zones exept in zone 1.� For µ > µ0
BC , the attrator C exists if α+ β + γ > −1 (Zones 1, 11-16).



42 Chapter 3. Non-smooth dynamis of a three-piee pieewise-linear map� The attrator AC an oexist with the �xed point B in Zone 5, and C, in zones
11 and 12.Zone µ < µ0

AB µ0
AB < µ < µ0

BC µ0
BC < µ < µ1

AB µ > µ1
AB

1 A B C C

2 A B c,BC c,AC

3 A B c,BC c, ac

4 A B c, bc c, acTable 3.2. Di�erent senarios of the map in zones 1 to 4 (µ0
AB < µ0

BC < µ1
AB)Zone µ < µ0

AB µ0
AB < µ < µ1

AB µ1
AB < µ < µ0

BC µ > µ0
BC

5 A B B, bc, AC c,AC

6 A B B, bc, ac c, acTable 3.3. Di�erent senarios of the map in zones 5 to 6 (µ1
BC < µ1

AB < µ0
BC)Zone µ < µ0

AB µ0
AB < µ < µ1

BC µ1
BC < µ < µ0

BC µ > µ0
BC

7 A b,AB b,AC c,AC

8 A b,AB b, ac c, ac

9 A b, ab b, ac c, ac

10 A b, ab b, AC c,ACTable 3.4. Di�erent senarios of the map in zones 7 to 10 (µ1
AB < µ1

BC < µ0
BC)

µ < µ0
AB µ0

AB < µ < µ1
BC µ1

BC < µ < µ0
BC µ0

BC < µ < µ1
AB µ > µ1

AB

11 A b, ab b, AC C, bc, AC C

12 A b,AB b,AC C, bc, AC CTable 3.5. Di�erent senarios of the map in zones 11 to 12 (µ1
AB < µ1

BC < µ0
BC)3.4 BC bifurations of the �xed points and period-two solutionsAs it has been introdued above, the �xed points A and C present a border-ollisionbifuration when they ross the boundaries ΣAB and ΣBC respetively. In addition, Ban have two border-ollision bifurations when the attrator rosses the boundaries
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µ < µ0

AB µ0
AB < µ < µ1

BC µ1
BC < µ < µ1

AB µ1
AB < µ < µ0

BC µ > µ0
BC

13 A b, ab b, AC b,BC C

14 A b,AB b,AC b,BC C

15 A b, ab b, AC b, bc C

16 A b,AB b,AC b, bc CTable 3.6. Di�erent senarios of the map in zones 13 to 16 (µ1
AB < µ1

BC < µ0
BC)

ΣAB or ΣBC . Dealing with the period-two orbits, AB or BC will present anotherbifuration when the �xed point x∗AB or x∗BC reah the boundaries ΣAB and ΣBCrespetively and �nally, orbit AC will present two bifurations when the �xed points
x∗AC and x∗CA ross the boundaries ΣAB or ΣBC respetively.The di�erent dynamial senarios in whih border-ollision bifurations are involvedan be seen in Fig. 3.8 and Fig. 3.9, where sixteen bifuration diagrams have beendepited using µ as the varying parameter and using sets of parameters plaed in eahregion de�ned previously in Fig. 3.7. Moreover, in Fig. 3.10 two bifuration diagramare depited using the same set of parameters in the Zone 6 (Fig. 3.10a,b), 10 (Fig.3.10) and 13 (Fig. 3.10d) to show the oexistene of two attrators.In Table 3.7, the di�erent border-ollision bifurations appeared at the ritial valuesof µ are lassi�ed using the strategy of lassi�ation presented in [31℄, whih is basedon the analysis of the eigenvalues of the maps involved in eah bifuration at thebifuration point and has been reviewed in Chapter 2. Notie that in all ases σ+

A =

σ−

A = σ+

B = σ+

C = 0 and σ+

AB = σ+

AC = 0. Depending on the values of σ−

B , σ−

C , σ−

AB ,
σ−

BC , σ−

AC and σ+

BC at the bifuration point, the senarios found are persistene of the�xed point or the period-2 orbit, non-smooth fold and non-smooth period-doubling.Furthermore, in some regions it is needed to analyze the existene and stability ofhigher periodi orbits.
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(a) Zone 1: (−0.2,−0.7) (b) Zone 2: (−0.2,−1.4) () Zone 3: (−0.2,−3.0)
(d) Zone 4: (−0.1,−3.0) (e) Zone 5: (−1.3,−1.0) (f) Zone 6: (−1.3,−2.0)
(g) Zone 7: (−1.6,−0.2) (h) Zone 8: (−1.6,−2.2) (i) Zone 9: (−2.6,−0.2)Figure 3.8. Bifuration diagrams with µ as varying parameter for negative values of γ. Parameters:

α = 0.5, τ = 0.05 and (β, γ) are in the aptions. Legend: Red doted lines for unstable orbits,blak solid lines for stable one-periodi orbits and blue, red and green dashed lines for the orbits
AB, BC and AC respetively.
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(a) Zone 10: (−2.6, 0.4) (b) Zone 11: (−3.0, 2.0) () Zone 12: (−1.8, 0.5)
(d) Zone 13: (−2.6, 2.0) (e) Zone 14: (−1.6, 1.5) (f) Zone 15: (−3.0, 3.0)

(g) Zone 16: (−2.4, 2.6)Figure 3.9. Bifuration diagrams with µ as varying parameter for positive values of γ. Parameters:
α = 0.5, τ = 0.05 and (β, γ) are in the aptions. Legend: Red doted lines for unstable orbits,blak solid lines for stable one-periodi orbits and blue, red and green dashed lines for the orbits
AB, BC and AC respetively.
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(a) Zone 6: Left-Right (b) Zone 6: Right-Left

() Zone 10 (d) Zone 13Figure 3.10. Bifuration diagrams with µ as varying parameter. Parameters (α, β, γ and
τ ): (a,b) Zone 6: (0.5,−1.3,−2.0, 0.05), () Zone 10: (0.5, −2.6, 0.4, 0.05), (d) Zone 13:(0.5,−2.6, 2.0, 0.05).
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Zones µ Senario σ−

B σ−

C σ−

AB σ−

BC σ−

AC σ+

BC Type
1..6 µ0

AB A↔ B 0 P
7, 8, 12, 14 µ0

AB A↔ b, AB 1 0 NS PD
9..11, 13 µ0

AB A↔ b, ab 1 1 HPO/C
1 µ0

BC B ↔ C 0 0 P
2..3 µ0

BC B ↔ c, BC 0 1 0 0 NS PD
4 µ0

BC B ↔ c, bc 0 1 1 0 HPO/C
5..6 µ0

BC B, bc↔ c 0 1 1 1 NS PD
7..10 µ0

BC b↔ c 1 1 P
11, 12 µ0

BC b↔ C, bc 0 1 NS PD
13, 14 µ0

BC C ↔ b, BC 0 1 NS PD
2, 14 µ1

AB BC ↔ AC 0 0 0 P
4, 13 µ1

AB bc↔ ac 1 1 0 P
3 µ1

AB BC ↔ ac 0 1 0 HPO/C
5, 11, 12 µ1

AB ∅ ↔ bc, AC 0 0 1 NS F
6 µ1

AB ∅ ↔ bc, ac 0 1 1 NS F
7, 12, 14 µ1

BC AB ↔ AC 0 0 P
10, 11, 13 µ1

BC ab↔ AC 1 0 HPO/C
9 µ1

BC ab↔ ac 1 1 P
8 µ1

BC AB ↔ ac 0 1 HPO/CTable 3.7. Bifurations of the �xed points and two-periodi orbits. P: persistene, NS PD:Non-smooth period-doubling, NS F: Non-smooth fold, HPO/C: higher periodi orbit or haos.



48 Chapter 3. Non-smooth dynamis of a three-piee pieewise-linear map3.5 Higher periodi orbits and haosThe map exhibits a rih variety of higher periodi orbits (see Fig. 3.11) due to thepresene of two boundaries. In this setion, some results dealing with these orbits willbe disussed. Nevertheless, a omplete lassi�ation of the possible senarios involvinghigher periodi orbits is out of the sope of this dissertation.In ontrast to the higher periodi orbits in a two-piee map, other onditions of ex-istene must be taken into onsideration. The set of periodi orbits of the forms
AkB/akb and BkC/bkc will always present a border-ollision bifuration when one ofthe �xed points of the attrator reahes one of the boundaries. For AkB/akb orbits,the border-ollision will be given when the �xed point plaed in SB reahes the bound-ary ΣBC (Fig. 3.11a,b), whereas for BkC/bkc orbits, the bifuration will appear whenthe lowest �xed point in SB reahes the boundary ΣAB (Fig. 3.11). Then, di�er-ent senarios an appear as persistene (Fig. 3.11a), period-doubling (Fig. 3.11) orhaos (Fig. 3.11b). The border-ollision bifuration of the AkB and BkC modes willbe given at the ritial values

µk
BC = τ

1 − αk(α+ β)

1 − αk+1
(1 − α),

µk
AB = − −γτ(1 − (α+ β))

1 + γ − (α+ β)k(α+ β + γ)
,respetively.Although the AkB/akb and BkC/bkc modes annot be admissible for high values of

µ, from a ritial value of µ, the orbits of the form AkC/akc an appear and willnot present border-ollision bifurations as µ inreases (see Fig. 3.11d). Due to thefat that the �xed point plaed in SC to has to be greater than ΣBC we obtain thefollowing ondition of µ
µ > τ

1 − αk(α+ β)

1 − αk+1
(1 − α) = µk

BC .In addition, the highest point in SA must be negative, and hene
µ > − −γτ(1 − α)αk−1

1 − αk−1((α− 1)(α+ β + γ) + α)
= µk

AC .3.6 Basins of attrationThe study of the existene and stability of the period-one and two orbits has shownthe oexistene of the attrators B and AC in the zone 5, and the attrators C and
AC in the zones 11 and 12. In both ases, bc is an admissible period-two orbit andtakes a relevant part in the basin of attration of eah pair of attrators.
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(a) Zone 9, (0.5,−3.6,−0.2, 0.1) (b) Zone 9, (0.5,−3.6,−1.2, 0.017)

() Zone 4, (0.5,−0.15,−5, 0.4) (d) Zone 6, (0.5,−1.4,−2.9, 0.69)Figure 3.11. Bifuration diagrams with µ as varying parameter. Parameters (α, β, τ , γ and µ)are in the aption.Let us study the �rst ase, whih is illustrated in Fig. 3.12. Basins of attrations forthe solutions C and AC in zone 11 and 12 an be obtained similarly. As it an beappreiated, the basin of attration of B (blue) is omposed by in�nite segments, eahof whih surrounded by segments of the basin of attration of the orbit AC (green).The main basin, whih surrounds the �xed point B, is limited by the �xed points ofthe unstable orbit (x∗BC , x
∗

CB). The next segment of this basin is bounded by x′A1 and
x′′A1 (left side) and x′C1 and x′′C1 (right side), being

x∗CB = FA(x′A1), x∗BC = FA(x′′A1),

x′A1 = FC(x′C1), x′′A1 = FC(x′′C1).Therefore, the expressions for x′A1, x′′A1, x′C1 and x′′C1 are given by
x′A1 =

1

α
(x∗CB − µ) , x′′A1 =

1

α
(x∗BC − µ) ,
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x′C1 =

1

α (α+ β + γ)
(x∗CB − µ− (µ− γτ)α) ,

x′′C1 =
1

α (α+ β + γ)
(x∗BC − µ− (µ− γτ)α) .The remainder segments of the basin are limited by x′An and x′′An in the region SAand x′Cn and x′′Cn in SC (see Fig. 3.12), whose expressions are given by

x′An =
x∗CB − µ

(
1 + α+ α2 + · · ·αn−1

)

αn
=

1

αn

(
x∗CB − µ(1 − αn)

1 − α

)

x′′An =
x∗BC − µ

(
1 + α+ α2 + · · ·αn−1

)

αn
=

1

αn

(
x∗BC − µ(1 − αn)

1 − α

)

x′Cn =
x′An − µ+ γτ

α+ β + γ
=

1

αn(α + β + γ)

(
x∗CB − µ(1 − αn)

1 − α
− (µ− γτ)αn

)

x′′Cn =
x′′An − µ+ γτ

α+ β + γ
=

1

αn(α + β + γ)

(
x∗BC − µ(1 − αn)

1 − α
− (µ− γτ)αn

)being n = 1, 2, 3..+ ∞.The size of eah basin of the attrator B is given by the expressions
x′An − x′′An =

x∗CB − x∗BC

αn

x′′Cn − x′Cn =
x∗BC − x∗CB

αn(α+ β + γ)whih inreases with n.
−0.4 0.4−0.2

x

0.0

0

0.2

Bx∗AC x∗CA

x∗BCx
∗

CBx′A1x′′A1x′A2x′′A2 x′C1x
′′

C1 x′C2 x′′C2

xFigure 3.12. Basin of attration in region 5. Parameters (α, β, γ, τ , µ): (0.8, −1.79, −0.2, 0.1,
0.15). Colors: Green (x∗

AC , x∗

CA), blue (B).3.7 Non-smooth dynamis for α = 1The disrete-time analysis of the SITITO onverter that will be explained in the fol-lowing hapters reveals that the dynamis of this onverter governed by the SPC
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Figure 3.13. Existene and stability of the period 1 and 2 orbits for α = 1.
ontrol an be modelled by means of a three-piee pieewise-linear map. Similarly, thedisrete-time map that desribes the dynamis of the onverter under the ontrol ICis omposed by three or four trams. Due to the fat that the �rst slope of both mapswill be established to 1, we have been motivated to partiularize the analysis realizedabove for α = 1.The �rst onsequene produed when α is fored to 1 is the disappearane of the �xedpoint x∗A. In addition, the stability onditions of the attrators AC and AB beomesequivalent to the stability of x∗C and x∗B respetively. As a result, the possible senariosare signi�antly redued as Fig. 3.13 illustrates.Moreover, for negative values of γ, the only possible attrators of the map are: C,plaed in zone 1, and BC, whih only appears in zone 3. Therefore, the oexistene of
B and AC in zone 5 is now avoided. Zones 7 and 8, in whih AB was allowed, now haveollapsed and disappeared. Notie that BC is the only period-two orbit permitted.Higher periodi orbits suh as BkC an also be found in zone 4. Otherwise, for positivevalues of γ, C is a feasible attrator whih an be found in zones 1, 11 and 13. Inaddition, in the zone 11 the attrator AC oexists with C. Notie that now bothattrators loose the stability simultaneously.



52 Chapter 3. Non-smooth dynamis of a three-piee pieewise-linear map3.8 ConlusionsThe existene and stability onditions of the �xed points and period-two orbits havebeen obtained in a three-piee pieewise-linear map in a restrited range of parame-ters. Furthermore, the border-ollision bifurations, whih an be produed by theseattrators, have been deteted and lassi�ed.This study has revealed an inrement in the omplexity of the dynamial behavior inomparison with the two-piee pieewise-lineal ontinuous map. Firstly, the number ofdi�erent patterns of bifuration reported has inreased signi�antly owing to, in part,the presene of two boundaries. This fat has implied the existene of di�erent ritialvalues of µ, whih an also appear in a di�erent order of ourrene, inrementingthe variety of senarios. Furthermore, the study has shown di�erent regions in theparameter spae in whih there are oexisting attrators, suh as B and AC or C, and
AC and therefore, hysteresis in the bifuration diagrams. The analytial expressionswhih de�ne the boundaries of the basin of attration have been developed for the �rstpair of attrators.An overview of the existene of higher periodi orbit has been also inluded. Never-theless, a omplete lassi�ation of the higher periodi orbits will be the subjet offuture researh.Finally, the bifuration analysis has been partiularized for α = 1. These results willpermit us to improve the omprehension of the dynamis of the SITITO onvertergoverned by SPC and, partially, by IC ontrol.



Chapter 4
Analysis of the SITITO onverter withSingle-Phase Control

In this hapter, a Single-Indutor Two-input Two-output(SITITO) d-d onverter, whih is apable of regulating two asym-metri outputs with di�erent polarities by means of a PWM ontrol,will be analyzed. As a �rst step, averaging tehnique is used to dealwith low-sale bifurations, then disrete-time models are developedto predit bifurations onneted to the ripple of the indutor urrentand to aount for non-smooth bifurations. The disrete formula-tion will be developed aording to the formalism used in the previoushapter.
4.1 Desription of the d-d onverter4.1.1 Power stage desriptionThe simpli�ed sheme of the power stage of a Single-Indutor Two-Input Two-Output(SITITO) d-d onverter is shown in Fig. 4.1. This stage inludes the unregulatedsoure voltage VIN , the indutor with indutane L and series resistane rL and thepositive and negative loads with resistane RP and RN and �lter apaitane CP and
CN respetively. Two pair of swithes are also required in the iruit, whih will be53
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RN CN vN RP CP vP

LiL rL

DA DB

SA

SBVIN

Figure 4.1. Shemati of the power stage of a single indutor d-d onverter with positive andnegative loads.implemented by means of two MOSFET transistors, SA and SB and two diodes DAand DB. The ation of SA and SB will be determined by the ontrol of the onverter,whereas the ation of both diodes is omplementary to the orresponding ontrolledswithes SA and SB. Therefore, SA an onnet the indutor to the soure (ON ase)or to the negative hannel (OFF ase) whereas SB an onnet the other terminal ofthe indutor to the ground (ON ase) or to the positive hannel (OFF ase).Assoiated to the energy storage elements of this stage (the indutor and the positiveand negative �lter apaitors) are the following three state variables: urrent iL, andboth apaitor voltages vP and vN respetively.4.1.2 Operation of the onverterThe operation of this onverter is based on suitable toggling among di�erent topologiesgiven by the onvenient ation of both swithes. In the ontinuous ondution mode(CCM), where the indutor urrent is always de�ned positive, four feasible topologiesan operate in onverter, whose shemes are represented in Fig. 4.2 and summarized inTable 4.1. The T1 topology (see Fig. 4.2a) is given when both ontrolled swithes areON and, onsequently, both diodes are open. In this topology, the unregulated souretransfers energy to the indutor by inreasing iL. The T2 on�guration (see Fig. 4.2b)is operating when the swith SB hanges to OFF while SA remains ON, then the indutortransfers energy only to the positive load, whereas the T3 (Fig. 4.2) on�gurationappears when the swith SA hanges to OFF while SB remains ON, then the indutortransfers energy only to the negative load. In the last topology T4 (Fig. 4.2d), whihorresponds to both swithes open, the energy �ows from the indutor to both positiveand negative loads, so this on�guration orresponds to a series onnetion of the loadsand the indutor.
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RP CP vP RN CN vN

LiL rL

VIN (a) T1: SA ON and SB ON
RP CP vP RN CN vN

LiL rL

VIN (b) T2: SA ON and SB OFF
RN CN vN RP CP vP

LiL rL

() T3: SA OFF and SB ON
RN CN vN RP CP vP

LiL rL

(d) T4: SA OFF and SB OFFFigure 4.2. The four feasible topologies of the SITITO onverter in CCM.
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SA SB

T1 ON ON
T2 ON OFF
T3 OFF ON
T4 OFF OFFTable 4.1. De�nition of the topologies of the SITITO onverter in CCM.The disontinuous ondution mode (DCM) an also be found in the SITITO onverterproposed and hene, another topology must be taken into aount in the dynamis ofthe onverter when the indutor urrent drops to zero. In this topology, both diodesand both transistors remain open.As it has been said before, the operation of the onverter will alternate among thedi�erent topologies to ahieve the regulation. Notie that if the swithing sequenereahed is T1 → T2, the iruit will work as a boost onverter being the negative outputvoltage vN = 0. Similarly, if the swithing sequene beomes T1 → T3, the iruit willoperate as a buk-boost onverter and hene, vP = 0.4.1.3 Control PWMThe aim of the ontrol of this onverter is the regulation of voltage outputs vP (t)and vN (t) to adjust them to the orresponding desired inputs VP and VN respetively,whih, in general, will be unbalaned. The ontrol must provide two binary signals

uA(t) and uB(t) in order to drive the orresponding swithes SA and SB and thus,two loops have been inluded to the ontrol to ahieve the regulation.Figure 4.3 shows a diagram of the ontrol proposed for the onverter. As it an be seenin the �gure, the ontrol will be given, as usual in PWM ontrollers, by the omparisonof two signals. Partiularly, the ontrol ompares the peak referenes vA(t) and vB(t),whih will inlude a modulating signal vM (t) of period T , with vI(t). This signalis proportional to the indutor urrent and will be ommon for both hannels. Itsexpression is given by
vI(t) = rSiL. (4.1)where rS is the sensing resistane.The expressions for both peak referenes vA(t) and vB(t) are given by

vA(t) = gPA(VP −vP (t)−σP (t))+gNA(vN (t)−VN +σN (t))−gFAVIN +vM (t), (4.2)
vB(t) = gPB(VP −vP (t)−σP (t))+gNB(vN (t)−VN +σN (t))−gFBVIN +vM (t). (4.3)
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Figure 4.3. Shemati of the PWM ontrol of the SITITO onverter.Finally, the integral error variables σP (t) and σN (t) are given as follows
σP (t) =

1

τP

∫
(vP (t) − VP )dt, (4.4)

σN (t) =
1

τN

∫
(vN (t) − VN )dt, (4.5)where τP and τN are the orresponding time onstants assoiated with the integralterms. σP (t) and σN (t) will add two state variables of the system.Notie that eah peak referenes vA(t) and vB(t) inlude the following terms:� Two proportional integral terms with gains gPA and gNA (gNB and gPB) tominimize error signals.� A feedforward term to prevent from disturbanes of the soure, whose gain is

gFA (gFB).� A modulating sawtooth funtion, vM , whose expression will depend on the stateof the swithes that must be synhronized. Partiularly, in the ontrol proposed
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t

t t+ T

VU

VLFigure 4.4. The modulating signal vM (t)here, the ON state of both hannels will be synhronized with an external lok.Therefore, the expression of the modulating signal must be given by
vM (t) = VU − (VU − VL)mod( t

T
, 1

)
,being VU and VL the upper and lower value and T , its period (see Fig. 4.4).In order to avoid multiple swithing during a single period, two Set-Reset edge-triggered Flip-Flops are inluded taking into aount that their on�guration willdepend on the synhronized state. In ase of synhronizing the ON state, the externallok must be onneted to the SET input of the Flip-Flops of both hannels andthus, the ON state of both swithes will be fored to be synhronized with the lok,whih will also imply the simultaneity of both ON swithes. Conversely, the signal vImust be onneted to the RESET terminal. Consequently, the OFF state of SA and

SB swithes, whih are outputs of the Q hannels, will be reahed when onditions(4.6) and (4.7) are ful�lled, thus these swithes will be asynhronous and, in general,non simultaneous.
vA(t) = vI(t), (4.6)
vB(t) = vI(t). (4.7)Before presenting the di�erent modes of operation of the onverter, let us de�ne theduty yles dA and dB as the time interval during whih the swithes SA and SBremain losed (ON) respetively, and thus
dA =

tA,ON

T
,

dB =
tB,ON

T
,where tA,ON (tB,ON ) is the time interval for whih the swith SA (SB) is in the state ON.Let us also de�ne the binary signals uA and uB. Their values are related with the state
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uA

uB

0

1

0

1

t

t
dAT

dBT

t t + T

T1 T3 T4(a) MN : dA < dB

uA

uB

0

1

0

1

t

t
dAT

dBT

t t + T

T1 T2 T4(b) MP : dA > dBFigure 4.5. The two main modes of operation of the onverter: MN and MP .of the orresponding swith SA and SB: 0 if open (OFF) or 1 if losed (ON). Therefore,both signals will be �xed to 1 at the beginning of eah period, beoming 0 when itsorresponding ondition (4.6) or (4.7) is ful�lled. Then, this value is maintained untilthe end of the period.Depending on the order of ourrene of onditions (4.6) or (4.7) during a ertainperiod of the modulating signal, di�erent senarios turn up. Figure 4.5 shows thetwo ases in whih both onditions are satis�ed during a period T and onsequently,three topologies are involved. The ritial ondition that distinguishes both models ofoperation is given by
dA − dB = 0. (4.8)In Fig. 4.5a, dA < dB and thus, SA hanges to OFF while SB remains in the ONstate, and then SB hanges to OFF. Therefore, the sequene of topologies will be

T1 ↔ T3 ↔ T4. This mode of operation will be alled MN . Similarly, the seondmode (see Fig. 4.5b), (dA > dB) in whih �rstly SB hanges to OFF while SA remainsin ON, will be alled MP , being the sequene of topologies T1 ↔ T2 ↔ T4. Theevolution of the state variables iL, vP and vN inluding the referenes vA and vB aredepited in Fig. 4.6 for both modes of operations.Besides these ases, other senarios an appear if one or both swithes do not hangetheir ON state, although the dynamis of the onverter annot be stable. These modes
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(a) MP : rSiL (b) MN : rS iL

() MP : vP (d) MN : vP

(e) MP : vN (f) MN : vNFigure 4.6. Evolution of following signals: (a,b) the indutor urrent, more preisely vI , (red)and the referene signals vA (blue) and vB (green); (,d) the positive and (e,f) negative apaitorvoltages. The parameters are in Table 4.2 exept in mode MN : RP = 33 Ω, RN = 22 Ω and
VP = 5.0 V.
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VIN 6.0 V rS 1 Ω

L 47 µH rL 0.2 Ω

VU 1.0 V VL 0.0 V

VP 10.0 V VN −8.0 V

CP 22 µF CN 22 µF
RP 22 Ω RN 33 Ω

τP 50 µs τN 50 µs
gPA 0.02 gNA 0.0

gPB 0.0 gNB 0.02

gFA 0.0 gFB 0.0

fs = 1/T 200 kHzTable 4.2. Parameter values used in numerial simulations.will be alled MO, if neither of the ommutations is given and MSP or MSN , whenonly the ondition (4.6) or (4.7) is satis�ed.4.2 Closed loop mathematial modeling4.2.1 Swithed modelSwithed models are useful tools to simulate the dynamis of swithing power onvert-ers, sine they ontain the dynamis of all on�gurations of the onverter by meansof appropriate binary signals. The dynamis an be studied straightforward from theorresponding di�erential equations of every topology, whih an be obtained easilyfrom Fig. 4.2 using Kirhho�'s laws, and the initial onditions of the state variables.Notie that the di�erential equations are linear and the vetor �elds are, in general,disontinuous in the transitions between topologies. Therefore, the system an belassi�ed as a pieewise-linear system (PWL). Partiularly, the swithing instants anbe �xed by solving (4.6) or (4.7), depending on the sequene of topologies. The valueof the state variables at these points will beome the initial onditions of the followingtopology. Using this methodology, the ontinuous evolution of all state variables anbe obtained despite the disontinuity in the vetor �elds.Let us de�ne the general form of the �fth-dimensional system as followsẋ = Ax+B, (4.9)



62 Chapter 4. Analysis of the SITITO onverter with Single-Phase Controlwhere x is the �fth-order state spae vetor whih inludes the �ve state variablesmentioned above, the indutor urrent iL, both apaitor voltages vP and vN andboth integral variables σP and σN , and is de�ned asx = [iL, vP , vN , σP , σN ]T .The dynamis of the onverter will be determined by a (5 × 5) matrix A and the5-dimensional vetor B, whih depend on the topology and are given by
A =




−rL
L

A12 A13 0 0

A21

−1

RPCP

0 0 0

A31 0
−1

RNCN

0 0

0
1

τP
0 0 0

0 0
1

τN
0 0




, (4.10)
B =

[
B1 0 0 −VP

τP
−VN

τN

]T

, (4.11)where the elements depending on the four topologies are summarized in Table 4.3.Considering the de�nition of the binary signals uA and uB de�ned above, the matrix(4.10) and the vetor (4.11) an be simpli�ed and written as follows:
A =




−rL
L

uB − 1

L

1 − uA

L
0 0

1 − uB

CP

−1

RPCP

0 0 0

uA − 1

CN

0
−1

RNCN

0 0

0
1

τP
0 0 0

0 0
1

τN
0 0




, (4.12)
B =

[
VIN

L
uA 0 0 −VP

τP
−VN

τ

]
. (4.13)4.2.2 Averaged modelUnder the assumption of small period of the modulating signal ompared to the timeonstants of the iruit, the dynamis of the system (4.9) an be analyzed by means
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A21 0

1

CP

0
1

CP

A31 0 0 − 1

CN

− 1

CN

A12 0 − 1

L
0 − 1

L

A13 0 0
1

L

1

L

B1

VIN

L

VIN

L
0 0Table 4.3. Matrix elementsof a smooth averaged model, where the swithing ation is not taken into aountand, onsequently, the state variables an be onsidered as onstant values duringthe entire period. A simple model an be derived easily from (4.12) and (4.13), bysubstituting the binary funtions uA and uB by the averaged duty yles, whih willbe alled d̄A and d̄B respetively. Now, the domain of these ontinuous signals turnsinto d̄A, d̄B ∈ (0, 1). Therefore, from (4.12), the averaged model will be desribed asfollows

dx̄dt =




−rL
L

d̄B − 1

L

1 − d̄A

L
0 0

1 − d̄B

CP

−1

RPCP

0 0 0

d̄A − 1

CN

0
−1

RNCN

0 0

0
1

τP
0 0 0

0 0
1

τN
0 0




x̄+




VIN d̄A

L

0

0

−VP

τP
−VN

τN




, (4.14)
where the bar stands for the averaging during one swithing period and hene, x̄ =

[īL, v̄P , v̄N , σ̄P , σ̄N ]T will orrespond to the averaged vetor of state variables and īL,
v̄P , v̄N , σ̄P and σ̄N are the orresponding averaged state variables.The ontrol proposed previously for this onverter gives us expliit expressions of theaveraged duty yles (see Fig. 4.7), whih, together with (4.14), determine the losed
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t

t t+ T

vB(t)

vA(t)

rS īL

d̄B

d̄AFigure 4.7. The de�nition of the averaged duty yles for the mode MP .loop of the onverter. These expressions are given by
d̄A =

VU + gNA(v̄N − VN + σ̄N ) + gPA(VP − v̄P − σ̄P ) − gFAVIN − rS īL
VU − VL

, (4.15)
d̄B =

VU + gNB(v̄N − VN + σ̄N ) + gPB(VP − v̄P − σ̄P ) − gFBVIN − rS īL
VU − VL

. (4.16)This averaged approah allows us to determine the equilibrium points of the systems,denoted by x̄∗, whih will orrespond to limit yles in the swithed model. The valueof the equilibrium points an be obtained by solving the set of equationsAx̄∗ +B = 0, (4.17)whih orresponds to the equations



−rL
L

d̄B − 1

L

1 − d̄A

L
0 0

1 − d̄B

CP

−1

RPCP

0 0 0

d̄A − 1

CN

0
−1

RNCN

0 0

0
1

τP
0 0 0

0 0
1

τN
0 0







ī∗L

v̄∗P

v̄∗N

σ̄∗

P

σ̄∗

N




+




VIN d̄A

L

0

0

−VP

τP
−VN

τN




=




0

0

0

0

0




. (4.18)
Firstly, in order to understand the possible solutions of this set of equations, onlythose belonging to the open loop will be onsidered. Then, it is easy to prove, from



4.2. Closed loop mathematial modeling 65the seond and third equation of (4.18) that the expressions of the duty yles in thesteady state are given by
d̄A = 1 +

v̄∗N
RN ī∗L

, (4.19)
d̄B = 1 − v̄∗P

RP ī∗L
. (4.20)The fourth and �fth equations of (4.18) fore the steady state of the apaitor voltagesto the orresponding voltage referene, and thus

v̄∗P = VP , (4.21)
v̄∗N = VN . (4.22)Finally, the expression of the steady state of the averaged indutor urrent an beobtained from the �rst equation of (4.18), together with (4.21) and (4.22) solving theequation,

−rL
L
ī∗L +

d̄B − 1

L
VP +

1 − d̄A

L
VN +

VIN d̄A

L
= 0, (4.23)from whih the following expression for īL is obtained

ī∗L =
VIN

2rL
±
√(

VIN

2rL

)2

− 1

rL

(
V 2

P

RP

+
V 2

N

RN

− VINVN

RN

)
. (4.24)This expression orresponds to an ellipsoid in the phase spae, with high (positive sign)and low (negative sign) urrent. Nevertheless, though the expression (4.24) inludesthe negative and positive values of the square root, only the negative one will be usedin a real design of the onverter due to the fat the alternative solution will imply highurrent whih means high losses in the series resistor of the indutor. The existene ofequilibrium points also requires positive values of the disriminant of the square rootin (4.24).Figure 4.8 shows the transient of the state variables iL, vP and vN by using theaveraged model proposed here and the PSIM simulator. Notie that the averagedmodel predits aurately the evolution of the indutor urrent and both apaitorvoltages. Nevertheless, the averaged model fails in the predition of the steady stateof the integral variables.4.2.3 Stability analysis of the equilibrium pointsThe stability of the equilibrium point of a dynamial system is known to be equivalentto the stability of a linearized system in the neighborhood of an equilibrium point.
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(a) iL (b) vP and vNFigure 4.8. Comparison of the evolution of the state variables obtained with the averaged (blue)and swithed models (red). The parameters are in Table 4.2.Therefore, the stability of the proposed onverter an be analyzed by means of theproperties of the Jaobian matrix evaluated in the equilibrium point x̄∗. Taking intoaount that the element Jij of this matrix orresponds to the partial derivative ofthe equation i of (4.14) respet the element j of the state vetor evaluated at theequilibrium point, the expression of the Jaobian Matrix is given by
J =




− 1

L

V ′

P

VD

1

L

V ′

N

VD

JP

gPB

VD

ī∗L
CP

−gNB

VD

ī∗L
CP

−gPA

VD

ī∗L
CN

gNA

VD

ī∗L
CN

0
1

τP
0 0 0

0 0
1

τN
0 0




, (4.25)
where the submatrix is given by
JP =




−rS
L

(
rL
rS

+
V ′

VD

)
− 1

L

(
D′

B +
V ′

P

VD

)
1

L

(
D′

A +
V ′

N

VD

)

1

CP

(
D′

B +
rS ī

∗

L

VD

)
1

CP

(−1

RP

+
gPB ī

∗

L

VD

)
− 1

CP

gNB ī
∗

L

VD

− 1

CN

(
D′

A +
rS ī

∗

L

VD

)
− 1

CN

gPAī
∗

L

VD

1

CN

( −1

RN

+
gNAī

∗

L

VD

)




,
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V ′

P = gPBVP + gPA(VIN − VN ) and V ′

N = gNBVP + gNA(VIN − VN ),

V ′ = VIN − VN + VP ,

D′

A = 1 − d̄A and D′

B = 1 − d̄B ,

VD = VU − VL.Figure 4.9 shows di�erent diagrams, in whih the real part of the eigenvalues of thematrix J evaluated in the equilibrium point have been depited as one single parameteris varied. It is well known that the loal stability of a equilibrium point is proved ifthe real part of all the eigenvalues is negative.

(a) RP (b) RN

() VP (d) VNFigure 4.9. Real part of the largest real (blue) and omplex (green) eigenvalues of J evaluatedin the low urrent equilibrium point as the parameters in the aption is varied. The parametersused are in Table 4.2.
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(a) gPA (b) gNA

() gPB (d) gNA and gPB

(e) τP (f) VUFigure 4.10. Real part of the largest real (blue) and omplex (green) eigenvalues of J evaluatedin the low urrent equilibrium point as the parameter in the aption is varied. The parametersused are in Table 4.2.



4.2. Closed loop mathematial modeling 69As it an be seen in Fig. 4.9, two kind of smooth bifurations an be deteted by usingthe averaged model proposed: saddle-node and Hopf bifuration.� Saddle-node bifuration:Figure 4.9 shows some tangent or saddle-node bifurations as the parameter,spei�ed in the aption, is varied. It is important to remark that before the ap-pearane of the bifuration, the two equilibrium points mentioned above, beingone stable and the other one, unstable, oexist. Nevertheless, beyond a rit-ial point, these equilibrium points ollapse, implying the no existene of anyequilibrium point after the bifuration. Another harateristi of this kind ofbifuration is that the eigenvalues of both equilibrium points tend to zero at thisritial point. These phenomena an be seen in the diagrams depited in Fig.4.9 taking into aount that only the eigenvalues of the stable �xed point havebeen represented. Figure 4.11 illustrates the steady state of both equilibriumpoints of the indutor urrent as VP is varied showing this smooth bifuration.It is important to remark that in a real design, the parameters of the onvertermust be hosen in suh a way that the stable equilibrium point is far from thistangent point.

Figure 4.11. Representation of both equilibrium points of the indutor urrent as the parameter
VP is varied, revealing the existene of a saddle-node bifuration. Stable and unstable equilibriumpoints are plotted in solid and dotted line respetively.Finally, an expliit expression for the ritial point an be obtained diretly from(4.24), onsidering that the indutor urrent annot be a omplex number. Thisexpression is given by

(
VIN

2rL

)2

− 1

rL

(
V 2

P

RP

+
V 2

N

RN

− VINVN

RN

)
= 0. (4.26)Therefore, the parameters diretly related with this bifuration are VIN , VP , VN ,

RP , RN and rL.



70 Chapter 4. Analysis of the SITITO onverter with Single-Phase Control� Hopf bifuration:The Hopf bifuration, whih appears when the real part of the largest omplexeigenvalue beomes positive, an be appreiated in Fig. 4.10b,,e. One propertyof this bifuration, due to approahing to zero, is the inrement of the transientsof the state variables in the neighborhood of the ritial point.Let us now fous in the in�uene in the stability when the gains of the feed-forward terms are varied. Notie that whereas the variation of the gains gPA(and similarly gNB) are not ritial in the stability, the variation of gNA or gPBhas a strong in�uene in the stability of the onverter whih implies unstabledynamis when the value of the largest eigenvalue di�ers slightly from 0. Takinginto onsideration that gNA and gPB are related with the errors of the negativeand positive hannels, whih are driven by the hannels SA and SB respetively,this result reveals the need of avoiding the diret feedforward terms to guaranteethe stability of the onverter.4.3 One-dimensional disrete-time modelNumerial simulations of the dynamis of the onverter have revealed the existene ofalternative senarios, apart from those seen in the previous setion, related with theripple of the indutor urrent. Disrete-time models are known to be useful tools toanalyze the fast dynamis in power swithing onverters. In following setions, we willdeal with several disrete-time models, eah of whih will be able to over a determinedset of senarios.Under disrete-time modeling, the dynamis of the SITITO onverter an be desribedby a �fth-dimensional pieewise-smooth map. Nevertheless, onsidering some assump-tions, this map will be simpli�ed to a one-dimensional pieewise-linear map. Let usassume the period of the modulating signal T muh lower than the time onstantsof every operating topology. In this situation, the ripples of both apaitor voltagesare small and onsequently, these funtions an be approahed by their mean values,whih are fored by the integral ontrol to the voltage referenes VP and VN . Thislast onsideration also implies that the values of the state variables σP and σN , whihmeasure the integral of the errors vP − VP and vN − VN respetively, an also beonsidered as onstant values, whose level an be estimated by means of the averagedmodel (see [52℄). Thus, the whole �ve-dimensional system an be approahed by aone-dimensional map, being the indutor urrent, whih will be denoted as i, the onlystate variable.This map will be lassi�ed as a pieewise ontinuous map, whose di�erent trams arerequired to desribe eah of the modes of operation determined in the previous setion.Nevertheless, the assumptions taken into onsideration in the approah will permit tosimplify the model. Let us onsider the ondition whih distinguishes the operation



4.3. One-dimensional disrete-time model 71modes between MP and MN (4.8). In onordane with (4.19) and (4.20), (4.8) anbe written as follows
1 +

v̄∗N
RN ī∗L

−
(

1 − v̄∗P
RP ī∗L

)
= 0. (4.27)From the averaged model, the steady state of the apaitors v̄∗P and v̄∗N are known tobe VP and VN respetively. Therefore, (4.27) an be simpli�ed as follows

VP

RP

+
VN

RN

= 0, (4.28)whih does not depend on the state variable of the disrete-time model i. This allowsus to divide the one-dimensional model into two submappings. Then, the disrete-timemodel will be de�ned as
f(i, φ) =

{
f1(i, φ) if H0(φ) > 0,

f2(i, φ) if H0(φ) < 0,where f : R
1 × R

9 7→ R
1 and i ⊂ D ∈ R refers to the indutor urrent. φ representsthe following set of 9 parameters:

φ = {VIN , rL, VP , VN , RP , RN , VU , VL, T }.Finally, the surfae H0(φ) will be de�ned as
H0(φ) =

VP

RP

+
VN

RN

, (4.29)where H0 : R
9 7→ R. Aording with this de�nition, the �rst submapping f1 will oper-ate for positive values of (4.29) and thus, whenever dA > dB, whereas the submapping

f2 will be ative when dA < dB. Note that eah of the submappings f1 and f2 isitself a PWS map haraterized by di�erent operating regions. In what follows, wewill treat separately the analysis of the two submappings.
SA SB ∆i

T1 ON ON ∆i1

VIN − rLIQ
L

T

T2 ON OFF ∆i2

VIN − VP − rLIQ
L

T

T3 OFF ON ∆i3

VN − rLIQ
L

T

T4 OFF OFF ∆i4

VN − VP − rLIQ
L

TTable 4.4. De�nition of the inrement urrents of the SITITO onverter in CCM.
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IB

IB + ∆IB

t t+ T

M0

MSP

MP

(a) dA > dB

IA

IA + ∆IA

t t+ T

M0

MSN

MN

(b) dA < dBFigure 4.12. The di�erent modes of operation of the SITITO onverter. The signals representedorrespond to vA/rS (blue), vB/rS (green) and iL (red).4.3.1 Approximated expressions of the maps f1 and f2The de�nition of the map must approah the evolution of iL in eah topology, during aperiod of the modulating ramp. These funtions an be obtained diretly approahingthe state equations de�ned in (4.10) and (4.11) and assuming a linear time dependeneof iL. Therefore, di�erent inrement urrents, whose expressions are summarized inTable 4.4, will be obtained for eah topology. Notie that in the expressions theapaitor voltages have been approahed by their orresponding voltage referene andthe term rLiL, whih is related with the losses in the indutor resistane, by rLIQwhere IQ will orrespond to ī∗L.Dealing with funtion f1, there exist three modes of operation involved (see Fig. 4.12a):
M0,MSP andMP , where none, one and two swithings are produed during a period.Consequently, the disrete-time model f1 will be desribed by three piees (see Fig.4.13), whih will be alled FA, FB and FC respetively. Thus, the map f1 will bede�ned as follows

f1(i, φ) =






FA(i, φ) if i ∈ SA,

FB(i, φ) if i ∈ SB,

FC(i, φ) if i ∈ SC ,

(4.30)where Fi : R × R
9 7→ R. The regions of SA, SB and SC represent the domain of eahtram.Conversely, the funtion f2 will also be omposed by the three trams, GA, GB and

GC , whih model the modes of operation M0, MSN and MN respetively (see Fig.



4.3. One-dimensional disrete-time model 734.12b). Therefore, the map f2 will be expressed as follows
f2(i, φ) =






GA(i, φ) if i ∈ TA,

GB(i, φ) if i ∈ TB,

GC(i, φ) if i ∈ TC .

(4.31)Aording to Fig. 4.12 and Table 4.4, the expressions of the funtions FA, FB and FCan be easily obtained and are expressed as
FA(i) = i+ ∆i1, (4.32)
FB(i) = i+ ∆i1dB(i) + ∆i2 (1 − dB(i)) , (4.33)
FC(i) = i+ ∆i1dB(i) + ∆i2d̄AB + ∆i4

(
1 − dB(i) − d̄AB

)
, (4.34)where dB orresponds to

dB(i) =
IB − i

∆i1 − ∆ir , (4.35)being
∆ir = −VU − VL

rS
.The parameter IB orresponds to the peak value of the referene vB at the beginningof the period divided by the sensing resistane (IB = vB(0)/rS). The value of dAB,whih represents the di�erene between both duty yles, dA − dB , will be fored inthis one-dimensional map to the value predited by means of the averaged model.Hene, the expression for dAB is give by

dAB =
1

IQ

(
VP

RP

+
VN

RN

)
.One the evolutions of the indutor urrent has been �xed, let us determine the ex-pressions for the regions SA, SB and SC . Notie that the funtions FA and FB modelthe dynamis when none or one swithing is produed, whih implies dB > 1 and

dB + dAB > 1, respetively. Then, these modes of operation will at when the ondi-tions (see Fig. 4.12)
i < IB − (∆i1 − ∆ir),

i > IB − (∆i1 − ∆ir) and i < IB − (1 − dAB)(∆i1 − ∆ir),respetively, are ful�lled. Therefore, the regions an be established by the expressions
SA = {i ∈ D : HF,AB(i, φ) < 0} ,

SB = {i ∈ D : HF,AB(i, φ) > 0 and HF,BC(i, φ) < 0} ,

SC = {i ∈ D : HF,BC(i, φ) > 0} ,
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i
0 1 2 3

i

0

1

2

3

Figure 4.13. Illustration of the three-piee map f1 and the �xed point i∗. The parameters usedare in Table 4.4.being
HF,AB(i) = i− IB + ∆i1 − ∆ir,

HF,BC(i) = HF,AB(i) − dAB(∆i1 − ∆ir).Similarly, expressions for the map f2 an be found and are given by
GA(x) = i+ ∆i1, (4.36)
GB(x) = i+ ∆i1dA(i) + ∆i3 (1 − dA(x)) , (4.37)
GC(x) = i+ ∆i1dA(i) − ∆i3d̄AB + ∆i4

(
1 − dA(i) + d̄AB

)
, (4.38)where dA orresponds to

dA(i) =
IA − i

∆i1 − ∆ir . (4.39)The parameter IA orresponds to IA = vA/rS at the beginning of the period. Finally,the existene regions will be given by
TA = {i ∈ D : HG,AB(i, φ) < 0} ,

TB = {i ∈ D : HG,AB(i, φ) > 0 and HG,BC(i, φ) < 0} ,

TC = {i ∈ D : HG,BC(i, φ) > 0} ,being
HG,AB(i) = i− IA + ∆i1 − ∆ir,

HG,BC(i) = HG,AB(i) + dAB(∆i1 − ∆ir).



4.3. One-dimensional disrete-time model 75Obtaining approahed expressions of IB and IANotie that the values of parameters IB and IA are still unde�ned. These valueswill establish the level of the voltage referenes and onsequently, the averaged valueof the variable i. Before obtaining their appropriate expressions, let us onsider thein�uene of these parameters in the value of the steady state, assuming the main modes
MP and MN . Let us de�ne i∗F and i∗G as the �xed points of the funtions FC and
GC respetively and let us assume that the duty yle in this equilibrium situationorresponds to the averaged d̄B and d̄A. Then, FC(i∗F ) and GC(i∗G) will be

FC(i∗F ) = i∗F + ∆i1d̄B + ∆i2d̄AB + ∆i4

(
1 − d̄B − d̄AB

) (4.40)and
GC(i∗G) = i∗G + ∆i1d̄A − ∆i3d̄AB + ∆i4

(
1 − d̄A + d̄AB

)
. (4.41)If i∗F and i∗G are �xed points of FC(i), GC(i) then following onditions must be ful�lled

∆i1d̄B + ∆i2d̄AB + ∆i4

(
1 − d̄B − d̄AB

)
= 0and

∆i1d̄A − ∆i3d̄AB + ∆i4

(
1 − d̄A + d̄AB

)
= 0.Replaing the urrent inrements with the expressions given in Table 4.4, the followingexpression is obtained in both ases:

−rL
L
IQ +

d̄B − 1

L
VP +

1 − d̄A

L
VN +

VIN d̄A

L
= 0, (4.42)whih orresponds to the ondition obtained in the averaged approah (4.23). There-fore, (4.42) is ful�lled and onsequently, i∗F and i∗G are �xed points of the FC and

GC respetively, whose expressions an be obtained foring the duty yles to theiraveraged values. Then, from (4.19), (4.20), (4.35) and (4.39) we obtain
d∗B =

IB − i∗F
∆i1 − ∆ir = 1 − VP

RP IQ
,and

d∗A =
IA − i∗G

∆i1 − ∆ir = 1 +
VN

RNIQ
,and thus,

i∗F = IB −
(

1 − VP

RP IQ

)
(∆i1 − ∆ir)and

i∗G = IA −
(

1 +
VN

RNIQ

)
(∆i1 − ∆ir) .



76 Chapter 4. Analysis of the SITITO onverter with Single-Phase ControlConsequently, the value of the �xed points will be determined by IB and IA. The strat-egy proposed here to establish the value of IB and IA is to fore the mean value duringa period of iL(t) to be equal to IQ, assuming there exists a situation of equilibrium,then
1

T

∫ t+T

t

iL(t)dt = IQ. (4.43)To solve this equation, assuming that the evolution of the indutor urrent is linearin eah topology and the duty yles of the steady state are those predited in theaveraged model. Then,
i∗F +

1

2T

(
∆i1d̄

2
B + ∆i2d̄

2
AB + 2∆i1d̄B d̄AB − ∆i4(1 − d̄A)2

)
= IQand
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A + ∆i3d̄

2
AB − 2∆i1d̄Ad̄AB − ∆i4(1 − d̄B)2

)
= IQand thus,

i∗F = IQ − 1
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AB + 2∆i1d̄B d̄AB − ∆i4(1 − d̄A)2

)and
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(
∆i1d̄

2
A + ∆i3d̄

2
AB − 2∆i1d̄Ad̄AB − ∆i4(1 − d̄B)2

)
.Finally, the expressions of IB and IA will be given by

IB = i∗F + d̄B (∆i1 − ∆ir)and
IA = i∗G + d̄A (∆i1 − ∆ir) .It an be proved that both expressions for i∗F and i∗G are, in fat, equivalent and it isimportant to remark here their dependene on parameters T and VD.4.3.2 Fixed points of f1 and f2Though the maps f1 and f2 ould have several �xed points, only the �xed pointsbelonging to the funtions FC or GC , whih have been found previously, will be takeninto onsideration in our analysis. Notie that only the modes of operation MP and

MN imply the swithing of SA and SB during the same period. If only one swith isgiven, the one-dimensional map would predit a stable dynamis, but the real systemannot be stable exept in the partiular ases VP = 0 and VN = 0. i∗F or i∗G, whoseexpressions are equivalent, will be referred here as the main �xed point (i∗).
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(a) VU = 2.0V (b) VU = 1.2VFigure 4.14. Temporal evolution of the signals vA (blue), vB (green) and rSiL (red).4.3.3 Stability analysis of the main �xed pointThe stability of the main �xed point an be analyzed by means of the derivative ofthe funtions FC and GC . Therefore, from (4.34) and (4.35) or from (4.38) and (4.39),the derivative of both funtions will be determined by the expression
λ =

∆i4 − ∆ir
∆i1 − ∆ir , (4.44)whih does only depend on the urrent inrements of the �rst and third stage. More-over, due to ∆i1 > 0 and ∆i4 < 0, λ < 1 the stability of the main �xed point will beguaranteed provided that λ > −1. Therefore, the instability ours when the followingondition is ful�lled:

VIN + VN − VP − 2rLIQ + 2(VU − VL)
L

rST
= 0. (4.45)4.3.4 Existene of the main �xed pointLet us now deal with the existene of the main �xed point. From (4.30) and (4.31),the ondition of existene for �xed points are given by

i∗ ∈ SC or i∗ ∈ TC ,whether the mode of operation is MP or MN respetively. Therefore, the �xed pointwill be admissible if the onditions
HF,BC(i∗) >= 0 or HG,BC(i∗) >= 0is ful�lled. Considering that these onditions are equivalent to d̄A < 1 or d̄B < 1 inthe mode MP or MN respetively, from (4.19) and (4.20), the existene of the �xed
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1 +

VN

RNIQ
< 1 or 1 − VP

RP IQ
< 1,whih, taking into aount that the resistanes and the indutor urrent are positiveand the referene voltages VP and VN are de�ned positive and negative respetively,is always ful�lled. Therefore, the �xed point i∗ will never beome virtual.Nevertheless, there exists another boundary due to the de�nition of the map. InFig. 4.14, two diagrams have been depited in whih the evolution of both voltagereferenes and the sensed urrent are represented. Notie that, as the parameters

VU is varied, the indutor urrent dereases faster than the signal referenes in theintermediate tram. At the ritial point, the three slopes will be equivalent and theseond swithing is skipped. Atually, the maps (4.30) and (4.31) are only de�ned ifthe parameter ∆IB or ∆IA (see Fig. 4.12) is positive and so, ∆IB and ∆IA beomes0 at the ritial point. Therefore, the following two surfaes an be de�ned as
HF (φ) = ∆IB = d̄AB(∆i2 − ∆ir)or
HG(φ) = ∆IA = −d̄AB(∆i3 − ∆ir),and their orresponding boundaries

ΣF (φ) = {HF (φ) = 0} (4.46)or
ΣG(φ) = {HG(φ) = 0}. (4.47)Consequently, a non-smooth bifuration will our when the �xed point of the modesof operation MP and MN rosses the orresponding boundary (4.46) or (4.47). It isimportant to remark that, despite having the same �xed point and stability ondition,the existene ondition of the �xed point is di�erent. This fat has some onsequenes,whih will be seen in the following setion.4.3.5 Two-dimensional bifuration diagrams. Codimension-twopointsIn this setion, several representative two-dimensional bifuration diagrams will illus-trate some of the feasible senarios that an be predited with the one-dimensionaldisrete model presented above. Only one smooth bifuration will take plae, the �ipbifuration, whereas there exist three di�erent onditions in whih the �xed point anyield a non-smooth bifuration:



4.3. One-dimensional disrete-time model 79� Intermediate slope limit (ISL): As it has been mentioned above, a non-smooth bifuration is yielded when i∗F or i∗G rosses the boundaries ΣF (4.46) or
ΣG (4.47) respetively.� Change of the mode of operation (MOC): This non-smooth bifuration willappear when, under the variation of some parameters of the systems, the modeof operation hanges from MP to MN or vieversa. From (4.29), the bifurationwill be given when the orresponding �xed point rosses the boundary de�nedby:

Σ0(φ) = {H0(φ) = 0}. (4.48)� Disontinuous ondution mode (DCM): This bifuration is given whenthe indutor urrent drops to 0 at the beginning of the yle, and thus, thebifuration ours when
i∗ = 0.Flip bifuration - ISL bifuration

(a) RP = 22Ω, RN = 33Ω (b) RP = 33 Ω, RN = 22ΩFigure 4.15. Stability (dashed) and ISL (dotted) bifuration urves in the parameter spae
{VU , VP }. The solid line represents to the ondition Σ0 (MOC). The parameters are in table4.2.In Fig. 4.15, the stability ondition (4.44) (dashed lines) and the two border-ollisionbifuration urves ΣF and ΣG (dotted lines) have been depited in the two-parameterspae {VU , VP } for the modes of operation MP (see Fig. 4.15a) and MN (see Fig.4.15b) respetively. The solid line stands for the ondition (4.48), whih establishesthe hange of mode of operation. Therefore, the non-smooth bifuration urves ΣFand ΣG are only valid in their orresponding mode of operation. Let us fous in the�rst diagram. As VU is dereased, the �xed point an reah the instability by rossingthe �ip bifuration urve or an beome virtual by rossing ΣF . The existene of bothsenarios in Fig. 4.15a has been validated, in whih two bifuration diagrams obtainedwith the PSIM simulator have been depited (�ip bifuration in Fig. 4.16a and ISL
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(a) Flip bifuration (VP = 10.0V) (b) ISL bifuration (VP = 16.0V)Figure 4.16. Bifuration diagrams obtained with the PSIM simulator using VU as varying param-eter along segments in Fig. 4.15a.bifuration in Fig. 4.16b). Notie that the red lines in Fig. 4.15a orrespond to theparameter variation of the one-dimensional bifuration.A odimension-two point appears when these two bifuration urves interset. From(4.44) and (4.46) or from (4.44) and (4.47), it is obtained the ondition
VIN − VN − VP = 0, (4.49)and from (4.49) and (4.45),

(VU − VL)
L

rST
+ VN − rLIQ = 0. (4.50)The odimension-two point will our when the onditions (4.49) and (4.50) are ful-�lled, for both operation modes. Consequently, for a given set of parameters, thispoint will appear only in one mode of operation. Notie that in Fig. 4.15b, the �xedpoint an only present the non-smooth bifuration due to the fat that the ritialpoint is plaed in the MP zone.MOC non-smooth bifuration urveUnder the variation of some parameters of the system, the �xed point an hange themode of operation between MP and MN . The stability ondition has been proved notto be in�uened by the mode of operation, in ontrast to its orresponding existeneondition. This phenomenon has been illustrated in Fig. 4.17, where the involvedbifuration urves have been depited. In this diagram, the green line representsthe stability ondition, whereas the solid blak line orresponds to the boundary Σ0.Notie that, in both sides of this urve, there exists a region in whih the �xed pointis admissible and stable, despite belonging to di�erent modes of operation. Therefore,
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Figure 4.17. Stability (green) and existene (blue) bifuration urves in the parameter spae
{VU , VP }. The solid line orresponds to Σ0 and grey lines represent virtual lines. The parametersare in table 4.2 exept: RP = RN = 33 Ω.a stable �xed point plaed in whatever mode an beome virtual or persist whenhanging the mode of operation, but not beome unstable. The onditions ΣF and
ΣG have also been inluded. Notie that these lines are only de�ned in the region inwhih the orresponding �xed point is admissible (blue lines).Two di�erent bifuration senarios have been hosen and denoted with red lines in Fig.4.17. In one ase, for VU = 1.2 V, the �xed point persists after rossing the boundary
Σ0. Due to the fat that it annot be appreiated a signi�ant hange in the �xedpoint in both sides of the bifuration, two temporal diagrams have been illustratedin Fig. 4.18 to show the persistene senario. Conversely, the seond non-smoothphenomenon an be observed in Fig. 4.19, in whih a one-dimensional bifurationdiagram has been shown. For VU = 0.8 V, as VP is dereased, the �xed point of MProsses the boundary Σ0 by beoming virtual. Moreover, after the boundary, the �xedpoint i∗G is also virtual and the dynamis of the onverter jumps to a haoti attrator.This non-smooth phenomenon is harateristi of disontinuous maps.Disontinuous ondution mode.The last non-smooth bifuration that an be predited by the one-dimensional mapours when the indutor urrent drops to zero and operates in DCM. Figure 4.20ashows the DCM bifuration urve (yan line) in the parameter spae {VU , VP } whenthe �xed point belongs to MN . As it an be seen in the one-dimensional bifurationdiagram inluded (see 4.20b).The one-dimensional disrete-time model has been proved to be useful to predit thementioned non-smooth bifuration together with the smooth �ip bifuration. Their
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(a) VP = 8.5V (b) VP = 7.5VFigure 4.18. Temporal evolution of rSiL (red), vA (blue) and vB (green) �xing VU = 1.2 Vobtained with the PSIM simulator. The parameters are in Fig. 4.17.

Figure 4.19. Bifuration diagram using VP as varying parameter obtained with the PSIM simu-lator. The parameters are in Fig. 4.17 exept: VU = 0.8 V.predition has resulted to be aurate enough in a range of parameters. Nevertheless,the averaged model predits a Hopf smooth bifuration that annot be predited bythis simpli�ed map due to its unique state variable. This fat has motivated us todevelop a more omplete map.4.4 Normalized one-dimensional mapIn Chapter 3, the di�erent senarios that an be given in a three-piee pieewise-linealmap in a restrited range of parameters have been lassi�ed in sixteen zones in theparameter spae {β, γ}. Under the assumption of α = 1, the dynamis was redued tofew zones illustrated in Fig. 3.13. Let us now determine whih senarios an our inthe submappings f1 and f2 de�ned above, taking into aount the restritions of thephysial parameters.
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(a) (b) VU = 0.8VFigure 4.20. (a) Stability (green), ΣG (blue), Σ0 (blak) and DCM (yan) bifuration urvesin the parameter spae {VU , VP }. (b) Bifuration diagram obtained with the PSIM simulatoraording to the red line variation. The parameters are in table 4.2 exept: RP = RN = 68Ωand VN = −5.5 V.Conerning the submapping f1, after applying the hange of oordinates x = i− IB +

∆i1 − ∆ir, this submapping an be rewritten as
FA(x) = x+ ∆i1,

FB(x) =

(
1 − ∆i1 − ∆i2

∆i1 − ∆ir)x+ ∆i1,

FC(x) =

(
1 − ∆i1 − ∆i2

∆i1 − ∆ir − ∆i1 − ∆i3

∆i1 − ∆ir)x+ ∆i1 + d̄AB(∆i1 − ∆i3).Therefore, if the following de�nitions are taken into onsideration
α = 1, β = −∆i1 − ∆i2

∆i1 − ∆ir , γ = −∆i1 − ∆i3

∆i1 − ∆ir ,
µ = ∆i1 and τ = d̄AB(∆i1 − ∆ir),the three-piee PWL map studied in the previous Chapter is obtained.Considering the range of the physial parameters, the domain of the normalized pa-rameters are given by

β < 0 and γ < 0,

τ > 0 and µ > 0.Notie that γ < 0 and hene, the only feasible senarios are plaed in zones 1, 3, 4 and
6. Nevertheless, onsidering the disontinuous boundary ΣF , whih is now determinedby the expression

ΣF = {1 + β = 0},



84 Chapter 4. Analysis of the SITITO onverter with Single-Phase Control
β > −1 and the dynamis of the submapping f1 is restrited to the zones 1, 3 and 4.Consequently, only the stable period-two solution BC an be found in the system andno oexistene between period-one and two orbits are permitted. These results are inagreement with those obtained in this hapter.Equivalent results are obtained for the map f2 and hene, they will not be reproduedhere.4.5 Five-dimensional disrete-time modelsThe map presented in this setion will onsider the evolution of all the state variablesof the system. Though in the new map the evolution of the indutor urrent will bealso onsidered linear in eah topology, its in�uene in the evolution of the apaitorvoltages will imply the need of nonlinear terms in order to approah their evolution,as well as the evolution of the integral terms. Therefore, the resulting map will belassi�ed as 5-dimensional pieewise-smooth map. Taking all these onsideration intoaount, the following map an be de�ned:xn+1 = f(xn) (4.51)where xn = [i, vp, vn, σp, σn]T . Similarly to the de�nition of the one-dimensional map,(4.51) an be divided into the submappings:

f(i, vp, vn, σp, σn, φ) =

{
f1(i, vp, vn, σp, σn, φ) if H0(vp, vn, φ) > 0,

f2(i, vp, vn, σp, σn, φ) if H0(vp, vn, φ) < 0,where f : R
5 × R

19 7→ R
5 and φ refers to the set of parameters

φ = {VIN , rL, L, VP , VN , RP , RN , VU , VL, T, CP , CN , rS , gPA, gPB, gNA, gNB, τP , τN}.The expressions of the map will not be reprodued here, for the sake in brevity. Forfurther details, the omplete development of these expression an be found in theAppendix A. Notie that the ondition that divides the map (4.51) depends on thestate variables vp and vn. Therefore, hybrid solutions belonging to both submappingsan now be modelled by this higher dimension map.4.5.1 Stability bifuration urvesIt has been proved in the one-dimensional analysis that the dynamis of the onverteran undergo a �ip bifuration, whose analytial expression has been presented above.Conversely, the averaged model has also deteted the existene of a Hopf bifuration,whih orresponds to a Neimark-Saker ase in the disrete-time model, when theparameters related to feedbak terms, suh as gPA, gNB, τP or τN , are varied. Let usnow analyze the footprints of these bifurations in the �ve-dimensional map.
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(a) (b)Figure 4.21. Flip bifuration urve obtained with the 1-D map (solid line) and (4.51) (dottedline) and Neimark-Saker (dashed line) bifuration urves obtained with (4.51) in the parameterspae {VU , VP } (a) and {τ, g} (b). The parameters are in table 4.2 exept: RP = RN = 33 Ω,
τP = τN = 6 µs and gPA = gNB = 0.1.The two-dimensional bifuration diagrams depited in Fig. 4.21 shows the smoothbifurations urves predited with the maps proposed in this hapter. Solid greyline stands for the �ip bifuration predited with the one-dimensional maps whereasthe dashed and dotted lines orrespond to the Neimark-Saker and �ip bifurationsobtained with (4.51). In Fig. 4.21a, the parameter spae and the set of seletedparameters orresponds to the Fig. 4.17 but �xing gPA = gNB = 0.1 and τP = τN =

6 µs. Notie the appearane of a Neimark-Saker bifuration, reduing signi�antlythe region in whih the �xed point is stable. The blue dot in Figure 4.21b illustratesthis bifuration urve in the parameter spae {g, τ}, being g = gPA = gNB and
τ = τP = τN . Roughly, it an be seen the presene of unstable dynamis for lowervalues of the time onstants τ jointly higher values of the gains g. In this ase, theblue dot denotes a odimension-two point given by the rossing of two Neimark-Sakerbifurations.4.5.2 Non-smooth bifurationsLet us now reall the non-smooth bifurations predited with the one-dimensionaldisrete-time model. In order to show the feasible deviations between both disrete-time models, the urves illustrated in the mode of operation MP in Fig. 4.17 havebeen depited in Fig. 4.22a, inluding now the urves predited by the 5-dimensionalmap. Dealing with the MOC bifuration, none disrepany has been found betweenboth maps. Atually, both urves annot be distinguished. The analysis of the DCMbifuration leads to similar onlusions.
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(a) (b)Figure 4.22. (a) Flip (green) and Neimark-Saker (blue) bifuration urves obtained with (4.51)in the parameter spae {VU , VP}. Grey lines orrespond to the bifuration urves obtained withthe one-dimensional map. (b) Modulo of the real (blue) and omplex (red) eigenvalues of theJaobian. The parameters are in table 4.2 exept: RP = RN = 33Ω and (b) VU = 1.0V.Nevertheless, an important deviation takes plae in the neighborhood of the bifura-tion. As it an be notied in the diagram, in both sides of the ISL bifuration, twosmooth bifuration urves appear. Notie in the diagram the appearane of the �ip andNeimark-Saker bifurations. A deeper analysis of the eigenvalues has revealed thatthe ISL boundary presents a disontinuity in the eigenvalues of the Jaobian matrix(see Fig. 4.22b) despite the ontinuity of the �xed point. This phenomenon provokesthe smooth bifurations whih takes plae in the neighborhood of the ISL boundary.Further analysis is required to determine whether this disontinuity is yielded by thenature of the disrete-time model or by the own dynamis of the onverter.4.6 ConlusionsA Single-Indutor Two-Input Two-Output (SITITO) swithing d-d onverter hasbeen analyzed in this hapter. This onverter, whih does not need symmetry in itspositive and negative outputs, operates with a PWM ontrol, whih has proved tobe apable of providing stable behavior if the parameters are properly seleted. Twomodels have been used to deal with the existene and stability of the normal regimeof operation. The averaging approah has been developed jointly with the Jaobianmatrix to deal with the stability of the slow dynamis.Relevant onlusions have been obtained after the disrete-time analysis. The di�erentorder of ourrene of both swithings allows the onverter to operate in two di�erentmain modes. Moreover, the strategy of ontrol hosen adds a disontinuous boundary



4.6. Conlusions 87to the system, whih has resulted to be depended on the mode of operation. The one-dimensional map has permitted to detet a period-doubling bifuration by means ofsimple expressions jointly with some non-smooth bifurations. Despite the presene ofboth modes, the study has shown that the value and stability of the main �xed pointis not in�uened by the mode of operation. Therefore, the dynamis of the onverter isharaterized by the stability ondition and the orresponding non-smooth boundaries.Consequently, a non-smooth bifuration arises when the ondition whih establishesthe mode of operation of the �xed point is ful�lled.Higher dimensional maps have provided more aurate preditions, whih are requiredwhen the ripples of the apaitor voltages inreases their weight in the feedbak loops.This map also predits Neimark-Saker bifurations when the parameters related withthe PI term are varied. Moreover, the analysis of the eigenvalues in the neighborhoodof the disontinuous boundaries has proved the existene of new �ip and Neimark-Saker bifurations owing to a disontinuity in the eigenvalues.





Chapter 5
Analysis of the SIMIMO onverterwith Interleaved Control

Interleaved ontrol will be presented as an alternative ontrol,whose viability will be studied in this hapter. In ontrast to theontrol previously proposed, the nature of this strategy will allow usto generalize the ontrol so as to regulate d-d onverters with Noutputs whih an have di�erent polarities. After proposing a gener-alized power stage, we will analyze both the stability and the bound-aries of the system, whih will establish the operating region of theonverter, by means of averaged and disrete-time models. The use-fulness of the di�erent models to determine the dynamis will be alsotaken into onsideration.
5.1 General power stage and interleaved ontrol5.1.1 Power stage desriptionThe shemati diagram in Fig. 5.1 shows a SIMIMO d-d onverter that uses asingle indutor shared by a generi number of outputs: p positive (non-inverted) and
n negative (inverted) polarities, being N = p+ n. The following elements are de�nedfor eah output: an equivalent resistane Rj (onsidered here for the load), a �lter89
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negative loads (j− = 1..n) positive loads (j+ = 1..p)Figure 5.1. Shemati diagram of a SIMIMO d-d onverter with a generi number of positiveand negative outputs.apaitorCj , and a spei� swith Sj , whose ON state (losed) will ativate the hargingof the apaitor Cj .Two extra swithes SA and SB are also required and work as following. Along thetime intervals during whih these two swithes are ON (and all Sj are OFF (open)),the indutor is onneted to the soure VIN in order to reover energy from it. Thisstage of the proess is similar to the ON interval of simple boost or buk-boost d-d onverter and is equivalent to the topology T1 in the SITITO onverter presentedin the previous hapter. During the time remainder, SA and SB are ativated in aomplementary way. If SA is ON and SB is OFF, then a partiular Sj swith, belongingto a positive output, must be ON in order to load the orresponding apaitor Cj . Thisstage works like a boost onverter in the OFF interval. Similarly, if SA is OFF and SBis ON, then the swith Sj in the ON state must belong to a negative output, so this partof the proess is similar to the OFF interval of a buk-boost onverter.The general power stage also indiates the state variables: the indutor urrent iL,and the set of output voltages {voj , j = 1..N}.The diagram in Fig. 5.2 orresponds to a Single-Indutor Two-Output ase (p = 1 and
n = 1) (SITITO), whih is equivalent to the onverter studied in the previous hapter.There is no need here for spei� Sj swithes, beause there is only one output towhih injet the urrent from the indutor when either SA or SB results open. Hene,these swithes an be substituted by two diodes, whose ation is omplementary to
SA (negative load) and SB (positive load). We will assign the indies 1 and 2 to thepositive and negative polarities respetively. Notie that the subindexes onsideredhere as 1 and 2 have their orrespondene in P and N respetively in the previoushapter.
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Figure 5.2. Shemati diagram of a SITITO d-d onverter with positive (1) and negative (2)outputs.5.1.2 Interleaved ontrol
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Figure 5.3. Sheme of the ontrol of a SIMIMO d-d onverter based on multi-phase modulation.The feedbak urrent is vI = rSi, being rS the sensing resistane.A simpli�ed sheme of a multi-phase or interleaved ontrol for a SIMIMO d-d on-verter [15℄ is shown in Fig. 5.3. This ontrol is made up from N hannels, eahof them driving a spei� swith Sj . Hene, the orresponding apaitor Cj will beharged when the state of the swith Sj is ON. The AND gates are used to ahieve therequirement, explained above, that the ON state of swith SA orresponds to an OFFstate of all Sj assoiated to negative outputs, and the same for SB onsidering all Sjswithes of the positive outputs.



92 Chapter 5. Analysis of the SIMIMO onverter with Interleaved ControlLet us de�ne the set of inputs as {Vj , j = 1..N}. Similarly to the previous ontrol,the aim of the ontrol is to fore the set of voltage outputs voj as losed as possibleto the orresponding input Vj . Considering the signal errors as follows
ej = Vj − voj , j = 1..N,and taking into aount the PI term of the ontrol, it an also be de�ned the set ofsignals {vij, j = 1..N} as

vij = gjsign (Vj) (ej − σj) j = 1..N,where {gj, j = 1..N} is the set of proportional oe�ients of the PI bloks and
σj =

1

τj

∫
(voj − Vj) dt j = 1..N,being {τj, j = 1..N} the set of orresponding time onstants. A generi hannel j willbe driven by a signal, whih will be denoted vdj . This signal, whih plays the role ofa dynamial referene, is a linear ombination of PI outputs {vik}, given by

vdj =

N∑

k=1

αj,kvik, j = 1..N,where αj,k are the generi oe�ients in the matrix that appears in Fig. 5.3.Similarly to the ontrol presented in the previous hapter, the regulation is ahieved bythe omparison of vI , a signal proportional to the indutor urrent (vI(t) = rSiL(t)),and a set of peak referene signals {vmj , j = 1..N} (5.1), whih inlude the orre-sponding dynami referene vdj and a ramp signal vrj with period T and amplitude
VU − VL.

vmj = vrj + vdj . (5.1)Nevertheless, the set of ramp signals have been modi�ed in order to ahieve an ap-propriate regulation of the onverter, due to the fat that it is onvenient that onlyone swith Sj is ON at a time. Let us divide the period of a modulating signal into Nintervals, so that
N∑

j=1

φjT = T,where {φjT, j = 1..N} is the time duration of eah phase interval. The strategy usedin the interleaved ontrol is based in applying an inrement delay of the form
j∑

k=1

φk, k = 1..j,to eah of the ramp signals. Therefore, vrj an be de�ned as
vrj = VU − (VU − VL)mod( t

T
−

j∑

k=1

φk, 1

)
,



5.2. Closed loop mathematial modeling 93where mod (x, 1) stands for the modulo of x.In order to larify the operation of the ontrol, in Fig. 5.4 the state variables iL and
voj , j = 1..4 and the peak referene signals vmj , j = 1..4 have been depited in thesteady state, for a SIMIMO onverter with N = 4 (being p = 2 and n = 2).During eah phase j, whose duration is φjT , and taking into onsideration the ation ofthe bistables, the ondition vI = vmj splits the phase interval into two parts. Duringthe �rst subinterval, whih will be referred as the ON subinterval, all Sj swithes remainOFF and both SA and SB swithes are ON. Therefore, in this subinterval, the indutorreeives energy from the soure. Afterwards, until the end of that interval φjT , aseond subinterval is de�ned for whih Sj will be ON and either SB or SA will be OFFdepending on the polarity of the output: SB in ase positive or SA otherwise. Thisseond subinterval will be known as the OFF subinterval. During this subinterval oneapaitor Cj is harged from the indutor.The ation of the ontrol is given by means of the automati seletion, due to thefeedbak, of the instants of time that will determine the ratio of both ON and OFFsubintervals in every phase. During every OFF subinterval a diret e�et is produedon the output that orresponds to the spei� swith Sj that has been ativated.However, along the ON subintervals, the indutor urrent is reovered from the soure,so involving the rest of the outputs. The total time per yle to harge the indutor isdetermined by the addition of all ON subintervals, thus being a ombined ation of thehannels. Consequently, the regulation of eah output is ahieved through this totalON interval besides the duration of the respetive OFF subinterval, thus meaning thestability must be onsidered for the system as a whole, not for eah individual hannelor output.Finally, we will introdue same remarks about the oe�ients α. Numerial simula-tions have revealed that the diagonal oe�ients αj,j must be very small or even nullin order to ensure stability. This fat is due to an unompensated e�et: if αj,j isde�ned with suh a signum that a dereasing of vmj would inrease the ON subinter-val, then an undesirable redution in the time of loading Cj is produed, otherwisethe redution of the ON subinterval would not be in favor of the need of harge for theindutor in order to inrease the urrent to later be delivered to Cj . Therefore, thefeedbak will be ahieved by the rossed oe�ients αj,k, k 6= j of the matrix.5.2 Closed loop mathematial modeling5.2.1 Swithed modelThe swithed model gives the set of 2N+1 ordinary di�erential equations for the statevariables. In order to take into aount the di�erent on�gurations of the system, the



94 Chapter 5. Analysis of the SIMIMO onverter with Interleaved Control

(a) vI = rS iL

(b) vo1

() vo2

(d) vo3

(e) vo4Figure 5.4. Steady state of the SIMIMO d-d onverter with parameters in Table 5.1. Colorode (a): red (rSiL) blue (vm1), green (vm2), yan (vm3) and orange (vm4).



5.2. Closed loop mathematial modeling 95binary variables uj and uA are needed. These signals are valued depending on thestate of the orresponding swithes Sj and SA: 0 or 1 if open or losed respetively.The swithed model an be easily obtained by applying standard Kirhho�'s voltagelaw to the iruit: dvojdt =
1

Cj

(
ujsign (Vj) iL − voj

Rj

)
, (5.2)dσjdt =

1

τj
(voj − Vj) , (5.3)diLdt =

1

L



uAVIN −
N∑

j=1

ujsign (Vj) voj − rLiL



 . (5.4)The �rst subset of N equations (5.2) refers to the dynamis of eah voltage output voj ,where sign (·) stands for the signum funtion. Additional subset (5.3) deals with Nequations for eah of the integral terms σj in the PI bloks. Finally, the last equation(5.4) deals with indutor urrent dynamis.The binary ommand signal uj , whih is diretly related with the time interval inwhih apaitor Cj is loaded and thus, it is de�ned 0 from the beginning of ramp vmj(when the synhronous swithing is ativated by the lok) until the asynhronousswithing de�ned by the zero ondition:
vmj(t) − vI(t) = 0. (5.5)Afterwards, uj is valued 1 until the end of the ramp vmj . Regarding the binary signal

uA, its value will be assigned to 1 if uj = 0, ∀j assoiated with a negative output,otherwise uA = 0.Taking into aount (5.5), the set of state equations (5.2)-(5.4) is then in losed formand an be used for omputer simulations of the whole system.Before �nishing the desription of the swithed model, let us present some remarksdealing with the operation of the onverter. It should be notied that, in the normalmode of operation (period T orbit), only one output is onneted to the indutor.Nevertheless, during the transient or with a dynamis di�erent from the normal regime(subharmonis or haos), it is possible that the asynhronous swithing ondition(5.5) ours before the interval assigned to that output. In this ase, two outputswould result interonneted. Two situations an be distinguished here: if the twoonseutive intervals involved in this proess are de�ned belonging to outputs withopposite polarity (alternation of positive and negative outputs), that ase implies aseries onnetion of a positive and a negative output and the indutor, whih willtransfer energy to these two outputs. Otherwise, in ase that two or more onseutiveintervals are related to outputs having the same polarity, a parallel onnetion of themould be produed. In order to avoid this last situation, the ontrol should inlude some
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(a) iL (b) voj , j = 1..4Figure 5.5. Simulated (red) and averaging (blue) transient of a SIMIMO d-d onverter. Theparameters used are in Table 5.1.omplementary logi to inhibit this ourrene or the swith model should inorporateat least the parasiti series resistane of the �lter apaitors.5.2.2 Averaged modelUnder assumption of a redued period T of the modulating signal suh as the rippleof the state variables are enough small, the dynamis of the system (5.2)-(5.4) anbe approximated by the smooth averaged model. A simple averaged model an beobtained from the swithed model by substituting the binary signals by ontinuousvariables. Therefore, if uj and uA are replaed by δj and δA respetively, then the setof 2N + 1 averaged equations (5.6)-(5.8) are given bydvojdt =
1

Cj

(
δjsign (Vj) iL − voj

Rj

)
, (5.6)dσjdt =

1

τj
(voj − Vj) , (5.7)diLdt =

1

L



δAVIN −
N∑

j=1

δjsign (Vj) voj − rLiL



 , (5.8)where the over bar stands for averaging during one swithing period.The duty ratios δj , whih are de�ned as the interval relative to a period T in whihthe swith Sj is open (OFF), an be obtained expliitly from in terms of the averagedstate variables [15℄ as follows:
δj =

1

VU − VL

(
N∑

k=1

αj,kgksign (Vk) (vok − Vk + σk) + rsiL − VL

) (5.9)



5.2. Closed loop mathematial modeling 97Parameter Value Parameter Value
VIN 5.0 V rS 0.5 Ω

L 39 µH rL 0.1 Ω

V1 5 V V2 −9 V

V3 12 V V4 −12 V

R1 10 Ω R2 15 Ω

R3 22 Ω R4 33 Ω

C1 68 µF C2 68 µF
C3 56 µF C4 39 µF
VU 1.0 V VL 0.0 V

τj 300 µs φj 0.25

αj,j 0.0 αj,k, j 6= k 1.0

gj 0.1 T 20 µsTable 5.1. Parameter values used in numerial simulations for N = 4, being j, k = 1..4.The parameter δA refers to the ratio, in period of the modulating signal, in whih theindutor is reovering energy from the soure. Therefore, this ratio must inlude the
N ON subintervals and the OFF subintervals onsidering only the positive loads, whihis equivalent to exlude the OFF subintervals that involve the load of a negative output.To obtain a formal expression, let us de�ne the binary variable bj as

bj = 1/2 + sign (Vj) /2,so that bj = 0 if Vj < 0 and bj = 1 if Vj > 0, thus δA an be expressed as:
δA = 1 −

N∑

j=1

(1 − bj)δj .The above equations an be used to get information of the averaged system, in par-tiular slow dynamis stability features. Let us reall here that a periodi orbit of theswithing system orresponds to an equilibrium point of the ontinuous-time averagedsystem, whih an be alulated by imposing the zero �eld ondition to the set ofaveraging equations (5.6)-(5.8), thus giving the following results:
voj = Vj (5.10)

δj =
|Vj |
IQRj

(5.11)
i = IQ =

VIN

2rL



1 −

√√√√1 − 4rL
V 2

IN

N∑

j=1

|Vj |V ′

j

Rj



 (5.12)
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j = (1−bj)VIN+|Vj | (so that V ′

j = VIN−Vjif Vj < 0 and V ′

j = Vj if Vj > 0). Finally, from (5.9) and (5.11), the steady stateexpression for σj an be obtained from the following set of N equations (j = 1..N)
N∑

k=1

αj,kgksign (Vk)σk + rsIQ − VL − (VU − VL)
|Vj |
IQRj

= 0. (5.13)A neessary existene ondition for equilibrium is that the disriminant in (5.12) bepositive. Besides this, there are two possible solutions if either a positive or a negativesignum is onsidered for the square root term in (5.12), but only the negative one isuseful in pratie; otherwise, the indutor urrent and the assoiated loss of energywould be very high. The stability of this equilibrium point an be studied by theJaobian matrix of this model, whih is given below:
Jj,k =

1

Cj

(
βj,k +

αj,kgksign (VjVk) IQ
VU − VL

)

Jj,N+k =
1

Cj

αj,kgksign (VjVk) IQ
VU − VL

Jj,2N+1 =
1

Cj

(
Vj

IQRj
+

sign (Vj) rSIQ
VU − VL

)

JN+j,k = γj,k

JN+j,N+k = 0

JN+j,2N+1 = 0

J2N+1,k =
−1

L

( |Vk|
IQRk

+
gksign (Vk)

VU − VL

∑N

j=1
αj,kV

′

j

)

J2N+1,N+k =
−1

L

gksign (Vk)

VU − VL

∑N
j=1

αj,kV
′

j

J2N+1,2N+1 =
−1

L

(
rL +

rS
VU − VL

∑N

j=1
V ′

j

)

(5.14)
being j = 1..N , k = 1..N , βj,j = −1/Rj, βj,k = 0 if k 6= j, γj,j = 1/τj and γj,k = 0 if
k 6= j.In Fig. 5.5, the indutor urrent and the voltage outputs are represented during thetransient in a four-output single-indutor d-d onverter using both the swithed andthe averaged model.5.3 One-dimensional disrete-time modelThe one-dimensional map that is presented in this setion is a �rst approah thatonsiders only the variations of the indutor urrent while the rest of the state variables



5.3. One-dimensional disrete-time model 99(the �lter apaitor voltages and the integral terms) are assumed to be onstant. Inaddition, the indutor urrent is approximated by a pieewise-linear time funtion.This kind of approah is equivalent to the one widely used in boost or buk-boostonverters with urrent programmed ontrol.
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Figure 5.6. Shemati diagram of the urrent evolution for a SITITO onverter (N = 2). Thefuntions I1
r (t) and I2

r (t) orrespond to v1
m(t)/rS and v2

m(t)/rS respetively.5.3.1 Map de�nitionThe map will be de�ned strobosopially with the periodiity of the modulating ramps.Moreover, in an extended range of parameters, the evolution of the indutor urrentpresents a pattern that is qualitatively repeated every phase (see Fig. 5.6). Taking intoaount this property, the map an be expressed as a omposition of N submappings.Let P (i) be the disrete-time map de�ned in a whole period T , then
i 7→ P (i) = fN ◦ fN−1 ◦ ... ◦ f2 ◦ f1(i), (5.15)where fk orresponds to the submapping in the phase interval k. Considering a lineartime dependene of the indutor urrent in eah topology, the evolution of the indutorurrent in the phase interval k an be approahed by

ik+1 = fk(ik) = ik + (∆ion− ∆ioffk)dk + ∆ioffkφk, (5.16)where i1 = i, iN+1 = P (i) and, generally, ik orresponds to the value of the statevariable i at the beginning of the interval phase k, and thus
ik+1 = fk ◦ fk−1 ◦ ... ◦ f2 ◦ f1(i).



100 Chapter 5. Analysis of the SIMIMO onverter with Interleaved ControlThe urrent inrements that appear in (5.16) are spei� for eah subinterval and theyare de�ned as the total variation of the indutor urrent that would be produed ifthat subinterval lasted for the whole period T . Therefore, taking into aount (5.8)and the onstant voltage approah (voj ≈ Vj), these inrements are
∆ion =

VIN − rLIQ
L

T (5.17)
∆ioffk =

bkVIN − |Vk| − rLIQ
L

T (5.18)Notie that in the above expressions the voltage drop in the indutor due to theparasiti resistane rL, whih is expeted to be small, is assumed onstant using theaveraged urrent IQ in (5.12).The duty yle in eah phase interval is modeled as follows
dk =

{
d′k if d′k ≤ φk,

φk if d′k > φk,
(5.19)in whih

d′k =
Ik
p − ik

∆ion− ∆ir , (5.20)and
∆ir = −VU − VL

rS
.Aording to (5.19), the generi submapping k is a PWL map with two trams: the(main) unsaturated tram with dk = d′k and the saturated tram with dk = φk.The set of parameters {Ik

p , k = 1..N}, in whih Ik
p is the value of the modulating ramp

vmk at the beginning of the phase interval k divided by the sensing resistane rS , isstill unde�ned. As the one-dimensional map will be used to determine the existeneand stability of the normal regime of operation, then, due to the integral ation, the d-levels of the ramps are onsidered to be shifted suh as the mean value of the indutorurrent �ts the averaged value obtained in (5.12). Therefore, the method proposedhere to determine these parameters is to fore the mean value of the pieewise-linearontinuous funtion iL(t) during a whole period T to �t IQ, when the starting valueof i is just the main �xed point and thus, the duty yles are those predited by theaveraged model (5.11). As dk orresponds to the ON subinterval in the map, while δkdoes to the OFF subinterval in the averaged model, these ratios are omplementarilyde�ned in a phase interval, thus, in the �xed point onditions the duty ratio is de�nedas
d∗k = dk = φk − |Vk|

RkIQ
,



5.3. One-dimensional disrete-time model 101and Ik
p is determined in order to ful�l (5.20) in the �xed point ondition

Ik
p = i∗

k

+ (∆ion− ∆ir)dk, (5.21)where i∗k , whih orresponds to iL(t) at the beginning of phase interval k in theperiod-one ase (�xed point) so as to be applied to submapping fk de�ned in (5.16),thus giving
i∗

k+1

= i∗
k

+ (∆ion− ∆ioffk)dk + ∆ioffkφk. (5.22)The �nal step is to give an expliit expression of i∗1 , whih is atually the �xed pointof the map P (i∗ = i∗
1), in aordane to the averaging ondition

IQ =
N∑

k=1

φki
k
, (5.23)in whih ik is the mean indutor urrent during the phase interval k applied to the

k-submapping in the �xed point ondition. Taking into aount that iL(t) is a PWLfuntion, it is straightforward that
i
k

= i∗
k

+
ηk

φk

k = 1..N,where
ηk = ∆ion dk

(
φk − dk

2

)
+

1

2
∆ioffk

(
φk − dk

)2
.Let {∆i∗k

, k = 1..N} be the set of di�erenes between k− and 1st− submapping �xedpoints. This set inludes a trivial �rst member ∆i∗
1

= 0 for the shake of ompletenessand the remainder (k = 2..N) are obtained after k − 1 iterations of (5.22)
i∗

k

= i∗ + ∆i∗
k

,

∆i∗
k

=

k−1∑

l=1

(
(∆ion− ∆ioffl)dl + ∆iofflφl

)
.Finally, inserting the above expressions in (5.23), results

IQ = i∗ +

N∑

k=1

(
φk∆i∗

k

+ ηk

)
,then

i∗ = IQ −
N∑

k=1

(
φk∆i∗

k

+ ηk

)
.



102 Chapter 5. Analysis of the SIMIMO onverter with Interleaved ControlParameter Value Parameter Value
VIN 6V VL 0

L 47 µH VU variable
rL 0.2 Ω V1 variable
C1 22 µF V2 −8 V

C2 22 µF τ = τ1 = τ2 20 µs
R1 33 Ω g = g1 = g2 0.02

R2 12 Ω φ1 = φ2
1

2

fs = 1/T 200 kHz rS 1 ΩTable 5.2. Parameter values used in numerial simulations for N = 2.5.3.2 Validity of the modelThe map de�nition (5.15) has been onstruted as a sequene of submappings andrequires that the indutor urrent (more preisely vI = rSiL) interepts eah of themodulating signals vmk(t) in the orresponding phase interval k. These restritionsadd two sets of boundary onditions in the map. The �rst set applies to the value of
i∗

k with respet to Ik
p so that the duty yle be positive. Therefore, from (5.20) the�rst set of validity onditions an be expressed in two equivalent forms

{
dk > 0,

i∗
k

< Ik
p ,

k = 1..N. (5.24)The seond set applies to the relative position of the modulating ramps vmk and anbe expressed in the form
Ik
p < Ik+1

p − ∆irφk, k = 1..N, (5.25)where the yli ondition IN+1
p = I1

p is taken into aount.Notie that (5.25) does not show dependene on the state variable i. When any ofthese onditions are ful�lled, the dynamis presents a border-ollision bifuration. A-tually, the dynamis outside these boundaries should be analyzed rede�ning the model.Nevertheless, the loss in the symmetry of the system inreases greatly the omplexityof the map and the extension of the analysis is out of the sope of this dissertation.Therefore, these onditions will be onsidered here as a validity boundaries of our map.The set of validity onditions (5.24) (blak) and (5.25) (grey) have been depited inFig. 5.7 in the parameter spae {VU , φ1} (Fig. 5.7a) and {V1, φ1} (Fig. 5.7b) for
N = 2. Solid and dashed lines represent the onditions for the phase intervals one and
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(a) V1 = 6.0V (b) VU = 0.5VFigure 5.7. Validity urves from (5.24) (blak) and (5.25) (grey) for N = 2. Solid and dashedlines orrespond to the onditions for the phase intervals one and two respetively. The parametersare in Table 5.2.

(a) V1 = 6.0V (b) V1 = 6.0V and VU = 0.104VFigure 5.8. Plots obtained with the PSIM simulator for N = 2: iL(t) (red), I1
r (t) (blue) and

I2
r (t) (green) evolution. The parameters are in Table 5.2.two respetively. The red line added in Fig. 5.7a represent the parameter variationsof the bifuration diagrams depited in Fig. 5.8a, where some senarios have beenfound in the real system when rossing any of these boundaries. In Fig. 5.8b, thesenario around the bifuration has been plotted to illustrate the oinidene of bothmodulated signals. In Fig. 5.9 some senarios have been plotted to illustrate thenearby of (5.24) ondition, taking parameters along the red line in Fig. 5.7b.In the �rst ase, the bifuration diagram has been obtained varying the parameter VU .As it an be appreiated, the diagram in Fig. 5.8a shows a jump in the state variablefrom a stable one-periodi orbit to a haoti attrator when the ondition (5.25) fromthe phase two is ful�lled. This kind of non-smooth bifuration ours in disontinuousmaps (maps with a jump in the state), with whih this dynamis ould be modeled if
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(a) V1 = 9.0V (b) V1 = 7.0V

() V1 = 6.0V (d) V1 = 4.0VFigure 5.9. Plots obtained with the PSIM simulator for N = 2: iL(t) (red), I1
r (t) (blue) and

I2
r (t) (green) evolution. The parameters are in Table 5.2 exept: φ1 = 0.65, φ2 = 1− φ1. In ()and (b), the two swithings take plae in the same phase interval.
the omplete map has been taken into onsideration. Notie also the equivalene ofthis bifuration with the bifuration seen in the previous hapter when the slope ofthe intermediate state reahes the slope of the ramp signal.The seond ase studied has been depited in Fig. 5.9. In this situation, four dia-grams have been shown to illustrate the persistene senario of the �xed point whenrossing the boundary (5.24). Notie that in Fig. 5.9 and Fig. 5.9d, after rossingthe boundary, both asynhronous swithings take plae in the same phase interval.Therefore, the dynamis annot be predited with the map proposed. When the �xedpoint is unstable after rossing the boundary, other senarios an appear, as suh thenon-smooth period-doubling.



5.3. One-dimensional disrete-time model 1055.3.3 Main mode of the map, �xed point and stability analysisTaking into aount the two trams in eah submapping, the map (5.15) an have upto 2N trams. However, those trams that imply saturation of the duty yle are not ofinterest for a real system, thus in pratial appliations, the on�guration to whih therelevant �xed point belongs is the one with no duty yle saturated. This on�gurationwill be alled the main mode and is analyzed in detail below. In order to simplify theanalysis, the (unsaturated) map is rewritten in terms of variations regarding the �xedpoint of the main mode. From (5.16) and (5.22)
ik+1 − i∗

k+1

= ik − i∗
k

+ (∆ion− ∆ioffk)(dk − dk)and from (5.20) and (5.21) the variation of the duty yle is:
dk − dk = − ik − i∗

k

∆ion− ∆irthen, from the above two expressions, the submapping results
ik+1 − i∗

k+1

= (1 − αk)(ik − i∗
k

) (5.26)where a new set of oe�ients {αk, k = 1..N} is de�ned
αk =

∆ion− ∆ioffk

∆ion− ∆ir . (5.27)Finally, the iterative map applied to the variation of urrent is obtained by the iteration
(k = 1..N) of submapping (5.26).

in+1 − i∗ =

N∏

k=1

(1 − αk)(in − i∗)To simplify the notation, a new parameter λ, whih takes into aount the e�et of allphases in the main mode, is de�ned
λ =

N∏

k=1

(1 − αk) (5.28)then the map in the main mode, whih will be denoted Pm an be expressed as
in+1 = Pm(in) = λin + (1 − λ)i∗ (5.29)The main �xed point, whih will be alled im and it is obtained applying the ondition

i = Pm(i), is therefore im = i∗, in aordane to the onditions imposed in the mapde�nition.
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(b) (ρ1, ρ2, ρ3): (0.5, 4, 8)Figure 5.10. Funtion λ(x) for N = 2 (a) and N = 3 (b).

(a) VU = 0.52V with i(0) = 0.0A(red) and i(0) = 4.105A (blue) (b) VU = 0.45VFigure 5.11. Cobweb diagrams around a �ip bifuration. In (a) two di�erent values of i(0) (initialonditions) are used to show the existene of two attrators: the main �xed point and a period-twoorbit. Variable parameters shared in both diagrams are: V1 = 2.0 V and V2 = −15.0 V.Due to the linearity of Pm, the asymptoti stability is straight given by the ondition
|λ| < 1 (5.30)In order to desribe the feasible senarios, whih an appear in the dynamis of themap as the ramp amplitude is varied, the parameter λ de�ned in (5.28), in whihthe oe�ients αk are in (5.27), an be expressed as a funtion of some dimensionless
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(a) Inreasing VU (b) Dereasing VUFigure 5.12. Bifuration diagrams obtained with the PSIM simulator using VU as the varyingparameter. The parameters are in Fig. 5.11.

(a) VU = 0.23V (b) VU = 0.15V and i(0) = 0.0A(blue) and i(0) = 4.1A (red)Figure 5.13. Cobweb diagrams around a non-smooth pithfork bifuration. After the bifurationin (b), the main �xed point is unstable and two new attrators oexist: a new �xed point (plaedin the fourth tram) and a haoti attrator. Variable parameters shared in both diagrams are:
V1 = −V2 = 12V.terms as follows

λ(x) =
1

(x+ 1)N

N∏

k=1

(x− ρk), (5.31)where x is de�ned as
x =

VDL

(VIN − rLIQ)rST
(5.32)and

ρk =
|Vk| − bkVIN + rLIQ

VIN − rLIQ
. (5.33)
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(a) Flip bifuration (b) Non-smooth pithfork bifurationFigure 5.14. Bifuration diagram obtained analytially using VU as the varying parameters. Theurves represent the stable (blue), unstable (red) and virtual (grey) one and two-periodi orbits.The parameters for (a) are in Fig. 5.11 and for (b) in Fig. 5.13.

(a) Dereasing VU (b) Inreasing VUFigure 5.15. Bifuration diagrams around the pithfork bifuration obtained with the PSIMsimulator using VU as the varying parameter. The parameters are in Fig. 5.13 but g = 0.01 and
τ = 200 µs.Figure 5.10 shows the funtion λ(x) for N = 2 (Fig. 5.10a), N = 3 (Fig. 5.10b)and di�erent sets of parameters. This representation aounts for the in�uene ofthe ramp amplitude in the stability of the map. Notie that λ(x) shows asymptotibehavior (λ(x) → 1 ifx→ ∞) and has the singular point x = −1, whih is loated in anon-physial area, onsidering that the slope of the ramp annot be inverted (VD > 0).The map will be unstable if λ < −1 or λ > 1, thus provoking two types of bifurations:period-doubling (see Fig. 5.11) or non-smooth pithfork (see Fig. 5.13).



5.3. One-dimensional disrete-time model 109In the obweb diagrams shown in these �gures a di�erent number of trams of themap an be observed. The �rst tram is assoiated to saturation in both intervals(xn+1 = xn + ∆ion), the seond tram (and the fourth in Fig. 5.13) has one intervalsaturated, and the third tram orresponds to the main mode (no saturation at all).More details above these trams are given below also for the two-output onverter(N = 2).In Fig. 5.11a, λ = 0.907 and hene, im is stable. Furthermore, it is shown in the same�gure the oexistene with a stable period-two orbit. It will be proved below that thissenario, in whih these two attrators oexist, is always given in the neighborhood ofa �ip bifuration in our system. On the other hand, in the diagram depited in Fig.5.11b, im is unstable (λ = 1.010 > 1) and a two-piee haoti orbit exits in whih allthe trams of the map are involved. Cobweb diagrams in Fig. 5.13 are related to apithfork bifuration. In this ase, after the bifuration (see Fig. 5.13b), two new �xedpoints appear in the seond and forth trams. The �rst �xed point is unstable whereasthe last one is stable and oexists with a haoti orbit, whih involves the seond andthird trams of the map.Finally, Fig. 5.14 shows the one and two periodi orbits using VU as the varyingparameter. Blue and red lines stand for stable and unstable orbits whereas grey linesrepresent virtual orbits. Notie in the diagrams the oexistene of the attrators. Thebasin of attration in Fig. 5.14a is determined by an unstable period-2 orbit, whereasin Fig. 5.14b, the boundary is given by the unstable main �xed point.The validity of this analysis has been proved in Fig. 5.12 and Fig. 5.15, showing thatthe bifuration points varying VU are lose to the predited values.5.3.4 Stability analysis of the main �xed point in a SITITOd-d onverterIn this setion, we will study deeply the dynamis of the two-output ase with oppositepolarity onverter. As it is mentioned above and show in Fig. 5.11 and Fig.5.13, theone-dimensional map an have up to four trams. The diagrams in Fig. 5.16 show thewaveforms of the indutor urrent (iL(t)) and the two referenes during a period. Thedi�erent waveforms orrespond to a varying initial ondition (iL(0)). The ontinuousline orresponds to a generi initial value in the main mode and the dotted lines arethe ritial ases assoiated to the border of the trams. In Fig. 5.16a there are onlytwo borders and onsequently, the map is de�ned with three trams, whereas in Fig.5.16b there are three borders orresponding to four trams.The relative value of dimensionless parameters {x, ρ1, ρ2} de�ned previously an helpus to determine the number of piees and their slope, whih applies for intervals withinreasing values of the indutor urrent in aordane to the following rules:



110 Chapter 5. Analysis of the SIMIMO onverter with Interleaved Control� The �rst and simplest tram orresponds to the omplete saturation, in+1 =

in + ∆ion, then it has a unit slope.� The seond tram orresponds to the saturation of the �rst phase, therefore theslope of this tram of the map is given by the expression (x− ρ2)/(x+ 1), whihwill result positive if x > ρ2 (negative otherwise).� The third tram orresponds to the main mode or unsaturated operation. Itsslope an be obtained from (5.31) for N = 2 and is expressed as
λ(x) =

(x− ρ1)(x − ρ2)

(x+ 1)2
(5.34)and this is positive if x is outside the interval (ρ1, ρ2) or negative if x is insidethis interval.� The fourth tram exists only if the time-slope of the indutor urrent in the �rstphase is more negative than the slope of the ramp (x < ρ1), thus enabling thesaturation in the seond phase. The slope of this tram of the map is thereforegiven by the expression (x− ρ1)/(x+ 1), whih will always be negative.

(a) Three piees (b) Four pieesFigure 5.16. Evolution of the indutor urrent (�xed point and ritial values) and referenes (seeFig. 5.8 for olor ode). The parameters are in Fig. 5.11 (a) and Fig. 5.13 (b).In what follows, we will onsider as the �rst phase the one orresponding to thelower time-slope of iL(t), suh that ρ1 < ρ2. This riterion annot modify the �nalonlusions, the only di�erene lies in the values of the �xed points. Notie also that, ingeneral, due to the asymmetry in the expression of parameters (5.33), the �rst hannelwill likely orrespond to the positive output (V1 > 0) and this is neessarily true if
ρ1 < 0. In addition, the following restritions apply to these parameters: ρ1 > −1 and
ρ2 > 0.



5.3. One-dimensional disrete-time model 111To sum up, the highest zero of λ(x) will be plaed always in the positive axis, whereasthe lowest one an be positive or negative, but not less than−1. Moreover, the funtion
λ(x) will present always a minimum value at

xMIN =
ρ1 + ρ2 + 2ρ1ρ2

2 + ρ1 + ρ2

, (5.35)in whih the value of λ is
λMIN =

−(ρ2 − ρ1)
2

4(1 + ρ1)(1 + ρ2)
. (5.36)Therefore, a �ip bifuration is possible if λMIN <= −1 and at the two ritial valuesof x

xFLIP =
1

4

(
ρ1 + ρ2 − 2 ±

√
(ρ1 − ρ2)2 − 4(1 + ρ1)(1 + ρ2)

)
. (5.37)
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Figure 5.17. Flip (red) and non-smooth pithfork (blue) bifuration urves in the parameter spae
{ρ1, ρ2} for di�erent values of x.A seond possible bifuration appears for λ(x) = 1. In this ase the slope of the mapin the main �xed point is positive and the senario is more similar to a pithforkbifuration with non-smooth features. Notie that the seond iteration of a mapwith a parameter set that a �ip bifuration ours will deal with suh a kind ofbifuration. The relevane of our map is that it is omposed by two submappings,and it is the omposition of the two submappings that �ts the threshold ondition(λ = 1). Considered separately, the �rst submapping would have a tram with anegative slope −1 < (x − ρ1)/(x + 1) < 0 and the seond submapping with a morenegative slope (x− ρ2)/(x+ 1) < −1. The ritial value for this bifuration is

xPFORK =
ρ1ρ2 − 1

2 + ρ1 + ρ2

, (5.38)whih always satis�es the inequality xPFORK < ρ1. From a pratial point of view,this bifuration will not our if xPFORK < 0 or equivalently if ρ1 < 1/ρ2. Therefore,



112 Chapter 5. Analysis of the SIMIMO onverter with Interleaved Controla su�ient but not neessary ondition to avoid this bifuration is that the positiveoutput referene be inferior to the input voltage (V1 < VIN ). In Fig. 5.10a, λ(x) isdepited using two di�erent set of parameters.To obtain a more general piture of the region of parameters for whih these non-smooth bifurations (�ip and pithfork) an appear, two set of two-dimensional bifur-ation diagrams in (ρ1, ρ2) spae are depited in Fig. 5.17. The lateral (red) set ofurves are those obeying the �ip ondition λ(ρ1, ρ2, x) = −1, in whih x is the variableparameter. The envelope of these urves are two straight lines that obey ondition
λMIN = −1 in (5.36) and an expliitly be expressed as

ρ2 = (3 ± 2
√

2)ρ1 + 2(1 ±
√

2). (5.39)The entral (blue) set orresponds to the parametri urves λ(ρ1, ρ2, x) = 1. Notiethat if x = 0, the expression of the urve is: ρ1ρ2 = 1. The main �xed point (im)is stable in the inner part of the diagram bounded by the pithfork and the two �ipurves for eah value of the parameter x.5.3.5 Non-smooth bifurations of the main �xed pointAs it is explained above, the de�nition of the duty yles must take into aount thepresene of boundaries in the model. One of these limits is analyzed in (5.19). Anotherlimit that has to be aounted for is the presene of the disontinuous ondution mode(DCM). These limits an formally be expressed as� High duty yle saturation: The �rst set of boundaries is given when in ageneri phase k, the duty yle beomes equal to that phase (φk). Therefore,bifuration urves Πk
1(im) are de�ned as follows
Πk

1(im) = φk − dk(ikm) k = 1..N. (5.40)It is important to remark that, although the main �xed point annot ross anyof the boundaries in a physial set of parameters, (5.40) take relevane in thenon-smooth bifuration of higher periodi orbits.� Disontinuous ondution mode: The seond set of boundaries is givenwhen the indutor urrent drops to zero, therefore, bifuration urves Πk
2(im)are de�ned as follows

Πk
2(im) = ikm k = 1..N. (5.41)



5.4. Higher dimensional disrete-time model 1135.4 Higher dimensional disrete-time model5.4.1 De�nition of the mapA more aurate map, whih onsiders the evolution of all the state variables of thesystem, is presented in this setion. Though the evolution of the indutor urrent(iL(t)) will be also onsidered linear in eah topology, the higher variations of iLduring a yle in�uene signi�antly the evolution of the apaitor voltages, even theintegral variable, in suh a way that nonlinear terms must be taken it into aount.Therefore, the one-dimensional PWL map (P ) will be rede�ned below as a (2N + 1)-dimensional pieewise-smooth (PWS) map, whih, as before, an be expressed as aomposition of the k-submappings (fk):
P (x) = fN ◦ fN−1 ◦ ... ◦ f2 ◦ f1(x) (5.42)xk+1 = fk(xk) (5.43)where x1 = x, xN+1 = P (x) and, generally, xk orresponds to the value of the vetorof state variables x = (i, vo1, vo2, ..., voN , σ1, σ2, ..., σN ) at the beginning of the intervalphase k, and thus

ik+1 = ik + (∆ion− ∆ioffk)dk + ∆ioffkφk

vok+1

j = vok
j +

(
δvak

j +
1

2
δvbk

j

)
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jφk
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j +

T
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2
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k

)being j = 1..N .As in the one-dimensional approah, parameters ∆ion and ∆ioffk are de�ned in(5.17) and (5.18) and dk in (5.19) and (5.20). To make more understandable theexpressions of the map, the variables δvak
j , δvbk

j and δvk
j have been inluded, whihare assoiated with the variations of the apaitor voltage and the integral term andare de�ned as follows

δvak
j =

T
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sign (Vj) (ik + ∆ion dk),
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sign (Vj)∆ioffk(φk − dk),
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114 Chapter 5. Analysis of the SIMIMO onverter with Interleaved ControlThe duty ratio δk
j is de�ned so as to take into aount the fat that every apaitor(Cj) is only loaded during its orresponding interval (j):

δk
j =

{
φk − dk if k = j,

0 if k 6= j.One of the most signi�ant improvements of this rede�nition of the map is that themembers of the set {Ik
p }, whih are used to obtain d′k from (5.20), are no longeronstant, but funtion of the state variables. Hene, in aordane to the de�nition ofthe modulating signal in (5.1), these terms must be alulated as follows.)

Ik
p =

1

rS



VU −
N∑

j=1

αk,jgjsign (Vj) (vok
j − Vj + σk

j )



+ ∆ir(1 − φk).5.4.2 Study of the fast sale dynamis for N = 2The one-dimensional map an predit bifurations related to the ripple of the indu-tor urrent. The major advantage of this map is the relatively redued number ofparameters to deal with the analysis. In fat, the stability of the �xed point an beveri�ed using the polynomial fration funtion (5.31), whih has a number of roots(non-dimensional parameters de�ned in (5.33)) equal to the outputs (N), applied tothe non-dimensional parameter x de�ned in (5.32) and tunable by means of the am-plitude of the ramp.Roughly, those bifurations are more or less aurately predited by the simplest mapdepending on the ripple of the apaitor and integral voltages and also of the weightof these terms in the feedbak. Two-dimensional bifuration diagrams (mostly inthe {T, VU} parameter spae) in Figs. 5.18 and 5.19 show the deviation of the one-dimensional map of a SITITO d-d onverter in some illustrative ases, whih aountfor a seletion of parameters negleted in the one-dimensional map but onsidered inthe �ve-dimensional map. In general, a set of bifuration urves are plotted in thesediagrams and therefore, three parameters have been onsidered at one. The red lineshave been obtained by means of the one-dimensional map approah whereas eahontinuous grey line uses a variable intensity to identify the value of the parameteramong those prede�ned in the set. Figure 5.18 deals with �ip bifuration urveswhereas Fig. 5.19 does with a ase in whih a non-smooth pithfork bifuration urveis found with the one-dimensional approah.Conerning the deviation of the predition of the �ip bifuration, two sets of �ipbifuration urves using di�erent values of the PI gain (gk), have been depited in Fig.5.18a and Fig. 5.18b �xing the values of the time onstants of the PI terms to 200 µsand 50 µs respetively. An enlargement of both plots, between whih no quantitative
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(a) τ = 200 µs (b) τ = 50 µs

() Zoom view of (a) and (b) (d) τ = 50 µs, g = 0.1 (grey), g = 0.02(blak)Figure 5.18. Flip bifuration urves using (5.15) (dashed red line) and (5.42) (solid grey line)maps for the values of g: 0.5 (light), 0.2, 0.1, 0.05 and 0.01 (dark). The parameters are in Table5.2 exept: V1 = 2.0 V and V2 = −15.0 V. The stability of the main �xed point is reahed athigh values of VU and low values of C.di�erene an be appreiated, has also been inluded. Notie that (see Fig. 5.18) forlow values of gk, these urves tend to the one-dimensional approah. It an also beappreiated that the bifuration urves do not tend to the one-dimensional approahas the period of the modulated signal is dereased. Diagram in Fig. 5.18d revealsthe in�uene of the ripple of the apaitor voltages; in this ase ({C, VU}) is used asparameter subspae. Notie that the predition of the �ip bifuration is worsened asthe value of gk is inreased.Similar analysis has been developed in the range of parameters for whih the one-dimensional approah predits a non-smooth pithfork bifuration. It is relevant tonote here that we have found the equivalene of the pithfork bifuration urve inthe one-dimensional map to Neimark-Saker bifuration urves (related with a pairof omplex eigenvalues rossing the unit irle) in the �ve-dimensional map. Hene,
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(a) τ = 50 µs (b) τ = 200 µs

() Zoom view of (a) (d) Zoom view of (b)Figure 5.19. Neimark-Saker/Pithfork bifuration urves using (5.15) (dashed red line) and(5.42) (solid grey line) maps for di�erent values of g: 0.2 (light), 0.1, 0.05 and 0.01 (dark). Theparameters are in Table 5.2 exept: V1 = −V2 = 12.0 V. The stability of the main �xed point isreahed at high values of VU .Fig. 5.19 shows the omparison between both bifuration urves by using the twoapproahes. In ontrast to the �ip bifuration urves, as the period is inreased,the urves su�ers a ompletely hange in their tendeny, moving away of the one-dimensional approah. Conversely, for low values of T , the deviation between the twourves is similar to the deviation in the predition of the �ip bifuration. Therefore,the higher-dimensional map predits a signi�antly redued region in whih the mainmode is stable, espeially when g is dereased.Finally, similar results are found in Fig. 5.20 using the time onstant in the PI bloks(τ). In this range of parameters, it an be observed that when the period of themodulation (T ) is inreased, the range of values for the ramp amplitude is inreased(showing a stable main �xed point), while in the Neimark-Saker bifuration this rangeis dereased.



5.5. Conlusions 117

(a) 200 µs (dark), 50 µs, 25 µs and
20 µs (light). Neimark-Saker: 25 µs(dark) and 20 µs (light). (b) 200 µs (dark) and 50 µs (light).Figure 5.20. Flip (red and grey) and Neimark-Saker (blue) (a) and Neimark-Saker / Pithfork(b) bifuration urves using (5.15) (dashed red line) and (5.42) (solid grey or blue lines) mapsfor di�erent values of τk. The parameters are in Table 5.2 exept: V1 = 2.0V and V2 = −15.0 V(a) and V1 = −V2 = 12V (b). The stability of the main �xed point is reahed at higher valuesof VU .Notie that Fig. 5.20a also shows another smooth bifuration, a Neimark-Saker, whenthe parameter τ is redued. In ontrast to the Neimark-Saker bifuration seen abovewhih was related with the non-smooth Pithfork bifuration, this instability annotbe predited by means of the one-dimensional map beause it is related with the lowfrequeny dynamis. As it an be appreiated in the �gure, the stable zone is redueddrastially as the parameter τ is dereased, adding a higher ritial value of VU .5.5 ConlusionsIn this hapter, an interleaved ontrol has been proposed to regulate a generalizedSIMIMO onverter, whih an provide multiple output voltages with di�erent polari-ties. The dynamis has been analyzed by means of averaged models and disrete-timemodels using di�erent approahes.Firstly, expressions for the generalized averaged model have been obtained, inludingthe Jaobian matrix, whose eigenvalues determine the stability of the equilibriumpoint. Similarly to the results obtained in the previous hapter, the averaged modelprovides simple expressions for the equilibrium point, whih orrespond to limit ylesin the real system, and the duty yles. These results an help us to determine theavailable region of the onverter and are required to establish the expressions for theone-dimensional map. No deep analysis has been developed using this model beauseaveraged models are not able to predit the bifurations assoiated to the urrentripple and most of the non-smooth bifurations.



118 Chapter 5. Analysis of the SIMIMO onverter with Interleaved ControlThe analysis of a generalized one-dimensional map has permitted to obtain simpleexpressions useful to determine the stability of the main mode of operation. More-over, though the disrete-time model does not inlude all modes of operation of theonverter, the boundaries of the validity of the proposed model have also been estab-lished. The rossing of any of these boundaries is known to yield a border-ollisionbifuration, whih an imply several senarios ranging from sudden jump to haos topersistene. Furthermore, the values of the phase intervals φj an be properly seletedto avoid any of these non-smooth bifurations.Due to the fat that the dynamis of the onverter an be modeled with a three-pieelinear map in a determined region of the parameters, the result obtained in hapter 3an be useful to redue the possible senarios that an appear in the dynamis of theonverter. One of the most relevant results is the proof of the oexistene of the oneand two-periodi orbit in the neighborhood of a �ip bifuration.Conerning the stability, in ontrast to the non-interleaved ontrol seen in the previoushapter, in whih stability is lost only under the ourrene of the eigenvalue rossingthe ritial value −1, the analysis of the interleaved ontrol has revealed that theinstability is prompts to appear also if the eigenvalue rosses the ritial value 1. Inthis last ase, numerial simulations from the swithed model show that behavior ofthe onverter in the neighborhood of this bifuration is similar to a Neimark-Sakerbifuration. Higher-dimensional disrete-time models prove that the bifuration of thereal system is atually a Neimark-Saker.Nevertheless, when the ripples of the apaitor and integral voltages annot be ne-gleted, the auray of the preditions that are obtained with the one-dimensionalmap is not satisfying and higher-dimensional disrete-time models are required. Inthis ase, the higher omplexity of the expressions and, onsequently, the time inre-ment of the numerial simulations is made up for the auray in the predition of theinstability. Otherwise, non-smooth bifurations an be properly determined by usingthe expressions given by a one-dimensional PWL map.



Chapter 6
Experimental measurements
In this hapter, several experimental measurements obtained witha SITITO prototype will be presented. The use of a miro-ontrollerto generate the driven signals of the swithes has permitted to studythe two di�erent strategies of ontrol presented in this dissertation.Di�erent dynamis of the onverter will be measured inluding thenormal operation regime, periodi orbits and haos.

6.1 Desription of the systemA prototype of a SITITO DC-DC onverter has been implemented to prove the va-lidity of the regulator and to on�rm the results of the study realized in the previoushapters. Figure 6.1 shows the physial implementation of both the power and theontrol stages. In order to manage with di�erent strategies of ontrol, the regulationof the onverter has been realized by means of a miro-ontroller (LPC2138), whihomputes the swithing instants by proessing the value of indutor urrent and bothapaitor voltages aquired periodially, aording to the spei� strategy of ontrol.In this stage, the algorithm implemented reprodues the analogial ontrols SPC andIC explained in Chapters 4 and 5.The power iruit is regulated by two ommand signals. These voltages are previouslyadapted by two dediated MOS inverting drivers from MAXIM (MAX626), and thenapplied to the MOSFET IRF9Z34S (p hannel) and IRL530N (n hannel). The diodes119
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(a) Power stage (b) Control stageFigure 6.1. Prototype of a SITITO onverter omposed by the power and ontrol boards.are two Shottky barrier diodes (6CWQ04FN) and the indutor urrent is sensed usingthe urrent probe PR30. Conerning the value of parameters of the power stage, bothapaitors and resistors an be seleted to �nd a spei� dynamis. The value of theindutane is determined by an algorithm implemented in the miro-ontroller beforestarting the regulation of the onverter. Aording with this experimental measures,the value of the indutor used in the numerial simulations has been �xed to 640 µH.Finally, its parasiti resistane rL has been estimated about 0.7 Ω.Let us now summarize the tehnial apabilities of the iruit of ontrol. The pa-rameters of this stage, suh as the amplitude of the modulating signal, the voltagereferenes, the gains and time onstants of the integral ontrol, are on�gured in thealgorithm and loaded into the miro-ontroller memory. All these parameters an bevaried during the experimental measurements. Despite the miro-ontroller an oper-ate up to 60 MHz, the A/D onversions of VIN , iL and both apaitor voltages, whihneed around of 2.6 µs, and the number of operations required to predit the swithinginstants �x the maximum frequeny of the modulated signal about 10 kHz. Moreover,the operations needed in the initial part of every period fore that the �rst swithingannot be programmed before the 20% of that period. Notie that this restrition anbe relevant in the transient regime and in ritial onditions, even during the normalregime, in the presene of noise. These limitations have resulted more ruial in thenormal funtioning of the onverter in ase of the interleaved ontrol, due to the fatthat the algorithms are more omplex and, besides this, the �rst swithing is givenearly.Conerning the algorithms used to simulate the two ontrols, the duty yles of bothswithes are established by using the analytial expressions similar to those obtainedin the development of the one-dimensional disrete-time models. Nevertheless, thereexist some di�erenes. The most relevant one deals with the value of the peak ref-erenes, whih must be known in order to predit the swithing instants and theirvalue annot be omputed exatly with the expressions developed in the analysis of



6.2. Single-Phase Control 121Parameter Value Parameter Value
VIN 6.0V VL 0.0

L 640 µH VU variable
rL 0.7 Ω VP variable
CP 45 µF VN -7.0V
CN 45 µF τP = τN 200 µs
RP 22 Ω gP = gN 0.02

RN 33 Ω rS 1 Ω

fs = 1/T 10 kHzTable 6.1. Parameter values used in the experimental and numerial results.the one-dimensional map. Therefore, the omplete expressions given by the swithedmodels of both strategies of ontrol are used. These are funtions of the apaitorvoltages, whose real value is aquired periodially, and the integral terms. Due to thelimitations in the omputing time of the miro-ontroller, the evaluation of the integralstate variables has been simpli�ed, onsidering the voltages as onstant values in eahperiod. This strategy redues the number of operations but an modify the dynamisof the onverter. As it will be observed bellow, one of the main onsequenes of thismethod onerns the mean value of the apaitor voltages. Due to the ation of theintegral ontrol implemented here, the mean value of the apaitor voltages is foredto be equal to its orresponding voltage referene in suessive instants of aquisitionof the voltage instead of the whole period. Besides this, more omplex deviations inthe dynamis an be produed and will be analyzed in future works.6.2 Single-Phase ControlIn this setion, several dynamial behaviors of the SITITO onverter driven by theSPC ontrol are presented. The �xed parameters hosen in the di�erent experimentalmeasurements and numerial simulations are summarized in Table 6.1. Notie that
VU and VP will be the unique varying parameters in this setion.6.2.1 Normal operation regimeConerning the normal operation regime, two di�erent sets of parameters, aord-ing to the tehnial limitations of the prototype, have been hosen to illustrate thesteady-state response of the SITITO onverter regulated by the ontrol SPC when theonverter operates in the modes MP and MN desribed in Chapter 4.
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(a) iL (b) iL

() vP (d) vP

(e) vN (f) vNFigure 6.2. Waveforms of the indutor urrent and the apaitor voltages obtained experimentally(left) and by simulation (right). The varying parameters are VP = 8.0 V and VU = 1.5 V.Mode MPWhen the positive referene voltage is set to 8.0 V (while VN = −7.0 V), the normalmode of operation is MP . Figure 6.2 shows the evolution of the indutor urrent
(a) SB and iL (b) SA and iLFigure 6.3. Waveforms of the indutor urrent and driven signals of SB (a) and SA (b) obtainedin the prototype of SITITO onverter. The parameters are in Fig. 6.2.
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(a) iL (b) iLFigure 6.4. Evolution of the indutor urrent obtained experimentally (left) and with the PSIMsimulator (right). The varying parameters are VP = 2.0V and VU = 1.5 V.

(a) SA and iL (b) SB and iLFigure 6.5. Evolution of the indutor urrent and the driven signals of SA (left) and SB (right).The parameters are in Fig. 6.4.and apaitor voltages obtained experimentally (left) and with the PSIM simulator(right). As it an be observed, experimental measurements are in good agreementwith expeted results. Figure 6.3 shows the signals whih drive the swithes SA (Fig.6.3a) and SB (Fig. 6.3b), whose edges fore the swithing instants of the MOSFET's.It has to be taken into aount that the logi levels of these signals, whih have beenpondered in Fig. 6.3 for the sake of larity, operates in an opposite way and have beeninverted by intermediate drivers. Therefore, SA is open or losed at low or high levelsof its orresponding driven signal respetively whereas SB is open or losed at high orlow levels respetively.Mode MNStable dynamial behavior has been also obtained when VP = 2.0 V (VN = −7 V), sothat the onverter operates in the mode MN (see Fig. 6.4). In this ase (see Fig. 6.5),the swithing of SA beomes earlier than SB and therefore, dA < dB .6.2.2 Bifuration analysisIn this setion, preliminary experimental results of the nonlinear phenomena of theSITITO onverter are presented. For the sake of larity, a two-dimensional bifuration
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Figure 6.6. (a) Stability (green), ISL (blue) and MOC (blak) odimension-one bifuration urvesin the parameter spae {VU , VP}. The urves have been obtained by using the one-dimensionaldisrete-time model. The parameters are in Table 6.1.diagram in the parameter spae {VU , VP } has been depited in Fig. 6.6, in whih thestability (green) and the Mode Operation Change (MOC) (blak) and IntermediateSlope Limit (ISL) (blue) non-smooth bifuration urves have been represented by usingthe one-dimensional map obtained in Chapter 4. Three nonlineal phenomena will beshown: period-doubling, MOC and ISL bifurations by means of temporal plots of theindutor urrent. Notie that the spei� parameters used in these representationshave been marked in the Fig. 6.6 as blue (ISL), green (�ip) and blak (MOC) dots. Inthe diagrams obtained with the PSIM simulator and depited in Fig. 6.7, the perioddoubling (Fig. 6.7a) and ISL (Fig. 6.7b) bifuration an be appreiated.
Flip bifurationTwo waveforms of the indutor urrent have been obtained (see Fig. 6.8) at the values
VP = 6.0 V and VU = 1.0 V (Fig. 6.8a), VU = 0.6 V (Fig. 6.8b) and VU = 0.4 V (Fig.6.8) by means of experimental measurements. The normal dynamis represented inFig. 6.7a beomes a period-two orbit after a �ip bifuration, as it an be appreiatedin Fig. 6.8b. In the range of the parameters seleted, as the value of VU is dereased,the two-periodi orbit presents a non-smooth bifuration and a four-periodi orbitappears, whih beomes a haoti attrator after another BC bifuration. Due to thepresene of noise, the dynamis in Fig. 6.8 annot be learly distinguished, whih anorrespond to a four-periodi orbit or a haoti attrator. Anyway, a further dereaseof the parameter VU shows haoti dynamis.
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(a) VP = 6.0V (b) VP = 2.0V

() VU = 1.0VFigure 6.7. Bifuration diagrams obtained with the PSIM simulator. The indutor urrent syn-hronized with the lok is the variable represented.
(a) VP = 6.0V, VU = 1.0V

(b) VP = 6.0V, VU = 0.65V () VP = 6.0V, VU = 0.40VFigure 6.8. Experimental measurements of the waveform of the indutor urrent after a �ipbifuration has undergone.
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(a) VP = 2.0V, VU = 1.2V (b) VP = 2.0V, VU = 1.1VFigure 6.9. Evolution of the indutor urrent around a ISL non-smooth bifuration.
(a) VP = 5.0V, VU = 1.0V (b) VP = 4.5V, VU = 1.0VFigure 6.10. Evolution of the indutor urrent in the neighborhood of a MOC bifuration.ISL and MOC non-smooth bifurationsISL and MOC border-ollision bifurations an be seen in Fig. 6.9 and Fig. 6.10respetively, where experimental waveforms of the indutor urrent have been obtainedin both sides of the ISL and MOC bifurations. Notie that the ritial values of theparameters VU and VP are in agreement with the numerial results obtained with theone-dimensional map and the PSIM simulator (see Fig. 6.7b and Fig. 6.7).6.3 Interleaved ControlLet us now show some of the experimental measurements obtained in the same pro-totype but driven by the IC ontrol. Similarly, the normal operation behavior and apreliminary bifuration study are presented in this setion. The value of parametersare given in Table 6.1, onsidering the indexes 1 and 2 equal to P and N respetively.The parameter φ1 (notie that φ2 = 1 − φ1) is spei�ed in eah diagram.6.3.1 Normal operation regimeFirstly, in order to ompare the dynamial properties of both ontrols, the normaloperation regime has been illustrated with a set of parameters equals to those usedin the previous setion. Figure 6.11 shows the evolution of the indutor urrent andthe apaitor voltages obtained experimentally and by using the PSIM simulator.
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(a) iL (b) iL

() vo1 (d) vo1

(e) vo2 (f) vo2Figure 6.11. Waveforms of the indutor urrent and apaitor voltages obtained experimentally(left) and numerially with the PSIM simulator (right). The parameters are the same that in Fig.6.2 and φ1 = 0.60.
(a) SA and iL (b) SB and iLFigure 6.12. Waveforms of the indutor urrent and the driven signals of SA (a) and SB (b)obtained experimentally. The set of parameters orresponds to Fig. 6.11.
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(a) Dereasing VU (b) Inreasing VUFigure 6.13. Bifuration diagrams obtained with the PSIM simulator using VU as the varyingparameter. The parameters are in Table 6.1 exept: V1 = 3.0 V, V2 = −15.0 V, R1 = 33Ω,
R2 = 68Ω and φ1 = 0.45.Complementary, the driven signals of the swithes have also been depited in Fig.6.12.Notie that φ1 has been set to 0.6. As it has been mentioned above, the �rst swith-ing instant annot be programmed before a minimum value due to omputing timerequired in its estimation. However, the ritial situation an be avoided, when possi-ble, by inreasing φ1.6.3.2 Bifuration analysisTo onlude, some smooth and non-smooth bifurations have been deteted in the realsystem. Diagrams showing the dynamis around a �ip bifuration and the border-ollision bifurations related with the delay applied between both modulated signalsare desribed bellow.Flip bifurationIn the range of parameters seleted above, the normal operation regime does notpresent any �ip bifuration as the parameter VU is varied. As it was onluded inChapter 5, the �ip bifuration takes plae in areas in whih the parameters relatedwith hannels 1 and 2 are highly asymmetri. Therefore, the voltage referenes V1and V2 have been set to 3.0 V and −15.0 V respetively and the resistors R1 = 22 Ωand R2 = 33 Ω have been replaed by R1 = 33 Ω and R2 = 68 Ω. In Fig. 6.13, twobifuration diagrams have been depited. The hysteresis phenomenon assoiated withthe �ip bifuration explained in Setion 5.3.3 an been observed in the �gure. Twowaveforms are depited in Fig. 6.14, whih illustrates one and two-periodi orbits at
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(a) VU = 0.9V (b) VU = 0.5VFigure 6.14. Waveforms of the indutor urrent obtained experimentally. The parameters are inFig. 6.13.

(a) (b) φ1 = 0.55V.Figure 6.15. (a) Validity urves from (5.24) (blak) and (5.25) (grey) for N = 2. Solid anddashed lines orresponds to the onditions for the phase intervals one and two respetively. (b)Bifuration diagram using VU as the varying parameter. The parameters are in Table 6.1 exept
V1 = 4.0 V, V2 = −8.0 V, R1 = 33Ω and R2 = 68 Ω.the values of VU = 0.9 V (a) and VU = 0.5 V (b) respetively. Unfortunately, in theregion of the parameter VU in whih both attrators oexist, the presene of noise inthe system makes di�ult the stabilization of both dynamis separately whih, fromtime to time, �ips between the two attrators.Border-ollision bifurationsLet us now fous in the validity onditions of the disrete-time models proposed inSetion 5.3.2. In the two-dimensional bifuration diagram depited in Fig. 6.15a inthe parameter spae {VU , φ1}, four validity urves obtained with the �ve-dimensionalmap have been plotted under parameters in Table 6.1 and V1 = 4.0 V, V2 = −8.0 V,
R1 = 33 Ω and R2 = 68 Ω. As it was explained above, the interleaved ontrol wasonsidered with two kinds of boundaries due to the fat that eah swithing an onlybe produed in its own phase interval. The �rst anomaly ours when the relativeposition of the peak referenes avoids one of the swithings (grey urves) whereas the
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(a) VU = 0.35 V (b) VU = 0.25V

() VU = 0.35 V (d) VU = 0.25VFigure 6.16. (a,b) Waveforms of the indutor urrent obtained experimentally. (,d) Reonstru-tions of the experimental waveforms of the indutor urrent depited in (a) and (b) respetivelyinluding the urrent peak referenes I1
r (blue) and I2

r (green) with data supplied by the miro-ontroller. The parameters are in Fig. 6.15 and φ1 = 0.55.
seond ase deals with two swithings produed in the same phase interval, so thatwould be d1 = 0 or d2 = 0 (blak urves). Solid and dashed lines distinguishes thetwo onditions for the phases 1 and 2 respetively. The red line represents the varyingrange of the parameter VU used in the bifuration diagram shown in Fig. 6.15b andthe blue dots orrespond to the di�erent set of parameters used in Figs. 6.17 and 6.18.Notie that, in the �rst ase, the normal operation regime undergoes a border-ollisionbifuration when the seond swithing is skipped, with the ontrol proposed in Chap-ter 5. Nevertheless, this non-smooth bifuration an be easily avoided by a slightlydi�erent programme in ontrol. The experimental results are shown in Figs. 6.16a and6.16b. To failitate the omprehension of this option, new plots obtained by means ofdata supplied by the miro-ontroller have been depited in Figs. 6.16 and 6.16d toshow the waveforms of the indutor urrent and the two peak referene urrents. Thereonstrutions of these signals have been made using the periodially aquired valuesof the indutor urrent and apaitor voltages together with the predited values forthe duty yles and the peak referenes. All this variables are obtained as auxiliaryoutputs of the miro-ontroller. Notie in Fig. 6.16d, that the swithing of S2 is per-mitted (the swithing ondition for S1 is ignored), whih avoids the border-ollisionprovoked by the relative position between both urrent peak referenes. Atually, thenew algorithm is simpler and requires less memory and omputing time.
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(a) VU = 1.0V and φ1 = 0.62 (b) VU = 1.0V and φ1 = 0.7

() VU = 1.0V and φ1 = 0.62 (d) VU = 1.0V and φ1 = 0.7Figure 6.17. (a,b) Waveforms of the indutor urrent obtained experimentally showing a per-sistene senario. (,d) Reonstrutions of the experimental waveforms of the indutor urrentplotted in (a) and (b) respetively and the urrent peak referenes I1
r (blue) and I2

r (green). Theparameters are in Fig. 6.15.Conerning the seond ase, Figs. 6.17 and 6.18 show the indutor urrent obtainedexperimentally at di�erent values of VU and φ1, in the neighborhood of this non-smooth bifuration. The dynamis observed in the diagrams of Figs. 6.17a and 6.17borrespond to an one-periodi orbit and therefore, the senario given at the ritialpoint is persistene. Notie in the reonstruted waveforms depited in Fig. 6.17that the one-periodi orbit at VU = 0.62 V has the two swithings in di�erent intervalphases (normal regime) whereas in Fig. 6.17d both swithings are produed in the�rst interval. Conversely, in Fig. 6.18, a two-periodi orbit appears due to a non-smooth period-doubling bifuration (see Fig. 6.18b). This two-periodi orbit linksa sequene of di�erent patterns per period of the modulating signal: the pattern ofthe normal operation and the two swithings in the �rst subinterval for the seondperiod. A detailed analysis of this senario, whih requires to model the dynamis ofthe onverter when both swithings are produed in the �rst interval phase, will berealized in future works.6.4 ConlusionsSeveral experimental measurements realized in a prototype of a SITITO onverterregulated by the two ontrols proposed in this dissertation (SPC and IC) have beenpresented. The ranges of parameters have been hosen aording to the limitations ofthe system, in order to show several dynamial behaviors produed in the experiments.
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(a) VU = 0.2V and φ1 = 0.62 (b) VU = 0.2V and φ1 = 0.7Figure 6.18. Waveforms of the indutor urrent obtained experimentally showing non-smoothperiod doubling senario. The parameters are in Fig. 6.15.Conerning the �rst strategy of ontrol, the main bifurations analyzed in the Chapter4 have also been deteted in the physial system at the ritial values predited.Nevertheless, bifurations involving the parameters of the integral terms have beenpostponed due to the need of a previous dynamial study of the system with thesimpli�ed integral ontrol programmed.More di�ulties have arisen in the IC ontrol implementation. The lower limit of theduty yle fored by the miro-ontroller implies a signi�ant redution in the possiblerange of the parameters. It has to be remarked that this limitation not only a�ets tothe one-periodi orbit but even more to higher periodi orbits, quasiperiodiity andhaos. Nevertheless, when the normal operation regime is available, this dynamis isstable in a wide range of parameters.It has been proved in this Chapter that one of the border-ollision bifurations an beavoided under a simple modi�ation of the algorithm of ontrol. This fat leads us toonsider in the future others variant of ontrols, some of them simpler, indeed. Theuse of these algorithms ould imply the inreasing of the frequeny of the modulatingsignal.



Chapter 7
Conlusions and future works

Stati and dynamis properties of a Single-Indutor Multiple-Input Multiple-Output(SIMIMO) d-d onverter have been determined by means of averaged and disrete-time models. The results that have been obtained prove the ability of the onverterto regulate several outputs with di�erent polarities when the parameters are properlyseleted. The analysis inlude not only the determination of instability onditions, butalso the limit or boundary onditions and the di�erent dynamis that arise beyondthem. Experimental measurements have also been added to prove the viability of theseonverters and dynamis properties in a spei� range of parameters.In order to reah our objetive, di�erent models have been developed with a tunabledegree of auray. Firstly, the usefulness of the averaged models has been validated.Besides the haraterization of the equilibrium situation and the duty yle of eahhannel, these models provide information of the stability related with the slow saledynamis. However, the averaged models are also known to be unable of detetingphenomena related with the fast sale dynamis, in whih mainly the ripple of the in-dutor urrent is involved. This restrition overs not only the predition of instability,but also the detetion of some of the non-smooth bifurations, whih are onditionedby the evolution of the indutor urrent during a period. This leads to the requirementof using disrete-time models to deal with these dynamis unpredited by averagedmodels.Disrete-time models with di�erent number of state variables have been proposed todeal with the dynamis of the d-d onverter driven by two di�erent strategies ofontrol: Single Phase Control (SPC) and Interleaved Control (IC), whih have been133



134 Chapter 7. Conlusions and future worksapable of regulating a Single-Indutor Two-Input Two-Output (SITITO) onverter.The one-dimensional model is obtained when only the evolution of the indutor urrentis taken into onsideration. In both SPC or IC, the analysis of these models haspermitted to obtain simple analytial expressions to haraterize the stability and thenon-smoothness of the system. Higher dimensional maps have also been obtained toimprove the auray in these preditions. In the IC ontrol, numerial results haverevealed a relevant deviation in the predition of the Flip bifuration.Besides the analysis of both ontrols, another ontribution given in this dissertationhas dealt with the dynamial study of a three-piee pieewise-linear (PWL) map. Thedisrete analysis of both ontrols has shown that the one-dimensional PWL map whihdesribes the evolution of the indutor urrent is haraterized by having three piees,in ase of the SPC, or three or four piees for the alternative IC. Therefore, the studyof a normalized one-dimensional PWL map has helped us to aount for the feasiblesenarios in whih one and two-periodi orbits are involved.7.1 Di�erenes in the operation of the onverter un-der both strategies of ontrolTo sum up, we will present a list of relevant di�erenes in the operation of the ontrolsSPC and IC. Due to the fat that the ontrol SPC has not been generalized to severaloutputs, only dynamis of SITITO d-d onverters are evaluated.� Conerning the main mode of operation, in the SPC the two apaitors aresimultaneously loaded in the last part of the OFF interval, whereas in the IC,only one apaitor is loaded in the orresponding phase. As it was appreiated inthe experimental measurements, this fat implies that the possible low saturationof the duty yle, given when the duty yles reah the 0 value, is more likely inthe IC ontrol due to the fat that more time is required to load both apaitors.On the other hand, high saturation of the duty yles involving one-periodiorbits annot be given in any of the ontrols.� We have found that during the transient multiple patterns of swithing are pos-sible. Unlike the one-dimensional model for SPC that takes into onsiderationall feasible on�gurations, the method used in the generalization in IC ontrollimits the number of on�gurations that the model aount for. Due to this fat,the number of validity onditions is higher in IC regarding SPC.� Averaged models have been proved to be equivalent in both ontrols due to thefat that the evolution of the indutor urrent is not taken into onsideration inthe models.� The one-dimensional disrete-time analysis has revealed that the instability ofthe SITITO onverter driven by SPC an only be given when the eigenvalue



7.2. Proposals of future works 135beomes −1, thus produing a �ip bifuration. Otherwise, in ase of the IC, theinstability an also appear when the eigenvalue beomes +1. Nevertheless, itshould be remarked that, despite this inrement in the unstable onditions inthe IC, the �ip bifuration appears only in odd regions of parameters.� Another important di�erene deals with the deviation in the preditions of the�ip bifuration. It has been shown that the onverter driven by the IC is moresensible to the variation of ripples of the apaitor voltages. Hene, an inreasein the feedbak gains or a redution in the time onstants of the PI terms impliesa greater deviation in the ritial value predited by the one-dimensional model.7.2 Proposals of future worksSome future proposals are listed below:� Conerning the haraterization of the non-smooth phenomena in a three-pieepieewise-linear map, a further study ould be direted to extend the analysisto the omplete range of parameters. Moreover, our study has been restritedto the existene and stability of one and two-periodi orbits and, therefore, aomplete desription of the senarios involving higher periodi orbits ould alsobe of interest.� It has been shown that averaged models fail in the predition of some smoothbifurations. More omplete averaged models, whih inlude information of theevolution of the indutor urrent, ould be developed in order to detet theunpredited Neimark-Saker bifurations.� It has been observed that the experimental system has important limitationsdue to the presene of noise and hene, a signi�ant redution in the noise levelshould be ahieved in order to inrease the range of parameters available. Onehaving redued it, the data aquisition system that is added to the ontrol iruitould be reprogrammed to obtain periodi measurements of the state variablesso that it would be apable of representing experimental bifuration diagrams.� Due to the fat that the algorithm of ontrol an be reprogrammed easily, simplerdigital ontrols, whih redues signi�antly the omputing time in the predi-tion of the swithing instants, an be hosen to regulate the onverter. Thisimprovement ould permit an inrease in the frequeny of the modulated signal.





Appendix A
Five-dimensional map of the SITITOonverter with SPC

In this appendix, the �ve-dimensional disrete-time model whih desribes the dy-namis of a SITITO onverter regulated by the SPC ontrol is developed. Due to thesymmetry between MP and MN , only the mode of operation MP will be explainedin detail.Let us de�ne the following map:
f(x) = xn+1 (A.1)where xn = [i, vp, vn, σp, σn]T and xn+1 = [in+1, vpn+1, vnn+1, σpn+1, σnn+1]

T .Notie that the subindex n has been eliminated from the disrete state variable x tomake the reading learer.Similarly to the de�nition of the one-dimensional map, (A.1) an be divided into thesubmappings:
f(i, vp, vn, σp, σn, φ) =

{
f1(i, vp, vn, σp, σn, φ) if H0(vp, vn, φ) > 0,

f2(i, vp, vn, σp, σn, φ) if H0(vp, vn, φ) < 0,where f : R
5 × R

19 7→ R
5 and the surfae H0 is given by

H0(vp, vn, φ) =
vp

RP

− vn

RN

,137



138 Appendix A. Five-dimensional map of the SITITO onverter with SPCand φ refers to the set of parameters
φ = {VIN , rL, L, VP , VN , RP , RN , VU , VL, T, CP , CN , rS , gPA, gPB, gNA, gNB, τP , τN}.For the sake of simpliity, gFA and gFB have been onsidered 0 in these analysis.In the next setion, expressions for in+1, vpn+1, vnn+1, σpn+1 and σnn+1 are presentedfor both submappings.A.1 Mode of operations MP , MSP and M0It is important the remark that the sequene of topologies in the mode MP is T1 →
T2 → T4, whereas in MSP and M0 the sequenes orrespond to T1 → T2 and T1respetively.Obtaining iL

SA SB ∆i

T1 ON ON ∆i1

VIN − rLIQ
L

T

T2 ON OFF ∆i2

VIN − vp− rLIQ
L

T

T3 OFF ON ∆i3

vn− rLIQ
L

T

T4 OFF OFF ∆i4

vn− vp− rLIQ
L

TTable A.1. De�nition of the inrement urrents of the SITITO onverter in CCM.The assumptions onsidered in the development of the one-dimensional map are alsovalid here. Therefore, aording to (4.30),(4.32),(4.33) and (4.34), in+1 an be ex-pressed as
in+1 =






i+ ∆i1 if x ∈ SA,

i+ ∆i1dB + ∆i2 (1 − dB) if x ∈ SB,

i+ ∆i1dB + ∆i2dAB + ∆i4 (1 − dA) if x ∈ SC .

(A.2)Nevertheless, there exist some di�erenes. Firstly, the inrement urrents {∆ij , j =

1..4}, whih are summarized in Table A.1, depend on the state variables vp and vn.Moreover, dAB = dA − dB is not onsidered as onstant value and the duty yle
dA is approahed similarly to dB. In addition, both duty yles are found using the



A.1. Mode of operations MP , MSP and M0 139omplete expressions for the peak referenes. Therefore, aording to (4.35) and (4.3),the duty yle dB is given by
dB =

(VU + gPB(VP − vp− σp) + gNB(vn− VN + σn)) /rS − i

∆i1 − ∆ir .Similarly, taking into aount the evolution of indutor urrent during T1 and T2, from(4.39) and (4.2) dA an be expressed as
dA =

(VU + gPA(VP − vp− σp) + gNA(vn− VN + σn)) /rS − (i+ (∆i1 − ∆i2)dB)

∆i2 − ∆ir .Obtaining vPAording to (4.9), the evolution of the positive voltage during the topologies T1 isdesribed by the state equation dvPdt =
−1

RPCP

vP , (A.3)whereas in the topology T2 and T4, the expression is given bydvPdt =
−1

RPCP

vP +
iL
CP

.Therefore, it an be onsidered that the evolution of the apaitor voltage has twoontributions: the disharge of the apaitor through the resistor, whih ats duringthe entire period, and the harge ating only during T2 and T4. Considering thatthese two ontributions will be approahed separately, it an be de�ne the followingapproahed funtion v̂P (t) as follows:
vP (t) ≈ v̂P (t) = vpd(t) + vpc(t).

vpd(t) gives the information about the disharge and its evolution an be approahedby the �rst element of the Taylor series of (A.3). Therefore,
vpd(t) = vp− vp

CPRP

t,where vp orresponds to the apaitor voltage at the beginning of the period (vp =

vP (0)).In order to estimate the seond ontribution, we assume the following approximation ofthe evolution of the indutor urrent, îL(t), in the mode MP , as it has been developed



140 Appendix A. Five-dimensional map of the SITITO onverter with SPCin Chapter 4:
iL(t) ≈ îL(t) =






i+ ∆i1

t

T
if t ≤ dBT ,

i′ + ∆i2

(
t

T
− dB

) if dBT ≤ t < dAT ,

i′′ + ∆i4

(
t

T
− dA

) if t > dAT ,

(A.4)where i, i′, and i′′ orrespond to the initial onditions of the indutor urrent in thedi�erent topologies T1, T2 and T4 respetively. De�ning d1 = dB, d2 = dA, ∆i = ∆i2and ∆d = dAB , the inial onditions are given by
i = iL(0) i′ = i+ ∆i1d1 i′′ = i′ + ∆i∆d.During the topology T1, there is no harge in the apaitor. Conversely, during T2 theharge of the apaitor, whih is proportional to the area of the indutor urrent, anbe approahed by

∫ t

dBT

iL
CP

dt ≈ T

CP

(
i′
(
t

T
− dB

)
+

∆i2

2

(
t

T
− dB

)2
)
,whereas during the last topology T4, the approah is given by

∫ t

dAT

iL
CP

dt ≈ T

CP

(
δvp1dAB + i′′

(
t

T
− dA

)
+

∆i4

2

(
t

T
− dA

)2
)
,where the funtion δvp1, together with all the auxiliary funtions used in this hapter,is de�ned in Table A.2. Finally, the funtion vpc(t) is given by the funtion

vpc(t) =
T

CP






0 if t ≤ dBT ,

i′
(
t

T
− dB

)
+

∆i2

2

(
t

T
− dB

)2 if dBT < t < dAT ,

δvp1dAB + i′′
(
t

T
− dA

)
+

∆i4

2

(
t

T
− dA

)2 if t > dAT .Then, applying vpn+1 = v̂P (T ), we obtain
vpn+1 = vpd(T ) + vpc(T ) = vp+ ∆vp+ δvp1dAB + δvp2 (1 − dA) .Easier analysis an be done so as to �nd expressions of vpn+1 for the remainder modesof operation MSP and M0. It an be proved easily that
vpn+1 =






vp+ ∆vp if x ∈ SA,

vp+ ∆vp + δvp1 (1 − dB) if x ∈ SB,

vp+ ∆vp + δvp1dAB + δvp2 (1 − dA) if x ∈ SC .

(A.5)
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∆vp T

CP

(
− vp

RP

)
∆vn T

CN

(
− vn

RN

)

δvp1

T

CP

(
i′ +

∆i∆d
2

)
δvn1

T

CP

(
i′ +

∆i∆d
2

)

δvp2

T

CP

(
i′′ +

∆i4(1 − d2)

2

)
δvn2

T

CN

(
i′′ +

∆i4(1 − d2)

2

)

δvp3

T

2CP

(
i′ +

∆i∆d
3

)
δvn3

T

2CN

(
i′ +

∆i∆d
3

)

δvn4

T

2CP

(
i′′ +

∆i4(1 − d2)

3

)
δvn4

T

2CN

(
i′′ +

∆i4(1 − d2)

3

)

δvp5 δvp3∆d+ δvp1(1 − d2) δvn5 δvn3∆d+ δvn1(1 − d2)Table A.2. De�nition of the auxiliary funtions. d1, d2, ∆i and ∆d orrespond to dB , dA, ∆i2and dAB respetively in the modes MP and MSP and dA, dB, ∆i3 and −dAB in MN and
MSN .Obtaining vNThe evolution of the negative apaitor voltage an be obtained similarly. Taking intoaount the di�erential equations of vN (t) in the topologies T1 and T2 and T4 and thatthere exists harge in the negative apaitor only during the topology T4, it is easy toprove that

vnn+1 =






vn+ ∆vn if x ∈ TA,

vn+ ∆vn if x ∈ TB,

vn+ ∆vn− δvn2 (1 − dA) if x ∈ TC .

(A.6)Obtaining σp and σnFrom (4.4) and (4.5), the state equations of the integral terms are given bydσPdt =
1

τP
(vP (t) − VP ) and dσNdt =

1

τN
(vN (t) − VN ) .Considering the approahed evolution of the positive apaitor voltage v̂P (t) foundabove, σP (t) an be simpli�ed as

σ̂p(t) =
1

τP

∫ t

−∞

(v̂P (t) − VP )dt = σp+
1

τP

∫ t

0

(v̂P (t) − VP )dt.Therefore, σpn+1 an be expressed as follows
σpn+1 = σ̂p(T ) = σp+

1

τP

(∫ T

0

vpd(t)dt +

∫ T

0

vpc(t)dt− VPT

)
,
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0

vpd(t)dt =

(
vp+

∆vp
2

T

)
T,

∫ T

0

vpc(t)dt =

∫ dAT

dBT

vpc(t)dt +

∫ T

dAT

vpc(t)dt.Taking into onsideration the expressions of the indutor urrent in the di�erent in-tervals, the solutions of the integrals are given by and
∫ dAT

dBT

vpc(t)dt = δvp3d
2
ABTand ∫ T

dAT

vpc(t)dt = δvp1dAB(1 − dA)T + δvp4(1 − dA)2T.Then, vpn+1 is given by
σpn+1 = σp+

T

τP

(
vp+

∆vp
2

+ δvp5dAB + δvp4(1 − dA)2 − VP

)
.Finally, the omplete expressions for σpn+1 and σnn+1 in all the modes of operationsare given by

σpn+1 =






σp+
T

τP

(
vp+

∆vp
2

− VP

) if x ∈ SA,

σp+
T

τP

(
vp+

∆vp
2

+ δvp3(1 − dB)2 − VP

) if x ∈ SB,

σp+
T

τP

(
vp+

∆vp
2

+ δvp5dAB + δvp4(1 − dA)2 − VP

) if x ∈ SC ,(A.7)and
σnn+1 =






σn+
T

τN

(
vn+

∆vn
2

− VN

) if x ∈ TA,

σn+
T

τN

(
vn+

∆vn
2

− VN

) if x ∈ TB,

σn+
T

τN

(
vn+

∆vn
2

− δvn4(1 − dA)2 − VN

) if x ∈ TC .

(A.8)
A.2 Funtions f1 and f2Let us now provide the omplete expressions for the submappings f1 and f2, whihan be obtained diretly from (A.2), (A.5), (A.6), (A.7) and (A.8). Considering the
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f1(i, vp, vn, σp, σn, φ) =






FA(i, vp, vn, σp, σn, φ) if x ∈ SA,

FB(i, vp, vn, σp, σn, φ) if x ∈ SB,

FC(i, vp, vn, σp, σn, φ) if x ∈ SC .where the submappings FA, FB and FC are de�ned as
FA(x) =




i+ ∆i1

vp+ ∆vp
vn+ ∆vn
σp+

T

τP

(
vp+

∆vp
2

− VP

)
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τN

(
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− VN

)




,

FB(x) =




i+ ∆i1dB + ∆i2 (1 − dB)

vp+ ∆vp + δvp1(1 − dB)

vn+ ∆vn
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T
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(
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2
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)
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(
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,

FC(x) =




i+ ∆i1dB + ∆i2dAB + ∆i4 (1 − dA)

vp+ ∆vp+ δvp1dAB + δvp2(1 − dA)

vn+ ∆vn− δvn2(1 − dA)

σp+
T

τP

(
vp+
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2

+ δvp5dAB + δvp4(1 − dA)2 − VP

)

σn+
T

τN

(
vn+
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2

− δvn4(1 − dA)2 − VN

)




.

Similarly, the �ve-dimensional submapping f2 is desribed bellow. The expressionsan be obtained easily taking into aount that the sequene in the mode MN is
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T1 → T3 → T4, whereas in MNP , the sequene orresponds to T1 → T3. Let usrede�ne the submapping:

f2(i, vp, vn, σp, σn, φ) =






GA(i, vp, vn, σp, σn, φ) if x ∈ TA,

GB(i, vp, vn, σp, σn, φ) if x ∈ TB,

GC(i, vp, vn, σp, σn, φ) if x ∈ TC ,where the funtions GA, GB and GC are also rede�ned asGA(x) = FA(x),

GB(x) =
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,

GC(x) =




i+ ∆i1dA − ∆i3dAB + ∆i4 (1 − dB)
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2
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)
.




.

Finally, the duty yles are given by
dA =

(VU + gPA(VP − vp− σp) + gNA(vn− VN + σn)) /rS − i

∆i1 − ∆irand
dB =

(VU + gPB(VP − vp− σp) + gNB(vn− VN + σn)) /rS − (i+ (∆i1 − ∆i3)dA)

∆i3 − ∆ir .
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