
Appendix A

Weather uctuations in the forcing

The water motions in the morphodynamic model described in chapters 2 and 2 are forced by
wind stress and alongshore gradients in the mean free surface elevation. The sea bottom evolution
which is described by the model takes place during a very long time scale as the result of the
cumulative e�ect of many episodic storms. On such a long time scale, the forcing is essentially time
dependent mainly due to the sequence stormy weather-calm weather. As a �rst step, the present
thesis has been based on taking an averaged forcing and neglecting the e�ects of uctuations. A
detailed description of these latter e�ects are considered beyond the purpose of the present thesis.
Nevertheless, it is worthwhile to give a sketch of the main ideas of such a "statistical" model.
This yields insight into the limitations of the present "fully averaged model". Also, some of the
implications of the statistical model can already be foreseen. This is the aim of this appendix.

All the variables can be decomposed into a mean plus a uctuation, where the mean refers to
an average over a time period T much larger than the typical time between two consecutive storms,
say T = O(10yr): For instance, for the velocity, v = �v+v0, where �v and v0 describe the mean and
uctuation, respectively. The governing equations can then be averaged as

�v �r�v + f c � �v + gr�zs � �� s � �� b
� �D

= �v0 �rv0

r � ( �D�v) = 0 ;
@ �zb
@t

+r � �q = 0

where the hypotheses assumed in section 2.1, namely, the quasi-steady approximation and small
Froude number have been already taken into account. Note that depth uctuations donot show
up in this model which is a consequence of the rigid lid approximation (free surface e�ects are
neglected) and the fact that uctuations on the topography due to storm events can be discarded.

Now, the problem is how to parametrize bottom shear stress, �� b; sediment transport, �q; and the
"Reynolds stress" term, v0 �rv0: In order to parametrize the �rst two, it is convenient to consider
the instantaneous velocity near the bottom

vib = �v + v0 + v00

where v00 is the velocity which is not explicitly described by the shallow water model (contribution
due to waves, turbulence, etc.). Here we assume that v00 is the wave orbital velocity near the
bottom, being oscillatory with a period much smaller than the time scale of weather events and
v00 = 0: Under the assumption that the mean current is weak in comparison to uctuations and to
wave orbital velocity, j�vj � jv0 + v00j; and that the instantaneous bottom shear stress is given by
� b = �cdjvibjvib; the mean bottom stress can be evaluated as

�� b = �cdjv00jv0 + [R] � �v (A.1)

where the second order tensor [R] has components:

Rij = cdjv00jÆij + cd
v00i v

00
j

jv00j
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88 APPENDIX A. WEATHER FLUCTUATIONS IN THE FORCING

with Æij the Kronecker delta symbol and indices i and j can have the values 1 or 2. In a similar
way, if the instantaneous sediment ux is

q = �0jvibjb( vibjvibj � rzb)

where b > 1 and �0 are speci�ed by using parameterizations which are discussed in e.g. Van Rijn
(1993) the mean sediment transport can be calculated as

�q = �0jv00jb�1v0 + [Q] � �v � �0jv00jbr�zb (A.2)

where the components of the second order tensor [Q] are given by:

Qij = �0jv00jb�1Æij + �0(b� 1)jv00jb�3v00i v00j (A.3)

By using (A.1) and (A.2), the basic state equations (2.6) can be rewritten as

�fc V + g
d�

dx
=

��sx

� �D
� cd

jv00jv0x
�D

�R12
V
�D
� v0x

@v0x
@x

(A.4)

gs =
��sy
� �D

� cd
jv00jv0y
�D

�R22
V
�D
� v0x

@v0y
@x

(A.5)

Notice that all derivatives with respect to y vanish as there is alongshore uniformity in the basic
state. If we now de�ne

��sx = ��sx � �cdjv00jv0x ��sy = ��sy � �cdjv00jv0y

gs� = gs+ v0x
@v0y
@x

g�� = g� +
1

2
v02x

equations (A.4)-(A.5) read

�fc V + g
d��

dx
=
��sx
� �D

�R12
V
�D

gs� =
��sy
� �D

�R22
V
�D

(A.6)

Given the forcing � �sy and s� the second of these equations has the same structure than the
second of (2.6) and can be solved for V in the same manner (recall that the inuence of the free
surface elevation �� on the total depth �D is neglected, in accordance with the small Froude number
assumption). Once V (x) is known, the �rst equation can be solved for ��; from where the free
surface elevation, �; can be obtained. Even though the �rst equality in (A.6) has two additional
terms, ��sx and R12V , this only produces an e�ect on the free surface elevation, but not on the
basic alongshore current. The mass conservation equation is satis�ed identically while the sediment
conservation yields

d

dx
(Q12V + �0jv00jb�1v0x � �

d�zb
dx

) = 0

with � = �0jv00jb: This equation would give the equilibrium topographic pro�le of the inner shelf,
�zb(x): Observations indicate that to a �rst approximation this pro�le is characterized by a constant
slope and this is what has been assumed in section 2.1. Therefore, a mean basic state similar to
that considered in the thesis can still be assumed even in the presence of uctuations.

An interesting issue of this "statistical" formulation, already at this simple stage, is the predic-
tion of a decrease of the e�ective wind stress ��sy with respect to the mean value, ��sy: This can be
understood as follows. Let us consider a dominance of wind along the positive y-direction, so that
��sy > 0 and V > 0: The longshore current uctuation will be positive during storms and negative
during fair weather, but due to the fact that fair weather occurs more often than stormy weather,
the magnitude of the uctuation is larger during storms than during calm weather (because of
� 0sy = 0). Then, since the wave orbital velocity jv00j is much larger during storms, i.e., when v0y > 0;

there is a net contribution in the positive y-direction so that �cdjv00jv0y > 0: At the same time,
the e�ective sea surface slope, s�; is not signi�cantly smaller or larger than its mean value. This



89

can be argued as follows. The cross-shore velocity uctuation, v0x, has not any preferred direction
during the entire storm duration but will change sign from the initial stage to the �nal stage of the
event. According to the balance between surface shear stress and bottom shear stress considered in
section 2.1, the wind driven current tends to be cross-shore uniform. Thus, the term @v0y=@x will

be very small. Therefore, the correlation v0x@v
0
y=@x may be expected to be negligible and s� ' s:

The fact that j��sy j < j��sy j while s� ' s causes an increase of the a parameter in the model.
In other words, even if wind stress may be dominant during storms, the sea surface slope is much
more e�ective in driving the long term mean alongshore current. Some simple computations have
been done by considering the following forcing sequence: 1 day of constant wind stress (always
in the same direction), 9 days of calm weather. The sea surface slope has been assumed to be
present all the time. According to observations o� the central Dutch coast, this distribution is not
unrealistic. Then, the computations predict an increase in parameter a of the order 40%:

Once the statistical formulation and the basic state have been established, the next step would
be to write down the linear stability equations. Now, this requires to evaluate the �rst order vari-
ation of the uctuation on the ow, v0, due to the presence of the small topographic perturbation,
h: This will not be further pursued in the present thesis.
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Appendix B

Solution procedure: Steady model

B.1 Equations

The three linear di�erential equations (2.12) can be reduced to a single equation for the cross{shore
velocity component of the form:

U2uxx + U1ux + U0u = H1hx +H0h (B.1)

where

U2 =�2
U1 =�2x + �3 � f̂�2

U0 =�3x � f̂�3 +
r1
H

+ ikV

H1 =� �1

H0 =� �1x + f̂�1

with the � and � coeÆcients given below. Solving (B.1) for u as a function of h, under the
boundary conditions u = 0 at x = 0 and for x ! 1, de�nes the linear operator U. Then, back
substitution into (2.12) yields for the linear operators V and E:

V = �1 I+ �2Ux + �3U (B.2a)

E = �1 I+ �2Ux + �3U (B.2b)

where I denotes the identity operator.

The coeÆcients in (B.1) and (B.2) are

�1 =
V

H

�2 =
i

k

�3 =
i

k

Hx

H

�1 =
�V 2

H
+

i

k

�
r2
V

H2
� Æ

H

�

�2 =
�r2
k2H

� i

k
V

�3 =
�r2Hx

k2H2
� i

k

�
V
Hx

H
� Vx � f̂

�
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Once the operators U and V are known, operator B can be computed as

B = �jV jm�1
�
(m� 1)

V
VxU+Ux + ikmV

�̂jV j
�
m

V
Vx

d

dx
+

d2

dx2
� k2

�
I

� (B.3)

Then, the solution of (2.15) with (B.3) yields the eigenvalues and eigenfunctions.

B.2 x{discretization

The diferential equations are solved by means of spectral method based upon truncated expansions
in Chebyshev polynomials, and are solved at collocations points (see Canuto et al. 1988 and Gottlieb
& Orszag 1977). Here a brief outline of the spectral numerical method used is gived. In order to
use Chebyshev polynomials, the [0;1) interval is transformed into the (�1; 1] interval. The both
intervals are related by the maps:

(�1; 1]  (z)=z
0

�����! (�1; 1] �(z
0)=x�����! [0;1)

 (z) = az3 + (1� a)z �(z0) = l
(1� z0)

(1 + z0)
;

and N Gaus-Lobatto nodes are chosen as collocations points

zi = cos(
� i

N
) i = 0�N :

At the transformation �, the l parameter is the distance where half of the collocation points are
located. The tranformation  approach the collocation points to 0 in the (�1; 1] interval and,
therefore, to l in the [0;1) interval. Note that x0 = 0 and xN =1.

The aproximate solution f(x) of a function F (x) on [0;1) is expanded as a truncated Chebyshev
series

f(x) =
NX
j=0

f̂jTj(z) ;

Here N is the order of expansions, Tj(z) the Chebyschev polynomials of �rst kind and order j (ie.

Tj(z) = cos(jcos�1z)) and f̂j the projection of the F (x) function in Tj(z).

Expansions for �rst and second order derivaties at the collocation points from the values of the
funtion at these points, f(xj) = fj , are

df

dx

����
x=xi

=
NX
j=0

D1
ijfj

d2f

dx2

����
x=xi

=
NX
j=0

D2
ijfj

The derivaties operators D1
kl and D

2
kl follow from the derivaties of the Chebyschev polynomials

and the map z 7! x, and read

D1
kl =

1

dx=dz
�Dkl D2

kl =
1

(dx=dz)2

�
�D2
kl �

d2x=dz2

dx=dz
�Dkl

�
dx

dz
=

d 

dz

d�

dz0
d2x

dz2
=

d2 

dz2
d�

dz0
+

�
d 

dz

�2
d2�

dz02
:
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The elements �Dkl are de�ned as

�D00 =
1

6
(2N2 + 1) �DNN =

�1
6
(2N2 + 1)

�Dkk =
�zk

2(1� z2k)
k =1�N � 1

�Dkl =
�ck
�cl

(�1)k+l
zj � zl

k; l =0�N; j 6= k

�c0 =�cN = 2

�cj =1 j =1�N � 1

and the elements �D2
kl as

�D2
kl =

NX
m=0

�Dkm
�Dml k; l =0�N :

In case that a funtion H(x) veri�es boundary conditions

H(x = 0) = 0 H(x!1)! 0 ;

a linear combination of Chebyschev polynomials, which veri�es the same boundary conditions, is
used. That read as:

gj(z) = Tj(z)� 1

2

�
(1 + (�1)j)T0(z) + (1 + (�1)j+1)T1(z)

�
:

The aproximation of H at the collocation points, hi, is

hi =
NX
j=2

G0
ij ĥj G0

ij = gj(zi) i = 0�N; j = 2�N :

Expansions for �rst and second order derivaties, at the collocation points, are

dh

dx

����
x=xi

=

NX
j=2

G1
ij ĥj

d2h

dx2

����
x=xi

=

NX
j=2

G2
ij ĥj

G1
ij =

NX
k=0

D1
ikG

0
kj G2

ij =

NX
k=0

D2
ikG

0
kj :

Note that at the last expansions, values at the collocation points come from the projections of
H(x) in the basis gj(z).

B.3 Discretizated equations

B.3.1 FOT-problem

Application of the collocation method to the equation for u, equation (B.1), yields

N�1X
j=1

�
U2(xi)D2

ij + U1(xi)D1
ij + U0(xi)Æij

�
uj =

NX
j=2

�
H1(xi)G

1
ij +H0(xi)G

0
ij

�
ĥj i = 1�N � 1

Note that, because of the boundary conditions (u0 = uN = 0), the index for the collocation points
is running from 1 to N � 1. Same boundary conditions veri�es h and they are included in basis
gj(x) of the appendix B.2. Solving this system of (N � 1)� (N � 1) equations a matrix Uij which
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de�nes the cross-shore velocity component u in the collocation points xi as a linear combination
of ĥj , ie. the bottom perturbation, is found:

ui =

NX
j=2

Uij ĥj i =0�N � 1 :

The boundary condition for u at x = 0 gives U0j = 0.
Back substitution into equations (B.2), yields

Vij = �1(xi)G
0
ij + (�2(xi)Dik + �3(xi)Æik)Ukj i; j =0�N � 1

Eij = �1(xi)G
0
ij + (�2(xi)Dik + �3(xi)Æik)Ukj i; j =0�N � 1 ;

and from these operators, the values of v and � at the collocation points are

vi =

NX
j=2

Vij ĥj i =0�N � 1

�i =
NX
j=2

Eij ĥj i =0�N � 1 :

B.3.2 Bottom evolution equation

Application of the collocation method to the equation for h and using the solutions of the FOT-
problem, the equation (B.3) become

!

NX
j=2

G0
ij ĥj =

NX
j=2

�

N�1X
k=0

��
m
D0x

D0
� (m� 1)

Vx
V

�
jV jm�1Æik + (m� 1)jV jm�1D1

ik

�
i

Ukj

�
�
ikm

jV jm�1V
D0

�
i

G0
ij

+ ̂

�
jV jmG2

ij +m
Vx
V
jV jmG1

ij � k2jV jmG0
ij

�
i

�
ĥj :

The result of write this equations in the collocation points (i = 1�N�1) is a generalized eigenvalue
problem

!Aĥ = Bĥ

The generalized eigenvectors, ĥi, are the components in gj(x) of the bottom perturbation.



Appendix C

Analytical approximation for m = 1

A simple analytical approximation of the eigenvalue problem discussed in section 2.2 can be ob-
tained for the parameter values ̂ = f̂ = r = F = 0;m = a = 1 and � � 1. In essence this reduces
the model to the system studied by Trowbridge (1995), but he did not persue this method. By

assuming normal mode solutions h = Re
n
ĥ(x) exp (iky + !t)

o
it follows that the bed evolution

equation (2.17) reduces for 0 � x � 1 to

�

H
Uh = �h

where hats have been dropped for simplicity, � = !� ik and operator U is de�ned in appendix B.
The boundary conditions are h = 0 at both x = 0 and x = 1: due to the absence of slope e�ects
in the sediment transport h = 0 at the outer shelf. Next we assume the expansions

h(x) =h0(x) + �h1(x) + : : :

� =��1 + �2�2 + : : :

U =U0 + �U1 + : : :

so that at the lowest order we will have the eigenproblem for U0 :

U0h0 = �1h0 (C.1)

Operator U0 involves solving equation (B.1) for horizontal at bottom and uniform basic

current, which, owing to r = 0; f̂ = 0, reduces to

d2u

dx2
� k2u = �ikdh0

dx

where u = U0h0. Therefore, solving (C.1) is equivalent to solving

d2h0
dx2

+ 2s
dh0
dx

� k2h0 = 0 ; h0(0) = h0(1) = 0 (C.2)

with

s = i
k

2�1
(C.3)

The solutions of (C.2) are easily found to be

h0(x) = ei�1x � ei�2x (C.4)

where
�1 = i(s�

p
s2 + k2) ; �2 = i(s+

p
s2 + k2) (C.5)

and where the boundary condition at x = 1 requires

�2 � �1 = 2n� ; n = �1; 2; 3; : : : (C.6)

95



96 APPENDIX C. ANALYTICAL APPROXIMATION

0 2 4 6 8 10

k

0.00

0.01

0.02

0.03

0.04

0.05

σ
numerical

analytical

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

V

Figure C.1: Left: Comparison of the instability curves obtained either by the numerical model or
by the analytical approximation, for ̂ = f̂ = r = 0;m = a = 1 and � = 0:1. Right: Perturbation
in the topography given by the analytical model, modes 1 and 2.

From (C.5) , (C.6) and (C.3) the eigenvalue spectrum is found to be

�1 = �1

2

kp
k2 + n2�2

; n = 1; 2; 3; : : :

From this it follows that the growth rates to �rst order in the slope, �, are given by

! = ik � �

2

kp
k2 + n2�2

; n = 1; 2; 3; : : : (C.7)

Figure C.1 shows ! as a function of k for the dominant mode (n = 1) and for � = 0:1, computed
both by the MORFO20 numerical model and by equation (C.7). Note the striking resemblance
between the analytical and the numerical model. This even applies in case � = 1, see �gure 4 in
Trowbridge (1995) for a comparison. From (C.4) and taking into account the dependence on the
alongshore coordinate, the sea bed perturbation at any time can be written as proportional to

h(x; y) = cos(ky + �1x)� cos(ky + �2x) (C.8)

Each term is wave-like with straight crests parallel to ky + �x = 0. Therefore, recalling that the
basic current is V < 0, the topographic features are downcurrent oriented if � > 0 and upcurrent
oriented if � < 0. In the case of growing bedforms, that is, �1 > 0, (C.5) and (C.6) imply

�1 = �(
p
k2 + n2�2 + n�) ; �2 = �(

p
k2 + n2�2 � n�)

which both are negative. So, growing bedforms are upcurrent oriented. In contrast, decaying
bedforms yield positive values for �1 and �2 and thus they are downcurrent oriented. This is in
agreement with the numerical computations in section 2.3 and with the �eld observations described
in the introduction. Finally, the topographic contours computed by means of (C.8) for � = 0:1,
k = � are shown in �gure C.1 for the �rst and second growing modes (n = 1, n = 2). Also, a
remarkable similarity with the bedforms computed with the numerical model is found (see, for
instance, �gure 2.2 A and B).



Appendix D

Derivation of the sediment

transport parametrization

Sediment transport is a very complex process so that for practical applications it is necessary to
model it by means of gross parametrizations. The latter are based on a combination of basic
physics, dimension analysis and observations in the �eld and in the laboratory, see Dyer (1986)
and Fredsoe & Deigaard (1993) for further details.

Now consider noncohesive sediment with a uniform grainsize which is transported as bedload.
Then, in case of a at bed, a frequently used parametrization for the dimensional volumetric ux
per unit width is

q = � u3;

i.e., the transport is proportional to the cube of the total velocity u near the bed. Here it is assumed
that the critical velocity for erosion is much smaller than the actual velocity. The foundation of this
dates back to Bagnold (1956) and has been con�rmed by many experimental data. A characteristic
value for the parameter � is 10�5 s2m�1.

In order to apply this parametrization to the depth-averaged model used in this paper it is
important to realize that

u = v + v0:

Here v is the depth-averaged velocity which consists of both a steady and tidal components.
Furthermore, v0 is the part of the velocity �eld that is not explicitly accounted for by the depth-
averaged model; in particular waves and small-scale turbulent motions determine the behaviour of
v0.

During storms we assume that the currents induced by waves and turbulence are much larger
than the steady and tidal currents, in other words jv0j � jvj. Moreover it is assumed that jv0j is
independent of the location and that waves donot induce any net sediment transport over a tidal
cycle. On the inner shelf these conditions seem reasonable because water depths are generally too
large to cause signi�cant wave steepening and wave breaking. Then it follows by straightforward
means that the tidally averaged volumetric ux per unit width during storms can be approximated
by

< q >storms= �hjv0j2i < v >;

where the proportionality factor is the so-called wave stirring factor. This result can be easily
generalized to a sloping bed and motivates the use of the dimensionless ux q1 in equation (3.7),
where �1 = hjv0j2i=U2 if we choose [q] = �U3. Note that by de�nition �1 � 1.

Likewise the situation during mild weather conditions can be analyzed, during which we assume
that jv0j � jvj. In that case it follows for the dimensional ux

< q >quiet= �hv3i:

Its dimensionless analogon is the ux q3 in equation (3.7) with �3 = 1.
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Appendix E

Solution procedure: Tidal model

In chaper 3 equations for u, v and h were found, in this appendix the numerical procedure to solve
those equations is gived.

E.1 Equations

The equation for the cross-shore velocity component u(x; t) reads

U12utxx + U11utx + U10ut + U02uxx + U01ux + U00u = H1hx +H0h

where

U12 =1
U11 =Hx

H

U10 =� k2 +
Hxx

H
� H2

x

H2

U02 = r

H
+ ik�V

U01 =ik�V Hx

H

U00 =r
��k2
H

+
Hxx

H2
� 2H2

x

H3

�

+ ik�

 
�k2V � Vxx +

VxHx + V Hxx + (f̂=�)Hx

H
� V H2

x

H2

!

H1 =� �
k2V 2

H
+ ik

�
Vt
H

+
r(2V � �U0)

H2

�
� ikÆ

H

H0 =�k
2

 
�2V Vx � (f̂=�)V

H
+
V 2Hx

H2

!
+ ik

�
Vtx
H

� VtHx

H2

�

+ ik

�
r

�
2Vx � �U0x

H2
� 2(2V � �U0)Hx

H3

�
+

�
Æ

H2
Hx + ik

�sx
H2

��

The equation for the perturbation in the longshore ow v(x; t) reads

v =
V

H
h+

i

k

�
ux +

Hx

H
u

�

And the equation for the bottom perturbation h(x; t) is

@h

@�
= ��q�h~r � ~q11i�=�1 � (1� �)h~r � ~q31i�=�2
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where h�i denotes the average over a tidal period

~r � ~qm1 = ��mjV jm�1
��

m
Hx

H
� (m� 1)

Vx
V

�
u+ (m� 1)ux

�ikmV

H
h+ jV ĵ

�
hxx +m

Vx
V
hx � k2h

��

E.2 Discretization

To solve the linear stability problem the Chebyschev collocation method of the appendix B in x
and a Fourier Galerkin method in t has been used. The approximate solution are expanded as

u(xn; t; �) =e
!�

MX
p=�M

upne
ipt v(xn; t; �) =e

!�
MX

p=�M

vpne
ipt

h(xn; �) =e
!�hn

The expansions for the derivatives of u and h at the collocation points are

@3u

@tx2

����
xn

= e!�
X

�M�p�M
1�j�N�1

ipD2
nju

p
je
ipt @2u

@x2

����
xn

= e!�
X

�M�p�M
1�j�N�1

D2
nju

p
je
ipt

@2u

@tx

����
xn

= e!�
X

�M�p�M
1�j�N�1

ipD1
nju

p
je
ipt @u

@x

����
xn

= e!�
X

�M�p�M
1�j�N�1

D1
nju

p
je
ipt

@u

@t

����
xn

= e!�
X

�M�p�M
1�j�N�1

ipÆnju
p
je
ipt ujxn = e!�

X
�M�p�M
1�j�N�1

Ænju
p
je
ipt

@2h

@x2

����
xn

= e!�
NX
j=2

G2
nj ĥj

@h

@x

����
xn

= e!�
NX
j=2

G1
nj ĥj hjxn = e!�

NX
j=2

G0
nj ĥj

E.2.1 FOT-problem

Application of the collocation method to the equation for u yields

X
�M�p�M
1�j�N�1

�
ipU12(xn; t)D2

nj + ipU11(xn; t)D1
nj + ipU10(xn; t)Ænj

+ U02(xn; t)D2
nj + U01(xn; t)D1

nj + U00(xn; t)Ænj
�
upje

ipt =

NX
j=2

�
H1(xn; t)G

1
nj +H0(xn; t)G

0
nj

�
ĥj n = 1�N � 1

Galerkin projection of the various terms results in� X
�M�p�M
1�j�N�1

ipU12(xn; t)D2
nju

p
je
ipt; e�iqt

�
=

X
�M�p�M
1�j�N�1

ipI0p�qD
2
nju

p
j

� X
�M�p�M
1�j�N�1

ipU11(xn; t)D1
nju

p
je
ipt; e�iqt

�
=

X
�M�p�M
1�j�N�1

ip

�
Hx

H

�
n

I0p�qD
1
nju

p
j
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� X
�M�p�M
1�j�N�1

ipU10(xn; t)Ænjupjeipt;e�iqt
�
=

MX
p=�M

ip

�
� k2 +

Hxx

H
� H2

x

H2

�
n

I0p�qu
p
n

� X
�M�p�M
1�j�N�1

U02(xn; t)D2
nju

p
je
ipt;e�iqt

�
=

X
�M�p�M
1�j�N�1

�
rI0p�q
H

+ ik�I1n;p�q

�
n

D2
nju

p
j

� X
�M�p�M
1�j�N�1

U01(xn; t)D1
nju

p
je
ipt; e�iqt

�
=

X
�M�p�M
1�j�N�1

�
ik�I1n;p�q

Hx

H

�
n

D1
nju

p
j

� X
�M�p�M
1�j�N�1

U00(xn; t)Ænjupjeipt; e�iqt
�
=

MX
p=�M

�
r

��k2
H

+
Hxx

H2
� 2H2

x

H3

�
n

I0p�q

+ ik�

�
� k2I1n;p�q � I 00

1
p�q

+
I 0
1
p�qHx + I1n;p�qHxx + (f̂=�)I0p�qHx

H
� I1n;p�qH

2
x

H2

��
n

upn

� NX
j=2

H1(xn)G
1
nj ĥj ;e

�iqt

�
=

NX
j=2

�
� �k2I2n;�q

H
+

ik

�
K0
n;�q

H
+ r

 
(2I1n;�q � �U0I

0
�q)

H2

!
� Æ

H
I0�q

��
n

G1
nj ĥj

� NX
j=2

H0(xn)G
0
nj ĥj ; e

�iqt

�
=

NX
j=2

�
�k2
��2I 02n;�q � (f̂=�)I1n;�q

H
+
I2n;�qHx

H2

�

+ ik

�
K1
n;�q

H
� K0

n;�qHx

H2

+ r

 
2I 0

1
n;�q � �U0xI

0
�q

H2
� 2(2I1n;�q � �U0I

0
n;�q)Hx

H3

!

+

�
Æ
Hx

H2
+ ik

�sx
H2

�
I0�q

��
n

G0
nj ĥj

Thus the values of the indices are �M � q �M and 0 � i � N � 1. The 'I; J;K'{coeÆcients will
be speci�ed later.

This de�nes a system of (2M+1)�(N�1) equations which can be solved by standard methods.
The results are summarized in a matrix Up

nj , which de�nes the cross-shore velocity component u
in the collocation points and for the di�erent Fourier modes. It is de�ned as

un =e
!�

X
�M�p�M
2�j�N

U
p
nje

iptĥj n =0�N � 1

The boundary conditions for u at x = 0 gives Up
0j = 0.
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Substitution in the equation for v(x; t) yields

V
p
nj =

�
I1n;�p
2�H

�
n

G0
nj +

i

k

 
N�1X
k=0

D0
nk +

Hx

H
Ænk

!
n

U
p
kj

Then the values of v in the collocation points are

vn =e
!�

X
�M�p�M
2�j�N

V
p
nje

iptĥj n =0�N � 1

In particular the tidally averaged velocity components read

huni =e!�
NX
j=2

U0
nj ĥj hvni =e!�

NX
j=2

V0
nj ĥj

E.2.2 Bottom evolution equation

Application of the collocation method to the equation for h results in

!

NX
j=2

G0
nj ĥj =

NX
j=2

f��q�h~r � ~q11i�=�1;j � (1� �)h~r � ~q31i�=�2;jgĥj

at the n = 1�N � 1 collocation points.
Using the solutions of the FOT-problem the terms h~r � ~qm1i�=�1=2;j become� MX

p=�M

�
�m�mjV jm�1Dx

D

�
n

U
p
nje

ipt

�
=

1

2�

�
�m�m

Dx

D

�
n

MX
p=�M

Im�1n;p U
p
nij

� MX
p=�M

�
(m� 1)�mjV jm�1Vx

V

�
n

U
p
nje

ipt

�
=

1

2�

�
(m� 1)�m

� MX
p=�M

I 0
m�1
n;p U

p
nj

� X
�M�p�M
1�k�N�1

�
� (m� 1)�mjV jm�1

�
n

D1
nkU

p
kje

ipt

�
=

1

2�

�
� (m� 1)�m

� X
�M�p�M
1�k�N�1

Im�1n;p D1
nkU

p
kj

��
ikm�mjV jm�1 V

D

�
n

G0
nj

�
=

1

2�

�
ikm

�m
D

�
n

Imn;0G
1
nj��

� ̂�mjV jm
�
n

G2
nj

�
=

1

2�

�
� ̂�m

�
Jmn;0G

2
nj��

� ̂m�mjV jmVx
V

�
n

G1
nj

�
=

1

2�

�
� ̂m�m

�
J 0
m
n;0G

1
nj��

� ̂�mjV jmk2
�
n

G0
nj

�
=

1

2�

�
� ̂�mk

2

�
Jmn;0G

0
nj

Having calculated the operator Up
nj for � = �1 and for � = �2, determines h~r�~qm1i�=�1;j and

the term h~r � ~qm1i�=�2;j , respectively.
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E.3 Galerkin integrals

The Galerkin method and the tidal averages give rise the 'I; J;K'{coeÆcients. These coeÆcients
arise from integrals which involve eipt and the basic velocity V (x; t). In this section these coeÆcients
are written explicily. First, in order to compute the integrals with absolute values of the velocity
are involved, sign functions, �(x; t) and �(x; t), are di�ned. Afterwards the 'I; J;K'{coeÆcients
are written by means of some auxiliar coeÆcients, which are given at the end of this section.

The basic state velocity �eld reads

V (x; t) =�U0(x) + �(1� j�j)U1(x) sin (t+ '(x))

where

U1(x) =
Hp

H2 + r2
'(x) =arctan

� r
H

�

Now de�ne the following sign-functions:

�(x; t) =
jV (x; t)j
V (x; t)

�(x; t) =
j�j
�

It appears than they are related according to

� = � (1� 2(�(t� t1)� �(t� t2)))

where � is the Heavyside function and

t1 =� � '+ arcsin

� �j�jU0

(1� j�j)U1

�

t2 =2� � '� arcsin

� �j�jU0

(1� j�j)U1

�

The subsindex n refers to the numerical value of the functions in a collocation point xn.

E.3.1 'I; J;K'-coeÆcients

'I; J;K'-coeÆcients are computed by means of the following auxiliar coeÆcients

Xkl
n;�q =

Z 2�

0

�(xn; t) sin
k(t+ 'n) cos

l(t+ 'n)e
�iqtdt = �(Y kln;�q � 2Zkln;�q)

Y kln;�q =

Z 2�

0

sink(t+ 'n) cos
l(t+ 'n)e

�iqtdt

Zkln;�q =

Z 2���n�'n

�+�n�'n

sink(t+ 'n) cos
l(t+ 'n)e

�iqtdt

They will be computed in the next subsection.
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'I'-coeÆcients

I0�q =

Z 2�

0

e�iqtdt

=Y 00
�q

I1n;�q =

Z 2�

0

V (xn; t)e
�iqtdt

=�U0nY
00
�q + �(1� j�j)U1nY

10
n;�q

I2n;�q =

Z 2�

0

V 2(xn; t)e
�iqtdt

=�2U2
0nY

00
�q + 2j�j(1� j�j)U0nU1nY

10
n;�q + (1� j�j)2U2

1nY
20
n;�q

I3n;�q =

Z 2�

0

V 3(xn; t)e
�iqtdt

=�3U3
0nY

00
n;�q + 3�2�(1� j�j)U2

0nU1nY
10
n;�q

+ 3�(1� j�j)2U0nU
2
1nY

20
n;�q + �(1� j�j)3U3

1nY
30
n;�q

I 0
1
n;�q =

Z 2�

0

Vx(xn; t)e
�iqtdt

=�U 0
0nY

00
�q + �(1� j�j)fU 0

1nY
10
n;�q + U1n'

0
nY

01
n;�qg

I 0
2
n;�q =

Z 2�

0

V (xn; t)Vx(xn; t)e
�iqtdt

=�2U0nU
0
0nY

00
�q

+ j�j(1� j�j)f(U 0
0nU1n + U0nU

0
1n)Y

10
n;�q + U0nU1n'

0
nY

01
n;�qg

+ (1� j�j)2fU1nU
0
1nY

20
n;�q + U2

1n'
0
nY

11
n;�qg

I 00
1
n;�q =

Z 2�

0

Vxx(xn; t)e
�iqtdt

=�U 00
0nY

00
�q

+ �(1� j�j)f(U 00
1n � U1n('

0
n)

2)Y 10
n;�q + (2U 0

1n'
0
n + U1n'

00
n)Y

01
n;�qg

'J'-coeÆcients

J0n;�q =

Z 2�

0

jV (xn; t)j
V (xn; t)

e�iqtdt

=X00
n;�q

J1n;�q =

Z 2�

0

jV (xn; t)je�iqtdt
=�U0nX

00
n;�q + �(1� j�j)U1nX

10
n;�q

J2n;�q =

Z 2�

0

V (xn; t)jV (xn; t)je�iqtdt
=�2U2

0nX
00
n;�q + 2j�j(1� j�j)U0nU1nX

10
n;�q + (1� j�j)2U2

1nX
20
n;�q

J3n;�q =

Z 2�

0

V 2(xn; t)jV (xn; t)je�iqtdt
=�3U3

0nX
00
n;�q + 3�2�(1� j�j)U2

0nU1nX
10
n;�q

+ 3�(1� j�j)2U0nU
2
1nX

20
n;�q + �(1� j�j)3U3

1nX
30
n;�q
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J 0
1
n;�q =

Z 2�

0

jV (xn; t)j
V (xn; t)

Vx(xn; t)e
�iqtdt

=�U 0
0nX

00
�q + �(1� j�j)fU 0

1nX
10
n;�q + U1n'

0
nX

01
n;�qg

J 0
2
n;�q =

Z 2�

0

Vx(xn; t)jV (xn; t)je�iqtdt
=�2U0nU

0
0nX

00
�q

+ j�j(1� j�j)f(U 0
0nU1n + U0nU

0
1n)X

10
n;�q + U0nU1n'

0
nX

01
n;�qg

+ (1� j�j)2fU1nU
0
1nX

20
n;�q + U2

1n'
0
nX

11
n;�qg

J 0
3
n;�q =

Z 2�

0

V (xn; t)Vx(xn; t)jV (xn; t)je�iqtdt
=�3U2

0nU
0
0nX

00
�q

+ �2�(1� j�j)f(2U0nU
0
0nU1n + U2

0nU
0
1n)X

10
n;�q + U2

0nU1n'
0
nX

01
n;�qg

+ �(1� j�j)2f(U 0
0nU

2
1n + 2U0nU1nU

0
1n)X

20
n;�q + 2U0nU

2
1n'

0
nX

11
n;�qg

+ �(1� j�j)3fU2
1nU

0
1nX

30
n;�q + U3

1n'
0
nX

21
n;�qg

'K'-coeÆcients

K0
n;�q =

Z 2�

0

Vt(xn; t)e
�iqtdt = �(1� j�j)U1nY

01
n;�q

K1
n;�q =

Z 2�

0

Vtx(xn; t)e
�iqtdt = �(1� j�j)fU 0

1nY
01
n;�q � U1n'

0
nY

10
n;�qg

E.3.2 Auxiliary integrals

Now de�ning

Y jn;�q =

Z 2�

0

eij(t+'n)e�iqtdt = eij'n2�Æ0;j�q

Then the Y -integrals can be written as

Y 00
n;�q =Y

0
n;�q

Y 10
n;�q =

i

2

�
Y �1
n;�q � Y +1

n;�q

	
Y 01
n;�q =

1

2

�
Y �1
n;�q + Y +1

n;�q

	
Y 20
n;�q =

1

2
Y 0
n;�q �

1

4

�
Y �2
n;�q + Y +2

n;�q

	
Y 11
n;�q =

i

4

�
Y �2
n;�q � Y +2

n;�q

	
Y 02
n;�q =

1

2
Y 0
n;�q +

1

4

�
Y �2
n;�q + Y +2

n;�q

	
Y 30
n;�q =

3i

8

�
Y �1
n;�q � Y +1

n;�q

	� i

8

�
Y �3
n;�q � Y +3

n;�q

	
Y 21
n;�q =

1

8

�
Y �1
n;�q + Y +1

n;�q

	� 1

8

�
Y �3
n;�q + Y +3

n;�q

	

Finally, introducing

Zjn;�q =

Z 2���n�'n

�+�n�'n

eij(t+'n)e�iqtdt

=eij'n(� � 2�n)Æ0;j�q � i
eiq'n

j � q

n
e�i(j�q)�n � (�1)j�qei(j�q)�n

o
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Then the Z-integrals can be written as

Z00
n;�q =Z

0
n;�q

Z10
n;�q =

i

2

�
Z�1n;�q � Z+1

n;�q

	
Z01
n;�q =

1

2

�
Z�1n;�q + Z+1

n;�q

	
Z20
n;�q =

1

2
Z0
n;�q �

1

4

�
Z�2n;�q + Z+2

n;�q

	
Z11
n;�q =

i

4

�
Z�2n;�q � Z+2

n;�q

	
Z02
n;�q =

1

2
Z0
n;�q +

1

4

�
Z�2n;�q + Z+2

n;�q

	
Z30
n;�q =

3i

8

�
Z�1n;�q � Z+1

n;�q

	� i

8

�
Z�3n;�q � Z+3

n;�q

	
Z21
n;�q =

1

8

�
Z�1n;�q + Z+1

n;�q

	� 1

8

�
Z�3n;�q + Z+3

n;�q

	

Since �n = arcsin( j�jU0n
(1�j�j)U1n

), the phases of the solution are in the interval [0; �2 ]. In the points

where j�jU0i
(1�j�j) > U1i it follows that �n = �

2 , hence in these points Z0
n;�q,Z

1
n;�q,Z

2
n;�q y Z

3
n;�q are

zero.



Appendix F

F.1 Adjoint operator

De�ning an inner product h�j�i as:

hf jgi =
4X
i=1

(fi; gi)

and

(fi; gi) =

Z 1

0

Z �0

0

fi(x; y)gi(x; y)dxdy ;

from the de�nition of adjoint operator L+, ie. h	jL�i = hL+	j�i, it follows that

(!knk � !+

k0nk0

)h	+

k0nk0

jS	knk i = 0 ;

where 	knk (resp. 	
+

k0nk0

) are the eigenvectors of L (resp. L+) with eigenvalue !knk (resp. !
+

k0nk0

),
or

(!knk � !+

k0nk0

)(h+k0nk0

eik
0y; hknke

iky) = 0

Under the hypothesis that the domain of L is the same than the domain of L+, the relations written
above mean that the set of eigenvectors 	knk and 	+

k0nk0

are a bi{orthogonal set under the inner

product hS�j�i, ie.
h	+

k0nk0

jS	knk i = Ækk0Ænknk0

or that

(h+k0nk0

eik
0y; hknke

iky)

(
= 0 if !knk 6= !+

k0nk0

6= 0 if !knk = !+

k0nk0

:

In particular, given hk nk ; we always can assume that there exists a h+k0 n0

k
which is non-orthogonal

to it.
The adjoint operator of Lk reads

L+

k =

0
BBBBBBB@

�ikV +
r

H
Vx + f̂ �H d

dx

d

dx
�f̂ �ikV +

r

H
ikH ik

� d

dx
�ik 0 0

0 � Æ

H
ikV ̂jV j(Vx

V

d

dx
+

d2

d2x
� k2)

1
CCCCCCCA

The pertinent boundary conditions are that u+ and h+ should vanish at x = 0 and x ! 1 for
each solution knk.

F.2 Nonlinear system

In this appendix equations (4.10) are explicitly written.

107
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u{knk equation

Equation (4.10a) gives

0 =
X
n0
k

(L11(k;nk; n
0
k)ûkn0

k
+ L12(k;nk; n

0
k)v̂kn0

k

+ L13(k;nk; n
0
k)�̂kn0

k
) +N1(k;nk) ;

and these coeÆcients read

L11(k;nk; n
0
k) =

Z 1

0

u+knkukn0
k
(ikV +

r

H
)dx

L12(k;nk; n
0
k) =

Z 1

0

u+knkvkn0
k
(�f̂)dx

L13(k;nk; n
0
k) =

Z 1

0

u+knk(�kn0
k
)xdx

N1(k;nk) =

Z 1

0

u+knkFkfu@xu+ v@yu+
ruh

H(H � h)
gdx

where Fk is the k{component of the Fourier expansion.

v{knk equation

Equation (4.10b) gives

0 =
X
n0
k

(L21(k;nk; n
0
k)ûkn0

k
+ L22(k;nk; n

0
k)v̂kn0

k

+ L23(k;nk; n
0
k)�̂kn0

k
+ L24(k;nk; n

0
k)ĥkn0

k
) +N2(k;nk) ;

and these coeÆcients read

L21(k;nk; n
0
k) =

Z 1

0

v+knkukn0
k
(Vx + f̂)dx

L22(k;nk; n
0
k) =

Z 1

0

v+knkvkn0
k
(ikV +

r

H
)dx

L23(k;nk; n
0
k) =

Z 1

0

v+knk�kn0
k
(ik)dx

L24(k;nk; n
0
k) =

Z 1

0

v+knkhkn0
k
(� Æ

H
)dx

N2(k;nk) =

Z 1

0

v+knkFkfu@xv + v@yv +
(rv � Æh)h

H(H � h)
gdx :

�{knk equation

Equation (4.10c) gives

0 =
X
n0
k

(L31(k;nk; n
0
k)ûkn0

k
+ L32(k;nk; n

0
k)v̂kn0

k

+ L34(k;nk; n
0
k)ĥkn0

k
) +N3(k;nk) ;

and these coeÆcients read

L31(k;nk; n
0
k) =

Z 1

0

�+knk (Hxukn0
k
+H(ukn0

k
)x)dx

L32(k;nk; n
0
k) =

Z 1

0

�+knkvkn0
k
(ikH)dx

L34(k;nk; n
0
k) =

Z 1

0

�+knkhkn0
k
(�ikV )dx

N3(k;nk) =

Z 1

0

�+knkFkf�@x(uh)� @y(vh)gdx :
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h{knk equation

Equation (4.10d) gives

X
n0
k

S44(k;nk; n0k)dĥkn0
k

dt
=
X
n0
k

(L41(k;nk; n
0
k)ûkn0

k
+ L42(k;nk; n

0
k)v̂kn0

k

+ L44(k;nk; n
0
k)ĥkn0

k
) +N4(k;nk) ;

and these coeÆcients read

S44(k;nk; n0k) =
Z 1

0

h+knkhkn0
k
dx

L41(k;nk; n
0
k) =

Z 1

0

h+knk (�ukn0
k
)xdx

L42(k;nk; n
0
k) =

Z 1

0

h+knkvkn0
k
(�ik)dx

L44(k;nk; n
0
k) =

Z 1

0

h+knk (̂jV j(
Vx
V
(hkn0

k
)x + (hkn0

k
)xx � k2hkn0

k
)dx

N4(k;nk) =

Z 1

0

h+knkFkf@x(̂(jvj � jV j)@xh) + @y(̂(jvj � jV j)@yh)gdx :

F.3 Time integration scheme

A sti�y{stable type scheme (see Karniadakis, Israeli & Orszag, 1991, sec 4.2) is then used to carry
out time integration of the system (4.11):

0 = L1U
n+1 +M1h

n+1 +

Je�1X
q=0

�qf(U
n�q; hn�q)

0Sh
n+1 �PJi�1

q=0 �qSh
n�q

�t
= L2U

n+1 +M2h
n+1 +

Je�1X
q=0

�qg(U
n�q; hn�q)

The values of the coeÆcients from Karniadakis et al. (1991) are reproduced in table F.1. Note
that an Euler{forward/backward integration rule corresponds to the frist-order scheme. For higher
orders, the scheme is implicit for the linear terms and explicit for the nonlinear terms. The nonlinear
part is computed as an extrapolation atn+ 1 time from the previous Je steps.

CoeÆcient 1st Order 2nd Order 3rd Order
0 1 3/2 11/6
�0 1 2 3
�1 0 -1/2 -3/2
�2 0 0 1/3
�0 1 2 3
�1 0 -1 -3
�2 0 0 1

Table F.1: Sti�y{Stable Scheme CoeÆcients

F.4 k = 0 mode

The nonlinear self{interaction of any mode with wavenumber k excite a component with k = 0,
ie. alongshore uniform, in the expansion (4.9). However, this was not taken into account in the
computations where modes with k = 0 have been neglected. The reason for this is that this self{
interaction was found to be very weak. For this propouse the dynamics of an alongshore uniform
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botom perturvation has been study. This can be shown by using the analytical approximation to
the linear modes in case of m = 1,  = 0 and r = 0 developped in appendixC.

As start, let us split the perturbation of the basic state, in a longshore mean and a periodic
function in a longshore length 2L:

u =hui+ u0 � =h�i + �0

v =hvi + v0 h =hhi+ h0

where h�i = (1=2L)
R +L
�L

� dy. hu0i = hv0i = h�0i = hh0i = 0 and hui, hvi, h�i, and hhi refer to k = 0
modes. Using this notation, the �nality of this appendix is to show that hhi = 0.

From mass conservation (4.6) and sediment conservation (4.7) equations in case  = 0,

@x((H � h)u) + @y((H � h)(V � v)) = 0

@th+ @xu+ @yv = 0

and making averages in the longshore direction, h�i, equations for hhi and hui are found:

@x((H � hhi)hui � hh0u0i) = 0 ;

hence,

hui / hh0u0i
H � hhi ;

and
@thhi = �@xhui :

Now, we consider self-intercations of fk; ng modes h0 = ĥ(x) eiky and u0 = û(x) eiky . From the
apporximated modes of appendixC:

ĥ(x) = ei�1x � ei�2x �1;2 = �n� �
p
k2 + n2�2

and
d2û

dx2
� k2û = �ikdĥ

dx

Therefore,

û =
�1k

�21 + k2
�
ei�1x � 1

�� �2k

�22 + k2
�
ei�2x � 1

�
Then

hh0u0i = h[ĥ(x) eiky + ĥ�(x) e�iky ][û(x) eiky + û�(x) e�iky ]i
= ĥ�(x)û(x) + c.c. + h2k-modesi

and

ĥ�(x)û(x) =
�1k

�21 + k2

�
e2i�1x � ei�1x � ei(�1+�2)x + ei�2x

�

� �2k

�22 + k2

�
ei(�1+�2)x � ei�1x � e2i�2x + ei�2x

�
:

Sustituting expressions for �1;2 in ĥ�(x)û(x) all terms cancel: self-interaction of modes fk; ng only
forces 2k-mode whose mean vanishes. Hence hh0u0i = 0 and then hui = 0 and hhi = 0.


