Chapter 2

Homogeneous turbulence

In this chapter we describe the generic Kolmogorov model for fully developed, locally
homogeneous and isotropic turbulence using the concept of stationary and continu-
ous energy cascade processes. We describe some intermittency models prominent in
such a simple turbulent regime based, on a characterization of the random but ho-
mogeneous nature of the energy dissipation field. Finally, we discuss the limitation
of these models in real life, environmental and industrially relevant flows where the
turbulence is usually non-homogeneous, non-isotropic and non-stationary.

2.1 Kolmogorov’s theory for homogeneous turbulence
K41

In 1941 Kolmogorov introduced his celebrated theory (K41) for locally homogeneous,
isotropic and stationary turbulence, using velocity structure functions. The veloc-
ity structure functions of order p are defined in terms of the moments of velocity
differences as:

-

Sp(0) = ((u(@ +£) —uw())") = ((Jur)”), (2.1)

where (...) stands for ensemble average and wu is the velocity component parallel to
7. In fact, the velocity increments refer to the amplitude of the typical turbulent
fluctuations of the velocity field within a distance 4.

Kolmogorov’s theory is based on the following similarity hypothesis:

i) For all distances ¢/=|¢| small compared with integral scale L, £ << L, the
statistical properties of the velocity differences duy for a distance £ are uniquely
determined by the kinematic viscosity v and the average rate of energy dissipation
(€) per unit mass.
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i1) In the inertial range n << £ << L, when the distances ¢ are large compared
with the scale 7, where the energy is dissipated, then the kinematic viscosity v should
play no dynamical role and the velocity differences duy are uniquely determined by
the quantity (e).

This model was based on the Richardson idea of energy cascade (figure2.1), in
which the energy is transferred to small scales in steps. At eddies of size L (scales are
of the order of the flow width, contain most of energy and dominate the transport of
momentum, mass and heat) energy is injected, then energy is transmitted to smaller
and smaller eddies, until it is dissipated into heat at smallest eddies of size 7 (small
scales responsible for most of the energy dissipation).
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Figure 2.1: The energy cascade process following Richardson’s idea.

The essential hypothesis of this model is that for high Reynolds numbers Re
and £ smaller than the integral scale L and larger than the Kolmogorov scale 7, the
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longitudinal velocity structure functions satisfy the relation:
Sp(£) = Cyp((e)0)/?, (2.2)

where C, are universal constants. There is an exact dynamical relation for the
third order longitudinal velocity structure function, which can be derived from the
Navier-Stokes equations for homogeneous and isotropic turbulence, and which gives
a compact description of much of the essential physics. This relation is called Kol-
mogorov’s four-fifths law, and is expressed for the inertial range as:

<&@y:—§a@. (2.3)

The universality of the relation (2.2) for p = 3 constitutes the most robust hydro-
dynamic indicator of the locally homogeneous character of transfer dynamics within
the energy cascade. This relation plays an important role in experiments, for ex-
ample in fixing the extent of the inertial range and in estimating energy dissipation
rate per unity mass (€), in turbulent flows with less ambiguity than by means of the

relation:
a 2
<€>isotr0pic = 15V< (O_Z) >, (24.)

valid for locally isotropic flows (Hinze (1959)).
It follows from relation (2.2) that the structure functions (2.1) have scaling be-
havior:

Sp(£) o L5, (2.5)

where &, is called the scaling exponent of the structure function of order p. For the
Kolmogorov theory (K41):

Ep = ga (2.6)

indicating that the scaling exponents of structure functions of order p are scale-
independent and universal quantities. It was assumed that there is a dynamically
determined scale i which can be constructed from the average rate of energy dissi-
pation (€) and the kinematic viscosity v as:

n:(g>m. (2.7)
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This length-scale which would represent the smallest eddy size not damped by dis-
sipation, is called the Kolmogorov length-scale. Similarly, Kolmogorov’s time and

velocity scales are defined as

7 = (W{e) /2,
ok = (w(e) ™. 25)

Therefore, the Reynolds number with reference to the two scales n and vy is unity:

v
Ok _ . (2.9)
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Figure 2.2: The energy spectrum in time domain in low temperature helium gas flow
between counter-rotating cylinders with Ry = 1200 (Maurer, Tabeling and Zocchi

(1994)).

Many experimental studies have been done to verify the relation (2.6) predicted
by Kolmogorov (1941), especially for the density of turbulent energy per unit of

mass at scale £ for p = 2

E(6) = G} ((e)0), (2.10)

and for its spectral equivalent

E(k) = Ch{e)*3k75/3, (2.11)
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Here, C] and C}, in principle, are universal constants, £ is in the inertial sub-range
and k = 27 /£ is the corresponding wave number. Sreenivasan (1995) shows that the
constant C) is approximately 0.5 £ 0.05 over a wide range of Reynolds numbers Re.
Many works (Grant et al. (1962) and Gagne (1987) have found the spectral slope to
be close to 5/3, as shown in figure 2.2 as an example.

2.2 Energy dissipation random field

In fact, it is not possible to state that Kolmogorov’s basic theory (K41) is consistent.
Even if the turbulence is steadily locally homogeneous and relation (2.3) is verified
there appear to be unequivocal departures from basic prediction (2.6) for p different
from 3. A first important modification to (K41) theory was introduced in 1962 by
Kolmogorov and Obukhov, after Landau’s objection that energy dissipation linked
with velocity gradients is in fact a random field and, therefore, the p-order moments
of e should also be a scale-dependent quantity like the velocity increments.
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Figure 2.3: The local dissipation €(z) normalized by its mean. (a) is in the laboratory
boundary layer at moderate Reynolds number, and (b) is the atmospheric surface
layer at a high Reynolds number (Meneveau and Sreenivasan (1991)).

In this case, C} in equation (2.2) for p # 3 cannot be universal and it must
depend on the detailed geometry of the dissipation field. Assuming scale uniform
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variance of the random function € except for the intermittent largest but rarest
events, the correction to the generic Kolmogorov equation (2.6) is then only induced
by the deviation from scale-independent quasi-Gaussian distribution of the largest
but rarest events: this is the so-called intermittency phenomenon in the framework
of Kolmogorov’'s K62 theory.

However, the experimental results show strong intermittent bursts instead of a
steady behavior of the energy dissipation fluctuation, indicating that e fluctuates
strongly. An example of this behavior is shown in figure 2.3, from the experimental
results of Meneveau and Sreenivasan (1991). These results demonstrate that the
energy dissipation is extremely intermittent, and that this intermittency increases
strikingly with increasing Reynolds number. This phenomenon can also be shown in
the probability distribution functions of the velocity increments du, in the inertial
range (figure 2.4), taken from Herweijer (1995). As it can be seen here the intermit-
tency appears as a set of a few localized spikes of very high activity leading to the
non-Gaussian distribution of the largest but rarest events.
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Figure 2.4: The probability distribution function in the inertial range for different
scales r (Herweijer (1995)).

Obukhov (1962) suggested that the quantity (e), which plays a central role in the
Kolmogorov theory (K41), could be replaced by the spatial or/ensemble averaged
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energy dissipation rate € locally defined as
1
e(Z) = —/ e(z')dx’, (2.12)
Vv

where V = %’rf?’ is a volume sphere of radius ¢ centered on ¥ and n << £ << L. In
this case we have,

eo(Z,t) = €p(Z,t) + €, (2.13)

where €y = (eg). Clearly, the ”scale-by-scale” energy dissipation rate ¢, and the cor-
responding random fluctuations field €} are functions of the length-scale £, position
vector Z and time t¢.

When the turbulence is locally homogeneous in the inertial energy range, which
means that the amplitude of the fluctuations variance characterizing the dissipation
random field is scale independent within the energy cascade range (scale-uniform
dissipation random field, K62 hypothesis), the deviation from the generic K41 law
is only induced by the intermittency. For non-homogeneous turbulence when ¢; and
oy (energy transfer that will be defined in chapter 3) the variance may be scale non-
uniform and this behavior is not seen in the moment of order 1 (5u§3, but it can be
seen in other moments of order p > 1 (see figure 3.6).

Taking into account only intermittency, Kolmogorov (1962) made Obukhov’s
suggestion more quantitative. He introduced a refined similarity hypothesis relating
the moments of the PDF of the velocity increments duy to the moments of €y. Then,
the corresponding prediction for the pth-order moment of the velocity increment du,
as function of the scale separation £ is usually formulated as,

(5ub) ~ (8313 g, (2.14)
Considering that there is a scale dependence of the dissipation as:
(/%) ~ o1, (2.15)
now the scaling exponents are:
& =p/3+ Tp/3s (2.16)

where ¢ is the locally defined energy dissipation per unit mass over a volume of size
£ =|| 7| centered at space-position 7, 7p/3 is the scaling exponent of (ef/ %, (.) refers
to averaging over all position vectors £ and p = 1,2... is the order of the statistical
moment.
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In a self-similar situation corresponding to a homogeneous and isotropic tur-
bulence characterized by scale uniform random dissipation field, 1 = 0 and the
correction 7,3 for p # 3 in relation (2.16) is only induced by the the intermittency
correction. Then, relation (2.16) guarantees the basic result {3 = 1 for locally ho-
mogeneous and isotropic turbulence.

2.3 Scale uniform dissipation random field: intermit-
tency models

After the publication of the Kolmogorov theory K41, many efforts have been devoted
to the modeling of the scaling laws of the velocity structure functions in turbulent
flows. Most of these models have used the scenario of energy cascade. The success
of these models can be evaluated basically on how well they agree with experiments.
Some of these well known models will be discussed in Appendix A as the § model,
and the random 8 model. In the following, we will describe the Log-normal model
K62 and the She Leveque model. The choice of these two models was made because
of their interest on our study of non-homogeneous and non-isotropic flows in the
next chapters.

2.3.1 Log-normal model K62

The Kolmogorov theory (K41) is approximate because it ignores the fluctuations of
the energy dissipation in the energy cascade. Assuming homogeneous and isotropic
turbulence, the energy dissipation random field ¢; is scale uniform in the inertial
range except for largest but rarest fluctuations that are assumed to have a log-
normal distribution. Therefore, the refined similarity hypothesis leads to writing
equation (2.2) as,

ya
Sp(6) = Gl 5. (2.17)
The scaling exponents for the energy dissipation are conventionally defined as,
() /(e)? o< (¢/ 1)@ (2.18)

The proportionality constants, omitted here, are not expected to be universal. The
reasons for writing this relation are explained pragmatically by (Novikov (1971),
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Chhabra and Sreenivasan (1992)) in terms of the so-called breakdown coefficients or
multipliers. Assuming homogeneity (e;) = (€), equation (2.17) can be rewritten as:

S,(£) o (€)305 (£/ L)), (2.19)

where ¢ is a distance within the inertial range. The refined similarity hypothesis
(2.17) implies that v(p) = B(p/3). Kolmogorov (1962) suggested that e; should
have a log-normal distribution. If the scaling of (2.18) is accepted with (1) = 0,
this distribution gives:

B(p) = up(1—p)/2 (2.20)

and

v(p) = up(3 —p)/18. (2.21)

Finally, using equations (2.19) and (2.21), it follows that for the log-normal model
the absolute scaling exponents &, of the structure functions can be written as:

P 1
_p _ 2.92
=3+ 18up(3 D), (2.22)

where p is called the intermittency exponent, or intermittency parameter, which
describes the intermittency of the fluctuation of €y. y is the exponent in the inertial
range power law behavior of autocorrelation function of the dissipation rate,

{e(@)e(z +6)) ~ ()%, (2.23)
where L is the integral scale. Usually, the sixth-order scaling exponent of the velocity
structure function gives a direct way to calculate the intermittency exponent p, using
the relation,

p=2—&. (2.24)

There have been many attempts to measure the intermittency exponent y in both
high and low Reynolds number flows, but they have given widely varying results. A
variety of authors (Antonia et al. (1981, 1982), Chambers and Antonia (1984) and
Sreenivasan and Kailasnath (1993)) have studied this exponent and confirmed that
at high Reynolds numbers Re, most of experiments are consistent with a value of
1 =0.25 + 0.05.
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Figure 2.5: The comparison between the log-normal model and K41 theory.

2.3.2 She-Leveque model

This model was introduced by She and Leveque ( hereafter SL) (1994), who pre-
dicted a simple shape for the scaling exponents of the structure functions. The
phenomenological theory of the SL model is based on the idea that moments of
the energy dissipation field, (€), are characterized by a hierarchical structure. The

(p)

intensity of the p order dissipation structures €, is expressed as:

A
e — <<‘6§>>, (2.25)

(p)

where £ is in the inertial range and ¢;’ is a monotonous increasing function of p.

(0) (c0)

The two extreme characteristic structures of the hierarchy €, and €, are defined
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as
P+
0 = lim < . ) (2.26)
p—0 <6£>
p+1
€ = 1im (et . ) (2.27)
P—00 <6£)
where eﬁo) is the mean dissipation rate (by definition is uniform in scale) and egoo) is

the relative contribution to the transfer of the most intermittent structures at scale
£. The scaling behavior of eﬁoo) is estimated by a kinetic energy divided by time

%)~ 5B/, (2.28)
where §E* is the kinetic energy and %, is the time scale. egoo) was chosen to have
no anomalous scaling in #,, which amounts to setting a %niform time scale for the
dissipation of various intensities. This yields ¢, ~ (ep) " 345.

In this model the quantity (eg) /egjo) satisfies the relation

A Y (2.29)

where « is a positive constant assumed by She and Leveque to be 2/3. ¢ is the
continuous mean transfer kept constant by the mean dissipation rate at negligibly
scales £ — 0 in the flow domain. This implies that (ey) has scale divergent behavior
due to the presence of intermittent structures, responsible for the anomalous of the

scaling laws of the velocity structure functions.

(p)
£

The scaling of €,/ characterizes how singular the p order structures are. Both

in physical space and time, structures of intermittency eg’ U are expected to occur

before the formation of structures of p order having slightly higher intensity. This
(p—1) (00)

procedure implies that the scaling behavior of eﬁp ) is related to that of € ande, .

Therefore, the (p+ 1) order fluctuation structure eép +1)

ﬁp ) and 61(500) ,

is written as a superposition

of €

p+1) ()P (e0)1=8)

eg € € (2.30)
It follows from relations (2.16), (2.25) and (2.30) that
2
T2 — (1 4+ B) 71 + By + (1 - 5) = 0. (2.31)

3
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Introducing a function f(p) with f(oco) = 0, such that,

2
T =3P+ 2+ f(p), (2.32)
the second order homogeneous difference equation for f(p) is then written as,
flo+2)—(1+p8)flp+1)+Bf(p) =0, (2.33)

supplemented with the boundary conditions 7p = 2+ f(0) =0 and 71 = %—l—f(l) =0.
The unique solution of (2.33) is f(p) = aBP. The condition 79 = 0 is derived from the
assumption that the energy dissipation does not concentrate on a singular measure
in the zero viscosity limit, while 71 = 0 is exact.

The final results are
2 v2(1- (%) (2.34)
Tp = —% 35 :
p= 3P 3) )

and using the relation (2.16) of the Kolmogorov refined similarity hypothesis (1962),
the p order scaling exponent (, of the velocity structure function is written by She

and Leveque as
p 2
==4+2[1—-{-= . 2.
&="1+ ( (3) ) (239

The intermittency correction to the Kolmogorov (1941) energy spectrum E(k) ~

wls

k3 s given by
E(k) ~ k~37003, (2.36)
On the other hand, the relation (2.35) can also be written as

_ ;3p/3

&= Bl1—a]+ar T,

where o and ( are in general adjustable parameters characterizing the specificity of

each flow (conservation laws, forcing, degree of homogeneity). Table 2.1 shows the

values of some scaling exponents of the SL model (with @ = 2/3 and 8 = 2/3 in
(2.37) compared with the two Kolmogorov theories K41 (1941) and K62 (1962).

(2.37)

Kj1| K62 | SL
0.66 | 0.70 | 0.70
1.35 | 1.28 | 1.28
1.66 | 1.53 | 1.53
2.00 | 1.78 | 1.78

SYESIESN RS S

Table 2.1: Comparison of the scaling exponents of the SL model with respect to the
Kolmogorov theories K41 and K62.
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In this model the intermittency parameter y in the inertial range which is ex-
pressed in terms of the sixth-order scaling exponent & by relation (2.24), is equal
to 2/9; this is in good agreement with the experimental measurements of Anselmet
et al. (1984) and Vincent et al. (1991), who found that y lies between 0.2 and 0.25.

2.4 The search for more general models

In this chapter we have provided a basic description of some intermittency models
for fully developed turbulence, with special emphasis on the role of the energy dis-
tribution amongst eddies of different size, in scaling laws of the velocity increments
for the inertial range. However it is shown that the scaling exponents of the velocity
structure functions for these models deviate from the linear scaling p/3 predicted by
Kolmogorov (1941), who assumed that the energy dissipation e changes smoothly
with space and time, or that it is constant.
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Figure 2.6: Scaling exponents ¢, of different models for homogeneous turbulence.
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Figure 2.6 shows the scaling exponents in the inertial range for different models:
¢p=p/3 for K41 theory, &, = £ + 1—18/11)(3 —p) with g = 0.2 for the log-normal model,

the She-Leveque model &, = £[1 — o] + alzfz/a with (a=0 = 2/3), and finally
the G-model and the random S-model described in Appendix A. It shows that the
scaling exponents of these models deviate from the Kolmogorov law p/3. However,
it is not possible to choose one model over the other, because each model agrees
with some experiments but does not work quite so well with other experiments.

Our aim is to investigate and to call attention to the validity of these models
in non-homogeneous and non-isotropic turbulence, which is ubiquitous in real life,
both in industrial and environmental turbulent flows.

A second reason for the non-negligible deviation from Kolmogorov’s universality
and self-similarity is when the local stationarity or homogeneity in the energy cascade
range is perturbed by the large scale motion and/or turbulent energy sources i.e. the
dynamics is nonlocal, and then the exponents characterizing the velocity structure
function behavior are scale-dependent quantities. For example, this effect is well
known in the atmospheric boundary layers (Kailasnath et al. (1992) and Praskovsky
and Oncley (1994)).

In Chapter 3 we will present further models, Dubrulle and BDF model, that allow
us to investigate more complex flows. Because the complexity of the flow increases
as it becomes non-homogeneous, this study is of interest in practical applications.




