ESTUDIO EXPERIMENTAL DEL COMPORTAMIENTO
DE VIGAS DE HORMIGÓN ARMADO
DESCIMBRADAS A TEMPRANAS EDADAS

ISABEL SERRÀ MARTÍN

Trabajo realizado como parte de los requisitos exigidos para optar al grado de Doctor.

Barcelona - Noviembre de 1994
Capítulo 5

RESULTADOS EXPERIMENTALES

En el presente capítulo se describen los resultados de la experimentación realizada, tras analizar y tratar los datos proporcionados por las mediciones efectuadas durante cada uno de los ensayos. Los listados de estas mediciones se incluyen, a modo de complemento, en los Anejos III, IV y V.

El capítulo se estructura en 4 apartados. En el primero (5.1) se abordan los resultados de los ensayos sobre probetas, encaminados a caracterizar el hormigón de las vigas. La metodología para el análisis y tratamiento de los datos adquiridos se detalla en función de la característica o propiedad estudiada.

Los restantes 3 apartados hacen referencia a los ensayos sobre vigas. En primer lugar se describe la metodología empleada para el análisis y la interpretación de los datos adquiridos (apartado 5.2) y en los siguientes apartados (5.3 y 5.4) se abordan los resultados de Rotura y Fluencia, respectivamente.

5.1.- ENSAYOS DE CARACTERIZACIÓN DEL HORMIGÓN

Tal y como se ha descrito en el capítulo de planificación de los ensayos, para la construcción de las dos series de vigas se solicitó hormigón de iguales características, es decir, $f_{ck} = 20 \text{ MPa}$ (H-200), consistencia blanda y tamaño máximo de áridos 20 mm. Sin embargo, se estimó adecuado variar el tipo de cemento utilizado para cada serie ya que ello permitía ampliar, en cierto modo, el campo de la investigación. La composición del hormigón utilizado en cada serie, según datos facilitados por las respectivas plantas de hormigonado, se especifica en la Tabla 5.1.

Los ensayos para caracterización del hormigón, descritos en el capítulo 4, se repitieron para ambas series, tanto los realizados sobre probetas conservadas en condiciones ambientales de temperatura y humedad como los efectuados sobre probetas conservadas en condiciones estándar, a excepción de los ensayos de fluencia y retraction que únicamente se llevaron a cabo para la segunda serie (ya que los equipos de carga y medición no estaban disponibles durante la primera serie).
Los resultados de todos estos ensayos se presentan agrupados en función de la propiedad estudiada, es decir, resistencia a compresión, resistencia a tracción, módulo de deformación, fluencia y retracción. La evolución de la temperatura ambiente y la humedad relativa, registradas en el laboratorio durante el período de realización de ambas series, se presentan al final de este apartado.

Tabla 5.1.- Características del hormigón suministrado

<table>
<thead>
<tr>
<th></th>
<th>1ª SERIE</th>
<th>2ª SERIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de Cemento</td>
<td>1-45/A</td>
<td>11Z-35/A</td>
</tr>
<tr>
<td>Tipo de Árido</td>
<td>Calizas del Ordal</td>
<td>Calizas del Ordal</td>
</tr>
<tr>
<td>Relación A/C</td>
<td>0.60</td>
<td>0.65</td>
</tr>
<tr>
<td>Cantidad de Cemento</td>
<td>300 Kg/m³</td>
<td>400 Kg/m³</td>
</tr>
<tr>
<td>Aditivo</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Docilidad solicitada</td>
<td>Blanda</td>
<td>Blanda</td>
</tr>
<tr>
<td>Asiento Cono Abrams</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

5.1.1.- Resistencia a compresión

Con el fin de conocer la evolución de la resistencia a compresión del hormigón de cada serie, este ensayo fue realizado para diversas edades del hormigón (véase Tabla 3.2). Para cada edad se ensayaron 3 probetas de las conservadas en condiciones ambientales y 2 probetas de las conservadas en condiciones estándar. La resistencia media del hormigón a la edad de 7 días se estableció como el promedio de la tensión de rotura de las 2 ó 3 probetas ensayadas.

Los resultados obtenidos en cada serie, para las diferentes edades y las distintas condiciones de conservación de las probetas, se presentan conjuntamente en la Tabla 5.2. La Figura 5.1 muestra la evolución de la resistencia media a compresión, obtenida de la forma descrita anteriormente, de las dos series y según las condiciones de curado. Puede observarse que, para todas las edades ensayadas, el hormigón de la primera serie dio resistencias más elevadas que el de la segunda. También se observa que, en ambas series, las resistencias obtenidas de las probetas conservadas en el laboratorio fueron siempre inferiores a las obtenidas en los ensayos normalizados (curado estándar), siendo aquéllas del orden de un 13% inferior a éstas (máximo 18% y mínimo 5%).

La Figura 5.2 muestra la evolución de la resistencia a compresión en función de la resistencia obtenida a los 28 días en condiciones de curado estándar. Puede observarse que, independientemente de las condiciones de conservación de las probetas, el hormigón de la segunda serie endurece más lentamente que el de
la primera serie.

Tabla 5.2.- Resistencia media a compresión del hormigón [MPa]

<table>
<thead>
<tr>
<th>Edad de ensayo [días]</th>
<th>1ª SERIE</th>
<th></th>
<th>2ª SERIE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>----</td>
<td>15.15</td>
<td>----</td>
<td>9.45</td>
</tr>
<tr>
<td>2</td>
<td>16.61</td>
<td>19.00</td>
<td>11.07</td>
<td>13.45</td>
</tr>
<tr>
<td>4</td>
<td>18.33</td>
<td>20.65</td>
<td>14.12</td>
<td>16.85</td>
</tr>
<tr>
<td>7</td>
<td>20.37</td>
<td>21.25</td>
<td>15.90</td>
<td>18.55</td>
</tr>
<tr>
<td>14</td>
<td>----</td>
<td>24.35</td>
<td>----</td>
<td>20.50</td>
</tr>
<tr>
<td>28</td>
<td>22.76</td>
<td>27.20</td>
<td>20.18</td>
<td>22.00</td>
</tr>
<tr>
<td>60</td>
<td>22.03 *</td>
<td>----</td>
<td>21.39</td>
<td>----</td>
</tr>
<tr>
<td>90</td>
<td>24.59</td>
<td>28.55</td>
<td>----</td>
<td>25.25</td>
</tr>
<tr>
<td>287</td>
<td>----</td>
<td>----</td>
<td>22.89</td>
<td>----</td>
</tr>
</tbody>
</table>

* Este valor no ha sido incluido en los gráficos

Figura 5.1.- Evolución de la resistencia media a compresión

5.3
Figura 5.2.- Evolución de la resistencia a compresión en función de la resistencia a los 28 días en condiciones de curado estándar

5.1.2.- Resistencia a tracción

Con el ensayo de rotura por tracción indirecta (brasileno) se obtiene el valor de la carga P, aplicada sobre una de las directrices de la probeta, que produce la rotura de la misma como consecuencia de las tracciones generadas a lo largo su diámetro vertical. La tensión de tracción se determina según la siguiente expresión:

$$f_{ct,b} = \frac{2P}{\pi dL}$$

siendo d el diámetro de la probeta y L su longitud.

Con el fin de conocer la evolución de la resistencia a tracción del hormigón de cada serie, este ensayo se repitió para diversas edades del hormigón (véase Tabla 3.2). Para cada edad fueron ensayadas 2 probetas de las conservadas en condiciones ambientales y 1 probeta de las conservadas en condiciones estándar. La resistencia a tracción indirecta del hormigón a la edad de j días se estableció como el promedio de la tensión de rotura de las probetas ensayadas.

Los resultados obtenidos en cada serie, para las diferentes edades y las
distintas condiciones de conservación de las probetas, se presentan conjuntamente en la *Tabla 5.3*.

Tabla 5.3.- Resistencia a tracción indirecta [MPa]

<table>
<thead>
<tr>
<th>Edad de ensayo [días]</th>
<th>1ª SERIE</th>
<th>2ª SERIE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ambiente</td>
<td>Estándar</td>
</tr>
<tr>
<td>1</td>
<td>---</td>
<td>1.73</td>
</tr>
<tr>
<td>2</td>
<td>1.99</td>
<td>1.27 *</td>
</tr>
<tr>
<td>4</td>
<td>2.02</td>
<td>2.30</td>
</tr>
<tr>
<td>7</td>
<td>2.33</td>
<td>2.39</td>
</tr>
<tr>
<td>14</td>
<td>---</td>
<td>2.57</td>
</tr>
<tr>
<td>28</td>
<td>2.28</td>
<td>2.70</td>
</tr>
<tr>
<td>60</td>
<td>2.58</td>
<td>---</td>
</tr>
<tr>
<td>90</td>
<td>1.99 *</td>
<td>---</td>
</tr>
<tr>
<td>287</td>
<td>---</td>
<td>2.19</td>
</tr>
</tbody>
</table>

* Estos valores no han sido incluidos en los gráficos

La *Figura 5.3* muestra la evolución de la resistencia a tracción indirecta, obtenida de la forma descrita anteriormente, de las dos series y según las condiciones de curado de las probetas. Al igual que en el caso de la resistencia a compresión, puede observarse que el hormigón de la primera serie dio resistencias más elevadas que el de la segunda. También las resistencias obtenidas de las probetas conservadas en el laboratorio resultaron siempre inferiores a las obtenidas en los ensayos normalizados (curado estándar), si bien la diferencia es mayor en el caso de la segunda serie.

En la *Figura 5.4* se presenta la evolución de la resistencia a tracción indirecta en función de la resistencia obtenida a los 28 días en condiciones de curado estándar. En ella puede observarse cómo la resistencia a tracción tiene una evolución más lenta en el hormigón de la segunda serie que en el de la primera, independientemente de las condiciones de conservación de las probetas.

5.1.3.- Módulo de deformación

Para la determinación del módulo de deformación del hormigón a la edad de \(j \text{ días} \) se ensayaron 2 probetas de las conservadas en las mismas condiciones ambientales que las vigas. Los ensayos se realizaron en el Laboratorio de Tecnología de Estructuras de la forma descrita en el apartado 4.1.3 de este documento. Tal y como se expone en dicho apartado, a partir de los datos obtenidos experimentalmente se determinaron dos valores de módulo que, a fin de diferenciarlos, se les ha denominado *Secante* y "tangente" respectivamente.

5.5
Figura 5.3.- Evolución de la resistencia a tracción indirecta

Figura 5.4.- Evolución de la resistencia a tracción en función de la resistencia a los 28 días en condiciones de curado estándar.
Como es sabido, el módulo de deformación a compresión del hormigón, conocido como módulo secante, se define como el cociente entre un incremento de tensión y el incremento de deformación unitaria generada por aquél, según la siguiente expresión:

\[E_c = \frac{\Delta \sigma}{\Delta \varepsilon} \]

Los escalones de carga para los que se calculan dichos incrementos vienen fijados por las normas y recomendaciones relativas al ensayo de módulo de deformación del hormigón, si bien existen pequeñas diferencias entre ellas. Así, por ejemplo, la norma UNE 83-316 toma los incrementos producidos entre una tensión de 0.5 MPa y la tensión correspondiente a 1/3 de la resistencia a compresión del hormigón, mientras que la norma ASTM 469 toma los incrementos producidos entre la tensión que genera una deformación unitaria de 0.005% y la tensión correspondiente al 40% de la resistencia a compresión del hormigón.

Llegado a este punto, conviene señalar que si bien la metodología empleada para la realización de los ensayos de módulo se ajusta a la propuesta en ambas normativas, las mediciones efectuadas no corresponden a los escalones de carga establecidos en ellas para el cálculo de los citados incrementos. Ello es debido a que habitualmente, en el Laboratorio de Tecnología de Estructuras (L.T.E.), el módulo de deformación se calcula a través de las siguientes fórmulas [Aguado A., 1992]:

\[E_{10,20} = \frac{\sigma_{20} - \sigma_{10}}{\varepsilon_{20} - \varepsilon_{10}} \]
\[E_{20,30} = \frac{\sigma_{30} - \sigma_{20}}{\varepsilon_{30} - \varepsilon_{20}} \]

en las que:

- \(\sigma_i \) es la tensión correspondiente al \(i \)% de la carga de rotura y
- \(\varepsilon_i \) es la deformación unitaria longitudinal correspondiente a la tensión \(\sigma_i \),

y definiendo el módulo de deformación como el resultado de la media aritmética de los 6 valores así determinados (1 probeta). Finalmente, como módulo de deformación del hormigón a la edad de \(j \) días se toma el promedio de los \(n \) módulos obtenidos a partir de las \(n \) probetas ensayadas.

Obsérvese que el módulo de deformación obtenido según este procedimiento es el promedio de 6 valores de módulo calculados para incrementos de tensión del 10% de la resistencia a compresión del hormigón, mientras que los incrementos de tensión propuestos por las normativas son, aproximadamente, entre un 33% y un 40% de la tensión de rotura (ya que el escalón de carga inferior es cercano al valor cero. En consecuencia, se ha denominado módulo "tangente" al determinado según el procedimiento descrito.
Sin embargo, teniendo en cuenta que el objetivo principal de estos ensayos era obtener valores de módulo para su aplicación en las predicciones analíticas relativas al comportamiento de las vigas, y que en el caso de las vigas ensayadas a fluencia las cargas aplicadas se determinaron para generar tensiones máximas de compresión en el hormigón del orden del 40% de su resistencia, se consideró más adecuado utilizar el denominado módulo secante, calculado según establece la norma ASTM 469 [1987].

Para ello, a partir de las deformaciones medidas durante los 3 últimos ciclos de carga de las dos probetas ensayadas a la misma edad (véase apartado 4.1.3) se realizó un ajuste de ecuación polinómica de segundo grado mediante el método de los mínimos cuadrados, aceptando dicha ecuación como la relación tensión-deformación del hormigón y deduciendo de ella la deformación asociada a la tensión del 40% de la resistencia a compresión y la tensión necesaria para producir una deformación unitaria de 0.005%. Una vez obtenidos estos valores, el módulo de deformación secante se definió según la siguiente expresión:

\[E_c = \frac{\sigma_2 - \sigma_1}{\varepsilon_2 - 0.000050} \]

Donde:
- \(E_c \) = Módulo de deformación secante, MPa
- \(\sigma_2 \) = Tensión correspondiente al 40% de la carga de rotura, MPa
- \(\sigma_1 \) = Tensión correspondiente a la deformación unitaria del 0.005%, MPa
- \(\varepsilon_2 \) = Deformación unitaria longitudinal producida por la tensión \(\sigma_2 \)

En la Tabla 5.4 se presentan los resultados, obtenidos según los dos procedimientos descritos, de cada serie y en función de la edad del hormigón. Asimismo, la Figura 5.5 muestra la evolución del módulo de deformación de ambas series. En ella puede observarse como el módulo denominado "tangente" resultó siempre ligeramente más alto que el módulo denominado secante (entre un 3% y un 14%). También puede apreciarse que el hormigón de la primera serie dio valores de módulo más elevados que el de la segunda serie, al igual de lo que sucedió con la resistencia a compresión y la resistencia a tracción indirecta, para todas las edades ensayadas.

En las Figuras 5.6 y 5.7 se representan las funciones tensión-deformación a partir de las cuales fueron deducidos los valores de tensión y deformación para el cálculo del módulo secante. Respecto a dichas figuras es importante señalar dos aspectos. En primer lugar estas curvas no son resultados experimentales puesto que han sido generadas a partir de las ecuaciones polinómicas de segundo grado (ajustadas a los resultados directos de los ensayos mediante el método de los mínimos cuadrados).
En segundo lugar, puede observarse que dichas curvas finalizan para valores de tensión inferiores a la resistencia a compresión del hormigón (concretamente el 80% de la misma). Ello es debido a que, para el ajuste, se disponía únicamente de datos hasta el citado nivel de tensión. Si bien este hecho produce una variación en la zona final de las curvas, su repercusión en el intervalo para el que se han calculado los módulos secantes se considera mínima ya que más de la mitad de los datos experimentales corresponden a dicho intervalo.

Tabla 5.4.- Módulo de deformación [MPa]

<table>
<thead>
<tr>
<th>Edad de ensayo j [días]</th>
<th>1ª SERIE</th>
<th>2ª SERIE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"Tangente"</td>
<td>"Tangente"</td>
</tr>
<tr>
<td>2</td>
<td>18799.8</td>
<td>17626.1</td>
</tr>
<tr>
<td>4</td>
<td>21618.1</td>
<td>20920.1</td>
</tr>
<tr>
<td>7</td>
<td>22037.7</td>
<td>21305.6</td>
</tr>
<tr>
<td>28</td>
<td>24500.0</td>
<td>22142.9</td>
</tr>
<tr>
<td>60</td>
<td>25973.9</td>
<td>23333.2</td>
</tr>
<tr>
<td>90</td>
<td>28487.6</td>
<td>25862.8</td>
</tr>
<tr>
<td>287</td>
<td>----</td>
<td>----</td>
</tr>
</tbody>
</table>

Figura 5.5.- Evolución del módulo de deformación
Figura 5.6.- Diagramas tensión-deformación deducidos a partir de los datos obtenidos experimentalmente. Primera serie.

Figura 5.7.- Diagramas tensión-deformación deducidos a partir de los datos obtenidos experimentalmente. Segunda serie.
5.1.4.- Retracción

La probeta destinada al ensayo de retracción fue mantenida en el molde y tapada con plástico desde el momento de su hormigonado hasta pasadas 24 horas. La conexión de la galga extensométrica al SAD se efectuó 5 horas después de finalizado el hormigonado, realizándose inmediatamente una primera lectura (referencia). La deformación de retracción correspondiente al instante \(t \) se definió como la diferencia entre la lectura registrada en dicho instante y la lectura de referencia.

La Figura 5.8 muestra la evolución de la deformación de retracción, así obtenida, en función de la edad del hormigón (en días). Obsérvese que la retracción se inicia aproximadamente a la edad de 1 día, momento en el que la probeta fue destapada y desmoldeada.

![Diagrama de Evolución de la Deformación de Retracción](image)

Figura 5.8. Evolución de la deformación de retracción

5.1.5.- Fluencia

El ensayo de fluencia, realizado según se ha descrito en el apartado 4.1.4 de este documento, proporcionó la deformación unitaria longitudinal, total, de la probeta después de un período \(t - j \) de duración de la carga, siendo \(t \) la edad del hormigón en el instante en que se midió la deformación y \(j \) la edad del
hormigón en el instante de la aplicación de la carga. Dicha deformación total se obtuvo de la diferencia entre la lectura realizada en el instante \(t \) y la lectura de referencia, tomada inmediatamente antes de la aplicación de la carga, por lo que debe entenderse que el resultado directo del ensayo engloba tanto la deformación instantánea \((\varepsilon_{i}) \) como las deformaciones debidas a los fenómenos de fluencia \((\varepsilon_{cr}) \) y retracción \((\varepsilon_{sh}) \), es decir:

\[
\varepsilon_{tot}(t,j) = \varepsilon_{i}(j) + \varepsilon_{cr}(t,j) + \varepsilon_{sh}(t,j)
\]

La Figura 5.9 muestra la evolución de las deformaciones totales obtenidas en cada una de las probetas, en función de la duración de la carga \((t - j) \). Debe señalarse que al descargar la probeta PF3 (cargada a los 7 días), se observó una pérdida de presión en el bastidor, lo cual fue confirmado al analizar los resultados de dicha probeta, por lo que las deformaciones totales medidas a partir de los 40 días de duración de la carga fueron desestimadas. En el caso de la probeta PF1 (cargada a los 2 días), si bien no se observó pérdida de presión en el bastidor, la evolución de su deformación total a partir de los 70 días de duración de la carga sugiere una pequeña pérdida de tensión.

![Figura 5.9. Evolución de la deformación total de las probetas de fluencia.](image)

La deformación instantánea \(\varepsilon_{i} \) se definió a partir de la primera lectura tomada inmediatamente después de la aplicación de la carga. En la Tabla 5.5 se
detallan, para cada probeta ensayada, la edad de carga \(j \), la tensión aplicada y la deformación unitaria instantánea obtenida. Debe observarse que en ninguno de los casos, la tensión aplicada corresponde, exactamente, al 40% de la resistencia a compresión del hormigón.

Tabla 5.5.- Tensión aplicada y deformación instantánea en cada probeta Ensayo de fluencia.

<table>
<thead>
<tr>
<th>Edad de carga [días]</th>
<th>PF1</th>
<th>PF2</th>
<th>PF3</th>
<th>PF4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión aplicada [MPa]</td>
<td>3.55</td>
<td>5.52</td>
<td>7.22</td>
<td>8.08</td>
</tr>
<tr>
<td>% respecto (f_k)</td>
<td>32</td>
<td>39</td>
<td>45</td>
<td>43</td>
</tr>
<tr>
<td>(\varepsilon) [mm/m]</td>
<td>-0.41772</td>
<td>-0.61010</td>
<td>-0.70450</td>
<td>-0.74322</td>
</tr>
</tbody>
</table>

Puesto que la lectura de referencia de cada probeta se tomó inmediatamente antes de su puesta en carga, la deformación total incluye, exclusivamente, la retracción producida desde dicho instante. Esta deformación fue deducida a partir del resultado de la probeta de retracción, anteriormente expuesto. En la Figura 5.10 se presenta la evolución de la deformación de retracción correspondiente a cada una de las probetas de fluencia. Lógicamente, la probeta PF1 (cargada a los 2 días) se vió más afectada por la retracción que la probeta PF4 (cargada a los 28 días).

Una vez identificadas las deformaciones instantánea y de retracción, la deformación de fluencia se estableció según la siguiente expresión:

\[
\varepsilon_{cr}(t,j) = \varepsilon_{tot}(t,j) - \varepsilon_t(j) - \varepsilon_{sh}(t,j)
\]

La Figura 5.11 presenta la evolución de la función de fluencia \(C(t,j) \) de cada una de las probetas, definida como el cociente entre la deformación de fluencia y la tensión aplicada, según la expresión:

\[
C(t,j) = \frac{\varepsilon_{cr}(t,j)}{\sigma_i}
\]

donde \(\sigma_i \) es la tensión aplicada a la edad \(j \), y mantenida durante todo el ensayo.

En ella puede observarse cómo se ve afectada la función de fluencia por la edad del hormigón en el instante de su puesta en carga, a pesar de que las probetas de 7 y 28 días fueron sometidas a un nivel de tensión algo superior al aplicado a las probetas de 2 y 4 días.

5.13
Figura 5.10.- Evolución de la deformación de retracción de las probetas de fluencia.

Figura 5.11.- Función de fluencia de las 4 probetas ensayadas.
La evolución de la función de fluencia de la probeta PF1 (cargada a los 2 días) a partir de los 70 días de duración de la carga puede ser debida a la pérdida de tensión mencionada anteriormente.

5.1.6.- Temperatura y humedad ambiente

Durante los ensayos de la primera serie se tomaron registros de la temperatura ambiente así como de la humedad relativa en el L.T.E., lugar donde fueron construidas, conservadas y ensayadas las vigas. Estos registros fueron tomados manualmente, lo cual explica la variabilidad de las frecuencias de lectura.

La Figura 5.12 muestra la evolución de la humedad relativa desde el hormigonado hasta la rotura de la última viga de la primera serie. Puede observarse que dicha humedad fluctuó entre un 89% y un 60%, con una media aproximada del 75%. La Figura 5.13 muestra la evolución de la temperatura ambiente durante el mismo periodo.

Durante los ensayos de la segunda serie no se registró la humedad relativa pero sí se tomaron registros de temperatura, tanto ambiental como del hormigón. Para ello se utilizaron dos sondas conectadas a un squirrel, lo cual permitió una frecuencia de lecturas mucho más constante que en el caso de la primera serie.

En la Figura 5.14 se presenta la evolución de la temperatura ambiente y en la Figura 5.15 se presenta la evolución de la temperatura del hormigón. Puede observarse que la temperatura del hormigón tiene una evolución muy paralela a la temperatura ambiente aunque más suave, es decir, los picos que presenta la temperatura ambiente son mucho menos acusados en la temperatura del hormigón.

Por último, en la Figura 5.16 se presentan, conjuntamente, la evolución de la temperatura ambiente y del hormigón durante las primeras 48 horas después del hormigonado. En ella puede observarse la temperatura máxima que alcanzó el hormigón durante el fraguado (25 °C frente a los 19.5 °C ambientales).

5.2.- ENSAYOS SOBRE VIGAS. TRATAMIENTO DE LOS DATOS ADQUIRIDOS

La instrumentación efectuada en las vigas aportó, para cada nivel de carga (rotura) o duración de la misma (fluencia), información relativa a dos parámetros básicos: Deformaciones y Flechas. El análisis de las deformaciones medidas en las fibras longitudinales, comprimidas y traccionadas, ha permitido estudiar otros parámetros como son el momento flector de fisuración, la curvatura seccional, la rigidez de la sección fisurada o la posición del eje neutro, todos ellos utilizados habitualmente para la predicción de flechas. Éstas, que son parámetros importantes en proyecto, se miden directamente a través de relojes comparadores o LVDT’s.
Figura 5.12.- Humedad relativa en el L.T.E.
(desde el 21-9-92 hasta el 18-12-92).

Figura 5.13.- Temperatura ambiente en el L.T.E.
(desde el 21-9-92 hasta el 18-12-92).
Figura 5.14.- Temperatura ambiente en el L.T.E. (desde el 26-4-93 hasta el 7-2-94)
Figura 5.15.- Temperatura del hormigón. (desde el 26-4-93 hasta el 7-2-94)
Figura 5.16.- Temperatura ambiente en el L.T.E. y en el hormigón, durante las primeras 48 horas después del hormigonado de la 2a serie.

Por otra parte, el control de la carga aplicada junto con las deformaciones medidas en la armadura transversal y en las fibras longitudinales (tracción y compresión), han permitido evaluar la capacidad resistente a esfuerzo cortante y a flexión de las distintas vigas ensayadas a rotura.

Seguidamente se expone la metodología empleada para el análisis de los datos adquiridos durante los procesos de ensayo así como para la determinación de los parámetros estudiados a partir de dichos datos.

5.2.1.- Deformaciones en compresión y en tracción

La deformaciones medidas en las fibras longitudinales, tanto comprimidas como traccionadas, fueron analizadas según el mismo criterio ya que el número de puntos instrumentados y los aparatos de medición utilizados fueron los mismos en ambos casos (tracción o compresión). Por ello, la metodología se describe una sola vez.

En cada viga y para cada nivel de carga (rotura) o instante t (fluencia) se disponía de 2 mediciones correspondientes a la armadura y otras 2 mediciones correspondientes al hormigón, las 4 obtenidas electrónicamente a través de galgas pegadas. A su vez, en las vigas "C" se tomaron 6 lecturas manuales durante los
ensayos de fluencia, y únicamente 2 durante los ensayos de rotura, todas ellas mediante extensómetro mecánico. Así pues, en total se disponía de entre 4 y 10 valores de deformación, según el tipo de ensayo, tanto en tracción como en compresión.

En primer lugar y con el fin de eliminar los valores erráticos producidos por un mal funcionamiento de los aparatos de medición, se generó un gráfico de evolución de las deformaciones incluyendo una curva por cada medición realizada. A modo de ejemplo, en la Figura 5.17 se presenta la evolución de las deformaciones de compresión obtenidas en la viga C24 durante el ensayo de fluencia. En ella puede observarse una cierta dispersión en cuanto a los valores de la medición pero con una evolución muy similar. La dispersión es debida, básicamente, a que la posición de los puntos intrumentados respecto a la cara superior de la viga no era exactamente la misma, además de corresponder a secciones distintas (véase Figuras 3.3 y 3.4).

![Figura 5.17.- Comparación entre las distintas mediciones de las deformaciones en compresión efectuadas durante el ensayo de fluencia de la viga C24.](image)

Seguidamente se definió la deformación media de la armadura como el promedio de las 2 mediciones realizadas ya que ambas correspondían a secciones simétricas respecto de la sección central de la viga y a una fibra de posición similar. Respecto a la deformación del hormigón, se trataron independientemente las mediciones realizadas en cada cara lateral de la viga ya que se comprobó que

5.20
la posición de la galga o los puntos para el extensómetro mecánico, respecto a la cara superior o inferior, no era la misma. Asimismo se diferenció entre las mediciones efectuadas mediante galgas y la efectuadas mediante extensómetros de tal forma que se definieron los siguientes valores de deformación:

Deformación media del hormigón en la cara frontal, como el promedio entre la medición obtenida mediante la galga y la media de las tres mediciones realizadas a través del extensómetro.

Deformación media del hormigón en la cara dorsal, como el promedio entre la medición obtenida mediante la galga y la media de las tres mediciones realizadas a través del extensómetro.

En los casos de una única medición mediante extensómetro en cada cara, la deformación media del hormigón se definió como la media de las dos mediciones de distinto origen y en los casos en que solamente se utilizaron galgas (rotura inmediata después del descimbrado), la deformación del hormigón en cada cara se estableció como el resultado directamente obtenido en el ensayo.

5.2.2.- Deformación de la armadura transversal

En las vigas de la segunda serie se instrumentaron 2 cercos mediante galgas pegadas, realizándose mediciones, únicamente, durante los ensayos de rotura. Estos cercos correspondían a la zona comprendida entre el apoyo y el punto de aplicación de la puntual más próxima a aquél (véase Figura 3.5).

Al igual que en el caso de las deformaciones longitudinales, en primer lugar, y para cada viga, se generó un gráfico de evolución de las dos mediciones realizadas, incluyendo una curva para cada una de ellas. Contrariamente a lo que se esperaba cuando se decidió qué cercos debían ser instrumentados, la deformación registrada durante los ensayos de rotura del cerco situado a 15 cm del eje del apoyo fue prácticamente nula en todos los casos, incluso para valores de carga cercanos a la rotura. A modo de ejemplo, la Figura 5.18 muestra la evolución de las deformaciones registradas en los dos cercos instrumentados de la viga R21. En ella se denomina "cercos exterior" al más cercano al apoyo y "cercos interior" al situado a 59 cm de aquél. Una explicación a este fenómeno puede ser el hecho de que las placas de apoyo que se intercalaron entre el rodillo (rótula) y la viga median 24 cm de ancho y 4 cm de espesor, quedando solamente 3 cm teóricos entre el extremo de la placa y la posición del cerco, con lo que la rigidez de la placa pudo absorber parte del esfuerzo cortante generado durante el ensayo.

Por todo lo expuesto, tan sólo se dispuso de una medición por viga entendiéndose que dicha información es insuficiente para poder cuantificar el efecto del esfuerzo cortante sobre las armaduras transversales, sin embargo sí es válida para extraer conclusiones de tipo cualitativo.
Figura 5.18.- Comparación entre las deformaciones de los 2 cercos instrumentados en la viga R21 (ensayo a rotura).

Figura 5.19.- Comparación entre los 3 valores de flecha obtenidos durante el ensayo a rotura de la viga R22.
5.2.3.- Flechas

El principal parámetro a medir era la flecha máxima, la cual debía producirse en la sección central de las vigas ya que éstas eran cargadas simétricamente. Las mediciones efectuadas en las secciones situadas a 60 cm de la central (véase Figura 3.6) se utilizaron para contrastar la correcta medición de la flecha máxima, es decir, con carga simétrica las flechas en puntos simétricos debían ser iguales (aproximadamente) y ligeramente inferiores a las medidas en la sección central. En consecuencia, en primer lugar, y para cada viga, se generó un gráfico de evolución de las tres mediciones realizadas. A modo de ejemplo, en la Figura 5.19 se presenta el gráfico correspondiente a la viga R22 relativo al ensayo de rotura.

5.2.4.- Curvaturas

En una sección sometida a flexión y suponiendo una ley plana de deformaciones, si se conocen las deformaciones unitarias de una fibra comprimida y otra traccionada se puede deducir la curvatura de la sección a partir de la expresión:

\[C = \frac{-\varepsilon_c + \varepsilon_t}{z} \]

donde:
\(\varepsilon_c \) es la deformación de la fibra comprimida
\(\varepsilon_t \) es la deformación de la fibra traccionada y
\(z \) es la distancia vertical entre las fibras donde se ha medido la deformación

Si bien el planteamiento de los ensayos requería que la medición de las deformaciones unitarias se realizara en una misma fibra, la incertidumbre de un posible desplazamiento de las armaduras durante el hormigonado así como la inexactitud en el pegado de las galgas y puntos para extensómetro mecánico en el hormigón, debido a las pequeñas imperfecciones de su superficie, aconsejó no trabajar con una única deformación media en tracción y compresión.

La curvatura media de la sección central de una viga se definió como el promedio de los siguientes valores de curvatura:

Curvatura 1, calculada a partir de la deformación media de las armaduras y con distancia \(z = 24 \text{ cm} \)

Curvatura 2, definida como el promedio de las curvaturas calculadas a partir de las galgas frontales y dorsales, independientemente.

Curvatura 3, definida como el promedio de las curvaturas calculadas a partir de las deformaciones medias, frontales y dorsales de forma
independiente, obtenidas mediante extensómetro mecánico.

La distancia utilizada para el cálculo de las curvaturas 2 y 3, correspondía exactamente a la posición real de los aparatos de medición.

5.2.5.- Rigidez seccional y rigidez media de la viga

En las vigas sometidas a ensayo de rotura se ha estudiado la evolución de la rigidez de la sección central y la rigidez media de la viga.

Una vez definida la curvatura media de la sección central de una viga para cada escalón de carga, se generó el diagrama Momento Flector-Curvatura correspondiente, a partir del cual se determinó la rigidez seccional tangente como la pendiente de dicho diagrama en el tramo comprendido entre la fisuración y la plastificación de la sección. A título de ejemplo se presenta en la Figura 5.20 el diagrama Momento-Curvatura experimental correspondiente a la viga R12, en el que se han señalado los puntos entre los que se determinó la pendiente del diagrama.

Figura 5.20. Diagrama Momento-Curvatura experimental de la viga R12. Determinación de la Rigidez seccional.
Habitualmente, la flecha instantánea se calcula a partir de las fórmulas derivadas de un cálculo elástico y utilizando como rigidez un valor intermedio entre la rigidez de la sección sin fisurar y la correspondiente a la sección totalmente fisurada. Por ello, a partir de las citadas fórmulas elásticas y utilizando la flecha máxima experimental como dato, se determinó la rigidez media de la viga.

5.2.6.- Otros parámetros estudiados

En el caso de las vigas ensayadas a rotura también se han determinado la posición del eje neutro para cada escalón de carga, el momento de fisuración y el momento flector o el esfuerzo cortante de rotura (en función del tipo de ensayo).

En una sección sometida a flexión y en el supuesto de una ley plana de deformaciones es posible determinar la posición del eje neutro si se conocen las deformaciones en 2 fibras determinadas, aplicando una simple proporcionalidad de triángulos. Este procedimiento es el que se ha seguido para la deducción de la posición del eje neutro en la sección central de una viga y para cada escalón de carga. La posición media del eje neutro (x) se ha definido como el promedio de los siguientes valores:

x_1 calculado a partir de las deformaciones medias de la armadura traccionada y comprimida.

x_2 calculado como el promedio de los valores de x obtenidos a partir de las galgas del hormigón, frontales y dorsales independientemente.

x_3 calculado como el promedio de los valores de x obtenidos a partir de las deformaciones medias, frontales y dorsales independientemente, procedentes de las mediciones manuales (extensómetros mecánicos).

En cuanto al momento de fisuración, el hecho de que los ensayos se realizaran mediante escalones de carga hacía muy difícil determinar exactamente su valor. Sin embargo, la evolución de las flechas así como la comparación entre la evolución de las deformaciones en tracción y compresión permitieron valorar, de una forma bastante aproximada, el momento flector de fisuración de cada viga.

Lo mismo ocurrió con la carga de rotura, la cual se producía mientras se aumentaba la carga aplicada, aunque para los niveles alcanzados el error que se puede haber cometido debe ser muy pequeño, más aún si se tiene en cuenta que para valores de carga próximos a la rotura se disminuyan los incrementos de carga. Sin embargo es importante señalar que la célula, situada entre el gato hidráulico y la viga de reparto, únicamente media la carga aplicada, por lo que para definir la carga de rotura (momento flector o esfuerzo cortante) se adicionó a la última lectura de carga, el peso propio de la viga y el peso de las rótulas.
5.3.- ENSAYOS SOBRE VIGAS. ROTURA

A continuación se describen los resultados obtenidos en todos los ensayos a rotura, tanto de las vigas "R" (realizados inmediatamente después del descimbrado) como de las vigas "C" (vigas previamente sometidas a carga mantenida).

5.3.1.- Rotura por flexión

Las vigas de la primera serie fueron cargadas simétricamente mediante dos cargas puntuales aplicadas a 1/3 de su luz (véase Figura 3.2).

En el caso de las vigas "R" (recién descimbradas), las primeras fisuras observadas aparecieron en la zona próxima a la sección central y eran sensiblemente verticales. Posteriormente, ante los sucesivos incrementos de carga, se producía una propagación de las fisuras hacia los extremos de la viga así como un aumento de la longitud de las ya existentes. Por último, cerca del final del ensayo, las fisuras más extremas se inclinaban hacia la zona central de la viga. En estas condiciones, ante un nuevo incremento de carga era posible observar, a simple vista, el aumento de flecha a pesar de que la carga leída por la célula era inferior a la correspondiente al escalón anterior. Finalmente, ante un nuevo incremento de carga se producía el pandeo de la armadura superior (de montaje) con el consiguiente desconchamiento del hormigón que la cubría (véase Anejo II, fotos 24-28).

Las vigas "C" (sometidas previamente a carga mantenida) ya estaban fisuradas antes de iniciar el ensayo a rotura. Para los primeros escalones de carga se pudo observar que únicamente se habrían las fisuras ya existentes, iniciándose el proceso de prolongación y propagación para niveles de carga algo superiores a los aplicados en el ensayo de fluencia. Ante los siguientes incrementos de carga, el comportamiento de estas vigas fue similar al observado en las vigas "R", es decir, evolución de las fisuras, aumento de flecha apreciable a simple vista, y pandeo de la armadura superior.

Por todo lo expuesto se concluyó que todas las vigas de la primera serie rompieron por flexión, habiendo plastificado la armadura traccionada.

En la Tabla 5.6 se presentan los valores del momento flector de rotura de cada una de las vigas ensayadas así como el momento flector al que fueron sometidas las vigas "C" durante el ensayo de fluencia.

A la vista de estos resultados cabe señalar que existe una escasa diferencia entre los momento flectores de rotura de las vigas "R" (el momento de rotura de la viga R11 es solamente un 6.58% inferior al de la viga R14). Ello puede tener una explicación en la alta resistencia que alcanzó el hormigón en los primeros días.
\(f_{c} = 16.61 \, MPa \) a los 2 días) unido al hecho de que la rotura se produjo por agotamiento de las armaduras.

Tampoco se aprecia una gran diferencia entre los momentos flectores de rotura de las vigas "C" (el momento de rotura de la viga C12 es un 4.6\% inferior al de la viga C13). Puede afirmarse por tanto que no se aprecia una clara influencia de la edad de descimbrado y puesta en carga del hormigón en la capacidad resistente a flexión a largo plazo.

<table>
<thead>
<tr>
<th>Tabla 5.6.- Momento flector de rotura de las vigas de la 1\ª serie. Rotura por flexión.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad de descimbrado y puesta en carga [días]</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Momento flector aplicado previamente [kN/m]</td>
</tr>
<tr>
<td>Duración de la precarga [días]</td>
</tr>
<tr>
<td>Edad de ensayo [días]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MOMENTO FLECTOR DE ROTURA [kN/m]</td>
</tr>
</tbody>
</table>

5.3.2.- Rotura por cortante

Las vigas de la segunda serie fueron cargadas simétricamente mediante dos cargas puntuales aplicadas a 1/4 de su luz respecto de los apoyos (véase Figura 3.2).

En el caso de las vigas "R" (recién descimbradas), las primeras fisuras observadas aparecieron en la zona próxima a la sección central y eran sensiblemente verticales. Posteriormente, ante los sucesivos incrementos de carga, se producía una propagación de las fisuras hacia los extremos de la viga así como un aumento de la longitud de las ya existentes. A partir de aproximadamente la mitad del ensayo las fisuras de la zona central de la viga se estabilizaban, concentrándose las nuevas fisuras en las zonas extremas, claramente de cortante. Finalmente se producía la rotura bruscamente, apareciendo una grieta entre el punto de aplicación de una de las puntuales y el apoyo más cercano, con una inclinación aproximada entre 35 y 45 grados (véase Anejo II, fotos 29-31).

Las vigas "C" (sometidas previamente a carga mantenida) ya estaban fisuradas antes de iniciar el ensayo a rotura. Para los primeros escalones de carga se pudo observar que únicamente se habrían las fisuras ya existentes, sin embargo,
a diferencia de las vigas "C" de la primera serie, el proceso de propagación se iniciaba incluso antes de alcanzar el nivel de carga al que habían sido sometidas anteriormente, con seguridad debido a la diferente posición de las dos cargas punctuales (a 1/3 de la luz de la viga en el ensayo de fluencia y a 1/4 en el de rotura). A partir de aproximadamente la mitad del ensayo, el comportamiento de estas vigas fue similar al descrito para las vigas "R", es decir, evolución de las fisuras, rotura brusca y aparición de grieta. Sin embargo, es importante destacar que la grieta producida en estas vigas fue más limpia que en el caso de las vigas "R", llegando a romperse el cerco que la atravesaba (véase Anejo II, fotos 32-35). Únicamente la viga C21 tuvo un comportamiento distinto ya que una vez alcanzado un alto nivel de fisuración en las zonas extremas y cuando se esperaba la inminente rotura por cortante, se produjo el pandeo de la armadura superior con el consiguiente desconchamiento del hormigón.

Por todo lo expuesto puede afirmarse que, a excepción de la viga C21, todas las vigas de la segunda serie rompieron por cortante.

En la Tabla 5.7 se presentan los valores del esfuerzo cortante de rotura de cada una de las vigas ensayadas así como el momento flector al que fueron sometidas las vigas "C" durante el ensayo de fluencia. A pesar de que la viga C21 rompió por pandeo de la armadura superior, se ha incluido el valor del esfuerzo cortante actuante en el instante de la rotura, diferenciándolo de los demás mediante un asterisco.

<table>
<thead>
<tr>
<th>Tabla 5.7.- Esfuerzo cortante de rotura de las vigas de la 2ª serie.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotura por cortante.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Edad de descimbrado y puesta en carga [días]</td>
</tr>
<tr>
<td>R21</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Momento flector aplicado previamente [kN m]</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Duración de la precarga [días]</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Edad de ensayo [días]</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>ESFUERZO CORTANTE DE ROTURA [kN]</td>
</tr>
<tr>
<td>73.30</td>
</tr>
</tbody>
</table>

Comparando el esfuerzo cortante de rotura de las vigas "R", cabe señalar que si bien las vigas ensayadas a 4, 7 y 28 días ofrecen resultados bastante parecidos, con una diferencia máxima del 4.5%, el cortante de rotura de la viga R21 es un 15.6% inferior al de la viga R24, diferencia ya apreciable y que sugiere una cierta influencia de la edad del hormigón en la capacidad resistente a esfuerzo cortante.

5.28
En cuanto a las vigas "C", obsérvese que el cortante de rotura es, en todos los casos, inferior al de la viga R24 (referencia por haber sido ensayada a los 28 días) y que, prescindiendo del resultado de la viga C21 (ya que no llegó a romper por cortante), el resultado obtenido en la viga C22 es un 11% inferior al de la viga C24, lo cual también sugiere una cierta influencia de la edad de descimbrado y puesta en carga del hormigón en la capacidad resistente a esfuerzo cortante a largo plazo.

Las Figuras 5.21 y 5.22 muestran la evolución de la deformación del cerco interior instrumentado (cerco situado a 59 cm del apoyo) de las vigas "R" y vigas "C" respectivamente. Es importante señalar que únicamente en el caso de las vigas R21 y C24 la rotura se produjo por el extremo instrumentado y que en la viga C24 se rompió el cerco situado a 37 cm del apoyo, el cual no estaba instrumentado.

A la vista de estas figuras y teniendo presente los aspectos citados, tanto aquí como en el apartado 5.2.2, puede afirmarse que se observa un comportamiento no lineal de la armadura, con una rama lineal previa a la fisuración y un brusco incremento de la deformación una vez superado un cierto valor del esfuerzo cortante, lo cual coincide con las teorías actuales de dimensionado para dicho esfuerzo. En el capítulo 6 se comparan estos resultados con predicciones analíticas en cuanto al valor del esfuerzo cortante para el que se produce el brusco incremento de deformación de la armadura (\(V_{cr}\)).

![Grafico 5.21](image.png)

Figura 5.21.- Evolución de la deformación del cerco instrumentado en las vigas "R".
5.3.3.- Adherencia y anclaje

Durante los ensayos de rotura de las vigas de la primera serie, y para valores altos de carga, se observó la aparición de fisuras longitudinales en la cara inferior de las vigas de menor edad, lo cual hizo suponer un posible fallo de la adherencia entre la armadura y el hormigón, o bien del anclaje. Debido a ello, se decidió instrumentar las vigas "R" de la segunda serie para detectar el posible deslizamiento de la armadura longitudinal (véase Figura 3.7).

En la Figura 5.23 se presenta el resultado obtenido mediante la citada instrumentación. Se observa que únicamente en las vigas ensayadas a los 2 y 4 días se produjo el deslizamiento de la armadura traccionada si bien a partir de valores de carga cercanos a la rotura (entre 120 y 125 kN, lo que corresponde a un momento flector entre 57.72 y 59.45 kN m y a una tensión de la armadura traccionada entre 440 y 470 MPa), y con un deslizamiento máximo (en el caso de la viga R22) de 0.1 mm. Así pues se constata que la edad del hormigón influye en las condiciones de anclaje y adherencia aunque este hecho difícilmente podría ocasionar el colapso de la estructura mientras no se superara el nivel de carga de servicio.
5.3.4.- Fisuración

Respecto a la evolución de las fisuras, en el Anejo VI se incluye el croquis de dos vigas, representativas de cada serie, con el estado de fisuración correspondiente a distintos niveles de carga. Se observa un esquema clásico de fisuras, esto es, verticales en la zona de momento flector constante e inclinadas en la zona en la que hay esfuerzo cortante.

La separación media de fisuras en la zona de flexión fue de 11 cm (±1) en todas las vigas ensayadas, tanto de la primera como de la segunda serie.

El hecho de que las lecturas de los aparatos de medida se realizaran secuencialmente, es decir de manera no continua, hizo muy difícil detectar con exactitud el momento flector de fisuración de cada viga. Sin embargo, a partir de la evolución de las flechas así como de la comparación entre las deformaciones medias de las armaduras comprimidas y traccionadas fue posible fijar un valor aproximado de dicho momento flector de fisuración. Con el fin de ilustrar el método empleado, en las Figuras 5.24 y 5.25 se presentan, respectivamente, los gráficos de comparación de las deformaciones medias de las armaduras y la evolución de la flecha correspondientes a la viga R11.
Figura 5.24.- Comparación entre la evolución de las deformaciones medias de las armaduras de la viga R11.

Figura 5.25.- Evolución de la flecha en la sección central de la viga R11.
En la Figura 5.24 puede observarse como la deformación de la armadura traccionada se incrementa bruscamente a partir de un cierto valor de momento flector para continuar creciendo más o menos linealmente, mientras que la deformación de la armadura de compresión evoluciona de una forma más continua. A su vez, en la Figura 5.25 se observa que la pendiente del gráfico disminuye a partir de un determinado valor de la carga aplicada. Puesto que ambos gráficos se han efectuado con los valores de carga leídos por la célula, al momento flector deducido a partir de ellos se le ha sumado el momento debido al peso propio.

En la Tabla 5.8 se presentan los momentos de fisuración experimentales, así obtenidos, de cada una de las vigas "R" ensayadas.

<table>
<thead>
<tr>
<th>Edad de ensayo [días]</th>
<th>R11</th>
<th>R12</th>
<th>R13</th>
<th>R14</th>
<th>R21</th>
<th>R22</th>
<th>R23</th>
<th>R24</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.02</td>
<td>1.99</td>
<td>2.33</td>
<td>2.28</td>
<td>1.05</td>
<td>1.30</td>
<td>1.52</td>
<td>1.65</td>
</tr>
</tbody>
</table>

Tabla 5.8.- Momento de fisuración experimental (± 0.5 [kN m])

<table>
<thead>
<tr>
<th>MOMENTO FLECTOR DE FISURACIÓN [kN m]</th>
<th>R11</th>
<th>R12</th>
<th>R13</th>
<th>R14</th>
<th>R21</th>
<th>R22</th>
<th>R23</th>
<th>R24</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.45</td>
<td>8.45</td>
<td>8.95</td>
<td>9.96</td>
<td>5.44</td>
<td>6.34</td>
<td>6.88</td>
<td>7.88</td>
<td></td>
</tr>
</tbody>
</table>

5.3.5.- Deformabilidad

Con el fin de analizar la influencia de la edad del hormigón en la deformabilidad de las vigas se ha estudiado la evolución de las flechas en la sección central así como de la curvatura seccional, de la rigidez media de la viga y de la rigidez de la sección central fisurada.

En las Figuras 5.26 y 5.27 se presenta la evolución de la flecha de la sección central de las vigas "R" de la 1ª y 2ª serie respectivamente. En ellas puede observarse que, con excepción de la viga R13, a igual nivel de carga las vigas de menor edad experimentaron una flecha de valor más elevado. La excepción de la viga R13 puede ser motivada por un error en la lectura de referencia. Por otra parte, cabe recordar que los aparatos de medición fueron retirados con anterioridad a la rotura para evitar dañarlos, por lo que estos gráficos no son indicativos de la carga de rotura.

En las Figuras 5.28 y 5.29 se presentan los mismos gráficos correspondientes a las vigas "C" de la 1ª y 2ª serie respectivamente (la viga C11 no se incluye en el gráfico debido a que el LVDT colocado en la sección central no funcionó).
Figura 5.26.- Evolución de la flecha en la sección central de las vigas "R" (1ª serie).

Figura 5.27.- Evolución de la flecha en la sección central de las vigas "R" (2ª serie).
Figura 5.28.- Evolución de la flecha en la sección central de las vigas "C" (1ª serie).

Figura 5.29.- Evolución de la flecha en la sección central de las vigas "C" (2ª serie).
De la observación de estas figuras puede concluirse que la flecha alcanzada para el nivel de carga de servicio no se vió sensiblemente afectada por la edad de descirmando y puesta en carga previa de las vigas. Más elocuente es la Figura 5.29 en la que puede observarse que para niveles bajos de carga la flecha es mayor en la viga C24 mientras que para niveles de carga cercanos a la rotura esta viga es la que tuvo una flecha menor.

Tomando como referencia las dos vigas ensayadas a 28 días (R14 y R24) la flecha alcanzada por las vigas "C" de la primera serie, bajo una carga total aplicada de 80 kN, superaron en un 11,5% a la flecha de la viga R14 bajo el mismo valor de carga y en el caso de la segunda serie, la flecha de las vigas "C", bajo la misma carga (80 kN), superaron en un 22% la flecha alcanzada por la viga R24. Si bien la edad de carga previa no influyó sensiblemente en las flechas instantáneas a largo plazo, la prefisuración ocasionada por la carga mantenida y el efecto de la fluencia del hormigón contribuyeron a aumentar la deformabilidad instantánea de las vigas, a largo plazo.

La evolución de la curvatura de la sección central, deducida a partir de las deformaciones medias en tracción y compresión, se presenta en las Figuras 5.30 a 5.33. Las vigas "R" de la primera serie muestran un diagrama Momento-Curvatura claramente trilineal, indicando las fases elástica, fisurada y de prerotura. Sin embargo en el gráfico correspondiente a las vigas "R" de la segunda serie la fase de prerotura es prácticamente inapreciable, lo cual es lógico si se tiene en cuenta que estas vigas rompieron por cortante. De la observación de las Figuras 5.30 y 5.31 se constata la influencia de la edad del hormigón en la deformabilidad de las vigas ya que para un mismo nivel de carga la curvatura de la sección central resultó ser mayor cuanto más joven era el hormigón. Así, por ejemplo, para un momento flector de 40 kN m la curvatura de la viga de 2 días fue un 38% superior a la de la viga de 28 días en el caso de la primera serie, y un 33% en la segunda serie.

En cuanto a las vigas "C", previamente fisuradas por efecto de la carga mantenida, muestran un diagrama Momento-Curvatura en el que la fase elástica no aparece. De la observación de las Figuras 5.32 y 5.33 puede deducirse que la deformabilidad instantánea a largo plazo no se ve afectada por la edad de precarga, tal y como se ha constatado a partir de la evolución de las flechas.

A partir de los diagramas Momento-Curvatura se ha deducido la rigidez seccional tangente en fase fisurada calculando la pendiente de dicho diagrama en la zona comprendida entre la fisuración y la prerotura. En la Tabla 5.9 se presentan los resultados así obtenidos. En ella puede observarse que las vigas cargadas a los 28 días presentan una rigidez mayor que las vigas cargadas a los 2 días lo cual pone de manifiesto la influencia de la edad del hormigón en la deformabilidad instantánea de las vigas.

En cuanto a las vigas "C", las rigideces obtenidas no evidencian una
influencia de la edad de precarga en la deformabilidad instantánea a largo plazo puesto que si se comparan las rigideces de las vigas de la primera serie se observa que la rigidez menor no corresponde a la viga precargada a los 2 días, y en el caso de la segunda serie la viga precargada a los 28 días respondió con una rigidez menor que la viga precargada a los 7 días.

Sin embargo, si la edad de precarga no afectó a la rigidez de las vigas ésta debería ser aproximadamente igual en las 4 vigas "C" de una misma serie, puesto que la edad era la misma. Tomando como referencia las vigas ensayadas a los 28 días (R14 y R24), puede observarse que la rigidez de las vigas "C" es mayor, exceptuando la viga C12, con una diferencia que oscila entre un 4.7% y un 11.4% en la primera serie y entre un 6.3% y un 23.9% en la segunda. Este amplio margen pone en evidencia que el nivel de fisuración previo así como el efecto de la fluencia del hormigón sí podrían haber afectado a la deformabilidad instantánea a largo plazo, tal y como se constató a partir de la evolución de las flechas.

Tabla 5.9.- Rigidez en sección fisurada obtenida experimentalmente. [kN m²]

<table>
<thead>
<tr>
<th>VIGA</th>
<th>Edad de ensayo [días]</th>
<th>RIGIDEZ SECCIONAL [kN m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R11</td>
<td>2</td>
<td>3310</td>
</tr>
<tr>
<td>R12</td>
<td>4</td>
<td>3490</td>
</tr>
<tr>
<td>R13</td>
<td>7</td>
<td>3750</td>
</tr>
<tr>
<td>R14</td>
<td>28</td>
<td>3860</td>
</tr>
<tr>
<td>R21</td>
<td>2</td>
<td>3060</td>
</tr>
<tr>
<td>R22</td>
<td>4</td>
<td>3580</td>
</tr>
<tr>
<td>R23</td>
<td>7</td>
<td>3840</td>
</tr>
<tr>
<td>R24</td>
<td>28</td>
<td>4020</td>
</tr>
<tr>
<td>C11</td>
<td>85</td>
<td>4040</td>
</tr>
<tr>
<td>C12</td>
<td>86</td>
<td>3790</td>
</tr>
<tr>
<td>C13</td>
<td>87</td>
<td>4140</td>
</tr>
<tr>
<td>C14</td>
<td>87</td>
<td>4300</td>
</tr>
<tr>
<td>C21</td>
<td>281</td>
<td>4275</td>
</tr>
<tr>
<td>C22</td>
<td>282</td>
<td>4600</td>
</tr>
<tr>
<td>C23</td>
<td>283</td>
<td>4980</td>
</tr>
<tr>
<td>C24</td>
<td>283</td>
<td>4650</td>
</tr>
</tbody>
</table>

A partir de las flechas máximas se ha calculado la rigidez media de cada viga. Las Figuras 5.34 a 5.37 muestran el resultado obtenido de los dos grupos de vigas de cada serie. Una vez más, las Figuras 5.34 y 5.35 evidencian la influencia de la edad del hormigón en la deformabilidad instantánea de las vigas.

5.37
Figura 5.30.- Evolución de la curvatura en la sección central de las vigas "R" (1ª serie).

Figura 5.31.- Evolución de la curvatura en la sección central de las vigas "R" (2ª serie).
Figura 5.32.- Evolución de la curvatura en la sección central de las vigas "C" (1ª serie).

Figura 5.33.- Evolución de la curvatura en la sección central de las vigas "C" (2ª serie).
Figura 5.34.- Evolución de la rigidez media de las vigas "R" (1ª serie).

Figura 5.35.- Evolución de la rigidez media de las vigas "R" (2ª serie).
Figura 5.36.- Evolución de la rigidez media de las vigas "C" (1ª serie).

Figura 5.37.- Evolución de la rigidez media de las vigas "C" (2ª serie).
En las Figuras 5.36 y 5.37 se observa cómo la rigidez media de las vigas "C" es prácticamente la misma a partir de un determinado valor del momento flector (22.5 kN m en la primera serie y 21.0 kN m en la segunda). Las diferencias en la evolución de la rigidez media para niveles de carga bajos son debidas, sin duda, a los diferentes niveles de prefiuración.

5.4.- ENSAYOS SOBRE VIGAS. FLUENCIA

A continuación se describen los resultados obtenidos en los ensayos de fluencia de las 2 series. Todas las vigas fueron cargadas simétricamente mediante dos cargas puntuales aplicadas a 1/3 de su luz.

5.4.1.- Carga aplicada

El nivel de carga a aplicar a cada viga se estableció en función de la edad y la resistencia del hormigón con el criterio de que la tensión en la fibra más comprimida de hormigón fuera del orden del 40% de su resistencia en el instante de la puesta en carga, sin superar dicho valor. En todos los casos la carga aplicada debía producir la fisuración de la viga.

El cálculo de la carga a aplicar se realizó bajo el supuesto de sección fisurada e imponiendo que \(\sigma_c = 0.40 f_c \). Para ello se utilizaron los valores de resistencia a compresión obtenidos de los ensayos de rotura por compresión de 3 probetas mientras que para el módulo de deformación se aplicaron las fórmulas propuestas por Fernandez Gómez (1986) en su tesis puesto que en el instante de cargar las vigas no se disponía del resultado de los ensayos, a pesar de que éstos ya habían sido efectuados. Una vez conocido el momento flector necesario para obtener el nivel de tensión previsto se deducía el valor de cada una de las dos puntuales según la siguiente expresión:

\[
M_a - M_{pp} = 1.20 P
\]

siendo:

- \(M_a \) el momento flector a aplicar
- \(M_{pp} \) el momento flector debido al peso propio y
- \(P \) el valor de cada una de las cargas puntuales.

Por último, se determinaba el número de sacos de arena que se debían colgar del bastidor imponiendo el equilibrio de momentos en el mismo, según la expresión:

\[
2P 0.40 = Q 1.60
\]
donde Q es el peso total a colgar del extremo del bastidor, incluyendo los sacos de arena y la bandeja para su soporte.

A pesar de que en el cálculo descrito se despreció del peso propio del bastidor y de que la distancia prevista entre el tirante y la viga sufriera pequeñas variaciones, como consecuencia de las dimensiones del aparato de apoyo de material elastomérico intercalado entre la viga y el bastidor así como del ligero desplazamiento del tirante hacia la viga observado durante el proceso de carga, el nivel de carga conseguido en las vigas fue satisfactorio. En ninguno de los casos la simetría de carga deseada se vió afectada.

La comprobación de la carga realmente aplicada en cada viga se realizó imponiendo el equilibrio de fuerzas en el bastidor. Conocida la reacción del tirante (T), el peso del bastidor (B) y el peso de la carga colgada del extremo del mismo (Q), la carga total soportada por la viga debía equilibrar el sistema. Así pues:

$$2P = T + B + Q$$

Una vez conocida la carga real aplicada en cada viga se repitió el cálculo en sección fisurada con el fin de comprobar el nivel de tensión en la fibra más comprimida de hormigón. Esta vez se utilizaron los módulos de deformación obtenidos experimentalmente. En la Tabla 5.10 se indican los valores de carga total ($2P$) aplicados a cada viga ensayada así como el momento flector correspondiente (al que se ha adicionado el momento flector debido al peso propio de la viga) y la tensión máxima del hormigón (expresada en % respecto a su resistencia en el instante de puesta en carga de la viga).

<table>
<thead>
<tr>
<th>Tabla 5.10.- Carga aplicada a las vigas en el ensayo de fluencia.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Edad de puesta en carga [días]</td>
</tr>
<tr>
<td>Duración de la carga [días]</td>
</tr>
<tr>
<td>CARGA APLICADA $2P$ [kN]</td>
</tr>
<tr>
<td>Momento Flector máximo [kN m]</td>
</tr>
<tr>
<td>$\sigma_{\text{max.}} / f_c$ [%]</td>
</tr>
</tbody>
</table>

Obsérvese que el nivel de carga de las vigas de la 1ª serie es algo inferior al de las vigas de la 2ª serie. Es importante señalar que, debido al sistema de carga empleado y por efecto del incremento de flecha de las vigas, se produjo una pérdida de carga con el tiempo, si bien esta pérdida no superó el 5% de la aplicada en ninguna de las vigas.
5.4.2.- Deformación seccional

A partir de las deformaciones medidas en la fibras comprimidas y traccionadas de cada viga, y aceptando una ley plana de deformaciones, se ha estudiado la evolución de la deformación seccional en el tiempo.

Las Figuras 5.38 a 5.41 muestran, respectivamente, la evolución de las deformaciones del hormigón comprimido y la armadura traccionada de las 4 vigas de cada serie. En ellas puede observarse que mientras la deformación de compresión aumenta considerablemente con el tiempo, el incremento de deformación de la armadura traccionada es muy pequeño, lo cual permite confirmar la hipótesis de considerar constante la deformación de la armadura de tracción a lo largo del tiempo, en la que se basa el modelo de J. Murcia [1991]. Ello tiene consecuencias importantes en la evolución de la curvatura seccional a lo largo del tiempo (y como consecuencia la flecha debida a fluencia). En efecto, el factor de curvatura (o flecha) es sensiblemente inferior al coeficiente de fluencia tal y como se constata más adelante.

La Figura 5.42 permite constatar la afirmación anterior. En ella se han dibujado las posiciones de la sección deformada, de las vigas C13 y C22, asociadas a distintos tiempos de duración de la carga y deducidas a partir de las deformaciones medidas.

![Figura 5.42.- Evolución de la deformación seccional. Vigas C13 y C22.](image)

Por otro lado, comparando las deformaciones instantáneas de tracción y compresión de cada viga se observa que, en todos los casos, la deformación de tracción es sensiblemente mayor que la de compresión, lo cual es indicativo de que la carga aplicada produjo la fisuración instantánea de las vigas. También se observa que la diferencia entre los valores absolutos de dichas deformaciones instantáneas es mayor cuanto más avanzada es la edad del hormigón, lo cual puede ser indicativo del nivel de fisuración instantáneo alcanzado.

5.44
Figura 5.38.- Evolución de la deformación del hormigón comprimido.
(1ª serie)

Figura 5.39.- Evolución de la deformación de la armadura traccionada.
(1ª serie)
Figura 5.40.- Evolución de la deformación del hormigón comprimido.
(2ª serie)

Figura 5.41.- Evolución de la deformación de la armadura traccionada.
(2ª serie)
5.4.3.- Flecha diferida

Las Figuras 5.43 y 5.44 muestran la evolución de la flecha total medida en el centro de las vigas de la 1ª y 2ª series respectivamente. En ellas se observa que la flecha instantánea fue mayor en las vigas de mas edad. Este hecho no debe sorprender si se tiene en cuenta que, por ejemplo, el momento flector aplicado a la viga C24 fue aproximadamente un 56% superior al de la viga C21 mientras que el módulo de deformación secante a los 28 días, obtenido experimentalmente, solamente se vió incrementado en un 38% respecto al correspondiente a los 2 días. También el mayor nivel de fisuración instantánea de la viga C24, detectado a través de la comparación entre las deformaciones instantáneas de tracción y compresión, debió producir una disminución de su rigidez seccional.

En las Figuras 5.45 y 5.46 se presenta la evolución de la flecha diferida de las vigas de la 1ª y 2ª series respectivamente, definidas como la diferencia entre la flecha total medida y la flecha instantánea. En ellas puede observarse que la evolución de la citada flecha diferida es muy similar en todas las vigas, tanto en el caso de la 1ª como de la 2ª serie. Sin embargo, y puesto que habitualmente la flecha diferida se calcula multiplicando la instantánea por un determinado factor, se ha calculado el cociente entre las flechas diferida e instantánea experimentales, a cuyo resultado se le ha denominado *Factor de Flecha*. Este factor permite evaluar el efecto de la edad del hormigón en el instante de la puesta en carga de la viga sobre la evolución de las flechas diferidas.

Las Figuras 5.47 y 5.48 muestran la evolución de los factores de flecha de las 4 vigas de cada serie respectivamente. En ellas puede observarse que para un mismo tiempo de duración de la carga el citado factor es mayor cuanto menor fue la edad de carga, constatándose así la influencia de la edad de carga del hormigón en la deformabilidad diferida de las vigas.

Además cabe señalar que el factor de flecha es sensiblemente inferior al coeficiente de fluencia del hormigón $\varphi(t,j)$, es decir, la flecha diferida no es $\varphi(t,j)$ veces la flecha instantánea. Así, tomando como referencia la segunda serie y utilizando el coeficiente de fluencia deducido de los ensayos sobre probetas, para la viga C22, cargada a los 4 días y con $t - j = 271$ días, se ha obtenido un coeficiente de fluencia del hormigón $\varphi(t,j) = 4.61$ y un factor de flecha $FF = 1.827$, o para la viga C24, cargada a los 28 días y con $t - j = 247$ días, se ha obtenido un coeficiente de fluencia del hormigón $\varphi(t,j) = 3.91$ y un factor de flecha $FF = 1.057$

En la Tabla 5.11 se indican las flechas instantáneas obtenidas así como las diferidas y los factores de flecha correspondientes a cada una de las vigas ensayadas y para diferentes tiempos de duración de la carga.
Figura 5.43. - Evolución de la flecha total medida en la sección central.
(1ª serie)

Figura 5.44. - Evolución de la flecha total medida en la sección central.
(2ª serie)
Figura 5.45.- Evolución de la flecha diferida en la sección central. (1ª serie)

Figura 5.46.- Evolución de la flecha diferida en la sección central. (2ª serie)
Figura 5.47.- Evolución del Factor de Flecha. (1ª serie)

Figura 5.48.- Evolución del Factor de Flecha. (2ª serie)

5.50
Finalizando esta apartado, en las Figuras 5.49 y 5.50 se ha representado la evolución del factor de flecha en función de la edad del hormigón en el instante de puesta en carga de las vigas, para distintos tiempos de duración de la carga, de las dos series respectivamente. En ellas se observa un comportamiento muy distinto de la 1ª serie respecto a la 2ª para edades de carga comprendidas entre los 2 y los 7 días, mientras que para edades de carga superiores a los 7 días el factor de flecha evoluciona de forma muy similar en ambas series. Ello es debido a la diferencia en la velocidad de maduración del hormigón, muy superior en la primera serie.

5.4.4.- Curvatura en la sección central

Al igual que en el caso de las vigas ensayadas a rotura, a partir de las deformaciones medias de las fibras comprimidas y traccionadas, y suponiendo una ley plana de deformaciones, se ha determinado la curvatura de la sección central para cada instante de medición. Ello ha permitido generar las curvas de evolución de la curvatura seccional, las cuales se presentan en las Figuras 5.51 y 5.52 para las vigas de la 1ª y 2ª serie respectivamente.

5.51
Figura 5.49.- Evolución del Factor de Flecha en función de la edad de carga.
(1ª serie)

Figura 5.50.- Evolución del Factor de Flecha en función de la edad de carga.
(2ª serie)
En las citadas figuras puede observarse que la evolución de la curvatura seccional es, en todos los casos, muy parecida a la evolución de la flecha total medida. Como en el caso de las flechas, se observa que la curvatura instantánea alcanza valores más elevados en las vigas cargadas a mayor edad, debido al mayor nivel de carga en relación a la madurez del hormigón.

Conocida la curvatura asociada a un determinado instante, se ha definido la curvatura diferida como la diferencia entre aquélla y la instantánea. A su vez, para cada instante $t - j$ de duración de la carga se ha calculado el Factor de Curvatura como el cociente entre la curvatura diferida y la instantánea. A modo de ejemplo, en la Figura 5.53 se presenta la evolución del citado Factor de Curvatura de las 4 vigas de la segunda serie en la que puede comprobarse la gran similitud con la evolución del Factor de Flecha (Figura 5.48).

Este hecho indujo a comparar los dos factores antes mencionados. El resultado de dicha comparación se presenta en las Figuras 5.54 y 5.55 en las que se ha representado el Factor de Flecha en función del Factor de curvatura. Obsérvese que tanto en la 1ª como en la 2ª serie la relación entre ambos factores es prácticamente lineal y de valor 1 (± 0.1), independientemente de la edad de carga de la viga.

Ello conduce a la posibilidad de predecir la flecha diferida multiplicando la instantánea por un factor cuyo valor es aproximadamente igual al factor de curvatura, lo que permitiría extrapolarse los resultados de un análisis seccional a nivel pieza. Así se constata que, en el caso de piezas simplemente apoyadas, la rigidez de la sección central influye de forma definitiva en la rigidez de la pieza.

5.4.5.- Fisuración

De la observación y marcado de fisuras que se efectuó durante los ensayos se constató que las fisuras aparecidas inmediatamente después del proceso de carga fueron más evidentes y en mayor cantidad cuanto mayor era la edad de la viga. A modo de ejemplo cabe señalar que en el caso de la viga C21 fue necesario analizar las lecturas instantáneas de deformación en tracción y compresión para detectar la localización de las primeras fisuras. Esto fue debido a que el nivel de carga necesario para conseguir, en sección fisurada, unas compresiones de $\sigma_c = 0.40f_{cj}$ era mayor en las vigas de más edad.

También se observó que la prolongación de las fisuras existentes así como la aparición de nuevas se producía muy rápidamente durante los primeros días para tender a una estabilización con el tiempo. Con el fin de ilustrar estas observaciones, en el Anejo VI se incluyen los croquis de dos de las vigas con el estado de fisuración correspondiente a diferentes tiempos de duración de la carga.
Figura 5.51.- Evolución de la curvatura seccional.
(1ª serie)

Figura 5.52.- Evolución de la curvatura seccional.
(2ª serie)
Figura 5.53.- Evolución del Factor de curvatura.
(2ª serie)

Figura 5.54.- Relación entre los factores de Flecha y Curvatura.
(1ª serie)
Figura 5.55.- Relación entre los factores de Flecha y Curvatura.
(2ª serie)

En la Tabla 5.12 se compara el momento flector aplicado a cada viga con el momento flector de fisuración obtenido experimentalmente en los ensayos a rotura de las vigas de la misma serie e igual edad. El cociente entre el momento aplicado y el de fisuración puede dar una idea del nivel de fisuración instantáneo producido en cada viga.

Tabla 5.12.- Comparación entre el momento flector aplicado y el momento de fisuración obtenido experimentalmente.

<table>
<thead>
<tr>
<th></th>
<th>C11</th>
<th>C12</th>
<th>C13</th>
<th>C14</th>
<th>C21</th>
<th>C22</th>
<th>C23</th>
<th>C24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momento flector aplicado (M_f) [kN m]</td>
<td>15.66</td>
<td>16.41</td>
<td>16.94</td>
<td>20.70</td>
<td>12.94</td>
<td>16.09</td>
<td>17.72</td>
<td>20.20</td>
</tr>
<tr>
<td>Momento de fisuración (M_u) [kN m]</td>
<td>7.45</td>
<td>8.45</td>
<td>8.95</td>
<td>9.95</td>
<td>5.44</td>
<td>6.34</td>
<td>6.88</td>
<td>7.88</td>
</tr>
<tr>
<td>M_f / M_u</td>
<td>2.10</td>
<td>1.94</td>
<td>1.89</td>
<td>2.08</td>
<td>2.38</td>
<td>2.54</td>
<td>2.58</td>
<td>2.56</td>
</tr>
</tbody>
</table>