GENERAL INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Contents of the dissertation</td>
<td>3</td>
</tr>
<tr>
<td>2 State of the Art</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Preliminaries</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Plate Tectonics as Seismic Event Sources</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Seismic Risk</td>
<td>10</td>
</tr>
<tr>
<td>2.4.1 Quantifying Seismic Risk</td>
<td>11</td>
</tr>
<tr>
<td>2.4.2 Seismic Hazard</td>
<td>12</td>
</tr>
<tr>
<td>2.4.2.1 Deterministic Seismic Hazard</td>
<td>12</td>
</tr>
<tr>
<td>2.4.2.2 Probabilistic Seismic Hazard</td>
<td>13</td>
</tr>
<tr>
<td>2.4.3 Seismic Vulnerability</td>
<td>21</td>
</tr>
<tr>
<td>2.4.3.1 Vulnerability Index Method</td>
<td>26</td>
</tr>
<tr>
<td>2.4.4 Seismic Risk and Seismic Risk Scenarios</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Summary</td>
<td>30</td>
</tr>
<tr>
<td>3 Vulnerability assessment methods</td>
<td>31</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>31</td>
</tr>
<tr>
<td>3.2 The (Italian) Vulnerability Index Assessment Method (IVIM)</td>
<td>31</td>
</tr>
<tr>
<td>3.2.1 Second Level Assessment Form (Reinforced Concrete)</td>
<td>32</td>
</tr>
<tr>
<td>3.2.2 Vulnerability Index Quantification</td>
<td>39</td>
</tr>
<tr>
<td>3.3 Building Typology Matrix based methods</td>
<td>41</td>
</tr>
<tr>
<td>3.3.1 Empirical and expert opinions relationships</td>
<td>42</td>
</tr>
<tr>
<td>3.3.2 Numerical models relationships</td>
<td>51</td>
</tr>
<tr>
<td>3.4 Comparative analysis of vulnerability assessment approaches</td>
<td>58</td>
</tr>
<tr>
<td>3.5 Summary</td>
<td>59</td>
</tr>
<tr>
<td>4 Mérida, the City</td>
<td>61</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>61</td>
</tr>
<tr>
<td>4.2 Venezuela’s Geographical environment</td>
<td>61</td>
</tr>
<tr>
<td>4.3 Population in Venezuela</td>
<td>63</td>
</tr>
<tr>
<td>4.4 Mérida State Geography</td>
<td>63</td>
</tr>
<tr>
<td>4.4.1 Contour</td>
<td>63</td>
</tr>
<tr>
<td>4.4.2 Climate</td>
<td>63</td>
</tr>
<tr>
<td>4.4.3 Hydrography</td>
<td>63</td>
</tr>
<tr>
<td>4.4.4 Political division</td>
<td>63</td>
</tr>
<tr>
<td>4.4.5 Population</td>
<td>64</td>
</tr>
<tr>
<td>4.5 Geographical Features in Mérida City</td>
<td>65</td>
</tr>
<tr>
<td>4.6 Contour characteristics in Mérida’s Tableau</td>
<td>66</td>
</tr>
<tr>
<td>4.7 History and physical evolution</td>
<td>67</td>
</tr>
<tr>
<td>4.8 Present Situation</td>
<td>74</td>
</tr>
<tr>
<td>4.8.1 Population and housing</td>
<td>74</td>
</tr>
<tr>
<td>4.8.2 Infrastructure</td>
<td>79</td>
</tr>
</tbody>
</table>
6.3.6 Analysis by the Venezuelan code .. 202
6.3.6.1 Design spectrum ... 202
6.3.6.2 Fundamental periods .. 203
6.3.6.3 Base shear ... 204
6.3.6.4 Lateral forces .. 206
6.3.6.5 Vertical forces ... 207
6.3.7 Expected failure modes ... 207
6.3.7.1 Building B1 .. 207
6.3.7.2 Building B2 .. 208
6.3.7.3 Buildings B3 ... 208
6.3.8 Observed damage in similar situations ... 209
6.3.8.1 The El Quindio (Colombia) Earthquake ... 210
6.3.8.2 The Izmit (Turkey) earthquake .. 213
6.3.9 Vulnerability Assessment ... 216
6.3.9.1 The Italian Vulnerability Index Method (IVIM) 216
6.3.9.2 The LM1 Methodology ... 226
6.3.9.3 Expected damage in the La Milagrosa Barrio 228
6.4 Summary ... 232
7 Construction and Strengthening Recommendations ... 234
7.1 Draft Construction Recommendations ... 235
7.2 Draft Strengthening Recommendations ... 240
7.2.1 Suggested measures .. 240
7.2.2 Disregarded measures .. 243
7.2.3 Seismic resistance of the strengthened buildings 243
7.3 Economical Appraisal ... 246
7.3.1 Cost-Benefit analysis .. 246
7.3.2 Expected physical damage and losses ... 247
7.3.2.1 Present situation ... 247
7.3.2.2 Strengthened buildings ... 248
7.3.2.3 Expected savings ... 249
7.3.3 Cost of the strengthening measures ... 250
7.3.4 Cost-Benefit results ... 251
7.4 Dissemination strategy ... 252
8 Seismic Damage Scenarios .. 254
8.1 Introduction .. 254
8.2 Seismic Damage Evaluation ... 254
8.3 Damage Scenarios for Intensity I = VI ... 257
8.3.1 Undamaged buildings for I = VI ... 259
8.3.2 Damage Grade 1 (Fully Operational Performance Level) Distribution 260
8.3.3 Damage Grade 2 (Functional Performance Level) Distribution 261
8.3.4 Damage Grade 3 (Life Safety Performance Level) 262
8.3.5 Damage Grade 4 (Near Collapse Performance Level) 263
8.3.6 Damage Grades Distribution by Parishes for Intensity I = VI 263
8.4 Damage Scenarios for Intensity I = VII .. 267
8.4.1 Undamaged Buildings for I = VII ... 268
8.4.2 Damage Grade 1 (Fully Operational Performance Level) Distribution 269
8.4.3 Damage Grade 2 (Functional Performance Level) Distribution 270
8.4.4 Damage Grade 3 (Life Safety Performance Level) Distribution 271
8.4.5 Damage Grade 4 (Near Collapse Performance Level) Distribution 272
8.4.6 Damage Grades Distribution by Parishes for Intensity I = VII 273
LIST OF FIGURES

Figure 1.1: Casualties map for the December 26th 2004 earthquake [EERI, 2005]................... 2
Figure 2.1: Problems and factors involved in predicting the seismic response of a building. [Bertero, 1992]... 8
Figure 2.2: World Seismicity Map 1998-2000 (Data downloaded from: http://spatialnews.geocomm.com/features/quakes2000).. 10
Figure 2.3: Gumbel I, II and III distributions... 17
Figure 2.4: Observed vulnerability function for Spain at MSK Intensity I = VII [Barbat, 1995]... 26
Figure 3.1: Dimensions for the evaluation of Resisting System Type and Organization [Yépez, 1996]... 33
Figure 3.2: Plan Configuration parameters [Yépez, 1996]... 35
Figure 3.3: Vertical Configuration parameters [Yépez, 1996]... 37
Figure 3.4: Evaluated factors for Connectivity between Elements parameter [Yépez, 1996]. 37
Figure 3.5: Low ductility elements identification, after [Yépez, 1996]................................. 38
Figure 3.6: Vulnerability Functions for RC Frame Buildings, after [Barbat, 1998]............... 41
Figure 3.7: Vulnerability Functions for RC Flat Slab Buildings, after [Barbat, 1998].......... 41
Figure 3.8: Definitions of quantity [EMS, 1998].. 44
Figure 3.9: Membership functions for the quantities in EMS-98 [Multinovic and Trendafiloski, 2003]. ... 46
Figure 3.10: Plausible and possible behavior for each vulnerability class [Multinovic and Trendafiloski, 2003]... 47
Figure 3.11: Membership functions of the vulnerability index [Multinovic and Trendafiloski, 2003]... 48
Figure 3.12: Building capacity model [Multinovic and Trendafiloski, 2003]....................... 52
Figure 3.13: Building capacity model [Multinovic and Trendafiloski, 2003]....................... 54
Figure 3.14: RC1HPC building typology capacity spectra [Multinovic and Trendafiloski, 2003]... 56
Figure 3.15: Example of fragility model (RC1/CBA Medium Height) [Multinovic and Trendafiloski, 2003]... 57
Figure 4.1: Percentage of Housing Types by parishes, after [INE, 2001].............................. 77
Figure 4.2: Electricity Service in the parishes studied... 80
Figure 4.3: Domestic Sewage for the parishes studied ... 81
Figure 4.4: Telephone Service in the parishes studied... 81
Figure 5.1: Historical Seismicity Map for Venezuela (after [Schubert, 1984])....................... 90
Figure 5.2: National Seismological Array for Venezuela (downloaded from: http://www.funvisis.org.ve/red_sismologica_nacional.html). ... 93
Figure 5.3: National Seismic Code comparison: a) Norma Covenin 1756-98, b) Norma Covenin-Mindur-Funvisis, 1756-82 (actual code). ... 93
Figure 5.4: Microseismicity (mb ≥ 3) in Northwestern Venezuela for period: 1983 – mid-1995 [Pérez et. al., 1997].. 96
Figure 5.5: Vertical Section A – A’ [Pérez et. al., 1997]... 97
Figure 5.6: Scheme of the Southwestern Caribbean – Northwestern Venezuela tectonic framework [Pérez et. al., 1997].. 97
Figure 5.7: Geomorphologic features in BFZ trace, after [Schubert, 1984]......................... 101
Figure 5.8: Isoacceleration Map for Western Venezuela and Hazard Curves for Mérida City [Bendito, 2000]... 104
Figure 5.9: Annual Exceedance Probabilities and Return Periods for Magnitudes 106
Figure 5.10: Acceleration Spectra for different soils in Mérida’s Tableau [MOP, 1976]. 109
Figure 5.11: Geotechnical properties for materials used in analysis

Figure 5.12: Elastic Response Spectra for Mérida [MINDUR and FUNVISIS, 1998]

Figure 5.13: Acceleration Time Histories and Spectral Accelerations used in analysis

Figure 5.14: Site Response Analysis results for Northerly Albarregas River Soils

Figure 5.15: Site Response Analysis results for Southerly Albarregas River Soils

Figure 5.16: Northerly – Southerly Albarregas River Soils Surface Response Spectra

Figure 5.17: Conditional Liquefaction Probability relationships for Liquefaction Susceptibility categories, after [Liao et. al, 1988]

Figure 5.18: Liquefaction Probability for $M = 6.8$ and water table depth of 3.0 m

Figure 5.19: Lateral Spreading Displacement Relationship after [Yould and Perkins, 1978]

Figure 5.20: Forces acting on a block resting on an inclined plane under dynamic conditions.

Figure 5.21: Critical Acceleration as Function of Geologic Group and Slope Angle [Wilson and Keefer, 1985]

Figure 5.22: Relationship between Displacement Factor and Ratio of Critical Acceleration-Induced Acceleration [HAZUS-99-SR2, 2002]

Figure 6.1: EMS-98 Vulnerability Classes distribution

Figure 6.2: LM1 Vulnerability Classes distribution

Figure 6.3: Mean semi-empirical vulnerability functions for the building typologies in survey

Figure 6.4: Percentage of Damaged Buildings by Damage Grades for the scenario events

Figure 6.5: Damage Grades Distribution by Vulnerability Classes

Figure 6.6: Construction system characteristics

Figure 6.7: Frames steel reinforcement

Figure 6.8: Isometric drawings for buildings B1 and B2

Figure 6.9: Isometric drawings for buildings B3-b and B3-c

Figure 6.10: Typical plans for building prototypes

Figure 6.11: Transversal frames of buildings B2 and B3

Figure 6.12 Internal forces for the inner frames in building B2

Figure 6.13 Internal forces for the inner frames in buildings B3

Figure 6.14: Ultimate state of the bent section

Figure 6.15: Loaded cantilever beam

Figure 6.16: Global failure modes (after [Paulay and Priestley 1992])

Figure 6.17: Building slab encased by the columns

Figure 6.18: First floor masonry front wall with openings

Figure 6.19: Failure mechanism for cladding wall and left force

Figure 6.20: Failure mechanism for cladding wall and right force

Figure 6.21: Failure mechanism for partitioning wall and left force

Figure 6.22: Failure mechanism for partitioning wall and right force

Figure 6.23: Moment-curvature law

Figure 6.24: Collapse mechanisms

Figure 6.25: Elastic Design Spectrum in the Venezuelan Seismic Code

Figure 6.26: Vulnerability Parameters distribution (by percentages) in the buildings assessed

Figure 6.27: Vulnerability Index distribution

Figure 6.28: Vulnerability Index distribution by sectors (in buildings number)

Figure 6.29: New vulnerability index distribution considering the adjacency parameter

Figure 6.30: Mean semi-empirical vulnerability functions for LM1 classification

Figure 6.31: Damage distribution in the La Milagrosa Barrio

Figure 6.32: Damage distribution by vulnerability classes
Figure 6.33: Mean Semi-empirical vulnerability function for $V_I = 0.69$ (NENG-RC typology).

Figure 6.34: Fragility Curves for $V_I = 0.69$ (NENG-RC typology).

Figure 7.1: Stripe foundation and column reinforcement

Figure 7.2: Walls

Figure 7.3: Columns

Figure 7.4: Transversal wall jacketing

Figure 7.5: Longitudinal wall strengthening

Figure 7.6: Secondary steel beams strengthening

Figure 7.7: Shear failure mode for the jacketed wall [Rosenblueth 1980]

Figure 7.8: Damage grade distributions for I = VIII and I = IX

Figure 8.1: Damage grades distribution percentages by vulnerability classes for Intensity $I = VI$

Figure 8.2: Typologies distribution in the parishes, with respect to all the buildings in the survey.

Figure 8.3: Typologies distribution within the parishes

Figure 8.4: Damage Grades distribution by Parishes for Intensity $I = VI$

Figure 8.5: Damage grades distribution by vulnerability classes for Intensity $I = VII$

Figure 8.6: Damage Grades distribution by Parishes for Intensity $I = VII$

Figure 8.7: Damage grades distribution by vulnerability classes for Intensity $I = VIII$

Figure 8.8: Damage Grades distribution by parishes for Intensity $I = VIII$

Figure 8.9: Damage grades distribution by vulnerability classes for Intensity $I = IX$

Figure 8.10: Damage Grades distribution by parishes for Intensity $I = IX$

Figure 8.11: Damage distribution by number of buildings in the parishes, for $I = IX$

Figure 8.12: Factor M2, Occupancy at time of earthquake, after [Coburn and Spence, 2002].

Figure 8.13: Distribution of the casualties for scenario event $I = VIII$

Figure 8.14: Distribution of the casualties in the parishes, for scenario event $I = VIII$

Figure 8.15: Distribution of the casualties for scenario event $I = IX$

Figure 8.16: Distribution of the casualties in the parishes, for scenario event $I = IX$

Figure 8.17: Mean semi-empirical vulnerability functions
LIST OF TABLES

Table 1.1: Distribution of earthquakes and mortality from year 1999 to year 2005, after [USGS, 2005].. 2
Table 2.1: Damage Chart for European Macroseismic Scale [EMS, 1998].. 22
Table 2.2: Parameters for Masonry and Reinforced Concrete Building Types [GNDT, 2002].. 28
Table 3.1: Values for parameters defining the spectral ordinate by soil [Yépez, 1996]...................... 34
Table 3.2: Parameter qualification values for Reinforced Concrete Buildings, [Yépez, 1996]........... 40
Table 3.3: Classifications used in the European Macroseismic Scale [EMS, 1998]......................... 43
Table 3.4: Damage probability matrix for vulnerability class A buildings, after [Pujades, 2004]......... 44
Table 3.5: Damage quantity matrix for Vulnerability Class A.. 45
Table 3.6: Vulnerability Index values for the vulnerability classes, after [Multinovic and Trendafiloski, 2003]... 48
Table 3.7: Attribution of vulnerability classes and Vulnerability Index values for different building typologies, after [Giovinazzi and Lagomarsino, 2004].. 49
Table 3.8: Scores for the vulnerability factors for Masonry Buildings [Giovinazzi and Lagomarsino, 2004]... 50
Table 3.9: Scores for the vulnerability factors for RC Buildings [Giovinazzi and Lagomarsino, 2004].. 50
Table 3.10: Fundamental periods of typical RC systems, after [Multinovic and Trendafiloski, 2003] ... 55
Table 3.11: Building Drift Ratios at the Threshold of Damage States, after [Multinovic and Trendafiloski, 2003]... 57
Table 3.12: Approaches for seismic vulnerability assessment of buildings, after [Lang, 2002]........ 60
Table 4.1: Population in Mérida State Municipalities, after [INE, 2001].. 65
Table 4.2: Percentages over total population in Venezuela for Andean and Center- North regions [Caminos, 1967].. 70
Table 4.3: Population data from 19th century to mid-20th century [Pineda, 1992]......................... 73
Table 4.4: Population, Density and Growth from 1961 to 2001, after [INE, 2001]......................... 74
Table 4.5: Population for Municipalities in Mérida’s Metropolitan Area, after [INE, 2001]............. 75
Table 4.6: Distribution of housing units by housing types for the parishes in Mérida’s tableau, after [INE, 2001]... 78
Table 4.7: Classification for Health facilities in Venezuela, after [Cedres de Bello, 1994]............. 83
Table 4.8: Levels of attention in health facilities for Venezuela [Cedres de Bello, 1994]................. 84
Table 4.9: Health Care Facility Types by parishes, after [venezuelasaludable, 2003].................... 85
Table 5.1: Relevant destructive earthquakes in Venezuela, from 1530 to 1997.............................. 92
Table 5.2: Seismic Zones in Northwestern Venezuela (MOP, 1976).. 95
Table 5.3: Seismogenic Sources for Mérida City (100-km radius) [Laffaille, 1996]....................... 95
Table 5.4: Right-Lateral Strike-Slip movements in BFZ measured in geologic and geomorphologic features [Schubert, 1984]... 102
Table 5.5: Return Periods for Mérida City [MOP, 1976].. 103
Table 5.6: Return Periods for Mérida [Rengifo, 1982]... 104
Table 5.7: Attenuation laws for Venezuela [Malaver, 2000]... 107
Table 5.8: Scenario Earthquakes for risk analysis... 107
Table 5.9: Geotechnical Soil Columns used in Analysis [MOP, 1976]...................................... 111
Table 5.10: Geotechnical Soil Columns used in Analysis [MOP, 1976].................................... 112
Table 5.11: Liquefaction Susceptibility for Sedimentary Deposits [Youd and Perkins, 1978].

Table 5.12: Proportion of Map Unit Susceptible to liquefaction, [HAZUS-99-SR2, 2002].

Table 5.13: Threshold Ground Acceleration (PGA(t)) corresponding to zero Probability of Liquefaction.

Table 5.14: Ground Settlement Amplitudes for Liquefaction Susceptibility Categories
[HAZUS-99-SR2, 2002].

Table 5.15: Summary results for Potential Liquefaction Hazards (I = IX scenario event).

Table 5.16: Types and Characteristics of Earthquake-Induced Landslides, after [Kramer, 1996].

Table 5.17: Relative Abundance of Earthquake-Induced Landslides from study of 40
Historical Earthquakes ranging from $M_s = 5.2$ to $M_w = 9.5$ [Kramer, 1996].

Table 5.18: Landslide Susceptibility for Geologic Groups [HAZUS-99-SR2, 2002].

Table 5.19: Critical Acceleration for Susceptibility Categories [HAZUS-99-SR2, 2002].

Table 5.20: Percentage of Map Area having a Landslide-Susceptible deposit [Wieczorec et. al., 1985].

Table 5.21: Ratio between Critical Acceleration and Induced Peak Ground Acceleration for each Landslide Susceptibility Category.

Table 5.22: Permanent Ground Displacements (cm) for scenario events considered.

Table 6.1: Guidelines for Seismic Vulnerability of Construction Types [EERI/IAEE, 2001].

Table 6.2: Proposed equivalence for Laffaille (1996) and EMS-98 building Types
Classification.

Table 6.3: Vulnerability Indices for BTM buildings [Multinovic and Trendafiloski, 2003].

Table 6.4: Equivalence between EMS-98 and LM1 BTM.

Table 6.5: Damage Probability Matrices for the Building typologies in the survey.

Table 6.6: Percentage of Buildings by Damage Grades and Total Damage for Intensities.

Table 6.7: Description of sectors in “La Milagrosa” Barrio.

Table 6.8: Distribution of building types in “La Milagrosa” Barrio.

Table 6.9: Horizontal wall strength. Shear failure mode (kN/m).

Table 6.10: Horizontal wall strength. Diagonal compression mode (kN/m).

Table 6.11: Axial forces in one column.

Table 6.12: Shear strength in one column.

Table 6.13: Horizontal base shear strength per column (kN). Bending failure.

Table 6.14: Fundamental periods T (s) according to the Venezuelan code.

Table 6.15: Total Weight of the prototype buildings (kN).

Table 6.16: Base shear for the prototypes studied.

Table 6.17: Vertical distribution of base shear for prototype buildings.

Table 6.18: Lateral seismic forces.

Table 6.19: Seismic behavior of building B1.

Table 6.20: Seismic behavior of building B2.

Table 6.21: Seismic behavior of building B3.

Table 6.22: Ground motion parameters describing earthquakes.

Table 6.23: Effects of the earthquake in Armenia and Pereira, after [Yoshimura et. al, 1999].

Table 6.24: Shear strength-demand ratio.

Table 6.25: Vulnerability Indices distribution in survey.

Table 6.26: IVIM parameters with the proposed 12th parameter (adjacency).

Table 6.27: Lower and Upper values of LM1 vulnerability index, in the La Milagrosa survey.
Table 6.28: Values for the LM1 vulnerability index, in the La Milagrosa survey ... 228
Table 6.29: Damage Probability Matrix for \(V_i = 0.69 \) (NENG-RC) .. 231
Table 7.1: Jacket strength for walls ... 244
Table 7.2: Seismic resistance of strengthened building B1 .. 245
Table 7.3: Seismic resistance of strengthened building B2 .. 245
Table 7.4: Seismic resistance of strengthened building B3 .. 245
Table 7.5: Estimated cost of physical losses. Present situation ... 247
Table 7.6: Estimated casualties for damage grade 5 ... 248
Table 7.7: Estimated casualties for damage grade 4 ... 248
Table 7.8: Estimated cost of physical losses. Strengthened buildings .. 249
Table 7.9: Estimated casualties. Strengthened buildings ... 249
Table 7.10: Estimated savings of cost of physical losses .. 250
Table 7.11: Estimated savings of casualties .. 250
Table 7.12: Retrofit cost of building B1 (US$) ... 250
Table 7.13: Retrofit cost of building B2 (US$) ... 251
Table 7.14: Retrofit cost of building B3 (US$) ... 251
Table 7.15: Expected economical losses after strengthening ... 252
Table 7.16: Saved lives and injuries .. 252
Table 7.17: Estimated savings of cost of physical losses .. 250
Table 7.18: Estimated casualties. Strengthened buildings ... 249
Table 8.1: Damage Probability Matrix for \(I = VI \), for the seven typologies considered in the survey .. 255
Table 8.3: Damage grades distribution by typologies for \(I = VI \) ... 259
Table 8.4: Damage grades distribution by typologies for \(I = VII \) ... 268
Table 8.5: Damage grades distribution by vulnerability classes for \(I = VIII \) .. 276
Table 8.6: Damage grades distribution by vulnerability classes for \(I = IX \) ... 284
Table 8.7: Equivalence for damage descriptions in Vision 2000 and EMS-98 (N/A: Not Available) .. 293
Table 8.8: Breakdown of typical injury ratios for severity levels, after [Vacareanu et. al., 2004] ... 298
Table 8.9: Factor M3, Average percentage of occupants trapped by collapse, after [Coburn and Spence, 2002] .. 299
Table 8.10: Factor M4, Estimated injury distribution at collapses, in percentage of occupants trapped by collapse, after [Coburn and Spence, 2002] .. 300
Table 8.11: Factor M5, Percentage of trapped survivors in collapsed buildings that subsequently die, after [Coburn and Spence, 2002] ... 300
Table 8.12: Building typologies distribution by parishes ... 305
Table 8.13: Scenario \(I = VI \) damage distribution in parishes .. 306
Table 8.14: Scenario \(I = VII \) damage distribution in parishes .. 306
Table 8.15: Scenario \(I = VIII \) damage distribution in parishes .. 307
Table 8.16: Scenario \(I = IX \) damage distribution in parishes .. 307
LIST OF MAPS

Map 2.1: Effective Peak Ground Acceleration in rock (return period of 475 years) for Colombia [AIS, Ingeominas and Uniandes, 1996] ... 19
Map 2.2: Estimated Intensity map for the 1989 Loma Prieta Earthquake [USGS, 2002] 19
Map 2.3: 2%/50 year seismic hazard for 5% damped PSA 0.2 seconds, on firm ground, for Canada [Adams et. al., 2000]... 20
Map 2.4: Peak Acceleration (%g) with 10% Probability of exceedance in 50 Years [Frankel et al., 2002].. 20
Map 4.1: Natural Regions in Venezuela .. 61
Map 4.2: Municipalities in Mérida State and their capitals, after [INE, 2001] 64
Map 4.3: Elevation Range in Mérida’s Tableau. .. 66
Map 4.4: Slope classification for Mérida’s Tableau. .. 67
Map 4.5: Growth of Mérida from 16th to 18th Century. ... 68
Map 4.6: Growth of Mérida in 19th Century. ... 69
Map 4.7: Growth of Mérida city in the first half of 20th Century. .. 71
Map 4.8: Metropolitan Area for Mérida [DCN, 1977]. ... 75
Map 4.9: Parishes in the political division for Mérida City. .. 76
Map 4.10: Population density inside the tableau, after [MINDUR, 1992] 79
Map 4.11: Transportation facilities in Mérida. .. 82
Map 4.12: University of The Andes facilities location in Mérida City. 86
Map 5.1: Fault Zones and Fault Traces in Northwestern Venezuela (after [Bendito, 2000]). 89
Map 5.2: Historical Events for Northwestern Venezuela. .. 100
Map 5.3: First Layer Depth Data Available and Ambient Vibration Stations in [Montilla, 1998] and [Hernandez and De Barcia, 1998]... 118
Map 5.4: First Layer thickness for soils in Mérida data from [MOP, 1976]. 119
Map 5.5: Amplification Factors for Scenario Event $I = VI$. ... 120
Map 5.6: Amplification Factors for Scenario Event $I = IX$. .. 121
Map 5.7: Periods of Maximum Amplification for Intensity $I = VI$ Event. 121
Map 5.8: Increments of intensity degree for the soils in the tableau. 123
Map 5.9: Normalized Periods of Maximum Amplification for Intensity $I = IX$ event........ 124
Map 5.10: Geologic Age of Deposits for Mérida’s Tableau [Ministerio de Minas e Hidrocarburos, 1974]. ... 128
Map 5.11: Geomorphology of Deposits in Mérida [Ministerio de Minas e Hidrocarburos, 1974].. 128
Map 5.12: Liquefaction Susceptibility for Soil Deposits in Mérida’s Tableau. 129
Map 5.13: Liquefaction Probability for $I = IX$ Scenario Event. 132
Map 5.14: Lateral Spread Permanent Ground Displacements, for $I = IX$ Scenario Event. 134
Map 5.15: Slope Classification for analysis.. 141
Map 5.16: Landslide Susceptibility Map for Mérida’s tableau... 141
Map 5.17: Critical Acceleration/Induced Acceleration Ratio for Scenario Event $I = IX$ 143
Map 5.18: Landslide Permanent Ground Displacements for $I = IX$ scenario event. 144
Map 5.19: Landslide Permanent Ground Displacements (cm) for $I = VIII$ scenario event. 145
Map 5.20: Landslide Permanent Ground Displacements (cm) for $I = VII$ scenario event. 145
Map 5.21: Landslide Permanent Ground Displacements (cm) for $I = VI$ scenario event. 146
Map 6.1: Percentage of Rancho building typology in sub-sectors for Mérida. 158
Map 6.2: Percentage of M2 typology in sub-sectors for Mérida. ... 158
Map 6.3: Percentage of NENG-RC typology in sub-sectors for Mérida. 159
Map 6.4: Percentage of RC3.2 typology in sub-sectors for Mérida..................................... 160
Map 6.5: Percentage of RC3.1 typology in sub-sectors for Mérida..................................... 160
Map 6.6: Percentage of RC5 typology in sub-sectors for Mérida.. 161
Map 6.7: Percentage of S1 typology in sub-sectors for Mérida... 161
Map 6.8: “La Milagrosa” Barrio in Mérida... 167
Map 6.9: Sectors in Barrio “La Milagrosa”... 169
Map 6.10: Building types in Barrio “La Milagrosa”.. 171
Map 6.11: Number of Levels in the buildings, Barrio “La Milagrosa”................................. 172
Map 6.12: Plan Configuration for buildings in “La Milagrosa”... 173
Map 6.13: Vulnerability Index distribution in La Milagrosa Barrio (N/S: Not studied)........... 224
Map 6.14: New vulnerability index distribution in La Milagrosa Barrio, considering the
adjacency parameter (N/S: Not studied).. 226
Map 8.1: Sub-sectors in the survey with middle upper values of intensity for the scenarios ... 256
Map 8.2: Undamaged buildings in the survey for Intensity I = VI.. 259
Map 8.3: Damage Grade 1 distribution scenario (Fully Operational) for Intensity I = VI...... 260
Map 8.4: Damage Grade 2 distribution scenario (Functional) for Intensity I = VI............... 261
Map 8.5: Damage Grade 3 distribution scenario (Life Safety) for Intensity I = VI.............. 262
Map 8.6: Damage Grade 4 distribution scenario (Near Collapse) for Intensity I = VI......... 263
Map 8.7: Surveyed Sub-sectors and Parishes in Mérida... 264
Map 8.8: Undamaged buildings in the survey for I = VII.. 268
Map 8.9: Damage Grade 1 (Fully Operational Performance Level) for Intensity I = VII...... 269
Map 8.10: Damage Grade 2 distribution scenario (Functional) for Intensity I = VII........... 270
Map 8.11: Damage Grade 3 distribution scenario (Life Safety) for Intensity I = VII.......... 271
Map 8.12: Damage Grade 4 distribution scenario (Near Collapse) for Intensity I = VII...... 272
Map 8.13: Undamaged buildings for Intensity I = VIII... 276
Map 8.14: Damage Grade 1 distribution scenario (Fully Operational) for Intensity I = VIII...
.. 277
Map 8.15: Damage Grade 2 distribution scenario (Functional) for Intensity I = VIII......... 278
Map 8.16: Damage Grade 3 distribution scenario (Life Safety) for Intensity I = VIII......... 279
Map 8.17: Damage Grade 4 distribution scenario (Near Collapse) for Intensity I = VIII..... 280
Map 8.18: Damage Grade 5 distribution (Total Collapse) for Intensity I = VIII.............. 281
Map 8.19: Undamaged buildings for Intensity I = IX... 285
Map 8.20: Damage Grade 1 distribution scenario (Fully Operational) for Intensity I = IX... 286
Map 8.21: Damage Grade 2 distribution scenario (Functional) for Intensity I = IX.......... 287
Map 8.22: Damage Grade 3 distribution scenario (Life Safety) for Intensity I = IX........... 288
Map 8.23: Damage Grade 4 distribution scenario (Near Collapse) for Intensity I = IX.... 289
Map 8.24: Damage Grade 5 distribution scenario (Collapse) for Intensity I = IX............. 290
Map 8.25: Damage percentage distribution by parishes, in Mérida.................................. 295
Map 8.26: Critical scenario for I = IX.. 297
LIST OF PICTURES

Picture 1: Electricity and water supply in La Milagrosa Barrio ... 170
Picture 2: Buildings in flat and sloped sites. .. 175
Picture 3: Detail of a slab (balcony in a sloped site building).. 176
Picture 4: Stair in the front of a building.. 176
Picture 5: Metallic sheathing roofing. Poor bonding to frame and walls............................... 177
Picture 6: Damage in masonry wall (3rd floor), building in Pereira, Colombia [Pujol et. al,
1999].. 211
Picture 7: Damage to a RC a column, building in Armenia, Colombia [Yoshimura et. al,
1999].. 212
Picture 8: Damage in columns. Left: buckling of longitudinal reinforcement due to the lack of
adequate transverse reinforcement. Right: Short-column effect. Both buildings in Armenia, Colombia. After [Pujol et. al, 1999]... 212
Picture 9: Damage in building due to steeped soft soil. Building in Armenia, Colombia.
[Yoshimura et. al, 1999]... 213
Picture 10: Beam damage, longitudinal reinforcement slippage. Building in Adapazari,
Turkey [PEER, 2000]. ... 214
Picture 11: Damage in columns. Left: Shear an axial failure due to excessive stirrup spacing.
Right: shear failure in captive column. Building in Adapazari, Turkey [PEER, 2000]. 215
Picture 12: Damage to beam-column joint, large rotations at the end of the columns. Building
in Adapazari, Turkey [PEER, 2000]. ... 215
Picture 13: Resisting system quality details. a) Lap splicing in column base is observed, and
the excessive spacing of stirrups. b) Structure for the first phase of growth, showing
identical dimensions for columns and beams, also the excessive stirrup spacing is noticed
and an insufficient concrete covering of the reinforcing steel (this structure is in an
abandoned state due to its construction in forbidden lands and a consequent restriction to
occupation). ... 217
Picture 14: Alley in the Cristo Rey Sector showing four houses, the low quality of
workmanship and materials in the walls and the absence of collar beams is observed. 218
Picture 15: Typical slabs in the building type assessed. a) Inside a two level building, the “I”
shaped steel girders slide into the hollow clay tiles. b) Detail of the slab in a balcony
perimeter... 220
Picture 16: Roof Types in Barrios. a) Slab roof in one or more levels, and metal sheeting roof
in two levels. b) Tile roofing supported over wooden deck and “I” shaped steel beams.
.. 220
Picture 17: High-slope site for housing unit, structural members are observed in different
lengths, with low-ductility elements in the middle structural axis, see columns over the
foundations... 221
Picture 18: Building under construction.. 236