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Abstract

Volume rendering is a very active research field in Computer Graphics be-
cause of its wide range of applications in various sciences, from medicine toflow
mechanics.

In this report, we survey a state-of-the-art on time-varying volume rendering.
We state several basic concepts and then we establish several criteria to clas-
sify the studied works: IVR versus DVR, 4D versus 3D+time, compressiontech-
niques, involved architectures, use of parallelism and image-space versus object-
space coherence. We also address other related problems as transferfunctions
and 2D cross-sections computation of time-varying volume data.

All the papers reviewed are classified into several tables based on the men-
tioned classification and, finally, several conclusions are presented.
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1 Introduction

Volume rendering is a very active research field in Computer Graphics because of its
wide range of applications in various sciences, from medicine to flow mechanics.

One of the major problems of Volume rendering is the huge volume of data that
must be manipulated in order to obtain meaningful visualizations. The size of the
datasets conditions the necessary time for rendering. In general, the larger the datasets,
the slower the rendering. This is the reason why many research efforts have been
put on speeding up rendering of large datasets with softwareas well as hardware-
based solutions. From a software point-of-view, several techniques and data struc-
tures have been designed that provide an efficient access to the relevant data while
skipping empty space(space-leaping)[DH92] [SH94] [WSK02]. Other strategies ad-
dress the I/O bottleneck when the data do not fit into memory(out-of-core)[SCES02]
[SGS95] [PPL+99] [CS97] and [CSS98]. Hardware-based speeding strategies,on the
other hand, can be further subdivided into categories: those that exploit the capac-
ity of current consumer hardware, such as 3D texture based rendering [MGS02] and
parallelization [GPR+94], and those that design hardware specifically customizedfor
volume rendering [PK96] [PHK+99].

In spite of these contributions, the problem of the efficiency in rendering continues
being serious because, as the input devices improve, the size of the datasets increases.
In addition, the necessity prevails more and more to work with data coming from differ-
ent devices (multimodal datasets). Furthermore, there is a great demand of applications
able to show the evolution of data throughout time (time-varying datasets).

In this last case, it is possible to accelerate the visualization, considering that a
continuity in time ortemporal coherenceexist: successive images look like. Therefore,
part of the calculations made for one image, could be used forthe following one.

The idea of taking advantage of temporal coherence to speed-up rendering was
early introduced by Hubshman and Zucker [HZ82]. Since then,many techniques have
been proposed to speed up visibility computations [Bad88] [Gla89] [CCD90] [Tos91]
[GWP91] [HBS03] [CT99] and global illumination [BP01] [WKB+02] [MPT03] [HDM03]
of polygonal scenes. However, there are still relatively few works addressing this prob-
lem for volume rendering. The goal of this report is to surveythe state-of-the-art on
the use of temporal coherence for volume datasets. We first define some basic concepts
(Section 2). Then, in Section 3, we describe the classification criteria that we have used
to present the existing works which are discussed in Section4. Finally, we present our
conclusions in Section 5.

2 Basic concepts

2.1 Changes through time

Different elements of a scene can vary through time: the objects, their internal prop-
erties, the camera and rendering parameters such as transfer functions and lighting



conditions. The strategies that can be used depend on thesescases. For clarity, in this
work, we will distinguish each case using the following nomenclature.

• Volume animation: when the volume datasets move. This movement can be
an affine transformation of translation and rotation of all the model or a non-
uniform displacement of the sample points. The former case happens whenever
the volume is part of a huger scene, composed of other objects, either polygonal
or volumetric [KK99]. In the later case, the volume is actually deformed.

• Time-varying animation: when the volume is static but the properties inside
the cells vary. Two typical applications of this type of scenes are (i) a temporal
series of SPECT of a patient’s brain and (ii) the simulation ofa fluid flowing in
a fixed section of a channel.

• Fly-through navigation: when the volume dataset is static and its properties
constant but the viewer’s position and direction varies though time, because
it navigates through the data. Typical examples of fly-through navigations are
the virtual cateterism [PTN97], virtual colonoscopy [HKW+95] [WTK+99] and
bronchoscopy [BSG+01], [MHT+96]. Some of these papers perform the navi-
gation through surface models previously extracted from volume datasets, while
others [BJNN98] actually navigate through the volume. The major problem ad-
dressed in this type of navigation is how to efficiently perform visibility culling
and to bring into memory the portions of volumes that fall in the current viewing
frustrum. In this report, we do not address fly-through navigation.

• Fly-around navigation: when the volume dataset is static and its properties
constant but the viewer’s position and direction varies, because it moves around
the volume, without entering inside it. [YS93]

Obviously, these cases can be combined. As an example, if theviewer moves
around a volume whose properties vary through time, we will talk about aFly-around
navigation of time-varying volume data. If the viewer navigates inside the same vol-
ume, it will be aFly-through navigation of time-varying volume data. If the volume
moves and its properties vary, we will talk about aVolume animation of time-varying
data.

We do not enclose in this taxonomy the case in which only user-defined rendering
parameters such as lighting conditions and transfer functions change. This has much
to do with interactivity than actually animation and its variants.

In most of these cases, rendering consists of generating a sequence of images of
the volume at different instants throughout a period of time. For clarity, we will call
these time instantskey-instantsand the corresponding imageskey-frames. A different
approach is that of theChronovolumes[WS03]. Inspired on the early photographic
methods of Marey and Muybridge, this technique performs an integration through time
and produces a single view that captures the essence of various key-instants of the
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sequence. It is suitable for time-varying voxel models. TheChronovolume is a voxel
model such that every voxel is computed by integrating all the voxel values throughout
time for a given transfer function. The chronovolume is rendered as a regular volume
in order to produce 2D images.

2.2 Data characteristics

Volume rendering strongly depends on the application in which it is used and on the
characteristics of volume data: the size of the data sets, the distribution of the sam-
ple points, the type of property associated to each sample and the way they vary along
time. In medical applications, the grid structures of the sample points are generally reg-
ular, based on a Cartesian lattice, also called rectilinear grid. Typical medical dataset
sizes are 2563 or 5123. On the contrary, computer simulations of vector fields suchas
Computational Fluid Dynamics(CFD) produce curvilinear and irregular grids.

The property values associated to each sample can be unique,coming from one
input modality (unimodal rendering), or coming from different input modalities (mul-
timodal rendering). Properties can be scalar values, such as density, or vectorial values,
such as velocity. Scalar values can be rendered directly using emission and absorption
and surface scattering shading models. Vector field rendering requires to construct-
ing geometric primitives such as pathlines from the data. Anefficient computation of
trajectories based on texture discretization, theUnsteady Flow Advection Convolution
(UFAC) is described in [WEE03]. This type of work fall beyond the scope of this
report.

Finally, the speed with which the property values vary determines the degree of
similarity of the volume between successive key-instants.

2.3 Coherence Metrics

In order to evaluate the spatial coherence and the temporal coherence on the data sets,
some metrics have been defined in different papers.Spatial metricsindicate the amount
of coherence on the volume domain andtemporal metricsmeasure the amount of co-
herence or variability within a series of volumes. These metrics have been used to
analyze the variability of the original data sets as well as to define an error measure on
the compressed volume representations used to improve the rendering stage. Thus, the
metrics can be defined based on the voxels’ scalar values (scalar-basedmetric) and if
it is computed from the actual color of the voxels it is calledcolor-basedmetric.

As the scalar-based metrics only depend on the data, they canbe precomputed
and saved in an auxiliary structure. Although color-based metrics are more accurate
because they are more closely related to the image than the scalar value, they must be
recomputed when the transfer function is changed.

• scalar-based metrics: There are a variety of algorithms in the literature that
measure 2D image similarity such as Simple Differencing, the Likelihood ra-
tio method, Adaptive Threshold method and others based on feature extraction.
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In the time varying volume data sets, [AAW00], use theχ2 criterion to detect
changes between a data set A and a data set B, and it is formulated as:

χ2 = ∑
data

( fi(dataA)− fi(dataB))2

2σ2

If χ2 is less than a certain thresholdT, the two data sets are similar, otherwise
they differ.

[SCM99] defines theCoefficient Of Variation(COV), which is the standard de-
viation divided by the mean. They define COV in a single frame for all voxels,
COVss, as well as for each voxel in a time span,COVst:

COVss=
σ
v

COVst =
1
n∑ σi

vi

whereσ is the voxel’s standard deviation andv is the voxel’s mean.σi is the per-
voxel standard deviation andvi the per-voxel mean.COVss measures the spatial
coherence of the volume in a single frame andCOVst measures the temporal
coherence of a single voxel.

v =
1
N ∑

i,t
vi,t

σ = sqrt(
1
N ∑

i,t
(vi,t −v)2))

vi =
∑t=t2

t=t1 vi,t

t2− t1 +1

σi = sqrt(
∑t=t2

t=t1(vi,t −vi)2

t2− t1 +1

These metrics have been used in other later approaches ([ECS00] and [JKM01].

• color-based metrics: [ECS00] extends the COV metric to two different color-
based metrics: the reference color-based and the approximate color-based. The
former one is the natural extension of the COV metric defined above to the
RGBα domain. They define distances in RGB space in order to compute the
standard deviation. Thus, the color-based meanm and the color-based standard
deviationσ are:
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m= sqrt(α(r2 +g2 +b2)+α2)

σ = sqrt(
1
N ∑d(ci,t ,c))

whered(c1,c2) is the squared distance function defined as:

d(c1,c2) = α1[(r1− r2)
2 +(g1−g2)

2 +(b1−b2)
2]+ (α1−alpha2)

2

ThenCOVcs = σ
m. TheCOVct is defined in similar way thanCOVst using the

extended distances on the RGB space.

As the calculations of these color based metrics are very slow, [ECS00] also
defines an approximate color-based metric that can be computed faster. The
new metric computes the difference between each transfer function entry and the
estimated mean color values. Also, they assume that the frequencies of values are
normally distributed. With this metric, they achieve a significant performance
improvement when the transfer functions change during the rendering process
without less quality on the final image.

2.4 Model

The model that represents a 3D region of volume depends strongly on the type of data
grid. In general, regular Cartesian grids are well represented with voxel models which
are Cubic Cartesian(CC) grids [Kau90], but Theussl at al. [TMG01] have shown
that theBody Centered Cubic(BCC) grid can save up to 30% of memory requirement
and of rendering performance. Irregular data are represented with tetrahedral cells
[CFM+94]. Table 1 presents the papers surveyed in Section 4 classified according to
the model.

3 Classification

We herein describe different criteria of classification that we have used in our study.
Table 5 and the next ones show the classification of all the references surveyed in
Section 4 according to these criteria.

3.1 Rendering versus other manipulations

Although the main application on volume datasets is rendering, some work has been
published that addresses related problems, such as the design of transfer functions
[JKM01] and the computation of 2D cross sections from time-varying data. We survey
them in Section 4.3.
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Regular model (voxels) Irregular model (tetras)

[Wes95] [GSDJ04]
[GS01] [WEE03]

[LMC02] [She98]
[WB98] [SB05]

[BWC00]
[AAW00]
[CD99]

[SCM99]
[BPRS98]
[NM02]

[WWS03]
[YS93]
[SJ94]

[WSK02]
[LCL02]
[RHP02]
[ECS00]
[BAS02]
[WS03]
[SH99]

Table 1: Regular data sets versus irregular data models.

3.2 IVR versus DVR

There are two major strategies to visualize volumes:Indirect Volume Rendering(IVR)
andDirect Volume Rendering(DVR). In the former approach, one or more polygonal
isosurfaces are first extracted from the volume [LC87] and then rendered using the
polygon-based hardware-assisted pipeline. In the bibliography, we have found several
works addressing the extraction of surfaces from time-varying volume datasets (see
Table 2). We survey them in Section 4.1. Strategies to speed up the second part of
the IVR pipeline, i.e. rendering the extracted surfaces, would fall in the category of
temporal coherence for polygonal scenes [HDM03] which is out of the scope of this
report.

The latter approach (DVR) renders directly the volume using one of these four
methods [MHB+00]:

• ray-casting [Lev90]

• splatting, either volume-aligned [Wes90] or image-aligned [KMC99]

• shear-warp [LL94]
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IVR Direct Volum Rendering (DVR)

RayCasting Splatting Shear-warp Texture Mapping

[WB98] [Wes95] [BPRS98] [GS01] [GS01]
[BWC00] [SCM99] [NM02] [CD99] [LMC02]
[GSDJ04] [YS93] [AAW00]
[SH99] [WSK02] [ECS00]
[BAS02] [SJ94]
[She98] [LCL02]
[SB05] [RHP02]

[WS03]
[WWS03]

Table 2: IVR versus DVR.

• 3D hardware-assisted texture-mapping [WE98]

Table 2 presents the papers surveyed in Section 4.2 classified according to the al-
gorithm on which they are based.

3.3 4D models versus 3D+time models

Time-varying datasets can be treated specifically as three-dimensional models that
evolve throughout time or as particular cases ofn-dimensional models [Neo03]. Strate-
gies developed in the former case typically exploit temporal coherence, whereasn-D
techniques treat time as one dimension more. In [WWS03] different interpretations of
a 4D projection are analyzed and in [BPRS98] a graphical user interface is presented
to deal with parallel projections of n-dimensional data. Table 3 shows a list of both
types of approaches.

3.4 Compression

The huge size of volume models compromises the efficiency of rendering. The use
of compression techniques can reduce this problem. The compression schemes can be
classified into two categories: those based on spatial data structures and those based on
the space of values. The purpose of spatial data structures is to reduce the complexity
of traversal algorithms, which is generally of the order of the mesh size. By grouping
cells of the models, either hierarchically or not, spatial data structures provide means
of avoiding costly cell-to-cell processing. On the contrary, algorithms based on the
values space rearrange the data according to function spacecoherency [BAS02], but
they sacrifice spatial coherency. Hybrid approaches working in both spaces can take
advantage of space and value coherencies.

Spatial data structures
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4D model 3D+time model

[WB98] [Wes95]
[BWC00] [GS01]
[SCM99] [LMC02]
[BPRS98] [CD99]
[NM02] [AAW00]

[WWS03] [She98]
[SB05]

[GSDJ04]
[SJ94]

[LCL02]
[RHP02]
[ECS00]
[SH99]

Table 3: 4D models versus 3D+time models.

In DVR, spatial data structures are often used to encode the location of non-empty
cells in a volume. They provide means to skip these empty regions, i.e., to perform
space leaping. Several spatial data structures have been used for these purposes: pyra-
mids and octrees [Lev90], multidimensional trees [WG94], kd-trees [SF90], shells
[UO93], extreme vertices encoding(EVM) [RAA04], [RAG05], distance transforms
[ZKV92] and run-length encoding [Lac95b]. Octrees, shellsand EVM have also been
been used in IVR to quickly identify the cells that contain anisosurface, i.e.,isosur-
face cells. We next describe those structures that have been extended to time-varying
volume data.

In order to improve the efficiency of volume ray-casting, Levoy [Lev90], propose
to construct a pyramid such that for a dataset ofN voxels on a side withN = 2M +1, for
someM, the pyramid is composed ofM +1 binary volumes. A celli at a pyramid level
m contains a zero value if all eight cells at levelm− 1 that form its octants contain
a zero value and a value of one otherwise. Therefore, when a ray intersects a zero-
valued cell at a levelm, the lower levels of the pyramid within the cell don’t need
to be sampled. This pyramid can be implemented by condensation as a linear octree
[Gar82].

Wilhems and Van Gelder [WG92] designed theBranch-On-Need Octree(BONO)
that partitions the cells efficiently when the dimensions ofthe volume are not powers
of two. The subdivision criterion is that the lower subdivision in each direction covers
the largest possible amount of two cells. When used in IVR, the BONO codifies the
min-max bounds of each cell. Thus, during the traversal of the octree for the extrac-
tion of an isosurface, only cells whose min-max bounds encloses the isosurface value
are traversed. A similar scheme is applied in [SH94] but codifying Lipschitz bounds
instead of min-max bounds.
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Finally, theRun-Length-Encoding(RLE) consists of a series ofruns, composed of
a voxel value and the number of consecutive voxels that sharethis value. The RLE
used in the shear-warp rendering proposed by Lacroute [Lac95b] encodes only the
property of transparency or emptiness of the voxels. Therefore, it reduces the runs to
the number of voxels since the value (transparent or non-transparent) can be deduced
from the alternation of the codes.

Value-based compression
Compression techniques based on the value space include the span-space [LSJ96],

the interval tree [LSJ96] and the usual compression scheme of signal processing such
as theDiscrete Cosine Transform(DCT), theFast Fourier Transform(FFT) and wavelets
[Mur93]. The decomposition of the value space instead of thegeometric space has the
advantage that it can be applied to structured as well as unstructured data.

The span-spacewas introduced by Livnat et al [LSJ96]. LetC be the set of data
cells, to each cellci ∈ C, we associate a pointpi = (mini ,maxi) such thatmini =
minj(v j)i andmaxi = maxj(v j)i ((v j)i are the values of vertices of the cellci). P is
the set of pointspi. Then, the isosurface corresponding to a valuev will consist of the
set of cells, whose corresponding points followmini ≤ v < maxi. As all the interval
methods, the intervals have to be ordered either by the maximum or by the minimum
value. The authors of this method propose the use of a kd-tree, structure due to Bentley
[J.L75], to simultaneously order by maximum and minimum values. The kd-tree is the
multidimensional extension of a binary search tree. This method improves the com-
plexity of isosurface extraction. Letn be the number of cells andk the number of cells
intersected by the isosurface. While most of the existing algorithms have a worst case
complexity ofO(n), using octrees [WG92] isO(klg(n/k) and using the span space is
O(

√

(n)+k), taking into account that the construction of the kd-tree isO(nlgn).
The approach [CMM+97] is also based on the span space and to deal with the set

of intervals the authors propose an interval tree, structure due to Edelsbrunner [Ede80],
instead of a kd-tree and the search complexity is logarithmic. Moreover, for structured
datasets in which a marching cubes-like algorithm [LC87] is to be applied only inter-
vals of a subset of cells are stored. This subset are the blackcells of a 3D chess-board
interpretation of the volume (1/4 of the total number of cells) because the vertices of
the generated triangular patches would lay on the edges of the volume dataset and the
mentioned subset of cells hold all of them (1 edge is shared by4 cells).

The DCT [GW92][Jai89][Say00] has been used by Ma et al. [LMC02] join toa
quantization and encoding to perform a lossy compression ortime-varying data. The
technique is used to mapping scalar sequences into single scalar indices to exploit the
temporal coherence.

TheDCT is defined by:

C(u) = α(u)
N−1

∑
x=0

f (x)cos

[

(2x+1)uπ
2N

]
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Figure 1: DCT-based encoding example, using a window size of 4and compressing
the first three coefficients into an 8-bit value.

α(u) =







√

1
N for u=0

√

2
N for u=1..N-1

whereC(u) are the transformed coefficients,N is the number of input samples and
f (x) are the input samples. Each coefficient, representing the component of a certain
frequency, is quantized in an adaptive scheme that leaves more bits to the high variance
features (see Figure 1).

The resulting values are combined into a single number used as an index entry to
a 2D palette texture (see Section 4.2.3). As the encoding is performed for each slice,
the same scalar value can be encoded into a different compressed value depending on
the slice. The authors mention this as a minor problem because the possible artifacts
are soften when computing the whole volume rendering integral. Results show that
compression can reduce the amount of texture storage required more than three times.

S. Guthe and W. Strasser [GS01] usedwaveletsas the basis to their lossy com-
pression method to perform hardware-driven texture mapping rendering (see Section
4.2.3). The wavelet transform itself is lossless, consisting in analyzing the original
signal by applying a waveletΨ and scalingΦ filter and down-sampling the resulting
signals by a factor of 2 (see Figure 2). The resulting signalsare discretized, obtaining
what are called thewavelet coefficients: H for the high frequencies, and L for the low
ones. This transformation can be generalized to 3D, applying the 1D wavelet transform
in all three dimensions separately, resulting in a 3D tensorproduct. Then we apply a
3D wavelet transform to the low sub band recursively (see Figure 3).

Guthe and Strasser compared higher order wavelets, obtaining better results as the
order increases. They encoded the individual volume datasets using a 3D wavelet trans-
form. The range of coefficients that would be mapped to zero are discarded, and the
rest scaled and quantized. These range and scale parametersdepend on human vision
sensibility. Compression is performed with a combination ofRLE, and the LZW algo-
rithm [ZA77] or an arithmetic encoding, achieving a ratio 100:1 for single volumes. To
obtain longer zero runs, a depth first traversal through the wavelet coefficients octree is
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Figure 2: Wavelet transform of a 1D signal S.

Figure 3: Left: a single step (L=low pass filtered, H=high pass filtered). Right: recur-
sive decomposition (4 steps)

performed. However the non-linear memory access results ina loss of decoding speed.
The resulting RLE are compressed with the LZW or an arithmeticencoding. The LZW
encodes the sequences by storing the last appearance of the same sub string, while the
arithmetic encoding used -an adaptive model- adapts the number of bits employed to
encode each value.

To exploit the temporal coherence, the differences betweenframes are used to com-
press the volume sequence applying a method similar to the MPEG motion compen-
sation [[MP93] [[MP96]. The technique is calledwindowed motion compensationbe-
cause it expands the blocks used to predict motion, so they overlap each other. Later
on, the overlapped areas are filtered to compensate. The authors obtain a whole volume
compress ratio up to 200:1 using this method.

Wavelet transform has been used also by R.Westermann in [Wes95] during the
compression process, but in this case there is no decompression process because the
render is performed in the transformed space (see Section 4.4).

3.5 Architecture

Another classification criterion that we have used in this survey is the type of architec-
ture used in volume rendering: general purpose architecture or dedicated ones. General
purpose architectures provide maximum flexibility and theyhave recently improved
their performance with the development of new programmableGPUs. However, they
still fail at providing real-time frame rates for renderingof high -resolution 3D and 4D
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datasets. Therefore, many efforts have been put on the development of special-purpose
volume rendering architectures. As an example, the Visualization Lab’s team leaded
by professor Kaufman, has been working since 1982 on this topic and has designed the
Cube-1 [KB88], Cube-2 [BKX90], Cube-3 [PKC94] and Cube-4 [PK96] architectures.

3.6 Use of parallelism

The improvement of the efficiency of volume rendering and thefact that some vi-
sualization installations are inherently concurrent, because various researchers interact
simultaneously with the same datasets, have also lead to thedesign of parallel solutions
in general-purpose architecture as well as in special purpose ones. The parallelization
of ray-casting [MPS92] and shear-warp [Lac95a] [SL02] are particularly hot topics
that have yield to numerous publications.

Ma et al. [LMC02] have applied a parallel scheme to a2D texturesbased render-
ing process obtaining an speedup closer to six with nine nodes. They use eight nodes
to render volume slabs and the ninth node to control the process and display the final
image. The volume slabs reflect an object-space task partitioning [MPHK93][Neu93]
that allow aback-to-front(BTF) visibility ordering. As the 2D texture hardware re-
quires to slice the volume orthogonal to each grid axis (object-aligned slices), three
slabs -one aligned to each axis- are distributed to each node. The slab more orthogonal
to the viewing angle is the one used. The partial images present on each graphic card
frame buffer are transfered to the control node which composite them into the final
image using a binary-swap method [MPHK93]. This software approach gives higher
precision arithmetic to blend the slabs than the one that could be obtained using the
graphics chip.

Three possible approaches to manage P-processors for rendering time-varying data
sets can be performed:

• intra-volume parallelism: The P-processor machine is dedicated to render a sin-
gle frame volume.

• inter-volume parallelism: P data volume are processed simultaneously. Only the
processor main memory limits this approach.

• hybrid parallelism: It balances the two previous methods. P processors are
grouped in L groups, withL < P. Each group renders one frame volume data.
The choice of L basically depends on the size of the data set and on the type and
the scale of parallel machine.

Parallel rendering of time-varying data can be analyzed by three performance met-
rics:

• start-up latency: time until the rendered image of the first volume appears

• overall execution time: time until the rendered image of thelast volume appears
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• inter-frame delay: the average time between the appearanceof two consecutive
rendered frames.

3.7 Temporal coherence

As mentioned in Section 1, the continuity throughout time that makes similar consec-
utive frames is calledtemporal coherence. According to [Sud93], two different types
of temporal coherence can be defined:

• Image-space temporal coherenceis the similarity between consecutive frame
instants.

• Object-space temporal coherenceis the similarity between the scene model
states at consecutive frame instants

In the bibliography,Image-space temporal coherenceis also calledFrame-to-frame
coherence. The distinction between these two types of coherence is keyto differentiate
contributions. Table 4 shows the different types of coherence used in the existing
papers.

Method Image-space basedObject-space based

[Wes95] x
[GS01] x
[LMC02] x
[SCM99] x x
[CD99] x
[AAW00] x
[She98] x
[BPRS98] x
[NM02] x
[SB05] x
[WWS03] x
[SH99] x
[BAS02] x
[WS03] x
[SJ94]
[LCL02]
[YS93] x
[WSK02] x

Table 4: Image-space temporal coherence versus object-space temporal coherence.
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4 Survey

4.1 IVR methods

4.1.1 3D + time models

We next describe several methods that essentially differ inthe data structure used to
expedite the isosurface cell search process (search indices).

The Temporal Branch-On-Need Octree
The Temporal Branch-On-Need Octree(T-BON) is an extension to time-varying

volume data of the BONO described in Section 3.4. It was first proposed by Sutton at
al. [SH99], [SH00] in order to accelerate isosurface extraction of large dynamic sets
by making an efficient use of I/O and memory. Given a voxel model with properties
varying throughout time, the authors propose to construct in a pre-processing step as
many BONO as key instants. These BONO are stored into disk separating the global
information of the trees such as branching factors and pointers to children from the ex-
treme values of the nodes. The global information is stored only once whereas there is
a different set of extreme values for every key-instant. Thebasic search algorithm first
loads the tree infrastructure into memory. Then, given a key-instant and an isovalue, it
fetches recursively from disk the nodes of the octree corresponding to that key-instant
and whose extreme values span the isovalue. The algorithm then computes the disk
blocks containing data points of the selected leaf nodes into a list. Once the block
list is complete, it is traversed in order to read the data blocks sequentially from disk.
All the required information resides then in memory. The algorithm next proceeds
as usually, by traversing the tree in order to construct the isosurface. In addition, the
authors propose to use thenode brickingstrategy proposed by Chiang at al [CSS98]
that consists of packing nodes into disk blocks in order to read several nodes at once
and to achieve better I/O performance. The T-BON can be extended to curvilinear and
non-regular grids. In the original papers, it is tested on computational fluid dynamics
simulation data: regular Cartesian grids of 5123(Rayleigh-Taylor hydrodynamic insta-
bility), 2563 (jet shockwave), curvilinear grids of less than 1003 (Impinging Jet) and
an irregular grid composed of 106 tetrahedral cells (electrical simulation in a human
torso). With these datasets, the T-BON with node and data bricking produces factors of
improvement up to 23 in the average case. As signaled by the authors, this algorithm
does not make use of temporal coherence, except from the factthat the tree structure
is stored only once.

The Temporal Hierarchical Index Tree
The method presented in [She98] uses aTemporal Hierarchical Index Tree(THIT)

which is an extension of the span-space structure, described in Section 3.4 and, there-
fore, falls also into the category of value partition methods. The decomposition of the
value space instead of the geometric space has the advantages that it can be applied
both to structured and to unstructured data and that the search space dimension is two.

The THIT is a natural extension of the span space. Given a timeinterval(a,b), to
each cell,ci, define its minimum and maximum values at the time instantt, mint

i and

14



maxti , and the minimum and maximum values over time as:

minb
a = MIN(mint

i), t = a..b

maxba = MAX(maxti ), t = a..b

Then, each cell of the dataset is associated with as much points pt
i = (mint

i ,maxti )
as time instants. A cell is characterized by its variation over time and to quantify
this variation the 2D region containing these points is subdivided into a determined
number of non-uniformly spaced rectangles (lattice subdivision), see Figure 4. After
this, we say that a cell has low temporal variation if all the points associated with the
cell fall within an area of 2× 2 lattice elements. Finally, a THIT is a binary tree data
structure with nodes of the formN j

i . The root is the nodeNb
a corresponding to the initial

time interval and we associate to this node all the cells thatfollow the mentioned low
temporal variation criterion. If there are cells that cannot be associated to this node,
the time interval is split in half and the tree is constructedrecursively (see Figure 5).

max

min

Figure 4: Example of a span-space subdivided into 5× 5 lattice elements
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Figure 5: A temporal hierarchical index tree for a time interval [0, 5] and the traversal
path corresponding to the isosurface query at time step 1

To extract an isosurface at time instantt, we first locate the nodes in the THIT that
contains this time value (all the nodesNb

a such thata≤ t < b).
Hybrid approach
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Bajaj et al [BAS02] propose a progressive isosurface tracking of time-varying fields
that divides the search in two phases, the range-space and the geometry, in order to
exploit the spatial coherency as well as the value space coherency. The key idea of
the algorithm is to perform a contour propagation of each connected component of an
isosurface. At each key-instant, a connected component maybe split, may disappear
and may change shape. According to the simulation results observed average time is
linear with the number of triangles.

Topological changes over time
In [SB05] the authors describe an algorithm to use temporal coherence for the

topology representation of an isosurface. The authors use thecontour tree(CT) struc-
ture [BR63], [HC03] to represent the set of contours of an isosurface and define a
contour correspondence between sets of contours of two consecutive time steps based
on overlapping relations between contours. The contour correspondence is computed
in a preprocess and atopology change graph(TCG) is maintained over all time steps.
The method allows segment, track, visualize and quantify the evolution of any contour
and considers all the possible cases as creation and vanishing of contours as well as
contour split and merge. It also allows to compute quantitative information as surface
area and volume of contours. Two related works based also on the CT structure are
the contour spectrum [BPS97] that manages geometric and topological information
as area, volume and gradient integral and the contour plane [KRS03] that allows to
manage the number of contours (as a measure of the topological changes) of a given
isosurface over time.

Multiresolution representation
Gregorski et al [GSDJ04] propose a adaptively isosurface extraction based on com-

pressed time-varying data. The authors work with large volumes, data size of about
2 TB, and so with large isosurfaces, several million triangles. Then the adaptive iso-
contouring is the strategy used. The refinement of a tetrahedral mesh by longest-edge
bisection is used and algorithms for isosurface extractionat different levels of detail
are presented.

4.1.2 4D models

Algorithms that obtain isosurfaces with a 3D+time strategytypically ignore features
that may be present when data is examined in different cross-sections, and obtain poor
animations through the four dimension. To resolve these problems two strategies are
presented that work directly on 4D models.

Weigle and Banks [WB98] [WB96] present a recursive contour meshing to extract
iso-valued features in time-varying volume data. The algorithm wants to triangulate
contours in arbitrary dimensions. The idea consists in splitting the cells into simplexes,
each n-cell can be transformed into different n-simplexes and then the contour from the
simplexes is obtained. A square is a 2-cell, a cube is a 3-celland a hypercube is a 4-
cell and they can split into triangles that are 2-simplex, tetrahedron that are 3-simplex
and hypertetrahedron that are 4-simplex, respectively. Next, the algorithm construct
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the isosurface in each simplex using a recursive triangulating process applied to the
various dimensional faces of the polyhedra that compose theisosurface.

Bhaniramka et al. [BWC00] provide an algorithm based on theMarching Cubes
(MC) strategy to extract isosurfaces in four dimensions. Theauthors have developed
a process that automatically generate the tables for any dimension and triangulating
them obtains the 4D isosurfaces, which can be sliced over anytime to provide smooth
animation or sliced through oblique hyper-planes to examine time-evolving features in
another way. A hypercube in four dimensions has sixteen vertices and using the MC
strategy 216 possible vertex labelings. Even considering the symmetries, there are 222
different cases. The manual analysis of all the cases is impractical and can produce
errors. In addition, the generalization to higher dimensions are even more problematic.
Therefore, the authors proposed an algorithm for automatically generating a lookup ta-
ble that contains all the possible 22d

cases of the labelled hypercube in a d-dimensional
regular grid and its triangulation for each case.

4.2 DVR methods

4.2.1 Ray-casting

Reprojection techniques
Yagel and Shi [YS93] propose a frame-to-frame coherent ray-casting that exploits

the capability of skip empty space (space-leaping). It stores in aC-Bufferthe coordi-
nates of the first non-transparent voxel encountered by the ray emitted at each pixel.
This C-Buffer is initialized in the first frame. The next frames can re-use this coordi-
nates to traverse the voxel model, in the case that the camerais static. Moreover, the
C-Buffercan be re-used if the model rotates by reprojecting the intersection points of
a pixel to the new pixel. When the reprojection is finished, there are pixels that are
empty, in this case, we need to start sampling to the volume boundary. Other draw-
back is that several coordinates can be mapped on the same newpixel, but the authors
propose one solution. Algorithm 1 illustrates the pseudo code of this strategy. This
approach speeds up ray casting computations when the cameraor the transfer function
change.

Recently, Wan et al. [WSK02] found that the original point-based reprojection
method can create artificial hole pixels, that can be corrected using a cell-reprojection
scheme. Both approaches speed up ray casting computations when the camera or the
transfer function change. However, when the property varies inside the voxels and the
empty voxels change along time, theC-Buffermust be recomputed. The reprojection
technique has also been used to track points across frames inorder to reduce temporal
aliasing [MRS+03].

Incremental ray-casting
Shen and Johnson [SJ94] focuses on exploiting ray coherencewhen the property

values inside the voxels change along time and the camera remains static. Given the
initial data sets, this method constructs a voxel model for the first frame and a set
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Algorithm 1 Yagel and Shi pseudo code for space-leaping based ray-casting algorithm
for all pixel (i,j) in the screendo

[u,v,w]:=ray entervol([i,j]);
C buffer[i,j]:=shoot ray([u,v,w],[i,j]);

end for
for all change that requires re-renderingdo

if changeis rotationthen
for all pixel(i,j) in the screendo

[i’,j’ ]:=Transform(Cbuffer[i,j]);
addcoord(Cbuffer[i,j],T Buffer[i’,j’]);

end for
for all pixel(i,j) in the screendo

C buffer[i,j]:=elim hidd(T buffer[i,j]);
if C buffer[i,j] is emptythen

C buffer[i,j]:=ray entervol([i,j]);
end if

end for
end if
for all pixel(i,j) in the screendo

C buffer[i,j]:=shoot ray(C buffer[i,j],[i,j]);
end for

end for
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of incremental models for the successive frames, composed of the coordinates of the
modified voxels and their values. The first frame is computed from scratch. The next
frames are computed by determining which pixels are affected by the modified voxels
of the corresponding incremental file, updating the voxel model and recasting only the
modified rays (see algorithm 2). This strategy produces a significant speed-up of the
animation if the incremental files are small, i.e., the number of modified voxels is low.
However, the incremental files do not keep the spatial ordering of the voxel models.
Therefore, the method is not suitable to visualize sub-models or specific features in a
model.

Algorithm 2 Shen and Johnson algorithm based on ray-casting that exploits the tem-
poral coherence to re-cast only those pixels that intersectwith changed voxels.

for all time step tdo
for all changed element[x,y,z]do

pixel list:=correspondingpixels(x,y,z);
updatevolume(x,y,z);
insert pixels(raycastlist,pixel list);

end for
for all pixel [u,v] in ray castlist do

value:=castray(u,v);
updateimage(u,v,value);

end for
display image();

end for

Liao at al. [LCL02] shares the idea of Shen and Johnson [SJ94] of recasting, at
each frame, only those pixels that intersect with changed voxels. This paper proposes
an improvement of [SJ94] technique to reduce the cost of calculate which pixels need
to be recasted. This technique consists of computing (in a preprocessing stage) two
additional differential files for each frame, calledFirst Order Differential file(FOD)
andSecond Order Differential file(SOD). FOD stores the changed voxels at one frame,
and SOD the exclusive-OR between two consecutive FOD (the voxels that are in the
first FOD but are not in the second one, and the voxels that are not in the first one but
they are in the second one). The authors propose a method to calculate the changed
pixels using FOD or SOD files. The computing cost using one of both files depends of
their size, so at each frame the method can choose one strategy or the other to minimize
it. This technique can avoid the cost of projection the modified voxels to calculate the
recasted pixels.

In [TGFP05], the time-varying dataset is encoded as a Temporal Run-Length (TRL)
structure that stores for every voxel a sequence of codes composed of the property
value and the number of succesive frames in which this value remains constant. The
rendering algorithm based on this object-space structure is an incremental ray-casting
algorithm that additionally uses a temporal image buffer storing for each pixel the next
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instant of time in which the pixel must be recomputed. At every frame, the algorithm
casts only rays through pixels that may change. The TRL provides then the needed
information to actualize the next instant of change of the pixels corresponding to re-
casted rays. The algorithm uses three different space-leaping strategies to avoid having
to sample empty regions of the volume. A simultaneous version of the algorithm that
computes all the images at a time, in batch, is also described. This method can handle
simultaneously several data modalities because an on-purpose out-of-core strategy is
used to handle large datasets.

Ray-casting isosurfaces
Reinhard et al. [RHP02] address the I/O bottleneck of time-varying fields in the

context of ray-casting isosurfaces. They propose to partition each time step into a num-
ber of small files containing a small range of iso-values. During the visualization, only
one file containing the given iso-surface value and time stepneeds to be loaded into
memory. Each file contains a set of voxels represented with the coordinates (x,y,z) and
its value. The creation of these files is performed in a preprocessing stage. They use a
multiprocessor architecture such that, during rendering,while one processor reads the
next step time, the other ones render the data currently in memory. Their results show
that partitioning data is an effective out-of-core solution.

Use of a T-BON
Ma et al. [MSSS98] explore the use of a BONO [WG94] for time-varying regular

data in a 3D+time model, the T-BON, as described in Section 4.1. The construction of
the tree consists of three steps: quantization of the volume, construction of a BONO
for every instant of time and merging of the subtrees that areidentical in successive
BONOs, based on the object-space temporal coherence of the data. Quantization is
the simplest lossy compression method that uses a limited number of bits to repre-
sent a larger number of raw data values. According to the datacharacteristics, they
use three lossy quantizers: uniform, non-uniform and adaptive. The variability of the
data importance is measured with an importance function based on the opacity trans-
fer function provided by the user. In this sense, the BONO depends directly on the
transfer function. If the classification parameters vary, the building process should be
performed again. Next, this data structure is rendered withray-casting by processing
the first BONO completely, and only the modified subtrees of thefollowing BONOs.
To do so, an auxiliary octree, called thecompositing tree, is constructed, similar to
the BONO, that stores at each node the partial image corresponding to the subtree tak-
ing into account the image-space temporal coherence. At successive frames, when a
subtree changes, its sub-image is recomputed and composited at its parent level in the
hierarchy. This rendering optimization is based on a fixed viewing position. If the
viewing position changes, a new compositing tree should be created. They propose to
construct a complete tree at regular intervals of the possible viewing positions in order
to allow random points of view. Also, they use some optimizations asfront-to-back
FTB early-termination and space-leaping with the octree codification.

In addition, in order to accelerate the visualization process, [MC00] uses super-
computers to perform rendering calculations and displays the resulting images on end
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desktop computers connected over a wide-area network. Theycombine efficient pro-
cessor management and compression to achieve near-interactive remote visualization
on parallel computers. They minimize the interframe delay and analyze how proces-
sors can be partitioned in order to obtain interactivity. They evaluate several compres-
sion methods and transform mechanisms to compress the data into the supercomputer
and decompress it into remote user. The rendering is obtained using a parallel ray-
casting volume renderer and they analyze the optimal numberof processor partitions
to use into the supercomputer.

Use of a TSP
Shen et al. [SCM99] introduced a spatial octree that stores data volume capturing

both temporal and spatial coherence for time-varying data.That spatial octree is called
Time-Space Partitioning tree(TSP). To store the temporal information, each node of
the TSP is a binary tree. Each node in the binary tree represents the same subvolume
in the spatial domain but in a different time. Some other information is stored in those
binary tree to help in the tree traversal during the volume rendering process: the mean
value of voxels within the subvolume at each time and measurements of spatial and
temporal errors and coefficient of variation. The TSP can be obtained in the preprocess.
To perform volume rendering at run time, the TSP is first traversed to identify the
subvolumes that satisfy the user query. Then the located subvolumes are rendered in
the correct order to construct the final image. In fact, the authors propose a divide-
and-conquer strategy. In the traversal, the nodes in the TSPare recursively visited
in the FTB visibility order according to the viewing direction. Then the subvolumes
that are selected are rendered independently and the final image is then constructed
by compositing the partial ones. To accelerate the time-varying volume rendering, the
authors propose to store the partial images of the subvolumes in each node of the TSP
structure.

A 4D approach
In [WWS03] the data is treated as a 4D data field. A 4D hyperplane is defined as

ax+ by+ cz+ dt + e= 0 and a 4D projection can be interpreted taking into account
three families of hyperplanes:

• d = 0. In this case the hyperplane intersects the volume at the same location for
all the time steps. It shows the time evolution along a particular viewing vector.

• d 6= 0, a = b = c = 0→ dt +e= 0. It shows the time-varying sequence at time
instantt = −e/d

• d 6= 0∧ (a 6= 0∨b 6= 0∨ c 6= 0). In this case space is shifted by time. At each
time step, we select a different slice of the volume. It showsthe evolution of a
feature during time.

The authors analyze several integration operators and transfer functions (alpha
composition, first hit, additive projection, etc.) for the three families and implement a
ray casting strategy.
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4.2.2 Splatting

The work presented in [NM02] is focussed on the compression of 4D datasets. It is
achieved using the more efficient sampling grid 4D BCC. This compression is almost
lossless when the reconstruction is based in a Gaussian kernel and, therefore, suitable
for splatting. BCC grids are a generalization of hexagonal grids and the compression
rate grows with the number of dimensions (3D: 0.71, 4D: 0.5).A BCC grid can be
interpreted as two cubic Cartesian grids interleaved with spacing

√
2T and offset in all

directionsT/
√

2, T being the sampling distance of the cubic Cartesian grid. The data
is further reduced by using a RLE for the relevant data points.The 4D data is visual-
ized by obtaining a 3D hyperslice (3D BCC), as a list of 3D voxels,by interpolating
an arbitrary hyperplane. Then shading, visibility-ordering and depth compositing is
performed for any new 3D viewpoint and transfer function. The strategy applied is an
image-aligned splatting [KMC99]. This approach works well for all kinds of slices,
although the maximum rendering speedups (up to 30 %) due to the reduction in the
dataset are mainly for slices aligned with three of the four major axes.

In [BPRS98] a 4D approach is also followed. The work is focussedon highlight-
ing topological features (holes, cavities, extrema, etc.)and does not consider rendering
techniques (occlusion, realism, etc.). It uses an octree representation of the hypervol-
ume and follows a splatting strategy which is a generalization of that presented in
[LH91]. The authors present also a graphical user interfacefor interacting with paral-
lel projections of the hypervolume. The splatting strategyuses a transfer function to
highlight the desired features, can deal with a multiresolution representation (octree)
and takes advantage of texture mapping graphics hardware. The splatting technique
used is very simple because they perform parallel projection and do not consider the
ordering of voxels since they do not perform occlusion. Moreover, as the value in each
voxel is assumed constant, each splat is the projection of a n-cube and the luminosity
distribution can be computed exactly by using a bivariate box spline.

4.2.3 Hardware-driven texture mapping

The use ofmultiple 2D texturesto exploit hardware possibilities to render a volume as
slices has been used by Ma et al. [LMC02] in combination with a lossy compression in
a parallel implementation. The method extracts the temporal coherence using the DCT
coefficients and compressing them as described in Section 3.4. The resulting values
are combined into a single number used as an index entry to a 2Dpalette texture.
This way the value stored in each texel represents an approximation of a sequence of
scalar values. The sequence is reproduced by updating the color palette at each frame,
changing the entries to the color found in the transfer function for the scalar encoded
by its index (see Algorithm 3).

The number of time-varying values collapsed into a single one is calledwindow.
Each window stores the average of the sequence values, whichproduces image arti-
facts when changing from a window to the next one. To avoid alltransition artifacts
occur at once in the whole volume, the starting times of the windows for each slice
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Algorithm 3 Time-varying encoding changing color palette
Color transffunc[256]; // LUT from the transfer function
Color palette[256]; // computed color palette for each time step
int decoder[N][256]; // N time varying scalars encoded by each
// of 256 possible texel values created by the compression process
for all timestep t (0..N-1)do

for all palette entry i (0..255)do
palette[i]=transffunc[decoder[t][i]];

end for
setCurrentFramePalette(palette);
renderTexture();

end for

Figure 6: Window interleaving: Every time step only some of the volume slices tex-
tures are replaced to avoid general transition artifacts. The numbers on each slice
indicate which time steps the texture stores.

are interleaved as shown in the Figure 6. This technique is also useful to avoid load-
ing a whole volume at certain time steps, which would requirestoring a copy of the
next volume in texture memory. Using window interleaving, only some textures are
flushed to be replaced by new ones at each time step. The process is applied to each
volume axis-aligned slice independently. Thus, the selected slices are those ones more
orthogonal to the viewing direction.

A sequential and parallel implementation (see Section 3.6)has been tested on high
variability simulation data sets.

S. Guthe and W. Strasser [GS01] used 2D and 3D textures, both of them exploiting
temporal coherence in a lossy compression context on real low variable data sets. The
compressed encoding is performed using the wavelet transform as explained in Section
3.4. The 3D texture visualization is performed directly by hardware in an ATI Radeon
graphics card that supports this feature, in combination with shells. The shells are
small sphere subsections useful to better approximate the different distances between
texture slices as seen in Figure 7. On the other hand, as the Nvidia GeForce used by the
authors didn’t support 3D textures, they performed a tri-linear interpolation between
any two slices as described by Rezk-Salama et al. [RSEB+00] to approximate these
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distance differences. They use 2D textures to perform a shear-warp rendering schema
as can be seen in the next section.

Figure 7: Different distancesd between textures introduced by different viewing points
or perspective projection.

The TSP tree, explained in Section 4.2.2, has also been used to speed-up texture-
based rendering [ECS00]. This structure is particularly suitable for datasets in which
most of the volume remains almost static and only specific regions vary through time.
Otherwise, the tree can be highly subdivided and only few partial images can be re-
used. The fast volume rendering is achieved by rendering a combination of flat-shaded
and solid-textured polygons. Flat-shaded polygons represent regions that have a high
spatial coherence compacted on the TSP tree codification. Solid-textured polygons
represent regions having high variation, both in spatial and temporal domains. The
overhead of generating additional slicing planes in the subvolumes for the texture gen-
eration is reduced by an incremental slicing algorithm similar to the standard scan-line
polygon rasterization algorithm. The rendering time is also reduced loading and re-
taining in memory the textures that have to be renderered in next steps.

4.2.4 Shear-warp

Anagnostou et al. [AAW00] proposes an approach for renderingtime-varying data
based on the Shear-warp technique. The work is applied to volume datasets where
only a relatively small part of the volume changes, that is, volume data with a high
coherence in time, and treats separately the time dimensionfrom the spatial one. In
fact, the work wants to exploit the existence of spatial and temporal coherence using
an adapted RLE of the volume. There is a preprocessing stage that detects, encodes
and saves to disk the changes over time. Next, the rendering stage loads the changed
areas from the disk, updates the volume and renders only the changed area. The pre-
processing stage is viewpoint independent, while the rendering stage is not.

To exploit the spatial coherence the volume data is compressed using a RLE. This
data structure performs well in the case of a single volume, but becomes inefficient with
multiple time-varying data. The authors propose an additional structure that expands
the RLE encoded volume to its previous dimensions in space, preserving the run-length
information. When a change is detected over time, the expanded RLE is updated by
properly inserting the modified runs in the volume scan-line.
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To exploit the temporal coherence the authors based their work on the property
called partial ray compositing, that means that the final intensity obtained for each ray
can be derived compositing different partial intensities.In volume data when a great
percentage of the volume remains unchanged, the size of the changed area is small
compared to the size of the column that needs re-rendering. The authors propose the
notion of aslab, that is a thick slice. According to the partial ray paradigm, they split
the ray into a number of rays each of which composites voxels belonging to a slab. The
partial image produced in this way, that is the intensities corresponding to each slab,
are stored in another data structure. Then only slabs that are occupied by the changed
area need to be recomputed and compositing them with the unchanged ones.

Clyne and Dennis [CD99] present a volume rendering system based on a parallel
implementation of Shear-warp algorithm. They extend an existing serial implementa-
tion of the algorithm in the VolPack library. This package operates on preprocessed
RLE data volumes, that computes the view-independent opacity and gradient infor-
mation of the data samples. Shading is performed using a shade tree that can be im-
plemented as a lookup table simulating the Phong lighting equations. The cost of the
rendering time is the cost of the projection of the volume into the baseplane image and
the cost of warping the baseplane image into the final image. The authors propose an
strategy for parallelize each of these computational phases. The baseplane image is
partitioned into small groups of contiguous scanlines. Each processor computes the
final image for a group of scanlines until the whole final imageis obtained. To ren-
der time-varying data uses a double-buffer strategy that keeps two copies of data in
memory, one which is rendered in fact and the other one which is computed.

As mentioned in previous section, S. Guthe and W. Strasser [GS01] used 2D tex-
tures to implement a Shear-warp algorithm, exploiting temporal coherence in a lossy
compression context. The compressed encoding is performedusing the wavelet trans-
form as explained in Section 3.4. The basis is to render an axis-aligned 2D texture
stack, the one best aligned with the view direction. The angle correction is performed
using the register combiner feature that lets to modify the opacity depending on the
angle between the normal and vision vectors. This techniqueproduces artifacts when
switching from one stack to another. So, they render the three axis-aligned texture
stacks and combine the results. The problem is that it consumes more time. An alter-
native using directly 3D textures is presented (see Section4.2.3).

4.3 Other uses

4.3.1 Tranfer functions for Time-Varying Data

Designing transfer functions for time-varying data sets isa new problem in volume
visualization that is often ignored. In an early work, called the Contour Spectrum
([BPS97]), the user can display the changes of the underlyingcontour functions over
time. The contour spectrum is a statistical signature consisting of a variety of scalar
data and contour attributes, computed over the range of scalar values. Isovalues of in-
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terest can be chosen manually from different times and contour functions values. The
result is a set of opacity maps over time. [JKM01] studies different semi-automatic
approaches for transfer function generation in order to obtain a single or minimal set
of informative opacity transfer functions for a time-varying data-sets. They propose
two types of methods that obtain opacity functions:summary-functionsandsummary-
volume. The first one consists of algorithms which analyze each frame separately, cre-
ate a transfer function, and then try to combine these transfer functions into a summary
function (in a similar way as 3D+time ). To combine the transfer functions, they use
four methods based on the opacity values: single representative, average, union (max-
imum opacity) and coherency-based. This summary function is used during rendering
of all frames.

Single representative methods select a single frame and apply it to the others.
Coherency-based methods utilize the coefficient of variation (COVst) metric, previ-
ously explained in the section 2.3. If the COV value of a time interval is less than a
certain threshold value, it means that the values do not change significatively over time
and then, the opacity values average is used over the interval. If the COV value is high,
the interval is subdivided and the COV of the subintervals is computed. The final value
is computed from values of the subinterval of lowest COV value.

The other class of techniques,summary-volume basedtechniques, does not ignore
the temporal dimension and operates upon the entire set of volumes to generate a trans-
fer function. It creates a single volume that combines all frames and then they extract a
transfer function from this volume. To create the summary volumes based on the prop-
erties values, the methods applied are: averaging and coherency. Again, this function
is used during the rendering stage.

As in data sets with periodic motion with non-regular boundaries, these techniques
do not obtain satisfactory images, they propose a method which generates a set of
transfer functions based on the coherency-based methods ofsummary-functions (mul-
tiple transfer functions). For each value data in the transfer function, a traversal of time
intervals is performed in order to return a set of time intervals with the COV value less
than a specified threshold with its mean opacity. Then, for each obtained time interval,
the midpoint time is calculated and used to create a transferfunction. Each value of
these transfer functions of the midpoint time is the averagevalue calculated previously
in the corresponding value time interval.

4.3.2 Volume animation based on skeletons

Some volumetric applications such as volume morphing, object simplification, physically-
based deformations and animations automatic path navigations and volume modelling
can be improved using volume based skeletons. [NKHS98] proposes a technique to an-
imate volumes using a Skeleton Tree. In order to animate a volume model, they extract
a skeleton that captures the essential topology of the volume object to be animated.
This skeleton is a medial axis as it is defined as the central points of the object and
the distance of these points to the surface. They use the approximated distance based
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on the (3,4,5)-weighted metric. Moreover, they can obtain different kinds of skeletons
varying the values of a thinness parameter, that graduates the density of the skeleton
in order to achieve finer control of the deformation. In any case, this parameter value
doesn’t guarantee the skeleton connectivity.

Once the skeleton is extracted, an automatic connection process is performed based
on the spatial coherence and the distance value coherence ofthe skeleton points. The
skeleton voxels define the set of nodes of a weighted undirected graph and they are
fully connected. Edge weights are based on the degree of spatial and distance value
coherences. Then, the minimum spanning tree of the graph defines the Skeleton Tree.
The next step is to define, over the skeleton tree, constraints for deformation (vary-
ing the distances) and motion (changing the point locations). In [NS01], the authors
propose the use of Alias Wavefront to interact with the Skeleton Tree.

The final step is to reconstruct the final deformated and animated volume object
from the skeleton information. Using the distance metric and using bounding boxes
from the distance transform, they can approximate the final surface of the volume
object.

4.4 Rendering in the transformed space

In [Wes95] R.Westermann computes the volume rendering integral [DCH88] [KH84]
[Lev88] directly over the transformed space instead of decompressing data before per-
forming the render. First, at each time step, the volume is transformed and compressed
using the wavelet transform (see Section 3.4). Second, the data is analyzed to detect
the low and high frequency regions, to distinct those which remain constant over time
from the high fluctuating parts calledfocus of interest. Third, low frequency regions
are reconstructed with larger error tolerance than high ones. The rendering process
is performed tracing rays on the multiscale representations of the original three di-
mensional signal as had been done before in [GLDK95][Mur93][Wes94], but taking
profit of temporal coherence. They successfully tested thismethod over high variable
simulation data sets.

5 Conclusions

In this report, we have presented a state-of-the-art on time-varying volume rendering.
Since most of the papers focus on speeding up rendering, it isactually difficult to
compare them and to be able to determine if one is more efficient than another, because
the datasets used are different, the computers also and the efficiency strongly depends
on implementation details.

In order to conclude this report, we next describe open problems in time-varying
volume rendering that we believe can be future research lines. Different changes
can occur throughout time camera movement, lighting conditions, user preferences,
model movement, deformation and property values variation. Some papers focusing
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on navigation around volume models [YS93], others on navigation through volumes
[BJNN98] and others addressTime-varying volume rendering, i.e rendering static vol-
umes with varying property values. No specific algorithms for interactive navigation
around and inside a time-varying volume model have been yet proposed. In this report,
we have focused on time-varying volume rendering strategies.

Existing papers assume that the models are segmented. Whether the segmentation
procedure is the same or not for all the models or must be adapted throughout time,
this is not addressed in volume rendering bibliography. Moreover, except the paper
[JKM01], existing works assume that the classification function is valid for all the
time span. Since this assumption may not be true if the variability of the data is high,
more research efforts should be put on classification of time-varying data.

There are two main approaches to time-varying volume models[Neo03]: to con-
sider them as particular cases ofn-dimensional models or to treat them as temporal
sequences of 3D models. In the former case, research focuseson selecting as effi-
ciently as possible the relevant information of the 4D modelgiven a user query: for
example, given an isosurface value and a key-instant, how toefficiently extract the
surface visiting as directly as possible the set of isosurface cells. Papers of the latter
category focus on generating a sequence of frames at a set of key-instants, either by
extracting an isosurface at a series of instants in order to animate them (IVR) or by
rendering the models directly (DVR). The problem that these papers address is how to
improve the efficiency of the rendering algorithms. As pointed out by Woodring and
Shen [WS03], other types of visualizations than sequences offrames, may provide dif-
ferent ways of analyzing time-varying data. This is an open research field, almost ab-
sent in the current bibliography, that would demand imaginative solutions. In order to
speed up IVR as well as DVR, data structures already used in static volumes have been
extended to time-varying data: TSPs extend octrees [SCM99],T-BONs [MSSS98] ex-
tend BONOs, THITs [She98] extend the span-space structure and temporal run length
(TRLs) [TGFP05] extend the RLE. Some of these data structures have been used to
efficiently manage the information without actually exploiting the coherence between
successive frames. The performance of the algorithms couldbenefit from the use of
this type of coherence. Other data structures such as the EVM[RAA04], the dis-
tance transforms [ZKV92] and the Render Lists [HBH03] may be also extensible to
3D+time. Moreover, new data structures, specifically designed for time-varying data
could be explored.

Most of the DVR methods focus on ray-casting, probably because of its simplic-
ity and flexibility. In the future, much efforts should be putin hardware-driven ren-
dering that is nowadays one of the techniques more used to visualize static volumes
[MGS02] and splatting which is emerging as a flexible technique to render point-based
volume and surface models [CRZP04]. Moreover, the combination of various render-
ing techniques such as the two-level rendering proposed in [HBH03] may be adapted
to time-varying data.

Another important aspect of time-varying volume renderingis the type of applica-
tion in which it is used. As mentioned by Ma [Ma03], scientificsimulations may need
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strategies such that the data are visualized while they are being generated without need
of storing a 4D or a 3D+time model.

Finally, the existing bibliography addresses unimodal rendering. The combina-
tion of multiple modalities, along with the merging of surface and volume models has
been treated for static models only. Another open research line is to propose efficient
rendering methods able to deal with multiple modality some or all of them varying
throughout time and hybrid surface/volume time-varying scenes.
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A Acronyms

BCC: Body centered cubic
BONO: Branch-on-need-octree
BTF: Back-to-front
CC: Cubic Cartesian
CFD: Computational Fluid Dynamics
COV: Coefficient of variation
CT: Contour tree
DCT: Discrete cosine transform
DVR: Direct volume rendering
EVM: Extreme vertices model
FFT: Fast Fourier transform—
FTB: Front-to-back
IVR: Indirect volume rendering
LZW: Lempel, Ziv, and Welch (authors)
RLE: Run length encoding
T-BON: Temporal branch-on-need
TCG: Topology change graph
THIT: Temporal Hierarchical Index Tree
TRL: Temporal run length
TSP: Time-Space Partitioning tree
UFAC: Unsteady Flow Advection Convolution
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Method [LMC02] [GS01] [Wes95] [WB98]

Data type Simulation Images Simulation Simulation
Data sets Sampling Regular Regular Regular Regular

Grid Uniform Uniform Uniform Uniform
Variability High Low High -
Type Voxels Voxels Voxels Voxels

Data Model Domain Spatial Spatial Frequential Spatial
Temporal 3D + time 3D + time 3D + time 4D model
Compression lossy lossy lossy no
Type Direct Direct Direct Indirect

Visual. Camera Dynamic Dynamic Static -
Transfer Function Dynamic Dynamic Dynamic -
Illumination Dynamic Static Static -
Rendering Texture based Tex & Shear Raycasting IVR

Main Contribution DCT&Tex Wavelets&Tex Comp.domain Rec contour mesh
Optimization
Applications Isosurf

Table 5: Classification of all the references surveyed.
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Method [GSDJ04] [She98] [BPRS98] [NM02]

Data type Simulation Simulation Simulation Simulation
Data sets Sampling Regular Irregular Regular Regular

Grid Uniform Non-uniform Uniform Uniform
Variability High High High High
Type Voxels Points Voxels Voxels

Data Model Domain Spatial Spatial Spatial Spatial
Temporal 3D+time 3D+time nD 4D
Compression lossy - - lossless-uniform
Type Indirect Indirect Direct Direct

Visual. Camera - Static Static Static
Transfer Function - - Static Static
Illumination - Static Static Static
Rendering IVR IVR Splatting Splatting

Main Contribution Adapt surf THIT nD Splat BCC grid
Optimization - - -
Applications Isosurf CFD 5D molecular interact -

Table 6: Classification of all the references surveyed (more)

Method [LCL02] [RHP02] [SH99] [ECS00]

Data type Simulation Simulation Simulation Simulation
Data sets Sampling Regular Regular Regular Regular

Grid Uniform Uniform Uniform Structured
Variability High High High Static/Slow
Type Voxels Voxels Voxels Voxels

Data Model Domain Spatial Spatial Spatial Spatial
Temporal 3D+time 3D+time 3D+time
Compression losless losless - losless
Type Direct Direct Indirect Direct

Visual. Camera - - - Dynamic
Transfer Function - - -
Illumination - - - Dynamic
Rendering RayCasting RayCasting Indirect Texture based

Main Contribution pixel coherency Isosurface rend Temporal BON TSP texture-based
Optimization GPU-based and

incremental slicing
Applications Time-varying vis. IsoSurface extr CFD

Table 7: Classification of all the references surveyed (more)
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Method [CD99] [SCM99] [AAW00] [BWC00]

Data type Simulation Simul&Images Phantom Images
Data sets Sampling Regular Regular Regular Regular

Grid Uniform Uniform Uniform Uniform
Variability High High Low -
Type Voxels Voxels Voxels Voxels

Data Model Domain Spatial Spatial Spatial Spatial
Temporal 3D+time model 3D+time model 3D+time model 4D model
Compression no no no no
Type Direct Direct Direct Indirect

Visual. Camera Dynamic Static Static -
Transfer Function Static - - -
Illumination Dynamic - - -
Rendering Shear-warp Raycast/all Shear-warp IVR

Main Contribution Parallel implem. TSP tree Time-var shear Time-var MC
Optimization
Applications Visualiz Visualiz Visualiz Isosurf

Table 8: Classification of all the references surveyed (more)

Method [YS93] [SJ94] [WSK02]

Data type - Simulation Medical
Data sets Regular Regular Regular Regular

Grid Uniform Uniform Uniform
Variability Static Low Static
Type Voxels Voxels Voxels

Data Model Spatial Spatial Spatial Spatial
Temporal 3D 3D+time 3D
Compression Null losless Null
Type Direct Direct Direct

Visual. - Dynamic Static Dynamic
Transfer Function - - -
Illumination - - -
Rendering RayCasting RayCasting RayCasting

Main Contribution Re-use Space-Leaping Pixel Coherence Re-use Space-Leaping
Optimization model traverse - model traverse
Applications Fly-around navigation Time-varying vis. Fly-through

Table 9: Classification of all the references surveyed (more)
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Method [SB05] [WWS03]

Data type Simulation Simulation
Data sets Sampling Irregular Regular

Grid Non-uniform Uniform
Variability High High
Type Tetrahedra Voxels

Data Model Domain Spatial Spatial
Temporal 3D + time 4D
Compression - -
Type I D

Visual. Camera Static Static
Transfer Function Static Dynamic
Illumination Static Static
Rendering IVR ray-casting

Main Contribution Time-var contours 4D proj interpret
Optimization - -
Applications Hemoglobin dynam CFD

Table 10: Classification of all the references surveyed (the end)
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