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Abstract

Volume rendering is a very active research field in Computer Graphics be-
cause of its wide range of applications in various sciences, from medicflosvto
mechanics.

In this report, we survey a state-of-the-art on time-varying volume ramgle
We state several basic concepts and then we establish several critelds-to ¢
sify the studied works: IVR versus DVR, 4D versus 3D+time, compredsicim
niques, involved architectures, use of parallelism and image-spaces\ahiect-
space coherence. We also address other related problems as thansfiens
and 2D cross-sections computation of time-varying volume data.

All the papers reviewed are classified into several tables based on the men
tioned classification and, finally, several conclusions are presented.
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1 Introduction

Volume rendering is a very active research field in ComputepBics because of its
wide range of applications in various sciences, from meeito flow mechanics.

One of the major problems of Volume rendering is the hugemelwf data that
must be manipulated in order to obtain meaningful visutibrs. The size of the
datasets conditions the necessary time for rendering.rlergg the larger the datasets,
the slower the rendering. This is the reason why many relesfforts have been
put on speeding up rendering of large datasets with soft@areell as hardware-
based solutions. From a software point-of-view, severatnegues and data struc-
tures have been designed that provide an efficient acce$® teelevant data while
skipping empty spacgspace-leaping)DH92] [SH94] [WSKO02]. Other strategies ad-
dress the 1/0O bottleneck when the data do not fit into menj@uy-of-core)[SCES02]
[SGS95] [PPLT99] [CS97] and [CSS98]. Hardware-based speeding stratemidbe
other hand, can be further subdivided into categories: ethibat exploit the capac-
ity of current consumer hardware, such as 3D texture basetermg [MGS02] and
parallelization [GPR94], and those that design hardware specifically custonfied
volume rendering [PK96] [PHK99].

In spite of these contributions, the problem of the efficieincendering continues
being serious because, as the input devices improve, th@tihe datasets increases.
In addition, the necessity prevails more and more to work déta coming from differ-
ent devicesrfiultimodal datasejs Furthermore, there is a great demand of applications
able to show the evolution of data throughout timimé-varying datasejs

In this last case, it is possible to accelerate the visu#bzaconsidering that a
continuity in time otemporal coherencexist: successive images look like. Therefore,
part of the calculations made for one image, could be usethéoiollowing one.

The idea of taking advantage of temporal coherence to sppeéndering was
early introduced by Hubshman and Zucker [HZ82]. Since thaamy techniques have
been proposed to speed up visibility computations [Bad8&8g| [CCD90] [Tos91]
[GWP91] [HBS03] [CT99] and global illumination [BP01] [WKB02] [MPT03] [HDMO3]
of polygonal scenes. However, there are still relatively #eorks addressing this prob-
lem for volume rendering. The goal of this report is to surtley state-of-the-art on
the use of temporal coherence for volume datasets. We fiised@me basic concepts
(Section 2). Then, in Section 3, we describe the classifinatiiteria that we have used
to present the existing works which are discussed in Sedtidinally, we present our
conclusions in Section 5.

2 Basic concepts

2.1 Changes through time

Different elements of a scene can vary through time: theatdjeheir internal prop-
erties, the camera and rendering parameters such as trémsééions and lighting



conditions. The strategies that can be used depend on tteses For clarity, in this
work, we will distinguish each case using the following nomlature.

e Volume animation: when the volume datasets move. This movement can be
an affine transformation of translation and rotation of b# tmmodel or a non-
uniform displacement of the sample points. The former cagppéns whenever
the volume is part of a huger scene, composed of other obgittter polygonal
or volumetric [KK99]. In the later case, the volume is aclyideformed.

e Time-varying animation: when the volume is static but the properties inside
the cells vary. Two typical applications of this type of seerare (i) a temporal
series of SPECT of a patient’s brain and (ii) the simulatioa @tiid flowing in
a fixed section of a channel.

e Fly-through navigation: when the volume dataset is static and its properties
constant but the viewer's position and direction variesugiotime, because
it navigates through the data. Typical examples of fly-tgfonavigations are
the virtual cateterism [PTN97], virtual colonoscopy [HK\85] [WTK*99] and
bronchoscopy [BSG01], [MHT 796]. Some of these papers perform the navi-
gation through surface models previously extracted frolnme datasets, while
others [BJNN98] actually navigate through the volume. Thgomaroblem ad-
dressed in this type of navigation is how to efficiently pemovisibility culling
and to bring into memory the portions of volumes that fallia turrent viewing
frustrum. In this report, we do not address fly-through natrap.

e Fly-around navigation: when the volume dataset is static and its properties
constant but the viewer’s position and direction variesaoese it moves around
the volume, without entering inside it. [YS93]

Obviously, these cases can be combined. As an example, Wi¢iner moves
around a volume whose properties vary through time, we wlitl about aly-around
navigation of time-varying volume dat#f the viewer navigates inside the same vol-
ume, it will be aFly-through navigation of time-varying volume datt the volume
moves and its properties vary, we will talk abouw@ume animation of time-varying
data

We do not enclose in this taxonomy the case in which only deéired rendering
parameters such as lighting conditions and transfer fonstchange. This has much
to do with interactivity than actually animation and its iaats.

In most of these cases, rendering consists of generatinguesee of images of
the volume at different instants throughout a period of tifaer clarity, we will call
these time instantsey-instantsand the corresponding imagksy-framesA different
approach is that of th€hronovolumegWS03]. Inspired on the early photographic
methods of Marey and Muybridge, this technique performsgegration through time
and produces a single view that captures the essence oligdtay-instants of the



sequence. It is suitable for time-varying voxel models. Tmeonovolume is a voxel
model such that every voxel is computed by integrating &lMbixel values throughout
time for a given transfer function. The chronovolume is ened as a regular volume
in order to produce 2D images.

2.2 Data characteristics

Volume rendering strongly depends on the application inctviii is used and on the
characteristics of volume data: the size of the data setsdigtribution of the sam-
ple points, the type of property associated to each sampléh@way they vary along
time. In medical applications, the grid structures of thegke points are generally reg-
ular, based on a Cartesian lattice, also called rectilingdr @ypical medical dataset
sizes are 2560r 512. On the contrary, computer simulations of vector fields sagh
Computational Fluid Dynamic€CFD) produce curvilinear and irregular grids.

The property values associated to each sample can be umigpng from one
input modality gnimodal renderinyy or coming from different input modalitiesnul-
timodal rendering. Properties can be scalar values, such as density, omactalues,
such as velocity. Scalar values can be rendered directhg@shnission and absorption
and surface scattering shading models. Vector field rengegquires to construct-
ing geometric primitives such as pathlines from the dataefficient computation of
trajectories based on texture discretization,Wmsteady Flow Advection Convolution
(UFAC) is described in [WEEO3]. This type of work fall beyondetbcope of this
report.

Finally, the speed with which the property values vary datees the degree of
similarity of the volume between successive key-instants.

2.3 Coherence Metrics

In order to evaluate the spatial coherence and the tempainakence on the data sets,
some metrics have been defined in different papg&pstial metricsndicate the amount
of coherence on the volume domain aedporal metricsneasure the amount of co-
herence or variability within a series of volumes. Theseritethave been used to
analyze the variability of the original data sets as welleddfine an error measure on
the compressed volume representations used to improverbdening stage. Thus, the
metrics can be defined based on the voxels’ scalar vatoadaf-basednetric) and if

it is computed from the actual color of the voxels it is caltedor-basedmetric.

As the scalar-based metrics only depend on the data, thepegrecomputed
and saved in an auxiliary structure. Although color-basedrics are more accurate
because they are more closely related to the image thandbe salue, they must be
recomputed when the transfer function is changed.

e scalar-based metrics: There are a variety of algorithmdénliterature that
measure 2D image similarity such as Simple Differencing, ltkkelihood ra-
tio method, Adaptive Threshold method and others basedaiarieextraction.
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In the time varying volume data sets, [AAWOO], use drecriterion to detect
changes between a data set A and a data set B, and it is forchakite

(fi(datay) — fi(datag))?

2
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If x? is less than a certain threshdld the two data sets are similar, otherwise
they differ.

[SCM99] defines the€oefficient Of Variatior{COV), which is the standard de-
viation divided by the mean. They define COV in a single franteafbvoxels,
CO\Vss as well as for each voxel in a time sp&0O\Vs;:

COVs= %

1 G
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whereg is the voxel's standard deviation ands the voxel's meang; is the per-
voxel standard deviation anglthe per-voxel meanCOVss measures the spatial
coherence of the volume in a single frame &@Q\g; measures the temporal
coherence of a single voxel.
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These metrics have been used in other later approaches ((E&SD[JKMO1].

color-based metrics: [ECS00] extends the COV metric to twteiht color-
based metrics: the reference color-based and the apprexoukr-based. The
former one is the natural extension of the COV metric defineavalio the
RGBax domain. They define distances in RGB space in order to compate t
standard deviation. Thus, the color-based nmand the color-based standard
deviationo are:



m=sqrt(a(r?+g*+b?) +a?)

o= sqrt(% Z d(cit,c))

whered(cy, Cp) is the squared distance function defined as:

d(c1,C2) = a1[(r1—r2)+ (91 — 92)% + (b1 — b)?] + (a1 — al phap)?

ThenCOVs = Z. TheCOVy is defined in similar way tha€ OV using the

extended distanrqlces on the RGB space.

As the calculations of these color based metrics are very, §BCS00] also

defines an approximate color-based metric that can be cechgaster. The
new metric computes the difference between each transfetifun entry and the
estimated mean color values. Also, they assume that thedreigs of values are
normally distributed. With this metric, they achieve a sigant performance
improvement when the transfer functions change during ¢nelering process
without less quality on the final image.

2.4 Model

The model that represents a 3D region of volume dependsgtgron the type of data
grid. In general, regular Cartesian grids are well represknith voxel models which
are Cubic Cartesian(CC) grids [Kau90], but Theussl at al. [TMGO01] have shown
that theBody Centered CubiBCC) grid can save up to 30% of memory requirement
and of rendering performance. Irregular data are repredenith tetrahedral cells
[CFM194]. Table 1 presents the papers surveyed in Section 4 fidmsaccording to
the model.

3 Classification

We herein describe different criteria of classificationttva have used in our study.
Table 5 and the next ones show the classification of all thereates surveyed in
Section 4 according to these criteria.

3.1 Rendering versus other manipulations

Although the main application on volume datasets is rendesome work has been
published that addresses related problems, such as thgndgfstransfer functions

[JKMO1] and the computation of 2D cross sections from timaeying data. We survey
them in Section 4.3.



| Regular model (voxels) Irregular model (tetras)
[Wes95] [GSDJO04]
[GS01] [WEEO3]
[LMCO2] [She98]
[WB9S] [SBO5]
[BWCOO0]
[AAWOO]
[CD99]
[SCM99]
[BPRSO8]
[NMO2]
[WWS03]
[YS93]
[SJ94]
[WSK02]
[LCLO2]
[RHPO2]
[ECSO00]
[BAS02]
[WS03]
[SH99]

Table 1. Regular data sets versus irregular data models.

3.2 IVR versus DVR

There are two major strategies to visualize volurmebrect Volume Renderin@VR)
andDirect Volume Renderin¢DVR). In the former approach, one or more polygonal
isosurfaces are first extracted from the volume [LC87] and tlemdered using the
polygon-based hardware-assisted pipeline. In the bitdjolgy, we have found several
works addressing the extraction of surfaces from timeiagryolume datasets (see
Table 2). We survey them in Section 4.1. Strategies to sppatieisecond part of
the IVR pipeline, i.e. rendering the extracted surfacesyldidall in the category of
temporal coherence for polygonal scenes [HDMO03] which isafihe scope of this
report.

The latter approach (DVR) renders directly the volume using of these four
methods [MHB"00]:

e ray-casting [Lev90]
e splatting, either volume-aligned [Wes90] or image-alidjfisMC99]

e shear-warp [LL94]



| IVR | Direct Volum Rendering (DVR) |
| | RayCasting Splatting | Shear-warg Texture Mapping|
[WB98] | [Wes95] | [BPRS98]| [GSO01] [GSO01]
[BWCO00] | [SCM99] | [NMO2] | [CD99] [LMCO2]
[GSDJ04]|  [YS93] [AAWOO]
[SHO9] | [WSKO2] [ECS00]
[BASOZ] [SJ94]
[She98] | [LCLO2]
[SBO5] [RHPO2]
[WS03]
[WWS03]

Table 2: IVR versus DVR.

¢ 3D hardware-assisted texture-mapping [WE98]

Table 2 presents the papers surveyed in Section 4.2 clasadeording to the al-
gorithm on which they are based.

3.3 4D models versus 3D+time models

Time-varying datasets can be treated specifically as threensional models that
evolve throughout time or as particular cases-dimensional models [Neo03]. Strate-
gies developed in the former case typically exploit tempooherence, whereasD
techniques treat time as one dimension more. In [WWSO03] @iffeinterpretations of
a 4D projection are analyzed and in [BPRS98] a graphical userfate is presented
to deal with parallel projections of n-dimensional databl&a3 shows a list of both
types of approaches.

3.4 Compression

The huge size of volume models compromises the efficiencgmdering. The use
of compression techniques can reduce this problem. The r@ssipn schemes can be
classified into two categories: those based on spatial tatztsres and those based on
the space of values. The purpose of spatial data structiteseduce the complexity
of traversal algorithms, which is generally of the orderta thesh size. By grouping
cells of the models, either hierarchically or not, spatitiedstructures provide means
of avoiding costly cell-to-cell processing. On the congralgorithms based on the
values space rearrange the data according to function spaezency [BAS02], but
they sacrifice spatial coherency. Hybrid approaches wgrkirboth spaces can take
advantage of space and value coherencies.
Spatial data structures



| 4D model| 3D+time model|

[WB98] [Wes95]
[BWCOO0] [GS01]
[SCM99] [LMCO02]
[BPRS98] [CD99]

[NMO02] [AAWO00]
[WWSO03] [She98]

[SBO5]
[GSDJO4]
[SJ94]
[LCLO2]
[RHPO2]
[ECSO00]
[SH99]

Table 3: 4D models versus 3D+time models.

In DVR, spatial data structures are often used to encode tlagidm of non-empty
cells in a volume. They provide means to skip these emptyneagii.e., to perform
space leapingSeveral spatial data structures have been used for thgseses: pyra-
mids and octrees [Lev90], multidimensional trees [WG94};tieis [SFO0], shells
[UO93], extreme vertices encodin@VM) [RAA04], [RAGO5], distance transforms
[ZKV92] and run-length encoding [Lac95b]. Octrees, shatisl EVM have also been
been used in IVR to quickly identify the cells that containisosurface, i.e.isosur-
face cells We next describe those structures that have been exteodsaetvarying
volume data.

In order to improve the efficiency of volume ray-casting, agyLev90], propose
to construct a pyramid such that for a dataséd @bxels on a side with = 2M 4+ 1, for
someM, the pyramid is composed df + 1 binary volumes. A cell at a pyramid level
m contains a zero value if all eight cells at leval- 1 that form its octants contain
a zero value and a value of one otherwise. Therefore, whey mtersects a zero-
valued cell at a levein, the lower levels of the pyramid within the cell don’t need
to be sampled. This pyramid can be implemented by condensas a linear octree
[Gar82].

Wilhems and Van Gelder [WG92] designed tBeanch-On-Need Octre@ONO)
that partitions the cells efficiently when the dimensionshaf volume are not powers
of two. The subdivision criterion is that the lower subdiorsin each direction covers
the largest possible amount of two cells. When used in IVR, th&lB@odifies the
min-max bounds of each cell. Thus, during the traversal efdttree for the extrac-
tion of an isosurface, only cells whose min-max bounds eseddhe isosurface value
are traversed. A similar scheme is applied in [SH94] but fyoaty Lipschitz bounds
instead of min-max bounds.



Finally, theRun-Length-Encodin(RLE) consists of a series aiins composed of
a voxel value and the number of consecutive voxels that shésevalue. The RLE
used in the shear-warp rendering proposed by Lacroute Bia®ncodes only the
property of transparency or emptiness of the voxels. Theeeft reduces the runs to
the number of voxels since the value (transparent or norsrarent) can be deduced
from the alternation of the codes.

Value-based compression

Compression techniques based on the value space includeahespace [LSJ96],
the interval tree [LSJ96] and the usual compression schémsigmal processing such
as theDiscrete Cosine TransforfDCT), theFast Fourier TransfornfFFT) and wavelets
[Mur93]. The decomposition of the value space instead of#mmetric space has the
advantage that it can be applied to structured as well asussted data.

The span-spacevas introduced by Livnat et al [LSJ96]. LEtbe the set of data
cells, to each celt; € C, we associate a poirti = (min, max) such thatmin, =
min;(vj)i andmax = max(vj); ((vj)i are the values of vertices of the cel). P is
the set of pointg;. Then, the isosurface corresponding to a valwell consist of the
set of cells, whose corresponding points follavinp < v < max. As all the interval
methods, the intervals have to be ordered either by the mawior by the minimum
value. The authors of this method propose the use of a kgdiereture due to Bentley
[J.L75], to simultaneously order by maximum and minimunuegl. The kd-tree is the
multidimensional extension of a binary search tree. Thithoeimproves the com-
plexity of isosurface extraction. Letbe the number of cells arldthe number of cells
intersected by the isosurface. While most of the existingritlygns have a worst case
complexity ofO(n), using octrees [WG92] i®(klg(n/k) and using the span space is
O(4/(n) +k), taking into account that the construction of the kd-tre®(islgn).

The approach [CMM97] is also based on the span space and to deal with the set
of intervals the authors propose an interval tree, strealue to Edelsbrunner [Ede80],
instead of a kd-tree and the search complexity is logarithiMioreover, for structured
datasets in which a marching cubes-like algorithm [LC87pibé applied only inter-
vals of a subset of cells are stored. This subset are the bédiskof a 3D chess-board
interpretation of the volume (1/4 of the total number of €ellecause the vertices of
the generated triangular patches would lay on the edge® ofdlume dataset and the
mentioned subset of cells hold all of them (1 edge is sharetidslls).

The DCT [GW92][Jai89][Say00] has been used by Ma et al. [LMCO02] joirato
guantization and encoding to perform a lossy compressidime-varying data. The
technique is used to mapping scalar sequences into sirgir sedices to exploit the
temporal coherence.

TheDCT is defined by:

N-1
Cw =a(u) 3 1 cos{%}
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Figure 1: DCT-based encoding example, using a window sizeasfddcompressing
the first three coefficients into an 8-bit value.
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whereC(u) are the transformed coefficients,is the number of input samples and
f(x) are the input samples. Each coefficient, representing thpooent of a certain
frequency, is quantized in an adaptive scheme that leaveslnits to the high variance
features (see Figure 1).

The resulting values are combined into a single number useoh anhdex entry to
a 2D palette texture (see Section 4.2.3). As the encodingriepned for each slice,
the same scalar value can be encoded into a different cosguresalue depending on
the slice. The authors mention this as a minor problem bectgspossible artifacts
are soften when computing the whole volume rendering iategResults show that
compression can reduce the amount of texture storage eeluiore than three times.

S. Guthe and W. Strasser [GS01] useaveletsas the basis to their lossy com-
pression method to perform hardware-driven texture mappendering (see Section
4.2.3). The wavelet transform itself is lossless, congjstn analyzing the original
signal by applying a wavelé¥ and scaling® filter and down-sampling the resulting
signals by a factor of 2 (see Figure 2). The resulting sigasddiscretized, obtaining
what are called thevavelet coefficientsH for the high frequencies, and L for the low
ones. This transformation can be generalized to 3D, appiyie 1D wavelet transform
in all three dimensions separately, resulting in a 3D tepsoduct. Then we apply a
3D wavelet transform to the low sub band recursively (searei@).

Guthe and Strasser compared higher order wavelets, aijdoeitter results as the
order increases. They encoded the individual volume distaseng a 3D wavelet trans-
form. The range of coefficients that would be mapped to zezalacarded, and the
rest scaled and quantized. These range and scale paradegtersd on human vision
sensibility. Compression is performed with a combinatioRbE, and the LZW algo-
rithm [ZA77] or an arithmetic encoding, achieving a rati®iDfor single volumes. To
obtain longer zero runs, a depth first traversal through #neelet coefficients octree is
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Figure 3: Left: a single step (L=low pass filtered, H=highgfkered). Right: recur-
sive decomposition (4 steps)

performed. However the non-linear memory access resut$ass of decoding speed.
The resulting RLE are compressed with the LZW or an arithneetaoding. The LZW
encodes the sequences by storing the last appearance ahtkesab string, while the
arithmetic encoding used -an adaptive model- adapts thdeauof bits employed to
encode each value.

To exploit the temporal coherence, the differences betvraemes are used to com-
press the volume sequence applying a method similar to the@/ARotion compen-
sation [[MP93] [[MP96]. The technique is call®dndowed motion compensatibe-
cause it expands the blocks used to predict motion, so thesfapseach other. Later
on, the overlapped areas are filtered to compensate. Therawlttain a whole volume
compress ratio up to 200:1 using this method.

Wavelet transform has been used also by R.Westermann in Bjves®ing the
compression process, but in this case there is no deconprge®cess because the
render is performed in the transformed space (see Sectyn 4.

3.5 Architecture

Another classification criterion that we have used in thiseyis the type of architec-
ture used in volume rendering: general purpose architectudedicated ones. General
purpose architectures provide maximum flexibility and theye recently improved
their performance with the development of new programméiit&)s. However, they
still fail at providing real-time frame rates for renderiafjhigh -resolution 3D and 4D

11



datasets. Therefore, many efforts have been put on theageweht of special-purpose
volume rendering architectures. As an example, the Vizatitin Lab’s team leaded
by professor Kaufman, has been working since 1982 on this opl has designed the
Cube-1 [KB88], Cube-2 [BKX90], Cube-3 [PKC94] and Cube-4 [PKO6hitexrtures.

3.6 Use of parallelism

The improvement of the efficiency of volume rendering and fet that some vi-
sualization installations are inherently concurrentduse various researchers interact
simultaneously with the same datasets, have also lead tieHign of parallel solutions
in general-purpose architecture as well as in special parpoes. The parallelization
of ray-casting [MPS92] and shear-warp [Lac95a] [SLO2] aaetipularly hot topics
that have yield to numerous publications.

Ma et al. [LMCO02] have applied a parallel scheme tBxtextureshased render-
ing process obtaining an speedup closer to six with nine siotlkey use eight nodes
to render volume slabs and the ninth node to control the psoaad display the final
image. The volume slabs reflect an object-space task partig [MPHK93][Neu93]
that allow aback-to-front(BTF) visibility ordering. As the 2D texture hardware re-
quires to slice the volume orthogonal to each grid axis (@kgdigned slices), three
slabs -one aligned to each axis- are distributed to each fidweslab more orthogonal
to the viewing angle is the one used. The partial images pteseeach graphic card
frame buffer are transfered to the control node which cont@dsem into the final
image using a binary-swap method [MPHK93]. This softwarprapch gives higher
precision arithmetic to blend the slabs than the one thaddoe obtained using the
graphics chip.

Three possible approaches to manage P-processors forirgntilme-varying data
sets can be performed:

e intra-volume parallelismThe P-processor machine is dedicated to render a sin-
gle frame volume.

e inter-volume parallelismP data volume are processed simultaneously. Only the
processor main memory limits this approach.

e hybrid parallelism It balances the two previous methods. P processors are
grouped in L groups, witlh. < P. Each group renders one frame volume data.
The choice of L basically depends on the size of the data sebathe type and
the scale of parallel machine.

Parallel rendering of time-varying data can be analyzedbset performance met-
rics:

e start-up latency: time until the rendered image of the ficdime appears

e overall execution time: time until the rendered image ofl#fs volume appears
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¢ inter-frame delay: the average time between the appeaddre® consecutive
rendered frames.

3.7 Temporal coherence

As mentioned in Section 1, the continuity throughout timat timakes similar consec-
utive frames is calletemporal coherenceAccording to [Sud93], two different types
of temporal coherence can be defined:

e Image-space temporal coherences the similarity between consecutive frame
instants.

e Object-space temporal coherencés the similarity between the scene model
states at consecutive frame instants

In the bibliographylmage-space temporal coherenisalso called-rame-to-frame
coherenceThe distinction between these two types of coherence iskeéifferentiate
contributions. Table 4 shows the different types of cohesensed in the existing
papers.

| Method | Image-space basedObject-space based
[Wes95] X
[GSO01]
[LMCO2]
[SCM99] X
[CD99]
[AAWOO0]
[Sheog]
[BPRS98]
[NMO2]
[SBO5]
[WWS03]
[SHO9]
[BASOZ]
[WS03] X
[SJ94]
[LCLOZ]
[YS93] X
[WSK02] X

NXIX[IX|X]X[X[X]|X| X[ X]|X]|X

Table 4: Image-space temporal coherence versus object-sgaporal coherence.
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4 Survey

4.1 IVR methods
41.1 3D +time models

We next describe several methods that essentially difféhendata structure used to
expedite the isosurface cell search process (search g)dice

The Temporal Branch-On-Need Octree

The Temporal Branch-On-Need Octré&BON) is an extension to time-varying
volume data of the BONO described in Section 3.4. It was firgppsed by Sutton at
al. [SH99], [SHOOQ] in order to accelerate isosurface exiwacof large dynamic sets
by making an efficient use of 1/O and memory. Given a voxel rhedth properties
varying throughout time, the authors propose to construet pre-processing step as
many BONO as key instants. These BONO are stored into diska@pgthe global
information of the trees such as branching factors and e@ino children from the ex-
treme values of the nodes. The global information is stordg @nce whereas there is
a different set of extreme values for every key-instant. Basic search algorithm first
loads the tree infrastructure into memory. Then, given aiketant and an isovalue, it
fetches recursively from disk the nodes of the octree cpording to that key-instant
and whose extreme values span the isovalue. The algoritamabmputes the disk
blocks containing data points of the selected leaf nodesarlist. Once the block
list is complete, it is traversed in order to read the datakdsequentially from disk.
All the required information resides then in memory. Theoalipm next proceeds
as usually, by traversing the tree in order to constructgbsurface. In addition, the
authors propose to use thede brickingstrategy proposed by Chiang at al [CSS98]
that consists of packing nodes into disk blocks in order &alrgeveral nodes at once
and to achieve better I/O performance. The T-BON can be egtetalcurvilinear and
non-regular grids. In the original papers, it is tested omjgotational fluid dynamics
simulation data: regular Cartesian grids of &Eayleigh-Taylor hydrodynamic insta-
bility), 2562 (jet shockwave), curvilinear grids of less than $@bnpinging Jet) and
an irregular grid composed of §@etrahedral cells (electrical simulation in a human
torso). With these datasets, the T-BON with node and datkibg@roduces factors of
improvement up to 23 in the average case. As signaled by thes this algorithm
does not make use of temporal coherence, except from théhitcthe tree structure
is stored only once.

The Temporal Hierarchical Index Tree

The method presented in [She98] usd&mporal Hierarchical Index Tre@ HIT)
which is an extension of the span-space structure, desdnib®ection 3.4 and, there-
fore, falls also into the category of value partition methio@ihe decomposition of the
value space instead of the geometric space has the advartkeget can be applied
both to structured and to unstructured data and that thelsspace dimension is two.

The THIT is a natural extension of the span space. Given aititeeval (a,b), to
each cell g, define its minimum and maximum values at the time insltamir{ and
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may}, and the minimum and maximum values over time as:

mir = MIN(mirf),t =a..b
maX = MAX(max),t = a..b

Then, each cell of the dataset is associated with as muclsg@ia- (mirf, max)
as time instants. A cell is characterized by its variatioeravme and to quantify
this variation the 2D region containing these points is sttdd into a determined
number of non-uniformly spaced rectangles (lattice subutin), see Figure 4. After
this, we say that a cell has low temporal variation if all theénps associated with the
cell fall within an area of 2< 2 lattice elements. Finally, a THIT is a binary tree data
structure with nodes of the forM’. Therootis the nodblg corresponding to the initial
time interval and we associate to this node all the cellsftiiiiw the mentioned low
temporal variation criterion. If there are cells that canpe associated to this node,
the time interval is split in half and the tree is construatecursively (see Figure 5).

max

min

Figure 4: Example of a span-space subdivided into%lattice elements

W

= /N3\
NGO NS NS

’//\2 3/\4

N, N N4

Figure 5: A temporal hierarchical index tree for a time ingd{0, 5] and the traversal
path corresponding to the isosurface query at time step 1

To extract an isosurface at time instanive first locate the nodes in the THIT that

contains this time value (all the nodN§ such that <t < b).
Hybrid approach
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Bajaj et al [BAS02] propose a progressive isosurface trapftime-varying fields
that divides the search in two phases, the range-space argketimetry, in order to
exploit the spatial coherency as well as the value spacerentye The key idea of
the algorithm is to perform a contour propagation of eaclnested component of an
isosurface. At each key-instant, a connected componentbaayplit, may disappear
and may change shape. According to the simulation resutisrebd average time is
linear with the number of triangles.

Topological changes over time

In [SBO5] the authors describe an algorithm to use temporaé@nce for the
topology representation of an isosurface. The authorshessontour tree(CT) struc-
ture [BR63], [HCO3] to represent the set of contours of an idaserand define a
contour correspondence between sets of contours of twacotige time steps based
on overlapping relations between contours. The contouespondence is computed
in a preprocess andtapology change grapfirCG) is maintained over all time steps.
The method allows segment, track, visualize and quantéetiolution of any contour
and considers all the possible cases as creation and vagighcontours as well as
contour split and merge. It also allows to compute quantgahformation as surface
area and volume of contours. Two related works based alsbegfT structure are
the contour spectrum [BPS97] that manages geometric andotppal information
as area, volume and gradient integral and the contour plR&(3] that allows to
manage the number of contours (as a measure of the topdiobiages) of a given
isosurface over time.

Multiresolution representation

Gregorski et al [GSDJ04] propose a adaptively isosurfatraetkon based on com-
pressed time-varying data. The authors work with large mels, data size of about
2 TB, and so with large isosurfaces, several million triaagl€hen the adaptive iso-
contouring is the strategy used. The refinement of a tetrahetesh by longest-edge
bisection is used and algorithms for isosurface extraciodifferent levels of detail
are presented.

41.2 4D models

Algorithms that obtain isosurfaces with a 3D+time strategpically ignore features
that may be present when data is examined in different gestens, and obtain poor
animations through the four dimension. To resolve thesblpnos two strategies are
presented that work directly on 4D models.

Weigle and Banks [WB98] [WB96] present a recursive contour mestaurextract
iso-valued features in time-varying volume data. The algor wants to triangulate
contours in arbitrary dimensions. The idea consists iritsgithe cells into simplexes,
each n-cell can be transformed into different n-simplexestaen the contour from the
simplexes is obtained. A square is a 2-cell, a cube is a 3aoélla hypercube is a 4-
cell and they can split into triangles that are 2-simplettateedron that are 3-simplex
and hypertetrahedron that are 4-simplex, respectivelyt,Niee algorithm construct
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the isosurface in each simplex using a recursive trianggjgirocess applied to the
various dimensional faces of the polyhedra that composestserface.

Bhaniramka et al. [BWCO00] provide an algorithm based onNtagching Cubes
(MC) strategy to extract isosurfaces in four dimensions. diors have developed
a process that automatically generate the tables for angrdiion and triangulating
them obtains the 4D isosurfaces, which can be sliced ovetigyto provide smooth
animation or sliced through oblique hyper-planes to exartime-evolving features in
another way. A hypercube in four dimensions has sixteencesrand using the MC
strategy 26 possible vertex labelings. Even considering the symmeetiiieere are 222
different cases. The manual analysis of all the cases isaictipal and can produce
errors. In addition, the generalization to higher dimensiare even more problematic.
Therefore, the authors proposed an algorithm for autordftigenerating a lookup ta-
ble that contains all the possiblédZ:ases of the labelled hypercube in a d-dimensional
regular grid and its triangulation for each case.

4.2 DVR methods
4.2.1 Ray-casting

Reprojection techniques

Yagel and Shi [YS93] propose a frame-to-frame coherentessting that exploits
the capability of skip empty space (space-leaping). Itestam aC-Bufferthe coordi-
nates of the first non-transparent voxel encountered byapemitted at each pixel.
This C-Bufferis initialized in the first frame. The next frames can re-use toordi-
nates to traverse the voxel model, in the case that the camstatic. Moreover, the
C-Buffercan be re-used if the model rotates by reprojecting thesatgion points of
a pixel to the new pixel. When the reprojection is finishedrdhare pixels that are
empty, in this case, we need to start sampling to the volunuadery. Other draw-
back is that several coordinates can be mapped on the sam@xedwbut the authors
propose one solution. Algorithm 1 illustrates the pseuddecof this strategy. This
approach speeds up ray casting computations when the cantemtransfer function
change.

Recently, Wan et al. [WSKO02] found that the original pointdxhseprojection
method can create artificial hole pixels, that can be cogtkasing a cell-reprojection
scheme. Both approaches speed up ray casting computati@mstinds camera or the
transfer function change. However, when the property sariside the voxels and the
empty voxels change along time, tBeBuffermust be recomputed. The reprojection
technique has also been used to track points across frarmedento reduce temporal
aliasing [MRS 03].

Incremental ray-casting

Shen and Johnson [SJ94] focuses on exploiting ray cohekenee the property
values inside the voxels change along time and the camerainsrstatic. Given the
initial data sets, this method constructs a voxel model fier first frame and a set
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Algorithm 1 Yagel and Shi pseudo code for space-leaping based raywgadgjorithm
for all pixel (i,j) in the screero
[u,v,wj:=ray_entervol([i,j]);
C_buffer]i,j]:=shootray([u,v,wl],[i,j]);
end for
for all change that requires re-renderithg
if changds rotationthen
for all pixel(i,j) in the screemo
[I"j" |:=Transform(Cbuffer[i,j]);
add coord(Chbufferfi,j], T _Buffer[i",j']);
end for
for all pixel(i,j) in the screemo
C_bufferl[i,j]: =elim_hidd(T_buffer[i,j]);
if C_buffer([i,j] is emptythen
C_buffer]i,j]:=ray_entervol([i,j]);
end if
end for
end if
for all pixel(i,j) in the screemo
C_buffer]i,j]:=shootray(C bufferi,j][i.j]);
end for
end for
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of incremental models for the successive frames, compaoste @woordinates of the
modified voxels and their values. The first frame is computechfscratch. The next
frames are computed by determining which pixels are aftelojethe modified voxels
of the corresponding incremental file, updating the voxefled@nd recasting only the
modified rays (see algorithm 2). This strategy produces mifgignt speed-up of the
animation if the incremental files are small, i.e., the nundsenodified voxels is low.

However, the incremental files do not keep the spatial andeoi the voxel models.
Therefore, the method is not suitable to visualize sub-nsoolespecific features in a
model.

Algorithm 2 Shen and Johnson algorithm based on ray-casting that exptei tem-
poral coherence to re-cast only those pixels that intexgigctchanged voxels.
for all time step o
for all changed element[x,y,zlo
pixel_list:=correspondingpixels(x,y,z);
updatevolume(x,y,z);
insertpixels(raycastlist,pixellist);
end for
for all pixel [u,v] in ray_castlist do
value:=castray(u,v);
updateimage(u,v,value);
end for
displayimage();
end for

Liao at al. [LCLO2] shares the idea of Shen and Johnson [SJ9#casting, at
each frame, only those pixels that intersect with changeelgo This paper proposes
an improvement of [SJ94] technique to reduce the cost ofitatle which pixels need
to be recasted. This technique consists of computing (ireprpcessing stage) two
additional differential files for each frame, call&dst Order Differential file(FOD)
andSecond Order Differential filESOD). FOD stores the changed voxels at one frame,
and SOD the exclusive-OR between two consecutive FOD (tkelsahat are in the
first FOD but are not in the second one, and the voxels thatatria the first one but
they are in the second one). The authors propose a methodttdata the changed
pixels using FOD or SOD files. The computing cost using oneotth files depends of
their size, so at each frame the method can choose one gtaatiége other to minimize
it. This technique can avoid the cost of projection the medifioxels to calculate the
recasted pixels.

In [TGFPO5], the time-varying dataset is encoded as a Teahpam-Length (TRL)
structure that stores for every voxel a sequence of codepased of the property
value and the number of succesive frames in which this vaoems constant. The
rendering algorithm based on this object-space structuae incremental ray-casting
algorithm that additionally uses a temporal image bufferisg for each pixel the next
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instant of time in which the pixel must be recomputed. At gveame, the algorithm
casts only rays through pixels that may change. The TRL pesviten the needed
information to actualize the next instant of change of theelsi corresponding to re-
casted rays. The algorithm uses three different spacenlgafrategies to avoid having
to sample empty regions of the volume. A simultaneous versidhe algorithm that
computes all the images at a time, in batch, is also descrii@d method can handle
simultaneously several data modalities because an orepeimqut-of-core strategy is
used to handle large datasets.

Ray-casting isosurfaces

Reinhard et al. [RHPO02] address the 1/O bottleneck of timgiagrfields in the
context of ray-casting isosurfaces. They propose to partgach time step into a num-
ber of small files containing a small range of iso-values.ibythe visualization, only
one file containing the given iso-surface value and time stsls to be loaded into
memory. Each file contains a set of voxels represented wétsdbrdinates (x,y,z) and
its value. The creation of these files is performed in a preggsing stage. They use a
multiprocessor architecture such that, during rendesrigle one processor reads the
next step time, the other ones render the data currently mone Their results show
that partitioning data is an effective out-of-core solatio

Use of a T-BON

Ma et al. [MSSS98] explore the use of a BONO [WG94] for time-uagyregular
data in a 3D+time model, the T-BON, as described in Section#h& construction of
the tree consists of three steps: quantization of the volwmestruction of a BONO
for every instant of time and merging of the subtrees thaidertical in successive
BONOs, based on the object-space temporal coherence of the Qaantization is
the simplest lossy compression method that uses a limitetbau of bits to repre-
sent a larger number of raw data values. According to the clagacteristics, they
use three lossy quantizers: uniform, non-uniform and agapThe variability of the
data importance is measured with an importance functioadas the opacity trans-
fer function provided by the user. In this sense, the BONO dégelirectly on the
transfer function. If the classification parameters varg, building process should be
performed again. Next, this data structure is rendered maighcasting by processing
the first BONO completely, and only the modified subtrees offétilewing BONOs.
To do so, an auxiliary octree, called thempositing tregis constructed, similar to
the BONO, that stores at each node the partial image corrdsppto the subtree tak-
ing into account the image-space temporal coherence. Atsswe frames, when a
subtree changes, its sub-image is recomputed and congpasits parent level in the
hierarchy. This rendering optimization is based on a fixesving position. If the
viewing position changes, a new compositing tree should®ated. They propose to
construct a complete tree at regular intervals of the ptessibwing positions in order
to allow random points of view. Also, they use some optimaa asfront-to-back
FTB early-termination and space-leaping with the octresfmation.

In addition, in order to accelerate the visualization pescdMCO0O0] uses super-
computers to perform rendering calculations and displagsésulting images on end
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desktop computers connected over a wide-area network. ddrepine efficient pro-
cessor management and compression to achieve near-tivenaenote visualization
on parallel computers. They minimize the interframe delag analyze how proces-
sors can be partitioned in order to obtain interactivityey levaluate several compres-
sion methods and transform mechanisms to compress thentiatheé supercomputer
and decompress it into remote user. The rendering is olataiemg a parallel ray-
casting volume renderer and they analyze the optimal numibgrocessor partitions
to use into the supercomputer.

Use of a TSP

Shen et al. [SCM99] introduced a spatial octree that stores\adume capturing
both temporal and spatial coherence for time-varying detat spatial octree is called
Time-Space Partitioning tre@ SP). To store the temporal information, each node of
the TSP is a binary tree. Each node in the binary tree repie®n same subvolume
in the spatial domain but in a different time. Some otherrimfation is stored in those
binary tree to help in the tree traversal during the volunmeleging process: the mean
value of voxels within the subvolume at each time and measemés of spatial and
temporal errors and coefficient of variation. The TSP candtained in the preprocess.
To perform volume rendering at run time, the TSP is first rewd to identify the
subvolumes that satisfy the user query. Then the locateebfubes are rendered in
the correct order to construct the final image. In fact, thth@s propose a divide-
and-conquer strategy. In the traversal, the nodes in the ar8Recursively visited
in the FTB visibility order according to the viewing diremti. Then the subvolumes
that are selected are rendered independently and the fiagleins then constructed
by compositing the partial ones. To accelerate the timgivgrvolume rendering, the
authors propose to store the partial images of the subvaiumeach node of the TSP
structure.

A 4D approach

In [WWSO03] the data is treated as a 4D data field. A 4D hyperplameiined as
ax-+ by+cz+dt+e= 0 and a 4D projection can be interpreted taking into account
three families of hyperplanes:

e d =0. In this case the hyperplane intersects the volume at the &zcation for
all the time steps. It shows the time evolution along a paldicviewing vector.

e d#40,a=b=c=0—dt+e=0. It shows the time-varying sequence at time
instantt = —e/d

e d#A0A(a#0Vvb#0Vvc+#0). Inthis case space is shifted by time. At each
time step, we select a different slice of the volume. It shidvesevolution of a
feature during time.

The authors analyze several integration operators andférafunctions (alpha

composition, first hit, additive projection, etc.) for thede families and implement a
ray casting strategy.
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4.2.2 Splatting

The work presented in [NMO02] is focussed on the compressiatDodatasets. It is
achieved using the more efficient sampling grid 4D BCC. This aesgon is almost
lossless when the reconstruction is based in a Gaussiaellard, therefore, suitable
for splatting. BCC grids are a generalization of hexagonalsggaind the compression
rate grows with the number of dimensions (3D: 0.71, 4D: 0A)BCC grid can be
interpreted as two cubic Cartesian grids interleaved wittts /2T and offset in alll
directionsT /+/2, T being the sampling distance of the cubic Cartesian grid. Hte d
is further reduced by using a RLE for the relevant data poifitee 4D data is visual-
ized by obtaining a 3D hyperslice (3D BCC), as a list of 3D voxbisjnterpolating
an arbitrary hyperplane. Then shading, visibility-ordgrand depth compositing is
performed for any new 3D viewpoint and transfer functione Btrategy applied is an
image-aligned splatting [KMC99]. This approach works well &ll kinds of slices,
although the maximum rendering speedups (up to 30 %) dueetoetiuction in the
dataset are mainly for slices aligned with three of the foajanaxes.

In [BPRS98] a 4D approach is also followed. The work is focussetighlight-
ing topological features (holes, cavities, extrema, etnd does not consider rendering
techniques (occlusion, realism, etc.). It uses an octigesentation of the hypervol-
ume and follows a splatting strategy which is a generabratf that presented in
[LH91]. The authors present also a graphical user intefflacmteracting with paral-
lel projections of the hypervolume. The splatting strataggs a transfer function to
highlight the desired features, can deal with a multiresaturepresentation (octree)
and takes advantage of texture mapping graphics hardwdre.sflatting technique
used is very simple because they perform parallel projeciod do not consider the
ordering of voxels since they do not perform occlusion. Mweg, as the value in each
voxel is assumed constant, each splat is the projection efube and the luminosity
distribution can be computed exactly by using a bivariated@ine.

4.2.3 Hardware-driven texture mapping

The use omultiple 2D textureso exploit hardware possibilities to render a volume as
slices has been used by Ma et al. [LMCO02] in combination withsay compression in
a parallel implementation. The method extracts the tentgotgerence using the DCT
coefficients and compressing them as described in SecttbbnThe resulting values
are combined into a single number used as an index entry to pakfte texture.
This way the value stored in each texel represents an appabixin of a sequence of
scalar values. The sequence is reproduced by updating litvepadette at each frame,
changing the entries to the color found in the transfer fioncfor the scalar encoded
by its index (see Algorithm 3).

The number of time-varying values collapsed into a single isncalledwindow
Each window stores the average of the sequence values, wiodlices image arti-
facts when changing from a window to the next one. To avoidrafisition artifacts
occur at once in the whole volume, the starting times of thedeivs for each slice
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Algorithm 3 Time-varying encoding changing color palette
Color transffunc[256]; // LUT from the transfer function
Color palette[256]; // computed color palette for each tineps
int decoder[N][256]; // N time varying scalars encoded bglea
/I of 256 possible texel values created by the compressioregs
for all timestep t (0..N-1§o

for all palette entry i (0..255)0
palette[i]=transffunc[decoder([t][i]];
end for
setCurrentFramePalette(palette);
renderTexture();
end for

Slices
along the

view direction
10 11

Time

Figure 6: Window interleaving: Every time step only somelaf tolume slices tex-
tures are replaced to avoid general transition artifactee Mumbers on each slice
indicate which time steps the texture stores.

are interleaved as shown in the Figure 6. This techniquescs @deful to avoid load-
ing a whole volume at certain time steps, which would regsicging a copy of the
next volume in texture memory. Using window interleaving)yosome textures are
flushed to be replaced by new ones at each time step. The priscagplied to each
volume axis-aligned slice independently. Thus, the setkslices are those ones more
orthogonal to the viewing direction.

A sequential and parallel implementation (see Sectioni&6)oeen tested on high
variability simulation data sets.

S. Guthe and W. Strasser [GS01] used 2D and 3D textures, btitera exploiting
temporal coherence in a lossy compression context on nealddable data sets. The
compressed encoding is performed using the wavelet transfse explained in Section
3.4. The 3D texture visualization is performed directly laydware in an ATI Radeon
graphics card that supports this feature, in combinatiaih wiells. The shells are
small sphere subsections useful to better approximateitfeeesht distances between
texture slices as seen in Figure 7. On the other hand, as tldeN&eForce used by the
authors didn’t support 3D textures, they performed a tredir interpolation between
any two slices as described by Rezk-Salama et al. [REBBto approximate these

23



distance differences. They use 2D textures to perform arsi@a rendering schema
as can be seen in the next section.

viewing rays
Y g ray:
textures:i: }d i d’ ‘Edl "}d: :'d). /;d,,

perspective viewer

texturesi:ﬁ;;/ \\\'/‘/ shells
N s R

perspective viewer

Figure 7: Different distancesbetween textures introduced by different viewing points
or perspective projection.

The TSP tree, explained in Section 4.2.2, has also been asgubéd-up texture-
based rendering [ECSO00]. This structure is particularlyedle for datasets in which
most of the volume remains almost static and only specifionsgvary through time.
Otherwise, the tree can be highly subdivided and only fewigdamages can be re-
used. The fast volume rendering is achieved by renderingndbiration of flat-shaded
and solid-textured polygons. Flat-shaded polygons remteggions that have a high
spatial coherence compacted on the TSP tree codificatiohd-®&tured polygons
represent regions having high variation, both in spatial ®mporal domains. The
overhead of generating additional slicing planes in thesslulnes for the texture gen-
eration is reduced by an incremental slicing algorithm kinto the standard scan-line
polygon rasterization algorithm. The rendering time i®aisduced loading and re-
taining in memory the textures that have to be rendereredxhsteps.

4.2.4 Shear-warp

Anagnostou et al. [AAWO0OQ] proposes an approach for rendetiimg-varying data
based on the Shear-warp technique. The work is applied ton@ldatasets where
only a relatively small part of the volume changes, that @dume data with a high
coherence in time, and treats separately the time dimerfisianthe spatial one. In
fact, the work wants to exploit the existence of spatial arddoral coherence using
an adapted RLE of the volume. There is a preprocessing stageetects, encodes
and saves to disk the changes over time. Next, the renddagg ads the changed
areas from the disk, updates the volume and renders onlyhtreged area. The pre-
processing stage is viewpoint independent, while the meémglstage is not.

To exploit the spatial coherence the volume data is comedessing a RLE. This
data structure performs well in the case of a single volumehbcomes inefficient with
multiple time-varying data. The authors propose an adufistructure that expands
the RLE encoded volume to its previous dimensions in spaesepving the run-length
information. When a change is detected over time, the exghRd€ is updated by
properly inserting the modified runs in the volume scan:line
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To exploit the temporal coherence the authors based thek w the property
called partial ray compositing, that means that the fina&risity obtained for each ray
can be derived compositing different partial intensitiesvolume data when a great
percentage of the volume remains unchanged, the size oththieged area is small
compared to the size of the column that needs re-renderihg.alithors propose the
notion of aslah, that is a thick slice. According to the partial ray paradighey split
the ray into a number of rays each of which composites voxataniging to a slab. The
partial image produced in this way, that is the intensitiesesponding to each slab,
are stored in another data structure. Then only slabs teaicaupied by the changed
area need to be recomputed and compositing them with theangel ones.

Clyne and Dennis [CD99] present a volume rendering systenduoasa parallel
implementation of Shear-warp algorithm. They extend astag serial implementa-
tion of the algorithm in the VolPack library. This packagestgites on preprocessed
RLE data volumes, that computes the view-independent gpanid gradient infor-
mation of the data samples. Shading is performed using aedheel that can be im-
plemented as a lookup table simulating the Phong lightingaggns. The cost of the
rendering time is the cost of the projection of the volume ihie baseplane image and
the cost of warping the baseplane image into the final image.alithors propose an
strategy for parallelize each of these computational pha3ée baseplane image is
partitioned into small groups of contiguous scanlines. HEamcessor computes the
final image for a group of scanlines until the whole final imagebtained. To ren-
der time-varying data uses a double-buffer strategy thep&éwo copies of data in
memory, one which is rendered in fact and the other one wkicbhmputed.

As mentioned in previous section, S. Guthe and W. Strassed]used 2D tex-
tures to implement a Shear-warp algorithm, exploiting terapcoherence in a lossy
compression context. The compressed encoding is perfoasiad the wavelet trans-
form as explained in Section 3.4. The basis is to render astaigned 2D texture
stack, the one best aligned with the view direction. Theeanglrection is performed
using the register combiner feature that lets to modify thacity depending on the
angle between the normal and vision vectors. This techrpgo@uces artifacts when
switching from one stack to another. So, they render theethres-aligned texture
stacks and combine the results. The problem is that it coasumore time. An alter-
native using directly 3D textures is presented (see Sedtds3).

4.3 Other uses
4.3.1 Tranfer functions for Time-Varying Data

Designing transfer functions for time-varying data seta isew problem in volume
visualization that is often ignored. In an early work, cdle Contour Spectrum
([BPS97]), the user can display the changes of the undertyamgour functions over
time. The contour spectrum is a statistical signature stingj of a variety of scalar
data and contour attributes, computed over the range arsealues. Isovalues of in-
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terest can be chosen manually from different times and corfitmctions values. The
result is a set of opacity maps over time. [JKMO01] studiefed#int semi-automatic
approaches for transfer function generation in order taiokd single or minimal set
of informative opacity transfer functions for a time-vargidata-sets. They propose
two types of methods that obtain opacity functiossmmary-functionandsummary-
volume The first one consists of algorithms which analyze eachdraeparately, cre-
ate a transfer function, and then try to combine these teafigfictions into a summary
function (in a similar way as 3D+time ). To combine the tramgtinctions, they use
four methods based on the opacity values: single reprdsentaverage, union (max-
imum opacity) and coherency-based. This summary functased during rendering
of all frames.

Single representative methods select a single frame anly &pj the others.
Coherency-based methods utilize the coefficient of vana{@O\Vs;) metric, previ-
ously explained in the section 2.3. If the COV value of a timerival is less than a
certain threshold value, it means that the values do notgghsignificatively over time
and then, the opacity values average is used over the ihtériree COV value is high,
the interval is subdivided and the COV of the subinterval®mputed. The final value
is computed from values of the subinterval of lowest COV value

The other class of techniquesjmmary-volume basédchniques, does not ignore
the temporal dimension and operates upon the entire setwohes to generate a trans-
fer function. It creates a single volume that combines alifes and then they extract a
transfer function from this volume. To create the summaitywv@s based on the prop-
erties values, the methods applied are: averaging andewatyerAgain, this function
is used during the rendering stage.

As in data sets with periodic motion with non-regular bouretlg these techniques
do not obtain satisfactory images, they propose a methodhagenerates a set of
transfer functions based on the coherency-based methatsrohary-functionsmul-
tiple transfer functions For each value data in the transfer function, a traverfdahe
intervals is performed in order to return a set of time indswith the COV value less
than a specified threshold with its mean opacity. Then, foh@dtained time interval,
the midpoint time is calculated and used to create a trafgfietion. Each value of
these transfer functions of the midpoint time is the averkadee calculated previously
in the corresponding value time interval.

4.3.2 Volume animation based on skeletons

Some volumetric applications such as volume morphing,abjenplification, physically-
based deformations and animations automatic path nasigaéind volume modelling
can be improved using volume based skeletons. [NKHS98]qsepa technique to an-
imate volumes using a Skeleton Tree. In order to animatelanw®imodel, they extract
a skeleton that captures the essential topology of the w@labject to be animated.
This skeleton is a medial axis as it is defined as the centiatgpof the object and
the distance of these points to the surface. They use thexpyated distance based
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on the (3,4,5)-weighted metric. Moreover, they can obté#ierent kinds of skeletons
varying the values of a thinness parameter, that gradula¢egdnsity of the skeleton
in order to achieve finer control of the deformation. In ange;ahis parameter value
doesn’t guarantee the skeleton connectivity.

Once the skeleton is extracted, an automatic connectiarepsds performed based
on the spatial coherence and the distance value coheretrice skeleton points. The
skeleton voxels define the set of nodes of a weighted undulegtaph and they are
fully connected. Edge weights are based on the degree aébkpatl distance value
coherences. Then, the minimum spanning tree of the graphedefie Skeleton Tree.
The next step is to define, over the skeleton tree, constréontdeformation (vary-
ing the distances) and motion (changing the point locajiohs[NS01], the authors
propose the use of Alias Wavefront to interact with the Skeldree.

The final step is to reconstruct the final deformated and aeitheolume object
from the skeleton information. Using the distance metrid asing bounding boxes
from the distance transform, they can approximate the finghse of the volume
object.

4.4 Rendering in the transformed space

In [Wes95] R.Westermann computes the volume renderingratt¢gCH88] [KH84]
[Lev88] directly over the transformed space instead of dgu@ssing data before per-
forming the render. First, at each time step, the volumairssfiormed and compressed
using the wavelet transform (see Section 3.4). Second,dteeisl analyzed to detect
the low and high frequency regions, to distinct those wherhain constant over time
from the high fluctuating parts callddcus of interest Third, low frequency regions
are reconstructed with larger error tolerance than higls.oriene rendering process
is performed tracing rays on the multiscale representatafrthe original three di-
mensional signal as had been done before in [GLDK95][MUM8§94], but taking
profit of temporal coherence. They successfully testednigthod over high variable
simulation data sets.

5 Conclusions

In this report, we have presented a state-of-the-art ontanging volume rendering.
Since most of the papers focus on speeding up rendering,aittigally difficult to
compare them and to be able to determine if one is more effitian another, because
the datasets used are different, the computers also anffitheney strongly depends
on implementation details.

In order to conclude this report, we next describe open prablin time-varying
volume rendering that we believe can be future researcls.lin@ifferent changes
can occur throughout time camera movement, lighting cardt user preferences,
model movement, deformation and property values variat®ome papers focusing
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on navigation around volume models [YS93], others on nawmgahrough volumes
[BJNN98] and others addre3sme-varying volume renderinge rendering static vol-
umes with varying property values. No specific algorithmsifideractive navigation
around and inside a time-varying volume model have beenrgpsed. In this report,
we have focused on time-varying volume rendering strasegie

Existing papers assume that the models are segmented. Wttetlsegmentation
procedure is the same or not for all the models or must be edaptoughout time,
this is not addressed in volume rendering bibliography. e@dwer, except the paper
[JKMO1], existing works assume that the classification fiorcis valid for all the
time span. Since this assumption may not be true if the viéitjabf the data is high,
more research efforts should be put on classification of-tiarging data.

There are two main approaches to time-varying volume mdéids03]: to con-
sider them as particular casesretlimensional models or to treat them as temporal
sequences of 3D models. In the former case, research fooussslecting as effi-
ciently as possible the relevant information of the 4D magleén a user query: for
example, given an isosurface value and a key-instant, hogffi@ently extract the
surface visiting as directly as possible the set of isoserfzells. Papers of the latter
category focus on generating a sequence of frames at a seyansgtants, either by
extracting an isosurface at a series of instants in ordenitoate them (IVR) or by
rendering the models directly (DVR). The problem that thesgseps address is how to
improve the efficiency of the rendering algorithms. As pethbut by Woodring and
Shen [WSO03], other types of visualizations than sequenciaroks, may provide dif-
ferent ways of analyzing time-varying data. This is an opesearch field, almost ab-
sent in the current bibliography, that would demand imatiyeasolutions. In order to
speed up IVR as well as DVR, data structures already usedtio gtdumes have been
extended to time-varying data: TSPs extend octrees [SCM9BDNs [MSSS98] ex-
tend BONOs, THITs [She98] extend the span-space structurgearporal run length
(TRLs) [TGFPO05] extend the RLE. Some of these data structuaes heen used to
efficiently manage the information without actually exfileg the coherence between
successive frames. The performance of the algorithms dmernefit from the use of
this type of coherence. Other data structures such as the RAA04], the dis-
tance transforms [ZKV92] and the Render Lists [HBHO3] may ts® axtensible to
3D+time. Moreover, new data structures, specifically desigfor time-varying data
could be explored.

Most of the DVR methods focus on ray-casting, probably bseanf its simplic-
ity and flexibility. In the future, much efforts should be pothardware-driven ren-
dering that is nowadays one of the techniques more used waliae static volumes
[MGS02] and splatting which is emerging as a flexible techaitp render point-based
volume and surface models [CRZPO04]. Moreover, the combinatiovarious render-
ing techniques such as the two-level rendering proposed®BiD3] may be adapted
to time-varying data.

Another important aspect of time-varying volume rendeigte type of applica-
tion in which it is used. As mentioned by Ma [Ma03], scientsimulations may need
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strategies such that the data are visualized while theyaanglyenerated without need
of storing a 4D or a 3D+time model.

Finally, the existing bibliography addresses unimodabdegimg. The combina-
tion of multiple modalities, along with the merging of swséaand volume models has
been treated for static models only. Another open researehd to propose efficient
rendering methods able to deal with multiple modality somalbof them varying
throughout time and hybrid surface/volume time-varyingrss.
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A Acronyms

BCC: Body centered cubic

BONO: Branch-on-need-octree

BTF: Back-to-front

CC: Cubic Cartesian

CFD: Computational Fluid Dynamics
COV: Coefficient of variation

CT: Contour tree

DCT: Discrete cosine transform

DVR: Direct volume rendering

EVM: Extreme vertices model

FFT: Fast Fourier transform—

FTB: Front-to-back

IVR: Indirect volume rendering

LZW: Lempel, Ziv, and Welch (authors)
RLE: Run length encoding

T-BON: Temporal branch-on-need
TCG: Topology change graph

THIT: Temporal Hierarchical Index Tree
TRL: Temporal run length

TSP: Time-Space Partitioning tree
UFAC: Unsteady Flow Advection Convolution
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Method | [LMCO2] | [GS01] [ [Wes95] | [WB98] |
Data type Simulation Images Simulation Simulation
Data sets | Sampling Regular Regular Regular Regular
Grid Uniform Uniform Uniform Uniform
Variability High Low High -
Type Voxels Voxels Voxels Voxels
Data Model| Domain Spatial Spatial Frequential Spatial
Temporal 3D +time 3D +time 3D +time 4D model
Compression lossy lossy lossy no
Type Direct Direct Direct Indirect
Visual. Camera Dynamic Dynamic Static -
Transfer Function  Dynamic Dynamic Dynamic -
[llumination Dynamic Static Static -
Rendering Texture based Tex & Shear | Raycasting IVR
Main Contribution DCT&Tex | Wavelets&Tex| Comp.domain| Rec contour mesk
Optimization
Applications Isosurf

Table 5: Classification of all the references surveyed.
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Method | [GSDJ04]| [She98] | [BPRS98] \ [NMO02] \
Data type Simulation| Simulation Simulation Simulation
Data sets | Sampling Regular Irregular Regular Regular
Grid Uniform | Non-uniform Uniform Uniform
Variability High High High High
Type Voxels Points Voxels Voxels
Data Model| Domain Spatial Spatial Spatial Spatial
Temporal 3D+time 3D+time nD 4D
Compression lossy - - lossless-uniform
Type Indirect Indirect Direct Direct
Visual. Camera - Static Static Static
Transfer Function - - Static Static
lllumination - Static Static Static
Rendering IVR IVR Splatting Splatting
Main Contribution Adapt surf THIT nD Splat BCC grid
Optimization - - -
Applications Isosurf CFD 5D molecular interac -
Table 6: Classification of all the references surveyed (more)
Method \ [LCLOZ] \ [RHPO2] \ [SH99] \ [ECS00] \
Data type Simulation Simulation Simulation Simulation
Data sets | Sampling Regular Regular Regular Regular
Grid Uniform Uniform Uniform Structured
Variability High High High Static/Slow
Type Voxels Voxels Voxels Voxels
Data Model| Domain Spatial Spatial Spatial Spatial
Temporal 3D+time 3D+time 3D+time
Compression losless losless - losless
Type Direct Direct Indirect Direct
Visual. Camera - - - Dynamic
Transfer Function - - -
lllumination - - - Dynamic
Rendering RayCasting RayCasting Indirect Texture based
Main Contribution pixel coherency | Isosurface rend Temporal BON| TSP texture-baseq
Optimization GPU-based and
incremental slicing
Applications Time-varying vis. IsoSurface extn CFD
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Table 7: Classification of all the references surveyed (more)
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Method \ [CD99] | [SCM99] | [AAWO0] | [BWCOO] |
Data type Simulation Simul&lmages Phantom Images
Data sets | Sampling Regular Regular Regular Regular
Grid Uniform Uniform Uniform Uniform
Variability High High Low -
Type Voxels Voxels Voxels Voxels
Data Model| Domain Spatial Spatial Spatial Spatial
Temporal 3D+time model | 3D+time model| 3D+time model| 4D model
Compression no no no no
Type Direct Direct Direct Indirect
Visual. Camera Dynamic Static Static -
Transfer Function Static - -
[llumination Dynamic - -
Rendering Shear-warp Raycast/all Shear-warp IVR
Main Contribution Parallel implem. TSP tree Time-var shear| Time-var MC
Optimization
Applications Visualiz Visualiz Visualiz Isosurf
Table 8: Classification of all the references surveyed (more)
Method \ [YS93] \ [SJ94] \ [WSKO02] |
Data type - Simulation Medical
Data sets | Regular Regular Regular Regular
Grid Uniform Uniform Uniform
Variability Static Low Static
Type Voxels Voxels Voxels
Data Model| Spatial Spatial Spatial Spatial
Temporal 3D 3D+time 3D
Compression Null losless Null
Type Direct Direct Direct
Visual. - Dynamic Static Dynamic
Transfer Function - - -
lllumination - - -
Rendering RayCasting RayCasting RayCasting
Main Contribution Re-use Space-Leaping Pixel Coherence| Re-use Space-Leaping
Optimization model traverse - model traverse
Applications Fly-around navigation Time-varying vis. Fly-through

Table 9: Classification of all the references surveyed (more)
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Method y [SBO5] | [wwso03] |
Data type Simulation Simulation
Data sets | Sampling Irregular Regular
Grid Non-uniform Uniform
Variability High High
Type Tetrahedra Voxels
Data Model| Domain Spatial Spatial
Temporal 3D +time 4D
Compression - -
Type I D
Visual. Camera Static Static
Transfer Function Static Dynamic
lllumination Static Static
Rendering IVR ray-casting
Main Contribution Time-var contours| 4D proj interpret
Optimization - -
Applications Hemoglobin dynam CFD

Table 10: Classification of all the references surveyed (tig e
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