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Abstract

In this thesis we investigate solute transport through a heterogeneous aquifer.

In contrast to the behavior observed in a homogeneous scenario, where mixing

and spreading are identical, in a heterogeneous aquifer, mixing and spreading

are di�erent transport mechanisms which cannot be measured by a constant

and common dispersion/di�usion coe�cient.

One of the aim novelties of our work is the elaboration on the di�er-

ence between mixing and spreading. We present concepts to characterize

and quantify separately these phenomenas in terms of e�ective dispersion

coe�cients.

Spatial/chemical medium heterogeneities that lead to groundwater ve-

locity variability, as well as temporal 
ow 
uctuations, here are taken into

account within a stochastic modeling approach. In this approach, an aquifer

is seen as a typical realization of the ensemble of all possible realizations

with the same statistical properties. In a single realization, the local ef-

fective dispersion coe�cient is derived from the centered second moment of

the spatial concentration distribution of a solute starting from a point-like

injection. For an extended initial source, the global e�ective dispersion co-

e�cient is de�ned as the weighted average over the local e�ective dispersion

coe�cient for the point-sources that constitute the extended source. The ap-

parent dispersion coe�cient, for an extended initial source, is de�ned as the
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half rate of change of the width of a distribution. For early times, it re
ects

the purely advective spreading e�ect due to velocity variations within the

extended distribution. For the ensemble of aquifer realizations, the e�ective

and apparent dispersion coe�cients are de�ned as ensemble averages over

their realizations counterparts. We also de�ne a local and global ensemble

dispersion coe�cients, which are derived from the second centered moment

of the ensemble averaged concentration distribution. Both quantify an arti-

�cial e�ect due to center of mass 
uctuations from realization to realization

of the heterogeneous aquifers.

The de�ned e�ective measures allow us to systematically characterize and

quantify mixing and spreading in two scenarios. A physically homogeneous,

chemically heterogeneous medium subject to temporal 
ow 
uctuations, and

a strati�ed medium which can be seen as an idealized model of a geologi-

cal formation. Tools like perturbation theory and axial moment equations

are used to derive explicit analytic expressions for the e�ective dispersion

coe�cients. Numerical random-walk simulations are used to complement

and verify the analytical solutions of the e�ective transport coe�cients. We

identify the mechanisms that induce mixing and spreading enhancement, and

determine the spatial and time scales which control its temporal evolution.



Resumen

En esta tesis investigamos el transporte de solutos en acu��feros heterog�eneos.

Contrario al comportamiento observado en un escenario homog�eneo, donde

la mezcla y el spreading (ensanchamiento) son id�enticos, en un acu��fero het-

erog�eneo, la mezcla y el spreading son mecanismos de transporte que no

pueden ser medidos por un coe�ciente de dispersi�on/difusi�on constante y

�unico.

Una de las principales novedades de nuestro trabajo es el an�alisis sobre la

diferencia entre la mezcla y el spreading. Presentamos conceptos para cuan-

ti�car separadamente estos fen�omenos en t�erminos de coe�cientes efectivos

de dispersi�on.

Las heterogeneidades espaciales/qu��micas que inducen variaciones en la

velocidad del agua subterr�anea, as��como las 
uctuaciones temporales del


ujo, son tomadas en cuenta aqu�� mediante un marco estoc�astico. Den-

tro de este marco, un acu��fero es considerado como una realizaci�on t��pica del

conjunto de todas las posibles realizaciones con las mismas caracter��sticas

estad��sticas. En una realizaci�on, el coe�ciente local efectivo es derivado del

segundo momento centrado de la distribuci�on de concentraci�on de un soluto

que inicia desde un punto de inyecci�on. Para una fuente inicial extendida,

el coe�ciente efectivo global es de�nido como el promedio ponderado sobre

los coe�cientes efectivos de dispersi�on de las fuentes puntuales que consti-
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tuyen la fuente extendida. El coe�ciente aparente de dispersi�on, para una

fuente inicial extendida, es de�nido como la mitad de la taza de cambio del

ancho de la distribuci�on. Para tiempos cortos, re
eja �unicamente los efectos

de spreading advectivo debido a las variaciones de la velocidad dentro de la

distribuci�on extendida. Para el conjunto de realizaciones de acu��feros, los

coe�cientes de dispersi�on efectivo y aparente son de�nidos como el promedio

sobre el conjunto de coe�cientes obtenido en cada realizaci�on. Tambi�en de�n-

imos los coe�cients del conjunto locales y globales, los cuales son derivados

del segundo momento centrado del conjunto promediado de distribuciones de

concentraci�on. �Estos cuanti�can un efecto arti�cial debido a las 
uctuaciones

de la posici�on del centro de masa de realizaci�on a realizaci�on de los acu��feros

heterog�eneos.

Las medidas efectivas de�nidas nos permiten cuanti�car y caracterizar

sistem�aticamente la mezcla y el spreading en dos escenarios. Un medio

f��sicamente homog�eneo, qu��micamente heterog�eneo sujeto a 
uctuaciones

temporales del 
ujo, y un medio estrati�cado que puede verse como un mod-

elo idealizado de una formaci�on geol�ogica. Herramientas como la teor��a de

perturbaciones y ecuaciones de momentos axiales son usadas para derivar

expresiones anal��ticas expl��citas para los coe�cientes efectivos de dispersi�on.

Simulaciones num�ericas \random-walk" son empleadas para complementar y

veri�car las soluciones anal��ticas de los coe�cientes efectivos de transporte.

Identi�camos los mecanismos que inducen el ensanchamiento de la mezcla y el

spreading, y determinamos las escalas espaciales y temporales que controlan

su evoluci�on temporal.
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Chapter 1

Introduction

The general aim of the present work is the study of solute transport in hetero-

geneous aquifers, especially its quanti�cation in terms of e�ective transport

parameters. The quantitative and qualitative understanding of transport in

heterogeneous hydrogeochemical systems is of critical importance for trans-

port modeling in natural groundwater systems, with applications to contami-

nation problems and for the design of soil and aquifer remediation strategies.

Most hydrogeological models for solute transport assume that dispersion

is Fickian, i.e., the dispersive mass 
ow rate is proportional to the concen-

tration gradient. The combined mechanisms of advection and dispersion are

represented by the advection-dispersion equation with constant coe�cients.

However, in the groundwater context, an aquifer is constituted by an

arrangement of di�erent materials, whose hydraulic properties, such as the

hydraulic conductivity, porosity and retardation coe�cient, for example, are

space dependent. The spatial variability of the hydraulic conductivity leads,

via Darcy equation, to a spatially variable groundwater 
ow velocity. In

addition to spatial 
uctuations of the system parameters due to physical or

chemical medium heterogeneities, groundwater velocity might also 
uctuate

1



Chapter 1 2

temporally on a range of scales. The interaction between these spatially

and temporally velocity variations with the local dispersion, induces a scale

dependence of the solute spreading and mixing behavior. This scale e�ect,

which has been demonstrated by numerical (e.g.,[1]), laboratory experiments

in column and tank experiments [2, 3, 4, 5], and �eld experiments [6, 7, 8],

reveals the shortcomings of the traditional advection dispersion transport

equation with constant coe�cients.

Within a stochastic approach, a given aquifer is seen as a typical real-

ization of an ensemble of all possible realizations with the same statistical

properties. The systematic investigation of the impact of spatial/chemical

heterogeneity and temporal 
ow 
uctuations on the e�ective transport be-

havior can be addressed by two interrelated strategies, which can be called

coe�cients approach and dynamics approach. The large scale transport prop-

erties are derived from appropriately constructed averages over the ensemble

of all medium realizations. The dynamics approach deals with the upscal-

ing of the local scale transport equations in heterogeneous media, models

such as Continuous Time Random Walk (CTRW), Multi Rate Mass Trans-

fer (MRMT) and fractional dynamical systems (e.g., [9, 10, 11, 12, 13, 14])

represent transport models which describe the e�ective transport dynamics

on a semi-phenomenological basis. The coe�cients approach quanti�es 
ow

and transport in terms of e�ective transport coe�cients such as e�ective

dispersion coe�cient, reaction rates and retardation coe�cient, for example.

In this thesis we will focus on the coe�cients approach to characterize

mixing and spreading in heterogeneous media. Spatial or chemical hetero-

geneity and temporal 
uctuations lead to an increase of solute mixing and

spreading [15, 16, 17, 18, 19, 20] which can be characterized by large scale

dispersion coe�cients. The latter evolve with time or travel distance, which
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has been frequently adressed in the literature e.g., [21, 22, 23, 24].

The full temporal evolution of the e�ective solute mixing and spreading in

a physically and chemically heterogeneous medium has been studied in terms

of e�ective and ensemble dispersion coe�cients within a stochastic approach

for a point like injection and extended sources [25, 26, 27]. The e�ective dis-

persion coe�cient is given by the average of the dispersion in one realization

and quanti�es the properties of a typical realization. The ensemble disper-

sion coe�cient which is derived from the concentration distribution of the

averaged solute cloud quanti�es an arti�cial spreading and mixing behavior

due to sample to sample 
uctuations of the center of mass from realization

to realization. The conceptually di�erence between these coe�cients is well

known in the literature. Despite that, it is common to compute the math-

ematically simpler ensemble coe�cient, since for large transport lengths or

times, solutes have been dispersed over a such a large volume and the full

heterogeneity spectrum is sampled, the e�ective and ensemble dispersion co-

e�cients eventually reach a common asymptotic Fickian behavior. It must

be taken into account that in most hydrological applications, the length/time

scales (given by dispersion/di�usion over the heterogeneity large scale, when

it exist) can be large. Then, the common macroscopic asymptotic values

of the ensemble and e�ective dispersion coe�cients does not provide a re-

liable measure of mixing and spreading at preasymptotic times. Hence, for

preasymptotic times, the temporal evolution of the e�ective dispersion coef-

�cient will characterize the actual mixing and spreading, while the ensemble

dispersion coe�cient overestimates the spreading and mixing behavior. Fur-

thermore, in special cases as the unbounded strati�ed media model, where a

strongly correlated disorder is present, the ensemble and e�ective dispersion

coe�cients behavior is anomalous for all times [21].
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In the course of the transport coe�cients investigation in heterogeneous

media, we distinguish two main topics which deserve special attention and

on which the development of the present thesis will be based.

First, we elaborate on the di�erence between spreading and mixing when

studying transport in heterogeneous media and present concepts to quantify

these phenomena in terms of transport coe�cients. For transport in homo-

geneous media these two phenomena are identical and are measured by the

unique di�usion/dispersion coe�cient. For transport in heterogeneous me-

dia, however, solute spreading denotes the distortion and deformation of an

initial plume due to the purely advective mechanism, for example. Solute

mixing in contrast, denotes the mechanism which leads to actual dilution of a

dissolved substance [28], for example. The interplay of heterogeneity-induced

spreading and local mixing mechanisms can lead to macroscale mixing. The

characterization of mixing is of importance for a series of applications such

as, bioremediation, natural attenuation, mixing limited chemical reaction;

that is, whenever the e�ciency of a chemical or biological process depends

on the mixing of the participating species.

Second, conduct an exhaustive and systematic investigation of the mixing

and spreading mechanisms as on the characteristic spatial and time scales

which control the spreading and mixing behavior in heterogeneous media,

specially the transition from the non-Fickian to Fickian-type behavior. We

study the interaction of chemical and spatial heterogeneities, local dispersion

and temporal 
ow 
uctuations and its role as an activation mechanisms of

macroscopic mixing and spreading. To this end, we study two scenarios, a

physically homogeneous, chemically heterogeneous in�nite medium subject

to temporal 
ow 
uctuations, and then, a strati�ed medium as a simplest

case of a physically heterogeneous medium.
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In Chapter 2, we propose a generalization of the new measures for solute

spreading and mixing for a single realization suggested by Dentz and Carrera

[29], to transport in heterogeneous media within a stochastic approach. These

measures are based on the local moments, i.e., �rst and second moments of

the transport Green function. The transport Green function here denotes

the solute distribution which evolves from a point-like injection in a reference

time.

The description of the general solute 
ow and transport equations for the

two scenarios under consideration, the stochastic approach and the method-

ology applied to derive the e�ective measures proposed, such as perturbation

theory, axial moment equations, and numerical random walk simulations, are

also introduced in Chapter 2.

Once we have de�ned the e�ective dispersion coe�cients, we study in

Chapter 3 the impact of the interaction of local dispersion, chemical hetero-

geneity and temporal 
ow 
uctuations of the 
ow conditions on the e�ective

mixing and spreading behavior of a sorbing solute. We focus on linear sorp-

tion reactions under instantaneous local equilibrium conditions. In a chemical

heterogeneous medium, the local sorption properties are subject to spatial


uctuations, which can be characterized by a spatially varying retardation co-

e�cient. The e�ective transport behavior in this practically relevant scenario

is studied within a stochastic perturbative approach. Within this approach

we derive compact analytical expressions for the temporal evolution of the

longitudinal and transverse e�ective dispersion coe�cients. Focusing on the

contributions due to chemical heterogeneity and temporal 
uctuations, we

�nd enhanced transverse spreading characterized by a transverse e�ective dis-

persion coe�cient that, in contrast to transport in steady 
ow �elds, evolves

to a disorder-induced macroscopic value (i.e., independent of local disper-
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sion). At the same time, the asymptotic longitudinal dispersion coe�cient

can decrease. The simultaneous increase of the transverse and decrease of the

longitudinal e�ective dispersion coe�cients can be seen as a consequence of

self-organization of the system. The compact expressions for the longitudinal

and transverse e�ective dispersion coe�cients presented in this Thesis can be

used for the quanti�cation of e�ective spreading and mixing in the context

of the groundwater remediation based on hydraulic manipulation and for the

e�ective modeling of reactive transport in heterogeneous media in general.

This work has been published in ref. [30].

It turns out in Chapter 3 that temporal 
ow 
uctuations lead to in-

creased transverse solute mixing. This mechanism smoothes the transverse

heterogeneity contrast and can lead to a decrease of longitudinal dispersion

coe�cient.

For transport in strati�ed media, Matheron and de Marsily [21] found an

anomalous increase of the longitudinal dispersion coe�cient with the square-

root of time. Clincy and Kinzelbach [31] observed that the anomalous behav-

ior is supressed in presence of a constant velocity component transverse to the

strati�cation, i.e., in presence of a mechanism that induces the disorder sam-

pling of the solute. In Chapter 4 we investigate speci�cally if the anomalous

behavior of the e�ective spreading and mixing in unbounded strati�ed media

persists when temporal 
ow 
uctuations are added to the system. The e�ec-

tive dispersion coe�cient obtained analytically indicates that temporal 
ow


uctuations do not enhance vertical solute mixing in unbounded strati�ed

media.

Seeking for the mechanisms that lead to normal dispersion behavior, we

considered modi�cations of the strati�ed geometry that enable the solute to

sample the transverse heterogeneity contrast in a same e�ective way than by
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di�usion. Thus we considered the so called Manhattan Grid model [32], that

consist of the superposition of two �eld with perpendicular strati�cation, as

well as a quasy-strati�ed 
ow [33].

In Chapter 5 we investigate solute mixing and spreading in a vertically

bounded strati�ed random medium. Unlike for the in�nite strati�ed medium,

where a superdi�usive behavior of the apparent longitudinal dispersion co-

e�cient is observed (e.g. [21]), here, at asymptotically long times, disorder-

induced mixing and spreading is uniquely quanti�ed by a constant \Taylor

dispersion-type" coe�cient [34]. This value is reached asymptotically after

the time for complete vertical mixing is reached. We focus on preasymptotic

times, for which solute transport is highly non-Fickian, and the transition

from the preasymptotic to the asymptotic Fickian-type regime. We study

initial position and source size memory e�ects in the e�ective spreading and

mixing dynamics for single realizations and their quanti�cation using stochas-

tic averaging. The transition from �nite to in�nite media and its impact on

the derived e�ective parameters is analyzed. The validity of the quanti�-

cation of mixing and spreading by stochastic averages for a �nite media is

discussed. This chapter is based in paper [35] which has recently been ac-

cepted for publication.

In Chapter 6 the main conclusions of our work related to the characteri-

zation of mixing and spreading in heterogeneous media are provided.



Chapter 2

Basics

2.1 Introduction

We investigate solute transport through heterogeneous media models. Solute

transport at the laboratory scale can be described by the advection dispersion

equation, which establishes that the mass transport is fully controlled by two

mechanisms. The advection mechanism, described by the Darcy equation,

is associated to the solute movement due to the 
uid 
ow, and the local

dispersion mechanism, which is assumed to be Fickian.

However, at �eld scales, which are large compared to the laboratory scale,

medium characteristics and driving forces, in general display large spatial

and/or temporal variations. In the groundwater context, the hydraulic con-

ductivity is a clear example of a heterogeneous parameter since its value


uctuates in orders of magnitude even in apparently homogeneous aquifers.

This spatial variability of the hydraulic conductivity leads, via the Darcy

equation, to a spatially variable groundwater 
ow velocity. In addition to

spatial 
uctuations of the system parameters due to physical or chemical

medium heterogeneities, the groundwater 
ow velocity, in general also 
uc-

8
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tuates temporally on a range of scales. The interaction between these spa-

tially and temporally 
ow velocity variations and local dispersion, induces

a scale dependence of the solute spreading and mixing behavior. This scale

e�ect, which has been observed in numerical and �eld experiments, must be

taken into account when modeling e�ective solute transport in heterogeneous

media.

The aim of the present work is to systematically characterize the im-

pact of the physical or chemical medium heterogeneities as well as temporal


ow 
uctuations on solute transport behavior in terms of e�ective transport

coe�cients. These observables are described in section 2.6.

Here we present the general 
ow and solute transport equations for chem-

ically/spatially heterogeneous media, in order to de�ne the common terms

and to set the framework for further argumentations. The stochastic frame-

work and methodology are also addressed in this chapter. The presented

concepts are then applied to a speci�c heterogeneous scenario for transport

in horizontally strati�ed media.

2.2 Flow in Heterogeneous Media

The 
ow velocity q(x; t) through a heterogeneous medium is given by the

Darcy equation, [36],

q(x; t) = �K(x)rh(x; t) (2.1)

where the hydraulic conductivity K(x) is space dependent, and h(x; t) de-

notes the hydraulic head. Temporal 
ow 
uctuations here are induced by

temporal variability of the head boundary conditions. We disregard here in-

ertia e�ects as the compressibility time scales are usually much smaller than

the 
uctuations scales [18, 37, 38]. Thus in the absence of sink and sources,
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the divergence of q(x; t) is zero, i.e., r�q(x; t) = 0. The boundary conditions

will be detailed in each speci�c application in the corresponding chapters.

2.3 Transport in Heterogeneous Media

The time evolution of a (mobile) solute in a heterogeneous porous media un-

der spatially varying equilibrium sorption properties is given by a generalized

advection-dispersion equation, (see e.g. [39, 40]),

R(x)
@cm(x; t)

@t
+ q(x; t)rcm(x; t)�r � (Dorcm(x; t)) = �(x)�(t); (2.2)

where cm(x; t) is the spatial concentration of the mobile solute. The space de-

pendent retardation coe�cient R(x) re
ects spatial inhomogeneities in both

the local porosity and the local chemical adsorption coe�cient. The con-

stant local dispersion tensor Do is assumed to be diagonal, Dij = �ijDii with

D11 = DL and Dii = DT for i > 1.

Note that the total concentration distribution of the sorbing chemical is

divided into a mobile fraction that is transported through the medium in the

water 
ow, and a fraction that is adsorbed to the solid matrix,

ctot(x; t) = �(x)cm(x; t) + [1� �(x)] cad(x; t); (2.3)

where cad(x; t) denotes the spatial distribution of the adsorbed concentration,

and �(x) denotes porosity.

The right hand side in (2.2) is the initial distribution of the solute at

t = 0,

cm(x; t = 0) = �(x): (2.4)

This implies for the mobile concentration cm(x; t = 0) = R(x)�1�(x). As

boundary condition we assume,

n � rcm(x; t)jx2@
d = 0; (2.5)
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where @
d are the boundaries of the transport domain 
d, and n is the

outward pointing unit vector perpendicular to the domain boundaries.

According to the Duhamel principle, the concentration distribution cm(x; t)

can be written as,

cm(x; t) =

Z

d

dx0�(x)g(x; tjx0); (2.6)

where the Green function g(x; tjx0) solves the advection dispersion equation

(2.2) for a point like injection at t = 0, i.e. �(x) = �(x� x0).

2.4 Stochastic Framework

A detailed description of 
ow and solute transport behavior in heterogeneous

media requires a deterministic knowledge not only of the spatial distribution

of the governing parameters at all scales, but also of the 
ow and transport

processes which are relevant at such scales. However, in real scenarios we

usually have a few values of hydraulic parameters at some particular locations

and some indications about general trends. In order to deal with the lack

of information, a stochastic approach [39, 40] has been used in groundwater

hydrology as a tool to describe and quantify in a systematic manner the

impact of spatial and temporal variabilities observed at small scales into an

e�ective large scale 
ow and transport behavior, plus as a way to compute

the uncertainty associated with a given prediction.

In a stochastic approach a given medium is seen as a typical realization

of an ensemble of all media characterized by certain statistical properties.

The large scale transport behavior is obtained by properly de�ned stochastic

averages over the ensemble of random spatial/temporal �elds.

In the stochastic framework considered in this thesis, the spatially 
uc-
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tuating retardation factor, R(x) and the hydraulic conductivity K(x) are

modeled as stationary spatial random �elds, while the temporal 
uctuations

of the 
ow boundary conditions that induce a 
uctuating mean hydraulic

gradient are modeled as a stationary temporal random process (e.g. [18, 20]).

Any random �eld may be decomposed into two components, a deter-

ministic one, which could be its conditional mean value (either constant or

spatially variable), and the random 
uctuations around it. These random


uctuations are characterized by a correlation structure. In order to fully

characterize a random �eld it would be necessary to assume that we know

the multivariate probability density function.

We split the retardation factor into its mean value and 
uctuations about

it

R(x) = R [1� �(x)] ; (2.7)

where R is the ensemble averaged retardation factor, �(x) denotes the nor-

malized 
uctuation, whose ensemble average is zero by de�nition, �(x) = 0.

The correlation function of the normalized retardation 
uctuations is given

by,

�(x)�(x0) = �2
��C

��(x� x0); (2.8)

where the variance �2
�� = �(x)2. The correlation C��(x) is assumed to decay

exponentially fast for distances larger than the correlation length l�.

The mobile concentration and the 
ow velocity as well as the local dis-

persion coe�cients are rescaled by mean retardation according to,

c(x; t) = Rcm(x; t); D =
D0

R
; u(x; t) =

q(x; t)

R
: (2.9)

For quasi-steady 
ow conditions, i.e., instantaneous propagation of a tem-

poral change in the 
ow boundary conditions, the normalized �rst-order solu-
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tion of the 
ow problem (in the 
uctuations of the log-hydraulic conductivity)

can be decomposed as (e.g., [18, 20])

u(x; t) = u(t)� u0(x; t): (2.10)

The mean 
ow direction is aligned with the 1-direction of the coordinate

system,

hu(x; t)i = ue1 (2.11)

with e1 the unit vector in 1-direction. The purely time-dependent part is

given by

u(t) = u [e1 � �(t)] (2.12)

with the normalized purely temporal velocity 
uctuations �(t), whose mean

is zero by de�nition,

h�(t)i = hu0(x; t)i � 0: (2.13)

A brief discussion of the quality of the approximation of quasi-steady 
ow is

given in [38]. The correlation functions of the normalized temporal velocity


uctuations �(t) are given by

h�i(t)�j(t0)i = �2
��C

��
ij (t� t0) (2.14)

with the variance �2
�� of the temporal 
uctuations, which, for simplicity,

is assumed to be equal in all directions. The correlations of the �i(t) are

assumed to be short range, i.e., to decrease quickly for times larger than the

correlation time � .

Using the decomposition (2.10) in (2.2), we obtain our general working

equation

@c(x; t)

@t
+ u(t) � rc(x; t)�rDrc(x; t) = �(x)�(t) + Lfx; tgc(x; t); (2.15)
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with Lf�g the perturbation transport operator that acts on c(x; t), here de-

�ned as,

Lfx; tg = �(x)
@

@t
+ u0(x; t)r (2.16)

2.5 Strati�ed Media Models

Here we detail the basics of horizontally strati�ed media models, which can

be seen as an idealized case of heterogeneous media when considering the

limiting case of in�nite correlation length in the horizontal direction, the

hydraulic conductivity varies only along the vertical.

2.5.1 Flow in Strati�ed Media

Flow through a strati�ed porous medium is characterized by the Darcy equa-

tion (2.1), which here can be written as follows,

u(x; t) = �K(y)rh(x; t); (2.17)

where x is the position vector in 
d and y = (x2; : : : ; xd)
T is the position

vector in the (d � 1)-dimensional subdomain 
, with 
d = 
 � R. The

latter is perpendicular to the 1-direction of the coordinate system. The

hydraulic conductivity is denoted by K(y) and varies only in 
, h(x; t) is

the hydraulic head. Here we consider that the 
ow is driven by a temporally

variable spatially constant head gradient �J(t). This boundary condition

together with the incompressibility condition r � u(x; t) = 0 leads us to the

following exact solution [41],

u(x; t) = K(y)J(t); (2.18)

i.e., 
ow varies only on the transverse direction as well.
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The hydraulic conductivity K(y) here is modeled as a stationary spatial

random �eld. It can be decomposed into its (constant) mean valueK(y) = K

and 
uctuations about it,

K(y) = K [1� k(y)] : (2.19)

where k(y) are the normalized conductivity 
uctuations, whose mean is zero

by de�nition. The overbar denotes the ensemble average. The translation-

invariant autocorrelation function of k(y) is given by,

k(y)k(y0) � �2
kkC

kk(y � y0): (2.20)

where the variance �2
kk = k(y)2. In the following, the correlation function is

assumed to be of short-range, i.e., to decay quickly on the correlation scale

l.

For quasi-steady 
ow conditions, i.e., instantaneous propagation of a tem-

poral change in the 
ow boundary conditions, the normalized �rst-order solu-

tion of the 
ow problem (in the 
uctuations of the log-hydraulic conductivity)

can be decomposed as (e.g., [18, 20])

u(x; t) = u(t)� [u0(y) + u0(y; t)] : (2.21)

where u(t) is de�ned (2.12). The di�erent contributions are given by,

u0(y) = u k(y); (2.22)

u0(y; t) = u k(y)�(t): (2.23)

2.5.2 Transport in Strati�ed Media

In strati�ed media, the advective-dispersive transport equation (2.2) of a

conservative solute can be simpli�ed as follows,

@c(x; t)

@t
+ u(y; t)rc(x; t)�r � (Dorc(x; t)) = 0: (2.24)
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Figure 2.1: Center of mass position and width of a solute distribution evolv-

ing from a point-like injection in a heterogeneous medium.

The initial and boundary condition are de�ned in (2.4) and (2.5), respec-

tively.

Using decomposition (2.21) and its correspondent contributions, in (2.24),

we obtain,

@c(x; t)

@t
+ u(t) � rc(x; t)�r � (Dorc(x; t)) = Lfy; tgc(x; t); (2.25)

with the perturbation transport operator here de�ned as,

Lfy; tg = u [k(y) + �1(t)k(y)]
@

@x1
: (2.26)

Note that the temporal 
ow 
uctuations (2.12), are �(t) = [�1(t); �2(t); : : : ; �d(t)]
T .

2.6 Observables

Spreading and mixing can be quanti�ed in terms of the evolution of the �rst

and second centered moments of the solute distribution c(x; t) (e.g., [28]).
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The �rst moment represents the center of mass of the solute distribution while

the second centered moment describes the dispersion of particles around its

center of mass, see Figure 2.1. A Gaussian distribution is completely de�ned

by its �rst and second moments. Solute distributions in heterogeneous media,

however, are in general non-Gaussian. Depending on the focus of interest,

di�erent de�nitions for the centered moments and the quantities derived can

apply. For risk assessment studies, for example, it may be su�cient to have

a rough estimate of the possible extent of a contaminant plume. For reactive

transport modeling, in contrast, it is important to have an accurate estimate

on the actual spatial distribution of the reactant.

Recently, Dentz and Carrera [29] suggested and discussed e�ective trans-

port formulations and dispersion measures (i) to study the mechanisms and

processes that lead to solute spreading and ultimately enhanced mixing in

strati�ed 
ows, (ii) to provide an upscaled transport framework that de-

scribes e�ective solute spreading and mixing at preasymptotic times.

These authors de�ned e�ective dispersion coe�cients for a single medium

realization in terms of local moments, i.e., moments of the transport Green

function (solute distribution for a point-like injection) see (2.6), and applied

the developed concepts to transport in the parabolic 
ow through a two-

dimensional channel. Here, we generalize these concepts to transport in

heterogeneous random media.

2.6.1 Local Moments

As de�ned in [29], the �rst and second local moments are de�ned in terms

of the transport Green function g(x; tjx0; t0) (2.6), and are given by,

�
(1)
i (tjx0) =

Z

d

dxxig(x; tjx0; 0); (2.27)
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�
(2)
ij (tjx0) =

Z

d

dxxixjg(x; tjx0; 0); (2.28)

The width of the distribution g(x; tjx0; 0) is given by the local second centered
moment,

�eij(tjx0) = �
(2)
ij (tjx0)� �

(1)
i (tjx0)�(1)

j (tjx0): (2.29)

2.6.2 Global Moments

The �rst and second moments of the concentration distribution c(x; t) given

by (2.2) for the initial condition (2.4) are de�ned by,

m
(1)
i (t) =

Z

d

dx�(x)�
(1)
i (tjx); (2.30)

m
(2)
ij (t) =

Z

d

dx�(x)�
(2)
ij (tjx); (2.31)

From the global moments in (2.30) and (2.31), an apparent second cen-

tered moment of c(x; t) can be de�ned,

�aij(t) = m
(2)
ij (t)�m

(1)
i (t)m

(1)
j (t): (2.32)

in analogy to (2.29).

2.6.3 Transport Coe�cients. Single Realization

For a point-like injection, the temporal rate of change of the width of the

solute distribution is quanti�ed by the local e�ective dispersion coe�cient

(e.g., [29]),

De
ij(tjx0) =

1

2

d

dt
�eij(tjx0): (2.33)
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The local center of mass velocity is given by the time derivative of the �rst

local moment,

�i(tjx0) = d

dt
�
(1)
i (tjx0): (2.34)

For an extended source distribution, the center of mass velocity is given

by,

�i(t) =

Z

d

dx0�(x0)�i(tjx0) (2.35)

according to (2.30). The global e�ective dispersion coe�cient can be de�ned

analogously by integration of (2.33) over the initial distribution as,

De
ij(t) =

Z

d

dx0�(x0)De
ij(tjx0); (2.36)

i.e the local e�ective dispersion coe�cient measures the actual mixing pro-

duced in a solute cloud starting from a point like injection at x0, while the

the global e�ective dispersion coe�cient, as a weighted average over the local

e�ective dispersion coe�cient, measures the average mixing within the initial

plume and it not longer depends on the initial source location.

The rate of change of the apparent second centered moment in (2.32)

de�nes the apparent dispersion coe�cient,

Da
ij(t) =

1

2

d

dt
�aij(t): (2.37)

As discussed in [29], for preasymptotic times, the apparent dispersion co-

e�cient quanti�es purely advective spreading of the solute due to velocity

contrast within the initial plume. The global e�ective dispersion coe�cient

De(t), in contrast, does not take into account such spreading e�ects as it is

de�ned as the weighted sum over the local e�ective dispersion coe�cients,
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Figure 2.2: Solute distributions evolving from an extended source in one

disorder realization to illustrate the conceptual di�erence between the local

e�ective and apparent dispersion coe�cient.
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which measure solute dispersion originating from the point sources that con-

stitute the initial plume.

Thus, advective spreading due to the velocity contrast inside the initial

plume can be quanti�ed by the di�erence between the apparent and the

global e�ective dispersion coe�cients,

Da
ij(t)�De

ij(t) =
1

2

d

dt

Z

d

dx0�(x0)�
(1)
i (tjx0)

h
�
(1)
j (tjx0)�m

(1)
j (t)

i
: (2.38)

The conceptual di�erence between these observables is illustrated in Figure

2.2.

Equation (2.38) describes the temporal rate of change of the mean squared

deviation of the local from the global center of mass positions.

2.6.4 Transport Coe�cients. Ensemble

As detailed in section 2.4, in a stochastic analysis, the physically or chemi-

cally heterogeneous aquifer is identi�ed with one particular realization of an

ensemble of aquifer realizations. As such, the e�ective transport coe�cients

can be expressed as averages over the ensemble of all possible realizations of

the spatial and temporal random processes.

As pointed out in, e.g., [42] for average over spatial random process,

and [20] for average over temporal random process, the de�nition of average

dispersion coe�cients is not unique and depends on the way the average is

taken. This is analogous to the de�nition of the global e�ective and apparent

dispersion coe�cients described previously. The two quantities di�er in the

order, by which the \average" over the initial distribution is taken, see (2.36)

and (2.37).

In a straightforward manner, we de�ne the average center of mass velocity

and local e�ective dispersion coe�cients as the ensemble averages over (2.34)
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(a)

(b)

Figure 2.3: Solute distributions evolving from a point-like injection in di�er-

ent disorder realizations to illustrate the conceptual di�erence between the

(a) ensemble and (b) averaged local e�ective dispersion coe�cient.
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and (2.33),

�i(tjx0) = h�i(tjx0)i; (2.39)

D
e

ij(tjx0) = hDe
ij(tjx0)i: (2.40)

For an extended solute distribution, the average global center of mass

velocity and e�ective dispersion coe�cient are given by,

vi(t) =

Z

d

dx0�(x0)h�i(tjx0)i; D
e

ij(t) =

Z

d

dx0�(x0)hDe

ij(tjx0)i: (2.41)

The average apparent dispersion coe�cient is de�ned by the ensemble average

over (2.37)

D
a

ij(t) = hDa
ij(t)i: (2.42)

For early times, the apparent dispersion coe�cient quanti�es spread-

ing due to the velocity contrast within the initial solute distribution, com-

pare (2.38).

In addition, we will consider the so-called ensemble dispersion coe�cient,

which describes the temporal rate of change of the longitudinal width of the

ensemble averaged Green function g(x; tjx0; t0),

Dens
ij (tjx0) = 1

2

d

dt



�
(2)
ij (tjx0)� �

(1)
i (tjx0)�(1)

j (tjx0)�: (2.43)

The di�erence between the ensemble and average e�ective dispersion coe�-

cients, is given by,

Dens(tjx0)�D
e
(tjx0) = 1

2

d

dt



�
(1)
i (tjx0)�(1)

j (tjx0)� �
(1)
i (tjx0) �

(1)
j (tjx0)�:

(2.44)

The conceptual di�erence is illustrated in Figure 2.3.
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Figure 2.4: Solute distributions evolving from extended sources in di�erent

disorder realizations to illustrate the conceptual di�erence between the (a)

averaged apparent and (b) global ensemble dispersion coe�cient.
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For an extended solute distribution, the ensemble dispersion coe�cient is

given by,

Dens
ij (t) =

Z

d

dx0�(x0)hDens
ij (tjx0)i: (2.45)

The di�erence between the ensemble and average apparent dispersion coe�-

cients is given by,

Dens
ij (t)�D

a

ij(t) =
1

2

d

dt

Z

d

dx0�(x0)�
(1)
i (tjx0)

h
m

(1)
j (t)� �

(1)
j (tjx0)

i
: (2.46)

The conceptual di�erence is illustrated in Figure 2.4

The ensemble and the average e�ective dispersion coe�cients di�er in

the 
uctuations of the center of mass from realization to realization. As

outlined by Dentz and Carrera, [38], the di�erence between these coe�cients

quanti�es an arti�cial dispersion e�ect caused by sample to sample 
uctu-

ations of the local center of mass position from realization to realization of

the heterogeneous medium. This unphysical ensemble spreading mechanism

is suppressed in the de�nition of the average e�ective dispersion coe�cients

in (2.41). The conceptual di�erence between these quantities has been ex-

tensively studied in the groundwater literature; i.e. [39, 43, 42, 44]; while the

quanti�cation of this di�erence was outlined by [25, 26].

Note that in the limit of an in�nite medium, the dependence of the ini-

tial position is wiped out by the ensemble average, which leads to vertical

homogenization and makes the average medium isotropic. This symmetry is

broken for a �nite medium so that even in average, the memory of the initial

position is preserved in the behavior of the local e�ective and local ensemble

dispersion coe�cients.
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2.7 Methodology

In order to obtain analytical expressions for the e�ective transport coe�-

cients, the advection dispersion transport equation for the particular random


ow �eld under consideration has to be solved to obtain the concentration

distribution c(x; t), and then to calculate the correspondent spatial moments.

For arbitrary 
ow �elds, the transport equation has no closed solution

and tools like perturbation theory may be required. Perturbation theory

has been extensively used in stochastic hydrology to solve 
ow and transport

problems, (e.g.,[39, 40]). Temporal behavior of e�ective transport coe�cients

was analyzed by [27, 25] within a second order perturbation approach assum-

ing small 
uctuations of the heterogeneities. Note that in the literature it

is usually referred to as a �rst order approach because after the ensemble

average, the observables are of �rst order in the variances of the random

�elds. Transport in strati�ed media, however, can be solved exactly by axial

moment equations; (e.g.,[29]). The general concepts of both techniques are

described here, and in the following chapters, these techniques are applied to

solve speci�c transport scenarios.

Numerical simulations were used in this thesis as a tool to complement

and verify the analytical solutions of e�ective transport coe�cients in strati-

�ed media models. Here we also describe the numerical random walk method

employed.

2.7.1 Perturbation Theory

Since there is no closed form solution for the advection dispersion equation

(2.15) for an arbitrary velocity �eld u(x; t) considered, here we present the

perturbation theory applied to systematically investigate the temporal be-
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havior of the concentration distribution c(x; t).

For computational convenience we rewrite the equation (2.15) in terms

of the Fourier transformed concentration ~c(k; t),

@~c(k; t)

@t
� iu(t)k~c(k; t) + kDk~c(k; t) = ~�(k)�(t) +

Z
k0

~Lfk;k0; tg~c(k� k0; t);

(2.47)

where the Fourier transformed variables are marked by a tilde. Note that

the Fourier transform of c(x; t) and the back-transform are de�ned as,

~c(k; t) =

Z
dxc(x; t) exp(ik � x); (2.48)

c(x; t) =

Z
k

~c(k; t) exp(�ik � x); (2.49)

where we used the short-hand notation,Z
k

� � � =
Z

ddk

(2�)d
: (2.50)

The Fourier transformed perturbation operator ~Lfk;k0; tg in (2.47) is de�ned
by,

~Lfk;k0; tg = ~�(k)
@

@t
� ik~u0(k0; t): (2.51)

In order to solve the transport equation we rewrite equation (2.47) as an

equivalent integral equation (see e.g. [20, 38]),

~c(k; t) = ~c0(k; t; 0)~�(k) +

Z
k0

1Z
�1

dt0~c0(k; t; t
0)~Lfk;k0; t0g~c(k� k0; t0): (2.52)

The zeroth-order term ~c0(k; t), is the known Fourier-transformed Green func-

tion of the unperturbed solution of the transport problem (2.47), for ~Lfk;k0; t0g =
0, and point like injection (equivalent in Fourier space to ~�(k) = 1).
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The Fourier-transformed Green function ~c0(k; t; t
0) of the transport prob-

lem (2.15) for ~Lfk;k0; t0g � 0 reads as,

~c0(k; t; t
0) = exp

24�kDk(t� t0) + ik �
tZ

t0

d�u(�)

35�(t� t0) (2.53)

with �(t) the Heaviside step function.

Iterations of the integral expression (2.52) yields a perturbation expansion

of ~c(k; t) in terms of the perturbation operator ~Lfk;k0; t0g,

~c(k; t) = ~c0(k; t; 0)~�(k) +

Z
k0

1Z
�1

dt0~c0(k; t; t
0)~Lfk;k0; t0g~c0(k� k0; t0; 0)

+

Z
k0

1Z
�1

dt0
Z
k00

1Z
�1

dt00~c0(k; t; t
0)~Lfk;k0; t0g~c0(k� k0; t0; t00)

�~Lfk� k0;k00; t00g~c0(k� k0 � k00; t00; 0) + � � � : (2.54)

This series expansion truncated after the second order of ~L constitutes

the basis for our perturbation analysis of the transport coe�cients.

Note that the Green function ~c0(k; t; t
0) depends on the temporal 
uctu-

ations �(t). To obtain consistent expressions for the transport coe�cients,

~c0(k; t; t
0) will be expanded in powers of �(t) in the following,

~c0(k; t; t
0) = eg0(k; t� t0)

h
1 + uik �

tZ
t0

dt00�(t00) + : : : :
i
�(t� t0) (2.55)

We de�ned here

eg0(k; t) = exp (�kDkt+ ik1ut) ; (2.56)

which is the Fourier transform of the solution of (2.15) for �(t) = u0(x; t) � 0

and �(x) = 0.
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2.7.2 Axial Moment Equations

The advection dispersion equation for solute transport trough a strati�ed

medium can be solved explicitly by the de�nition of axial moment equations.

From the e�ective transport formulations and measures proposed by Dentz

and Carrera [29], which we have discussed in this chapter in section 2.6.1, we

rewrite the local moments as,

�
(n)
i (tjx0) =

Z
dycn(y; tjx0); (2.57)

where we de�ned the local axial moments cn(y; tjx0) by,

cn(y; tjx0) =
1Z

�1

dx1x
n
1g(x; tjx0; 0): (2.58)

with i = 1; : : : ; d. We remind here that the Green function g(x; tjx0; 0), is
the solute distribution for a point like injection. The c0(y; tjx0) is the vertical
concentration pro�le integrated over the x1-direction of a solute that evolves

from a point injection at x0 at time t = 0. The local axial center of mass at

the vertical position y at time t is given by c1(y; tjx0), while c2(y; tjx0) is a
measure for the width of the solute distribution at the vertical position y at

time t.

Hence, by multiplication of the transport equation (2.25) with xn1 and

subsequent integration over x1 we can obtain for n = 0; 1; 2 the following

transport equations,(e.g., [29]),

@c0(y; tjy0)
@t

+ u�T (t) � ryc0(y; tjy0)�DTr2
yc0(y; tjy0) = 0;

(2.59)

@c1(y; tjx0)
@t

+ u�T (t) � ryc1(y; tjy0)�DTr2
yc1(y; tjx0) =

u�(y; t)c0(y; tjy0); (2.60)
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@c2(y; tjx0)
@t

+ u�T (t) � ryc2(y; tjy0)�DTr2
yc2(y; tjx0) =

2u�(y; t)c1(y; tjx0) + 2DLc0(y; tjy0); (2.61)

where ry denotes the nabla operator in 
. The �T (t) are the temporal 
ow


uctuations transverse to the direction of the mean 
ow velocity, �T (t) =

[0; �2(t); : : : ; �d(t)]
T . We de�ned the �(y; t) function as,

�(y; t) = [1� �1(t)� k(y)� �1(t)k(y)] (2.62)

The initial conditions are given by,

cn(y; 0jx0) = x01
n
�(y � y0); (2.63)

where n = 0; 1; 2. The boundary conditions are,

n � rcn(y; tjx0)jx2@
d = 0: (2.64)

where @
d is the boundary of the transport domain 
d and n is the outward

pointing unit vector perpendicular to the domain boundaries.

The initial and boundary conditions imply, (i) c0(y; tjx0) � c0(y; tjy0),
and (ii), Z




dyc0(y; tjy0) = 1: (2.65)

Applying Duhamel's principle in order to express c1(y; tjx0) and c2(y; tjx0)
in terms of the auxiliary function c0(y; tjx0), we can write the expressions

(2.60) and (2.61) as follows,

c1(y; tjx0) = (x01 + ut)c0(y; tjy0)

+u

tZ
0

dt0
Z



dy00c0(y; tjy00; t0) [�(y00; t0)� 1] c0(y
00; t0jy0);

(2.66)



31 Chapter 2

c2(y; tjx0) =
h
x01

2
+ 2DLt

i
c0(y; tjy0)

+2u

tZ
0

dt0
Z



dy00c0(y; tjy00; t0)�(y00; t0)c1(y00; t0jx0):

(2.67)

According to (2.57), we now obtain for the �rst and second local moments,

�
(1)
1 (tjy0) = x01 + u t+ u

Z



dy00
tZ

0

dt0 [�(y00; t0)� 1] c0(y
00; t0jy0);

(2.68)

�
(2)
1 (tjy0) = (x01 + u t)2 + 2DLt

+2u(x01 + u t)

Z



dy00
tZ

0

dt0 [�(y00; t0)� 1] c0(y
00; t0jy0)

+2u2
Z



dy00
Z



dy

tZ
0

dt0
t0Z

0

dt00 [�(y00; t0)� 1] [�(y; t00)� 1]

�c0(y00; t0jy; t00)c0(y; t00jy0): (2.69)

The �rst m
(1)
T (t) and second m

(2)
T (t) moments in the transverse directions

are derived in Appendix C.

2.7.3 Numerical Random Walk simulations

Here we present the numerical random walk tool used to perform numer-

ical simulations to investigate temporal behavior of the e�ective transport

coe�cients in strati�ed media models.

The numerical solution of the transport problem using random walk sim-

ulations are based on a Lagrangian transport framework, which in contrast

to the Eulerian framework, describes the motion of solute particles. The

solute particle movement is given by the divergence-free 
ow u(x), and a
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stochastic force, �(t), which models the erratic movement of a particle due to

local dispersion. This is expresed by the following equation of motion [39],

d

dt
x(a; t) = u (x(a; t)) +

p
2D�(t); (2.70)

where x(t) denotes the particle position at time t with initial position x(a; t =

0) = a. The initial particle distribution is then given by �(a); the �(t) is a

Gaussian white noise random vector with zero mean correlation h�(t)�(t0)i =
�(t� t0).

In discrete time, the equation of a solute particle is given by,

x(i;r)(t+�tjy0) = x(i;r)(t) + u
�
x(i;r)(tjx0)��t+p2DL�t �

(i)
N

(2.71)

y(i;r)(t+�tjy0) = y(i;r)(tjy0) +
p
2DT�t�

(i)
N ; (2.72)

where �
(i)
N and �

(i)
N are mutually independent Gaussian random vectors with

zero mean and unit variance; x(i;r)(tjy0) and y(i;r)(tjy0) denote the particle

trajectory starting from x(0) in the i-th noise and r-th disorder realization.

The random 
ow �eld u
�
x(i;r)(tjx0)� employed is described for each case

in the followings chapters. We will also detail the medium dimensions, time

discretization, number of realization, etc.

The local moments �(n;r)(tjx0) in the r�th disorder realization are de-

rived from averages of the particle trajectories over all noise realizations as

(e.g.,[29]),

�(n;r)(tjx0) = 1

N

NX
i=1

�
x(i;r)(tjx0)� ; (2.73)
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where N is the total number of noise realizations. The global moments in

the r�th disorder realization then are obtained by summation of (2.73) over

all initial positions as,

m(n;r)(t) =
1

M

MX
j=1

�(n;r)(tjy0(j)): (2.74)

whereM is the �nite initial extent of the injection region, which is equivalent

to averaging over various realizations.

Ensemble averages then are taken accordingly by summation of the re-

spective observables over all realizations of the random conductivity �eld un-

der consideration. Thus, the ensemble average is numerically approximated

by,

'fk(y)g = 1

R

RX
r=1

'fk(r)(y)g (2.75)

with 'fk(y)g an arbitrary functional of the random conductivity �eld and

R the total number of disorder realizations.
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E�ective Dispersion in a

Chemically Heterogeneous

Medium under Temporally

Fluctuating Flow Conditions

3.1 Introduction

Local scale physical and chemical medium heterogeneities lead to an e�ective

large scale transport behavior that is qualitatively and quantitatively di�er-

ent from the one observed in homogeneous media. The interaction of spatial


uctuations of the system parameters and local scale transport processes

leads in general to enhanced solute spreading and mixing.

The in
uence of spatially 
uctuating physical and chemical system prop-

erties, such as hydraulic conductivity and sorption properties, for example,

on solute transport has been studied extensively during the last two decades

within the stochastic perturbative approach, e.g., [45, 46, 22, 24, 47, 48],

34
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among others. The later studies disregard the e�ects of local dispersion or

focus on the asymptotic long time behavior of solute transport. The full tem-

poral evolution of e�ective solute spreading in a chemically and physically

heterogeneous medium for �nite local dispersion has been studied in terms

of the time behavior of e�ective dispersion coe�cients, see, e.g., [25, 26, 27].

The stochastic perturbative analysis yields an increase of the longitudinal

e�ective dispersion coe�cient to a macroscopic value as a result of physical

and chemical medium heterogeneities, which is in agreement with experimen-

tal and numerical �ndings. The predicted asymptotic transverse dispersion

coe�cients, however, consistently underestimates numerical and experimen-

tal observations by at least one order of magnitude e.g., [3, 19, 4]. Recently,

the scale dependence of macrodispersion and e�ective retardation factors for

reactive chemicals has been studied in laboratory scale experiments [49] and

critically compared to stochastic theories [50]. As been intimately connected

with scale dependence, the temporal behavior of these e�ective parameters

has been also investigated within a stochastic framework e.g., [51].

Transverse mixing is a critical process for geochemical processes in rivers

[52], stream-aquifer interactions [53], saltwater intrusion [54, 55], and mi-

crobial reactions [56, 57]. The importance of transverse mixing for reac-

tive transport modeling including precipitation (dissolution) reactions has

recently been shown by [58]. Thus, the quanti�cation of transverse mixing is

of importance in a number of environmental problems such as soil and water

bodies remediation.

In addition to spatial 
uctuations of the system parameters due to phys-

ical and chemical medium heterogeneities, groundwater 
ow in general also


uctuates temporally on a range of scales including hyper annual climatic


uctuations, seasonal and irrigation cycles and daily barometric 
uctuations,
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for example. Such temporal 
ow 
uctuations were �rst recognized as a source

of enhanced solute spreading by [16]. Rehfeldt and Gelhar [18] presented a

stochastic approach for the quanti�cation of the impact of temporal 
ow


uctuations in a physically heterogeneous medium. Within such a stochas-

tic framework, Kabala and Sposito [59] studied macrodispersion for reactive

transport in a spatially heterogeneous medium. Solute spreading in a het-

erogeneous medium for periodic (deterministic) time 
uctuations of the hy-

draulic gradient for purely advective transport (vanishing local dispersion)

has been analyzed by, e.g., Zhang and Neuman [60] and Dagan et al [61].

Recently, Cirpka [62] studied the enhancement of transverse dispersion of ki-

netically sorbing compounds in spatially uniform 
ow �eld under sinusoidal

(deterministic) temporal 
uctuations and vanishing local dispersion.

A recent approach to characterize and quantify e�ective spreading and

mixing in time-
uctuating 
ow through a physically heterogeneous medium

is an analysis in terms of e�ective dispersion coe�cients [20, 37, 38]. E�ective

dispersion coe�cients characterize e�ective solute spreading and mixing in

an heterogeneous environment [42, 25, 26]. For transport in time 
uctuating

spatial random 
ow �elds, it was shown that the interaction between tem-

poral 
uctuations, local dispersion and spatial heterogeneity leads to macro-

scopic contributions to the longitudinal as well as, and more importantly, the

transverse e�ective dispersion coe�cients [20, 37, 38].

3.2 Basics

We investigate e�ective solute transport in a chemically heterogeneous in�-

nite medium subject to temporal 
uctuations of the 
ow conditions, the 
ow

and transport model were introduced in section 2.2 and 2.3, respectively.
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We focus on linear sorption reactions under instantaneous local equilibrium

conditions, where the corresponding 
uctuating retardation factor is mod-

eled as a stationary random space function. The temporal variability of the


ow is represented by a stationary temporal random process. The stochastic

modeling approach is described in section 2.4.

Solute spreading is quanti�ed by e�ective dispersion coe�cients, which

are derived from the ensemble average of the second centered moments of the

normalized solute distribution in a single disorder realization. As we study

here transport for a solute evolving from a point like injection at t = 0; i.e.

�(x) = �(x), we will focus on transport coe�cients derived from the �rst and

second local moments de�ned in (2.27) and (2.28). Note that, as outlined

in section 2.6.4, here the point observables do not depend on the injection

position, as the memory is wiped out by the stochastic average. Thus, in the

following we supress the injection position in the notation of the observables.

Using the �rst-order perturbation approach in the variances of the random

�elds described in 2.7.1, we derive explicit compact expressions for the time

behavior of the disorder induced contributions to the e�ective dispersion

coe�cients.

3.3 Observables

As the simplest measures for the analysis of the evolution of the sorbing chem-

ical, here we study the e�ective center of mass velocity, de�ned in (2.39), and

e�ective dispersion coe�cients in (2.40), of the (normalized) mobile solute

fraction [25],

p(x; t) =
cm(x; t)Z
ddycm(y; t)

: (3.1)
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We refer here to the normalization of a distribution density which reads as,Z
ddxp(x; t) = 1: (3.2)

The e�ective dispersion coe�cient for �nite local dispersion has been ana-

lyzed by [25, 26, 27] for transport in a physical and chemically heterogeneous

medium under steady 
ow conditions, and [20, 37, 38] for passive transport

in temporally 
uctuating 
ow. The relevance of e�ective dispersion coe�-

cients for the quanti�cation of solute mixing and thus for reactive transport

modeling has been outlined by [28, 63, 64]. Thus, here we focus exclusively

on the analysis of the e�ective transport velocity and dispersion coe�cients.

Transport Coe�cients

The e�ective transport velocity �ei (t),(2.39), and the dispersion coe�cients

D
e

ij(t), (2.40), can be expressed in terms of the Fourier transform of p(x; t),

as (e.g., [25, 26])

�ei (t) =
1

i

d

dt

@

@ki
hln ep(k; t)i jk=0 (3.3)

D
e

ij(t) = �1

2

d

dt

@

@ki

@

@kj
hln ep(k; t)i jk=0 (3.4)

with the Fourier transform of p(x; t) given by

ep(k; t) = ec(k; t)ec(0; t) ; (3.5)

where ec(k; t) is the second order perturbation expansion de�ned in (2.54).

Relations (3.3) and (3.4) can be readily veri�ed by using the de�nition of

the Fourier transform (2.49).

Inserting the series expansion (2.54) into (3.4) and expanding the re-

sulting expression for small variances of the random �elds the dispersion
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coe�cients decompose into,

D
e

ij(t) = Dij + ���D
e

ij(t) + �uuD
e

ij(t) + �u�D
e

ij(t)

+�u�D
e

ij(t) + ���D
e

ij(t) (3.6)

and accordingly for the e�ective center of mass velocity (3.3). Note that

strictly speaking for such an expansion to be valid, the variances of the

random �elds are required to be small.

The e�ective dispersion coe�cients D
e

ij(t) is given by the sum of the con-

tributions due to (i) local dispersion Dij, (ii) chemical heterogeneity ���D
e

ij

(see [25]), (iii) physical heterogeneity and temporal 
uctuations of the 
ow

conditions �uuD
e

ij and �
u�D

e

ij (see, e.g., [26, 27, 20, 38], (iv) cross-correlations

between physical and chemical heterogeneity �u�D
e

ij (see, e.g., [26] for the

steady state case), and (v) the interaction between temporal 
uctuations and

chemical heterogeneity ���D
e

ij. In the following, we focus on a physically ho-

mogeneous, i.e., �uuD
e

ij = �u�D
e

ij = �u�D
e

ij = 0, chemically heterogeneous

medium.

This kind of simpli�ed model might be appropriate to describe the trans-

port of an organic solute in an aquifer, which is comparatively homogeneous

with respect to the hydraulic conductivity, but exhibits a strongly varying

organic carbon content which determines the retardation factor (i.e. [62]).

We focus here on ���D
e

ij and on its relative importance with respect to the

contribution due to chemical heterogeneity only [25]. The ���D
e

ij + ���D
e

ij

quantify the total contributions to e�ective spreading for solute transport

under 
uctuating 
ow conditions in a chemically heterogeneous, physically

homogeneous medium. Explicit expressions for ����ei and ���D
e

ij are given

in Appendix A.
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3.3.1 Time Scales and the Validity of E�ective Param-

eters

The temporal evolution of the e�ective dispersion coe�cients is determined

by three characteristic time scales, �u, �Di
, and ��. The advection time scale

�u measures the time for the solute to be advected over one longitudinal

correlation length l1,

�u =
l1
u
: (3.7)

The dispersion time scales �Di
characterize the time for dispersive transport

over one correlation length li,

�Di
=

l2i
Dii

: (3.8)

The Kubo time scale �� [38], measures the time for the local dispersive

spreading over an e�ective length that is given by the correlation length l

and the Kubo length l� = u� ,

�� = (1 + �2)�D1
= (l2 + l2�)�D1

: (3.9)

We de�ned here the non-dimensional Kubo number, � = �=�u = l�=l1, which

compares the correlation time � to the advection time scale �u, and equiva-

lently the Kubo distance l� = u� (which denotes the length over which the

the solute is advected by the mean 
ow during one correlation time �) to the

correlation length in direction of the mean 
ow l1.

The non-dimensional Peclet numbers Pei = �Di
=�u compare the strength

of advective and dispersive transport mechanism. In many hydrological ap-

plications transport is advection dominated, which implies large Peclet num-

bers, Pe � 1, or accordingly, small inverse Peclet numbers �i � �u=�Di =

Diil1=(ul
2
i ). In the following we will develop simple compact expressions for

the e�ective dispersion coe�cients under the assumption of small �i.
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Note that for times smaller than the advection timescale, t � �u, the so-

lute has moved by mean advection over a distance shorter than the correlation

length l1 of the medium, and has spread by local dispersion over a distance

which is much smaller than the corresponding correlation distance. On such

short scales the medium looks quasi homogeneous and the solute does not

\see" the heterogeneity of the medium. Thus, the spatial ensemble average

and accordingly the e�ective parameters de�ned as ensemble averages, have

only a limited formal meaning for t � �u as there can be large sample to

sample 
uctuations between the disorder realizations. Correspondingly, for

times smaller than the correlation time � (or equivalently, for transport dis-

tances smaller than the Kubo distance l�), the 
ow �eld appears to be quasi

steady, and the temporal average has only a formal meaning.

Appendix A summarizes the somewhat lengthy calculations that lead

to the expressions for the e�ective center of mass velocity and dispersion

coe�cients presented in the following. We employ an expansion for small

inverse Peclet numbers �i � 1 and time large compared to the advection

time scale t � �u (e.g., [38]) in order to simplify the lengthy expressions

given in Appendix A.

3.3.2 E�ective Center of Mass Velocity

The leading contributions for small �i to the e�ective center of mass velocity,

����ei , are given by (see Appendix A),

����ei (t) = u�2
���

2
��

Z
k0

eC��(k0) [�i1A(k
0; t) + Ai(k

0; t; 0)] exp (�iuk01t) + : : : ;

(3.10)
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where the dots denote subleading contributions of the order of the inverse

Peclet numbers. The auxiliary functions A(k; t) and Ai(k
0; t; 0) are de�ned

by (A.18) and (A.19) in Appendix A. For short-range correlation functions,

expression (3.10) decreases exponentially fast on the advection time scale �u.

3.3.3 E�ective Dispersion Coe�cients

As outlined in Appendix A, the leading behavior of ���D
e

ij(tjx0) for small

inverse Peclet numbers is given by,

���D
e

ij(t) = u2�2
���

2
��

Z
k0

tZ
0

dt0 eC��(k0) [�i1�j1A(k
0; t0)

+�j1Ai(k
0; t0; 0) + �i1Aj(k

0; t0; 0) + C��
ij (t

0)
�

� exp (�iuk01t0)
h
1� exp

�
�2k0j2l2j t=�Dj

�i
: (3.11)

3.4 Explicit Expressions for the E�ective Dis-

persion Coe�cients

We focus on a transport situation for which the temporal 
uctuations are

transverse to the direction of the mean 
ow velocity, �(t) = [0; �2(t); : : : ; �d(t)]
T .

In this case, (3.11) simpli�es to,

���D
e

ij(t) = u2�2
���

2
��

Z
k0

tZ
0

dt0 eC��(k0)
h
�i1�j1A(k

0

2; : : : ; k
0

d; t
0)

+C��
ij (t

0)pipj

i
exp (�iuk01t0)

h
1� exp

�
�2k0j2l2j t=�Dj

�i
;

(3.12)
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where we de�ned pi = (1 � �i1). In the following, we study without loss of

generality 
uctuations in 2-direction, i.e.,

�i(t) = �i2�(t): (3.13)

Using (3.13) in (2.14), the correlation matrix C��
lm(t) reduces to,

C��
lm(t) = �l2�m2C

��(t): (3.14)

To derive explicit results, we need to specify the spatial and temporal

correlation functions. The speci�c form of the spatial and temporal correla-

tion functions C�� and C�� , is to some extent arbitrary. A convenient choice

made in the literature are Gauss-shaped functions. The temporal 
uctua-

tions of the 
ow �eld in (2.14) are assumed to be Gaussian correlated (e.g.,

[38]), i.e.,

C��(t) = exp
h
� t2

2� 2

i
; (3.15)

with � the correlation time. In analogy to [25], we use a Gaussian shaped

correlation function for the retardation �eld � in (2.8), which in Fourier space

reads as,

C��(k) = (2�)
d
2

dY
i=1

li exp
h
� 1

2
(kili)

2
i
: (3.16)

The length scales li are the correlation lengths of the retardation �elds in

direction i (with i = 1::::d).

Inserting (3.14) with (3.15) and (3.16) into (3.12) and using (A.18) for

A(k02; t
0), we obtain,

���D
e

ij(t) = ul1�
2
���

2
��

Z
k0

t=�uZ
0

dt0
h
�i1

l21
l22

k02
2

2

t0Z
0

dy

t0Z
0

dy0 exp
h
� (y � y0)2

2�2

i

+�i2 exp

 
� t0

2

2�2

!i
exp (�ik01t0)

n
1� exp

"
�k0j

2

2
(1 + 4t=�Dj

)

#o
:

(3.17)
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In the following we will restrict ourselves to isotropic disorder scenario,

i.e., l1 = � � � = ld. Then, for times large compared to the advection time scale

�u, we obtain the following compact expressions for the e�ective dispersion

coe�cients,

���D
e

11(t) =

r
�

2
�2
���

2
��ul

�2

a(�)

h
a(�)� 1 +

h
(1 + 4t=��)

1

2 � a(�)
i

�(1 + 4t=�D2
)�

3

2

dY
n=3

(1 + 4t=�Dn
)�

1

2

i
(3.18)

���D
e

22(t) =

r
�

2
�2
���

2
��ula(�)

h
1� (1 + 4t=��)

�
1

2

dY
n=2

(1 + 4t=�Dn
)�

1

2

i
;

(3.19)

where we de�ned a(�) = �=
p
�2 + 1. Note that ���D

e

ii � 0 for i > 2 for

symmetry reasons. Furthermore, note that ���D
e

11 � 0, however, ���D
e

11 +

���D
e

11 � 0, for small variances of the temporal 
ow 
uctuations. For in-

creasing �2
�� , this contribution can become negative, which, however, is a

relic of the perturbation expansion in �2
�� , see Appendix A. Note that the

expansions in the 
uctuations in the random �elds can lead to non-convergent

series for some transient non-linear reactive transport problems [65]. For the

linear reactive transport problem under consideration here, the non physical

behavior of ���D
e

11+ ���D
e

11 � 0 is a relic of the perturbation expansion and

not of the non-convergence.

For comparison we give here the explicit approximate expressions ob-

tained by Attinger et al. [25] for ���D
e

ii, in d dimensions,

���D
e

11(t) =

r
�

2
�2
��ul

"
1�

dY
n=2

�
1 +

4t

�Dn

�� 1

2

#
; (3.20)

���D
e

ii(t) = 0: (3.21)

Note �rstly, that the time evolution of ���D
e

11 depends only on the transverse
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dispersion scale, and secondly that there is no macroscopic contribution to

the transverse dispersion coe�cient.

3.5 E�ective Transport Behavior

It was shown by Attinger et al. [25] for transport under steady 
ow conditions

that chemical medium heterogeneities change the behavior of the longitudi-

nal dispersion coe�cient in a quantitatively relevant way, whereas transverse

solute spreading is only weakly in
uenced by the 
uctuations of the retar-

dation factor. As we saw at the end of the previous section, the e�ective

transverse dispersion coe�cient is in fact of the order of the local dispersion

coe�cient. For transport under a temporally 
uctuating 
ow conditions,

the behavior of transverse and longitudinal e�ective dispersion coe�cients is

di�erent.

In the following, we investigate the asymptotic long time behavior and the

temporal evolution of the e�ective dispersion coe�cients in d = 2 dimensions.

All results are normalized by
p

�
2
�2
���

2
��ul. The behavior in d = 3 dimensions

is qualitatively similar.

3.5.1 Asymptotic Long Time Behavior

We study here the asymptotic behavior of the contributions to the e�ective

dispersion coe�cients for isotropic local dispersion, D11 = D22 = D, as a

function of the Kubo number �. We de�ne for the following,

lim
t!1

���D
e

11(t) = ���D1

11(�); (3.22)

lim
t!1

���D
e

22(t) = ���D1

22(�): (3.23)

Figure 3.1 illustrates the asymptotic behavior of ���D1
22(�) and ���D1

11(�).
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Figure 3.1: Asymptotic behavior of the contributions to the e�ective disper-

sion coe�cients due to chemical heterogeneity and temporal 
uctuations in

solid lines. The dashed lines describe the behavior of ���D1
22 and ���D1

11

according to (3.24) and (3.25), respectively.
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Both contributions to the longitudinal and transverse e�ective dispersion

coe�cients tend to zero in the limit � ! 0. In this limit, the correlation

time � is much smaller than the advection time �u, or equivalently, the Kubo

length is much smaller than the correlation length, l� � l. Thus, during

a many temporal 
uctuations cycle the medium look quasi homogeneous

to the transported solute and, as shown by Dentz and Carrera [20], there

are no contributions to e�ective solute spreading due to temporal velocity


uctuations in homogeneous media.

For 10�1 < � < 1, ���D1
22(�) increases linearly,

���D1

22(�) =

r
�

2
�2
���

2
��ul�: (3.24)

In this regime, the Kubo length is of the order of the spatial correlation

length, l� . l, i.e., the solute samples actually the spatial heterogeneity after

many correlation times, which leads to enhanced spreading in transverse

direction.

���D1
11(�), in contrast, decreases linearly in the same �-interval,

���D1

11(�) = �1

2

r
�

2
�2
���

2
��ul�: (3.25)

The asymptotic values of ���D1
22(�), and ���D1

11(�), are reached for �� 1.

Note that, in contrast to transport under steady 
ow conditions, where

the disorder-induced contribution to e�ective transverse dispersion is of the

order of local dispersion, here ���D1
22 is macroscopic and dependent on the

Kubo number �. At the same time, the longitudinal dispersion coe�cient

decreases as ���D1
11 is negative as shown in Figure 3.1. The simultaneous

increase of the transverse and decrease of the longitudinal e�ective disper-

sion coe�cients is a consequence of self-organization of the system. Increased

transverse spreading smooths out the concentration contrast along direction

normal to the mean 
ow, which in turn leads to a decrease of longitudinal
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e�ective spreading. A similar mechanism is observed for the Taylor problem

of transport in linear 
ow [34]. There, solute dispersion is enhanced as a

consequence of the fact that the solute samples the transverse velocity con-

trast in the direction vertical to the mean 
ow, the resulting concentration

contrast is smoothed out by transverse dispersion. Thus, an increase of the

transverse dispersion leads to a decrease of the Taylor dispersion coe�cient.

3.5.2 Time behavior

We study the time evolution of the contributions to the e�ective dispersion

coe�cient using the explicit expressions (3.18) and (3.19) for the longitudinal

and transverse dispersion coe�cients, respectively. We investigate di�erent

scenarios in order to study the di�erent mechanisms which a�ect the behavior

of the e�ective dispersion coe�cients. At �rst we investigate an isotropic

scenario for small and large Kubo numbers. Secondly, we investigate an

anisotropic local dispersion scenario varying the longitudinal local dispersion

coe�cient.

Isotropic scenario

For the isotropic scenario, the inverse Peclet numbers �i and the dispersion

time scales �Di
reduce to �i = � and �Di

= �D for i = 1; : : : ; d.

Figures 3.2a and 3.2b illustrate the time evolution of the contributions

���D
e

22 to the transverse and ���D
e

11 to the longitudinal e�ective dispersion

coe�cients in d = 2 for � = 10�1 and � = 10. The dispersion time scale

is �D = 103�u, i.e., the advection and dispersion time scales �u and �D are

clearly separated.

For large values of �, corresponding to �� � �D, the Kubo scale �� to-

gether with �u and �D, separates three di�erent time regimes: (i) the interme-
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diate time regime �u � t� �D, (ii) the Kubo time regime �D � t� ��, and

(iii) the long-time regime t� ��. The Kubo scale sets a relevant asymptotic

time scale. Note that the solute has to be spread by local dispersion over at

least one correlation length of the medium to \see" the chemical heterogene-

ity and it has to be spread over at least one Kubo length l� to notice the

in
uence of temporal 
ow 
uctuations. Note that for small �, �� � �D, see

de�nition (3.9), i.e., the Kubo scale is of importance for large Kubo numbers

only. In order to illustrate this feature, we choose � = 10�1 and � = 10.

(i) Intermediate time regime �u � t� �D

In this time regime, spatial heterogeneity is being activated as a macro-

scopic spreading mechanism and we observe a cross-over from local dispersive

spreading and mixing to macroscopic heterogeneity induced e�ective dis-

persion. The contribution to the e�ective transverse dispersion coe�cient,

���D
e

22, both for � = 10�1 and � = 10 evolve linearly with time,

���D
e

22(t) =
p
2��2

���
2
��ula(�)

(�2 + 2)

(�2 + 1)

t

�D
+ : : : ; (3.26)

where the dots denote subleading contributions. Contrary to the behavior

observed under steady 
ow conditions, where transverse spreading is mainly

given by local dispersion, here the transverse dispersion coe�cient grows from

the (microscopic) local scale dispersion coe�cient to a macroscopic value.

As shown in Figure 3.2b, the contribution to the longitudinal coe�cient

decreases linearly according to,

���D
e

11(t) = �
p
2��2

���
2
��ula(�)

h
2 + 3�(��

p
�2 + 1)

i t

�D
+ : : : ; (3.27)

towards a negative macroscopic value and thus, longitudinal e�ective disper-

sion decreases as discussed in Section 3.5.1.

(ii) Kubo time regime �D � t� ��
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Figure 3.2: Time behavior of the contributions to the (a) transverse e�ective dispersion

coe�cients, (b) longitudinal e�ective dispersion coe�cients, in d = 2 for �D = 103�u,

� = 10�3; t � �u; � = 10�1 and � = 10. The dashed lines in (a) and (b) describe the

behavior of ���D
e

22
and ���D

e

11
according to (3.26) and (3.27), respectively.
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For � = 10, ���D
e

22, see Figure 3.2a, evolves approximately according to

t�1=2, which is identical to the behavior observed for the longitudinal compo-

nent under steady state conditions [25]. For � = 10�1, i.e., �� � �D and the

Kubo and long time regimes coincide. The contribution ���D
e

22 evolves as

t�1 towards its asymptotic macroscopic value. The di�erence in the behav-

iors for � = 10�1 and 10 can be well observed in Figure 3.2a. For � = 10�1

the evolution of the ���D
e

22 is faster than for � = 10. Note that for times,

�D � t � ��, the solute has spread out over a distance larger than the cor-

relation length l, hence, the solute has sampled a representative part of the

chemical heterogeneity. However, for large Kubo numbers, the Kubo length

is much larger than the correlation length, l� � l, i.e., the solute has been

transported over more than one correlation length without noticing the tem-

poral variability of the 
ow. Thus spreading is dominated by the interaction

of local dispersion and chemical heterogeneities, and the behavior of ���D
e

22

is similar to the one observed for the longitudinal dispersion coe�cient under

steady 
ow conditions as in this time regime, �(t) is approximately constant,

i.e., there is an approximately constant transverse velocity component. For

� = 10�1, the solute has spread by local dispersion over distances larger than

both, the correlation length and the Kubo length. Thus, both spatial het-

erogeneity as well as temporal 
ow 
uctuations are activated as macroscopic

spreading mechanisms. For this reason ���D
e

22 evolves faster for � = 10�1

than for � = 10. The same behavior can be observed in Figure 3.2 for ���D
e

11,

which decreases faster for � = 10�1 than for � = 10 for the reasons given

above.

(iii) Long time regime t� ��

As pointed out above, for � = 10�1, the Kubo and long time regimes

coincide. For � = 10, the long time regime is set by the Kubo scale, see
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Figures 3.2a and 3.2b. As pointed out above, only when the solute has

been spread out over distances which are larger than both the correlation

and the Kubo lengths, the interaction between chemical heterogeneity and

temporal 
uctuations are activated as macroscopic spreading mechanisms.

As discussed above for � = 10�1, here both ���D
e

22 and ���D
e

11 evolve to-

wards their respective asymptotic values according to t�1, i.e., faster than

the contribution ���D
e

11 in the absence of temporal 
ow 
uctuations.

Anisotropic scenario

Here we study the temporal behavior of the e�ective dispersion coe�cients

for anisotropic local dispersion and isotropic disorder correlation.

Figures 3.3a and b illustrate the time behavior of ���D
e

22 and ���D
e

11 for

a �xed �1 = 10�1 and varying �2 of �2 = 10�7; 10�6; 10�5 and �2 = 10�4, in

d = 2, for � = 1. The temporal behavior of ���D
e

22 is plotted only for the

cases �2 = 10�7 and �2 = 10�4. For the values in between, the curves are

quite similar.

For the isotropic scenario discussed in the previous Section 3.5.2, �� � �D

and the asymptotic long time regime was de�ned by the Kubo time scale

��. For the anisotropic scenario under consideration here, the Kubo scale is

smaller than the transverse dispersion time scale, �� � �D2
. Thus, �D2

de�nes

the relevant asymptotic time scale. These two time scales, along with the

advection scale, de�ne three time regimes which characterize the interaction

of local dispersion, spatial heterogeneity and temporal 
uctuations: (i) the

Kubo time regime �u � t� ��, (ii) the intermediate time regime �� � t�
�D2

, and (iii) the long-time regime t� �D2
.

(i) Kubo time regime �u � t� ��.

In this time regime, the solute has been transported by advection over
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Figure 3.3: Time behavior of (a) ���D
e

22(t), and (b) ���D
e

11 (both scaled byp
�
2
�2
���

2
��ul) in d = 2 for � = 1 and a �xed �1 = 10�1; �2 varies between

10�7 and 10�4.
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a distance larger than the correlation length l of the chemically heteroge-

neous medium. Solute has not been spread by local dispersion over distances

larger than both the correlation length l and the Kubo length l�. In this

regime, temporal 
uctuations and spatial heterogeneity are activated as rel-

evant macroscopic spreading mechanism and we observe a cross-over from

microscopic local dispersion to macroscopic disorder-induced spreading and

mixing. The ���D
e

22 and ���De�
11 , see Figures 3.3a and 3.3b, evolve linearly

with time, as observed in the isotropic scenario.

(ii) Intermediate time regime �� � t� �D2
.

Here, the solute has spread by longitudinal local dispersion over the Kubo

length l�. In transverse direction, however, the solute has not yet sampled

one spatial correlation length of the medium by transverse local dispersion.

The evolution of ���D
e

22 for � = 10�4 is di�erent from the one observed

for �2 = 10�7. For �2 = 10�4, ���D
e

22 evolves faster towards its asymptotic

long time value as transverse local dispersive mixing is more e�cient.

The evolution of ���D
e

11 depends strongly on the value �2. In this time

regime, ���D
e

11 evolves as t
1=2 towards a maximum, which it assumes for times

of about 10�1�D2
. For steady 
ow conditions, transport would be quasi uni-

dimensional in this regime, as local transverse dispersion is subleading. In

the presence of transverse 
ow 
uctuations, however, there is vertical mass

exchange. The transverse heterogeneity contrasts encountered by the solute

leads then to the anomalous t1=2 growth of ���D
e

11. Note that local transverse

dispersion, which smoothes out these vertical contrasts, is subleading. The

anomalous di�usive behavior found here is similar to the one observed in

strati�ed 
ow (e.g., [21, 31]). The mechanisms are similar, but slightly dif-

ferent. While in the case of the strati�ed medium, local transverse dispersion

is the vertical solute spreading and mixing mechanisms that leads, in inter-
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action with the vertical velocity contrast, to the characteristic t1=2 growth of

the longitudinal e�ective dispersion coe�cient, here transverse 
ow 
uctua-

tions cause vertical mass exchange. These mechanisms, local dispersion and

transverse 
ow 
uctuations, are di�erent.

(iii) Long time regime t� �D2
.

Here, the solute has spread over a correlation length of the medium by

transverse local dispersion. Thus, spatial heterogeneity has been activated

as a macroscopic spreading mechanism. The ���D
e

22 converges towards its

macroscopic asymptotic long time value. As a consequence of the increase in

transverse e�ective dispersion, which leads to a smoothing out of the vertical

heterogeneity contrast, ���D
e

11, decreases towards its asymptotic long time

value. The transverse dispersion time scale �D2
is a cut-o� time scale for the

anomalous di�usive behavior observed in the previous time regime.

3.6 Summary

Here we investigated the e�ective transport of a reactive solute through a

chemically heterogeneous medium. We focused on spatially 
uctuating equi-

librium sorption properties, which were characterized by a random retar-

dation factor. The 
ow velocity was 
uctuating in time with 
uctuations

transverse to the mean 
ow direction. The e�ective transport behavior was

studied in a stochastic modeling framework. Chemical heterogeneity and

temporal 
ow 
uctuations were modeled by mean of correlated spatial and

temporal random �elds, respectively.

We studied e�ective dispersion coe�cients, which were de�ned by the

ensemble averages of the corresponding quantities in a single realization.

Using a �rst-order perturbation approach in the variances of the random
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processes we derived explicit compact expressions for the time behavior of

the transverse and longitudinal e�ective dispersion coe�cients, which allow

for a detailed study of the time evolution of e�ective solute spreading and

mixing.

The e�ective dispersion coe�cients were given as the sum of the con-

tributions due to (i) local dispersion, (ii) the interaction of local dispersion

and chemical heterogeneity, (iii) the interaction of local dispersion physical

heterogeneity and temporal 
ow 
uctuations, (iv) the interaction of local dis-

persion and cross-correlations between physical and chemical heterogeneity,

and (v) the interaction between local dispersion, temporal 
uctuations and

chemical heterogeneity. We focused on a physically homogeneous, chemically

heterogeneous medium, hence, we studied the latter contribution.

The time behavior of the e�ective dispersion coe�cients were dominated

by the following time scales: (i) the advection time scale �u = l=u, (ii) the

dispersion time scale �D2
= l=D22, which gives the activation time scale

for chemical heterogeneities as a relevant macroscopic spreading mechanism,

and (iii) the Kubo time scale �� = (l2+ l2�)=D11 which measures the time for

the local dispersive spreading over a distance larger than both the correlation

length l and the Kubo length, l� = u� . Only after the time ��, the interaction

between chemical heterogeneities and temporal 
ow 
uctuations is activated

as a macroscopic spreading mechanism. As a consequence of temporal 
ow


uctuations, transverse e�ective dispersion evolves towards a macroscopic

asymptotic value, which is in sharp contrast to the corresponding results

for steady 
ow conditions, where no macroscopic contribution to transverse

e�ective dispersion has been found. We observe an interesting phenomenon of

self organization as the longitudinal e�ective dispersion decreases at the same

time as transverse dispersion increases. The increase in transverse e�ective
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dispersion, i.e., an increase of transverse spreading and mixing, leads to an

increased smoothing of the transverse heterogeneity contrast, which in turn

leads to a decrease of longitudinal e�ective dispersion.

We consider two scenarios for a point-like initial condition in d = 2 spatial

dimensions, (i) a completely isotropic scenario characterized by isotropic local

dispersion and disorder correlation and (ii) one characterized by an isotropic

correlation structure and anisotropic local dispersion.

In the �rst case, the time scales are ordered according to �u � �D � ��,

which de�nes three time regimes given by (i) the intermediate time regime

�u � t � �D, (ii) the Kubo time regime �D � t � �� and (iii) the long

time regime t� ��. In the �rst time regime, the solute has not been spread

by local dispersion over one correlation length of the medium. As the so-

lute spreads, e�ective solute dispersion crosses over from local dispersion to

macroscopic disorder induced spreading, which is characterized by a linear

cross-over of the e�ective dispersion coe�cients. In the Kubo regime, tem-

poral 
uctuations have not yet been activated as a macroscopic spreading

mechanisms as the solute has not yet covered a distance of the order of the

Kubo distance. The asymptotic time scale is set by the Kubo time. For time

large compared to �� the e�ective coe�cients approach their macroscopic

long time values.

The second scenario is characterized by a di�erent order of scales given

by �u � �� � �D2
, which implies three time regimes: (i) the Kubo time

regime �u � t � ��, (ii) the intermediate time regime �� � t � �D2
and

(iii) the long time regime t� �D2
. In the Kubo regime spatial heterogeneity

and temporal 
uctuations are activated and the e�ective coe�cient cross-

over to macroscopic heterogeneity induced values, which are approached in

the intermediate regime due to the interaction of temporal 
uctuations and
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the longitudinal heterogeneity contrast, and faster in the asymptotic regime,

where the transverse heterogeneity contrast is activated by local transverse

dispersion. We observe anomalous di�usive behavior for the longitudinal ef-

fective dispersion coe�cient in the intermediate regime, where it evolves as

t1=2. Transverse solute spreading is due to the vertical 
ow 
uctuations as

local transverse dispersion is subleading in this time regime. Thus, concen-

tration contrast that the solute experiences by transverse 
ow 
uctuations

causes the anomalous di�usive behavior, which is cut-o� as soon as trans-

verse dispersion kicks in and smoothes these contrasts at asymptotic time

t� �D2
.

The studied e�ective dispersion behavior and the analysis of the di�erent

micro and macroscopic spreading mechanisms and the interaction between

them sheds new light on the understanding of e�ective transport processes in

heterogeneous media. Particularly, the observed enhancement of transverse

dispersion due to temporal 
ow 
uctuations can have important practical im-

plications for the assessment of groundwater remediation based in hydraulic

manipulation, for example, as well as for the assessment and prediction of

the migration of reactive contaminants in the context of performance assess-

ment in nuclear waste management, for example. The developed compact

and simple expressions for the e�ective dispersion coe�cients can be easily

used for the quanti�cation of e�ective solute spreading and mixing in such

applications.
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Superdi�usion in Strati�ed

Unbounded Media Models

4.1 Introduction

Transport in strati�ed media has been frequently studied in the groundwa-

ter literature as a model for transport in geological media. Natural sandy

aquifers often exhibit geological and geostatistical strati�cation characterized

by a much larger horizontal than vertical correlation length (see, e.g., [66]

and literature therein).

A mathematically simple layered model can be assumed in the idealized

limiting case of in�nity correlation length in the horizontal direction. In

this model, called perfectly strati�ed, the hydraulic conductivity depends

only on the vertical direction. Transport in perfectly strati�ed media has

been frequently studied in the groundgwater literature. Matheron and de

Marsily [21] studied transport in a perfectly strati�ed in�nite medium as

an idealized aquifer model. They observed superdi�usive solute spreading

quanti�ed by an anomalous increase of the longitudinal dispersion coe�cient

59
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with the square root of time.

Following [21], transport in an in�nite perfectly strati�ed random medium

has been investigated extensively (e.g., [67, 68, 69, 70, 71, 72, 31, 41]) using

stochastic modeling as a systematic means to quantify the impact of spatial

heterogeneity on large scale transport. The latter has been studied in terms

of the average solute distribution density and its moments, its spatial and

temporal moments as well as in terms of (apparent) longitudinal dispersion

coe�cients.

The anomalous dispersion behavior such as the one observed in strati�ed

media, called super-di�usive, has been also studied in the physics literature

(e.g. [73, 74, 75]) as the simplest case where long-range correlations lead to

anomalous di�usion.

Local transverse dispersion is the vertical solute spreading and mixing

mechanisms that leads, in interaction with the vertical velocity contrast, to

the characteristic t1=2 growth of the longitudinal e�ective dispersion coef-

�cient in a perfectly random medium. Unlike for the case for wich head

gradient is aligned with the direction of strati�cation, in a more general case

when there is a constant velocity component in the direction perpendicular

to the strati�cation, the longitudinal e�ective dispersion coe�cients reach a

aonstant asymptotic long time value [21, 31].

In this chapter we investigate the temporal behavior of e�ective mixing

and spreading in strati�ed media models in terms of e�ective dispersion co-

e�cients for di�erent 
ow regimes in order to evaluate if the non-Fickian

behavior of these coe�cients persist. In all cases described in the following

we do not assume a constant vertical velocity component.

In section 4.2 we derive analytical expressions for the e�ective and ensem-

ble dispersion coe�cients and study e�ective mixing and spreading behavior
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under transverse temporal 
ow 
uctuations of the 
ow conditions in a in�-

nite strati�ed random medium. Then, under steady state 
ow conditions,

in section 4.3 we investigate two spatially varying 
ow �elds, a Manhattan

Grid distribution, and a nearly strati�ed 
ow.

4.2 Parallel Random Flow with Transverse

Temporal Flow 
uctuations

In section 3.5.2, we analyzed the temporal e�ective dispersion coe�cients

behavior when considering a chemically heterogeneous media subject to ran-

domly temporal 
uctuations of the 
ow conditions. A superdi�usive behavior

of the longitudinal e�ective dispersion coe�cient was observed during a cer-

tain time regime whenever transverse local dispersion is much smaller than

the longitudinal. As discussed, transverse temporal 
ow 
uctuations lead

to enhanced leads to mass exchange even tough transverse local dispersion

is subleading. When transverse local dispersion is activated as a spreading

mechanism, the longitudinal e�ective dispersion coe�cient decreases to its

asymptotic long time Fickian behavior.

The mechanism which leads to non-Fickian behavior in the random re-

tardation described in 3.5.2, and the mechanisms leading to anomalous dis-

persion in strati�ed media are similar. The interaction of temporal 
ow 
uc-

tuations and medium heterogeneities can modify the superdi�usive behavior

under certain conditions. Hence, we study here the impact of transverse tem-

poral 
ow 
uctuations for spreading and mixing in a unbounded strati�ed

random medium.

Weeks and Sposito [76] modeled passive solute mixing in a perfectly strat-

i�ed aquifer during both steady and unsteady groundwater 
ows. They
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showed that under unsteady 
ow conditions the solute plume boundaries

become highly irregular. Irregularity of plume boundaries can be used as a

measure of mixing, which is a very signi�cant process for transport of re-

active species, since chemical and biological reactions are driven by mixing

at the local scale. A recent study on enhanced mixing and spreading due to

chaotic advection (in which 
uid pathlines completely �ll the spatial domain)

is presented in [77]. The e�ects of this unsteady 
ow in chemical activity and

reactions has been investigated experimentally by [78, 79].

In this chapter we quantify e�ective mixing and spreading of a solute

transported through a in�nite strati�ed medium under temporally 
uctuat-

ing 
ow conditions in terms of e�ective transport coe�cients. We study the

in
uence of the interaction between the layer to layer permeability varia-

tions, local dispersion, and the temporal transverse 
uctuations of the 
ow

velocity as a transverse mixing mechanisms, especially its in
uence over the

super-di�usive behavior of the strati�ed random media model addressed by

[21, 31].

4.2.1 Basics

We study 
ow and transport of a conservative solute in the nonsteady,

nonuniform 
ow in the strati�ed media model addressed in section 2.5. In

this scenario, the 
ow and transport are given by (2.18) and (2.24), respec-

tively. As initial condition, we consider a point-like injection, i.e. in (2.4)

�(x) = �(x � x0). The d-dimensional 
ow and transport domain, here is

assumed in�nite. We assume vanishing concentration at the boundaries at

in�nity.

Medium heterogeneities and temporal 
ow 
uctuations are taken into

account using the stochastic approach described in 2.5.1.
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As we are interested in the e�ective solute mixing and spreading of a

solute starting from a point like injection the e�ective transport parameters

can be derived from the �rst and second local moments de�ned in (2.27) and

(2.28) respectively. Since we study an in�nite medium, the dependence of the

initial plume position is wiped out by the ensemble averaging. Thus, in the

following we supress the injection position in the notation of the observables.

Using the axial moment equations established in section 2.7.2 the trans-

port problem can be solved. The �rst (2.68), and second (2.69), local mo-

ments in x1-direction are then obtained. Once we have the expressions of the

�rst and second local moments, the e�ective transport parameters can be

derived after performing the ensemble average over the spatial and temporal

random processes.

4.2.2 Transport Coe�cients

The observables of interest are the center of mass velocity �i(t) (2.39), the

local e�ective D
e

ij(t) (2.40), and the ensemble dispersion coe�cients Dens
ij (t)

(2.43), which are de�ned as averages of the single realization coe�cients over

all realizations of the ensemble of strati�ed media.

E�ective Center of Mass Velocity

For the center of mass velocity in the longitudinal direction we obtain after

inserting (2.68) in (2.34) and taking the ensemble average over all realizations

of the strati�ed media and over the temporal random process as described

in (2.39),

�1(t) = u; (4.1)
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from which we can see that there is no disorder-induced contribution to the

e�ective center of mass velocity. For the transverse direction, we obtain

�T (t) = 0, see Appendix C.

E�ective Dispersion Coe�cients

For the ensemble and e�ective local dispersion coe�cients the behavior is

di�erent. Inserting the �rst (2.68), and second (2.69), local moments in

(2.43) and (2.40), we derived the following expressions,

Dens
11 (t) = DL + u2

Z



dy00
Z



dy

tZ
0

dt0c01(y
00; tjy; t0)c01(y; t0j0)

� ��2
kk C

kk(y � y00) + �2
��C

��
11 (t� t0) + �2

kk�
2
�� C

kk(y � y00)C��
11 (t� t0)

�
;

(4.2)

D
e

11(t) = Dens(t)� u2
Z



dy

Z



dy00c01(y
00; tj0)

tZ
0

dt0c01(y; t
0j0)

� ��2
kk C

kk(y � y00) + �2
��C

��
11 (t� t0) + �2

kk�
2
�� C

kk(y � y00)C��
11 (t� t0)

�
;

(4.3)

while the ensemble and the e�ective local dispersion coe�cients in the trans-

verse direction remain of the order of local transverse dispersion, Dens
T (t) =

D
e

T (t) = DT , see Appendix C.

4.2.3 Analytical Solutions for the Local Dispersion Co-

e�cients

In the following we derive analytical solutions for the local dispersion coef-

�cients for a d = 2 dimensional medium focusing on transport governed by

temporal 
uctuations transverse to the direction of the mean 
ow velocity,
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�(t) = [0; �2(t)]
T . In this case, (5.26) and (5.27) reduce to,

Dens
11 (t) = DL + u2�2

kk

Z



dy00
Z



dyCkk(y � y00)

�
tZ

0

dt0c0(y
00; tjy; t0)c0(y; t0j0) (4.4)

D
e

11(t) = Dens(t)� u2�2
kk

Z



dy00
Z



dyCkk(y � y00)

�c0(y00; tj0)
tZ

0

dt0c0(y; t
0j0) (4.5)

The Green function c0(y; tj0; t0), can be determined for a d = 2 dimen-

sional model medium considering the initial condition (2.63) and vanishing

concentration at the boundaries at in�nity,

c0(y; tj0; t0) = 1p
4�DT (t� t0)

exp

0BBB@�
�
y � u

tR
t0
dt00�2(t

00)

�2

4DT (t� t0)

1CCCA : (4.6)

To derive explicit results of the local e�ective and ensemble dispersion coef-

�cients we need to specify the spatial Ckk. The spatial conductivity 
uctu-

ations (and thus velocity 
uctuations), are assumed to decay exponentially

fast on the correlation scale l. On an observation scale L that is much larger

than the correlation scale, L � l, conductivity correlation can be approxi-

mated as a �- correlated random �eld.

Hence the spatial correlation function in (2.20) here reads as,

Ckk(y � y0) = l �(y � y0): (4.7)

This approximation is discussed in more detail in section 5.2.4
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Inserting the correlation function (3.15), and the Green function (4.6)

into (4.4) and (4.5), we obtain in Fourier space,

Dens
11 (t) = DL �

Z
k0

tZ
0

dt0
D
exp

0@�k02DT t
0 � iu k0

t0Z
0

dt00�2(t
00)

1AE;
(4.8)

D
e

11(t) = Dens
11 (t)�

Z
k0

tZ
0

dt0 exp

0@�k02DT (2t� t0)� iu k0
t0Z

0

dt00�2(t
00)

1AE:
(4.9)

Averaging equations (4.8) and (4.9) over the Gaussian random �eld �2(t),

see Appendix B, we obtain the following results,

Dens
11 (t) = DL +

1p
�
u2�2

kk l

�
tZ

0

dt0
1s

4DT t0 + 2u2�2
��

t0R
0

dt00
t0R
0

dt000C��
22 (t

00 � t000)

(4.10)

D
e

11(t) = Dens
11 (t)�

1p
�
u2�2

kk l

�
tZ

0

dt0
1s

4DT (2t� t0) + 2u2�2
��

t0R
0

dt00
t0R
0

dt000C��
22 (t

00 � t000)

;

(4.11)

The temporal 
uctuations of the 
ow �eld C�� are assumed to be Gaus-

sian correlated as in Chapter 3, see equation (3.15).
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The integral equations for the local ensemble (4.10), and local e�ective

(4.11), longitudinal dispersion coe�cients are solved numerically in the fol-

lowing.

4.2.4 E�ective Transport Behavior

The non-Fickian temporal behavior of the longitudinal e�ective dispersion

coe�cients in unbounded strati�ed media models has been addressed by

Matheron and de Marsily [21] for transport in steady 
ow conditions. They

showed that when the velocity 
ow is strictly parallel to the strati�cation,

the superdi�usive behavior persist at all times. They also demonstrated that

if a transverse 
ow component is added to the system, even if this component

is small, the interaction of the transverse local dispersion and the constant


ow component activates a mixing mechanism which leads at asymptotically

large times, to a Fickian behavior of the dispersion coe�cients. Furthermore,

the e�ective dispersion coe�cients in the transverse direction remains of the

order of the local dispersion.

Here we study the impact of a temporally 
uctuating 
ow component

transverse to the direction of strati�cation.

As in steady 
ow conditions, there is no disorder-induced contribution to

the e�ective and ensemble dispersion coe�cients in the direction perpendic-

ular to the strati�cation. Both remain of the order of the local dispersion.

Fig.4.1 shows the temporal evolution of Dens
11 (t) and D

e

11(t) for di�erent

correlation times � . The superdi�usive behavior of the ensemble and e�ective

dispersion coe�cients persist, however they are smaller than their counter-

parts in steady state conditions. For a constant velocity component trans-

verse to strati�cation, the dispersion coe�cients assume constant asymptotic

value as addressed in [31].
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Figure 4.1: Temporal behavior of the longitudinal (a) ensemble Dens
11 (t), and

(b) e�ective D
e

11(t) dispersion coe�cients in an unbounded strati�ed medium

under temporal 
uctuating 
ow conditions for di�erent correlation times �

according to (4.10) and (4.11), respectively. The dashed lines correspond to

the temporal behavior of the dispersion coe�cient for a constant velocity in

the transverse direction. The dotted lines show the behavior of dispersion

coe�cients in strati�ed media under steady 
ow conditions.
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Figure 4.2: Nonconvergent behavior of Dens
11 (t) in dashed lines, and D

e

11(t)

in solid lines in a unbounded strati�ed medium under temporal 
uctuating


ow conditions for � = 0, � = 1 and u = const.

The relevant scale for the activation of the interaction between local trans-

verse dispersion and transverse velocity contrast as a spreading mechanisms

is the dispersion time scale �D = l2=DT . At short times, t < �D, we ob-

serve that transverse mass transport due to the temporal 
ow 
uctuations

leads to a slower increase of the dispersion coe�cients. However, for times

of the order or larger than �D, the interaction of transverse temporal 
ow


uctuations and local transverse dispersion do not cause transverse mixing

that is strong enough to smooth the transport velocity contrast sampled by

the solute. Thus the conductivity contrast is still the dominant macroscopic

spreading mechanism which leads to the Non-Fickian behavior of the e�ective

dispersion coe�cients at large times.

As in the absence of temporal 
uctuations, here the ensemble and e�ective

dispersion coe�cients do not converge at asymptotic time, see Figure 4.2.
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This indicates that the sample to sample 
uctuations of the center of mass

position from realization to realization persist.

4.3 Parallel Random Flow with Short Range

Spatially Correlated Flow Fluctuations

The complete temporal evolution of the e�ective and ensemble dispersion

coe�cients in physically heterogeneous media has been analyzed in the past

[15, 16, 17, 18, 19, 26].

In heterogeneous media, the interaction of local dispersion and short range

correlated spatial disorder causes the e�ective and ensemble dispersion to

evolve towards a common asymptotic long time value. Here we investigate if

short range spatially correlated 
ow perturbations a�ects the superdi�usive

transport behavior observed in an unbounded strati�ed medium.

In the following we study e�ective mixing and spreading in a d = 2 di-

mensional medium by systematic numerical random walk simulations. We

consider an in�nite strati�ed arrangement subjected to incompressible ran-

dom 
ow perturbations associated to the path structure assumed. We study

�rst a Manhattan Grid structure and then, a nearly strati�ed 
ow model.

Both models are described in the following.

4.3.1 Manhattan Grid

Like random walk/Brownian motion, the Manhattan Grid is a mobility syn-

thetic model developed for ad-hoc network simulations [32]. The structure,

based on the regular arrangement of the streets of Manhattan, New York,

forces movements to be along vertical or horizontal directions, it can be see
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Figure 4.3: Deterministic Regular Manhattan Grid Structure.

as a doubly strati�ed structure. A deterministic regular Manhattan Grid

structure is illustrated in Figure 4.3.

Basics

Flow through a Manhattan Grid model here is characterized by,

u(x) = u (y) e1 + v (x) e2; (4.12)

i.e., the 
ow velocity is constant within a stratum but varies from layer to

layer in each direction of the double strati�cation. The unit vectors in 1 and

2�directions are denoted by e1 and e2 respectively.

The advective dispersive transport equation is given by (2.2). In the

following we consider conservative solute transport under steady state 
ow

conditions. The initial condition de�ned in (2.4), here is chosen to be a point-

like injection, we assume vanishing concentration at in�nity as a boundary

condition.
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The layer to layer velocity variations in each direction can be taken into

account by a generalization of the stochastic approach described in section

2.5.1 for a simple strati�ed medium. In the d = 2 dimensional medium under

consideration here, the 
ow problem in (4.12), can be decomposed as follows,

u(x) = [u� u0(y)] e1 � v0(x)e2; (4.13)

with u the constant mean 
ow velocity aligned with the 1-direction of the

medium, u0(y) and v0(x) are the zero mean 
uctuations in each direction of

the double strati�cation.

In order to derive the local e�ective (2.40) and ensemble (2.43) dispersion

coe�cients the transport equation in (2.2) must be solved for the initial

and boundary conditions de�ned. Contrary to the transport in a simple

strati�ed medium, here, the transport problem can not be solved explicitly

by local axial equations, and tools like perturbation theory may be required.

However, in the following we focus on a systematic numerical investigation of

the temporal behavior of the e�ective transport coe�cients using a random-

walk method described in Section 2.7.3.

Numerical Simulations

The 
ow �eld 
uctuations in (4.13) are generated by Gaussian random �elds

based on the superposition of random cosine modes, see e.g.[80, 81],

u(y)0 = �uu

r
2

N

NX
j=1

cos
�
k
(j)
2 � y + '(j)

�
e1; (4.14)

and,

v(x)0 = �vv

r
2

N

NX
j=1

cos
�
k
(j)
1 � x+ '(j)

�
e2; (4.15)
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where the vectors k
(j)
i for i = 1; 2 are derived from a Gaussian distribution

with zero mean, unit variance and width l2i . The random phase 'j is equally

distributed in the interval [0; 2�]. For an in�nite number of modes N !1,

u0(y) and v0(x) have the statistical characteristics of a Gaussian distribution.

The 
ow 
uctuations generated by this method have a Gaussian correlation

as demonstrated in [80, 81].

Transport through a Manhattan Grid model characterized by the 
ow

�eld (4.13), with the Gaussian correlated 
ow 
uctuations given by (4.14)

and (4.15) is then solved by the random-walk method described in section

2.7.3. The local moments in (2.73) here are computed over a N = 10000 noise

realizations. The ensemble average are then taken over R = 500 disorder

realizations.

E�ective Transport Behavior

Here we analyze the temporal behavior of the e�ective and ensemble disper-

sion coe�cients in a Manhattan Grid Model obtained by numerical random-

walk simulations. The temporal behavior of the e�ective mixing and spread-

ing is compared with the perfectly strati�ed medium results [31].

As shown in Figure 4.4, in the double strati�ed media under considera-

tion here, the superdi�usive behavior of the e�ective and ensemble dispersion

coe�cients in the longitudinal direction, i.e., in the direction of the mean

strati�cation, persists. The short range Gaussian correlation of the 
ow 
uc-

tuations in the 2�direction does not activate a transverse mixing mechanism

that leads to a transition to a Fickian behavior of the e�ective dispersion

coe�cients. The solute never sees the full heterogeneity spectrum in the

transverse direction.

A more interesting behavior is observed for the transverse dispersion co-
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Figure 4.4: Comparison between the e�ective and ensemble dispersion coe�-

cients behavior in a Manhattan Grid Model in dots, and a perfectly strati�ed

medium in solid lines.
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Figure 4.5: Comparison between the e�ective and ensemble dispersion coe�-

cients behavior in a Manhattan Grid Model in dots, and a perfectly strati�ed

medium in dashed lines.
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e�cients. In contrast to the perfectly strati�ed media, where both transverse

ensemble and e�ective dispersion coe�cients remain of the order of the local

dispersion, here Dens
T (t) and D

e

T (t) evolve towards a constant value larger

than the local dispersion. However, the increase in the transverse disper-

sion is not enough to re-organize the system and to modify the non-Fickian

behavior of the longitudinal mixing and spreading as observed in Chapter 3.

Furthermore, note that the nonconvergence behavior observed for the ef-

fective and ensemble longitudinal dispersion coe�cients in perfectly strati�ed

media, here is also observed for the transverse e�ective and ensemble disper-

sion coe�cients. Here, however, they assume (di�erent) constant asymptotic

long time values.

4.3.2 Nearly Strati�ed Flows

We analyze here a more realistic model which can be applied to geological

formations. The 
ow through a layer with constant velocity is perturbed by

incompressible 
ow that varies in all directions.

Basics

The random velocity �eld in the d = 2 nearly strati�ed medium under con-

sideration here has the following structure, [33],

u(x) = u(y)e1 + v(x; y)e2 (4.16)

where u(y) has the statistical properties of a perfectly strati�ed medium.

The 
ow perturbation v(x; y) is divergence free, r�v(x; y) = 0, and has zero

mean. Its correlation is Gaussian.

The transport equation in this setup is again given by (2.2). Here we

focus on steady 
ow conditions and assume as initial condition a conservative
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solute that is instantaneously injected in a point.

Applying the stochastic approach described in section 2.5.1 for a perfectly

strati�ed medium, and generalizing it to the scenario under consideration

here, the 
ow �eld in (4.16) can be decomposed as follows,

u(x) = u [1� u0(y)] e1 + v(x; y)e2 (4.17)

with u the mean 
ow velocity aligned with the 1 direction, u0(y) the strati-

�ed 
ow 
uctuation, i.e., the 
ow 
uctuation that determines the strati�ed

structure.

In the following we focus on a systematic numerical investigation of the

temporal behavior of the local e�ective (2.40) and ensemble (2.43) dispersion

coe�cients using the random-walk method described in 2.7.3.

Numerical Simulations

Following the method for the generation of the Gaussian velocity �eld based

on the superposition of randomly chosen cosines modes [80, 81], described

brie
y above for the Manhattan Grid model, here the 
ow �eld is obtained

as follows,

u(x) =
h
u� �uu

2p
N

NX
j=1

cos
�
k
(j)
2 � y + '(j)

�

+�uu
2p
N

NX
j=1

p1
�
k(j)
�
cos
�
k
(j)
1 � x+ k

(j)
2 � y + '(i)

� i
e1

+�vv
2p
N

NX
j=1

p2
�
k(j)
�
cos
�
k
(j)
1 � x+ k

(j)
2 � y + '(j)

�
e2;

(4.18)
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Figure 4.6: Comparison between the e�ective and ensemble dispersion coe�-

cients behavior in a nearly strati�ed model in dots, and a perfectly strati�ed

medium in solid lines.

with k(j) and '(j) as described before for the Manhattan Grid model. The

pi
�
k(j)
�
are a consequence of the solenoidality of the 
ow and read [15],

pi (ki) =

�
�i1 � k1ki

k2

�
: (4.19)

For the nearly strati�ed model the local moments in (2.73) here are com-

puted over a N = 10000 noise realizations. The ensemble average is then

taken over R = 500 disorder realizations.

E�ective Transport Behavior

Here we present our numerical results of the local e�ective and ensemble

dispersion coe�cients for a nearly strati�ed model.

The longitudinal e�ective and ensemble dispersion coe�cients illustrated

in dots in Figure 4.6, evolve superdi�usively. Its behavior is practically the
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Figure 4.7: Comparison between the e�ective and ensemble dispersion coe�-

cients behavior in a Nearly Strati�ed Model in dots, and a perfectly strati�ed

medium in dashed lines.

same as for the perfectly strati�ed media, illustrated in the �gure in solid

lines. The strati�cation in the longitudinal direction is still the dominant

spreading mechanisms that leads to the non-Fickian behavior of the disper-

sion coe�cients. Even in the presence of short-range 
ow correlations in both

directions, the anomalous behavior is not modi�ed. This has been concluded

also in [33] from an approximated analytical study.

Furthermore, as for the strati�ed medium, here the transverse dispersion

coe�cients remains of the order of the local dispersion coe�cients, there is

not disorder-induced contribution, see Figure 4.7.
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4.4 Summary

We investigated the impact of spatial and temporal 
ow 
uctuations on the

anomalous behavior of local e�ective and ensemble dispersion coe�cients

for a conservative solute starting from a point-like injection in unbounded

strati�ed models. We focus on d = 2 dimensional models.

The superdi�usive behavior of the apparent dispersion coe�cient was

studied for a perfectly strati�ed medium by [21], where a constant mean ve-

locity aligned with the strati�cation was assumed. They showed that the

non-Fickian behavior disappears when a constant velocity component in the

transverse direction to the strati�cation is considered. This constant trans-

verse velocity activates a mixing mechanism that allows the solute to sample

the entire physical heterogeneity in the transverse direction.

Spatial and temporal 
ow 
uctuations lead to an increase of mixing and

spreading, which can be quanti�ed by the increase of the dispersion coe�-

cients [16, 17, 18, 15, 20]. Here we investigated if the interaction of spatial

and temporal 
ow 
uctuations modify the anomalous behavior observed in

the strongly correlated model.

In section 4.2 transverse temporal 
ow 
uctuations were added to the

strati�ed medium model studied by [21]. Within a stochastic modeling ap-

proach, we derived analytic expressions for the local e�ective and ensemble

coe�cients. For this scenario the spatial velocity 
uctuations were assumed

delta-correlated.

We observe that the superdi�usive behavior of the longitudinal e�ective

dispersion coe�cients remains at large times, while the dispersion coe�cients

in the transverse direction remains of the order of the local transverse disper-

sion. The interaction of transverse temporal 
ow 
uctuations and the layer

to layer permeability variations does not activate an e�cient mixing mecha-
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nism which leads to the solute sampling the vertical heterogeneity. Advective

spreading in the direction parallel to the strati�cation is still the dominant

mechanism.

The in
uence of short-range Gaussian correlated incompressible 
ow per-

turbations was investigated in section 4.3.2. We studied two models, a Man-

hattan Grid structure and a nearly strati�ed model. In both cases we as-

sumed a constant mean velocity aligned with the 1-direction. We used a

superposition of randomly chosen cosines to generate the Gaussian corre-

lated 
ow 
uctuations. Transport was solved by numerical random-walk

simulations and local moments were obtained.

The Manhattan Grid is a mobility synthetic model which here was used to

simulate a double strati�ed medium, i.e., strati�ed in both directions. The

non-Fickian mixing and spreading behavior persists. However, in contrast

to the behavior in a perfectly strati�ed medium, here the transverse disper-

sion coe�cients evolve to a constant value larger than the local transverse

dispersion.

The nearly strati�ed model can be seen as a more realistic scenario. The

strati�ed 
ow component seems to dominate transport and leads to a mixing

and spreading behavior similar to the one observed in perfectly strati�ed

media. The strati�cation together with the absence of an e�cient transverse

mixing mechanisms leads to anomalous dispersive transport behavior.
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Mixing and Spreading in a

Bounded Strati�ed Medium

5.1 Introduction

Following the deterministic work of Marle et al. [82], Matheron and de

Marsily [21] studied this perfectly strati�ed medium as an idealized aquifer

model. They found that the apparent longitudinal dispersion coe�cient

grows superdi�usively with the square root of time and used this result to

demonstrate that transport in porous media is not always di�usive. Trans-

port in an in�nite perfectly strati�ed random medium has been investigated

extensively (e.g., [67, 68, 69, 70, 71, 72, 31, 41]) using stochastic modeling as

a systematic means to quantify the impact of spatial heterogeneity on large

scale transport. The latter has been studied in terms of the average solute

distribution density and its moments, its spatial and temporal moments as

well as in terms of (apparent) longitudinal dispersion coe�cients.

The superdi�usive growth of the apparent longitudinal dispersion co-

e�cient is caused by strong spatial correlation as quanti�ed by the La-

81
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grangian velocity correlation (e.g., [83, 84]). These aspects of transport in

strati�ed 
ows have been extensively studied in the physics literature (e.g.,

[73, 74, 75, 85]). As seen in the previous chapter, this anomalous behav-

ior is not modi�ed neither by transverse temporal 
ow 
uctuations, nor by

spatially 
ow 
uctuations, the long-range correlation is still the dominant

spreading mechanism that in the absence of an e�cient transverse mixing

mechanisms leads to the anomalous behavior of the e�ective transport pa-

rameters.

In contrast to the unbounded strati�ed medium, for which transport is

superdi�usive for all times, for a vertically (i.e., transverse to the direction

of strati�cation) bounded medium, transport becomes eventually Gaussian

and can be completely characterized by a constant macrodispersion or \Tay-

lor dispersion-type" coe�cient. Several authors have addressed the issue of

enhanced dispersion and e�ective transport dynamics for bounded strati�ed

random media and shear 
ows in general (e.g., [66, 86, 87, 88, 89]). Tay-

lor [34] was the �rst to quantify enhanced solute dispersion in the parabolic

(strati�ed) Hagen-Poiseuille 
ow through a tube by the well known Taylor

dispersion coe�cient,

D� / a2U2

DT
; (5.1)

where a is a measure for the vertical extent of the 
ow domain, U the av-

eraged 
ow velocity and DT the transverse local dispersion coe�cient, i.e.

the transverse component of the (constant) dispersion tensor at local scale.

The Taylor dispersion coe�cient (5.1) re
ects the mechanism that leads to

enhanced spreading and mixing in strati�ed 
ows, namely, the solute's sam-

pling of the vertical velocity contrast (U2) by local transverse dispersion

(DT ). The process is controlled by the dispersion time scale �D,

�D =
a2

DT
; (5.2)
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which measures the time for the solute to sample the whole vertical velocity

contrast. For times large compared to the dispersion time scale, t � �D,

the Taylor dispersion coe�cient D� quanti�es both large scale spreading and

mixing as well as the evolution of the solute concentration. In hydrological

applications, however, this dispersion time scale can be large and the con-

stant Taylor or macrodispersion coe�cient does not provide a measure of

mixing and spreading. At preasymptotic times, i.e., for times smaller than

�D, solute spreading and mixing is controlled by local transverse dispersion,

which activates the vertical velocity contrast as a macroscopic spreading and

mixing mechanisms. As outlined in [28], transverse dispersion mixes the

solute vertically, the velocity contrast experienced by the solute through ver-

tical mixing stretches the plume and increases the plume surface (spreading).

Transverse dispersion then again leads to vertical mass exchange between the

solute layers and smoothes concentration contrasts out (mixing).

Here, we investigate solute mixing and spreading in a vertically bounded

strati�ed random medium using a stochastic modeling approach in terms of

the e�ective dispersion coe�cients described in 2.6. Unlike for the in�nite

strati�ed medium, where a superdi�usive behavior of the apparent longitudi-

nal dispersion coe�cient is observed (e.g. [21]), here, at asymptotically long

times disorder-induced mixing and spreading is uniquely quanti�ed by a con-

stant \Taylor dispersion" coe�cient which is reached in asymptotic regime

characterized by the time for complete vertical mixing. We study initial po-

sition and source size memory e�ects in the e�ective spreading and mixing

dynamics for single realizations and their quanti�cation using stochastic av-

eraging. The transition from �nite to in�nite media and its impact on the

derived e�ective parameters is analyzed. The validity of the quanti�cation of

mixing and spreading by stochastic averages for a �nite media is discussed.
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5.2 Basics

We study transport of a conservative solute in a con�ned horizontally strat-

i�ed medium. The d-dimensional steady 
ow and transport domain denoted

by 
d, which were de�ned in sections 2.5.1 and 2.5.2, here is assumed to be

of in�nite extension at least in the 1-direction and �nite only in one of the

transverse directions.

5.2.1 Flow and Transport in Bounded Strati�ed Media

Flow through a strati�ed porous medium is characterized by the Darcy equa-

tion, (2.17), in the scenario under consideration here, the 
ow is driven by

a constant head gradient J, which is aligned with the direction of strati�ca-

tion, J = �Je1, where e1 is the unit vector in 1-direction. Together with

the incompressibility condition r � u(x) = 0, this boundary condition leads

to the exact solution (e.g., [41]),

u(x) = u(y)e1 = K(y)Je1: (5.3)

Advective-dispersive transport of a conservative solute in the strati�ed


ow �eld is given by (2.24). Note that in the following we focus on steady


ow conditions. As de�ned in (2.4), we assumed as initial condition an in-

stantaneous solute injection at t = 0. Here, we study transport of a solute

evolving from a point-like injection and from an extended source perpendicu-

lar to strati�cation. Both initial conditions will be described in the following.

The boundary conditions for c(x; t) in a bounded strati�ed medium are,

lim
x1!�1

c(x; t) = 0; n � rc(x; t)jx2@
d = 0; (5.4)

where @
d is the boundary of the transport domain 
d, and n is the outward

pointing unit vector perpendicular to the domain boundaries.
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5.2.2 Stochastic Model

We use a stochastic modeling approach to account for the impact of spa-

tial heterogeneity on the e�ective large scale transport behavior. In this

approach, described in section 2.5.1, a given medium is seen as a typical

realization of an ensemble of aquifers.

In the media model under consideration here, the spatial random �eld


uctuations k(y) can be characterized by its 2n-point joint distribution den-

sity Pn(fk(yi)gni=�n). In Section 5.2.4 we specify these statistical character-

istics and introduce the d = 2 dimensional model medium for the numerical

random walk simulations.

In the following, we use the stochastic approach as a systematic tool

to quantify the heterogeneity impact on large scale mixing and spreading.

Note that the correlation function for the con�ned medium is not translation

invariant. It is given by,

k(y)k(y0) = �2C
(y � y0jy0); (5.5)

with y;y0 2 
. The C
(�jy0) is given by,

C
(�jy0) = C(�) (5.6)

for y0 + � 2 
 and zero elsewhere.

5.2.3 Dimensionless Form of the Transport Equation

The observation length �, and the 
ow velocity u, de�ne the advection time

scale �u,

�u =
�

u
; (5.7)



Chapter 5 86

which denotes the mean transport time over the distance � along the direction

of strati�cation by mean advection.

We de�ne now non-dimensional time and distance by,

t = t̂�u; x = x̂�; (5.8)

respectively. Thus the working transport equation, de�ned in (2.25), can be

rewritten for steady 
ow conditions in non-dimensional terms as,

@ĉ(x̂; t̂)

@t̂
+
@ĉ(x̂; t̂)

@x̂1
� r̂D̂r̂ĉ(x̂; t̂) = L̂fŷ; t̂gĉ(x̂; t̂); (5.9)

with the perturbation transport operator here de�ned as,

L̂fŷ; t̂g = k̂(ŷ)
@

@x̂1
: (5.10)

Note that r̂ denotes the nabla operator in dimensionless coordinates. The

non-dimensional solute concentration, dispersion tensor and conductivity


uctuations are de�ned by,

c(x; t) = �dĉ(x0�; t0�u); D = D̂u�; k(y) = k̂(ŷ�): (5.11)

The initial and boundary conditions (2.4) and (5.4) are non-dimensionalized

accordingly. The non-dimensional correlation length is given by l̂ = l=�.

Equation (5.9) constitutes our working equation in the following. For

convenience, we drop the hats, which indicate non-dimensional quantities, in

the following.

5.2.4 Model Medium

The k(y) 
uctuates on the correlation scale l. We consider here an aquifer

scenario, for which the lateral halfwidth a of the domain is much larger than

the correlation scale l. Thus, the conductivities in the di�erent strata can be
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Figure 5.1: One realization of a con�ned strati�ed medium with 100 strata.

Hydraulic conductivity is lognormally distributed; di�erent greyscales denote

di�erent values of hydraulic conductivity.

considered uncorrelated. On this scale the 2n-point joint distribution of the

conductivity 
uctuation k(y) is given by (e.g., [90]),

Pn

�fk0(yi)gni=�n� = exp f� lnP1 [k
0(yi)]g ; (5.12)

where P1(k
0) is the single variable distribution. We consider a d = 2 dimen-

sional model medium. The medium under consideration consists of strata of

the constant thickness l, see Figure 5.1. Thus, one particular realization of

k(y) is given by,

k(y) =

a=lX
n=�a=l

kn� [y + b� nl] f1�� [y + b� (n+ 1)l]g ; (5.13)

where the kn are distributed according to P1(k), b is uniformly distributed in

the interval [�l; l], with � [y + b] the Heaviside step function de�ned in [91];
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the position vector is x = (x; y)T . Using representation (5.13) of the conduc-

tivity 
uctuations, we obtain for the two point correlation function (2.20)

(see Appendix D),

C(y � y0) = l

�
1

2l

�
1� jy � y0j

l

��
(5.14)

for jy � y0j < l and 0 elsewhere. This correlation function is translation

invariant everywhere in the medium except for positions in the strata at

the domain boundaries. If the width l of the strata is small, this can be

disregarded. Thus in the following, we consider the limit l � 1, i.e., the

observation scale is much larger than the correlation scale. In this limit, the

expression in the curly brackets in (5.14) can be identi�ed with the delta

distribution so that the correlation function reads as,

C(y � y0) = l�(y � y0): (5.15)

In this limit boundary e�ects on the correlation function can be disregarded.

Nevertheless, note that the con�ned strati�ed medium under considera-

tion here has only a �nite number of strata. As such, spatial averages are

not necessarily identical to the ensemble averages and are random functions

by themselves due to the �niteness of the sample. This can be illustrated for

the spatial mean of k(y) for the con�ned strati�ed medium,

hk(y)i = 1

2a

aZ
�a

dyk(y) (5.16)

where the angular brackets denote the vertical average. The 
uctuations

of the spatial average about the ensemble mean value is quanti�ed by the

variance of the spatial average hk(y)i,

hk(y)i2 = �2
uul

2a
: (5.17)
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where we used representation (5.13) for k(y). As expected the variance de-

creases with increasing vertical extent of the medium.

The conductivity �eld K(y) here is lognormally distributed so that the

kn in (5.13) are given by,

kn = 1� exp

�
fn � �2

�

2

�
; (5.18)

where the fn are normally distributed random variables with zero mean and

variance �2
� .

5.3 Transport Coe�cients

The lateral solute transport under consideration here, is completely deter-

mined by lateral local dispersion and no a�ected by spatial heterogeneity.

This can be easily seen by projection of transport in the strati�ed medium

onto plane perpendicular to the direction of strati�cation by integration of

(5.9) over x1, as seen in section 2.7.2 in the methodology of axial moment

equations used here to the transport coe�cients development. Thus, in the

following we focus on transport along the direction of strati�cation.

Dentz and Carrera [29] suggest and discuss several measures for solute

spreading and mixing based on the �rst and second moments of the trans-

port Green function g(x; tjx0; t0) (2.6), which solves the advection dispersion

equation for a point like injection. The measures and the generalization of

them for transport within a stochastic modeling approach were introduced in

section 2.6. The dispersion concepts for single realizations and the ensemble

of realizations of the strati�ed medium are summarized in table 1, where the

corresponding equation numbers are also listed.
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Table 5.1: Dispersion concepts

Single Realization Eq. Ensemble Average Eq. Concept

Da(t) (2.37) D
a
(t) (2.42) apparent dispersion

De(tjx0) (2.33) D
e
(tjx0) (2.40) local e�ective dispersion

De(t) (2.36) D
e
(t) (2.41) global e�ective dispersion

DL, DT (2.24) N/A - local dispersion

D� (5.1) D
�

(5.29) Taylor dispersion

N/A - Dens(tjx0) (2.43) local ensemble dispersion

N/A - Dens(t) (2.45) global ensemble dispersion

Transport Coe�cients: Single Realization

As stated in section 2.7.2 the advection dispersion equation for solute trans-

port trough a strati�ed medium can be solved explicitly by the de�nition

of axial moments equations. Having found expressions for the �rst (2.68),

and second (2.69), local moments in the x1-direction, we can write down

the expressions for the local center of mass velocity and e�ective dispersion

coe�cients. They are given by,

�(tjx0) = 1�
Z



dy00k(y00)c0(y
00; tjy0) (5.19)

De(tjx0) = DL +

Z



dy00
Z



dy

tZ
0

dt0k(y00)k(y)�

[c0(y
00; t� t0jy)� c0(y

00; tjy0)] c0(y; t0jy0): (5.20)

The global center of mass velocity and e�ective dispersion coe�cient are

obtained by integration of (5.19) and (5.20) over the initial distribution.
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The apparent dispersion coe�cient is given by,

Da(t) = DL +

Z



dy00
Z



dy

tZ
0

dt0k(y00)k(y)�

Z



dy0�(y0)

24c0(y00; t� t0jy)�
Z



dy000�(y000)c0(y
00; tjy000)

35 c0(y; t0jy0):
(5.21)

As detailed in [29], the center of mass 
uctuations within the initial ex-

tended source given by the di�erence between Da(t) and De(t), see (2.38),

tends to zero for t!1, hence,

lim
t!1

De(t) = lim
t!1

Da(t); (5.22)

i.e., in the limit t ! 1 the e�ective and apparent dispersion coe�cients

converge to same asymptotic Taylor dispersion-type coe�cient, which is in-

dependent of the initial plume,

D� = DL +
1

DTV


Z



dy

Z



dy0k(y)k(y0)'(yjy0): (5.23)

The '(yjy0) solves the steady state di�usion equation,

1

V

�r2

y'(yjy0) = �(y � y0); (5.24)

for Neumann boundary conditions.

Transport Coe�cients: Ensemble

By performing the ensemble average over (5.19), we straightforwardly obtain

for the center of mass velocity,

�(tjx0) = 1; (5.25)
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i.e., there is no disorder-induced contribution to the ensemble averaged center

of mass velocity. This is di�erent for the average dispersion coe�cients.

Inserting (2.68) and (2.69) for the local moments in (2.43) and (2.40) for

the ensemble and e�ective dispersion coe�cients, we obtain,

Dens(tjy0) = DL + �2

Z



dy00
Z



dy

tZ
0

dt0C(y � y00)�

c0(y
00; t� t0jy)c0(y; t0jy0): (5.26)

D
e
(tjy0) = Dens(tjy0)� �2

Z



dy

Z



dy00C(y � y00)

�c0(y00; tjy0)
tZ

0

dt0c0(y; t
0jy0); (5.27)

The corresponding expressions for extended initial plumes are obtained by

integration over the source distribution according to (2.41) and (2.45).

For the average apparent dispersion coe�cient (2.42), we obtain,

D
a
(t) = Dens(t)� �2

Z



dy00
Z



dyC(y � y00)�

Z



dy000�(y000)c0(y
00; tjy000)

tZ
0

dt0
Z



dy0�(y0)c0(y; t
0jy0): (5.28)

The average asymptotic Taylor dispersion-type coe�cient is given by,

D
�
= DL +

�2

DTV


Z



dy

Z



dy0C(y � y0)'(yjy0); (5.29)

the '(yjy0) solves the steady state di�usion equation,

1

V

�r2

y'(yjy0) = �(y � y0); (5.30)

for Neumann boundary conditions.
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5.3.1 Explicit Analytical Solutions for d = 2 Dimen-

sions

Having de�ned the d = 2 dimensional model medium in Section 5.2.4, and

in particular the conductivity correlation function (5.15), we can explicitly

evaluate the expressions for the average dispersion coe�cients. We consider

two initial conditions; point-like injection at the position (0; y0)T , i.e.,

�(x) = �(x)�(y � y0); (5.31)

and a line source that extends over the whole medium cross-section at x = 0,

�(x) =
1

2a
�(x): (5.32)

The position vector in the following is given by x = (x; y)T .

The explicit solution of the e�ective and the ensemble dispersion coe�-

cients depends on the form of the Green function c0(y; tjy0), which solves the

di�usion problem (2.59) for the initial and boundary conditions de�ned in

(2.63) and (2.64). It is given by [29],

c0(y; tjy0) =
1

2a
+

1

a

1X
n=1

exp

�
�(n�)2

4

t

�D

�
� cos

�
n�(y + a)

2a

�
cos

�
n�(y0 + a)

2a

�
: (5.33)

The dispersion time scale �D in (5.33), measures the time for transport by

local dispersion over the medium cross section,

�D =
a2

DT
; (5.34)

where DT is the transverse local dispersion coe�cient.

Inserting the spatial correlation function (5.15) and Green function (5.33)

into the general expressions (5.26) and (5.27), we obtain for the ensemble and
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average e�ective dispersion coe�cients,

Dens(tjy0) = DL +
�2l

2a
t+

2�2l

a
�D

1X
n=1

1

(n�)2

�
�
1� exp

�
�(n�)2

4

t

�D

��
+

2

3a
�2l�D

X
m

(�1)m
(m�)2

�
�
exp

�
�(m�)2

4

t

�D

�
� exp

�
�(m�)2

t

�D

��
� cos

�
m�y0

a

�
(5.35)

D
e
(tjy0) = Dens(tjy0)� �2l

2a
t� 2�2l

a
�D

1X
n=1

1

(n�)2

�
�
exp

�
�(n�)2

4

t

�D

�
� exp

�
�(n�)2

2

t

�D

��
�
�
1 + (�1)n cos

�
n�y0

a

��
(5.36)

Explicit expressions for the instantaneous line source are obtained by integra-

tion of (5.35) and (5.36) over the vertical cross-section of the two-dimensional

medium. This yields,

Dens(t) = DL +
�2l

2a
t

+
2�2l

a
�D

1X
n=1

1

(n�)2

�
1� exp

�
�(n�)2

4

t

�D

��
(5.37)

D
e
(t) = DL +

2�2l

a
�D

1X
n=1

1

(n�)2

�
1� exp

�
�(n�)2

4

t

�D

��2
(5.38)

for the ensemble and average global e�ective dispersion coe�cients, respec-

tively. For the average apparent dispersion coe�cients we obtain by insert-

ing (5.15) into (5.28),

D
a
(t) = DL +

2�2l

a
�D

1X
n=1

1

(n�)2

�
1� exp

�
�(n�)2

4

t

�D

��
: (5.39)

The average Taylor dispersion-type coe�cient (5.29) can be obtained as

the asymptotic long time value of the average e�ective dispersion coe�cient,

D
�
= DL +

�2l�D
3a

: (5.40)
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The transverse dimension clearly determines the asymptotic long time

behavior of the dispersion coe�cients. In the limit of a ! 1, we obtain

from (5.35) and (5.36) (see Appendix A),

lim
a!1

Dens(tjy0) � DL +
�2p�mDp

�

p
t; (5.41)

lim
a!1

D
e
(tjy0) � DL +

�2p�mDp
�

�
2�

p
2
� p

t; (5.42)

where the microscopic dispersion scale, �mD , is de�ned as follows,

�mD =
l2

DT
; (5.43)

and quanti�es the time for the vertical solute spreading over a stratum.

Note that neither the average local e�ective nor the ensemble dispersion

coe�cients depend on the source location anymore. As a consequence, the

global e�ective dispersion coe�cient does not depend on the source and is

identical to the local e�ective dispersion coe�cient. Furthermore, in this

limit the average apparent dispersion coe�cient (5.39) for the line source

(now in�nitely extended) is identical to the ensemble dispersion coe�cient,

lim
a!1

Dens(t) � lim
a!1

D
a
(t): (5.44)

Note that in contrast to the behavior observed in a con�ned medium where in

the the limit of t!1, or strictly speaking when the solute has sampled the

hole medium by local transverse dispersion for times t� �D, D
a
(t) and D

e
(t)

converge to the same asymptotic Taylor dispersion coe�cient, (5.22), here

for a in�nitely extended initial plume the apparent and the global e�ective

dispersion coe�cients do not converge at large times because �D !1. This

means �rst that the limits a ! 1, and t ! 1, are not commutative.

Furthermore, as �D ! 1 the complete transverse mixing is never reached

for a in�nite medium, which in turns leads to the Non-Fickian behavior of

the e�ective dispersion coe�cients.
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5.4 E�ective Mixing and Spreading

We study e�ective mixing and spreading using explicit analytical expressions

for the transport coe�cients presented in the previous section, and numerical

random walk simulations described in the following.

5.4.1 Numerical Random Walk Simulations

The numerical solution of the transport problem using random walk simula-

tions is described in section 2.7.3. In the scenario under consideration here

the random 
ow �eld is given by,

u0
�
x(i;r)(tjx0)� = �1� k(r)

�
y(i;r)(tjy0)�� ; (5.45)

with k(r)(y) the r-th realization of k(y). Here, the impermeable horizontal

walls are modeled as re
ecting boundaries. The random 
uctuations of the

conductivity �eld are modeled by (5.13).

The d = 2 dimensional medium under consideration here, see Section 5.2.4,

consists of 100 strata of equal thickness l = 1, the halfwidth of the medium

is given by a = 50. The time discretization for the random walk simulations

is �t = 10�1, the transverse and longitudinal local dispersion coe�cients are

given by DT = DL = 1. The line source consists of M = 200 points that are

uniformly distributed over the medium cross-section, the number of injected

particles at each point is 50. The ensemble average is taken over R = 103

realizations of the random conductivity �eld.

5.4.2 Point-Like Initial Distribution

We investigate the temporal behavior of the dispersion coe�cients D
e
(tjy0)

andDens(tjy0), for di�erent dispersion time scales �D, and for di�erent vertical

initial positions y0.
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Figure 5.2 illustrates a particle distribution evolving from an instanta-

neous injection at y0 = 0 in one given realization of the strati�ed medium.

The snap shots of the spatial distribution are taken after t = 10�3�D, t =

10�2�D, t = 10�1�D, and t = �D.

We distinguish two relevant dispersion time scales; the dispersion scale

�D, (5.34), which quanti�es solute mixing over a vertical medium, and the

microscopic dispersion scale �mD , (5.43), which quanti�es the time for the ver-

tical solute spreading over a stratum. Thus, �mD sets the relevant scale for the

activation of the transverse conductivity contrast as a macroscopic spread-

ing mechanism. For the parameter values chosen here, �mD = 10�3�D. This

is illustrated in Figure 5.2a. With increasing time the concentration distri-

bution becomes more spread out in horizontal direction, see Figure 5.2b. As

soon as the solute samples a larger part of the vertical conductivity contrast,

the particle distribution starts homogenizing, Figure 5.2c, until it becomes

uniform for times larger than �D, Figure 5.2d.

This behavior is re
ected in the temporal evolution of the average dis-

persion coe�cients. Figure 5.4 shows the temporal evolution of D
e
(tj0) and

Dens(tj0) for �D = 2500 and �D = 625 given by (5.35) and (5.36) and de-

rived from numerical random walk simulations. For times smaller than �mD ,

t < �mD , the solute has only seen one single strata with constant conduc-

tivity and spreading is due to local dispersion only. At times of the or-

der of the microscopic dispersion time scale �mD the solute starts sampling

the vertical conductivity contrast, which leads to an increase of longitudinal

spreading; the e�ective dispersion coe�cients increases. In the time regime

�mD � t � �D, the dispersion coe�cients display the characteristic
p
t be-

havior. In this regime, conductivity contrasts are activated as a macroscopic

spreading mechanism (t > �mD ) and the medium looks in�nite for the so-
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Figure 5.2: Distribution of solute particles evolving from a point source

located at y0 = 0 for one given realization of a vertically strati�ed ran-

dom medium with a halfwidth a = 50, equal strata thickness l = 1, and

DL = DT = 1, after (a) t = 10�3�D, (b) t = 10�2�D, (c) t = 10�1�D, and (d)

t = �D.
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lute as it has spread out vertically over a distance much smaller than the

transverse extent of the medium (t << �D). Thus, in this regime, the disper-

sion coe�cient shows the same behavior as for an in�nite strati�ed medium,

given by (5.42). In the asymptotic long time limit of times t � �D, when

the solute has sampled the whole vertical conductivity contrast, the e�ective

dispersion coe�cient converges to its constant long time value given by the

Taylor dispersion coe�cient (5.40).

The ensemble dispersion coe�cient Dens(tj0) is consistently larger than

the e�ective coe�cients. The ensemble dispersion coe�cient, takes into ac-

count an arti�cial spreading e�ect due to the variability of the center of mass

position of the concentration distribution in di�erent realizations of the strat-

i�ed medium. In the intermediate regime �mD � t � �D, D
ens(tj0) increases

with the square root of time as given by (5.41). In the asymptotic long time

limit of t � �D, the ensemble dispersion coe�cient increases linearly with

time

Dens(tjy0)jt!1 = DL +
�2l�D
3a

+
�2l

2a
t: (5.46)

This linear increase is due to persistent center of mass 
uctuations, which

increase quadratically with time. This can be seen as follows: The center of

mass position in a given realization is given by (2.68). Thus, the center of

mass 
uctuation is given by,

��(1)(tjy0) = �(1)(tjy0)� �(1)(tjy0)

=

aZ
�a

dy00
tZ

0

dt0k(y00)c0(y
00; t0jy0): (5.47)

In the limit t � �D, the Green function c0(y
00; t0jy0) tends to 1=(2a), as in

this limit the solute is uniformly distributed over the medium cross-section.
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Thus, ��(1)(tjy0) is given by,

��(1)(tjy0) = hk(y0)it (5.48)

where the angular brackets denote the spatial average over the medium cross-

section, see Section 5.2.4. Thus, the variance of the center of mass position

is given in terms of the variance (5.17) of the spatial average conductivity as,

��(1)(tjy0)2 = �2l

2a
t2: (5.49)

Half the temporal rate of change of the latter is the di�erence between the

e�ective and ensemble coe�cients, see (2.44), and explains the linear increase

of Dens(tjy0) for t � �D. Note that the center of mass 
uctuations decrease

with increasing vertical extent, or vertical sampling volume. This mecha-

nism is illustrated in Figure 5.3. The di�erence between the global ensemble

and the apparent dispersion coe�cients obtained by numerical random-walk

simulations for three di�erent vertical extended sources 10 l, 100 l and a line

source that extends over the whole medium cross-section of 1000 l are shown.

For an extended source distribution, the di�erence between the global en-

semble and apparent dispersion coe�cients quanti�es the 
uctuations of the

center of mass position. Hence, at preasymptotic times, Figure 5.3 demon-

strates that there is a bigger contrast between the center of mass position

for small extended sources, this contrast decreases with increasing the source

size or vertical extent of the medium.

Note that for �nite a, the di�erence between D
a
(t) and Dens(t) always

increases linearly for times t � �D. Particularly, equation (5.49) is based

on the assumption of complete transverse mixing, i.e., implicitly we assume

that the medium is �nite. Thus, in the limit of a ! 1 (5.49) is not valid

because �D !1, and the transverse mixing condition is never ful�lled. This
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Figure 5.3: Numerical results of the di�erences between the global ensemble

and apparent dispersion coe�cients for three extended sources of 10 l, 100 l,

and a line source that extends over the whole medium cross-section of 1000 l.

is manifested in the di�erence between D
ens
(t) and D

e
(t) for the in�nite

medium given in (5.41) and (5.42), respectively, for which,

lim
a!1

��(1)(t)2 =
2

3

�2p�mDp
�

�
1�

p
2
�
t3=2: (5.50)

Figure 5.5 illustrates the temporal behavior of a distribution of solute par-

ticles evolving from a point source located at y0 = 0:9a for a given realization

of the strati�ed medium. In order to study the e�ect of the initial position

point source on solute transport, the strati�ed medium analyzed here, is the

same as in Figure 5.2. For point sources starting in the vicinity of the hori-

zontal boundaries, at early times, t � �mD , the solute particles experience the

layer to layer permeability variations by transverse local dispersion in a non
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Figure 5.4: Temporal behavior of the local e�ective and ensemble dispersion

coe�cients evolving from a point source at y0 = 0, for two di�erent dispersion

time scales, �D1
= 625, and �D2

= 2500 in a vertically strati�ed random

media with a = 25, a = 50, respectively, l = 1, and DL = DT = 1. The

solid lines describe the Dens(t; y0) and D
e
(t; y0) behavior given by (5.35) and

(5.36), respectively. For the intermediate time regime �mD � t� �D, the
p
t

behavior given by (5.41) and (5.42) is showed in dashed lines. The doted

lines describe the long time behavior, given by (5.46) and (5.40). Numerical

random walk simulation in dots.
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Figure 5.5: Distribution of solute particles evolving from a point source lo-

cated at y0 = 0:9a for one given realization of a vertically strati�ed ran-

dom medium with a halfwidth a = 50, equal strata thickness l = 1, and

DL = DT = 1, after (a) t = 10�3�D, (b) t = 10�2�D, (c) t = 10�1�D, and (d)

t = �D.

symmetrical way due to re
ection at the medium boundaries. Hence, the

time needed for a solute particle to sample the transverse variability of the

velocity �eld is larger than when starting at y0 = 0. This di�erence for the

distribution starting at di�erent vertical locations is clearly shown in Fig-

ures 5.2(c) and 5.5(c), for t = 10�1�D. The particle distribution for y0 = 0, is

more uniform than for y0 = 0:9a, and it occupies almost the entire medium

cross section. For times of the order or larger than the dispersion time scale

t � �D, the solute particles are distributed uniformly over the medium cross

section in both cases; the memory of the initial distribution is wiped out.

This behavior is again re
ected in the temporal evolution of the e�ective

dispersion coe�cients shown in Figure 5.6. The e�ective di�usion coe�cient

D
e
(tjy0) evolves slower for y0 = 0:9a, than for y0 = 0, and for times large
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Figure 5.6: Time behavior of the local e�ective and ensemble dispersion co-

e�cients evolving from two point sources located at y0 = 0, in solid lines,

and y0 = 0:9a, in dashed lines, in a vertically strati�ed random media with

a = 50, l = 1, and DL = DT = 1. The doted line describe the average asymp-

totic long time Taylor dispersion D
�
given by (5.40). Numerical random walk

simulations in dots.
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compared to �D, the local e�ective dispersion coe�cients converge to the

same asymptotic long time value.

The slower sampling of the conductivity contrast by particles close to

the boundaries compared to solute particles originating from y0 = 0 is also

re
ected by the ensemble dispersion coe�cient. Due to the slower sampling

for y0 = 0:9, there is a bigger contrast between the mean 
ow velocity in each

realization and the ensemble mean velocity for t < �D, which in turn causes

a faster increase of Dens(tjy0), see Figure 5.6. For t > �D both ensemble

dispersion coe�cients evolve linearly to (5.46), independently of the source

location.

5.4.3 Vertical Line Source

Here, we investigate mixing and spreading for a solute that evolves from the

instantaneous uniform line source (5.32).

Figure 5.7 shows a distribution of solute particles at at t = 10�3�D,

t = 10�2�D, t = 10�1�D, and t = �D in a single realization of the strati-

�ed random medium. At small times compared to the dispersion time scale

t � �D, the distribution re
ects the conductivity pro�le as shown in Fig-

ure 5.7a. For increasing time, Figures 5.7b and c, local transverse dispersion

leads to vertical mass exchange and the pro�le disperses, the concentration

distribution becomes more uniform and concentration contrasts are smoothed

out. For times large compared to �D, the solute distribution has been ho-

mogenized, Figure 5.7d.

For one given realization of the strati�ed medium, solute spreading and

mixing are quanti�ed by the e�ective and apparent dispersion coe�cients (2.33)

and (2.37), respectively. The time behavior of De(t) and Da(t) is evaluated

numerically using random walk simulations. Figure 5.8 shows De(t) and
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Figure 5.7: Distribution of solute particles evolving from a uniform line

source in a single realization of a vertically strati�ed random medium with

a halfwidth a = 50, constant strata thickness l = 1, local dispersion

DL = DT = 1, after (a) t = 10�3�D, (b) t = 10�2�D, (c) t = 10�1�D,

and (d) t = �D.
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Figure 5.8: Comparison between the normalized average e�ective D
e
(t)=D

�
,

and apparent D
a
(t)=D

�
, dispersion coe�cients, with their single realization

normalized counterparts, De(t)=D� and Da(t)=D�, respectively, for (a) ver-

tical line source of 100l, and (b) vertical line source of 1000l . Temporal

behavior of D
e
(t), and D

a
(t) given by (5.38) and (5.39), is presented in solid

lines. Numerical random walk simulations of De(t) and Da(t) in dots.
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Da(t) normalized by their asymptotic long time value. The apparent and ef-

fective coe�cients evolve in a qualitatively and quantitatively di�erent way.

As outlined in Section 2.6.3, the apparent dispersion coe�cient quanti�es the

center of mass 
uctuations within the extended source, which are suppressed

by the de�nition of the e�ective dispersion coe�cient, see (2.38). Hence, for

t < �D, the conductivity contrast along the extended source leads to a faster

increase of Da(t). The e�ective dispersion coe�cient measures the average

mixing along the source distribution caused by the interaction of transverse

local dispersion and the vertical conductivity contrast. At times t � �D both

Da(t) and De(t) evolve towards their common asymptotic long time value

given by D�, (5.23).

The behavior of the average coe�cients D
e
(t) and D

a
(t), given by (5.38)

and (5.39), respectively, re
ects very well the behavior observed in a single

realization. Figure 5.8 shows D
e
(t) and D

a
(t) normalized by their asymp-

totic long time value compared to their single realization counterparts for (a)

vertical line source of 100l, and (b) vertical line source of 1000l. Due to the

�niteness of the medium, the asymptotic Taylor dispersion-type coe�cient

D�, (5.23), varies from realization to realization of the strati�ed medium.

The quanti�cation of uncertainty due to sample to sample 
uctuations as

well as the self-averaging behavior of the e�ective dispersion coe�cient is

work in progress.

5.4.4 Small Extended Source

Here we investigate by numerical random-walk simulations the e�ective mix-

ing and spreading behavior for solute distributions starting from small ex-

tended source distributions, i.e., small compared to the domain size.

The d = 2 dimensional model under consideration here consist of 1000
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strata of equal thickness l = 1. The time discretization here is �t = 1,

the transverse and longitudinal local dispersion are given by DT = DL = 1.

We investigate in the following three di�erent vertical extended sources 10l,

100l and for comparison porpoises, a line source that extends over the whole

medium cross section of 1000l. The total number of injected particles in each

case was 10000. The ensemble average was taken over R = 102 realizations

of the random conductivity �eld.

Memory of the Initial Source Size

Here we investigate the impact of the initial source size on the temporal

behavior of Dens(t), D
e
(t) and D

a
(t).

For one given realization of the strati�ed medium the temporal evolution

of solute particles starting from the sources of 10l and 100l are illustrated

in Figures 5.9, 5.10 respectively. In order to study the e�ect of the initial

source size on solute transport, the strati�ed medium is the same for the two

sources under investigation. The extended sources were instantaneously and

symmetrically injected starting from y0 = 0. The snap shots of the spatial

distribution are taken after t = 10�4�D, t = 10�2�D, t = 10�1�D and t = �D.

At times of the order of the microscopic dispersion scale �mD , the small

vertical extended sources experience the conductivity contrast along its verti-

cal sampling extension. It is clear that the conductivity contrast experienced

by the initial extended source of 100l is greater than the one experienced by

the 10l source. This is illustrated in Figures 5.9a and 5.10a. Whit increasing

time the concentration distributions becomes more spread out in the horizon-

tal direction, see Figures 5.9b and 5.10b. The solute distribution for the line

source of 100l is slightly greater than the one observed for 10l. Note however,
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Figure 5.9: Distribution of solute particles evolving from a line source of 10l in

a single realization of a vertically strati�ed random medium with a halfwidth

a = 500, constant strata thickness l = 1, local dispersion DL = DT = 1, after

(a) t = 10�4�D, (b) t = 10�2�D, (c) t = 10�1�D, and (d) t = �D.

that the memory of the initial source size is wiped out with increasing time,

even for times smaller than the time for complete vertical mixing, the solute

distributions are practically identical for both sources, see 5.9c and 5.10c for

t = 10�1�D. For times of the order or larger than �D, the solute particles are

distributed uniformly over the medium cross section in both cases, Figures

5.9d and 5.10d.

The memory of the source size is re
ected by the apparent dispersion

coe�cient. By de�nition, D
a
(t) quanti�es for preasymptotic times, purely

advective spreading of the solute due to the velocity contrast within the

initial source. The apparent dispersion for the extended sources of 10l and

100l are shown in Figure 5.11, we also included for comparison porpoises the

global apparent dispersion coe�cient for a line source that extends over the

whole medium cross section. With increasing vertical extension of the initial
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Figure 5.10: Distribution of solute particles evolving from a line source of

100l in a single realization of a vertically strati�ed random medium with a

halfwidth a = 500, constant strata thickness l = 1, local dispersion DL =

DT = 1, after (a) t = 10�4�D, (b) t = 10�2�D, (c) t = 10�1�D, and (d) t = �D.
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Figure 5.11: Numerical results of the global apparent dispersion coe�cients

for extended sources of 10 l in triangles, 100 l in small crossed lines, and 1000l

in �lled dots.
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Figure 5.12: Numerical results of the global e�ective and apparent dispersion

coe�cients for an extended source of 10 l.
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Figure 5.13: Numerical results of the global e�ective and apparent dispersion

coe�cients for an extended source of 100 l.
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Figure 5.14: Numerical results of the global e�ective dispersion coe�cients

for three extended sources of 10 l, 100 l, and a line source that extends over

the whole medium cross-section of 1000 l.

source, D
a
(t) evolves faster to the common asymptotic long time value. As

observed in one given realization, the memory of the initial source size is lost

for times smaller than the dispersion time scale, here t � 10�2�D, and the

apparent dispersion coe�cients of the small extended sources are identical.

Note that as shown in Figures 5.12 and 5.13, when the memory of the ini-

tial source size is wiped out, the apparent and the global e�ective dispersion

coe�cients show the same temporal behavior.

As shown in Figures 5.14 and 5.15 the global e�ective and the ensemble

dispersion coe�cients are not impacted in a sensible manner by the source

size. For the three initial sources under consideration, Dens(t) and D
e
(t)

show a similar behavior which is controlled at long times by the dispersion

time scale �D.
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Figure 5.15: Numerical results of the ensemble dispersion coe�cients for

three extended sources of 10 l, 100 l, and a line source that extends over the

whole medium cross-section of 1000 l.

Memory of the initial position

As solute particles evolving from a point source, small extended sources are

also impacted by its position within the medium boundaries. Here we in-

vestigate the initial position memory e�ects for two extended sources of 10l

and 100l. Figures 5.16 and 5.17 illustrate the temporal behavior of solute

distributions starting from the extended sources of 10l and 100l with its

upper part situated at y0 = 0:9a. As the temporal behavior observed for

initial point sources, here, for small extended sources starting in the vicinity

of the medium boundaries the solute particles experience the permeability

variations by transverse local dispersion in a non symmetrical way, hence,

the solute particles evolution towards the uniform occupation of the medium

cross section is slower than when starting at y0 = 0. This behavior is again

re
ected in the temporal evolution of the e�ective dispersion coe�cient and
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Figure 5.16: Distribution of solute particles evolving from a line source of

10l in a single realization of a vertically strati�ed random medium with a

halfwidth a = 500, constant strata thickness l = 1, local dispersion DL =

DT = 1, after (a) t = 10�4�D, (b) t = 10�2�D, (c) t = 10�1�D, and (d) t = �D.

is very similar to the behavior observed for a point-like injection in section

5.4.2.

5.5 Summary

We studied here e�ective solute spreading and mixing in con�ned strati�ed

random media as an idealized model for layered geological media. For point-

like initial distributions, the second centered moment of the concentration

distribution (identical to the transport Green function), quanti�es the inter-

action of vertical conductivity variations and local dispersion on the e�ective

spreading and mixing properties of a solute. For an extended source this

is di�erent. For times smaller than the dispersion time for complete verti-

cal solute mixing �D = a2=DT , the width of the solute distribution re
ects
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Figure 5.17: Distribution of solute particles evolving from a line source of

10l in a single realization of a vertically strati�ed random medium with a

halfwidth a = 500, constant strata thickness l = 1, local dispersion DL =

DT = 1, after (a) t = 10�4�D, (b) t = 10�2�D, (c) t = 10�1�D, and (d) t = �D.

purely advective spreading e�ects due to velocity 
uctuations within the ini-

tial plume.

The two dimensional model medium under consideration consists of strata

of the constant thickness l. Within each stratum the conductivity is constant,

but varies randomly from stratum to stratum. Thus, for a vertical extent

that is much larger than l, the correlation of the conductivity 
uctuations

can be approximated by a delta-distribution. The conductivity distribution

is arbitrary but with a positive support. Here it is chosen to be log-normal.

The transport problem is solved numerically using random walk simulations

and analytically using axial moment equations. We derive explicit analytical

expressions for the e�ective, apparent and ensemble dispersion coe�cients.

The preasymptotic mixing and spreading behavior is studied for transport

in the two-dimensional model medium for point-like initial distributions as



117 Chapter 5

well as for a line source that extends over the whole medium cross-section.

The early time regime is de�ned by the microscopic dispersion scale

�mD = l2=DT , which measures the time for vertical solute spreading over one

stratum by local dispersion. Thus, for a point-like injection, heterogeneity is

activated as a macroscopic spreading mechanisms for t > �mD . The asymp-

totic long time regime, in which solute transport homogenizes vertically, is

given by the dispersion scale �D. In the intermediate regime �mD � t � �D,

the interaction of spreading due to vertical velocity contrast and transverse

local dispersion leads to e�ective macroscale mixing as quanti�ed by the

Taylor dispersion coe�cient. At preasymptotic times, spreading and mix-

ing behavior is superdi�usive; the e�ective dispersion coe�cients increase

with the square root of time, like for an in�nitely extended strati�ed random

medium. Then as soon as the solute is completely mixed over the vertical it

crosses over to its constant asymptotic value.

The evolution of the e�ective dispersion coe�cient depends on the initial

position. As the medium is con�ned by impermeable horizontal boundaries

(in the random walk picture the impermeable boundaries are modeled as

re
ecting walls), the vertical position of the initial injection a�ects the tem-

poral behavior of the e�ective dispersion coe�cients. For point and small

sources located in the vicinity of the medium boundaries, at early times,

the time needed for the solute to sample the entire medium cross section is

longer than for a solute that originates from an initial plume in the center

of the medium. Thus, the e�ective dispersion coe�cient evolves slower for y0

close to the boundaries than for y0 located in the vicinity of the medium axis.

On the other hand, as the concentration distribution remains longer near the

boundaries, we have a bigger contrast between the center of mass velocities in

di�erent realizations and the ensemble mean center of mass velocity, which
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causes a faster increase of the ensemble dispersion coe�cient. Due to the

�nite vertical extent of the medium, sample to sample 
uctuations of the

center of mass velocity persist and lead to a linear increase of the ensemble

dispersion coe�cient for t > �D.

We also observed memory of the initial source size. This memory is

re
ected by the apparent dispersion coe�cient which by de�nition quanti�es

for preasymptotic times, purely advective spreading of the solute due to

the velocity contrast within the initial source. When increasing time, this

size memory is wiped out even for times smaller than the dispersion time

scale, and the apparent dispersion coe�cient converges to the local e�ective

dispersion coe�cient obtained for a point-like injection, independently of

the initial source size. Only for an extended source which extends over the

all medium cross section, the apparent and the global e�ective dispersion

coe�cient converge to the same asymptotic Taylor dispersion for times of

the order of the dispersion time scale.

In the limit of in�nite vertical extent (and thus also in�nitely extended

source distribution), the apparent and ensemble dispersion coe�cients con-

verge; the vertical (spatial) average and the ensemble average are equivalent

in this limit.

The dependence of the spreading and mixing behavior on the initial plume

position and size clearly demonstrates that the e�ective transport dynamics

at pre-asymptotic times, i.e., t < �D, have memory and are impacted by the

transport history. As soon as the solute samples the velocity contrast across

the entire medium cross section for t > �D, the memory of the initial position

vanishes, the solute distribution homogenizes and the e�ective and ensemble

dispersion coe�cients are independent of the initial position. This is clearly

demonstrated for transport in a single medium realization as well as in aver-
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age for the con�ned medium. In the limit of an in�nite strati�ed medium, the

memory of the initial position is wiped out by the ensemble average, which

leads to vertical homogenization and makes the average medium isotropic.

This symmetry is broken for the con�ned medium so that even in average,

the memory of the initial position is preserved in the behavior of the e�ective

and ensemble dispersion coe�cients.

For single realizations, the center of mass velocity varies with time, while

in average it is constant and identical to the mean 
ow velocity. Thus, the

ensemble average wipes out memory e�ects of the center of mass velocity

even for con�ned media.

For an initial plume that is spread over the whole medium cross-section,

the global e�ective dispersion coe�cient quanti�es the average spreading and

mixing behavior. It evolves slower than the apparent dispersion coe�cient,

which, at early times, re
ects purely advective spreading due to local center

of mass 
uctuations within the extended initial distribution. At asymptotic

times both coe�cients converge to the Taylor dispersion-type coe�cient.

In the limit of an in�nite medium, the memory of the initial position is

wiped out by the ensemble average, which leads to vertical homogenization

and makes the average medium isotropic. This symmetry is broken for the

con�ned medium so that even in average, the memory of the initial position is

preserved in the behavior of the e�ective and ensemble dispersion coe�cients.
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Summary and Conclusions

The general aim of this thesis was the systematic investigation of mixing and

spreading in heterogeneous media in terms of adequately de�ned e�ective

dispersion coe�cients. We were specially interested in the identi�cation of

the principal mixing and spreading mechanisms as well as the characteristic

spatial and temporal scales which lead not only an increase of mixing and

spreading increase, but also to the transition from the non-Fickian to the

Fickian transport behavior regime.

Following the method suggested by Dentz and Carrera [29] to characterize

mixing and spreading for a single medium, in the �rst part of the thesis we

proposed a generalization of these measures for transport in heterogeneous

media within a stochastic modeling approach.

For a point-like injection in a single medium realization the local e�ective

dispersion coe�cient is de�ned as the second centered moment of the con-

centration distribution. This e�ective coe�cient quanti�es the interaction

of the medium (spatial, chemical) heterogeneities, temporal 
ow 
uctuations

and local dispersion. For extended initial conditions solute spreading and

mixing is quanti�ed in terms of local distributions which originate from the

120
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point-sources that constitute the extended source. We thus de�ne global ef-

fective dispersion coe�cient as the weighted average over the local e�ective

dispersion coe�cients. This observable characterize spreading and mixing for

the solute distributions that evolve from the point sources that form the ex-

tended initial plume. It thus represents a global measure for the heterogene-

ity impact on mixing and spreading. Furthermore, we de�ne the apparent

dispersion coe�cient as the half rate of change of the width of a distribu-

tion evolving from an extended initial plume. For early times, it re
ects the

purely advective spreading e�ects due to velocity variations in the extended

initial distribution.

For a randomly heterogeneous medium, the impact of spatially/chemically

heterogeneities as well as temporal 
ow 
uctuations on e�ective transport is

quanti�ed within a stochastic modeling framework. E�ective and appar-

ent dispersion coe�cients are de�ned as ensemble averages of their single

realization counterparts. In addition, we de�ne a local ensemble dispersion

coe�cient, which is derived from the averaged transport Green function. The

global ensemble dispersion coe�cient then is given by the average of the lo-

cal counterpart over the initial distribution. While the apparent dispersion

coe�cient quanti�es center of mass 
uctuations within the initial plume for a

given realization, the ensemble dispersion coe�cient quanti�es the arti�cial

spreading e�ect of center of mass 
uctuations from realization to realization

of the heterogeneous random medium.

The de�ned local e�ective dispersion coe�cient was used to characterize

mixing and spreading in a chemically heterogeneous medium subjected to

temporal 
ow 
uctuations. Within a stochastic modeling approach we de-

rived analytical solutions for the longitudinal and transverse e�ective disper-

sion coe�cients. The interaction of transverse temporal 
ow 
uctuations,
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chemical heterogeneities and local dispersion was identi�ed as the mixing

mechanism that leads to a transverse dispersion coe�cient enhancement.

We observed a self-organization of the system given by the simultaneous

transverse dispersion coe�cient increase and the longitudinal e�ective dis-

persion coe�cient decrease. The transition from the non-Fickian to Fickian

behavior is determined by the dispersion time scale which characterize the

time for dispersive transport over one correlation length, here assumed to be

short. For times larger than the dispersion time scale, the e�ective dispersion

coe�cients can be modeled by a constant macroscopic value, since Fickian

transport model can be assumed.

Fickian transport model cannot be assumed for in�nite strati�ed media

models in the absence of a constant velocity component transverse to the

strati�cation. We have proved that even when considering transverse tem-

poral 
ow 
uctuations or spatially 
ow variations, the superdi�usive behavior

of the e�ective and ensemble dispersion coe�cients remains at large times.

This is because the full heterogeneity spectrum in the transverse direction

is never sampled, since the dispersion time scale which determines the tran-

sition to a Fickian asymptotic behavior becomes in�nite and the transverse

mixing condition is never ful�lled.

In contrast, when considering a bounded strati�ed medium, a �nite dis-

persion time scale controls the process of the solute sampling the whole ver-

tical velocity distribution. Then for times large compared to the dispersion

time scale, the Taylor dispersion coe�cient quanti�es both large scale mixing

and spreading. However, here the dispersion time scale characterize the time

for transverse dispersive transport over all the vertical extent of the 
ow do-

main. Hence, in hydrological applications this dispersion time scale can be

large and must be taken into account that the asymptotic macrodispersion
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coe�cient does not provide a measure of mixing and spreading.

The correct de�nition of the ensemble average of the dispersion coe�-

cients allow us identifying and understanding the main mixing and spread-

ing mechanisms as well as the characteristic times that control transport

in heterogeneous media. This is important not only for the dynamics ap-

proaches, but also for reactive transport modeling, risk assessment studies

and remediation strategy design.

The derived analytical solutions can be used to improve the e�ciency

of numerical transport simulations and to correctly take into account the

temporal behavior of the e�ective dispersion coe�cients.

As the aim of the e�ective dispersion coe�cients derived here is to char-

acterize transport behavior in a \real" medium, we are also interested in

solute transport in individual realizations. We study the agreement between

the e�ective parameters and the ones observed for one typical realization as

a test of the applicability of our e�ective results.

As the e�ective dispersion coe�cients proposed here were constructed as

stochastic averages, they are subject to uncertainties, i.e., there are 
uctu-

ations about these average. These uncertainties must be studied due to its

importance to geohydrological purposes and risk assessment exercises. Fur-

thermore, the self-averaging of the e�ective dispersion coe�cients must be

investigated in order to verify if the e�ective parameters derived would be

able to correctly represent a typical medium realization.



Appendix A

Chemically Heterogeneous

Media under Temporally

Fluctuating Flow. Integral

expressions

Here we present the explicit integral expressions for the contributions to the

e�ective transport velocity and the e�ective dispersion coe�cients due to the

interaction between temporal 
uctuations of the 
ow conditions and chemical

heterogeneity.

We derive approximate expressions for small inverse Peclet numbers. In

order to keep the derivations as transparent as possible, the derived expres-

sions are approximated successively, which means that, in the course of the

derivations, we successively disregard subleading terms until we arrive at the

consistent �nal result that represents the leading behavior in the limit of

small inverse Peclet numbers.

Inserting expansion (2.54) for ec(k; t) into ln[ec(k; t)] and expanding the
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resulting expression up to �rst order in �2
��, we obtain

ln[ec(k; t)] = ec0(k; t) + �2
�� [I1(k; t) + I2(k; t)] (A.1)

and thus for the e�ective center of mass velocity (3.3) and the e�ective dis-

persion coe�cients (3.4),

�ei (t) = u�i1 � �2
��

d

dt
i
@

@ki

�
hI1(k; t)i � 1

2
hI2(k; t)i

�
k=0

(A.2)

D
e

ij(t) = Dij � �2
��

1

2

d

dt

@2

@ki@kj

�
hI1(k; t)i � 1

2
hI2(k; t)i

�
k=0

(A.3)

The auxiliary functions I1(k; t) and I2(k; t) are de�ned by

I1(k; t) =
1ec0(k; t; 0)

Z
k0

1Z
�1

dt0
1Z

�1

dt00C��(k0)ec0(k; t; t0) (A.4)

@

@t0
ec0(k� k0; t0; t00)

@

@t00
ec0(k; t00; 0)

I2(k; t) =
1ec0(k; t; 0)2

Z
k0

1Z
�1

dt0
1Z

�1

dt00C��(k0)ec0(k; t; t0)
@

@t0
ec0(k� k0; t0; 0)ec0(k; t; t00) @

@t00
ec0(k+ k0; t00; 0) (A.5)

respectively. By partially integrating with respect to t0 and t00, the internal

time derivatives are shifted to the propagators that contain only external

wave vectors k. Evaluating the resulting time derivatives, we obtain for

I1(k; t) and I2(k; t)

I1(k; t) = I11(k; t) + I12(k; t) + I13(k; t) + : : :

I2(k; t) = I21(k; t) + 2I22(k; t) + : : : (A.6)

where the dots denote contributions which are small for small inverse Peclet

numbers and contributions that are independent of k. The auxiliary func-
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tions contributing to I1(k; t) are de�ned by,

I11(k; t) = �
Z
k0

tZ
0

dt0
t0Z

0

dt00k � u(t0)k � u(t00)B1(k
0; t0; t00) (A.7)

I12(k; t) =

Z
k0

tZ
0

dt0ik � u(t0)B1(k
0; t0; 0) (A.8)

I13(k; t) =

Z
k0

tZ
0

dt0ik � u(t0)B1(k
0; t; t0); (A.9)

where we de�ned

B1(k
0; t1; t2) = eC��(k0)eg0(�k0; t1 � t2)[h(k

0; t1; t2) + 1] (A.10)

with

h(k0; t1; t2) = exp
h
� iuk0

t1Z
t2

dy�(y)
i
� 1: (A.11)

The auxiliary functions contributing to I2(k; t) are given by,

I21(k; t) = �
Z
k0

tZ
0

dt0
tZ

0

dt00k � u(t0)k � u(t00)B2(k
0; t0; t00) (A.12)

I22(k; t) =

Z
k0

tZ
0

dt0ik � u(t0)B2(k
0; t; t0); (A.13)

where we de�ned

B2(k
0; t1; t2) = eC��(k0)eg0(�k0; t1)eg0(k0; t2)[h(k0; t1; t2) + 1] (A.14)

Note that the contributions I11(k; t) and I21(k; t) are of second order in k

and contribute only to the e�ective dispersion coe�cients, while I12(k; t) and

I22(k; t) are linear in k and thus contribute only to the e�ective center of mass

velocity.
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The determination of the e�ective center of mass velocity and dispersion

coe�cients involves the following averages,

hh(t1; t2)i = �2
��A(k

0; t1 � t2) + : : : (A.15)

h�l(t3)h(t1; t2)i = �2
��Al(k

0; t1 � t2; t3 � t2) + : : : (A.16)

h�l(t3)�m(t4)h(t1; t2)i = �2
��C

��
lm(t3 � t4) + : : : ; (A.17)

where the dots denote contributions of the order of �4
�� . We de�ned the

auxiliary functions

A(k0; t) = �u2

2

tZ
0

dy

tZ
0

dy0k0lC
��
lm(y � y0)k0m (A.18)

Al(k
0; t1; t2) = �iu

t1Z
0

dyC��
lm(t2 � y)k0m (A.19)

Note that the average over h(t1; t2) can be performed exactly for a Gaus-

sian distributed �(t), see Appendix B. This yields,

hh(t1; t2)i = exp
h
� �2

��

u2

2

t1Z
t2

dy

t1Z
t2

dy0k0lC
��
lm(y � y0)k0m

i
� 1: (A.20)

Note that (A.20) is always positive, while the �rst order approximation of

this expression can be negative.

Inserting (A.8), (A.9) and (A.13) into (A.2), expansion up to second

order in the temporal 
uctuations and subsequent average over the temporal

random �elds, we obtain for the e�ective center of mass velocity,

�ei (t) = u�i1 + ����ei (t) + ����ei (t) (A.21)



Appendix A 128

with the contributions,

����ei (t) = u�i1�
2
��

Z
k0

eC��(k0)eg0(�k0; t) + : : : (A.22)

����ei (t) = u�2
���

2
��

Z
k0

eC��(k0) [�i1A(k
0; t)

+Ai(k
0; t; 0)] eg0(�k0; t) + : : : ; (A.23)

where again the dots denote contributions that are small for small inverse

Peclet numbers.

Correspondingly, we obtain for the e�ective dispersion coe�cients by in-

serting (A.7) and (A.12) into (A.3),

D
e

ij(t) = Dij + ���D
e

ij(t) + ���D
e

ij(t); (A.24)

where we de�ned,

���D
e

ij(t) = u2�2
���i1�j1

Z
k0

tZ
0

dt0 eC��(k0)eg0(�k0; t0) [1� eg0(k0; t)](A.25)
���D

e

ij(t) = u2�2
���

2
��

Z
k0

tZ
0

dt0 eC��(k0) [�i1�j1A(k
0; t0)

+�j1Ai(k
0; t0; 0) + �i1Aj(k

0; t0; 0) + C��
ij (t

0)
�

� [eg0(�k0; t0)� eg0(�k0; t)eg0(k0; t� t0)] (A.26)

We obtain the leading behavior of ����ei (t) and �
��D

e

ij(t) for small inverse

Peclet numbers, (3.10) and (3.11) by inserting the expansions

eg0(�k0; t0) = exp
�
�k0j2l2j �jt0=�u � ik01l1t

0=�u

�
= exp (�ik01l1t0=�u) + : : : (A.27)

and

eg0(�k0; t)eg0(k0; t� t0) = exp
�
�2k0j2l2j t=�Dj

�eg0(k0;�t0)
= exp

�
�2k0j2l2j t=�Dj

� ik01l1t
0=�u

�
+ : : : ;(A.28)
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into (A.23) and (A.26). The dots denote subleading contributions of the

order of the inverse Peclet numbers.
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Average Over a Gaussian

Random Field

The time 
uctuations �(t) have a multivariate Gaussian distribution de�ned

in discrete form as follows,

P
n
�(t)

o
= lim

N!1
(2�)�N=2(detC)�1=2

� exp
�
� 1

2

NX
i=0

NX
j=0

�i(t))C
�1
ij �j(t)

�
(B.1)

where N = t=�t. The correlation matrix C is de�ned by the correlation

coe�cients Cij. The coe�cients of the inverse correlation matrix are denoted

by C�1
ij .

The characteristic function of the random 
ow �eld is de�ned as,

D
f
n
�(t)

oE
=

1Z
�1

D
n
�(t)

o
f
n
�(t)

o
P
n
�(t)

o
(B.2)

where, D
n
u0(t)

o
= limN!1 d �i(t):::d �N(t).

The corresponding characteristic function then reads,
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D
f
noE

= lim
N!1
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1Z

�1

d�i(t) : : :

1Z
�1

d�N(t)

� exp
�
� 1

2

NX
i=N 0

NX
j=N 0

�i(t)C
�1
ij �j(t)

�

exp
�
� ik

NX
i=N 0

�t�i(t
0)
�

exp
�
� 1

2

N 0X
i=0

N 0X
j=0

�i(t)C
�1
ij �j(t)

�
(B.3)

where,

exp
�
� 1

2

N 0X
i=0

N 0X
j=0

u0i(t)C
�1
ij u

0

j(t)
�
= 1 (B.4)

Finally, based on properties of the correlation matrix, i.e., symmetric and

positive de�nite, the average over the multivariate Gaussian distribution be-

comes,

D
f
n
�(t)

oE
= exp

�
� 1

2
k2

NX
i=N 0

NX
j=N 0

Cij

�
(B.5)

Expressed in continuous form:

D
f
n
�(t)

oE
= exp

�
� 1

2
k2

tZ
t0

dt00
tZ

t0

dt000Cij(t
00 � t000)

�
(B.6)
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First and Second Moments in

the Transverse Direction to the

Strati�cation

The �rst and second moments in the transverse direction to the strati�cation

of the concentration distribution of solute transported through a perfectly

strati�ed media are derived here.

By applying (2.30) to the transport equation in (2.25) we obtain for the

�rst moment,

@m
(1)
T (t)

@t
+ u�T (t) +

1Z
�1

dx

1Z
�1

dy [u0(y) + u0(y; t)]
@c(x; t)

@x
= 0; (C.1)

after executing the integral over x the third term in (C.1) is zero because we

assume vanishing concentration at in�nity as a boundary condition, thus we

can write,
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m
(1)
T (t) = �u

tZ
0

dt0�T (t
0): (C.2)

Following the same procedure for the second moment (2.31) we obtain,

m
(2)
T (t) = 2DT t+ 2u2

tZ
0

dt0
t0Z

0

dt00�T (t
0)�T (t

00): (C.3)

For the center of mass velocity in the transverse direction we obtain after

inserting (C.2) in (2.39) and taking the ensemble average over all realizations

of the strati�ed media and over the temporal random process,

�T = 0: (C.4)

The e�ective and ensemble dispersion coe�cients in the transverse direc-

tion are derived after inserting (C.2) and (C.3) into (2.40) and (2.43).

D
e

T (t) = DT ; (C.5)

Dens
T (t) = DT : (C.6)
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Con�ned Strati�ed Media.

Correlation Function

We determine the conductivity correlation function for the con�ned strati�ed

medium by taking the ensemble average k(y)k(y0), where k(y) is given by

representation (5.13). As kn and kn0 are independent for n 6= n0 and have

mean zero and variance �2, we obtain,

k(y)k(y0) =
�2

2l

lZ
�l

db

a=lX
n=�a=l

� [y � nl + b] f1�� [y + b� (n+ 1)l]g

�� [y0 � nl + b] f1�� [y0 + b� (n+ 1)l]g (D.1)

Setting y = y0 + �y, and de�ning y0 = nl + �, where 0 � � < l. Thus, we

obtain,

k(y)k(y0) =
�2

2l

lZ
�l

db� [�y + � + b] f1�� [�y + b� l]g

�� [� + b] f1�� [� + b� l]g : (D.2)

Executing the remaining integrations, we obtain expression (5.14). The

translation invariance indicated in (D.2) holds across the whole medium ex-
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cept in 0 < a� jy0j < l=2.



Appendix E

Con�ned Strati�ed Media.

Limiting case. Average

Dispersion Coe�cients for the

In�nite Strati�ed Media

Here we detail the development of the expressions for the local and global dis-

persion coe�cients for the hypothetical case of an in�nite strati�ed medium.

Expressions (5.35) and (5.36) can be rewritten as,

Dens(tjy0) = DL +
1

2
���2lt+

2

DT�2
�2l

1X
n=1

��

(n��)2
��

1� exp

�
�DT�

2(n��)2

4
t

��
+

2

3DT�2
�2l

1X
n=1

(�1)n ��

(n��)2
��

exp

�
�DT�

2(n��)2

4
t

�
� exp

��DT�
2(n��)2t

��
cos (�y0n��)(E.1)
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and

D
e
(tjy0) = Dens(tjy0)� 2

DT�2
�2l

1X
n=1

��

(n��)2
��

exp

�
�DT�

2(n��)2

4
t

�
� exp

�
�DT�

2(n��)2

2
t

��
� 2

DT�2
�2l

1X
n=1

(�1)n ��

(n��)2

�
exp

�
�DT�

2(n��)2

4
t

�
� exp

�
�DT�

2(n��)2

2
t

��
cos(�y0n��); (E.2)

where we set �D = a2=Dt and de�ned �� � 1=a. For a!1, i.e., ��! 0 we

take the continuum limit. We de�ne n�� � � and substitute the summations

in (E.1) and (E.2) by integrations over �. This yields,

Dens(tjy0) � Dens(t) = DL +
2�2l

DT�

1Z
0

d�

�2

�
1� exp

�
�DT�

2

4
t

��
(E.3)

D
e
(tjy0) � D

e
(t) = Dens(t)�

2�2l

DT�

1Z
0

d�

�2

�
exp

�
�DT�

2

4
t

�
� exp

�
�DT�

2

2
t

��
: (E.4)

Note that the linear term in (E.1) as well as the terms containing the initial

position y0 in (E.1) and (E.2) cancel out in this limit. The integrals in (E.3)

and (E.4) can be performed straightforwardly and give (5.41) and (5.42),

respectively.
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