TABLE OF CONTENTS

List of figures .. xvii

CHAPTER 1 INTRODUCTION ... 1
 1.1 Background of the Research Project .. 1
 1.2 Scope and Objectives of the Research Programme ... 2
 1.3 Layout of the Thesis and Overview of the Experimental Programme 3

CHAPTER 2 SOIL USED IN THE INVESTIGATION .. 5
 2.1 Geological Origin of the Material and Mineralogy ... 5
 2.1.1 Origin of the material .. 5
 2.1.2 X-ray diffraction analysis .. 6
 2.1.3 Mineralogy ... 7
 2.2 Classification and Geotechnical Characteristics of Clay Powder and Packings 7
 2.2.1 Geotechnical classification tests .. 7
 2.2.1.1 General tests on clay powder and clay packings ... 7
 2.2.1.2 Clay powder and remoulded state characterisation .. 9
 2.2.2 Pore water extraction by squeezing technique. Osmotic suction measurement 11
 2.2.2.1 General aspects and experimental procedure .. 11
 2.2.2.2 Experimental results ... 12
 2.3 Static Compaction Tests and Powder Preparation Techniques for the Different Soil Structures used in the Experiments ... 13
 2.3.1 Static compaction tests ... 13
 2.3.1.1 Test procedures and results ... 13
 2.3.1.2 One-dimensional compression results in the lateral stress measuring system cell 15
 2.3.2 Powder preparation techniques for the different soil structures 17
 2.4 Resonant Column Tests .. 19
 2.5 Mercury Intrusion Porosimetry and SEM Studies for the Different Soil Packings 20
 2.5.1 Background of mercury intrusion porosimetry ... 20
 2.5.1.1 Introduction .. 20
 2.5.1.2 Background of Wahburn equation used in MIP ... 21
 2.5.2 MIP equipment and testing procedures. MIP specimen preparation 23
 2.5.3 MIP results and interpretation .. 24
 2.5.4 MIP - retention curve relationships .. 27
 2.5.5 MIP-saturated permeability relationships .. 30
 2.5.5.1 General MIP-permeability model .. 30
 2.5.6 SEM technique for direct fabric viewing. Comparisons between porosimetry and microscopy ... 32
 2.5.6.1 Experimental procedure .. 32
 2.5.6.2 Interpretation of SEM results .. 32
 2.6 Swelling-collapse potential of the aggregate packings under applied loads 33
 2.6.1 Testing procedures and results of swelling-collapse experiments 33
 2.6.2 Experimental method and results of one-dimensional consolidation tests 34
 2.6.2.1 Experimental method ... 34
 2.6.2.2 Experimental results and interpretation .. 34
CHAPTER 3 EXPERIMENTAL EQUIPMENT AND LAYOUT..61
3.1 General Layout of Testing Equipment ...61
3.1.1 Introduction ..61
3.1.2 General layout of air and water pressure systems ..61
3.1.2.1 Axis translation technique. Operational techniques ..61
3.1.2.2 Diaphragm, piston and cell air pressure systems. Water pressure system64
3.2 Development of Suction Controlled Oedometer Cells ...65
3.2.1 Conventional suction controlled oedometer cell ...65
3.2.2 Suction and temperature controlled oedometer cell ..65
3.2.2.1 Description of the oedometer cell and heating system ..65
3.2.2.2 Experimental layout. Auxiliary devices ..66
3.2.2.3 Cell modifications to perform swelling pressure tests ..67
3.2.3 Lateral stress suction controlled oedometer cell ...68
3.2.3.1 Null-type confining ring. Control system and calibration ...68
3.2.3.2 Oedometer cell and testing layout. Compaction layout ..70
3.2.3.3 Temperature and suction controlled triaxial cell layout. Modifications for isotropic testing ..81
3.2.3.4 Radial displacement sensors ...82
3.2.3.4.1 Introduction. Laser-based electro-optical sensors ...83
3.2.3.4.2 Implementation in the triaxial cell ..84
3.2.3.4.3 Calibrations and performance evaluation ...85
3.2.3.4.4 Calibrations for non-isothermal paths. Temperature effects on sensitivity and zero shifts ...86
3.2.3.4.5 Theoretical considerations of refraction effects ...87
3.2.3.4.6 Assessment of errors ...89
3.2.3.5 Forced convection heating system ...90
3.2.3.6 Data acquisition system ..91
3.3 Development of Suction Controlled Isotropic Cells ..80
3.3.1 Suction controlled mini isotropic cell ..80
3.3.2 Temperature and suction controlled triaxial cell layout. Modifications for isotropic testing ..81
3.3.2.1 Description of the oedometer cell and heating system ..65
3.3.2.2 Experimental layout. Auxiliary devices ..66
3.3.2.3 Cell modifications to perform swelling pressure tests ..67
3.3.2.4 Temperature and ageing effects on water permeability of HAEV discs75
3.3.2.5 Flushing system and diffused air volume indicators ..76
3.3.3 Lateral stress suction controlled oedometer cell ...68
3.3.3.1 Null-type confining ring. Control system and calibration ...68
3.3.3.2 Oedometer cell and testing layout. Compaction layout ..70
3.3.3.3 Temperature and suction controlled triaxial cell layout. Modifications for isotropic testing ..81
3.3.3.4 Radial displacement sensors ...82
3.3.3.4.1 Introduction. Laser-based electro-optical sensors ...83
3.3.3.4.2 Implementation in the triaxial cell ..84
3.3.3.4.3 Calibrations and performance evaluation ...85
3.3.3.4.4 Calibrations for non-isothermal paths. Temperature effects on sensitivity and zero shifts ...86
3.3.3.4.5 Theoretical considerations of refraction effects ...87
3.3.3.4.6 Assessment of errors ...89
3.3.3.5 Forced convection heating system ...90
3.3.3.6 Data acquisition system ..91

CHAPTER 4 EXPERIMENTAL PROGRAMME AND PROCEDURES ..119
4.1 Experimental Procedure of Soil Suction Imposition under a Temperature Field. Psychrometer calibrations ...119
4.1.1 General aspects of soil water potential. Background of application and measurement of soil suction ...119
4.1.2 Vapour equilibrium technique ..121
4.1.3 Suction imposition test series at different temperatures ..123
4.1.4 Psychrometer calibrations and measurements ..125
4.2 Testing Programme and Test Paths ...126
4.2.1 Test paths and methodology ...126
4.2.1.1 Oedometer test paths ..126
4.2.1.2 Isotopic test paths ...128
4.2.2 Oedometer and isotropic testing programme ..129
CHAPTER 5 THERMO-HYDRAULIC EXPERIMENTAL RESULTS ... 179

5.1 Retention Curves obtained from Vapour Equilibrium, Psychrometer Results and Air Overpressure Techniques ... 179

5.1.1 Aspects of clay-water system .. 179
5.1.2 Main wetting and drying curves for different packings at $T = 22^\circ C$ (vapour equilibrium technique) ... 181
5.1.3 Main wetting and drying curves for different packings at $T = 22^\circ C$ (air overpressure technique) ... 182
5.1.4 Aspects of soil – water characteristic curves (main wetting and drying paths). Soil – water characteristic curve equations .. 182
5.1.5 Temperature effects on main wetting paths (vapour equilibrium technique) 185
5.1.6 Aspects of temperature effects on soil water retention .. 186
5.1.7 Main wetting-drying cycles and first scanning wetting path obtained from suction controlled oedometer tests at different temperatures .. 188
5.1.7.1 Main wetting paths at different temperatures .. 188
5.1.7.2 General aspects of main drying and first scanning wetting paths at different temperatures ... 190

5.2 Water Permeability Determination under Controlled Suction 192

5.2.1 Introduction. Unsaturated flow equations. General aspects .. 192
5.2.2 General aspects and testing results of partial saturation and porosity effects on water permeability at two different temperatures ... 196

CHAPTER 6 THERMO-HYDRO-MECHANICAL OEDOMETER RESULTS 227

6.1 Stress and Strain State Variables under Isothermal Conditions used in the Research 227

6.1.1 General aspects of stress state variables .. 227
6.1.2 General aspects of work conjugate strain variables .. 230
6.2 Suction Controlled Swell / Shrinkage under Constant Load Results on Low-Porosity Packings ... 231

6.2.1 Isothermal paths .. 231
6.2.1.1 General aspects. Main wetting and drying paths .. 231
6.2.1.2 Reversible features under nearly saturated conditions .. 237
6.2.1.3 Thermal induced reversible features under nearly saturated conditions (isothermal data)... 238
6.2.2 Non-isothermal paths ... 240
6.3 Suction Controlled Collapse (Swell) / Shrinkage under Constant Load Results on High-
 Porosity Packings (Isothermal Paths) .. 242
6.3.1 Main wetting and drying paths ... 242
6.3.2 Reversible features under nearly saturated conditions .. 245
6.4 Loading-Unloading Paths under Controlled Suction ... 246
6.4.1 Results on low-porosity packings .. 246
6.4.2 Results on high-porosity packings ... 250
6.5 Suction Controlled Constant Volume Swelling and Shrinkage Pressure Tests 252

CHAPTER 7 THERMO-HYDRO-MECHANICAL ISOTROPIC RESULTS .. 319
7.1 Isothermal Suction Controlled Paths ... 319
7.1.1 Suction controlled swell or collapse / shrinkage under constant net mean stress 319
7.1.1.1 Testing results on the low-porosity packing ... 319
7.1.1.2 Testing results on the high-porosity packing .. 320
7.1.1.3 Compressibility aspects using DDL theory under nearly saturated conditions 322
7.1.2 Loading-unloading paths under constant suction ... 325
7.2 Non-Isothermal Suction Controlled Paths on the High-Porosity Packing 326
7.2.1 General aspects and pore pressure build-up under quasi-undrained heating 326
7.2.1.1 General aspects and testing results ... 326
7.2.1.2 Pore pressure generation under quasi-undrained conditions 329
7.2.2 Thermo-mechanical behaviour under quasi-undrained conditions 331
7.2.3 Thermo-mechanical behaviour under drained conditions 332

CHAPTER 8 SUMMARY, CONCLUSIONS AND FUTURE RESEARCH WORK 375
8.1 Summary and Conclusions .. 375
8.1.1 Characterisation of the material .. 375
8.1.2 Experimental equipment, programme and procedures ... 375
8.1.3 Thermo-hydro-mechanical results .. 377
8.1.3.1 General aspects. Temperature effects on hydraulic properties 377
8.1.3.2 Thermo-hydro-mechanical aspects: oedometer tests ... 378
8.1.3.3 Thermo-hydro-mechanical aspects: isotropic tests .. 379
8.2 Future Research Work ... 380

REFERENCES ... 383

APPENDIX A AGGREGATE SWELLING IN A WETTING PATH: ESEM IMAGES 403
A.1 Equipment, sample preparation and wetting path ... 403
A.2 Volume change evolution .. 403
<table>
<thead>
<tr>
<th>Figure 2.1</th>
<th>NNW-SSE geological cross-section through the Mol site (Horsemann et al., 1987).</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.2</td>
<td>X-ray diffraction pattern and mineral identification for the most intense reflections.</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Particle size distribution.</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Particle size density function.</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Specific surface for different packings using MIP technique.</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Plasticity chart.</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Relationship between electrical conductivity and solute concentration for homoionic (NaCl) and heterionic systems.</td>
<td>40</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Psychrometric, electrical conductivity and filter paper techniques for osmotic suction measurement.</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Net vertical stress against dry unit weight for different values of moisture content.</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Static compaction curves for different stress levels. Energy input per unit volume.</td>
<td>42</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Static compaction curves with contours of equal suction.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Stress paths followed by one-dimensional compression to a target $\gamma_d = 13.7$ kN/m3. Relationship between K_0 and overconsolidation ratio.</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Stress paths followed by one-dimensional compression to a target $\gamma_d = 16.7$ kN/m3. Relationship between K_0 and overconsolidation ratio.</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Relationship between K_0 and degree of saturation obtained from different test results. Extrapolation to in situ overconsolidation ratio.</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>Suction - vertical and horizontal preconsolidation stress relationships obtained from static compaction tests at different temperatures.</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>Suction-mean preconsolidation stress relationships obtained from static compaction tests at different temperatures.</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.17</td>
<td>Variation of shear modulus with shear strain for the different packings obtained from resonant column tests.</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.18</td>
<td>Surface phenomena in MIP technique and capillary rise.</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.19</td>
<td>Cumulative intrusion pore volume normalised by sample weight.</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.20</td>
<td>Cumulative intrusion porosity.</td>
<td>49</td>
</tr>
<tr>
<td>Figure 2.21</td>
<td>Pore size distribution for the different soil packings.</td>
<td>49</td>
</tr>
<tr>
<td>Figure 2.22</td>
<td>Relative porosity frequency (histogram) obtained from classified MIP results.</td>
<td>50</td>
</tr>
<tr>
<td>Figure 2.23</td>
<td>Incremental relative porosity (frequency) from MIP raw results.</td>
<td>50</td>
</tr>
<tr>
<td>Figure 2.24</td>
<td>Pore size density function from MIP raw results.</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.25</td>
<td>Determination of the fractal dimension from MIP raw results.</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.26</td>
<td>Adsorption and desorption isotherms for the different soil packings compared to MIP results.</td>
<td>52</td>
</tr>
<tr>
<td>Figure 2.27</td>
<td>$dS_{	ext{mip}}/dp$ function obtained from desorption isotherms. Apparent delimiting value separating inter and intra-aggregate zones.</td>
<td>53</td>
</tr>
<tr>
<td>Figure 2.28</td>
<td>Pore size density function evaluated from retention curve data.</td>
<td>53</td>
</tr>
<tr>
<td>Figure 2.29</td>
<td>Relative permeability for different pore sizes evaluated from classified MIP data.</td>
<td>54</td>
</tr>
<tr>
<td>Figure 2.30</td>
<td>Permeability function evaluated from raw MIP data.</td>
<td>54</td>
</tr>
<tr>
<td>Figure 2.31</td>
<td>SEM photomicrographs for different dry side compacted packings (\times 5000).</td>
<td>55</td>
</tr>
<tr>
<td>Figure 2.32</td>
<td>Graphic representation of porosity changes for the different soil packings. Pores are black and particles white.</td>
<td>56</td>
</tr>
<tr>
<td>Figure 2.33</td>
<td>Vertical strains in soaking tests for different hygroscopic compacted packings.</td>
<td>57</td>
</tr>
<tr>
<td>Figure 2.34</td>
<td>Sample deformation vs. log(t) for different load increments. Curve fitting results.</td>
<td>57</td>
</tr>
<tr>
<td>Figure 2.35</td>
<td>Conventional oedometer loading-unloading path (saturated sample).</td>
<td>58</td>
</tr>
</tbody>
</table>
Figure 3.35 Temperature evolution and zero-shift of local sensors (22°C to 40°C).................................115
Figure 3.34 Power supplied to the external heater according to target cell temperatures.................115
Figure 3.33 Scheme of the forced convection heating system. ...114
Figure 3.32 Performance of lateral strain sensors at different cell temperatures. Dummy sample...........113
Figure 3.31 Sources of errors involved in the non-contact lateral strain measurement.113
Figure 3.30 Comparison of theoretical and calibration sensitivities of lateral strain sensors...........112
Figure 3.29 Calibration cycles of temperature effects on zero-shift of lateral strain sensors...........112
Figure 3.28 Sensitivity of the lateral strain sensor with different transparent media. Sensitivity.......111
Figure 3.27 Output voltage and displacement calibration relationships of lateral strain sensor.......111
Figure 3.26 a) Lateral strain sensor head scheme and optical triangulation technique. b), c) and d) Refraction effects on sensor response. ..110
Figure 3.25 Calibration cycles of internal LVDTs at different temperatures.109
Figure 3.24 Mounting scheme of internal LVDTs. ...109
Figure 3.23 Top and base plate assembly of HAEV discs and coarse porous stones.108
Figure 3.22b Picture of triaxial cell..108
Figure 3.22a Cross-section scheme of triaxial cell. ..107
Figure 3.21 Basic scheme of the mini isotropic suction controlled cell. ..106
Figure 3.20 Volumetric solubility in water for different gases constituents of dry air.....................106
Figure 3.19 Amount of air diffusing through the ceramic discs for different matric suction pressures and temperatures. ..106
Figure 3.18 Water volume change under isothermal conditions. Comparison between directly measured values of diffused air volume and estimated from steady-state considerations..104
Figure 3.17 Water permeability of HAEV discs (lateral stress cell and triaxial cell).......................103
Figure 3.16 Ageing and temperature effects on water permeability of HAEV discs (thermal oedom. 2). ..103
Figure 3.15 Ageing and temperature effects on water permeability of HAEV discs (thermal oedom. 1). ..102
Figure 3.14 Ageing effects on water permeability of HAEV discs (conventional oedometers)......101
Figure 3.13 Water volume change corrections for non-isothermal paths.102
Figure 3.12 Temperature calibrations of oedometer cell for non-isothermal paths.100
Figure 3.11 Comparison between theoretical relationships and calibration results of oedometer loading systems...99
Figure 3.10 Arrangement for vertical load static calibration and theoretical relationships between diaphragm or piston pressure and transmitted net vertical load.98
Figure 3.9 Deformability of suction controlled oedometer cells...98
Figure 3.8 Diagram and picture of the lateral stress suction controlled oedometer cell...............97
Figure 3.7 Calibration of the lateral stress system. ... 96
Figure 3.6 Arrangement for lateral stress swelling pressure tests. Control system and ram pump......96
Figure 3.5 Scheme of the null-type confining ring..95
Figure 3.4 Hermetic mould and heating chamber used to prepare specimens at temperatures higher than 60°C. ...94
Figure 3.3 Experimental setup for temperature and suction controlled oedometer tests.............94
Figure 3.2 Temperature evolution during heating and cooling paths in oedometer cell and compaction mould...94
Figure 3.1 Diagram and pictures of the suction and temperature controlled oedometer cell........93
Figure 3.37 Different published results for saturated water permeability. Conversion to macroporosity void ratio. ...59
Figure 3.36 Saturated water permeability-void ratio relationship obtained from different testing procedures. ..59
Figure 4.1 Activity of NaCl solution versus water mole fraction. ... 151
Figure 4.2 Soil total suction imposition at different temperatures with NaCl solutions. 151
Figure 4.3 Relative humidity for saturated NaCl solutions at different temperatures. 152
Figure 4.4 Implements of vapour equilibrium tests. ... 152
Figure 4.5 a) Calibration curves for transistor psychrometric probes. b) Calibration curves for thermocouple psychrometers (dew point and psychrometric modes). 153
Figure 4.6 Oedometer isothermal (22°C and 80°C) wetting-drying cycles on dense (heavily overconsolidated) packings. ... 154
Figure 4.7 Oedometer isothermal (22°C and 80°C) wetting-drying cycles on high-porosity packings. .. 154
Figure 4.8 Oedometer loading-unloading paths at constant matric suction for the high-density packings. .. 155
Figure 4.9 Oedometer loading-unloading paths at constant matric suction for the high-porosity packings. .. 155
Figure 4.10 Oedometer non-isothermal paths at constant matric suction and net vertical stress. 155
Figure 4.11 Isotropic wetting-drying cycles and loading-unloading paths on dense and high-porosity packings (mini isotropic and triaxial cells). ... 156
Figure 4.12 Non-isothermal paths under controlled matric suction and constant net mean stress (high-porosity packing). .. 156
Figure 4.13 Repeatability and reproducibility features on high-density first wetting paths (expansive behaviour, suction steps 1.9 MPa → 0.20 MPa). .. 157
Figure 4.14 Repeatability features on high-density first wetting paths (expansive behaviour, suction steps 0.20 MPa → 0.01 MPa). ... 157
Figure 4.15 Repeatability features on high-porosity first wetting paths (suction steps 1.9 MPa → 0.20 MPa). ... 158
Figure 4.16 Repeatability features on high-porosity first wetting paths. Soil shrinkage due to water evaporation. ... 158
Figure 4.17 Repeatability features on high-porosity first wetting paths (collapsible behaviour, suction steps 1.9 MPa → 0.20 MPa). ... 159
Figure 4.18 Repeatability features on high-porosity first wetting paths (collapsible behaviour, suction steps 0.20 MPa → 0.01 MPa). ... 159
Figure 4.19 Experimental setup for static compaction tests: a) sample preparation in the hermetic mould inside the heating chamber, b) sample preparation in the lateral stress ring. ... 160
Figure 4.20 Stress paths, stress variable values and soil conditions for the high-density packing during sample preparation under different temperatures (’c’ refer to 22°C and ‘h’ to 80°C). .. 161
Figure 4.21 Stress paths, stress variable values and soil conditions for the high-porosity packing during sample preparation under different temperatures (’c’ refer to 22°C and ‘h’ to 80°C). .. 161
Figure 4.22 Examination of static compaction techniques for isotropic tests. 162
Figure 4.23 Temperature evolution of the high-density sample at two points (central zone and border in contact with the ring) and water content changes (or suction changes) during setting up. .. 163
Figure 4.24 Layout of swelling pressure tests: a) thermal cell and b) lateral stress cell. 164
Figure 4.25 Silicone membrane inside the three-split fabrication mould. 165
Figure 4.26 Triaxial sample: a) LVDTs mounted on sample and b) partly assembled triaxial cell showing full internal instrumentation. .. 165
Figure 4.27 Isochrones of water content changes during sample (triaxial cell) setting up. 166
List of figures

Figure 4.28 Equalisation periods for loading steps under controlled matric suction (oedometer tests with high-density packings at 22°C and 80°C)..167
Figure 4.29 Equalisation periods for loading steps under controlled matric suction in the lateral stress cell (high-density packing)...168
Figure 4.30 Equalisation periods for loading steps under controlled matric suction in the lateral stress cell (low-density packing)...168
Figure 4.31 Time evolution at selected nodes of air and water pressure changes, average lateral stress within the sample height, volumetric strain and water content changes during the application of a step loading increment and during the subsequent consolidation period. ..169
Figure 4.32 Isochrones of air and water pressure changes along sample height.................................170
Figure 4.33 Ring friction effects in wetting-drying cycles (high-density packing).170
Figure 4.34 Measured evaporative fluxes under steady-state conditions in first wetting paths........171
Figure 4.35 Problems with matric suction equalisation in test series H17-0.026A (first stages).172
Figure 4.36 Problems with matric suction equalisation in test series H17-0.026A (last stages)172
Figure 4.37 Proposed equipment to control vapour pressure in the dry air pressure line of the triaxial cell..173
Figure 4.38 Variable boundary conditions for mass fraction of water in gas. ...173
Figure 4.39 Computed evaporative fluxes under steady-state conditions for different final relative humidity..173
Figure 4.40 Matric suction evolution at selected nodes during first wetting step (target matric suction of 0.45 MPa)...174
Figure 4.41 Matric suction evolution at selected nodes during second wetting step (target matric suction of 0.20 MPa). ..175
Figure 4.42 Matric suction isochrones for the first wetting step (target matric suction of 0.45 MPa)..176
Figure 4.43 Matric suction isochrones for the second wetting step (target matric suction of 0.20 MPa)..177
Figure 4.44 Final matric suction at selected points under steady-state conditions and related to the evaporative flux in the open system...177

Figure 5.1 Quasi-immobile intra-aggregate water fraction (% of total pore volume)..............................201
Figure 5.2 Soil water potential relationships for different initial dry unit weights at 22°C......................201
Figure 5.3 Zoom of the previous figure..202
Figure 5.4 Dry unit weight-degree of saturation values after total suction equalisation in main wetting and drying paths..202
Figure 5.5 Dry unit weight-water content values after total suction equalisation..................................203
Figure 5.6 Total suction-degree of saturation relationships at constant porosity203
Figure 5.7 Relationships between suction and water content for different dry unit weights in main wetting and drying paths at 22°C (vapour equilibrium and air overpressure techniques). ..204
Figure 5.8 Relationships between suction and degree of saturation for different dry unit weights.205
Figure 5.9 Main wetting and drying retention curves (suction vs. degree of saturation)........................205
Figure 5.10 Conceptual framework of suction-water content retention curves at constant porosity..206
Figure 5.11 Soil water characteristic curves at different temperatures for different initial dry densities..207
Figure 5.12 Dry unit weight-water content values after total suction equalisation in main wetting paths at different temperatures...208
Figure 5.13 Dry unit weight-degree of saturation values after total suction equalisation in main wetting paths at different temperatures...209
Figure 5.14 Total suction-degree of saturation relationships at constant porosity (main wetting paths at different temperatures) ..210
Figure 5.15 Water content-temperature plots at constant total suction... 211
Figure 5.16 Total suction-temperature plots at constant water content. .. 211
Figure 5.17 Parameters used to model temperature effects on energy status of soil water. 212
Figure 5.18 Relationships between suction and water content for different temperatures.......... 212
Figure 5.19 Relationships between suction and degree of saturation for different temperatures. 213
Figure 5.20 Main wetting retention curves for test series C17-xxx.. 213
Figure 5.21 Main wetting retention curves for test series C14-xxx.. 214
Figure 5.22 Main wetting retention curves for test series I17-xxx and I14-0.600......................... 214
Figure 5.23 Predicted retention curves for main wetting paths (test series C17-xxx and C14-xxx). 215
Figure 5.24 Main wetting retention curves for test series H17-xxx.. 215
Figure 5.25 Main wetting retention curves for test series H14-xxx.. 216
Figure 5.26 Main drying and scanning wetting retention curves for test series C17-xxx................. 216
Figure 5.27 Main drying and scanning wetting retention curves for test series C14-xxx............... 217
Figure 5.28 Main drying and scanning wetting retention curves for test series I17-xxx and I14-0.600... 217
Figure 5.29 Main drying and scanning wetting retention curves for test series H17-xxx...... 218
Figure 5.30 Main drying and scanning wetting retention curves for test series H14-xxx............... 218
Figure 5.31 Conceptual framework for main drying paths departing from near-saturated conditions. ... 219
Figure 5.32 Main drying and scanning wetting paths for different packings and temperatures...... 219
Figure 5.33 Impedance ratio effects on water permeability (transient inflow/outflow method). 220
Figure 5.34 Steady-state corrections for air diffusion and soil water evaporation............................ 220
Figure 5.35 Water permeability vs. degree of saturation obtained in different suction steps at 22°C. ... 221
Figure 5.36 Water permeability vs. degree of saturation obtained in different suction steps at 80°C. 221
Figure 5.37 Water permeability vs. void ratio for constant degrees of saturation at 22°C.............. 222
Figure 5.38 Water permeability vs. void ratio for constant degrees of saturation at 80°C.............. 222
Figure 5.39 Relative water permeability-degree of saturation relationship for a constant low-porosity packing at a reference $w_{ref} = 2.2\%$... 223
Figure 5.40 Relative water permeability-degree of saturation relationship for a constant high-porosity packing at a reference $w_{ref} = 2.2\%$... 223
Figure 5.41 Relative water permeability-Sr relationships for different packings ($w_{ref} = 2.2\%$).................. 224
Figure 5.42 Relative water permeability-degree of saturation relationships for different packings at a reference $w_{ref} = 2.2\%$ (inflow/outflow results and MIP-retention curve predictions). ... 224
Figure 5.43 Relative water permeability-effective degree of saturation relationships for different packings at a reference $w_{ref} = 13\%$ (inflow/outflow results and MIP predictions).......................... 225
Figure 5.44 Water permeability for the high-porosity packing at different degrees of saturation and temperatures (best-fit curve). ... 225
Figure 5.45 k_w for the low-porosity packing at different degrees of saturation and temperatures... 226
Figure 5.46 k_w-volumetric water content relationships at different void ratios and temperatures... 226

Figure 6.1 Stress paths in $s:p$ plane for the high-density packing in a wetting-drying-wetting cycle under oedometer conditions and constant net vertical stress ($T=22^\circ C$)............. 257
Figure 6.2 Stress paths in $s:p$ plane for the high-porosity packing in a wetting-drying-wetting cycle under oedometer conditions and constant net vertical stress ($T=22^\circ C$)............. 257
Figure 6.3 Stress paths in $\log s: \hat{p}$ plane for the high-density packing in a wetting-drying-wetting cycle under oedometer conditions and constant net vertical stress ($T=22^\circ C$) 258
Figure 6.4 Stress paths in $\log s: \hat{p}$ plane for the high-porosity packing in a wetting-drying-wetting cycle under oedometer conditions and constant net vertical stress ($T=22^\circ C$) ... 258
Figure 6.5 Time evolution of volumetric strain, net lateral stress, water content and degree of saturation at 22°C for the high-density packing in a main wetting process...................259
Figure 6.6 Time evolution of volumetric strain, net lateral stress, water content and degree of saturation at 22°C for the high-density packing in a main drying and wetting cycle. ...260
Figure 6.7 Variation of volumetric strain, net horizontal stress, water content and degree of saturation for the high-density fabric in wetting-drying cycles under constant net vertical stress (T=22°C). ..261
Figure 6.8 Variation of volumetric strain, water content and degree of saturation for the high-density fabric in wetting-drying cycles at two different temperatures and under constant \((\sigma_v-u_a) = 0.026 \text{ MPa}\)...262
Figure 6.9 Variation of volumetric strain, water content and degree of saturation for the high-density fabric in wetting-drying cycles at two different temperatures and under constant \((\sigma_v-u_a) = 0.085 \text{ MPa}\)...263
Figure 6.10 Variation of volumetric strain, water content and degree of saturation for the high-density fabric in wetting-drying cycles at two different temperatures and under constant \((\sigma_v-u_a) = 0.300 \text{ MPa}\)..264
Figure 6.11 Variation of volumetric strain, water content and degree of saturation for the high-density fabric in wetting-drying cycles at two different temperatures and under constant \((\sigma_v-u_a) = 0.550 \text{ MPa}\)..265
Figure 6.12 Comparison of volumetric strains for the high-density fabric in wetting-drying cycles at different net vertical stresses and temperatures. ...266
Figure 6.13 Undrained loading and swelling curves for the high-density fabric at different temperatures and matric suction steps for varying applied net vertical stresses (main wetting paths). ..266
Figure 6.14 Water content and degree of saturation values for the high-density fabric at different temperatures and matric suction steps for varying applied net vertical stresses (main wetting paths)..267
Figure 6.15 Water content and degree of saturation values for the high-density fabric at different temperatures and matric suction steps for varying applied net vertical stresses (main drying paths)..268
Figure 6.16 Swelling and shrinkage strains for the high-density fabric in wetting-drying cycles. ...269
Figure 6.17 Apparent yield shrinkage suction for the high-density packing for different temperatures. ..269
Figure 6.18 Total swelling upon main wetting and reversible strain during scanning wetting at different temperatures and stress conditions (high-density packing).269
Figure 6.19 Total shrinkage upon main drying at different temperatures and stress conditions (high-density packing)...270
Figure 6.20 Irreversible swelling strains in wetting-drying-wetting cycles at different temperatures and stress conditions (high-density packing). Relationship between plastic and reversible strains. ..270
Figure 6.21 Irreversible shrinkage strains in drying-wetting cycles at different temperatures and stress conditions (high-density packing). Relationship between plastic and reversible strains. ..271
Figure 6.22 Isothermal changes in elastic strain associated with changes in intergranular vertical stress obtained from constant \((\sigma_v-u_a)\) data (high-density fabric). ..271
Figure 6.23 Isothermal changes in elastic strain associated with changes in intergranular vertical stress obtained from constant \((u_a-u_w)\) data (high-density fabric). ..272
Figure 6.24 Isothermal reversible changes in work conjugate variable of matric suction with changes in intergranular vertical stress obtained from constant \((\sigma_v-u_a)\) and \((u_a-u_w)\) data (high-density fabric)..272
Figure 6.25 Drained reversible thermal coefficients for high-density and high-porosity packings under constant vertical stress. ..273
Figure 6.26 Drained reversible aspects of matric suction work conjugate variable with changes in temperature (high-density and high-porosity packings).

Figure 6.27 Time evolution of volumetric strain, water content and degree of saturation during a drained heating path at constant net vertical stress and \((u_a-\omega) = 0.20\) MPa (high-density fabric).

Figure 6.28 Time evolution of volumetric strain, water content and degree of saturation during a drained heating path at constant net vertical stress and \((u_a-\omega) = 0.06\) MPa (high-density fabric).

Figure 6.29 Drained heating-cooling cycles at constant matric suctions and under \((\sigma_v-u_a) = 0.026\) MPa (high-density fabric).

Figure 6.30 Non-isothermal paths compared to isothermal main wetting paths in terms of volumetric strains (high-density packing at \((\sigma_v-u_a) = 0.026\) MPa).

Figure 6.31 Non-isothermal paths compared to isothermal main wetting paths in terms of matric suction work conjugate variable (high-density packing at \((\sigma_v-u_a) = 0.026\) MPa).

Figure 6.32 Time evolution of volumetric strain, net lateral stress, water content and degree of saturation at 22°C for the high-porosity packing in a main wetting process.

Figure 6.33 Time evolution of volumetric strain, net lateral stress, water content and degree of saturation at 22°C for the high-porosity packing in a main drying and wetting cycle.

Figure 6.34 Variation of volumetric strain, net horizontal stress, water content and degree of saturation for the high-porosity fabric in wetting-drying cycles under constant net vertical stress (\(T=22°C\)).

Figure 6.35 Variation of volumetric strain, water content and degree of saturation for the high-porosity fabric in wetting-drying cycles at different net vertical stresses and under constant \((\sigma_v-u_a) = 0.600\) MPa.

Figure 6.36 Variation of volumetric strain, water content and degree of saturation for the high-density packing at \((\sigma_v-u_a) = 0.026\) MPa.

Figure 6.37 Comparison of volumetric strains for the high-porosity fabric in wetting-drying cycles at different temperatures and under constant \((\sigma_v-u_a) = 0.600\) MPa.

Figure 6.38 Undrained loading and swell/collapse under load curves for the high-porosity fabric for different matric suction steps and \(T=22°C\) (main wetting paths).

Figure 6.39 Undrained loading and swell/collapse under load curves for the high-porosity fabric for different matric suction steps and temperatures (main wetting paths).

Figure 6.40 Undrained loading and swell/collapse under load curves for different matric suction steps and temperatures as a function of OCR\(_{vo}\) (high-density and high-porosity packings).

Figure 6.41 Water content and degree of saturation values for the high-porosity fabric at different temperatures and matric suction steps for varying applied net vertical stresses (main wetting paths).

Figure 6.42 Matric suction work conjugate variable changes for different matric suction steps and temperatures as a function of OCR\(_{vo}\) (high-density and high-porosity packings).

Figure 6.43 Water content and degree of saturation values for the high-porosity fabric at different temperatures and matric suction steps for varying applied net vertical stresses (main drying paths).

Figure 6.44 Apparent yield shrinkage suction for the high-porosity packing for different temperatures and vertical stress conditions (aggregated and pellet fabrics).

Figure 6.45 Total shrinkage upon main drying and reversible strain during scanning wetting at different temperatures and stress conditions (high-porosity packing).

Figure 6.46 Isothermal changes in elastic strain associated with changes in intergranular vertical stress obtained from constant \((\sigma_v-u_a)\) data (high-porosity aggregate and pellet fabrics).

Figure 6.47 Isothermal changes in elastic strain associated with changes in intergranular vertical stress obtained from constant \((\sigma_v-u_a)\) and \((u_a-\omega)\) data (high-density and high-porosity fabrics).
Figure 6.48 Isothermal reversible changes in work conjugate variable of matric suction with changes in intergranular vertical stress obtained from constant \((\sigma_v-u_a)\) and \((u_a-u_w)\) data (high-porosity fabric). ... 292

Figure 6.49 Isothermal reversible changes in work conjugate variable of matric suction with changes in intergranular vertical stress (high-density and high-porosity fabrics). 292

Figure 6.50 Loading-unloading paths on the high-density fabric at constant \((u_a-u_w) = 0.20 \text{ MPa and } T=22\degree\text{C}\). Evolution of specific volume, degree of saturation, \(K_0\) and state variable \(G_s, w\) .. 293

Figure 6.51 Loading-unloading paths on the high-density fabric at different temperatures and at constant \((u_a-u_w) = 0.45 \text{ MPa}... 294

Figure 6.52 Loading-unloading paths on the high-density fabric at different temperatures and at constant \((u_a-u_w) = 0.30 \text{ MPa}... 295

Figure 6.53 Loading-unloading paths on the high-density fabric at different temperatures and at constant \((u_a-u_w) = 0.01 \text{ MPa}... 296

Figure 6.54 Specific volume : \(\ln(\sigma_v-u_a)\) loading-unloading curves obtained at different matric suctions and temperatures (high-density fabric). ... 297

Figure 6.55 Specific volume : \(\ln[(\sigma_v-u_a)+(u_a-u_w)]\) loading-unloading curves obtained at different matric suctions and temperatures (high-density fabric) .. 298

Figure 6.56 \(v : \ln(\sigma_v-u_a)\) and \(v : \ln[(\sigma_v-u_a)+(u_a-u_w)]\) plots in main drying-scanning wetting paths. 299

Figure 6.57 \(\lambda_{oed}\) and \(\kappa_{oed}\) values at different matric suctions and temperatures (high-density packing). ... 299

Figure 6.58 LC yield curve for the high-density fabric from static compaction and suction controlled tests. Macrostructural softening due to swelling ... 300

Figure 6.59 Loading-unloading paths on the high-porosity fabric at constant \((u_a-u_w) = 0.20 \text{ MPa and } T=22\degree\text{C}\). Evolution of specific volume, degree of saturation, \(K_0\) and state variable \(G_s, w\) .. 301

Figure 6.60 Loading-unloading paths on the high-porosity fabric at different temperatures and at constant \((u_a-u_w) = 0.45 \text{ MPa}... 302

Figure 6.61 Loading-unloading paths on the high-porosity fabric at different temperatures and at constant \((u_a-u_w) = 0.20 \text{ MPa}... 303

Figure 6.62 Loading-unloading paths on the high-porosity fabric at different temperatures and at constant \((u_a-u_w) = 0.06 \text{ MPa}... 304

Figure 6.63 Loading-unloading paths on the high-porosity fabric at different temperatures and at constant \((u_a-u_w) = 0.01 \text{ MPa}... 305

Figure 6.64 Specific volume : \(\ln(\sigma_v-u_a)\) loading-unloading curves obtained at different matric suctions and temperatures (high-porosity fabric). ... 306

Figure 6.65 Specific volume : \(\ln[(\sigma_v-u_a)+(u_a-u_w)]\) loading-unloading curves obtained at different matric suctions and temperatures (high-porosity fabric). .. 307

Figure 6.66 Specific volume : \(\ln(\sigma_v-u_a)\) and specific volume : \(\ln[(\sigma_v-u_a)+(u_a-u_w)]\) main drying-scanning wetting curves obtained at different matric suctions and temperatures (high-porosity fabric). ... 308

Figure 6.67 \(\lambda_{oed}\) and \(\kappa_{oed}\) values at different matric suctions and temperatures (high-porosity packing). ... 308

Figure 6.68 LC yield curve for the high-porosity fabric from static compaction and suction controlled tests. Macrostructural hardening due to collapse. ... 309

Figure 6.69 LC yield curve and yield points during main wetting (high-porosity fabric) 310

Figure 6.70 Saturated net stress at yielding obtained from static compaction, compression and suction controlled tests as a function of dry unit weight ... 310

Figure 6.71 Time evolution of vertical and lateral swelling pressures, water content and loading system compressibility in a main wetting-drying cycle (high-density and high-porosity fabrics) ... 311

Figure 6.72 Vertical and horizontal swelling and shrinkage pressure paths in the high-density packing. ... 312
Figure 6.73 Vertical and horizontal swelling and shrinkage pressure paths in the high-porosity packing... 313
Figure 6.74 Vertical and horizontal swelling and shrinkage pressure paths in the high-porosity packing (comparison of pellet and aggregated fabrics) ... 314
Figure 6.75 Vertical swelling and shrinkage pressure paths in the high-porosity packing at different temperatures. ... 315
Figure 6.76 Swelling and shrinkage pressure paths in s : p and q : p planes for both packings. ... 316
Figure 6.77 Swelling and shrinkage pressure paths in s : p and q : p planes for both packings. ... 317
Figure 6.78 Swelling and shrinkage pressure paths in s : p and q : p planes for the high-porosity packing (pellet and aggregated fabrics). ... 318

Figure 7.1 Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-density packing in a main wetting path (s_o = 1.9 MPa \rightarrow s_f = 0.45 MPa)... 336
Figure 7.2 Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-density packing in a main wetting path (s_o = 0.45 MPa \rightarrow s_f = 0.20 MPa)... 337
Figure 7.3 Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-density packing in a main wetting path (s_o = 0.20 MPa \rightarrow s_f = 0.06 MPa)... 338
Figure 7.4 Progressive development of the lateral profile and lateral strains of the high-density specimen in a main wetting path (s_o = 1.9 MPa \rightarrow s_f = 0.45 MPa). ... 339
Figure 7.5 Progressive development of the lateral profile and lateral strains of the high-density specimen in a main wetting path (s_o = 0.45 MPa \rightarrow s_f = 0.20 MPa)... 340
Figure 7.6 Progressive development of the lateral profile and lateral strains of the high-density specimen in a main wetting path (s_o = 0.20 MPa \rightarrow s_f = 0.06 MPa) .. 341
Figure 7.7 Variation of axial, radial, shear and volumetric strains, strain ratio, water content and degree of saturation for the high-density packing in wetting-drying cycles under a constant isotropic net stress. ... 342
Figure 7.8 Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-porosity packing in a main wetting path (s_o = 1.9 MPa \rightarrow s_f = 0.45 MPa)... 343
Figure 7.9 Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-porosity packing in a main wetting path (s_o = 0.45 MPa \rightarrow s_f = 0.20 MPa). ... 344
Figure 7.10 Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-porosity packing in a main wetting path (s_o = 0.20 MPa \rightarrow s_f = 0.06 MPa) .. 345
Figure 7.11 Time evolution of axial, radial, shear and volumetric strains, water content and degree of saturation for the high-porosity packing in a main drying path (s_o = 0.20 MPa \rightarrow s_f = 0.45 MPa)... 346
Figure 7.12 Progressive development of the lateral profile and lateral strains of the high-porosity specimen in a main wetting path (s_o = 1.9 MPa \rightarrow s_f = 0.45 MPa): a) raw data and b) processed data... 347
Figure 7.13 Progressive development of the lateral profile and lateral strains of the high-porosity specimen in a main wetting path (s_o = 0.45 MPa \rightarrow s_f = 0.20 MPa): a) raw data and b) processed data... 348
Figure 7.15 Variation of axial, radial, shear and volumetric strains, strain ratio, water content and degree of saturation for the high-porosity packing in wetting-drying cycles under a constant isotropic net stress. ...349
Figure 7.16 Differences between measured mid-height radial strains (subscript c) and calculated mean value radial strains and their consequences on void ratio and degree of saturation errors. ...350
Figure 7.17 Reversible changes in volumetric strain associated with changes in intergranular mean stress obtained from constant \((\sigma_{m-u})\) and \((\sigma_{v-u})\) data...350
Figure 7.18 Reversible changes in work conjugated variable of matric suction with changes in intergranular mean stress obtained from constant \((\sigma_{m-u})\) and \((\sigma_{v-u})\) data.354
Figure 7.19 Void ratio-net mean stress diagram showing loading/unloading and heating/cooling paths at constant matric suction. ...351
Figure 7.20 Loading-unloading paths on the high-density fabric at constant \((u_{c}-u_{w}) = 0.20 \text{ MPa.} \) Evolution of specific volume, state variable Gs.w and degree of saturation.................351
Figure 7.21 Progressive development of the lateral profile and lateral strains of the high-porosity specimen in a loading path at \(s = 0.20 \text{ MPa:} \) a) raw data and b) processed data............353
Figure 7.22 LC yield curves for both packings obtained from static compaction and suction controlled tests. Stress states at yielding and strain hardening/softening effects.346
Figure 7.23 Progressive development of the lateral profile and lateral strains of the high-porosity specimen in a drained heating path at \(s = 0.20 \text{ MPa and } (\sigma_{m-u}) = 1.00 \text{ MPa:} \) a) raw data and b) processed data. ...355
Figure 7.24 Time evolution of strains and water volume change for a normally consolidated state during heating and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (21°C to 30°C in path B-C).} \) ...356
Figure 7.25 Time evolution of strains and water volume change for a normally consolidated state during heating and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (30°C to 40°C in path B-C).} \) ...357
Figure 7.26 Time evolution of strains and water volume change for a normally consolidated state during heating and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (40°C to 50°C in path B-C).} \) ...358
Figure 7.27 Time evolution of strains and water volume change for a normally consolidated state during heating and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (50°C to 60°C in path B-C).} \) ...359
Figure 7.28 Time evolution of strains and water volume change during cooling and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (60°C to 40°C in path C-D).} \) ...360
Figure 7.29 Time evolution of strains and water volume change during cooling and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (40°C to 20°C in path C-D).} \) ...361
Figure 7.30 Time evolution of strains and water volume change during heating and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (21°C to 40°C in path D-E).} \) ...362
Figure 7.31 Time evolution of strains and water volume change during heating and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (40°C to 60°C in path D-E).} \) ...363
Figure 7.32 Time evolution of strains and water volume change during cooling and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (60°C to 50°C in path E-F).} \) ...364
Figure 7.33 Time evolution of strains and water volume change during cooling and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (50°C to 40°C in path E-F).} \) ...365
Figure 7.34 Time evolution of strains and water volume change during cooling and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (40°C to 30°C in path E-F).} \) ...366
Figure 7.35 Time evolution of strains and water volume change during cooling and regulation phase at \(p = 1.00 \text{ MPa and } s = 0.20 \text{ MPa (30°C to 20°C in path E-F).} \) ...367
Figure 7.36 Time evolution of strains and water volume change for an overconsolidated state during heating and regulation phases at \(p = 0.10 \text{ MPa and } s = 0.20 \text{ MPa (22°C to 30°C in path G-H).} \) ...368
Figure 7.37 Time evolution of strains and water volume change for an overconsolidated state during heating and regulation phases at p = 0.10 MPa and s = 0.20 MPa (30°C to 40°C in path G-H). .. 369

Figure 7.38 Time evolution of strains and water volume change for an overconsolidated state during heating and regulation phases at p = 0.10 MPa and s = 0.20 MPa (40°C to 50°C in path G-H). .. 370

Figure 7.39 Time evolution of strains and water volume change for an overconsolidated state during cooling and regulation phases at p = 0.10 MPa and s = 0.20 MPa (50°C to 40°C in path H-I). .. 371

Figure 7.40 Thermal volume expansion coefficients under quasi-undrained heating conditions plotted against different temperatures. .. 372

Figure 7.41 Drained volumetric thermal strains versus temperature for normal and overconsolidated states. .. 373

Figure 7.42 Three-dimensional view of the yield surfaces in (q, p, s) stress space at different temperatures. .. 374

Figure 7.43 Thermal softening functions compared to measured values of preconsolidation pressure changes induced by temperature. .. 374

Figure A.1 Wetting path followed by the high-density aggregate in the ESEM 404

Figure A.2 Image analysis evolution of volume change behaviour (horizontal bar represents 20 µm) .. 405