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A2.1 INTRODUCTION 

The pullout response of an inclined steel fiber may be significantly influenced by the local 

interaction occurring at the point where the fiber exits the matrix. At this point, increasing 

deviation forces tend to produce spalling of small portions of the surrounding matrix. The 

estimation of the size of these portions is of great interest because it has a direct impact on the 

crack widths at which local frictional forces develop during the pullout process. 

This appendix aims at providing a simplified procedure to quantify the length of matrix spalled 

off in the direction parallel to the original embedded axis of the fiber in terms of its inclination 

angle, the tensile strength of the concrete and the maximum axial load carried out by the fiber. 

The first part of this appendix provides an approach to estimate the length of matrix spalled off 

on the pullout of inclined straight steel fibers (LSP1) described in Chapter 4. Then, the increment 

of matrix spalled length induced by the hooked end (LSP2) is calculated on the basis of a similar 

procedure. Once having both of these parameters the pullout model for hooked steel fibers 

described in Chapter 5 can be applied.   
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A2.2 DEFINITION OF LSP1 

Spalling of the matrix is a consequence of an extremely complex phenomenon in which failure of 

the matrix occurs due to local curvature and stretching of the fiber at the matrix cracked 

surface. However, depending upon a variety of parameters (fiber diameter and embedded 

length, fiber elastic modulus and tensile strength, magnitude and rate of external loading, etc.) 

the action imposed over the matrix wedge might change considerably. Moreover, regarding the 

magnitude of LSP1 in steel fiber reinforced cementitious matrices (up to few mm) uncertainties 

associated to the microstructure of the matrix might play a major effect.   

To quantify the average matrix spalled length a simplified failure criterion is herein proposed 

taking into account the resisting mechanism provided by the matrix at the cracked surface (RSP1) 

and the spalling force imposed by fiber curvature (FSP1). Hence LSP1 represents the minimum 

length along fiber main axis at which the matrix wedge stabilizes, such as defined by Eq.A2.1. 

SP1SP1 FR          (A2.1) 

The resisting mechanism provided by the matrix (RSP1) is based on the assumption that the tensile 

strength of the matrix (fctm) is the major parameter controlling resistance against spalling. 

Therefore RSP1 becomes defined as following: 

ctmSP1SP1 fAR          (A2.2) 

Where ASP1 is the thorough surface failure of the matrix wedge (Fig.A2.1) which is defined in 

Eqs.A2.3-A2.5.  

 

 

 

 

 

 

Fig.A2.1 – Geometry of the matrix wedge spalled off. 
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The spalling force (FSP1) is taken as the component of the deviation force (DF1) parallel to the 

failure surface ASP1, which according with experimental observations from Cailleux (2005) is also 

perpendicular to the fiber main axis (Fig.A2.2).  

 

 

 

 

 

 

 

Fig.A2.2 – Schematic equilibrium of equivalent forces at fiber exit point. 

Although the component of the deviation force parallel to the fiber main axis (FR1) might 

introduce a sort of stabilization effect, due to the uncertainties on appropriately defining the 

stress field along the thorough matrix wedge it will be disregarded. Thereby the equivalent force 

which induces spalling on the matrix (FSP1) becomes defined as following: 

cosθsinθPF S01SP1         (A2.6) 

Applying the failure criterion defined in Eq.A2.1 LSP1 becomes defined by simply solving a 

quadratic function a.LSP1
2+b.LSP1+c=0 with the parameters defined in Eqs.A2.7-A2.9.  
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A2.3 DEFINITION OF LSP2 

Following the methodology adopted in the previous section, the increment of spalled matrix 

along fiber axis (LSP2) is calculated through a failure criterion between the new spalling force 

(FSP2) and the resisting mechanism provided by the matrix wedge (RSP2). Likewise LSP2 represents 

the increment of spalled length at which the second stage of matrix spalling ceases, obtained by 

Eq.A2.10. 

2SP2SP FR          (A2.10) 

The resisting mechanism provided by the matrix (RSP2) is a very complex one, with tensile and 

shear stresses generating non-uniform and brittle failure surfaces. This approach assumes that 

the tensile strength of the matrix (fctm) is the major and unique parameter controlling resistance 

against spalling and that the tensile strength is attained uniformly over the failure surface, thus 

being defined by:  

ctm2SP2SP fAR          (A2.11) 

Where ASP2 is the surface failure of the matrix wedge, defined in Eqs.A2.12-A2.14 and depicted in 

Fig.A2.3. 

2,2SP1,2SP2SP AAA         (A2.12) 
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Fig.A2.3 – Geometry of the matrix wedge at the second stage of spalling. 
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Due to the increment of load carrying capacity provided by the hook an increased deviation force 

arises at the new fiber exit point, leading to the spalling force defined in Eq.A2.15. 

 cossinPF 01H2SP
       (A2.15) 

The increment of matrix spalled length (LSP2) can then be calculated by solving a quadratic 

function a.LSP2
2+b.LSP2+c=0 with the following parameters: 

12 aa           (A2.16) 
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Where a1, b1 and c1 are the parameters of the analogous quadratic function used for the 

calculation of LSP1. 
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A3.1 INTRODUCTION 

In some cases, the load-crack width response of an inclined hooked steel fiber may be truncated 

due to the attainment of its ultimate load. The occurrence of such phenomenon significantly 

decreases the toughness of SFRC and, consequently, has to be considered when predicting the 

pullout responses of this type of fibers (Chapter 5). 

The main goal of this appendix is to present a simple expression to estimate the inclined tensile 

strength of steel fibers. This way, fiber rupture could be avoided by choosing appropriate 

material properties in the design of SFRC. The heuristic method herein presented accounts for 

experimental data extracted from literature and assumes typical properties for current steel 

fibers in the market. 

In the second part of this appendix, the input values used for the validation of the pullout model 

described in Chapter 5 are given in detail. 
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A3.2 PREDICTING fu(θ) 

In the following, the inclined tensile strength of steel fibers is taken as the ratio between the 

ultimate pullout load of an inclined fiber and its respective cross-sectional area. This way, it is 

not a material property but rather a parameter that comprises all together tensile, shear and 

bending stresses. 

To include fu(θ) within the current approach a simplified heuristic procedure has been adopted. 

Firstly an inspection on the ultimate loads of steel fibers with different tensile strengths and 

pulled out at different inclination angles was performed to identify the magnitude and variations 

of the ultimate loads. For such purpose the experimental works on fibers with circular cross 

sections (Armelin and Banthia 1997; Van Gysel 2000; Cunha et al. 2007) were taken into account 

to evaluate the dependency of fu(θ) with the inclination angles, fiber diameters, tensile 

strengths and testing configurations, such as shown in Tab.A3.1. 

 

Table A3.1 – Ratios between inclined and aligned ultimate pullout loads at different inclination angles. 

Reference 
d fu θ 

[mm] [MPa] 30º 45º 60º 

van Gysel (2000) 0.50 2148  86% 81% 

Armelin and Banthia (1997) 0.50 1150  86% 80% 

Cunha et al. (2007) 0.75 1141 83%  72% 

van Gysel (2000) 0.80 2117  80% 79% 

 

The reduction of the ultimate loads at increasing inclination angles is clearly denoted in 

Tab.A3.1, whose values were reported with maximum coefficients of variation of about 5%. Such 

reduced scattering is of the same magnitude of the one observed in the aligned case, denoting a 

unique dependency on the properties of the fiber itself.  

The main properties of commercial steel fibers currently in the market and used on previous 

research works were investigated and their typical properties are summarized in Tab.A3.2. 

Regarding such values an elastoplastic constitutive diagram for the tensile behavior of steel 

fibers can be idealized (Fig.A3.1). For simplicity the plastic range of the diagram (Δεp) is 

assumed to be constant and to comprehend two components, namely axial strain (εa) and fiber 

curvature (εc). 

Table A3.2 – Typical properties of steel fibers. 

Fiber elastic modulus (Ef) 200 GPa 

Tensile yield strength (fy) 1100/2100 MPa 

Ultimate tensile strength (fu) (1.05 to 1.10) fy 

Ultimate strain (εu) 35‰ 
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Fig.A3.1 – Assumed constitutive diagram for the tensile behavior of steel fibers 

The radius of curvature of the fiber at failure (RF) can then be idealized as an upper bound value 

due to material yielding (RP) and a reduction component to account for the actual curvature at 

fiber exit point (RC):  

 CPF RRR         (A3.1) 

The first component of RF is obtained through the aligned case (Eq.A3.2). The decrease in the 

radius of curvature with the inclination angle shall include the influence of fiber diameter and 

tensile strength. Furthermore it shall also consider the effect of testing configuration, regarding 

that single-sided pullout tests on inclined fibers require bending the fibers prior to testing, which 

tends to reduce the ultimate pullout loads. Therefore, according to the experimental data 

presented in Tab.A3.1, an empirical expression for RC is proposed in Eq.A3.3. 
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With k being the parameter taking into account the pullout testing configuration, defined as 

following: 
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9
k          (A3.4) 

Taking into account Eqs.A3.1-A3.4 the inclined tensile strength of the steel fibers can then be 

approximated by Eq.A3.5: 

if fiber geometry is the original one prior to testing 

if fiber is artificially deformed prior to testing 

 εu 
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 ε 
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 Δεp 
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  fu (θ) 
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It should be pointed out that this procedure is an approximation only valid for typical steel fibers 

and matrix properties such as the ones presented in Tab.A3.1, on fibers with circular cross-

sections and with steel properties accordingly with Tab.A3.2. It is the author’s opinion that, in 

the absence of improved predictive models, the inclined tensile strength shall be provided by the 

fibers’ producers. In such scenario steel fibers should be tested under different inclination angles 

and without embedment on the matrix, according to the recommendations of other researchers 

(Bartos and Duris 1994). This way, given that matrix spalling relieves bending stresses due to 

decreasing curvatures at fiber exit points, this data would provide lower bound values for the 

ultimate tensile strength of inclined fibers. 

 

A3.3 INPUT VALUES USED FOR MODEL VALIDATION 

 

Table A3.3 – Input values used for model validation. 

Reference Robins et al. (2002) van Gysel (2000) 

Le [mm] 20 15 10 5 30 30 

d [mm] 0.50 0.50 0.80 

fu [MPa] 1150 2148 2117 

fctm [MPa] 4.46 4.57 

N [-] 2 1 

k [-] 9 18 

µ [-] 0.6 0.6 

PS01 [N] 25.0 105.0 203.0 

wS01 [mm] 0.035 0.104 0.134 

PS02 [N] 12.5 52.5 101.5 

wS02 [mm] 0.3 0.3 0.3 

PH01 [N] 192.0 183.6 175.0 66.9 321.2 743.9 

wH01 [mm] 0.769 0.800 0.600 0.590 0.965 0.853 

PH02 [N] 110 110 105 0 200 550 

wH02 [mm] 2.6 2.0 2.3 3.0 2.2 1.9 

PH03 [N] 90 110 90 0 170 550 

wH03 [mm] 4.5 3.5 4.0 3.0 3.5 3.8 

PH04 [N] 65 60 55 0 130 350 

wH04 [mm] 5.0 4.5 5.0 3.0 5.0 4.5 
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A4.1 INTRODUCTION 

In Chapter 6 of this thesis, the orientation profile of SFRC was characterized by means of 

statistical analyses of individual fiber orientations. For that purpose, experimental data from 

literature was analyzed in detail. This chapter aims at providing detailed information of the 

statistical analyses carried out in 28 different cases. 

First, the main features of the experimental data considered in this study are introduced. Then, 

the suitability of the statistical orientation laws investigated is presented for each case-study by 

means of the non-parametric test results and the coefficients of determination. Finally, 

comparisons between the orientation profiles of the Gumbel and the Gaussian distributions with 

the experimental data are presented.  
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A4.2 FEATURES OF THE EXPERIMENTAL DATA 

 

Case 

Fibers Concrete matrix 

 Length  Diameter Content 
Average  

compressive strength 

Maximum  

aggregate size 

 [mm]  [mm] [kg/m3] [MPa] [mm] 

1 30.5 0.39 40.0 70.3 8 

2 20.2 0.31 60.0 75.6 8 

3 41.2 0.64 100.0 73.5 16 

4 28.8 0.62 140.0 78.1 16 

5 61.1 0.71 60.0 75.1 16 

6 30.5 0.39 60.0 72.3 16 

7 30.5 0.39 60.0 57.6 16 

8 61.1 0.71 60.0 54.0 16 

9 28.8 0.62 140.0 55.8 16 

10 41.2 0.64 100.0 51.9 16 

11 61.1 0.71 60.0 75.3 16 

12 28.8 0.62 140.0 71.7 16 

13 61.1 0.71 60.0 116.6 16 

14 51.1 1.06 50.0 * * 

15 51.1 1.06 50.0 * * 

16 51.1 1.06 50.0 * * 

17 51.1 1.06 50.0 * * 

18 51.1 1.06 50.0 * * 

19 51.1 1.06 50.0 * * 

20 60.0 0.75 20.0 70.6 12 

21 60.0 0.75 20.0 70.6 12 

22 60.0 0.75 20.0 70.6 12 

23 60.0 0.75 20.0 70.6 12 

24 60.0 0.75 20.0 70.6 12 

25 60.0 0.75 20.0 70.6 12 

26 60.0 0.75 20.0 70.6 12 

27 60.0 0.75 20.0 70.6 12 

28 60.0 0.75 20.0 70.6 12 

* Information not available 
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A4.3 RESULTS FROM THE NON-PARAMETRIC TESTS 

Case N 

Δθ=10° Δθ=15° 

Gaussian Gumbel Gaussian Gumbel 

D(%) p(λ) D(%) p(λ) D(%) p(λ) D(%) p(λ) 

1 521 5.4 0.167 4.7 0.288 1.1 1.000 6.4 0.060 

2 1038 3.1 0.296 3.5 0.190 2.3 0.685 3.8 0.123 

3 430 6.3 0.148 2.8 0.961 4.3 0.588 2.8 0.961 

4 659 9.2 0.000 6.4 0.027 9.2 0.000 6.0 0.042 

5 345 9.1 0.217 5.8 0.759 9.1 0.217 5.8 0.759 

6 707 6.6 0.011 3.5 0.445 4.3 0.213 3.1 0.619 

7 659 1.6 0.999 4.0 0.371 2.2 0.957 5.0 0.144 

8 195 7.8 0.287 2.0 1.000 5.6 0.703 1.9 1.000 

9 628 5.0 0.181 5.2 0.148 4.1 0.384 4.9 0.206 

10 434 5.5 0.202 4.9 0.327 5.4 0.230 5.4 0.221 

11 314 5.4 0.338 3.4 0.866 5.4 0.338 4.4 0.613 

12 818 7.7 0.001 5.3 0.045 7.7 0.001 3.1 0.541 

13 266 4.6 0.990 1.7 1.000 4.4 0.995 1.4 1.000 

14 142 6.1 0.668 12.8 0.019 6.1 0.668 12.8 0.019 

15 139 4.1 0.971 9.9 0.134 3.9 0.984 9.9 0.134 

16 85 5.1 0.980 7.4 0.747 5.2 0.977 7.4 0.747 

17 93 6.5 0.833 6.3 0.855 6.5 0.833 8.0 0.587 

18 48 8.6 0.870 16.0 0.170 3.6 1.000 11.6 0.536 

19 92 5.8 0.918 9.6 0.362 5.8 0.918 7.7 0.650 

20 320 7.6 0.051 5.8 0.240 5.0 0.408 5.8 0.240 

21 198 9.7 0.047 13.2 0.002 8.7 0.098 12.3 0.005 

22 168 6.3 0.521 9.6 0.089 4.8 0.827 9.6 0.089 

23 320 13.6 0.000 18.9 0.000 9.7 0.005 17.4 0.000 

24 198 21.0 0.000 26.8 0.000 21.0 0.000 28.5 0.000 

25 168 7.3 0.326 12.8 0.008 6.4 0.493 11.3 0.028 

26 320 11.2 0.001 17.5 0.000 11.6 0.021 17.2 0.000 

27 198 10.5 0.026 17.1 0.000 9.8 0.044 17.1 0.000 

28 168 11.6 0.021 19.3 0.000 11.6 0.021 19.3 0.000 

Overall 

Acceptation 

levels 

67.9% 64.3% 75.0% 67.9% 

Caption: N =    Number of fibers  

D= Maximum deviation between theoretical and 

experimental cumulative distributions. 

p(λ) = Parameter measuring the significance level (α) 

 








)(pifaccepted

)(pifrejected
Hypothesis  

 Rejected hypothesis Accepted hypothesis 

(α = 5%) 
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A4.4 COEFFICIENTS OF DETERMINATION (R2) 

 

Case Direction ηθ 

Δθ=10° Δθ=15° 

Gaussian 

(%) 

Gumbel 

(%) 

Gaussian 

(%) 

Gumbel 

(%) 

1 X 0.74 92.6 95.9 99.6 94.4 

2 X 0.72 94.4 95.3 97.3 95.1 

3 X 0.76 84.9 97.8 87.7 98.9 

4 X 0.78 68.5 88.0 71.6 87.9 

5 X 0.81 71.4 90.7 73.1 93.1 

6 X 0.77 84.2 97.2 89.2 98.0 

7 X 0.70 98.7 96.3 98.3 96.9 

8 X 0.80 87.5 97.2 88.5 99.5 

9 X 0.75 87.9 93.4 93.3 96.6 

10 X 0.77 83.5 95.9 88.0 95.3 

11 X 0.80 92.0 97.9 90.7 96.8 

12 X 0.79 73.0 92.5 77.8 96.0 

13 X 0.81 90.1 99.0 91.7 99.6 

14 Y 0.81 76.3 59.9 80.2 61.1 

15 Y 0.79 87.8 75.5 92.5 69.5 

16 Y 0.70 89.9 91.9 82.2 91.2 

17 Y 0.74 89.6 89.2 96.3 89.4 

18 Y 0.68 74.6 47.4 90.4 66.8 

19 Y 0.69 86.4 81.8 95.7 90.8 

20 X 0.70 53.6 86.2 63.3 94.7 

21 X 0.64 0.1 12.8 2.5 21.8 

22 X 0.65 68.1 86.7 75.3 90.3 

23 Y 0.30 79.5 60.0 90.7 72.2 

24 Y 0.28 60.1 36.7 66.3 41.1 

25 Y 0.44 88.2 71.0 94.2 77.3 

26 Z 0.47 69.4 41.2 63.4 36.4 

27 Z 0.53 55.8 36.2 53.4 34.1 

28 Z 0.43 62.1 31.3 61.5 28.8 

Average direct. X 76.9 88.9 80.5 90.9 

Average direct. Y 81.4 68.2 87.6 73.3 

Average direct. Z 62.5 36.2 59.4 33.1 

Overall 76.8 76.6 80.5 79.1 
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A4.5 STATISTICAL ORIENTATION LAWS (Δθ=10º) 
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WWaallll--eeffffeeccttss  oonn  ffiibbeerr  oorriieennttaattiioonn  

  

  

 

 

A5.1 INTRODUCTION 

This appendix supports the new framework to predict the orientation number of fibers advanced 

in Chapter 7. The influence of the wall-effects on fiber orientation is widely recognized. 

Nonetheless, because their quantification has always been done under the assumption of 

isotropic conditions in bulk, existing approaches have limited applicability. Regarding that SFRC 

tends to be anisotropic in nature, the quantification of the wall-effects for any orientation 

pattern in bulk should be possible. 

Aiming to gain insight on the calculation of the orientation number, an alternative analytical 

formulation with regard to the ones existing in literature for isotropic conditions is presented in 

the first part of this appendix. Then, based on the approach to estimate the generalized wall-

effects presented in Section 7.4.2, simplified expressions to quantify the wall-effects for any 

orientation number in the most common cross-section geometries are proposed.  
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A5.2 WALL-EFFECTS UNDER ISOTROPIC CONDITIONS 

The orientation number (η) of a single fiber is the ratio between its projected length on a certain 

axis and its total length. When all the possible orientations of the fiber are considered, its end-

points describe a spherical surface with radius (R) equal to half the fiber length. In isotropic 

conditions, all the points of the sphere have equal probability of occurrence. Thereby, η can be 

calculated as the ratio between the projected spherical surface along the considered axis (PS) 

and the total spherical surface (AS): 

S

S

A
P

η           (A5.1) 

A5.2.1 Orientation number of a fiber with one boundary condition 

When fiber rotation capacity is restrained by one boundary condition (BC) its end-points describe 

a sphere that is cut by two symmetric sphere caps. Consider, for instance, that such BC is 

horizontal (Fig.A5.1a) and is located at a distance h from the fiber gravity point (Eq.A5.2). The 

vertical angle (φ) and the horizontal angle (α) will be considered in order to define the 

infinitesimal surface (dA), given by Eq.A5.3 (Fig.A5.1b): 

  LL sin
2
L

h          (A5.2) 

    drdRAd        (A5.3) 

In Eq.A5.2, φL is the limit of the vertical angle up to which fiber is not influenced by the BC, 

whereas r (Eq.A5.3) is the horizontal projection of the spherical radius, defined in Eq.A5.4. 

Given that no vertical BC exist in this case, α is equal to β (horizontal angle in the plane xOz) 

and its limit value (αL) in half-sphere is therefore π/2.  

 cosRr         (A5.4) 

The available area of half-sphere in the presence of one BC parallel to xOz, AS1(φL), can then be 

defined by:  
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     (A5.5) 

The respective projected surface along the x-axis (PS1) is given in Eq.A5.7 in terms of its 

infinitesimal surface (dP): 

 coscosdAPd        (A5.6) 
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Fig.A5.1 – Fiber near one BC: a) Overview; b) Identification of main parameters. 

The orientation number for one BC (η1) parallel to xOz is then given by: 
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L1 sin
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η      (A5.8) 

Given that the solution of Eq.A5.8 is a Bernoulli polynomial, the average η1 along the bandwidth 

of influence of the wall requires numerical integration, returning: 
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      (A5.9) 

In the absence of any BC, both αL and φL would be equal to π/2 and, in that case, Eqs.A5.2-A5.9 

would provide an average orientation number (η0) equal to 0.50.  

A5.2.2 Orientation number of a fiber with two boundary conditions 

When a fiber is under the influence of two orthogonal BCs its end-points describe a sphere that is 

cut by two pairs of symmetric sphere caps (Fig.A5.2). The magnitude of the surfaces extracted 

by each pair of caps depends on the distance of the gravity point of the fiber (LGP) to each of the 

walls. This way, two different scenarios may occur: either the pairs of sphere caps are 

independent between each other (βL+φL ≥ π/2) or they intersect themselves due to short 

proximity of LGP to both walls (βL+φL < π/2).  

Case 1: Independent wall-effects (βL+φL ≥ π/2) 

When the wall-effects of two BCs are independent from each other, the range of possible fiber 

orientations is defined accordingly with Fig.A5.2. Starting from the total spherical surface 

(Fig.A5.2a), the pairs of sphere caps referring to the wall parallel to xOz (Fig.A5.2b) and the one 

parallel to xOy (Fig.A5.2c) have to be extracted in order to obtain the portion of the spherical 

surface where fiber end-points can be located (Fig.A5.2d).    

 b) a) 
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Fig.A5.2 – Fiber near a corner with two independent wall-effects. 

The half of the total spherical surface (AS0) and its respective projection along the x-axis (PS0) 

can be obtained by fixing φL equal to π/2 in Eq.A5.5 and Eq.A5.7, respectively. AS1(φL) is the 

remaining surface of half-sphere after extraction of the sphere-cap parallel to the xOz plane and 

its respective projection in the x-axis is defined as PS1(φL). Similarly, AS1(βL) is the remaining 

surface of half-sphere after extraction of the sphere-cap parallel to the xOy plane and its 

respective projection in the x-axis is defined as PS1(βL). Note that in this case, α and β are no 

longer the same values and therefore Eq.A5.10 has to be considered for the limit angle αL. 

With the previous parameters, the total surface in the presence of two independent wall-effects 

AS2i (Eq.A5.11), the respective projection in the x-axis, PS2i (Eq.A5.12) and the respective 

orientation number, η2i (Eq.A5.13) can be obtained: 
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Case 2: Dependent wall-effects (βL+φL < π/2) 

When the LGP is at short distance to both of the orthogonal BCs, the extracted sphere caps from 

both walls superpose each other (Fig.A5.3a). Thereby, among the total amount of spherical 

fragments generated by the intersections with the walls (Fig.A5.3b), there is a reduced available 

surface where fiber end-points can be located (Fig.A5.3c). To calculate the orientation number 

of a fiber submitted to these two dependent wall-effects (η2d) the infinitesimal surface dA 

(Eq.A5.3) has to be considered (Fig.A5.3d). Thereby, the available surface in the presence of two 

dependent wall-effects is given by: 
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With K being a ratio of the distances between planes parallel to xOz and xOy: 
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And the respective projected surface in the x-axis (PS2d) defined such as: 
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Consequently, the orientation number of a fiber subjected to two BCs with dependent wall-

effects (η2d) is given by:  
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Fig.A5.3 – Fiber near a corner with two independent wall-effects. 

 

Average orientation number of a fiber with 2 BCs 

Once the orientation number of a fiber with 2 BCs is defined for the two possible scenarios 

previously defined, it can then be integrated along the bandwidth of influence of both walls to 

obtain the average orientation number (η2): 
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A5.3 GENERALIZED WALL-EFFECTS FOR COMMON CROSS-SECTION GEOMETRIES 

The influence of the cross-section geometry on the average orientation of fibers can be quantified through 

the averaging procedure depicted in Fig.7.7. This way, the orientation number is simply defined by: 

210

221100

AAA
AAA




       (A5.19) 

Alternatively, η can also be obtained by adding to the average orientation in bulk (η0) the respective 

increment due to the wall-effects for the entire cross-section, ΔηW (Eq.A5.20). The latter is defined in 

Eq.A5.21 in terms of the average increments of the orientation number due to one BC (Δη1) and two BCs 

(Δη2). According to Eqs.A5.19-A5.21, Δη1 and Δη2 can be quantified uniquely in terms of η0, such as shown in 

Eqs.A5.22-23, respectively.  

W0          (A5.20) 
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      (A5.21) 

 0011         (A5.22) 

 0022        (A5.23) 

Regarding Eqs.A5.19-23, the quantification of the wall-effects can be generalized for any η0 through simple 

and straightforward expressions for the most common cross-section geometries. However, in the case of 

SCC, the wall-effects introduced by horizontal BCs may be negligible given the intrinsic tendency of fibers 

to align in horizontal planes. Thereby, ΔηW of SCC depends on whether the cross-section is contained or not 

in the vertical plane. When the latter occurs, the assumption previously advanced for the fresh-state 

properties of SCC implies a distance between horizontal boundaries (H) equal to the fiber length (L). 

Consequently, η0 becomes equal to η1 and the values obtained from Eqs.A5.22-23 provide simpler 

expressions. 

A5.3.1 Rectangular cross-section  

According to Fig.7.7, the sub-areas A0, A1 and A2 of a rectangular cross-section are defined uniquely in 

terms of its width (B), height (H) and fiber length (L): 

     0LHLBA0        (A5.24) 

     0LLHLLBA1       (A5.25) 
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2         (A5.26) 

Introducing Eqs.A5.22-26 in Eq.A5.21, ΔηW can then be obtained for CC: 
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In case of SCC, Eq.A5.27 applies whenever the tendency of fibers towards horizontal orientations does not 

influence the wall-effects (cross-sections in horizontal plane). On the other hand, for cross-sections in the 

vertical plane, a simplified expression is obtained given that an intrinsic horizontal BC is being assumed for 

SCC in bulk. Hence, only the vertical walls play major influence (Eq.A5.28). This will occur for any 

geometry considered for the cross-section. 

 0W 73.0677.0
B
L

       (A5.28) 

A5.3.2 Circular cross-section  

Cross-sections with circular geometry can be subdivided in two zones, with zero and one BCs (A0 and A1, 

respectively), as shown in Fig.A5.4a. These sub-areas are defined by Eq.A5.29 and Eq.A5.30, respectively: 
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       (A5.30) 

Adding Eqs.A5.21-23 and Eqs.A5.29-30, ΔηW can be simply defined by: 
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      (A5.31) 

However, in case of vertical cross-sections with SCC, ΔηW is obtained by: 
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     (A5.32) 

Due to the curved shape of the walls in circular cross-sections, the gravity-point of the fiber no longer 

reaches the BC because fiber end-points are restrained in their rotation ability. This phenomenon is herein 

defined as the “chord-effect” (Fig.A5.4b) and, for practical purposes, it implies an increment of the 

bandwidth of influence of the BC (ΔL) which is then provided in terms of a corrected fiber length (L*): 

LLL*          (A5.33) 

According to its mathematical definition (A5.34), the chord of an angle θ is the length of the chord between 

two points on a unit circle separated by that angle. Regarding Fig.A5.4b, it can be seen that this chord 

corresponds to the fiber length (A5.35) and, consequently, the angle to the center (θ) can be obtained 

(Eq.A5.36). 
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The maximum distance between the fiber and the curved wall (ΔL’) is, by definition, equal to: 
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Regarding Eqs.A5.36-37 and the fact that ΔL’ has to be considered twice for the whole cross-section, ΔL 

thus returns: 
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sinacos1DL       (A5.38) 

It should be noted that when D >> L, then ΔL* ≈ 0 and, consequently, the chord-effect is negligible. On the 

other hand, if D is not much larger than L, neglecting Eq.A5.38 underestimates the overall orientation 

number. For instance, for a cross-section with 150mm diameter and fibers with 60mm length (Fig.A5.4), the 

value of ΔηW without considering the chord-effect is approximately 13% lower. 

 

 

 

 

 

 

Fig.A5.4   Circular cross-section: a) Sub-areas; b) Detail of the “chord-effect”. 

A5.3.3 Hollow-circular cross-section  

This type of cross-section geometries can be subdivided in two zones, with zero and one BCs (A0 

and A1, respectively), as shown in Fig.A5.5a. Both A1 (Eq.A5.39) and the sum of A1 with A0 

(Eq.A5.40) can be defined in terms of the external and internal diameters (De and Di, 

respectively): 
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Adding Eqs.A5.21-23 and Eqs.A5.39-40 and considering the thickness of the cross-section (T) as 

the difference between De and Di, ΔηW can then be defined by: 
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 0W 730.0465.0
T
L

       (A5.41) 

However, in case of vertical cross-sections with SCC, ΔηW is obtained by: 
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     (A5.42) 

In contrast with circular cross-sections, the chord-effect was not introduced in Eqs.A5.41-42. 

This occurs because, as shown in Fig.A5.5b, the increment of bandwidth introduced by the 

external wall is balanced by an approximately similar reduction inferred by the internal wall. 

 

 

 

 

 

 

Fig.A5.5 Hollow-circular cross-section: a) Sub-areas; b) Balanced “chord-effect”. 
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A5.3.4 Summary 

Table A5.1 Increments of η for any η0 and common cross-section geometries. 

Cross-section 
Type of 
concrete 

Increment of η due to wall-effects (Δηw) 
Geometry Position 

 Rectangular  
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 NOTE: When calculating ΔηCW, if concrete is poured with free top-surface: 

  








CCifH2

SCCifL,H2min
HH

C

C
eff,C

  

Vertical  

Horizontal  
or Inclined 

B 

H 

B = Width  

H = Height  

L = Fiber length 

 D = Diameter  

 L = Fiber length 

T  = Thickness 

L  = Fiber length 

Vertical  

Vertical  

Horizontal  
or Inclined 

Horizontal 
or Inclined 

CC 

SCC 

SCC 

CC 

CC 

 SCC 

  SCC 

CC 

CC 

SCC 

SCC 

CC 

D 

T 



294 Appendix 5 

Design-oriented Constitutive Model for Steel Fiber Reinforced Concrete  

 



 

Experimental validation of the framework to predict fiber orientation 295 

Filipe Laranjeira de Oliveira 

 

 

AAppppeennddiixx  66  
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ffrraammeewwoorrkk  ttoo  pprreeddiicctt  ffiibbeerr  oorriieennttaattiioonn  

  

  

 

 

A6.1 INTRODUCTION 

A new framework to predict the orientation number of fibers was advanced in Chapter 7 by 

taking into account the combined influence of material properties, production processes and the 

geometry of the structure. Regarding the novelty of the proposed approach, experimental data 

from three different research works were considered for its validation. 

The objective of this appendix is to provide details on how the overall results presented in 

section 7.6.3 were obtained. In this way, the experimental input values used for validation of 

the proposed framework are summarized. Then, for the sake of clarity, the results from the 

application of the proposed framework are presented step-by-step up to the final orientation 

numbers in the hardened state for all the 34 cases investigated. 
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A6.2 INPUT DATA FOR EXPERIMENTAL VALIDATION 

Table A6.1 – Experimental data used for validation of the proposed framework. 

Ref. Case Fiber Casting method Formwork 

  Characteristics Direction Geometry Geometry 

  L d φ β BC HC,eff BF HF 

  [mm] [mm] [deg.] [deg.] [mm] [mm] [mm] [mm] 

[14] 

1 30.5 0.39 

45 45 60 

30.5 

150 150 

2 20.2 0.31 20.2 

3 41.2 0.64 41.2 

4 28.8 0.62 28.8 

5 61.1 0.71 60.0 

6 30.5 0.39 30.5 

7 30.5 0.39 30.5 

8 61.1 0.71 60.0 

9 28.8 0.62 28.8 

10 41.2 0.64 41.2 

11 61.1 0.71 60.0 

12 28.8 0.62 28.8 

13 61.1 0.71 60.0 

14 13.0 0.16 13.0 

[34] 

15 

30 0.375 90 * ** ** 150 300 

16 

17 

18 

19 

20 

21 

22 

23 

24 

[20] 

25 6 0.16 

≈ 0 0 60 

6 

150 150 

26 

13 0.20 13 
27 

28 

29 

30 

60 0.70 60 

31 

32 

33 

34 

 *   Indifferent 

** Very large number (Influence of the casting element is assumed to be negligible) 
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A6.3 RESULTS FROM EXPERIMENTAL VALIDATION 

Table A6.2 – Detailed results from the experimental validation. 

Case ηMx ∆ηCx ∆ηDx ∆ηFWx ηθx Absolute 

deviation   ηC0 ∆ηCW CDx ∆ηDVx ∆ηDFx  Predicted Exp. 

1 

0.600 0.474 

0.243 0.331 

0.0 0.0 

0.037 0.717 0.741 3.2% 

2 0.201 0.374 0.025 0.700 0.721 2.9% 

3 0.286 0.296 0.049 0.734 0.763 3.9% 

4 0.236 0.338 0.035 0.714 0.779 8.3% 

5 0.372 0.250 0.070 0.763 0.813 6.2% 

6 0.243 0.331 0.037 0.717 0.765 6.3% 

7 0.243 0.331 0.037 0.717 0.704 1.9% 

8 0.372 0.250 0.070 0.763 0.800 4.7% 

9 0.236 0.338 0.035 0.714 0.751 4.9% 

10 0.286 0.296 0.049 0.734 0.774 5.2% 

11 0.372 0.250 0.070 0.763 0.799 4.5% 

12 0.236 0.338 0.035 0.714 0.787 9.2% 

13 0.372 0.250 0.070 0.763 0.810 5.8% 

14 0.172 0.411 0.016 0.687 0.715 3.9% 

15 

0.600 0.300 0.246 0.000 0.0 0.00 0.048 0.648 

0.682 5.0% 

16 0.709 8.6% 

17 0.705 8.1% 

18 0.676 4.2% 

19 0.694 6.7% 

20 0.706 8.2% 

21 0.679 4.6% 

22 0.684 5.3% 

23 0.703 7.9% 

24 0.649 0.2% 

25 

0.600 0.600 

0.049 

1.000 0.0 0.0 

0.008 0.657 0.596 10.3% 

26 

0.075 0.016 0.691 

0.637 8.5% 

27 0.691 0.1% 

28 0.703 1.6% 

29 0.721 4.1% 

30 

0.251 0.022 0.873 

0.912 4.3% 

31 0.921 5.2% 

32 0.853 2.3% 

33 0.862 1.3% 

34 0.770 13.4% 

        Average deviation 5.3% 
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A7.1 INTRODUCTION 

In part III of this thesis, two predictive models for the pullout response of inclined steel fibers 

were advanced. In both approaches, the prediction of the load-crack width diagrams of inclined 

fibers was done by taking into account experimental data characterizing the bond-strength 

between a specific combination of steel fibers and concrete mixture. 

Most of the times the load-carrying capacity of a steel fiber perpendicular to the cracked surface 

under uniaxial tension is unknown, which would hinder the application of the new constitutive 

model. In order to avoid this from happening, experimental pullout test results of aligned 

straight and hooked steel fibers reported in literature is herein presented. Then, some 

correlations between the properties of the constituent materials and the experimental data 

collected are advanced.   

The objective of this appendix is to provide a first order of magnitude for the experimental key-

points needed to apply the new constitutive model. 
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A7.2 STRAIGHT STEEL FIBERS 

In order to define the pullout responses of inclined straight fibers it is necessary to characterize 

the interface properties between fibers and the cementitious matrix. According to Eq.4.1, the 

peak load (PS01) depends on the fiber diameter, fiber embedded length and on the apparent 

interfacial shear stress (τ*). The later reflects the properties of the microstructure at the 

interfacial transition zone and, therefore, it is expected that larger values τ* may occur in the 

presence of concrete matrices with improved mechanical properties. This way, a correlation 

between τ* and fctm will be proposed in the following. For that purpose, consider the 

experimental data from literature summarized in Table A7.1. 

Table A7.1 – Experimental data reported in literature from pullouts of aligned straight fibers. 

Reference 

fcm fctm Le d fy PU PS01 

[MPa] [MPa] [mm] [mm] [MPa] [N] [N] 

Ouyang et al. (1994) 57.8 4.06 12 0.41 1803 238.0 40.3 

Van Gysel (2000) 

47.4 3.5 30.0 

0.50 1200 235.6 80.8 

0.80 1200 603.2 190.4 

0.50 2100 412.3 72.4 

0.80 2100 1055.6 104.1 

76.5 4.6 30.0 

0.50 1200 235.6 126.6 

0.80 1200 603.2 142.1 

0.50 2100 412.3 105.0 

0.80 2100 1055.6 203.0 

Cunha et al. (2007) 83.4 4.7 

20 0.75 1100 486.0 77.4 

30 0.75 1100 486.0 155.0 

Blázquez (2009) 22.1 1.8 30 0.75 2000 884 65.9 

 

The data from Table A7.1 supports the evidence that, due to the low bond strength that tends to 

exist between straight fibers and the surrounding matrix, the maximum pullout loads (PS01) are 

likely much smaller than their ultimate loads (PU). The ratios between the maximum and the 

ultimate pullout loads reported in Table A7.1 are correlated with the respective theoretical 

ratios in Fig.A7.1. These theoretical ratios were calculated through Eq.4.1 on the basis of 

apparent interfacial shear stress (τ*) equal to the matrix tensile strength (fctm).   
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Despite the large sensitivity that characterizes the debonding process of straight fibers, Fig.A7.1 

shows that an approximated linear correlation may exist between the experimental and the 

theoretical peak loads of aligned fibers. In other words, this means that τ* may vary linearly with 

fctm. Thereby, considering Eq.4.1 and the correlation shown in Fig.A7.1, PS01 can be roughly 

approximated by Eq.A7.1. 

 

 

 

 

 

 

 

   

Fig.A7.1 – Ratios between maximum and ultimate pullout loads for straight steel fibers. 

)f51.0(LdP ctmeS01
        (A7.1) 

 PS01/PU (experimental) 
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A7.3 HOOKED STEEL FIBERS 

According to Chapter 5, the pullout responses of aligned hooked steel fibers within a crack-width 

range up to 3.5mm can be approximated by three key-points: PS01, PH01 and PH04. While the 

former may be approximated by Eq.A7.1, the pullout loads at peak (PH01) and at the post-peak 

(PH04) may also be correlated with specific properties of the fibers and the matrix. For that 

purpose, consider the experimental data from literature summarized in Table A7.2. 

Table A7.2 – Experimental data reported in literature from pullouts of aligned hooked fibers. 

Reference 

fcm fctm Le d fy PU PH01 PH04 

[MPa] [MPa] [mm] [mm] [MPa] [N] [N] [N] 

Banthia and Trottier (1994)  40.0 3.0 30 0.80 1115 560.5 273.0 200.0 

Armelin and Banthia (1997) 58.0 4.1 15 0.50 1150 225.8 165.0 50.0 

Robins et al. (2002) 72.0 4.5 

20 0.50 1150 225.8 192.0 65.0 

15 0.50 1150 225.8 183.6 60.0 

10 0.50 1150 225.8 175.0 55.0 

Blazquéz (2009) 

63.5 4.2 30 0.75 2000 883.6 390.7 248.9 

53.5 3.8 30 0.75 2000 883.6 406.4 241.1 

44.6 3.3 30 0.75 2000 883.6 353.6 156.1 

20.2 1.6 30 0.75 2000 883.6 183.9 97.7 

 

From Table A7.2 it can be seen that, contrarily to straight fibers, the ratios between the 

maximum and ultimate pullout loads of hooked fibers can be rather larger. This explains both 

the higher performance denoted by these type of fibers on improving the crack-bridging capacity 

of SFRC as well as the higher proneness to the occurrence of fibers rupture during the pullout 

process.  

The maximum pullout load of aligned hooked fibers (PH01) reflects the level of plastic 

deformations occurring at the zone of the hook: large peak loads occur when the straightening 

process of the hook is larger. The energy required to deform the fiber increases with its 

diameter. Moreover, it also increases with the capacity of the matrix on providing a rigid 

medium that forces the hook to slip along its narrow channel. Thereby, it may be reasonable to 

assume that PH01 is somehow dependent on the ratio between the matrix tensile strength (fctm) 

and the fiber tensile yield strength (fy). The reasonableness of this assumption is proved in 

Fig.A7.2 which compares the ratio between fctm and fy with the one obtained from the maximum 

and ultimate pullout loads extracted from Table A7.2.  
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  Fig.A7.2 – Ratios between maximum and ultimate pullout loads of hooked fibers. 

Given the correlation presented in Fig.A7.2, PH01 may be approximated as follows: 

ctmfH01 fA209P          (A7.2) 

The pullout load after the straightening of the hooked-end (PH04) depends uniquely on friction 

effects. The better the quality of the matrix, the larger should be the resistance provided 

against fiber slippage. Thereby, PH04 is expected to be proportional to fctm and, considering 

Eq.A7.2, also to PH01. Fig.A7.3 shows the ratios between PH01 and PH04 from the experimental data 

reported in Table A7.2. From the correlation that is pointed out in Fig.A7.3, PH04 can then be 

approximated in terms of the peak load through Eq.A7.3. 
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  Fig.A7.3 – Ratios between maximum and post-peak experimental pullout loads of hooked fibers. 
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A8.1 INTRODUCTION 

In Chapter 8 the formulation of new constitutive model for SFRC was advanced and good 

agreement with the experimental data reported in Chapter 3 could be attained. Afterwards, 

engineered expressions for design and optimization (EEDO) were suggested in order to simulate 

the -w curves given by the model through a more straightforward procedure (Section 8.6).  

The suitability of the new EEDO on reproducing the new constitutive model was analyzed by 

calculating the tensile responses of the case-studies defined in Table 8.5. The objective of this 

appendix is to give additional data for the reader to judge on the applicability of this alternative 

approach under several different scenarios. 

This appendix compares the -w curves given by the new constitutive model and by the EEDO for 

straight and hooked steel fibers. In both cases, the inputs and outputs of the EEDO are 

summarized and the comparative graphs for the 12 case studies considered are then given.   
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A8.2 STRAIGHT STEEL FIBERS 

 

Table A8.1 – Values of the parameters defining the EEDO of SFRC with straight fibers. 

 

  CASES 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

INPUTS              

d [mm] 0.75 0.50 1.00 --- --- --- --- --- --- --- --- --- --- 

L [mm] 45 --- --- 30 60 --- --- --- --- --- --- --- --- 

fy [MPa] 1100 --- --- --- --- 600 2100 --- --- --- --- --- --- 

fck [MPa] 30 --- --- --- --- --- --- 45 60 --- --- --- --- 

Vf [%] 0.38 --- --- --- --- --- --- --- --- 0.57 0.76 --- --- 

ηθ [-] 0.50 --- --- --- --- --- --- --- --- --- --- 0.65 0.80 

Asec [cm2] 225 --- --- --- --- --- --- --- --- --- --- --- --- 

PS01 [N] 39.2 26.1 52.2 26.1 52.2 --- --- 51.3 58.9 --- --- --- --- 

PS02 [N] 19.6 13.1 26.1 13.1 26.1 --- --- 25.7 29.4 --- --- --- --- 

wS01 [mm] 0.10 --- --- --- --- --- --- --- --- --- --- --- --- 

wS02 [mm] 0.20 --- --- --- --- --- --- --- --- --- --- --- --- 

wS03 [mm] 11.3 --- --- 7.5 15.0 --- --- --- --- --- --- --- --- 

OUTPUTS              

BC 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 

kC 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 

cC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

nC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

BER 2.102 2.102 2.102 2.102 2.102 1.146 4.013 2.102 2.102 3.153 4.204 2.732 3.363 

kER 3.417 3.417 3.417 3.229 2.839 3.242 3.767 3.417 3.417 3.639 3.861 3.514 3.612 

cER 3.064 3.105 2.700 2.944 2.914 2.714 3.764 3.168 3.271 3.109 3.154 3.314 3.564 

nER 0.503 0.506 0.499 0.506 0.499 0.503 0.503 0.500 0.498 0.503 0.503 0.474 0.444 

BB 2.102 2.102 2.102 2.102 2.102 1.146 4.013 2.102 2.102 3.153 4.204 2.732 3.363 

kB 3.203 3.096 3.256 3.095 2.603 2.930 3.604 3.137 3.096 3.411 3.619 3.229 3.251 

cB 3.399 3.537 2.973 3.363 3.149 3.165 4.033 3.568 3.718 3.447 3.495 3.724 4.059 

nB 0.503 0.506 0.499 0.506 0.499 0.503 0.503 0.500 0.498 0.503 0.503 0.474 0.444 
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  Fig.A8.1 – Predicted -w responses of SFRC with straight fibers for cases 1 to 6.  
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  Fig.A8.2 – Predicted -w responses of SFRC with straight fibers for cases 7 to 12.  

 

 

fck = 45 MPa 

 

fck = 60 MPa 

 

Vf = 0.57 % 

 

Vf = 0.76 % 

 

ηθ = 0.65 

 

ηθ = 0.80 

 

Engineered expressions  Formulation     Exponential functions 



 

Application of the engineered expressions on several case-studies 309 

Filipe Laranjeira de Oliveira 

A8.2.3 HOOKED STEEL FIBERS 

 

Table A8.2 – Values of the parameters defining the EEDO of SFRC with hooked fibers. 

 

  CASES 

 0 1 2 3 4 5 6 7 8 9 10 11 12 

INPUTS              

d [mm] 0.75 0.50 1.00 --- --- --- --- --- --- --- --- --- --- 

L [mm] 45 --- --- 30 60 --- --- --- --- --- --- --- --- 

fy [MPa] 1100 --- --- --- --- 600 2100 --- --- --- --- --- --- 

fck [MPa] 30 --- --- --- --- --- --- 45 60 --- --- --- --- 

Vf [%] 0.38 --- --- --- --- --- --- --- --- 0.57 0.76 --- --- 

ηθ [-] 0.50 --- --- --- --- --- --- --- --- --- --- 0.65 0.80 

Asec [cm2] 225 --- --- --- --- --- --- --- --- --- --- --- --- 

PS01 [N] 39.2 26.1 52.2 26.1 52.2 --- --- 51.3 58.9 --- --- --- --- 

PS02 [N] 19.6 13.1 26.1 13.1 26.1 --- --- 25.7 29.4 --- --- --- --- 

wS01 [mm] 0.10 --- --- --- --- --- --- --- --- --- --- --- --- 

wS02 [mm] 0.20 --- --- --- --- --- --- --- --- --- --- --- --- 

wS03 [mm] 11.3 --- --- 7.5 15.0 --- --- --- --- --- --- --- --- 

PH01 [N] 267.4 118.9 475.5 --- --- --- --- 350.4 402.1 --- --- --- --- 

PH04 [N] 108.2 48.1 192.3 --- --- 130.4 149.4 123.8 132.6 --- --- --- --- 

wH01 [mm] 0.60 --- --- --- --- --- --- --- --- --- --- --- --- 

wH04 [mm] 4.85 --- --- --- --- --- --- --- --- --- --- --- --- 

OUTPUTS              

BC 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 2.896 

kC 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 39.764 

cC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

nC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

BER 2.102 2.102 2.102 2.102 2.102 1.146 4.013 2.102 2.102 3.153 4.204 2.732 3.363 

kER 3.078 3.078 3.078 3.078 3.078 4.558 1.918 3.228 3.378 3.078 3.078 3.879 4.809 

cER 27.420 21.170 33.670 27.420 27.420 26.320 29.620 18.045 19.920 27.420 27.420 27.608 26.670 

nER 0.617 0.617 0.617 0.654 0.579 0.617 0.617 0.617 0.617 0.617 0.617 0.607 0.598 

BB 2.102 2.102 2.102 2.102 2.102 1.146 4.013 2.102 2.102 3.153 4.204 2.732 3.363 

kB 1.736 1.736 1.736 1.736 1.736 0.129 1.530 1.295 0.892 1.736 1.736 2.020 2.339 

cB 51.233 41.496 60.970 51.223 51.233 83.613 43.515 39.560 45.223 51.233 51.233 52.903 53.044 

nB 0.617 0.617 0.617 0.654 0.579 0.617 0.617 0.617 0.617 0.617 0.617 0.607 0.598 
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Fig.A8.3 – Predicted -w responses of SFRC with hooked fibers for cases 1 to 6.  

 

 

d = 0.50 mm   d = 1.00 mm 

L = 30 mm L = 60 mm 

fy = 600 MPa fy = 2100 MPa 

       Formulation Engineered expressions 



 

Application of the engineered expressions on several case-studies 311 

Filipe Laranjeira de Oliveira 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Te
n
si

le
 s

tr
e
ss

 (
M

P
a
)

Crack width (mm)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Te
n
si

le
 s

tr
e
ss

 (
M

P
a
)

Crack width (mm)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Te
n
si

le
 s

tr
e
ss

 (
M

P
a
)

Crack width (mm)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Te
n
si

le
 s

tr
e
ss

 (
M

P
a
)

Crack width (mm)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Te
n
si

le
 s

tr
e
ss

 (
M

P
a
)

Crack width (mm)

 

 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Te
n
si

le
 s

tr
e
ss

 (
M

P
a
)

Crack width (mm)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig.A8.4 – Predicted -w responses of SFRC with hooked fibers for cases 7 to 12.  
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Notations and symbols 

 

Properties of plain concrete 

fck  = Characteristic compressive strength of the cement matrix  ........................... [MPa] 

fcm  = Average compressive strength of the cement matrix   ................................. [MPa] 

fctm  = Average tensile strength of the cement matrix  ......................................... [MPa] 

Em = Elastic modulus of the cement matrix  .................................................... [MPa] 

 

Properties of steel fibers 

L  = Fiber length  ................................................................................... [mm] 

d  = Fiber diameter  ............................................................................... [mm] 

Af  = Fiber cross-sectional area  ................................................................. [mm2] 

Ef  = Elastic modulus of the steel fibers  ........................................................ [MPa] 

fy = Tensile yield strength of steel fibers  ..................................................... [MPa] 

fu = Ultimate tensile strength of steel fibers  ................................................. [MPa] 

G1 = End section of the fiber hooked-end  ......................................................... [-] 

G2 = Intermediate section of the fiber hooked-end  .............................................. [-] 

G3 = Section of the fiber hooked-end close to the straight segment  .......................... [-] 

 

Parameters of the new constitutive model 

σC = Tensile stress of plain concrete in the cross-section  ................................... [MPa] 

σSF = Tensile stress of steel fibers in the cross-section  ...................................... [MPa] 

σSFRC = Tensile stress of SFRC in the cross-section  .............................................. [MPa] 

Vf = Volume fraction of fibers  ...................................................................... [%] 

Mf = Mass fraction of fibers  ................................................................... [kg/m3] 

Nf = Total number of fibers in the cross-section  ................................................. [-] 

Nθi = Number of fibers in the cross-section at inclination angle θi  ............................. [-] 

Le,max = Maximum fiber embedded length  ......................................................... [mm] 

Le,crit = Critical fiber embedded length  ............................................................ [mm] 

Le,average = Average fiber embedded length  ........................................................... [mm] 

Pθi = Pullout load at inclination angle θi  .......................................................... [N] 

PN,θi = Overall pullout load of N fibers at inclination angle θi  ................................... [N] 

 

Parameters of the Engineered Expressions for Design and Optimization  

σER = Tensile stress of the equivalent rebar in the cross-section ............................ [MPa] 

σB = Tensile stress of bond between fibers and the matrix in the cross-section ......... [MPa] 

BC = Parameter accounting for the maximum tensile stress of plain concrete ........... [MPa] 
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BER = Parameter accounting for the tensile yield strength of the SFRC cross-section .... [MPa] 

BB = Parameter accounting for the maximum decay of bond strength 

between fibers and the matrix in the SFRC cross-section .............................. [MPa] 

kC = Parameter controlling the accounting for the maximum tensile stress 

of plain concrete .............................................................................. [MPa] 

 

Features of fiber pullout tests 

P  = Pullout load (orthogonal to cracked surface)  .............................................. [N] 

δ  = Displacement along load direction  ........................................................ [mm] 

w  = Crack width along load direction  .......................................................... [mm] 

Δw  = Increment of crack width along load direction  ......................................... [mm] 

Le  = Shorter fiber embedded length within the cement matrix  ............................ [mm] 

θ  = Fiber inclination angle relatively to load direction  ........................................ [º] 

N  = Number of sides of the cracked section at which spalling of the matrix occurs  ....... [-] 

k = Parameter taking into account the pullout test configuration  ........................... [-] 

 

Parameters of pullout models 

µ  = Friction coefficient between steel fibers and the cement matrix  ....................... [-] 

τmax  = Maximum interfacial shear stress  ......................................................... [MPa] 

τfric  = Friction interfacial shear stress  ........................................................... [MPa] 

τ*  = Apparent interfacial shear stress  .......................................................... [MPa] 

τ(s) = Distribution of interfacial shear stress  ................................................... [MPa] 

 

Parameters associated to modeling of the pullout responses of straight fibers 

Si = Key-point i governing the shape of the pullout diagram of straight 

fibers inclined relatively to the loading direction  .......................................... [-] 

Si0   = Key-point i governing the shape of the pullout diagram of straight 

fibers aligned relatively to the loading direction  ........................................... [-] 

PSi  = Pullout load at key-point Si  .................................................................... [N] 

PSAi = Aligned component of the pullout load at key-point Si  ................................... [N] 

PSN  = Non-aligned component of the pullout load  ................................................ [N] 

wSi = Crack width at key-point Si  ................................................................. [mm] 

wSAi = Aligned component of the crack width at key-point Si  ................................ [mm] 

wSNi = Non-aligned component of the crack width at key-point Si  ........................... [mm] 

Leff(S2) = Effective fiber length factor at point S2  ...................................................... [-] 

Ld = Extension of the debonded segments of the fiber  ...................................... [mm] 

LS,crit = Critical straight fiber embedded length for pullout ..................................... [mm] 
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Parameters associated to modeling of the pullout responses of hooked fibers 

Hi = Key-point i governing the shape of the pullout diagram of hooked 

fibers inclined relatively to the loading direction  .......................................... [-] 

Hi0 = Key-point i governing the shape of the pullout diagram of hooked 

fibers aligned relatively to the loading direction  ........................................... [-] 

PHi  = Pullout load at key-point Hi  ................................................................... [N] 

PHAi = Component of the pullout load at key-point Hi derived from the 

direction of the original embedded part of the fiber  ..................................... [N] 

PHN = Component of the pullout load derived from the direction orthogonal 

to the original embedded part of the fiber  ................................................. [N] 

wHi = Crack width at key-point Hi  ................................................................ [mm] 

wHAi = Component of the crack width at key-point Hi derived from the 

direction of the original embedded part of the fiber  .................................. [mm] 

wHNi = Component of the crack width at key-point Hi derived from the 

direction orthogonal to the original embedded part of the fiber  .................... [mm] 

ΔwH0i = Increment of crack width during the stage i of the straightening process of 

the hook  ....................................................................................... [mm] 

ΔPH0i = Increment of pullout load during the stage i of the straightening process of 

the hook  .......................................................................................... [N] 

Leff (Hi) = Effective fiber length factor at point Hi  ..................................................... [-] 

LH,crit = Critical hooked fiber embedded length for pullout  .................................... [mm] 

 

Parameters associated to spalling of the matrix 

LSP1  = Length of spalled matrix generated by PS01  .............................................. [mm] 

LSP2  = Increment of spalled matrix generated by PH01  ......................................... [mm] 

ΔwSP1  = Increment of crack width due to matrix spalled length LSP1  .......................... [mm] 

ΔwSP2 = Increment of crack width due to matrix spalled length LSP2  .......................... [mm] 

ASP1  = Surface failure of the wedge of spalled matrix with length LSP1  .................... [mm2] 

ASP2  = Surface failure of the wedge of spalled matrix with length LSP2  .................... [mm2] 

DF1 = Deviation force at fiber exit point generated by PS01  ..................................... [N] 

RSP1 = Resisting force provided by the matrix wedge against spalling  ......................... [N] 

FSP1 = Component of DF1 which generates matrix spalled length LSP1  .......................... [N] 

FR1 = Component of DF1 parallel to the embedded part of the fiber  .......................... [N] 

DF2 = Deviation force at fiber exit point generated by PH01  ..................................... [N] 

FSP2 = Component of DF2 which generates matrix spalled length LSP2  .......................... [N] 

a1 = Second order term of the quadratic function used to obtain LSP1  ........................ [-] 

b1 = First order term of the quadratic function used to obtain LSP1  ....................... [mm] 

c1 = Constant term of the quadratic function used to obtain LSP1  ........................ [mm2] 
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a2 = Second order term of the quadratic function used to obtain LSP2  ........................ [-] 

b2 = First order term of the quadratic function used to obtain LSP2  ....................... [mm] 

c2 = Constant term of the quadratic function used to obtain LSP2  ........................ [mm2] 

 

Parameters associated to fiber rupture 

fu(θ) = Ultimate tensile strength of inclined steel fibers at angle θ  ......................... [MPa] 

Pu = Average ultimate pullout load of aligned steel fibers  .................................... [N] 

Pu(θ) = Average ultimate pullout load of inclined steel fibers at angle θ  ....................... [N] 

εu = Ultimate strain of the steel fibers  .......................................................... [‰] 

εa = Strain of the steel fibers due to axial loading  ............................................. [‰] 

εc = Strain of the steel fibers due to curvature at fiber exit point  .......................... [‰] 

Δεp = Plastic strain range of the steel fibers constitutive diagram  ........................... [‰] 

RF = Idealized fiber radius of curvature at failure  ........................................... [mm] 

RP = Component of RF due to steel yielding  ................................................... [mm] 

RC = Component of RF due to curvature at fiber exit point  ................................. [mm] 

 

Parameters of fiber orientation 

η  = Orientation number  ............................................................................. [-] 

ηM   = η after mixing FRC  .............................................................................. [-] 

ηC   = η after casting FRC into the formwork  ...................................................... [-] 

ηD   = η after occurrence of dynamic effects  ...................................................... [-] 

ηF   = η after wall-effects induced by the formwork  ............................................. [-] 

ηθ   = η in the hardened-state  ........................................................................ [-] 

ηx   = η along the x-axis  ............................................................................... [-] 

ηy   = η along the y-axis  ............................................................................... [-] 

ηz   = η along the z-axis  ............................................................................... [-] 

ηxz   = Sum of η in the x-and z-axes  .................................................................. [-] 

ηxyz   = Sum of η in the x-, y-and z-axes  .............................................................. [-] 

η1D   = η in the unidirectional case (1-D)  ............................................................ [-] 

η2D   = η in the planar-random case (2-D)  ........................................................... [-] 

η3D   = η in the spatial-random case (3-D)  ........................................................... [-] 

η0   = η at the zone of the cross-section in bulk  ................................................... [-] 

ηC0   = η at the zone of the cross-section in bulk after casting  .................................. [-] 

ηD0   = η at the zone of the cross-section in bulk after dynamic effects  ....................... [-] 

η1   = Average η at the zone of the cross-section with one boundary condition .............. [-] 

η2   = Average η at the zone of the cross-section with two orthogonal       

boundary conditions  ............................................................................. [-] 

ΔηCi  = Increment of η in direction i due to casting method  ...................................... [-] 
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ΔηCW  = Increment of η due to wall-effects of the casting element  .............................. [-] 

CDi  = Parameter accounting for misalignment between casting direction 

and direction i of the formwork  ............................................................... [-] 

ΔηDi  = Increment of η in direction i due to dynamic effects  ..................................... [-] 

ΔηDVi  = Increment of η in direction i due to external vibration  .................................. [-] 

ΔηDFi  = Increment of η in direction i due to flow  ................................................... [-] 

ΔηFWi   = Increment of η in direction i due to wall-effects of the formwork  ..................... [-] 

ηxz,m  = Average sum of ηxz  .............................................................................. [-] 

ηxyz,m  = Average sum of ηxyz  ............................................................................. [-] 

ΔηW  = Increment of η due to wall-effects  .......................................................... [-] 

(ηxz)   = Standard deviation of ηxz  ...................................................................... [-] 

(ηxyz)   = Standard deviation of ηxyz  ...................................................................... [-] 

φ   = Vertical angle (starting from the plane xOz)  ............................................... [º] 

β   = Horizontal angle (within plane xOz, starting from the x-axis)  ........................... [º] 

Aξ   = Spherical surface associated to the angle ξ in half-sphere  .......................... [mm2] 

ξ  = Angle around an independent axis  ........................................................... [º] 

SL   = Significance level  ............................................................................... [-] 

ξSL   = Angle around an independent axis providing a significance level α ..................... [º] 

f(θi)  = Gaussian frequency of fibers with inclination angles θi .................................  [%] 

p(θi)  = Frequency of fibers with inclination angles θi in the cross-section ....................  [%] 

 

Parameters associated to the geometry of the cross-section of the element 

DC  = Diameter of concrete in the cross-section of the casting element  ................. [mm] 

BC  = Width of concrete in the cross-section of the casting element  ..................... [mm] 

HC   = Height of concrete in the cross-section of the casting element  ..................... [mm] 

HC,eff   = Effective HC  .................................................................................. [mm] 

hi   = Distance between fiber gravity point and the horizontal boundary condition  .... [mm] 

bi   = Distance between fiber gravity point and the vertical boundary condition  ....... [mm] 

Asec  = Area of the cross-section  ................................................................. [mm2] 

A0   = Area of the cross-section with zero boundary conditions  ........................... [mm2] 

A1   = Area of the cross-section with one boundary condition  ............................. [mm2] 

A2   = Area of the cross-section with two orthogonal boundary conditions  .............. [mm2] 
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