ÍNDICE

Agradecimientos... v
Resumen... vii
Abstract... ix
Índice... xi

CAPÍTULO 1 - INTRODUCCIÓN 1

1.1. Introducción... 1
1.2. Objetivos de la Tesis.. 3
1.3. Estructura de la Tesis... 4

CAPÍTULO 2 - ESTADO DEL CONOCIMIENTO 9

2.1. Introducción... 9
2.2. Evolución de nuevas tendencias en la construcción......................... 10
2.3. El prefabricado.. 11
 2.3.1. Sistema prefabricado con elementos tridimensionales................. 13
 2.3.2. Sistema prefabricado de grandes y medianos paneles................. 14
2.4. Sistemas de construcción prefabricada liviana................................. 16
 2.4.1. Sistema constructivo de paneles aligerados con núcleo de poliestireno y malla electrosoldada espacial................................. 16
 2.4.2. Familias similares: Sistema de paneles aligerados con poliestireno y malla electrosoldada espacial... 19
2.5. Valoración crítica del estado del conocimiento............................... 35

CAPÍTULO 3 - CARACTERIZACIÓN DE MATERIALES PARA PANELES 37

3.1. Introducción... 37
3.2. Materiales básicos del panel... 39
 3.2.1. Poliestireno expandido (EPS).. 39
 3.2.2. Malla electrosoldada espacial... 41
3.3. 1ª fase de ensayos.. 42
 3.3.1. Características de los materiales utilizados................................. 42
 Mortero... 42
 Fibras... 43
 Puente de adherencia... 44
3.3.2. Preparación de las probetas .. 44
3.3.3. Resultados obtenidos y análisis (1ª fase) 46
 Resistencia a flexión probetas de mortero 46
 Resistencia a compresión probetas de mortero 49
 Deformación por retracción probetas de mortero 51

3.4. 2ª fase de ensayos ... 56
3.4.1. Características de los materiales utilizados 56
3.4.2. Preparación de las probetas de mortero 56
3.4.3. Resultados obtenidos y análisis (2ª fase) 57

3.5. Conclusiones y recomendaciones ... 57

CAPÍTULO 4 - COMPRESIÓN EN PANELES PEQUEÑOS 59
4.1. Introducción ... 59
4.2. 1ª fase - campaña experimental .. 60
 4.2.1. Características generales .. 60
 4.2.2. Fabricación de paneles (probetas) .. 62
 4.2.3. Resultados obtenidos experimentalmente y predicción de la carga de
 rotura - 1ª fase ... 65
4.3. 2ª fase - campaña experimental .. 71
 4.3.1. Características generales .. 71
 4.3.2. Fabricación de paneles (probetas) .. 72
 4.3.3. Resultados obtenidos experimentalmente y predicción de la carga de
 rotura - 2ª fase ... 74
4.4. Modelación numérica .. 77
 4.4.1. Metodología .. 77
 4.4.2. Resultados obtenidos .. 79
 4.4.3. Análisis de resultados (modelo numérico) 81
4.5. Modelo para la estimación de la carga de rotura – 2ª fase 88
 4.5.1 Comportamiento a compresión simple 88
 4.5.2. Aproximación numérica, estimación carga de rotura – 2ª fase 88
4.6. Conclusiones .. 92

CAPÍTULO 5 - COMPRESIÓN EN PANELES GRANDES 93
5.1. Introducción ... 93
5.2. Características de los paneles ensayados 94
5.3. Resultados obtenidos y análisis del ensayo 95
5.4. Modelación numérica .. 96
5.5. Análisis de los paneles simétricos .. 99
 1. Panel EPS 60 mm sin zuncho (Panel 1) .. 99
2. Panel EPS 60 mm con zuncho (Panel 2) ... 100
3. Panel EPS 100 mm sin zuncho (Panel 3) ... 102
4. Panel EPS 100 mm con zuncho (Panel 4) ... 102
5.6. Análisis de paneles no simétricos .. 103
 1. Panel EPS 60 mm sin zuncho (Panel 5) ... 103
 a) Agotamiento de todo el panel por efectos de segundo orden 105
 b) Rotura del conector por tracción .. 105
 c) Rotura de la soldadura de unión del conector con la malla 107
 d) Pandeo del conector ... 107
 e) Rotura de una de las capas de mortero por compresión compuesta 108
 2. Panel EPS 60 mm con zuncho (Panel 6) ... 110
 3. Panel EPS 100 mm sin zuncho (Panel 7) ... 112
 a) Agotamiento de todo el panel por efectos de segundo orden 113
 b) Rotura del conector por tracción .. 114
 c) Rotura de la soldadura de unión del conector con la malla 115
 d) Pandeo del conector ... 115
 e) Rotura de una de las capas de mortero por compresión compuesta 115
 4. Panel EPS 100 mm con zuncho (Panel 8) ... 117
5.7. Excentricidad en el esfuerzo axial (N_u) y momento último (M_u) 119
 1. Panel EPS 60 mm con zuncho (Panel 6) ... 120
 2. Panel EPS 100 mm con zuncho (Panel 8) ... 121
5.8. Formulación para el cálculo de paneles a compresión 122
 5.8.1. Corroboración de la función exponencial “y” 124
5.9. Conclusiones ... 127

CAPÍTULO 6 - COMPORTAMIENTO DE ELEMENTOS A FLEXIÓN 129

6.1. Introducción ... 129
6.2. Campaña experimental ... 130
 6.2.1. Características generales de la losa ... 130
 6.2.2. Fabricación de la losa de ensayo .. 131
 Muros de apoyo .. 131
 Losa de forjado ... 132
 6.2.3. Sistema de medida .. 135
 6.2.4. Sistema de carga .. 136
 6.2.5. Ensayo módulo de deformación longitudinal 139
6.3. Análisis de resultados obtenidos experimentalmente 140
 6.3.1. Deformaciones verticales: Flechas ... 140
 6.3.2. Deformaciones horizontales: Flechas ... 143
 6.3.3. Fisuración del elemento ... 145
8.3. Acciones y coeficientes de seguridad .. 202
8.4. Estados límites últimos solicitudes normales ... 203
 8.4.1. E.L.U. Solicitaciones Normales (Muros) 203
 8.4.2. E.L.U. Solicitaciones Normales (Forjados) 205
 8.4.3. E.L.U. Inestabilidad (efectos de segundo orden – Muros) 205
 8.4.4. E.L.U. Solicitaciones tangenciales ... 206
 Cortante .. 206
 Rasante .. 209
8.5. Estados límites de servicio - deformabilidad .. 210
8.6. Ejemplo de aplicación .. 211
 8.6.1. Características generales ... 211
 8.6.2. Acciones .. 213
 8.6.3. E.L.U. Solicitaciones Normales en los Muros 213
 8.6.4. E.L.U. de inestabilidad (efectos de segundo orden) 215
 8.6.5. E.L.U. Solicitaciones Normales en el forjado 215
 8.6.6. E.L.U. Solicitaciones tangenciales ... 216
 8.6.7. E.L.S. Deformabilidad ... 217
8.7. Campaña experimental .. 218
 8.7.1. Características del ensayo ... 218
 8.7.2. Resultados experimentales ... 220
8.8. Comparación resultados experimentales y cálculo 221
8.9. Pórtico continuo - aplicación del sistema .. 223
 8.9.1. Características y preparación del ensayo 223
 8.9.2. Sistema de medida ... 224
 8.9.3. Sistema de carga .. 225
 8.9.4. Resultados obtenidos y análisis .. 226
8.10. Conclusiones y recomendaciones de las campañas experimentales - Pórtico simple y continuo ... 231
8.11. Tablas y figuras .. 232
 Panel vertical - muro .. 232
 Panel horizontal - forjado ... 236

CAPÍTULO 9 - CONCLUSIONES Y RECOMENDACIONES 241

 9.1. Conclusiones generales ... 241
 9.2. Conclusiones específicas ... 243
 9.3. Líneas futuras de investigación .. 245

REFERENCIAS BIBLIOGRÁFICAS 247
ANEXO A - ELEMENTOS UTILIZADOS PARA EL CÁLCULO 251

A.1. Anexo de cálculo - capítulo 6 ... 251
 A.1.1. Acciones consideradas ... 251
 A.1.2. Idealización sección para los cálculos ... 252
 A.1.3. Inercia sin fisurar de la sección (Isf) .. 253
 A.1.4. Inercia fisurada de la sección (If) ... 254
 A.1.5. Cálculo del momento último ... 255
A.2. Anexo de cálculo momento último de la sección - capítulo 7 258

ANEXO B - EFECTO RASANTE EN PANELES 263

B.1. Introducción y metodología ... 263
B.2. Resultados obtenidos y análisis ... 264
 B.2.1. Caso 1: Carga Puntual a 1/3 de la luz ... 264
 B.2.2. Caso 2: Carga Horizontal ... 270
 B.2.3. Caso 3: Carga inclinada 45º ... 275
 B.2.4. Caso 4: Carga inclinada 45º aplicada a 1/3 de la luz 283
B.3. Conclusiones .. 289

ANEXO C - PROCEDIMIENTO CONSTRUCTIVO Y DETALLES 291

C.1. Introducción ... 291
C.2. Proceso constructivo - Muros de apoyo ... 291
C.3. Proceso constructivo - Losas de forjado .. 295
C.4. Detalles constructivos ... 299