ABSTRACT

La evolución del mercado y por ende de la demanda del sector de la construcción hace que hoy en día sea cada vez más necesario el desarrollo de un plano transversal de estudio que integre las diversas vertientes del proyecto en vistas a buscar una mayor competitividad. La nueva clave del éxito no será ya tan sólo la alta productividad, sino la gestión orientada a los requerimientos de cada cliente y la capacidad de adaptarse a una demanda y un entorno en cambio continuo y rápido. Dicho plano transversal está constituido por los aspectos de gestión del proyecto, en los que adquiere una singular importancia el problema de la toma de decisión, que constituye el objeto de esta tesis.

A raíz de la revisión del desarrollo de dicho problema en el ámbito de la economía y la gestión empresarial se identifican dos paradigmas en su enfoque. El primero corresponde a una perspectiva positivista del problema, que hace hincapié en los aspectos cuantificables y objetivizables. Posteriormente, con base en los criticismos generados en torno a este primer enfoque surgió una visión posmoderna del mismo, basada en un enfoque social que desconfía de la racionalidad y articula su propuesta en el consenso entre las partes.

En este contexto, la propuesta de esta tesis se fundamenta en lo que aquí se ha denominado “paradigma integrador”, el cual parte del reconocimiento de las aportaciones de los dos enfoques anteriores siendo consciente a la vez de sus limitaciones. Por ello, aboga por una adopción ad hoc de los enfoques y herramientas asociadas a ambas perspectivas, según las características específicas del problema, abriendo las puertas a una posible combinación de ambas.

Desde esta perspectiva integradora, en lo relativo a la vertiente metodológica se propone un instrumento de toma de decisiones al que se denomina IDS (Integrated Decision System), y que se articula en torno a dos conceptos que constituyen los ejes principales de la propuesta: el valor y el riesgo. Por otro lado, la razón de ser de la denominación de “sistema” corresponde a su concepción como conjunto de elementos: conceptos, formulaciones, métodos, metodologías y herramientas.

La propuesta se define y describe con un carácter general, aplicable a cualquier ámbito de la gestión, si bien se adapta y particulariza el estudio para el campo específico de la gestión de proyectos constructivos. Posteriormente se explora su potencialidad a través del estudio de su aplicabilidad, en primer lugar en el ámbito de una técnica de gestión, la metodología del valor o Value Management, y posteriormente en el campo más general de la gestión de proyectos o Project Management. En el primer caso se realiza también un estudio para su aplicabilidad en el seno del sector de la construcción española. Finalmente se hace una ulterior investigación de la aplicabilidad del sistema propuesto en el ámbito de la gestión de organizaciones.
AGRADECIMIENTOS

En lo que podría ser una larga lista de agradecimientos cabe empezar por el Profesor Antonio Aguado, que con tanta ilusión ha alentado y supervisado la realización de este trabajo. Sin su fe en el proyecto hubiera sido muy difícil abordar una línea de investigación de estas características.

En segundo lugar, debo también una especial gratitud a Jaime Armengou, quien me animó e impulsó a doctorarme y fue mi primer maestro en el ámbito profesional, en el campo de la obra civil. También en este sentido debo un agradecimiento a mis antiguos compañeros de ACIEROID, ya que con su experiencia me han ayudado a adquirir una visión más amplia del sector desde el punto de vista de la edificación. Entre ellos me gustaría citar especialmente a Ramón Brotons, Juan José Mas y José Luis García.

Merecen también una mención especial los profesores Mónica Sánchez y Francesc Prats, del Departamento de Matemática Aplicada II de la Universitat Politècnica de Catalunya y Núria Agell, de ESADE. Su colaboración en el desarrollo del tratamiento del problema mediante matemática difusa ha sido imprescindible. También debo agradecer al profesor Pere Alavedra la orientación que me ha prestado en el inicio de este trabajo, así como su carta de recomendación en el viaje que realicé a Inglaterra con motivo de esta investigación. Les doy las gracias también a los profesores Ranko Bon y Stuart D. Green de la Universidad de Reading, Marcus Grönqvist de la Universidad de Leeds y Roy Woodhead de la Universidad de Oxford Brooks, por la acogida y asesoramiento que me prestaron cuando viajé al Reino Unido con el objetivo de recabar información para el desarrollo de esta tesis. Debo también un agradecimiento especial al sr. Ramon Forn, presidente de la “Associació Catalana d’Anàlisi del Valor” por el apoyo que ofreció a este proyecto. Su aportación en las primeras etapas de esta investigación fue esencial para el futuro desarrollo de la misma.

También me gustaría incluir en este apartado de agradecimientos al personal, profesores y compañeros de doctorado del Departamento de Ingeniería de la Construcción de la Universitat Politècnica de Catalunya. El intercambio de experiencias y el ambiente internacional que se respira han sido para mí un claro aliciente para el desarrollo de esta tesis.

Finalmente, debo agradecer a la Generalitat de Catalunya su ayuda económica para la realización de este proyecto de investigación.
ÍNDICE DE LA TESIS

Abstract ..i
Agradecimientos..ii
Índice ..iii
Lista de figuras ...xi
Lista de tablas ...xvi
Lista de abreviaciones ..xxi

CAPÍTULO 1. INTRODUCCIÓN

1.1. Introducción..1
1.2. Contexto ...2
1.3. Objetivos de la tesis..5
1.4. Alcance de la tesis..7
1.5. Estructura de la tesis...8

CAPÍTULO 2. ESTADO DEL CONOCIMIENTO

2.1. Introducción..13
2.2. El problema de la toma de decisión..15
 2.2.1. Los diversos enfoques del problema.. 15
 2.2.2. El enfoque positivista...17
 2.2.3. La transición... 19
 2.2.4. El enfoque posmodernista.. 21
 2.2.5. El paradigma integrador... 24
2.3. El valor en la construcción ...26
 2.3.1. El concepto de valor en la construcción... 26
 2.3.1.1. Los diversos enfoques del concepto .. 26
 2.3.1.2. El enfoque positivista ... 27
 2.3.1.3. La transición .. 30
4.4.1. La fase de análisis ... 129
4.4.2. Las fases de creatividad y evaluación .. 134

4.5. El campo de aplicabilidad del sistema propuesto 135

4.5.1. Concepción; planificación estratégica ... 135
4.5.2. Materialización; proyecto y ejecución ... 137
4.5.3. Utilización; uso y mantenimiento ... 139
4.5.4. Deconstrucción; derribo, rehabilitación y reutilización 140

4.6. El carácter objetivo y subjetivo del valor de un proyecto 142

4.6.1. El valor como satisfacción de los diversos agentes del proyecto 142
4.6.2. El carácter objetivo y subjetivo del valor en la medición del valor introducida por el IDS ... 144

CAPÍTULO 5. APLICACIÓN DEL IDS EN EL CONTEXTO DE LA METODOLOGÍA DEL VALOR O “VALUE MANAGEMENT”

5.1. Los distintos enfoques de la metodología ... 145

5.2. Análisis crítico del desarrollo de la metodología del valor
 en el ámbito de la construcción .. 147

5.2.1. Los orígenes y evolución de la metodología del valor 147
5.2.2. Análisis global de la literatura sobre la metodología del valor 148
5.2.3. Los distintos enfoques metodológicos .. 149

5.3. La metodología del valor en el entorno de la construcción española 154

5.3.1. El planteamiento del estudio ... 154
5.3.2. Estudio de la implementación de la metodología del valor en otros países 155
5.3.3. La extensión de la metodología del valor en la construcción española 158
5.3.4. La metodología del valor como agente de mejora en la construcción española ... 159
5.3.5. Los requisitos de una nueva propuesta metodológica para el ámbito español .. 161

5.4. El IDS-VM: una nueva articulación de la metodología del valor 163

5.4.1. El enfoque de la nueva propuesta metodológica 163
5.4.2. Los elementos de la nueva propuesta .. 164
 5.4.2.1. El concepto de valor ... 165
 5.4.2.2. El enfoque y organización del estudio .. 166
 5.4.2.3. El análisis del proyecto ... 168
 5.4.2.4. La generación de alternativas ... 169
5.4.2.5. La evaluación de alternativas .. 169
5.4.2.6. La aplicabilidad de la metodología a lo largo del ciclo de vida del proyecto .. 170
5.4.2.7. La integración de las herramientas utilizadas en el ámbito de la metodología del valor en el IDS-VM 172
5.4.2.8. Integración de la nueva propuesta con otras metodologías 173
5.4.3. Análisis de la viabilidad de la propuesta................................. 174

CAPÍTULO 6. VALIDACIÓN DE LA PROPUESTA

6.1. Introducción... 177
6.2. El planteamiento de la verificación ... 179
6.3. Estudio estratégico de una actuación costera (caso VP1).................... 183
 6.3.1. Descripción del caso ... 183
 6.3.2. Descripción del estudio ... 185
 6.3.3. Resultados del estudio ... 188
6.4. Anteproyecto de un edificio logístico (caso VE1)............................... 193
 6.4.1. Descripción del caso ... 193
 6.4.2. Descripción del estudio ... 197
 6.4.3. Resultados del estudio ... 202
6.5. Modificación en obra del proyecto de una carretera (caso PM1)......... 226
 6.5.1. Descripción del caso ... 226
 6.5.2. Descripción del estudio ... 226
 6.5.3. Resultados del estudio ... 229
6.6. Elección del contratista para un complejo de edificios residenciales (caso PM2) ... 239
 6.6.1. Descripción del caso ... 239
 6.6.2. Descripción del estudio ... 239
 6.6.3. Resultados del estudio ... 239
6.7. Proyecto de ampliación de un edificio de producción (caso VE2)......... 244
 6.7.1. Descripción del caso ... 244
 6.7.2. Descripción del estudio ... 245
 6.7.3. Resultados del estudio ... 246
6.8. Aplicación de la VE en un proyecto de demolición de un viaducto urbano (caso VE3) .. 251
CAPÍTULO 7. CONCLUSIONES Y DESARROLLO FUTURO

7.1. Introducción.. 257

7.2. Conclusiones generales .. 260

7.3. Conclusiones específicas .. 261

7.3.1. Conclusiones relativas al estado del conocimiento......................................261
7.3.2. Conclusiones referentes al sistema IDS... 263
7.3.3. Conclusiones relativas a la aplicación del IDS en el ámbito de la construcción ...264
7.3.4. Conclusiones referentes a la aplicación del modelo en el contexto de la metodología del valor ...264
7.3.5. Conclusiones relativas a la validación del modelo ..266
7.3.6. Conclusiones referentes al estudio y propuesta de aplicación del modelo en la gestión general u organizacional...267

7.4. Recomendaciones para futuras investigaciones .. 268

BIBLIOGRAFÍA ...271

APÉNDICES

APÉNDICE A. BREVE APÉNDICE FILOSÓFICO

APÉNDICE B. EL PROBLEMA DE LA TOMA DE DECISIÓN Y SU APLICACIÓN EN LA CONSTRUCCIÓN

APÉNDICE C. EL CONCEPTO DE VALOR Y SU FORMULACIÓN EN EL ÁMBITO DE LA CONSTRUCCIÓN

APÉNDICE D. LA EVALUACIÓN DEL RIESGO Y LA INCERTIDUMBRE EN EL ÁMBITO DE LA CONSTRUCCIÓN

APÉNDICE E. APÉNDICE MATEMÁTICO

APÉNDICE F. ANÁLISIS CRÍTICO DEL SISTEMA IDS
APÉNDICE G. ANÁLISIS DE LA GESTIÓN DE PROYECTOS EN EL ENTORNO ESPAÑOL

APÉNDICE H. EL DESARROLLO TEÓRICO DE LA METODOLOGÍA DEL VALOR

APÉNDICE I. LAS TÉCNICAS AUXILIARES DE LA METODOLOGÍA DEL VALOR

APÉNDICE J. LA GESTIÓN DE RIESGOS

APÉNDICE K. LA CONSTRUCTIBILIDAD

APÉNDICE L. LA INTEGRACIÓN DE LAS HERRAMIENTAS UTILIZADAS EN EL ÁMBITO DE LA METODOLOGÍA DEL VALOR EN LA METODOLOGÍA IDS-VM

APÉNDICE M. LA INTEGRACIÓN DEL IDS EN EL ÁMBITO TEÓRICO DE LA GESTIÓN DE PROYECTOS O “PROJECT MANAGEMENT”

APÉNDICE N. CONCEPTOS Y TÉCNICAS DE “PROJECT MANAGEMENT”

APÉNDICE P. PLIEGO DE PRESCRIPCIONES FUNCIONALES DEL PROYECTO DEL CASO VE1
LISTADO DE FIGURAS

Figura 1.1. Esquema del contexto de la investigación

Figura 1.2. Esquema de desarrollo de la presente tesis doctoral

Figura 2.1. Esquema del contenido del capítulo

Figura 2.2. Evolución histórica del enfoque del problema de la toma de decisión

Figura 2.3. Visualización de la analogía entre la atracción gravitatoria y el valor (Shillito & De Marle, 1992)

Figura 2.4. Tipos de incertidumbre en los riesgos especulativos

Figura 2.5. Comparación entre el enfoque clásico y el tratamiento mediante matemática difusa

Figura 2.6. Visualización del enfoque integrador como equilibrio entre los paradigmas positivista y posmodernista

Figura 3.1. Esquema de desarrollo del capítulo 3

Figura 3.2. Elementos principales de la definición sistémica del valor

Figura 3.3. Elementos del sistema MIV

Figura 3.4. Esquema del concepto de “requerimiento” según se propone en esta tesis.

Figura 3.5. Modelización de los elementos de la alternativa de toma de decisión

Figura 3.6. Formas más comunes adoptadas por la función de valor propuesta

Figura 3.7. Forma real y aproximación de la función de valor

Figura 3.8. Concepto de árbol de valor según se plantea en esta tesis.

Figura 3.9. Visualización del concepto de desplegabilidad en una rama del árbol de requerimientos

Figura 3.10. Concepto de flexibilidad entre requerimientos y parámetros de respuesta según el tipo de toma de decisión considerada

Figura 3.11. Tipos de parámetros de respuesta
Figura 3.12. Diagrama de flujo del proceso propuesto para la evaluación de los pesos en una cierta rama del árbol de valor

Figura 3.13. Evaluaciones sucesivas de los pesos al desplegar el árbol de requerimientos

Figura 3.14. Efecto transversal del concepto de riesgo

Figura 3.15. La integración del riesgo en la definición sistémica del valor

Figura 3.16. Representación general de un número difuso según la adaptación propuesta en esta tesis.

Figura 3.17. Los casos particulares de los conjuntos difusos trapezoidales

Figura 3.18. Función de pertenencia de las variables difusas cualitativas

Figura 3.19. Visualización de la envolvente para la agregación de estimaciones mediante números difusos

Figura 3.20. Agregación de resultados de las estimaciones

Figura 3.21. Forma del resultado del valor expresado en términos difusos

Figura 3.22. Visualización del orden difuso

Figura 3.23. Resultado de la agregación de números reales

Figura 3.24. Resultado de la agregación de intervalos reales

Figura 3.25. Resultado de la agregación de números difusos triangulares

Figura 3.26. Esquema de estudio de los componentes del concepto de riesgo puro

Figura 3.27. Definición de la severidad a partir de la función de valor

Figura 3.28. Esquema del proceso ACE

Figura 3.29. Resultados del análisis de sensibilidad

Figura 3.30. Valor adoptado para realizar el análisis de sensibilidad (p)

Figura 3.31. Esquema de los elementos del sistema IDS

Figura 4.2. Elementos principales de la definición sistémica del valor adaptada a proyectos constructivos
Figura 4.3. Ciclo de Vida de un proyecto constructivo. (Aguado & Casanovas, 1997)
Figura 4.4. Modelizaciones del ciclo de vida de un proyecto constructivo en el ámbito anglosajón
Figura 4.5. Ciclo de vida de un proyecto constructivo. (Morris, 1981)
Figura 4.7. Árbol de requerimientos del proyecto de un estadio deportivo
Figura 4.8. Esquema del análisis triaxial propuesto en la etapa de análisis del proceso ACE aplicado a proyectos constructivos
Figura 4.9. Esquema de una decisión en la etapa de planificación
Figura 4.10. Esquema de una decisión en la etapa de materialización
Figura 4.11. Esquema de una actuación en la etapa de uso como proyecto incluido en el primero inicialmente planteado
Figura 4.12. Esquema de la inclusión de la etapa de deconstrucción como parte integrante de la concepción y materialización de un proyecto posterior
Figura 4.13. El carácter subjetivo del valor y la cadena de valor del proyecto
Figura 5.1. Esquema de desarrollo del capítulo 7
Figura 5.2. Evolución de la metodología del valor
Figura 5.3. Síntesis de la evolución teórico-práctica de la metodología del valor en torno a sus elementos fundamentales
Figura 5.4. Desarrollo temporal de los desarrollos metodológicos de la metodología del valor
Figura 5.5. Esquema de la metodología de estudio
Figura 6.1. Zona oriental de la costa barcelonesa, Sant Adrià del Besós y Badalona
Figura 6.2. Árbol de requerimientos del proyecto del caso VP1
Figura 6.3. Planta topográfica del emplazamiento del proyecto estudiado en el caso VE1.
Figura 6.4. Perfil topográfico del emplazamiento del proyecto estudiado en el caso VE1.
Figura 6.5. Árbol de requerimientos del proyecto correspondiente al caso de estudio VE1

Figura 6.6. Croquis de la alternativa 1 de distribución en planta relativa al proyecto estudiado en el caso VE1.

Figura 6.7. Croquis de la alternativa 2 de distribución en planta relativa al proyecto estudiado en el caso VE1.

Figura 6.8. Despliegue del árbol de requerimientos para la evaluación de las alternativas de decisión. Caso de estudio VE1

Figura 6.9. Funciones de valor de los requerimientos considerados en la decisión relativa a la distribución en planta de un edificio logístico. Caso de estudio VE1

Figura 6.10. Resultado en términos difusos de la evaluación de las diversas alternativas en la decisión relativa a la distribución en planta del edificio. Caso VE1

Figura 6.11. Resultados del análisis de sensibilidad (caso genérico)

Figura 6.13. Árbol de requerimientos del proyecto estudiado en el caso PM1

Figura 6.14. Despliegue del árbol de valor para la evaluación de alternativas. Caso PM1

Figura 6.15. Funciones de valor consideradas en la evaluación de la decisión relativa al caso PM1

Figura 6.16. Resultado en términos difusos de la evaluación de alternativas del caso PM1 sin considerar riesgos puros

Figura 6.17. Visualización de la pérdida de valor producida por el efecto del riesgo. Caso PM1

Figura 6.18. Función de pertenencia de las severidades de los riesgos considerados. Caso PM1

Figura 6.19. Función de pertenencia de las severidades de los riesgos considerados. Caso PM1

Figura 6.20. Representación en términos difusos de los resultados de la evaluación. Caso PM1

Figura 6.21. Árbol de requerimientos del proyecto correspondiente al caso PM2
Figura 6.22. Croquis del emplazamiento del proyecto estudiado en el caso VE2.

Figura 6.23. Árbol de requerimientos del proyecto correspondiente al caso VE2

Figura 6.24. Emplazamiento, planta y sección del viaducto estudiado en el caso VE3

Figura 6.25. Árbol de requerimientos del proyecto correspondiente al caso VE3

Figura 7.1. Esquema del capítulo 7
LISTADO DE TABLAS

Tabla 2.1. Análisis comparativo de los desarrollos teóricos del problema de la toma de decisión
Tabla 2.2. Síntesis del desarrollo del concepto de valor
Tabla 2.3. Diversas clasificaciones de los riesgos en el ámbito de la construcción
Tabla 2.4. Análisis comparativo entre el enfoque probabilista y el posibilista
Tabla 2.5. Síntesis de los dos paradigmas referentes al modo de evaluar los riesgos
Tabla 2.6. Síntesis del estado del conocimiento
Tabla 2.7. Planteamiento de la aportación al conocimiento de la tesis
Tabla 3.1. Ejemplos de requerimientos del sistema “MIV” para el caso de un proyecto constructivo
Tabla 3.2. Ejemplo de los elementos del subsistema “alternativa” para el caso de un proyecto constructivo
Tabla 3.3. Ejemplo de parámetros de respuesta para el caso de un proyecto constructivo
Tabla 3.4. Índices de Aleatoriedad de las matrices de decisión según su orden
Tabla 3.5. Matriz de procesos genérica
Tabla 3.6. Matriz de requerimientos genérica
Tabla 3.7. Formato de la tabla de síntesis de resultados del proceso ACE
Tabla 3.8. Los elementos del sistema de toma de decisiones IDS
Tabla 4.1. Ejemplo de estructuración de una alternativa en el ámbito de la gestión de proyectos constructivos
Tabla 4.2. Ejemplo de parámetros de respuesta para una alternativa referente a un proyecto de una nave de producción
Tabla 4.3. Ejemplo de identificación de procesos de un proyecto de un puerto deportivo
Tabla 4.4. Ejemplo de identificación de requerimientos del proyecto de un estadio deportivo.
Tabla 5.1. Estudio comparativo de la aplicación de la Gestión del valor en los diferentes países (basado en McGeorge & Palmer, 1997)

Tabla 5.2. Diferencias los sistemas de gestión oriental y occidental (Walker & Flanagan, 1991)

Tabla 5.3. Estudio comparativo de la aplicación de la Gestión del valor en los diferentes países

Tabla 5.4. Características requeridas a una hipotética aplicación de la metodología del valor en el ámbito español

Tabla 5.5. Los elementos de la nueva metodología del valor propuesta (IDS-VM)

Tabla 5.6. Aplicabilidad del IDS-VM a lo largo del ciclo de vida del proyecto

Tabla 6.1. Mapa de los puntos de verificación del sistema IDS

Tabla 6.2. Matriz de identificación de procesos del proyecto de actuación en la costa oriental de Barcelona

Tabla 6.3. Matriz de identificación de requerimientos del proyecto de actuación en la costa oriental de Barcelona

Tabla 6.4. Parámetros de respuesta de las alternativas relativas al caso de estudio VM1

Tabla 6.5. Evaluación de riesgos de la alternativa 1 referente al caso de estudio VM1

Tabla 6.6. Evaluación de riesgos de la alternativa 2 referente al caso de estudio VM1

Tabla 6.7. Matriz de procesos del proyecto del caso de estudio VE1

Tabla 6.8. Matriz de procesos del proyecto del caso de estudio VE1

Tabla 6.9. Agrupación de requerimientos según el principio de Pareto. Proyecto correspondiente al caso de estudio VE1

Tabla 6.10. Tabla de evaluación de los parámetros de respuesta. Decisión relativa a la distribución en planta del edificio. Caso VE1

Tabla 6.11. Síntesis de resultados de la evaluación de las alternativas de distribución en planta del edificio. Caso VE1.

Tabla 6.12. Tabla de evaluación de los parámetros de respuesta. Decisión relativa a la cota de explanación del edificio. Caso VE1
Tabla 6.13. Tabla de evaluación de los parámetros de respuesta. Decisión relativa a la cimentación del edificio. Caso VE1

Tabla 6.15. Tabla de evaluación de los parámetros de respuesta. Decisión relativa a la fachada del edificio. Caso VE1

Tabla 6.16. Tabla de evaluación de los parámetros de respuesta. Decisión relativa a la cubierta del edificio. Caso VE1

Tabla 6.17. Tabla de evaluación de los parámetros de respuesta. Decisión relativa al pavimento del edificio. Caso VE1

Tabla 6.18. Matriz de identificación de procesos del proyecto correspondiente al caso PM1

Tabla 6.19. Matriz de identificación de requerimientos del proyecto correspondiente al caso PM1

Tabla 6.20. Agrupación de requerimientos según el principio de Pareto. Proyecto correspondiente al caso de estudio VE1

Tabla 6.21. Estimaciones relativas a los parámetros de respuesta. Toma de decisión correspondiente al caso PM1

Tabla 6.22. Medición de los riesgos considerados en la decisión relativa al caso PM1

Tabla 6.23. Estimación de los riesgos considerados en la decisión relativa al caso PM1

Tabla 6.24. Medición de los riesgos considerados. Caso PM1

Tabla 6.25. Estimación de los riesgos considerados. Caso PM1

Tabla 6.27. Matriz de identificación de procesos del proyecto correspondiente al caso PM2

Tabla 6.28. Matriz de identificación de requerimientos del proyecto correspondiente al caso PM2

Tabla 6.29. Parámetros de respuesta relativos a la decisión del caso PM2

Tabla 6.30. Evaluación de los riesgos asociados a la alternativa 1. Caso PM2
Tabla 6.31. Evaluación de los riesgos asociados a la alternativa 2. Caso PM2
Tabla 6.32. Matriz de procesos del proyecto correspondiente al caso VE2
Tabla 6.33. Matriz de requerimientos del proyecto correspondiente al caso VE2
Tabla 6.34. Parámetros del respuesta referentes a la decisión del caso VE2
Tabla 6.35. Evaluación de los riesgos asociados a la alternativa 2. Caso VE2
Tabla 6.36. Matriz de procesos del proyecto correspondiente al caso VE3
Tabla 6.37. Matriz de requerimientos del proyecto correspondiente al caso VE3
Tabla 6.38. Parámetros de respuesta de la decisión relativa al caso VE3
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>Análisis Funcional</td>
</tr>
<tr>
<td>AIA</td>
<td>American Institute of Architects</td>
</tr>
<tr>
<td>BPR</td>
<td>Business Process Reingeneering (Reingeniería de procesos de negocio)</td>
</tr>
<tr>
<td>FAST</td>
<td>Functional Analysis System Technique</td>
</tr>
<tr>
<td>IVM</td>
<td>Institution of Value Management (Reino Unido)</td>
</tr>
<tr>
<td>(P)MIS</td>
<td>(Project) Management Information System (sistema de información para la gestión (del proyecto)</td>
</tr>
<tr>
<td>RIBA</td>
<td>Royal Institute of British Architects</td>
</tr>
<tr>
<td>SAVE</td>
<td>Society of American Value Engineers</td>
</tr>
<tr>
<td>SMART</td>
<td>Simple Multiattribute Utility Technique</td>
</tr>
<tr>
<td>SSM</td>
<td>Soft Systems Methodology (Metodología de sistemas blandos)</td>
</tr>
<tr>
<td>TIR</td>
<td>Tasa Interna de Retorno</td>
</tr>
<tr>
<td>TQC</td>
<td>Total Quality Control (Control total de la calidad)</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management (Gestión total de la calidad)</td>
</tr>
<tr>
<td>VAN</td>
<td>Valor Actual Neto</td>
</tr>
<tr>
<td>VE</td>
<td>Value Engineering (Ingeniería del valor)</td>
</tr>
<tr>
<td>VM</td>
<td>Value Management (Gestión del valor)</td>
</tr>
<tr>
<td>VP</td>
<td>Value Planning (Planificación del valor)</td>
</tr>
</tbody>
</table>