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A seminar on Motivic Cohomology took place at the Centro de Investigación en Matemáticas
(CIMAT), at Guanajuato (México) during the month of August 2010. The aim of the seminar
was to cover the definition and main properties of motivic cohomology of smooth schemes over
a perfect field as defined by V. Voevodsky, and its relation to étale cohomology, Bloch’s higher
Chow groups and Milnor’s algebraic K-theory, based on the book [MVW]. The seminar was
addressed to an audience with a basic knowledge of algebraic geometry and classical motives.
It was not possible to cover all proofs of the different results presented along the sessions of the
seminar, but we think that it emerged a clear picture of the subject.

We thank all participants by their enthusiasm and specially Abdó Roig, who has read a first
draft of this report and contributed with his remarks.

The seminar began on August 2 and ended on September 1. It consisted of ten sessions of one
hour and a half according to the following programme and speakers.

Schedule:

August 2 Pedro Luis del Ángel A global overview of Motivic Cohomology:
Pere Pascual aims and scope

August 4 Abdó Roig Grothendieck topologies
August 9 Pere Pascual Derived categories
August 11 Herbert Kanarek From Grothendieck’s classical motives

to mixed motives

August 16 Pedro Luis del Ángel The category of mixed realizations
August 18 Pere Pascual Triangulated category of mixed motives
August 23 Abdó Roig The fundamental technical result

August 25 Pedro Luis del Ángel Weight one motivic cohomology
Bloch’s higher Chow groups

Pere Pascual Classical motives versus Voevodsky motives
August 30 Abdó Roig Triangles in the triangulated motivic category
September 1 Pere Pascual The étale version of all this stuff
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(CIMAT, Mexico)
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REPORT OF THE SEMINAR ON MOTIVIC COHOMOLOGY 3

RESUME OF THE SESSIONS

We present a resume of the talks. We do not pretend to give a coherent and complete resume,
our objective being to describe the general contents of the sessions.

First session: A global overview.

This session was a general introduction to motives and motivic cohomology from an historical
point of view, stressing their usefulness and the different approximations to the subject appeared
in recent years.

We began defining what is a Weil cohomology for smooth varieties over a field k and explaining
Grothendieck’s idea of creating a universal Weil cohomology, introducing the category of rational
motives and its expected properties. After that we commented the existence of weight filtrations
on Hodge theory and on étale cohomology and gave a nontechnical description of what would
be expected for a category of mixed motives.

The final part of the session was dedicated to organize the schedule of the seminar and to
propose the different speakers. Due to the different background of the audience we decided to
have two preliminary sessions on Grothendieck Topologies and Derived Categories.

Second session: Grothendieck Topologies.

We reviewed basic material on Grothendieck topologies, which are a fundamental prerequisite
for Voevodsky’s construction of the derived category of motives. De Rham’s theorem identifies
singular cohomology of a nice enough topological space with sheaf cohomology for the constant
sheaf. This does not work for the Zariski topology, and suggests that if one wants to construct
meaningful cohomologies as sheaf cohomology of some constant sheaf, one should generalize the
concept of topology. This leads to the formal definition of Grothendieck topology, the definition
using covering families, and the properties of the category of sheaves for such a topology were
discussed.

We emphasized the relation between the big and small Grothendieck sites, and how one can
embed the category of schemes into the category of sheaves on the big site Sch/k for any sub-
canonical Grothendieck topology, as this idea plays a major role in Voevodsky’s constructions.
Finally we discussed the definitions of the three main topologies we needed: Zariski, Étale and
Nisnevich, together with the notion of points for all of them.

Third session: Derived categories.

The session consisted of a quick review of derived and triangulated categories following the clas-
sical book by Gelfand and Manin, [GM]. Derived categories where introduced as the localization
category of a category of complexes in an abelian category by the class of quasi-isomorphisms.
The two basic results presented where the equivalence with the localization of the homotopy
category of complexes, and the subsequent calculus of fractions, and the equivalence with the
homotopy category of complexes of injective objects, with suitable bounding hypothesis.
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As for triangulated categories, we discussed the Verdier quotient of a triangulated category
T by a thick subcategory N and the representation of a quotient as a suitable triangulated
subcategory of T as given by the following result, (see Bousfield’s localization, [N]).

Theorem 1. Let T be a triangulated category and N a thick subcategory. The quotient functor
π : T −→ T /N admits a right adjoint if and only if for every object T in T there is a
distinguished triangle

TN −→ T −→⊥N T −→ ΣT.

In this case, the induced quotient functor on local objects

⊥N ⊂ T −→ T /N ,

is an equivalence of categories.

We also talked about t-structures on a triangulated category.

Fourth session: From Grothendieck classical motive to mixed motives.

We began by reviewing the classical theory of rational motives as introduced by Grothendieck.
We defined the category of correspondences CSmProj/k whose objects are the smooth pro-
jective varieties and the morphisms from an irreducible X to Y are given by the rational Chow
groups CHdX (X × Y ) ⊗ Q, where dX = dimX; then we described the pseudo-abelianization
to obtain the category of effective rational motives CHM eff (k). Finally we introduced the
Lefschetz motive L and its inversion to obtain the category of rational motives CHM(k) and
the contravariant functor

SmProj/k −→ CHM(k),

and established its universal property factorizing Weil cohomologies.

We also reviewed the standard conjectures and using them to modify the commutativity iso-
morphism in CHM(k), we enunciate the following result:

Theorem 2. Assume there is a Weil cohomology H∗ satisfying the standard conjectures. Let
CHMnum(k) be the category of motives relative to numerical equivalence, with the modified
product. Then CHMnum(k) is a semisimple tannakian category over Q, the functor

h : SmProj/k −→ CHMnum(k),

is a universal cohomology theory, and

H∗ : CHMnum(k) −→ Vect∗Q,

is a fibre functor.

The second part of the session was dedicated to introduce Beilinson’s conjectures on the exis-
tence of ”derived” categories of mixed motives DMM(X) for all smooth varieties X over a field
k; this categories should satisfy the formalism of Grothendieck’s six operations. The category
DMM(k) would be the category of derived mixed motives and would have a natural t-structure
whose heart MM would be the category of mixed motives.
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Associated to the categories DMM(X), we considered two cohomology theories: denote by 1
the constant sheaf for the unit in the category of pure motives and by π : X −→ Spec k the
structural morphism, then we have

• the geometric cohomology: h∗
MM(X) = R∗π∗(1X), which is a graded object in MM.

• the absolute cohomology: H∗
MM(X) = R∗Γ(X,1X) which is a graded abelian group.

These cohomologies should be related by a motivic spectral sequence coming from the chain of
quasi-isomorphisms

RiΓ(X,1X) ∼= HomDMM(X)(1X ,1X [i]) ∼= HomDMM(k)(1, Rπ∗1X [i]) = RΓ(1, Rπ∗1X).

Fifth session: The category of mixed realizations.

As a first approximation to the construction of the triangulated categories DMM(X), we dedi-
cated the session to the triangulated category of mixed realizations introduced by Huber, [H],
following basic ideas of Deligne and Jannsen who have introduced the tannakian category of
mixed realizations RM. We began by recalling the three basic realization functors taking part
in the definition: singular cohomology, De Rham and Hodge theory and ℓ-adic cohomology;
using the Leray spectral sequence to define the filtered complexes associated to open smooth
varieties and Deligne’s simplicial hyperresolutions for the general case. From this examples we
constructed the derived category of mixed realizations DMR by a gluing process of categories
as the one introduced by Beilinson in his study of absolute Hodge cohomology.

Theorem 3. The category DMR(k) is a tensor triangulated category. It has a t-structure with
heart MR.

There is a contravariant functor

RMR : SmProj(k) −→ DMR(k).

Obviously, the functor RMR is universal for the cohomology theories involved in the construction
of DMR(k).

The absolute cohomology H∗
MR(X, j) is defined as hom groups in DMR(k) and it comes as

no surprise that the Hodge and ℓ-adic realizations of this cohomology are Beilinson’s absolute
Hodge cohomology and Jannsen’s continuous ℓ-adic cohomology, respectively. Moreover, we
have:

Theorem 4. The functor RMR induces a contravariant functor

CHM(k) −→ DMR(k).

Sixth session: Triangulated category of mixed motives.

In accordance with Deligne’s remark, it is easier to look for a derived category of mixed motives
rather than to the category of mixed motives. Following Voevodsky, (see [VSF]), to define this
category we imposed several conditions:
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(1) In order to have good set theoretical constructions, we use Grothendieck’s classical idea
of identifying schemes with the functor they define on Sm/k via the Yoneda embedding.

(2) As we want to work with singular motives, we look for a homology presentation, rather
than a cohomological one. In this respect, the classical Dold-Thom theorem assures that
for a CW -complex there is an isomorphism H∗(X;Z) ∼= π∗(S

∞X), where S∞X is the
infinite symmetric power of X. The substitute of this product in the algebraic setting
will be the presheaf Ztr(X), which is the free presheaf generated by X in the category
of finite correspondences Cork.

(3) We impose the Mayer-Vietoris property, taking sheaves in a convenient topology. As
the Zariski topology is not compatible with transfers, we take the Nisnevich topology on
Sm/k.

(4) We impose homotopy invariance.

From the property (2) it follows immediately that for any smooth X and any F ∈ ShNis(Cork)
we have natural isomorphisms

ExtiShNis(Cork)
(Ztr(X), F ) ∼= H i

Nis(X,F ), i ≥ 0.

With all these preliminaries, we define the triangulated category of mixed motives as

DM eff,−
Nis (k) := D−(ShNis(Cork))[W

−1
A ],

where WA is the class of morphisms whose cone is in the thick localizing subcategory generated
by the complexes Ztr(X × A1) −→ Ztr(X).

Moreover, starting with the product

Ztr(X)⊗ Ztr(Y ) = Ztr(X × Y ),

a tensor structure ⊗tr was introduced in DM eff,−
Nis (k), so that we obtained a tensor triangulated

category.

Sending a smooth variety X to Ztr(X) defines a covariant functor M : Sm(k) −→ DM eff,−
Nis (k).

Seventh session: The fundamental technical result.

The Verdier quotient defining DM eff,−
Nis (k) admits Bousfield localization. The right adjoint can

be concretely defined as TotC∗(K) where K is a complex of presheaves with transfers and the
functor C∗ sends a single presheaf with transfers to the (chain) complex of presheaves

CnF (U) = F (U ×∆n).

The functor TotC∗ induces an equivalence between the derived category of effective motives
DM eff,−

Nis (k) and the subcategory of A1-local complexes of sheaves LA1 ⊂ C−(ShNis(Cork)).

Now, there are two fundamental results, one characterizing the A1-local complexes of sheaves,
and the other relating Nisnevich and Zariski hypercohomologies for such A1-local complexes.

Theorem 5. Let k be a perfect field. A presheaf with transfers F is homotopy invariant if, and
only if all its cohomology presheaves X 7→ Hn(X,FNis) are homotopy invariant.
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A consequence of this is that A1-local complexes are exactly the complexes with homotopy
invariant cohomology sheaves.

Theorem 6. Let F be a homotopy invariant presheaf with transfers. If F (E) = 0 for every
field E, then FZar = 0.

Note that in general, sheaf theory would say that FZar = 0 if, and only if F (S) = 0 for every
local scheme S. The homotopy invariance hypothesis allows us to check only for fields (generic
points of the local S). This allows us to transfer results from the Nisnevich to the Zariski
topology. For instance, if a homotopy invariant presheaf with transfers F is such that FNis = 0,
then F (E) = 0 for every field, as the fields are Henselian, and then FZar = 0 by the theorem.

One then defines the complexes of sheaves Z(n) as

Z(q) = C∗(Ztr(Pq)/Ztr(Pq−1))

which can be motivated either homotopically, or looking at the decomposition of the Chow
motive of Pn via the decomposition of the diagonal. This leads to the definition of motivic
cohomology:

Hn(X,Z(q)) = HomDMeff,−
Nis (k)(Ztr(X),Z(q)).

When X is smooth, by the previous technical results this coincides with Zariski hypercohomol-
ogy, that is

Hn(X,Z(q)) = Hn
Zar(X,Z(q)).

Eighth session: Weight one motivic cohomology; Chow groups.

The motivic complexes Z(q) can be expressed in a different form involving smash products of
multiplicative groups, which sometimes is more convenient. We define Ztr(G∧q

m ) as the cokernel⊕
i

Ztr(G×q−1
m ) → Ztr(G×q

m ) → Ztr(G∧q
m ) → 0

where the first map is the sum of the inclusions that put the marked point 1 at position i and
the identity everywhere else.

Proposition 7. There is a quasi-isomorphism of complexes of Zariski sheaves

Z(q) ≃ C∗Ztr(G∧q
m )[−q].

Using this version of Z(q) and a spectral sequence argument, it is easy to prove that the motivic
cohomology groups Hn(X,Z(q)) vanish for n > q + dimX.

One can give a rather explicit model for Z(1) which allows to do explicit computations of motivic
cohomology in weight one.

Theorem 8. There is a quasi-isomorphism of presheaves with transfers

Z(1) ≃ O∗[−1].
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This can be shown from an explicit computation of the kernelM∗(P1, 0,∞) in the exact sequence
of presheaves with transfers

0 → M∗(P1, 0,∞) → Ztr(A1 \ 0) → Z⊕O∗ → 0

and showing it is acyclic.

We also discussed the relation of motivic cohomology with Bloch’s higher Chow groups. We
proved that the groups CH i(X, j) are compatible with finite correspondences and hence they
define a presheaf with transfers; this is not evident, since the complexes zi(X, j) which are used
to define these groups are not presheaves with transfers. The main result is:

Theorem 9. For any smooth projective variety over a field k of characteristic zero there are
isomorphisms

Hn(X,Z(i)) ∼= CH i(X, 2i− n),

for any n, i.

As an easy consequence we deduce that

Hn(X,Z(i)) = 0, n > 2i.

Moreover, it follows that H2i(X,Z(i)) = CH i(X). In fact we have:

Theorem 10. Sending a smooth projective variety X of dimension d to M(X) extends to a
full embedding

i : CHM eff (k)op −→ DM eff,−
Nis (k),

such that

i(h(X)(−r)) = M(X)(r).

Ninth session: Triangles in the triangulated motivic category.

Triangles in the derived categoryDM eff,−
Nis (k) give rise to long exact sequences of abelian groups,

just taking Hom(−, F ). This produces long exact sequences for every theory representable in

DM eff,−
Nis (k), like motivic cohomology or étale cohomology. Some interesting triangles and

isomorphisms in DM eff,−
Nis (k) are the following:

(1) Homotopy Invariance: This property was essentially forced by definition. for every
variety X one has an isomorphism

M(X) ≃ M(X × A1).

(2) Mayer-Vietoris: This is the second property forced by definition. For every X and
Zariski open cover U, V ⊂ X, there is the following exact triangle.

M(U ∩ V ) → M(U)⊕M(V ) → M(X) → M(U ∩ V )[1]

(3) Vector bundles: The previous two properties together easily imply that for any vector
bundle E → X, the induced map on motives is an isomorphism, that is, M(E) ≃ M(X).
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(4) Projective bundles: Another related result is a projective bundle formula. For a
vector bundle E → X of rank r + 1, we have the isomorphism

M(PE) ≃
r⊕

i=0

M(X)⊗ Z(i)[2i].

(5) Blow-up’s: There is also a blow-up formula. Assume the base field k satisfies resolution
of singularites. Take a pullback square

Z ′ //

��

X ′

p

��
Z

i // X

such that p is proper, i is a closed embedding and the restriction of p to the open
complement of Z is an isomorphism. This is called an abstract blow-up. Then there is
an exact triangle

M(Z ′) → M(X ′)⊕M(Z) → M(X) → M(Z ′)[1].

This follows from the homotopy invariance property, which gives the triangles Nisnevich
locally, and a Nisnevich version of the Mayer-Vietoris property used to glue the local
triangles together.

(6) Gysin: For a smooth variety X and a smooth closed subvariety Z ⊂ X of codimension
c, there is a Gysin exact triangle

M(X \ Z) → M(X) → M(Z)(c)[2c] → M(X \ Z)[1].

Tenth session: The étale version of all this stuff.

We begun with the observation that the étale topology is compatible with finite correspondences,
so there is an étale topology on Cork and, for any ring R, it makes sense to define

DM eff,−
ét (k;R) := D−(Shét(Cork);R)[W−1

A ].

In order to characterize the A1-local étale complexes we distinguished two separate cases:

1st case: R = Z/n, with n prime with the characteristic of k.

In that case Suslin’s rigidity theorem for torsion sheaves allows one to characterize A1-local com-
plexes as the complexes of étale sheaves of Z/n-modules with homotopy invariant cohomology

sheaves. From this, it follows that the category DM eff,−
ét (k;Z/n) is equivalent to the category

of A1-local complexes L(Z/n)A1 . Even more, applying once more Suslin’s rigidity theorem, we
proved the following result:

Theorem 11. Let G = Gal(ksep/k) and D−(G,Z/n) the derived category of Z/n-modules with
a G-action. Then the natural functors

D−(G,Z/n) −→ LA1 −→ DM eff,−
ét (k;Z/n),

are equivalences of tensor triangulated categories.
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2nd case: R = Q.

An easy argument with spectral sequences permits to prove that for any smooth variety X and
any homotopy invariant complex of Q-modules of étale sheaves with transfers F there is an
isomorphism

H∗
ét(X,F ) ∼= H∗

Nis(X,F ).

According to this isomorphism, one can use the fundamental theorem 5 to characterize the
A1-local complexes in C−(Shét(Cork,Q)) and deduce an equivalence of categories

L(Q)A1
∼= M eff,−

ét (k;Q).

Moreover, as the the sheaves Ztr(X) generate M eff,−
ét (k;Q) and the morphism from them to a

complex F are given by cohomology groups H∗
ét(X,F ), one easily deduces:

Theorem 12. The functor π : (Sm/k)ét −→ (Sm/k)Nis, induces an equivalence of categories

π∗ : DM eff,−
Nis (k;Q) ∼= DM eff,−

ét (k;Q).

We also treated the étale version of the motivic sheaves Z(n) and proved that by general homo-
logical methods one can extend the quasi-isomorphism µn −→ Z/n(1), which is the analogous
of Theorem 8 with finite coefficients, to a quasi-isomorphism of complexes of sheaves

µ⊗r
n −→ Z/n(r).

As a consequence we deduced the ismorphism between the étale motivic cohomology and the
ordinary étale cohomology when taken with finite coeffcients:

Theorem 13. For any smooth k-variety, there is a natural isomorphism

H∗
ét(X,Z/n(r)) ∼= H∗

ét(X,µ⊗r
n ).

Finally we presented informally the Beilinson-Lichtenbaum conjectures relating motivic coho-
mology with finite coefficients to étale cohomology, and also its relation to the Bloch-Kato
conjecture.
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