
UNIVERSITAT POLITÈCNICA DE CATALUNYA

LOOP PIPELINING WITH
RESOURCE AND TIMING

CONSTRAINTS

Autor: Fermín Sánchez

October, 1995

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A
BENCHMARK LOOPS

A.I HIGH-LEVEL SYNTHESIS

We have chosen six known examples in HLS in order to show the results obtained by the method-
ologies proposed in this work. The examples have been used to compare the results obtained by
the methodologies explained in Chapters 6, 7 and 8 with the results obtained by other approaches.

A. 1.1 Cytron example

The first benchmark is the Cytron's example proposed in [Cyt84] and depicted in Figure A.l(a).
The example consists of a data dependence graph (DDG) with 17 instructions and 21 data de-
pendences: 15 ILDs and 6 LCDs of distance 1. All instructions are sums which can be executed
in one cycle.

A. 1.2 Differential equation

The second benchmark was taken from [PKG86]. It is the resolution of the differential equation
(DE):

y" + 3 • x • y' + 3 • y = 0

163

164 APPENDIX A

Figure A.I (a) Cytron's example (b) Differential Equation

while (x < a) do
xl :— x + 6x ;
ul :— u — (3 • x • u • 6x) — (3 • y • Sx);
yl :=y+(u-Sx);
x := xl;
u := ul;
y.= y l ;

Figure A.2 Algorithmic description of the differential equation

The algorithmic description of the solution is sketched in Figure A.2.

The DDG corresponding to the loop body is shown in Figure A.l(b). It consists of 11 instructions
and 15 data dependences: 8 ILDs and 7 LCDs of distance 1. The instructions are 6 multiplications
(A,B,C,F,G,H), 2 additions (I,J), 2 subtractions (D,E) and 1 comparison (K). For the sake of
comparing the results to other approaches, we will assume that a multiplication takes 2 cycles and
can be executed in a multiplier (not pipelined), while additions, subtractions and comparisons
take 1 cycle and can be executed in the same ALU.

A. 1.3 16-Point Digital FIR Filter

The 16-Point Digital FIR Filter (FIR) was proposed by Park and Parker in [PP88]. Figure A.3
shows the initial 7r-graph. It consists of 23 instructions (15 additions and 8 multiplications) and
22 ILDs. Note that this example does not contain loop carried dependences.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Benchmark loops 165

Figure A.3 16-Point Digital FIR Filter

The approaches proposed by other authors assume that an addition takes half the time of a
multiplication, and a multiplication takes a cycle. Therefore, an addition and a multiplication can
both be executed in a cycle. Two additions may be chained in the same cycle, which may reduce
the length of the schedule.

Since our model does not permit chaining, we will use an architecture which allows us to compare
our results with those obtained by other approaches. By assuming that an addition can be executed
in a single cycle and a multiplication in two cycles in a not-pipelined multiplier, we can compare our
technique with the other approaches. Note that we assume that our cycle is half of that assumed
by other approaches. However, for the sake of comparing our results with those obtained by other
techniques, results show in this work are given from the point of view of the other approaches (two
additions can be chained in a single cycle, and one cycle in the tables is equivalent to two cycles
in our approach).

Note that both architectures are not completely equivalent. We permit a multiplication to start
at an odd cycle (cycles are numbered from 0), whilst this is impossible in the other approaches,
since it would mean that the multiplication started at the middle of the cycle.

A.1.4 Fifth-Order Elliptic Filter

This benchmark is the Fifth-Order Elliptic Filter (FOEF) from [KWK85]. The DDG consists of
8 multiplications and 26 additions. There are 11 LCDs of distance 1 and 47 ILDs. Figure A.4(a)
shows the DDG. For the sake of clarity, only multiplications have, been labelled in the nodes.
Unlabelled nodes are additions. We assume an addition takes one cycle and a multiplication takes
two cycles. The critical path of the Fifth-Order Elliptic Filter can be reduced by performing tree
height reduction [HC89] over additions A, B, C, D and E. Figure A.4(b) shows the instructions
A, B, C, D and E after tree height reduction.

Other transformations, such as redundant instruction creation [LP91], can be performed in the
DDG in order to further reduce the critical path. However, for the sake of comparing the results
with a wider set of other techniques, in this work we will use the ?r-graph from Figure A.4(a). We
will show the results obtained by using pipelined an non-pipelined multipliers.

166

Figure A.4 Fifth-Order Elliptic Filter
(a) Data dependence graph
(b) Additions A, B, C, D and E after tree height reduction

APPENDIX A

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
1
I
I
I
i
I
I
I
I
I
I
I
I
I
I

Benchmark loops 167

Figure A.5 Fast Discrete Cosine Transform Kernel

A. 1.5 Fast Discrete Cosine Transform Kernel

This benchmark example is the Fast Discrete Cosine Transform kernel (FDCT) from [MD90]. The
DDG consists of 16 multiplications, 13 additions and 13 subtractions, besides of 52 ILDs. Figure
A.5 shows the DDG of the FDCT.

Note that the DDG does not contain any loop carried dependence, and thus Mil is constrained
only by the resources. For the sake of comparing the obtained results with other techniques, we
assume that a multiplier, an adder and a subtracter take one cycle.

A.2 SUPERSCALAR AND VLIW PROCESSORS

We have selected a set of 24 benchmark loops from assorted scientific programs such as Livermore
Loops, SPEC, Linpack and Whetstone. We will compare the results obtained by the methodologies
proposed in Chapters 6, 7 and 8 to the results obtained by other approaches.

The DDG of the floating point instructions in each loop has been obtained from a modified
Paraphrase compiler [GHL+91]. The proposed examples have been borrowed from [GAG94]. The
different types of instructions involved into the loops are the following:

• additions, subtractions and moves, which are executed in a float point adder.

• loads and stores, which are executed in a load/store unit.

168 APPENDIX A

Application
Program

SPEC-SPICE

SPEC-DODUC

Loopl
Loop2
LoopS
Loop4
LoopS
Loop6
Loop 7
LoopS
LooplO

Loopl-f
Loop3
Loop?

Ops

2
9
4
12
2
6
5
4
4

12
11
4

Depend.
ILD

1
9
4
24
1
5
4
3
3

9
10
3

LCD

1
1
1

28
1
2
2
1
1

5
1
1

RecMII

1
1
6
10
2
2
0
0
3

20
20
1

SPEC-FPPPP I Loopl 20

Liverniore
Loopl
LoopS
Loop23

9
5

20

8
4
20

1
1

5+1(2)

0
3
8

Linpack Loopl

Whetstone

Loopl
Loop2
LoopS
'Cyclel
Cycle2
Cycle4
CycleS

16
7

... 5 ..
4
4
4
4

18
7

,,-14
3
3
3
3

10
3

. 6 .
1

1(2)'
1(4)
1(8)

17
6

. 5 . . .
4
2
1
1
5

Table A.I Benchmark loops for superscalar and V.LIW processors

divisions, which are executed in a float point divisor,

multiplications, which are executed in a float point multiplier.

For the sake of future comparisons with other published results, we assume a unit result latency
for add, subtract, store, and move instructions, a result latency of 2 for multiply and load, and a
result latency of 17 for divide. We also assume that all the functional units are fully pipelined.
Although this assumption is not realistic for divisors, we follow it here for the sake of future
comparisons with other approaches.

Table A.I shows the number of nodes (Ops) and data dependences (ILDs and LCDs) of each
benchmark. In general, the distance, of LCDs is one. When the weight of some LCDs is greater
than one, it is expressed in brackets. The minimum initiation interval calculated by assuming
infinite resources is also shown in the table.

For the sake of illustrating the complexity of these loops, some of them are depicted in Figure
A.6. Instructions are labelled with the operators which they represent. "C" expresses a copy
instruction, "L" a load and "S" a store.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Benchmark loops

Figure A.6 Some examples of DDGs
(a) SPEC-SPICE Loop 6
(b) SPEC-FPPPP Loop 1
(c) Whetstone Loop 2
(d) SPEC-DODUC Loop 3
(e) Whetstone Cycle 2
(f) Livermore Loop 5

169

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

B
EXPERIMENTAL RESULTS FOR UNRET

B.I HIGH-LEVEL SYNTHESIS

We will compare the results obtained by UNRET for the different examples with the Force Directed
Scheduling (FDS) [PK89a] and the Force Directed List Scheduling (FDLS) [PK89b] by Paulin and
Knight, running in the HAL system1 [PKG86]; pipelined synthesis (PLS) [HHL91] by Hwang,
Lee and Hsu; the Percolation Based Synthesis (PBS) by Potasman, Lis, Nicolau and Gajski
[PLNG90]; the rotation scheduling (RS) by Chao and LaPaugh [CL92]; the Software Package for
Synthesis of Pipelines from Behavioral Specifications (SEHWA), by Park and Parker [PP88]; the
microcode compiler ATOMICS integrated in the CATHEDRAL II compiler (ATM) [GRVD87,
GVD89, GRVD90] by Goossens, Vandewalle and De Man; the Integer Linear Approach ALPS
[HLH91, LHL89] by Hwang, Lee and Hsu; an approach based on Iterative Refinements of Initial
Solutions (IRIS) [MD90] by Mallon and Denyer; the Theda.Fold (TF) algorithm, by Lee, Wu,
Gajski and Lin [LWGL92, LWLG94] and, finally, an approach based on the Multiple Exchange
Pair Selection (MEPS) [PK91], by Park and Kyung.

UNRET significantly improves some results obtained by the above mentioned approaches, achiev-
ing optimal schedules in most cases. Since ALPS is an integer linear programming approach, its
results are time-optimal. UNRET finds schedules with the same initiation interval as ALPS for
all cases.

1 HAL does not perform loop pipelining.

171

172 APPENDIX B

FUs

CO

6
5
4
3

Mil

3
3

17/5
17/4
17/3

Algorithms
PBS

3
3
4
5
6

ATM
3
3
4
5
6

PLS
3
3
4
5
6

TF

3
3
4
5
6

UNRET

3
3

17/5
17/4
17/3

e = 1
£ = 1

£ = 1

£ = 1

£ = 1

(UK,K)

(3,1)
(3,1)

(17,5)
(17,4)
(17,3)

T
(secs)

0.11
0.15
2.18
1.20
0.75

Table B.I Cytron's example

FUs
*

3
2
2

ALUs
2
2
1

Mil

6
6
6

Algorithms
FDS

6
7
-

ALPS

6
7
-

MEPS

6
7
-

UNRET

6
6
6

£ = 1

£ = 1

£ = 1

(HK,K)

(6,1)
(6,1)
(6,1)

T
(secs)

0.06
0.08
0.11

Table B.2 Differential Equation

Moreover, some results are improved because the schedule is overlapped (see table B.2). By initially
unrolling the loop, significant improvements over other techniques have also been obtained (see
tables B.I, B.3 and B.6).

Tables of results show in the first columns the different number of available resources. Following
the resources, the minimum initiation interval computed for each resource-constraints is specified.
The following columns show the initiation interval .achieved by the different approaches. The
schedule efficiency ratio obtained by UNRET (obtained throughput / optimal throughput) is
shown on the right of the found initiation interval. The penultimate column shows the number of
times the loop has been unrolled by UNRET (K) and the number of cycles of the found schedule
(UK). The last column shows the CPU time (T) required to find the schedule when using the
retiming-and-scheduling algorithm without time optimization.

B.I.I Cytron example

The schedule has previously been reported by ATM, PBS, PLS and TF. Table B.I shows the
results for different number of resources. Note that UNRET achieves the minimum initiation
interval for each case, improving the results obtained by other approaches which previously do
not unroll the loop.

B.I.2 Differential equation

We compare the obtained results to FDS, ALPS and MEPS. Tablé B.2 shows the results obtained
by the different approaches. Note that the loop has not been unrolled for any resource constraints.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Experimental results for UNRET 173

(a)

11=6

MUL1

F|

HI

G,

MUL2

(B ,)
X

Ci

(B 0

ALU

E(>

K«

Jl

II

Dl

MUL MUL ALU

time

(b)

Figure B.I Differential equation
(a) Schedule for 2 multipliers and 1 ALU
(b) Shape of the overlapped schedule

(c)

We would like to draw attention to the schedule obtained by using two multipliers and 2 ALUs.
Even when the number of available ALUs is reduced to 1, UNRET is still able to execute an
iteration in only 6 cycles. This is because of the power of the overlapped schedule, as shown in
Figure B.I. Figure B.l(a) shows the schedule found for 2 multipliers and 1 ALU, and Figure
B.l(b) shows the shape of this overlapped schedule. Note that part of BÍ and BÍ+\ is executed in
the schedule. The behavior is similar to a functional-pipelining data path.

B.I.3 16-Point Digital FIR Filter

For the reason explained in Appendix A, results of this benchmark will be given by assuming that
two additions may be chained in a single cycle, and a multiplication takes one cycle. Note that
two cycles of UNRET are equivalent to one cycle in the previous assumption.

Comparisons are provided to SEHWA, HAL, TF and MEPS. Table B.3 shows the results obtained.
In the column fourth, SEH denotes the exhaustive feasible scheduling of SEHWA, and HAL the
Force Directed Pipelined Scheduling.

174 APPENDIX B

FUs
*

8
4
3
3
2
2
1
1

+

15
8
6
5
4
3
2
1

Mil (us)

1
2

8/3
8/3

4
5
8
15

Algorithms
SEH

-
-
3
3
-
-
-
-

HAL
-
-
-
3
-
-
-
-

TF
1
2
3
3
4
5
8
15

MEPS | UNRET
-
-
3
3
-
-
-
-

1
2

8/3
8/3

4
5
8
15

£ = 1

£ = 1

£ = 1

£ = 1

£ = 1

E = 1

£ = 1

£ = 1

(llK,K)

(1,2)
(1-4)
(8,6)
(8,6)
(1-8)
(1,10)
(1,16)
(1,30)

T
(secs)
0.38
0.26
1.68
1.78
0.21
0.21
0.21
0.21

Table B.3 16-Point Digital FIR Filter

FUs
+
3
3
2
2

*

3
2
2
1

Mil

16
16
16
16

Algorithms
PLS

-
16
-

19

PBS
17
18 .
18
21

TF

16
16
17
19

ALPS
-
16
17
19

RS
16
16,
17
19

UNRET
16
16
17
19

E = 1

£ = 1

e = 0.94
£ = 0.84

(UK, K)

(16,1)
(16,1)
(17,1)
(19,1)

T
(secs)
0.66
0.66
1.78
4.33

Table B.4 Fifth-Order Elliptic Filter with Non-Pipelined Multipliers

B.1.4 Fifth-Order Elliptic Filter

Table B.4 shows the results when non-pipelined multipliers are used. The obtained schedules are
compared to PLS, PBS, TF, ALPS, and RS,

Note that when two adders and 1 multiplier are available, no approach achieves a schedule in the
previously computed Mil = 16. Thé initiation interval achieved by PLS, TF, UNRET and RS
is 19. In this case, the Mil is constrained by the topology of the dependences. We claim this
because ALPS is an integer linear approach which finds the optimal solution for each case (the
same happens when 2 adders and 2 multipliers are available).

Table B.5 shows the results when pipelined multipliers are used. ' The obtained schedules are
also compared to PLS, PBS, TF, ALPS and RS. Note that when 1 adder and 1 multiplier are
available, no approach achieves a schedule in the expected minimum initiation interval Mil = 26.
The initiation interval achieved by PLS, TF, UNRET a,nd ALPS, is IT = 28. The situation is the
same as in the case of non-pipelined multipliers with two adders and 1 multiplier. That is, Mil is
constrained by the topology of the dependences.

B.I.5 Fast Discrete Cosine Transform Kernel

Table B.6 shows the results obtained by different approaches and compares them to UNRET. The
results achieved by UNRET in this benchmark have previously been reported by SEHWA, PLS
and TF. Note also that UNRET produces results that are equal to or better than the best of the
previous approaches. For example, for the 1st, 3rd and 4th row, UNRET achieves better results

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Experimental results for UNRET 175

FUs
+
3
3
2
1

*

2
1
1
1

Mil

16
16
16
26

Algorithms
PLS

-
16
17
28

PBS

17
18
19
-

TF | RS
16
16
17
28

16
16
17
-

ALPS
-
-

17
28

UNRET

16
16
17
28

E = 1
£ = 1

£ = 0.94
£ = 0.92

(UK, K)

(16,1)
(16,1)
(17,1)
(28,1)

T
(secs)
0.68
0.68
1.86
3.83

Table B.5 Fifth-Order Elliptic Filter with Pipelined Multipliers

FUs
+

5
4
3
3
2
1

-

5
4
3
3
2
1

*

6
4
4
3
2
1

Mil

8/3
4

13/3
16/3

8
16

Algorithms
SEHWA

-
4
5
6
10
17

PLS

3
4
5
6
10
17

TF

3
4
5
6
8
17

UNRET
8/3

4
22/5
16/3

8
16

£ = 1

£ = 1

£ = 0.98
£ = 1

£ = 1

£ = 1

(UK,K)

(8,3)
(4,1)

(22,5)
(16,3)
(8,1)
(16,1)

T
(secs)
13.6
1.43
36.5
14.7
1.06
1.13

Table B.6 Fast Discrete Cosine Transform

due to the ability of unrolling the loop. For the 6th row UNRET achieves the Mil (16 cycles)
without unrolling by scheduling only one iteration of the loop, while the remaining techniques
require 17 cycles. Third row of Table B.6 shows how the exploration of Farey's series is useful for
finding good schedules. Note that an optimal schedule is not found, but the exploration of Farey's
series allows us to find a good schedule (e = 0.98).

B.2 SUPERSCALAR AND VLIW PROCESSORS

By using the set of 24 benchmark loops proposed in Appendix A, we compare the results obtained
by UNRET with the results obtained by Huff's slack scheduling (SLACK) in [Huf93], Wang
and Eisenbeis' FRLC [WE93b, WE93a], Gasperoni and Schwiegelshohn's modified list schedul-
ing (MLS) [GS91], Govindarajan, Altman and Gao's SPILP [GAG94] and LLosa, Valero and
Ayguade's HRMS [LVA95]. All the methods use heuristics to find the schedule except SPILP,
which uses an ILP formulation.

In order to make the comparisons, we will assume an architecture with 1 FP adder, 1 FP multiplier,
1 FP divisor and 1 load/store unit. The results obtained by SLACK, FRLC, MLS and SPILP
have been previously reported in [GAG94] by using a Sparc-10/40 workstation. We have used the
same type of machine to measure the time required by UNRET . The results from MS have been
obtained from [LVA95]. For each benchmark, Table B.7 shows the initiation interval (IT) of the
schedule found by each approach and the time required to find the schedule (T).

Table B.8 shows the results obtained by UNRET . The £ coefficient obtained for each benchmark
and the pair (íí/<-,/í) representing the found schedule are shown in the last columns. Note that
no unrolling has been necessary to obtain optimal schedules. As SPILP, UNRET obtains the Mil

176 APPENDIX B

Application
Program

SPEC
SPICE

SPEC
DODUC

Loopl
Loop2
LoopS
Loop4
LoopS
Loop6
Loop?
LoopS
LooplO

Loopl-f
LoopS
Loop?

SLACK
II
1
7
6
12
2
3
3
5
3

20
20
2

T
0.01
0.03
0.02
0.10
0.02
0.03
0.03
0.03
0.02

0.03
0.03
0.01

FRLC
II

2
6
6
12
2
17
17
3
3

20
20
18

T
0.02
0.03
0.02
0.03
0.02
0.03
0.01
0.02
0.02

0.03
0.03
0.03

MLS
II

2
7
6
11
2
17
17
4
3

22
24
18

T
0.00
0.00
0.00
0.06
0.02
0.02
0.02
0.02
0.02

0.07
0.03
0.02

SPILP
II
1
6
6
11
2
2
3
3
3

20
20
2

T
0.82
12.4
0.72
3.60
0.70
7.67
0.70
3.15
1.88

4.35
1.03
0.7

HRMS
II
1
6
6
11
2
2
3
3
3

20
20
2

T
0.01
0.03
0.01
0.20
0.00
0.03
0.00
0.02
0.02

0.03
0.00
0.00

SPEC-FP. Loopl 20 0.03 20 0.02 20 0.03 20 0.93 20 0.02

Livermore
Loopl
Loop5
Loop23

5
3
9

0.05
0.05
0.13

4
3
9

0.02
0.02
0.12

5
3
13

0.03
0.03
0.10

3
3
9

1.97
0.73
233

3
3
9

0.02
0.02
0.05

Linpack Loopl 0.02 0.02 0.03 2.62 0.00

Whetstone

Loopl
Loop2
Loop3
Cyclel
Cycle2
Cycle4
CycleS

18
7
5
4
4
4
4

0.17
0.03
0.03
0.02
0.02
0.01
0.02

18
17
5
4
4
4
4

0.08
0.03
0.02
0.02
0.02
0.03
0.02

19
19
5
4
4
4
4

0.10
0.03
0.02
0.02
0.02
0.02
0.01

17
6
5
4
4
4
4

4.25
2.05
0.73
Q.75
1.87
1.85
1.77

17
6
5
4
4
4

. 4

0.02
0.03
0.00
0.00
0.00
0.00
0.00

Table B.7 Results obtained by other approaches for superscalar processors by using an archi-
tecture with 1 FU of each type . ,. :

for all cases except for SPEC-SPICE loop'4. Since SPILP is an ILP approach, it obtains optimal
results, and therefore we conclude that no schedule exists in the calculated Mil. Note also that
two results are shown for SPEC-SPICE loop 4. The only difference between them is the time
required to find the schedule. The first result has been computed by using M axil — 15. The
result labelled (*) has been computed by using MaxII — 50.

Table B.9 shows the results obtained by using an architecture composed of 3 FP-adders, 2 FP-
multipliers, 1 FP-divisor and 2 load/store units. Results are compared to HRMS. HRMS obtains
results similar to SPILP but using less time; as shown in Table B.7. Table B.9 shows that UNRET
obtains the same results as HRMS for the same unrolling degree. However, the utilization of the
optimal unrolling degree improves the results achieved by HRMS in 21 per cent of all cases. This
is because, in general, systems which do not perform unrolling try to find a schedule in |~MÍÍ]
cycles when Mil is not an integer. Note that optimal schedules are found in all cases. Therefore,
Farcy's series do not require to be explored.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Experimental results for UNRET

Application
Program

SPEC-SPICE

SPEC-DODUC

[SPEC-FPPPP

Livermore

1 Linpack

Whetstone

Loopl
Loop2
LoopS
Loop4

Loop4 (*)
LoopS
Loop6
Loop?
LoopS

LooplO
Loopl-f
LoopS
Loop?

Mil

1
6
6
10
10
2
2
3
3
3

20
20
2

UNRET
II
1
6
6
11
11
2
2
3
3
3

20
20
2

Loopl || 20 || 20
Loopl
LoopS
Loop23

3
3
9

3
3
9

Loopl || 2 || 2
Loopl
Loop2
Loop3
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
4
4
4

17
6
5
4
4
4
4

T
0.06
0.08
0.08
0.96
67.9
0.08
0.21
0.10
0.08
0.08
0.20
0.20
0.11
0.11
0.16
0.06
0.46
0.06
0.31
0.13
0.10
0.05
0.08
0.08
0.08

£

1

1

1

0.91
0.91

1
1
1
1
1

1
1
1

1

1
1
1

1

1
1
1
1
1
1
1

(UK, K)

(1,1)
(6,1)
(6,1)
(11,1)
(",!)
(2,1)
(2,1)
(3,1)
(3,1)
(3,1)
(20,1)
(20,1)
(2,1)
(20,1) ||

(3,1)
(3,1)
(9,1)
(2,1) 1!
(17,1)
(6,1)
(5,1)
(4,1)
(4,1)
(4,1)
(4,1)

177

Table B.8 Results obtained by UNRET for superscalar processors by using an archjtecture with
1 FU of each type. MaxII = 15 for all cases except for (*), in which MaxII = 50.

178 APPENDIX B

Application
Program

SPEC-SPICE

SPEC-DODUC

| SPEC-FPPPP

Livermore

| Linpack

Whetstone

Loopl
Loop 2
LoopS
Loop4
LoopS
Loop6
Loop?
LoopS
Loopl 0

Loopl-f
LoopS
Loop?

Mil

1
2
6
10
2
2

1.5
1.5
3

20
20
2

U N RET
II
1
2
6
10
2
2

1.5
1.5
3

20
20
2

Loopl || 20 || 20

Loopl
LoopS
Loop23

1.5
3
8

1.5
3
8

Loopl || 1 || 1

Loopl
Loop 2
Loop3
Cyclel
Cycle2.
Cycle4
CycleS

17
6
5
4
2

1.33
1.33

17
6
5
4
2 .

1.33
1.33

T
0.01
0.13
0.05
0.41
0.08
0.13
0.21
0.11
0.06

0.21
0.15
0.08

0.10

0.51
0.11
0.38

0.08

0.33
0.11
Q.15
0.06
0.11
0.10
0.11

e

1
1
1
1
1
1
1
1
1

1
1
1

1

1
1
1

1

1
1
1 .
1
1
1
1

(IIK, K)
(1,1)
(2,1)
(6,1)
(10,1)
(2,1)
(2,1)
(3,2)
(3,2)
(3,1)
(20,1)
(20,1)
(2,1)

HRMS
II
1
2
6
10
2
2
2
2
3

20
20
2

(20,1) ü 20

(3,2)
(3,1)
(8,1)

2
3
8

(1,1) II 1
(17,1)
(6,1)
(5,1)
(4,1) .
(2,1)
(4,31
(4,3)

17
6
5.
4
2
2
2

T
0.01
0.05
0.05
0.25
0.01
0.13
0.13
0.03
0.02
0.27
0.20
0.20
0.20
0.03
0.03
0.13
0.03
0.15
0.13
0.03
0.02
0.03
0.02
0.03

£

1

1

1

1

1

1

0.75
0.75

1

1
1
1
1 1

0.75
1
1

1 1
1
1
1
1
1

0.66
0.66

Table B.9 Comparison for an architecture with 3 FP adders, 2 FP multipliers, I FP divisor and
2 load/store units • ' ' " . " '

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1
I
I LOOP PIPELINING
I WITH
• RESOURCE AND TIMING

CONSTRAINTS

Fermín Sánchez

UPC. Universitat Politècnica de Catalunya
Barcelona (Spain). October, 1995

A THESIS SUBMITTED IN FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE

Doctor en Informática

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
i

c
EXPERIMENTAL RESULTS FOR RESIS

C.I HIGH-LEVEL SYNTHESIS

In this section we will use the same examples proposed in Appendix A. For each example we
present four tables. The first one shows some aspects of RESIS in detail. The second table
compares the results obtained by UNRET with the results obtained by other approaches. The
third table presents the register reduction obtained by RESIS in the schedules found by a modulo
scheduling approach. Finally, the fourth table shows the register reduction obtained when only
incremental scheduling is used to reduce the number of required registers.

Tables C.I to C.6 show, for each set of FUs, the Mil, the ÍÍ found by UNRET (UnR) and the
fraction (unrolling degree K / expected II for K iterations) used to generate the schedule are
shown in the first columns. The following two columns show the absolute and relative lower
bound (LB) respectively. Finally, the lower bound on the number of registers required by the
schedule after l7ATñíJT(UnR), after SPAN reduction (SR) and after incremental scheduling (IS) is
shown, as well as the CPU-time required for each step. This time has been measured by using a
Spa,rc-10/40 workstation. Tables C.I to C.6 show these results.

We compare the results obtained by RESIS with the Force-Directed Scheduling (HAL) [PK89a],
the Percolation Based Synthesis (PBS) [PLNG90], SEHWA (SEE) [PP88], ATOMICS integrated
in the CATHEDRAL II compiler (ATM) [GVD89], ALPS [HLH91], the Theda.Fold (TF) algorithm
[LWLG94] and rotation scheduling (RS) [CL92].

179

180 APPENDIX C

FUs

CO

6
5
4
3

Mil

3
3

17/5
17/4
17/3

II

3
3

17/5
17/4
17/3

K/HK

•1/3
1/3.
5/17
4/17
3/17

Abs.
LB

5
• ' 5

4
4
3

Eel.
LB

7
7 -
5
4
3

Lower bound
after

UnR

9
9
31
24
17

SR
9
9
31
24
17

IS

9
9
31
24
17

time
SR

0.06
0.05
0.30
0.23
0.15

IS

0.03
0.01
0.31
0.20
0.05

Table C.I Lower bounds for the Cytron's example

FUs .
*

3
2
3
2

ALUs
2
2
1
1

Mil

6
6
6
6

n

6
6
6
6

K/HK

1/6
1/6
1/6
1/6

Abs.
LB

4
4
4
4

Rel.
LB

5
5
5 .
5

Lower bound . , , . . •
after

UnR

6
6
6
6

SR
6
6
6
6

IS
6
6
6
6

time
SR | IS
0.01
0.05
0.05
0.01

0.00
0.03
0.03
0.03

Table C.2 Lower bounds for the Differential Equation

FUs
*
8
4
3
3
2
2
1
1

+
15
8
6
5
4
3
2
1

Mil (ns)

1
2

8/3
8/3

4
5
8
15

II (ns)

1
2

8/3
8/3

4
5
8
15

K/HK

l/l
1/2
3/8
3/8
1/4
1/5
1/8
1/15

Abs.
LB

15
8
6
6
4

• 4 •
2.
2

Rel.
LB

15
8
6
6
4 ,
4
2
2

Lower bound
after

UnR
22
13
27
27
10
9
9
5

SR
21
13
24
22
10
9

• 8
4

IS
21
10
9
9
5
5
3
3

time (sec)
SR
0.20
0.13
1.25
1.65
0.05
0.06
0.08'
0.10

IS
0.01
0.01
0.05
0.00
0.03
0.03
0.03
0.00

Table C.3 Lower bounds for the 16-Point Digital FIR Filter

FUs
+
3
3
2
2

*

3
2
2
1

Mil

16
16
16
16

n

16
16
17
19

K/HK

1/16
1/16
1/17
1/19

Abs.
LB

5
5
5
5

Rel.
LB

8
8
7
6

Lower bound
after

UnR

11
10
10
9

SR
11
10
10
9

IS

11
10
10
9

timé
SR
0.10
0.08
0.10
0.13

IS,
0.06
0.08
0.06
0.09

Table C.4 Lower bounds for the Fifth-Order Elliptic Filter with Non-Pipelined Multipliers

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

•tf

Experimental results for RESIS 181

FUs
+
3
3
2
1

*

2
1
1
1

Mil

16
16
16
26

II

16
16
17
28

K/HK

1/16
1/16
1/17
1/28

Abs.
LB

4
4
4
4

Eel.
LB

8
8
7
4

Lower bound
after

UnR

10
10
9
11

SR
10
10
9
11

IS

10
10
9
11

time
SR
0.10
0.10
0.15
0.08

IS
0.06
0.08
0.05
0.08

Table C.5 Lower bounds for the Fifth-Order Elliptic Filter with Pipelined Multipliers

FUs
+
5
4
3
3
2
1

-
5
4
3
3
2
1

*

6
4
4
3
2
1

Mil

8/3
4

13/3
16/3

8
16

II

8/3
4

22/5
16/3

8
16

K/HK

3/8
1/4

5/22
3/16
1/8
1/16

Abs.
LB

13
9
8
7
5
3

Rel.
LB

14
11
9
7
5
3

Lower bound
after

UnR

57
33
66
55
19
18

SR
44
20
61
38
18
15

IS

44
18
61
38
18
12

time
SR

35.4
1.50
163
31.7
1.30
1.16

IS

0.03
0.05
1.68
0.35
0.05
0.03

Table C.6 Lower bounds for the Fast Discrete Cosine Transform

Tables C.7 to C.12 show the results obtained. The number and type of available FUs are shown in
the left columns. The next column specifies the MIT calculated for each set of FUs. The following
columns show the II achieved by the different approaches (the number of required registers is also
shown when it is available). Finally, the unrolling factor and the schedule length (A'/íí/<-) obtained
by UNRET , the number of registers required before (BfS) and after (AfS) SPAN reduction and the
CPU-time used to obtain the schedule are reported. Note that these numbers are lower bounds,
since register allocation has not been done. For the other approaches, register requirements are
given after register allocation.

Unfortunately, no data on register usage are available for most loop pipelining approaches. How-
ever, significant improvements in register pressure can still be detected when comparing with HAL
(which does not perform loop pipelining). Compared to ALPS (in the EF), fewer registers are
used when 2 adders and 1 pipelined multiplier are available. This is because ALPS attempts to
reduce variable lifetimes, which does not always guarantee a reduction in the number of required
registers.

The largest difference between Bfs and Afs occurs in those examples with a large amount of
parallelism and small ÍÍ , i.e. DFF and FDCT. This is mainly due to the greedy way used by
retiming-and-scheduling for finding a feasible schedule.

In order to show the efficiency of RESIS, we have use RESIS to reduce the register pressure in
the schedules obtained by a modulo scheduling approach. The heuristics used by the modulo
scheduling to select which instruction must be scheduled are based on the positive depth of each
node. The node with the greatest positive depth is scheduled at each moment.

182 APPENDIX C

FUs

oo
6
5
4
3

Mil

3
3

17/5
17//4
17/3

Initiation Interval (Registers)
PBS

3
3
4
5
6

ATM
3
3
4
5
6

TF
3
3
4
5
6

UnR

3
3

17/5
17/4
17/3

K/HK

1/3
1/3

5/17
4/17
3/17

Registers
Bfs | Afs

9
9
31
24
17

9
9
31
24
17

CPU
(sees)
0.13
0.13
1.85
1.20
0.70

Table C.7 Register requirements for the Cytron's example

FUs
*

3
2
3
2

ALUs
2
2
1
1

Mil

6
6
6
6

Initiation Interval (Registers)
HAL

6(7)
7(7)

-
-

ALPS
6
7
-
-

UnR

6
6
6
6

K/HK

1/6
1/6
1/6
1/6

Registers
Bfs
6
6
6
6

Afs
6
6
6
6

CPU
(sees)
0.05
0.10
0.10
0.20

Table C.8 Register requirements for the differential Equation

FUs
*

8
4
3
3
2
2
1
1

+
15
8
6
5
4
3
2
1

Mil

1
2

8/3
8/3

4
5
8
15

Initiation Interval (Registers)
SEH

-
-
3
3
-
-
-
- •

HAL
-

-
3
-
-
-
-

TF
1
2
3
3
4
5
8

.15

UnR
1
2 ..

8/3
8/3

4
5
8
15

K/HK

1/1
1/2 .
3/8
3/8
1/4
1/5

. 1/8

.. 1/15

Registers
Bfs
22
13
27
27
10
9
9

. 5

Afs
21
13
24
22
10
9
8
4

CPU
(sees)
0.53
0.28
2.98
3.43
0.16
0.16
0.26 ,
0.25

Table C.9 Register requirements for the 16-Point Digital FIR Filter

FUs
+
3
3
2
2

*

3
2
2
1

Mil

16
16
16
16

Initiation Interval (Registers)
HAL

17
18

19 (12)
21 (12)

TF

17
18
18
21

ALPS | RS
16
16
17
19

16
16
17
19

UnR

16
16
17
19

K/HK

1/16
1/16
1/17
1/19

Registers
Bfs | Afs
11
10
10
9

11
10
10
9

CPU
(sees)
0.61
0.70
1.21
3.11

Table C.10
tipliers

Register requirements for the Fifth-Order Elliptic Filter with Non-Pipelined Mul-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I

Experimental results for RESIS 183

FUs
+
3
3
2
1

*

2
1
1
1

MU

16
16
16
26

Initiation Interval (Registers)
HAL

17(12)
18 (12)
19 (12)

-

TF
17
18
19
-

ALPS
-
-

17 (10)
28

RS
16
16
17
-

UnR

16
16
17
28

K/HK

1/16
1/16
1/17
1/28

Registers
Bfs

10
10
9
11

Afs

10
10
9
11

CPU
(sees)
0.53
0.61
1.85
1.70

Table C.ll Register requirements for the Fifth-Order Elliptic Filter with Pipelined Multipliers

FUs
+

5
4
3
3
2
1

-
5
4
3
3
2
1

*

6
4
4
3
2
1

MIÍ

8/3
4

13/4
16/3

8
16

Initiation Interval (Registers)
SEH

-
4
5
6
10
17

TF
3
4
5
6
8
17

UnR

8/3
4

22/5
16/3

8
16

K/HK

3/8
1/4

5/22
3/16
1/8
1/16

Registers
Bfs

57
33
66
55
19
18

Afs

44
20
61
38
18
15

CPU
(sees)
49.0
2.78
88.4
27.3
1.25
1.55

Table C.12 Register requirements for the Fast Discrete Cosine Transform

FUs

CO

6
5
4
3

MS
II

4
4
4.
5
6

Reg

6
6
7
8
8

after
SR
8
8
9
7
7

after
IS
8
8
9
7
7

time
SR
0.16
0.16
0.16
0.18
0.08

time
IS

0.01
0.01
0.01
0.01
0.01

diff

+2
+2
+2
-1
-1

Table C.13 Register reduction in a modulo scheduling algorithm for the Cytron example

Tables C.13 to C.18 show the reduction obtained in the number of registers for the HLS examples.
For each benchmark, the first two columns show the initiation interval and the register require-
ments of the schedule found by the modulo scheduling (MS). The next columns show the registers
used by the schedule after each step of RESIS, as well as the CPU-time used by each step. The
final column (diff) shows the register reduction achieved. Note that the great improvement is
found in those examples with greater quantity of available parallelism.

Tables C.13 to C.18 show the registers required by the schedule after performing SPAN reduction
(see the column labelled after SR). We do not consider such schedules if they require more registers
than those obtained by UNRET. However, in order to show how reducing the SPAN may influence
the final number of required registers incremental scheduling is executed by using such schedules.
Note that, in some case, the number of registers increases as the SPAN decreases (see Tables C.13
and C.18).

We have also carried out experiments by only executing incremental scheduling (without previously
executing SPAN reduction), as shown Tables C.19 to C.24. The results suggest very interesting

184 APPENDIX C

FUs
*

3
2
3
2

ALUs
2
2
1
1

MS
II
6
7 •
6
7

Reg

7
7
7
7

after
SR
6
5
7
6

after
IS
6
5
7
6

time
SR
0.11
0.13
0.10
0.11

time
IS

0.01
0.01
0.01
0.01

diff

-1
-2

-1

Table C.14 Register reduction in a modulo scheduling algorithm for the differential equation

FUs
*

8
4
3
3
2
2
1

+
15
8
6
5
4
3
2

MS
II
1
2
3
3
4
4
8

Reg
28
16
12
12
10
11
10

after
SR
28
16
10
10
9
8
8

after
IS
28
13
6
6
5
5
3

time
SR
0.01
0.01
0.23
0.23
0.30
0.25
0.38

time
IS

0.11
0.10
0.01
0.01
0.01
0.01
0.01

diff

-3
-6
-6
-5
-6

--7

Table C.I5
Filter

Register reduction in a modulo scheduling algorithm for the 16-Point Digital FIR

FUs
+
3
3
2
2

*

3
2
2
1

MS
II

17
19
19
22

Reg
11
11
11
10

after
SR
11
11
11
10

after
IS
11
11
11
10

time
SR
0.28
0.28
0.23
0.26

time
IS

0.01
0.01
0.01
0.01

diff

Table C.I6 Register reduction in a modulo scheduling algorithm for the Fifth-Order Elliptic
Filter with Non-Pipelined Multipliers <

FUs
+ | *
3
3
2

2
1
1

MS
II

16
16
16

Reg

10
9
10.

after
.. SR

10
10
10

after
IS
10
10
10

time
SR
0.31
0.25
0.28

time
, IS
0.01
0.01
0.01

diff

+1

Table C.17 Register reduction in a modulo scheduling algorithm for the Fifth-Order Elliptic
Filter with Pipelined Multipliers

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Experimental results for RESIS 185

FUs
+
5
4
3
3
2
1

• •-
5
4
3
3
2
1

*

6
4
4
3
2
1

MS
II | Reg
3
4
5
6
8
16

20
18
13
12
16
13

after
SR
20
18
18
18
18
15

after
IS
18
17
16
18
18
12

time
SR
0.55
0.60
0.85
1.06
1.11
1.31

time
IS

0.21
0.20
0.01
0.01
0.01
0.01

diff

-2
-1
+3
+6
+2
-1

Table C.I8
Transform

Register reduction in a modulo scheduling algorithm for the Fast Discrete Cosine

FUs

CO

6
5
4
3

MS
II

4
4
4
5
6

Reg

6
6
7
8
8

after
IS
6
6
7
8
8

time
IS

0.06
0.05
0.08
0.11
0.05

diff

Table C.I9 Incremental scheduling after modulo scheduling for the Cytron example

FUs
*

3
2
3
2

ALUs
2
2
1
1

MS
II

6
7
6
7

Reg
7
7
7
7

after
IS
7
7
7
7

time
IS

0.05
0.08
0.06
0.11

diff

Table C.20 Incremental scheduling after modulo scheduling for the differential equation

conclusions. On one hand, the register requirements after execute only incremental scheduling are
sometimes better than those obtained after SPAN reduction plus incremental scheduling. This
suggests that reducing variable lifetimes is not always efficient from the point of view of reducing
register pressure. This is probably because the scheduler has less freedom to schedule instructions,
since the distance of some dependences is decreased. On the other hand, reducing the SPAN before
incremental scheduling works better in some cases. Therefore, we conclude that the SPAN must
be selectively reduced. A way to do so is by giving the ability of moving instructions across
consecutive schedules to the incremental scheduling step. We believe that this new approach
would probably obtain better results.

C.2 SUPERSCALAR AND VLIW PROCESSORS

By using the set of 24 benchmark loops proposed in Appendix A, we compare the results obtained
by UNRET (UnR) with the results obtained by HRMS [LVA95], which is a modulo scheduling

186 APPENDIX C

FUs
*

8
4
3
3
2
2
1

+

15
8
6
5
4
3
2

MS
II
1
2
3
3
4
4
8

Reg

28
16
12
12
10
11
10

after
IS
28
13
8
8
6
8
3

time
IS

0.11
0.05
0.08
0.11
0.10
0.13
0.08

diff

-3
-4
-4
-4
-3
-7

Table C.21 Incremental scheduling after modulo scheduling for the 16-Point Digital FIR Filter

FUs
+
3
3
2
2

*

3
2
2
1

MS
II

17
19
19
22

Reg
11
11
11
10

after
IS
11
11
11
10

time
IS

0.23
0.23
0.23
0.21

diff

Table C.22 Incremental scheduling after modulo scheduling for the Fifth-Order Elliptic Filter
with Non-Pipelined Multipliers '

FUs
+ | *
3
3
2

2
1
1

MS
II
16
16
16

Reg

10
9
10

after
IS
10
9
10

time
IS

0.21
0.26
0.30

diff

Table C.23 Incremental scheduling after modulo scheduling for the Fifth-Order Elliptic Filter
with Pipelined Multipliers

EUs
+

5
4
3
3
2
1

5
4
3
3
2
1

*

6
4
4
3
2
1

. MS .,.
II
3
4
5
6
8
16

Reg

20
18
13
12
16
13

, after.
IS

18
17
12
11
10
10

.time.
IS

0.20
0.21
0.18
0.18
0.20
0.18

diff

-2
-1
-1
-1
-6
-3

Table C.24 Incremental scheduling after modulo scheduling for the Fast Discrete Cosine Trans-
form

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Experimental results for RESIS 187

Application
Program

SPEC
SPICE

SPEC
DODUC

Loopl
Loop2
Loop3
Loop4
LoopS
Loop6
Loop?
LoopS

LooplO
Loopl-f
LoopS
Loop?

Abs.
LB

3
3
1
8
1

14
8
2
2

4
2
18

Rel.
LB

3
4
2
8
1

14
14
3
2

4
2
18

Lower bound
after
UnR

3
7
2
8
1
15
15
5
2

7
4
18

after
SR

3
6
2
8
1

15
15
5
2

7
4
18

after
IS

3
5
2
8
1

15
15
5
2

6
4
18

time
SR
0.01
0.05
0.01
0.06
0.01
0.01
0.01
0.01
0.01
0.01
0.03
0.01

time
IS

0.05
0.03
0.06
0.11
0.06
0.11
0.05
0.05
0.05
0.08
0.13
0.06

Un.
for
CG

2
1
1
1
1
9
8
3
1

2
1
9

SPEC-FP. I Loopl 0.01 0.08

Livermore

I Linpack

Whetstone

Loopl
LoopS

Loop23

5
3
5

Loopl 4
Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

2
4
3
1
2
4
8

5
3
8

8
3
10

5 || 5
4
5
4
1
2
4
8

5
6
4
1
2
4
8

8
3
10

5

5
6
4
1
2
4
8

8
3
10

0.06
0.01
0.05

5 | 0.01
5
6
4
1
2
4
8

0.05
0.03
0.01
0.01
0.01
0.01
0.01

0.10
0.03
0.15

2
1
3

0.03 || 2 |
0.10
0.06
0.06
0.03
0.06
0.05
0.06

1
3
1
1
2
4
8

Table C.25 Register requirements in UNRET for superscalar processors by using an architecture
with 1 FU of each type

technique oriented to reduce register pressure. We consider the obtained results very promising.
In order to perform good comparisons, we will use the same architectures proposed in Appendix
B. Therefore, we will assume two different architectures:

• 1 FP adder, 1 FP multiplier, 1 FP divisor and 1 load/store unit

• 3 FP adders, 2 FP multipliers, 1 FP divisor and 2 load/store units

Tables in this section show different aspects of RESIS. Tables C.25 and C.26 show in detail data
obtained by RESIS for superscalar and VLIW processors respectively in an architecture with a
FU of each type. The two first columns show the loop examples: The next two columns show the
absolute and relative lower bounds (LB) computed for each loop. The three following columns show
the lower bound on the number of registers required by the schedule after unrolling-and-retiming
(UnR), after SPAN reduction (SR) and after incremental scheduling (IS). The time required for
SPAN reduction and incremental scheduling is presented in the next columns. As in the previous
section, this time has been measured by using a Spare 10/40 workstation. Finally, the last column
shows the number of times the loop schedule must be unrolled in order to generate code if modulo
variable expansion is required.

188 APPENDIX C

Application
Program

SPEC
SPICE

SPEC
DODUC

Loopl
Loop2
LoopS
Loop4
LoopS
LoopG
Loop 7
LoopS

LooplO

Loopl-f
LoopS
Loop?

Abs.
LB

5
5
2
10
2

34
20
3
3

6
4
28

Rel.
LB

5
6
2
10
2

34
26
4
3

7
4
28

Lower bound
after
UnR

5
9
3
10
2

35
27
5
4

11
7

28

after
SR

5
8
3
10
2

35
27
5
4

11
7

28

after
IS

5
8
3
10
2

35
27
5
4

10
7

28

time
SR
0.01
0.06
0.01
0.06
0.01
0.01
0.01
0.03
0.03
0.03
0.03
0.01

time
IS

0.03
0.08
0.06
0.11
0.06
0.05
0.08
0.06
0.08
0.08
0.08
0.08

Un.
for
CG
3
2
1
2
2
10
8
3
2

2
1
17

SPEC-FP. I Loopl 0.01 0.06

Livermore
Loopl
Loop5
Loop23

9
5
8

9
5
11

11
5
14

11
5
14

11
5
14

0.06

0.01

0.05

0.08

0.03

0.13

2
2
3

Linpack Loopl 0.01 0.06

Whetstone

Loopl
Loop2
Loop3
Cyclel
Cycle2
Cycle4
CycleS

3
8
4
2
3
5
9

6
9
5
2
3
5
9

7
11
5
2
3
5
9

7
11 .
5
2
3
5
9

7
11
5
2
3
5
9

0.33
0.01
0.01
0.01
0.01
0.01
0.01

0.03
0.06
0.08
0.06
0.03
0.01
0.05

1
4
2
1
2
4
8

Table C.26 Register requirements in UNRET for VLIW processors by using an architecture
with 1 FU of each type

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Experimental results for RESIS 189

Application
Program

SPEC-SPICE

SPEC-DODUC

Loopl
Loop 2
LoopS
Loop4
LoopS
LoopG
Loop?
LoopS
Loopl 0
Loopl-f
LoopS
Loop?

HRMS
II
1
6
6
11
2
2
3
3
3

20
20
2

Reg

3
5
2
8
1

15
15
5
3

7
4
18

UnR
II

1
6
6
11
2
2
3
3
3

20
20
2

Reg

3
5
2
8
1

15
15
5
2

6
4
18

diff
reg

-1

-1

SPEC-FPPPPl Loopl 20 20

Livermore
Loopl
Loop5
Loop23

3
3
9

7
3
11

3
3
9

8
3
10

+1

-1

Linpack Loopl

Whetstone

Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
4
4
4

5
6
4
1
2
4
8

17
6
5
4
4
4
4

5
6
4
1
2
4
8

Table C.27 Comparison of register requirements for superscalar processors by using 1 FU of
each type .

Results in Tables C.25 and C.26 show that the number of registers required by superscalar and
VLIW processors is quite similar for the same loops. This fact suggests that an instruction which
produces a result and another instruction which consumes it are closely scheduled. Since this is
one of the purposes of the register reduction phase, we believe that it is very effective. Moreover,
the number of required registers is closed to the relative lower bound, also indicating the goodness
of the approach. The effectiveness of UNRET is manifested by the fact that the relative lower
bound is closed to the absolute lower bound, and a schedule with the minimum initiation interval
is found in most cases.

Tables C.27 and C.28 compare the results obtained by UNRET (UnR) with the results obtained by
HRMS for superscalar and VLIW processors respectively. For each method, the initiation interval
of the schedule and the lower bound on the number of registers is shown. Last column on each
table shows the difference between the number of registers required by UNRET and the number of
registers required by HRMS (diff). The element in the last column is empty when both methods
require the same number of registers.

Tables C.29 and C.30 show the data obtained by RESIS in an architecture with 3 FP adders, 2
FP multipliers, 1 FP divisor and 2 load/store units.

Results in Appendix B show that significant speed-ups can be achieved by previous unrolling of
the loop. Tables C.25, C.26, C.29 and C.30 show that in some cases previous unrolling reduces

190

SPEC-FPPPP I Loopl 20 20

Linpack Loopl

APPENDIX C

Application
Program

SPEC-SPICE

SPEC-DODUC

Loopl
Loop2
Loop3
Loop4
LoopS
Loop6
Loop?
LoopS

LooplO
Loopl-f
LoopS
Loop 7

HRMS
II
1
6
6
11
2
2
3
3
3

20
20
2

Reg
5
8
3
10
2

35
27
5
3

10
7
28

UnR
II

1
6
6
11
2
2
3
3
3

20
20
2

Reg
5
8
3
10
2

35
27
5
4

10
7
28

diff
reg

+1

Livermore
Loopl
Loop5
Loop23

3
•3
9

10
5
16

3
3
9

11
5

14

+1

-2

Whetstone

Loopl
Loop2
Loop3
Cyclel
Cycle2
Cycle4
Cycles

17
6
5
.4
4
4
4

7
10
5

. 2 . .
3
5
9

17
6
5
4
4
4
4

7
11
5
2
3
5
9

+1

Table C.28 Comparison of register requirements for VLIW processors by using 1 FU of each
type

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Experimental results for RESIS

Application
Program

SPEC
SPICE

SPEC
DODUC

Loopl
Loop2
LoopS
Loop4
LoopS
Loop6
Loop?
LoopS
LooplO
Loopl-f
Loop3
Loop7

Abs.
LB

3
7
1
8
1
14
5
4
2

4
2
18

Rel.
LB

3
8
2
8
1
14
27
5
2

4
2
18

Lower bound
after
UnR

3
10
2
8
1

14
33
9
2

8
5
18

after
SR
3
10
2
8
1
14
31
9
2

8
5
18

after
IS
3
9
2
8
1
14
31
9
2

7
4
18

time
SR
0.01
0.03
0.01
0.05
0.01
0.01
0.03
0.01
0.01
0.01
0.03
0.03

time
IS

0.01
0.05
0.01
0.11
0.06
0.11
0.06
0.06
0.05
0.06
0.06
0.06

Un.
for
CG

2
2
1
1
1
9
8
3
1

2
1
9

SPEC-FP. I Loopl 0.01 0.06

Linpack | Loopl 0.01 0.05

Livermore
Loopl
Loop5
Loop23

9
3
5

10
3
8

19
3
11

14
3
11

14
3
11

0.18

0.01

0.05

0.08

0.06

0.06

2
1
3

Whetstone

Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

2
4
3
1
2
4
7

4
5
4
1
2
4
8

6
5
4
1
2
4
8

6
5
4
1
2
4
8

6
5
4
1
2
4
8

0.03
0.01
0.01
0.01
0.01
0.01
0.03

0.06
0.05
0.01
0.06
0.08
0.03
0.06

1
3
1
1
1
2
3

191

Table C.29 Register requirements in IWRETfor superscalar processors by using an architecture
with 3 FP adders, 2 FP multipliers, 1 FP divisor and 2 load/store units

192 APPENDIX C

Application
Program

SPEC
SPICE

SPEC
DODUC

Loopl
Loop2
Loop3
Loop4
LoopS
Loop6
Loop?
LoopS

LooplO

Loopl-f
Loop3
Loop?

Abs.
LB

5
12
2
10
2

34
39
6
3

6
4

28

Rel.
LB

5
13
2
10
2

34
51
7
3

7
4
28

Lower bound
after
UnR

5
14
3
11
2

34
55
9
4

11
8
28

after
SR

5
14
3
11
2

34
53
9
4

11
8
28

after
IS
5

14
3
11
2

34
53
9
3

10
8
28

time
SR
0.01
0.01
0.01
0.03
0.01
0.01
0.05
0.03
0.01
0.03
0.03
0.01

time
IS

0.03
0.03
0.05
0.11
0.06
0.06
0.08
0.03
0.06
0.06
0.08
0.06

Un.
for
CG

3
3
1
2
2
10
8
3
1

2
1
17

SPEC-FP. I Loopl 0.01 0.06

Livermore

Loopl
Loop5
Loop23

17
5
8

18
5
12

27
5
15

22
5
15

20
5
14

0.15

0.01

0.03

0.06

0.05

0.10

2
2
3

Linpack Loopl 13 13 13 13 13 0.01 0.06

Whetstone

Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

3
.8. . .
4
2
4
7
10

6
. .9 . .
- 5'

2
4
7
11

8
9
5
2
4
7
11

8
9
5
2
4
7
11

8
9

. . . . g - / ' •
2
4
7
11

0.03
0.03
0.01
0.01
0.01
0.01
0.01

0.10
0.08
0.08
0.05
0.06
0.06
0.03

1
.3
2
1
1
2
3

Table C.30 Register requirements in UNRET for VLIW processors by using an architecture
with 3 FP adders, 2 FP multipliers, 1 FP divisor and 2 load/store units

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Experimental results for RESIS 193

Application
Program

SPEC-SPICE

SPEC-DODUC

| SPEC-FPPPP

Livermore

Loopl
Loop2
LoopS
Loop4
LoopS
Loop6
Loop?
LoopS

LooplO
Loopl-f
LoopS
Loop?

HRMS
II
1
2
6
10
2
2
2
2
3

20
20
2

Loopl || 20
Loopl
LoopS
Loop23

2
3
8

Reg

3
9
2
8
1

14
21
5
2

6
4
18

UnR
II

1
2
6
10
2
2

1.5
1.5
3

20
20
2

2 || 20

7
3
12

1.5
3
8

Reg

3
9
2
8
1
14
31
9
2

7
4
18

K/HK

2/3
2/3

3 I I

14
3
11

2/3

diff
reg

+10
+4

+1

+1

+7

-1

speed
up

4/3
4/3

I I
4/3

Liiipack Loopl

Whetstone

Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
2
2
2

5
5
4
1
2
4
8

17
6
5
4
2

1.33
1.33

6
5
4
1
2
4
8

3/4
3/4

+1

0
0

3/2
3/2

Table C.31 Comparison of register requirements for superscalar processors by using 3 FP adders,
2 FP multipliers, 1 FP divisor and 2 load/store units

the unrolling degree required to generate code when modulo variable expansion is used. However,
the number of registers required by the schedule increases (in general). Moreover, the low time
required for the register reduction phase suggests that RESIS can be used by a compiler to generate
code.

Tables C.31 and C.32 compare the results obtained by RESIS with those obtained by HRMS.
We have introduced into these tables the column (K/UK) to show the unrolling degree used by
RESIS. HRMS always uses a single loop iteration. Note that, in general, a greater speed up usually
provokes an increment in register requirements. However, this is not true for all cases. In the last
column we have marked with a zero those cases in which a higher speed up does not produce an
increment in register requirements.

Tables C.27, C.28, C.31 and C.32 show that similar results are obtained by RESIS and HRMS,
even in those cases in which the final register requirements are far from the calculated relative
lower bound. Note that, for high register requirements, neither HRMS nor RESIS achieve the
relative lower bound. We suspect that, in those cases, the results obtained by both methods are
really near to the optimal register requirements.

Some of the results are quite surprising. Let us show a curious example. The schedule found
by RESIS for the Spec Spice 10 benchmark requires 3 registers to be executed, regardless of the
architecture. However, HRMS requires 4 registers for the same loop when the architecture is a

194 APPENDIX C

Application
Program

SPEC-SPIGE

SPEC-DODUC

Loopl
Loop2
LoopS
Loop4
LoopS
Loop6
Loop?
LoopS
LooplO
Loopl-f
LoopS
LoopT

HRMS
II
1
2
6
10
2
2
2
2
3

20
20
2

Reg

5
14
3
11
2

34
39
6
3

10
7

28

UnR
II | Reg

1
2
6
10
2
2

1.5
1.5
3

20
20
2

5
14
3
11
2

34
53
9
3

10
8
28

K/HK

2/3
2/3

diff
reg

+14
+3

+1

speed
up

4/3
4/3

SPEC-FPPPP | Loop! 20 20

Livermore
Loopl
LoopS
Loop23

2
3
8

14
5
17

1.5
3
8

20
5
14

2/3 +6

-3

4/3

Linpack Loopl 13 13

Whetstone

Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
2
2
2

7
9
5

- ' 2
4
6
10

17
6
5
4
2

1.33
1.33

8
9
5
2
4
7
11

3/4
3/4

+1

+1
+1

3/2
3/2

Table C.32 Comparison of register requirements for VLIW processors by,using 3 FP adders, 2
FP multipliers, 1 FP divisor and 2 load/store units

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Experimental results for RESIS 195

A C B A C B

Load

(e) (O

Figure C.I Comparing loop schedules for Spec Spice 10 benchmark
(a) 7r-graph corresponding to the Spec Spice 10 benchmark
(b) Schedule found by RBSÍS
(c) Register requirements of RESIS for superscalar processors
(d) Register requirements of RESIS for VLIW processors
(e) Schedule found by our HRMS
(f) Register requirements of HRMS for superscalar processors
(g) Register requirements of HRMS for VLIW processors

VLIW, but it only requires 2 registers if the architecture is a superscalar processor. Figure C.I
shows this example. Note that the same schedule is used for superscalar and VLIW processors.
Figures C.l(c) and C.l(d) show the register requirements of RESIS for superscalar and VLIW
processors in both approaches.

Figure C.I illustrates how a good schedule for a superscalar processor may not be as good for a
VLIW processor. This example suggests that the type of architecture may be taken into account
by the scheduling algorithm. Neither HRMS nor RESIS consider this fact.

In order to evaluate RESIS independently from UNRET, we have executed the algorithm over the
schedules generated by a simple modulo scheduling. The heuristics used by the modulo scheduling
to select which instruction must be scheduled are based on the positive depth of each node. Thus,
the node with the greatest positive depth is scheduled at each moment. Tables C.33 to C.36 show
the reduction obtained in the number of registers. For each benchmark, the first two columns
show the initiation interval and the register requirements of the schedule found by the modulo
scheduling (MS). The next columns show the registers used by the schedule after each step of
RESIS, as well as the CPU-time used by each step. The final column (diff) shows the register
reduction achieved. Note that the reduction is more significant than the reduction obtained when
RESIS is applied to UNRET. Therefore, we conclude that UNRET is also a good loop pipelining
algorithm from the point of view of register pressure, even if the final step for register reduction
is not included.

196 APPENDIX C

Application
Program

SPEC-SPICE

SPEC-DODUC

Loopl
Loop 2
LoopS
Loop4
LoopS
Loop6
Loop?
LoopS

LooplO
Loopl-f
Loop3
Loop?

MS
II

1
6
6
11
2
2
3
3
3

20
20
2

Reg
3
5
2
8
1
16
15
5
3

7
5
18

after
SR
3
5
2
8
1
16
15
5
2

7
4
18

after
IS
3
5
2
8
1
16

. 15
5
2

6
4
18

time
SR
0.08
0.16
0.11
0.36
0.06
0.08
0.10
0.06
0.08
0.25
0.16
0.10

time
IS

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

diff

-1
-1
-1

SPEC-FPPPP Loopl 20 0.16 0.01 -1

Livermore
Loopl
Loop5
Loop23

3
3
10

8
3
10

8
3
10

8
3
10

0.11
0.08
0.3

0.01
0.01
0.01

Linpack Loopl 0.08 0.01

Whetstone

Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
4
4
4

5
6
4
1
2
4
8

5
6
4
1
2
4
8

5
6
4
1
2
4
8

0.25
0.11
0.11
0.11
0.08
0.11
0.10

0.01
0.01
0.01
0.01
0.01
0.01
0.01

Table C.33 Register reduction in a modulo scheduling algorithm by assuming a superscalar
processor with 1 FU of each type

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Experimental results for RESIS

SPEC-FPPPP Loopl 20 0.10 0.01

Linpack Loopl 0.08 0.01

197

Application
Program

SPEC-SPICE

SPEC-DODUC

Loopl
Lo op 2
LoopS
Loop4
LoopS
LoopG
Loop?
LoopS

LooplO

Loopl-f
LoopS
Loop 7

MS
II

1
6
6
11
2
2
3
3
3

20
20
2

Reg
5
8
3
10
2

36
27
5
3

10
8

28

after
SR

5
8
3
10
2
36
27
5
3

10
7
28

after
IS

5
8
3
10
2

36
27
5
3

10
7

28

time
SR
0.10
0.15
0.08
0.33
0.08
0.10
0.06
0.06
0.05
0.20
0.16
0.11

time
IS

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01
0.01
0.01

diff

-1

Livermore
Loopl
LoopS
Loop23

3
3
10

12
5
15

12
5
14

12
5
14

0.11
0.11
0.31

0.01
0.01
0.01 -1

Whetstone

Loopl
Loop 2
LoopS
Cyclel
Cycle2
Cycle4
Cycles

17
6
5
4
4.
4
4

7
10
5
2
3
5
9

7
10
5
2
3
5
9

7
10
5
2
3
5
9

0.18
0.10
q.ii
0.06
0.08
0.08
0.08

0.01
0.01
0.01
0.01
0.01
0.01
0.01

Table C.34 Register reduction in a modulo scheduling algoritlun by assuming a VLIW processor
with 1 FU of each type

198 APPENDIX C

Application
Program

SPEC-SPICE

SPEC-DODUC

Loopl
Loop2
LoopS
Loop4
LoopS
Loop6
Loop?
LoopS

LooplO
Loopl-f
Loop3
Loop?

MS
II

1
2
6
10
2
2
2
2
3

20
21
2

Reg

3
9
2
8
1
15
24
5
2

7
5
18

after
SR
3
9
2
8
1
14
23
5
2

7
5
18

after
IS
3
9

. 2
8
1

14
23
5
2

7
4
18

time
SR
0.08
0.13
0.06
0.35
0.05
0.11
0.08
0.06
0.08
0.18
0.18
0.11

time
IS

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

diff

-1
-1

-1

SPEC-FPPPP I Loopl 20 0.13 0.13

Livermore
Loopl
LoopS
Loop23

2
3
8

10
3
12

10
3
11

9
3
11

0.10
0.08
0.23

0.11
0.01
0.01

-1

-1

Liiipack Loopl 0.06 0.01

Whetstone

Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
2
2
2

6
5
4
1
2
4
8

6
5
4
1
2
4
8

6
5
4

1 1 • '
2
4
8

0.02
0.15
0.11
0.08
0.03
0.08
0.08

0.01
0.01
0.01
0.01
0.01
0.01
0.01

Table C.35 Register reduction in a modulo scheduling algorithm by assuming a superscalar
processor with 3 FP adders, 2 FP multipliers, 1 FP divisor and 2 load/store units

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Experimental results for RESIS

Linpack Loopl 13 13 13 0.08 0.01

199

Application
Progi-am

SPEC-SPICE

SPEC-DODUC

| SPEC-FPPPP

Livermore

Loopl
Loop2
LoopS
Loop4
LoopS
Loop6
Loop7
LoopS

LooplO
Loopl-f
LoopS
Loop?

MS
II
1
2
6
10
2
2
2
2
3

20
21
2

Loopl || 20
Loopl
LoopS
Loop23

2
3
8

Reg

5
15
3
11
2

35
41
6
3

10
8
28

after
SR
5
15
3
11
2

34
41
6
3

10
8
28

4 || 4
16
5
18

16
5
15

after
IS
5
14
3
11
2

34
41
6
3

10
7

28

time
SR
0.06
0.10
0.10
0.33
0.06
0.08
0.08
0.06
0.10
0.18
0.13
0.08

4 || 0.13
15
5
14

0.11
0.08
0.33

time
IS

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

diff

-1

-1

-1

0.01 || ||
0.01
0.01
0.01

_1

-4

Whetstone

Loopl
Loop2
Loop3
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
2
2
2

8
9
5
2
4
6
10

8
9
5
2
4
6
10

8
9
5
2
4
6
10

0.26
0.15
0.13
0.11
0.10
0.06
0.06

0.01
0.01
0.01
0.01
0.01
0.01
0.01

Table C.36 Register reduction in a modulo scheduling algorithm by assuming a VLIW processor
with 3 FP adders, 2 FP multipliers, 1 FP divisor and 2 load/store units

200 APPENDIX C

Application
Program

SPEC-SPICE' • ' •

SPEC-DODUC

Loopl
Loop2
LoopS
Loop4
LoopS
Loop6
Loop?
LoopS
LooplO
Loopl-f
LoopS
Loop?

US
II

1
6
6
11
2
2
3
3
3

20
20
2

Reg

3
5
2
8
1
16
15
5
3

7
5
18

after
IS

3
5
2
8
1
16
15
5
3

7
3
18

time
IS

0.06
0.13
0.06
0.26
0.03
0.08
0.08
0.11
0.06
0.18
0.11
0.10

diff

-2

SPEC-FPPPP I Loopl 20 0.06

Livermore ,
Loopl
LoopS
Loop23

3
3
10

8
3
10

8
3
9

0.13
0.08
0.23 -1

Linpack Loopl 0.11

Whetstone

Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
4
4
4

5
6
4
1
2
4
8

5
6
4
1
2
4
8

0.21
0.11
0.13
0.08
0.06
0.08
OÍOS

Table C.37 Incremental scheduling in a modulo scheduling algorithm by assuming a superscalar
processor with 1 FU of each typé

We have also carried out experiments executing only incremental scheduling (without previously
executing SPAN reduction). Tables C.37 to C.40 show the reduction obtained. As in the HLS
examples, the results suggest that introducing the ability of moving operations across consecutive
schedules in the incremental scheduling step would probably obtain better results.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

"J ' • ' • '>. .'.liV-i-s i ; - ••!•

1 . - í -

Experimental results for RESIS

SPEC-FPPPP Loopl 20 0.11

Linpack Loopl 0.06

201

Application
Program

SPEC-SPICE

SPEC-DODUC

Loopl
Lo op 2
Loop3
Loop4
LoopS
Loop6
Loop7
LoopS
LooplO
Loopl-f
LoopS
Loop?

MS
II

1
6
6
11
2
2
3
3
3

20
20
2

Reg
5
8
3
10
2

36
27
5
3

10
8
28

after
IS

5
7
3
10
2

36
27
5
3

10
6
28

time
IS

0.06
0.08
0.1
0.23
0.05
0.08
0.10
0.06
0.05
0.16
0.11
0.06

diff

-1

-2

Livermore
Loopl
Loop5
Loop23

3
3
10

12
5
15

12
5
14

0.11
0.11
0.23 -1

Whetstone

Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
4
4
4

7
10
5
2
3
5
9

7
10
5
2
3
5
9

0.18
0.10
0.13
0.10
0.11
0.08
0.08

Table C.38 Incremental scheduling in a modulo scheduling algorithm by assuming a VLIW
processor with 1 FU of each type

202

SPEC-FPPPP I Loopl 20 0.08

Linpack Loopl 0.08

APPENDIX C

Application
Program

SPEC-SPICE

SPEC-DODUC

Loopl
Loop2
LoopS
Loop4
LoopS
Loop6
Loop?
LoopS
Loopl 0
Loopl-f
LoopS
Loop7

MS
II

1
2
6
10
2
2
2
2
3

20
21
2

Reg
3
9
2
8
1
15
24
5
2

7
5
18

after
IS
3
9
2
8
1

14
23
4
2

6
3
18

time
IS

0.10
0.10
0.06
0.23
0.08
0.08
0.10
0.10
0.08
0.11
0.18
0.10

diff

-1
-1
-1

-1
-2

Livermore
Loopl
Loop 5
Loop23

2
3
8

10
3
12

9
3
8

0.11
0.11
0.23

-1

-4

Whetstone

Loopl
Loop2
Loop3.
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
2
2
2

6
5

.4
1
2
4
8

6
5
.4
1
2
4
8

0.21
0.11

. 0.16
0.06
0.06
0.06
0.05

Table C.39 Incremental scheduling in a modulo scheduling algorithm by assuming a superscalar
processor with 3 FP adders, 2 FP multipliers, 1 FP divisor and 2 load/store units

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Experimental results for RESIS •

SPEC-FPPPP Loopl 20 0.08

Linpack Loopl 13 13 0.08

203

Application
Program

SPEC-SPICE

SPEC-DODUC

Loopl
Loop2
LoopS
Loop4
LoopS
Loop6
Loop?
LoopS
LooplO
Loopl-f
LoopS
Loop?

MS
II

1
2
6
10
2
2
2
2
3

20
21
2

Reg
5

15
3
11
2

35
41
6
3

10
8
28

after
IS
5

15
3
11
2

34
41
5
3

10
5

28

time
IS

0.06
0.08
0.06
0.18
0.05
0.10
0.05
0.10
0.11
0.11
0.11
0.11

diff

-1

-1

-1

-3

Livermore
Loopl
LoopS

Loop23

2
3
8

16
5

18

15
5

14

0.11
0.08
0.16

-1

-4

Whetstone

Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
2
2
2

8
9
5
2
4
6
10

8
9
5
2
4
6
10

0.18
0.08
0.11
0.08
0.06
0.08
0.10

Table C.40 Incremental scheduling in a modulo scheduling algorithm by assuming a VLIW
processor with 3 FP adders, 2 FP multipliers, 1 FP divisor and 2 load/store units

