
UNIVERSITAT POLITÈCNICA DE CATALUNYA

LOOP PIPELINING WITH
RESOURCE AND TIMING

CONSTRAINTS

Autor: Fermín Sánchez

October, 1995

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7
RESIS : REGISTER OPTIMIZATION

7.1 INTRODUCTION

The number of available registers is limited in both parallel architectures and HLS systems. In
parallel architectures it is given by the processor architecture. In HLS systems, the maximum
area of the chip limits the number of components to be integrated, including registers. For this
reason, we propose in this chapter an algorithm to reduce the number of registers required by a
schedule. If the target architecture has sufficient registers, the schedule may be directly executed.
Otherwise, techniques such as spill code [Cha82] may be used in parallel architectures to store
some variables in memory, reducing even more the number of required registers.

This chapter begins with a revision of the previous work done in register optimization (see Section
7.2). The previous work includes a description of the solutions proposed when the number of reg-
isters required by the schedule is greater than that available in the architecture. Some techniques
proposed in the literature to reduce the register requirements in a schedule are briefly described.
Finally, previous work in register allocation and register renaming techniques is presented. Both
register allocation and register renaming have been previously addressed by several authors, and
for this reason they are beyond the scope of this work. We approximate the number of registers
required by a schedule by the maximum number of variables whose lifetime overlaps at any cycle.

In the same way that the analytical calculation of the minimum initiation interval allows us to
compare the throughput of a schedule to the throughput of an optimal one, we propose in Section

115

I
I

116 CHAPTER 7 -

INPUT SCHEDULE •

1
SPAN reduction

Incremental
scheduling

OUTPUT SCHEDULE

Figure 7.1 Flow diagram of RESIS

7.2 PREVIOUS WORK

I
I
I
I

7.3 lower bounds on the number of registers. Although these lower bounds are often not reachable,
we obtain an estimated number of registers close to them. .

7.1.1 Strategy overview _

In this chapter we propose a two-step approach aimed at reducing the number of registers of a
schedule:

• SPAN reduction: first of all, the variable lifetimes are reduced by decreasing the iteration time.
This is done by reducing the index of some instructions and by rescheduling the obtained ir- _
graph again. This step may change the cycle.- at which each instruction has been scheduled, •
since the 7r-graph is modified and scheduled again. Section 7.4 describes SPAN reduction. ™

• Incremental scheduling: after reducing the iteration time, variable lifetimes are reduced by •
moving instructions within the schedule. This is done without modifying the index of any •
instruction. To do so, the cycle at which further variable lifetimes overlap is found. The in-
structions to be moved are selected among those that produce a result whose lifetime traverses
such a cycle. This step is detailed in Section 7.5. •

The approach is called RESIS (REduce Span and Incremental Scheduling). Figure 7.1 shows the •*
flow diagram of RESIS. I

I

Consider a data dependence e — (u, v) in a loop with 6(e) = d. The data produced by instruction u B
at iteration i will be consumed by instruction v at iteration i + d. When v is scheduled immediately |
after the finishing of the execution of u, ,some; architectures allow the.FUs used by u to give the

I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RESIS : Register Optimization • • 117

produced data to the FUs used by v, without being previously stored. This technique is known as
forwarding or bypassing [HP90]. When v is not immediately scheduled after u.'the result produced
by u must be temporarily stored in a register until it is used for v.

Since registers have not been considered by UNRET , the found schedule may need more registers
than those that are available in the architecture. In this case, the schedule is not correct and a new
schedule must be produced. The number of registers may be reduced by storing some variables in
memory (instead of in registers). This is done by adding spill code [Cha82] to the loop body. The
addition of spill code modifies the dependence graph of the loop, since new instructions load and
store must be included. Therefore, the Mil may change and, in general, the throughput of the
loop may decrease. However, spilling may decrease the register requirement without degradation
of the software pipelining performance if the spilling decision (which variable must be spilled
to memory) is efficiently controlled [WKEE94]. [BEH91] observed that scheduling followed by
register allocation requires much spill code. However, register allocation followed by scheduling
reduces the potential parallelism too much. The same conclusion is supported in [Pin93], where
scheduling and register allocation are solved simultaneously. [BEH91] proposes a list scheduling
with a priority function which tries to reduce the number of alive variables when the register limit
is exceeded. Register allocation is done after list scheduling. Cut reduction, a technique for closely
coupling scheduling and register allocation is presented in [DGD94]. Cut reduction considers the
entire scheduling solution space. The approach makes use of calculating the maximum number of
alive variables in a graph. This calculation is based on retiming and it is done in linear time. The
number of alive variables is reduced to within the constraints during a scheduling preprocessing
step, adding extra constraints to the graph based on estimations of their impact on the schedule
length. The actual scheduling does not have to take register constraints into account, and can
even introduce any arbitrary amount of software pipelining to reduce the execution time of the
application. A similar approach is proposed in [Rim89]. In this microcode compilation approach,
the decisions on register allocation are local in nature, and there is no back-tracking on them.

When there are not enough available registers, some techniques increase the expected initiation
interval and schedule the loop again [WKEE94]. Intuitively, for the same loop, a schedule larger
than the other one executes fewer instructions in parallel, and therefore it requires less registers
at the same time. However, recent experiments have demonstrated that this approach may never
converge [LLo95]. Spilling may also be considered after increasing the expected IÍ.

Several approaches have been proposed to perform register allocation. Techniques which use a
register allocation graph are presented in [CAC+81, Cha82, CH84, TS86, BCKT89]. Each node
in the register allocation graph represents a variable. An edge between two nodes indicates that
the variables do not overlap their lifetimes, and therefore they can be stored in the same register
(a variable is said to be alive between the time it is generated (written) and the last use (read)
of it). The aim of this techniques is to determine the minimum number of cliques that cover the
graph. [GRVD87, Sto92] present an alternative approach based on the use of a conflict graph. In
the conflict graph, each node represents a variable, and an edge between two nodes exists when
both variables cannot share the same register because their lifetime overlaps. Other approaches
are based on interval graphs [KP87] and cyclic interval graphs [HGAM92, MLVV93]. An interval
graph contains information that is not available neither in register allocation graphs nor in conflict
graphs. Given a set of lifetimes, the interval graph contains only the overlapping information of
any two lifetimes in the set. Cyclic interval graphs are an appropriate representation for variable
lifetimes in loops. Coloring a cyclic interval graph with the minimum number of colors is known

118 CHAPTER 7

- "
:•:,(.. ¿>

ui+2

overlapping 1

(a) (b)

u
**—•

(c)

1

u!
ïk
"¡Vi

5

-5-c-

overlapping

(d)

data

Data
input "i+2

ui+l i
Data
output

Shifting registers

(e)

Figure 7.2 Register assignment in a superscalar architecture
(a) Example of Tr-graph TT
(b) A possible schedule of v. Code generation is not possible
(c) -7T unrolled twice , • • • • (.
(d) A possible schedule of -ir2. Code generation is now possible
(e) Example of rotating register files

to be an NP-Hard problem [GJMP80]. Consequently, no polynomial-time algorithm is known to
solve this problem.

In some cases, two different data dependences may exist between the same two instructions. For
example, the instruction A[i] := A[i - 1] + A[i — 2] produces two data dependences, e\ = (A, A)
and 62 = (A, A), with <5(ei) = 1 and ¿(e2) = 2. Both dependences produce a recurrence. The
recurrence produced by e\ constrains the initiation interval more than the one produced by e2.
However, the recurrence produced by e2 produces a variable lifetime greater than the one produced
by e\. Therefore, e\ must be used to compute MTÍ, but e2 must be used to compute the number
of registers required for the schedule.

Compilers for superscalar architectures and VLIW processors generate code by using the sched-
ule found by a software pipelining approach. Code generation requires register assignment, and
sometimes it is not possible to create a new loop body because no feasible register assignment
exists. Figure 7.2 shows an example. For the sake of simplicity, we will assume that w is a sum,
and the architecture has an adder which adds in a single cycle. Figure 7.2(b) shows a feasible
schedule of the 7r-graph from Figure 7.2(a). Although the schedule is correct, the generation of
code is not possible because the variable lifetime required by two consecutive instances of u is
overlapped. Therefore, the result of w¿ cannot be written in the same register as the result of u¿+i,
given that w¿+1 rewrites the register, and thus the value written by u¿ is not available to be read
by w¿+2. Two different techniques may be used to overcome this problem: static renaming via
modulo variable expansion and dynamic remapping via the use of rotating register files.

I
I
I
I

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RESIS : Register Optimization- • : ; ... • • „ 119

Static renaming via modulo variable expansion

Figure 7.2(c) shows the 7r-graph unrolled twice. The schedule throughput is similar to that ob-
tained without previous unrolling. However, code generation is now possible, since variable life-
times are not overlapped. The results produced by u° and ul are written in different registers, and
therefore no overlapping exists between variable lifetimes. The result produced by u? is available
to be read by u¿+1, and the same happens with u1. Figure 7.2(d) shows this argumentation.
This technique is called modulo variable expansion [Lam88], which is a variation of the variable
expansion technique used in vectorizing compilers [KKP+81]. Modulo variable expansion always
requires loop unrolling. The variable expansion transformation identifies those variables that are
redefined at the beginning of every iteration of a loop, and expands each variable into a higher
dimension variable, so that each iteration can refer to a different location. When modulo variable
expansion is applied, code sequences for consecutive iterations differ in the registers used, thus
lengthening the schedule. In order to generated code, the number of times the loop body must be
unrolled is [Lam88]:

max(variable Jifetime(e))

II

Since the loop may previously have been unrolled to find a maximum throughput schedule, a new
unrolling may produce a code much too long. In order to avoid code explosion, variable lifetimes
must be minimized.

Dynamic remapping via the use of rotating register files

Some architectures, such as the Poly cyclic architecture [RG81], the URPR-1 [SWT+90], the SRFA
[UP93] or the Cydra 5 Supercomputer [SM88, Rau88, RYYT89] provide hardware support for code
generation. This is done in the form of rotating register files and predicated execution [RST92,
DHB89].

Consider saving the series of values generated by an instruction in its own infinite pushdown stack.
Old values can be read from anywhere within the stack, and new values can be pushed on top,
but a value cannot be modified once it has been put onto the stack; that is, the stack enforces
a dynamic single assignment discipline [Rau91]. Since each value pushed onto the stack has the
same lifetime, only a constant portion of the stack is alive at any given moment. In particular,
once the schedule has been found, each stack acts like a finite shifter that shifts its values once
every II cycles. A rotating register file can be thought of as a concatenation of these shifters (end
to end) into a finite circular queue, as illustrated in Figure 7.2(e). By using rotating registers files,
the variables are spaced sufficiently far apart in the register file in order to ensure that no part of
a variable lifetime overlaps any part of another. This style of allocation is called blades allocation
[RLTS92].

Predicated execution allows an instruction to be conditionally executed based on the value of the
predicate (boolean value) associated with it. Predicated execution facilitates effective software
pipelining of loops containing conditional branches. If-conversion [AKPW83] may use predicates
to eliminate all branches from the loop body. Moreover, the generation of a prologue and an
epilogue of the loop can be avoided by using predicated execution.

120 CHAPTER 7

S(v) - S(u)

S(v)

variable
lifetime
inHLS

variable
lifetime
for
superscalar
processors variable

lifetime
for VLIW
processors

(b)

Figure 7.3 Variable lifetime for different architectures
(a) High-level synthesis
(b) Superscalar processors
(c) VLIW processors

(c)

7.3 LOWER BOUNDS ON REGISTER PRESSURE
AND RESIS STRATEGY

7.3.1 Variable lifetime

For a dependence u —+ v, the variable lifetime spreads from the completion of u to the cycle in
which the FUs executing v no longer require the input data! For a given node u with n outgoing
edges in the 7r-graph, only one register (and not n);is necessary to store the result computed by u.
Therefore, only the edge (u, v) with the longest lifetime variable is taken into account to compute
the number of registers required to store the result of « in the loop execution. The variable lifetime
depends on the architecture in which the loop is executed. We will consider three different types
of architectures: high-level synthesis systems, superscalar processors and VLIW processors.

• In HLS systems, the result produced by u is stored in the register in the last cycle of the
execution of u. This result must be available until it is used by v. Since v may use pipelined
FUs, the result produced by w must bé available during the ILV"first cycles of the execution
of v, as shown in Figure 7.3(a). Therefore, the variable lifetime related to a dependence
e = (u, v) is:

S(v) - S(u) -Lu+ ILV

• Superscalar processors present the stall problem. A stall occurs when an instruction must
wait (one or more clock cycles) because someone/several of the resources it uses is/are not
available. The resource requirements are dynamically computed before issuing an instruction.
Therefore, although the register is not written until the last cycle, it must be available from
the start of the execution to avoid-a stall. Thus, for a dependence e •= (u,v), the variable
lifetime spreads from the starting of u to 'the starting of v (v may start when all resources it

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RESIS : Register Optimization 121

u,

1
ul+l

u
UH-Z

V , - y

am
ui+3

(a) (b)

"n-3

*n
(d)

Figure 7.4 (a) Example of 7r-graph
(b) Overlapping of variable lifetimes in a HLS system
(c) Overlapping of variable lifetimes in superscalar processors
(d) Overlapping of variable lifetimes in VLIW processors

requires are available, and in general it is not necessary for the values used by v to be alive
during the execution of v). Figure 7.3(b) shows the previous argumentation. The variable
lifetime related to a dependence e = (u, v) is:

S(v)-S(u)

• In a VLIW processor, all resources used by an instruction must be available from the beginning
because the execution pattern cannot be dynamically changed. Moreover, since a data input
may be read in any moment during the execution, the data must be available during all
the execution of the instruction. Therefore, the variable lifetime related to a dependence
e = (u, v) spreads from the starting of u to the ending of v, as it is shown in Figure 7.3(c).

S(v) - S(u) + Lu

Other types of architectures may be considered, in which the variable lifetime might be calculated
in a different way. In this work, we will only consider the previous models.

7.3.2 Registers required for a dependence

Software pipelining allows the execution of the iterations of a loop to be overlapped. Therefore,
for a given instruction u, the results produced by M¿ and u¡+i (and, in general, Wj+Jb with k > 0)
may be alive simultaneously, as shown in Figure 7.4. Let us assume that u executes in a single
cycle and v executes in two cycles in a fully pipelined FU. Figures 7.4(b), 7.4(c) and 7.4(d) show
the overlapped variable lifetime when the architecture is an HLS system, a superscalar processor
or a VLIW processor respectively. Note that the register requirements depend on the architecture
and the distance of the dependence (u , v) .

122 CHAPTER 7

(d)

1 reg
Oreg
Oreg

(c)

Figure 7.5 Register requirements for a dependence
(a) Example of 7r-graph
(b) Variable lifetimes and registers required by (u, v) when « is scheduled at cycle 2 and v at cycle
3
(c) Variable lifetimes and registers required by (r, s) when r is scheduled at cycle 3 and s at cycle
1
(d) Cycles traversed b y dependences ' - - • - > - • • . • • •

An edge e — (u, v) with 6(e) = d spreads the variable lifetime across d iterations. For any cycle c
of the schedule, edge e requires d— I , d, or d+ 1 registers depending on where u and v have been
scheduled. Three cases can be distinguished, as Figure 7.5 shows:

• d+ 1 registers are required when u —* v crosses cycle c forward (See Figure 7.5(b)).

• d registers are required when u —>• v does not cross cycle c (See Figure 7.5(b)).

• d — I registers are required when u —> v crosses cycle c backwards (See Figure 7.5(c)).

Since .the number of registers required to store a variable depends on the distance of the edge
which represents the variable, reducing the distance of such an edge implicitly reduces the number
of registers required to store the variable.

7.3.3 Register pressure

The register pressure is the ratio between the number of registers required by the schedule and the
number of registers available in the architecture. Reducing the number of registers required by
the schedule also reduces the register pressure. The number of registers required by a schedule is
only known after doing register allocation [RLTS92]. Allocating registers for a software-pipelined
loop is beyond the scope of this work. An extensive discussion including heuristic solutions and
empirical results can be found in [RLTS92]. A tight lower bound on the number of registers
required by a schedule is the maximum number of variables whose lifetimes overlap at any cycle
[RLTS92, RF93, EDA94]. Such a lower bound may be calculated by using an integer linear

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RESIS : Register Optimization 123

VI V2 V3

u

*£
<>r¿',, -

'•"<
w

RI

RI R2

R2

R3

R3

Lower
bound

2reg

Cycle VI V2 V3

0 u

í.'.V ï̂

.w

RI

RI R2

R2

R2

RI

(b)

Figure 7.6 Register assignment and lower bound
(a) Example of 7r-graph
(b) Register assignment and number of registers required at each cycle
(c) Register assignment by vising chameleon intervals

(c)

approach [MSAD92, LB94]. However, the lower bound may not be reached, since a register
assignment with such requirements may not exist. Figure 7.6 shows an example for a VLIW
processor in which all the instructions are sums which execute in a single cycle. Variable lifetimes
are represented as vertical lines. A point in the intersection between a line and a cycle indicates
that a register is required at this cycle. Without loss of generality, we will assume that, for a
dependence e = -(u, v], registers are used from the first cycle of u until the last cycle of v minus
one1. Note that the lower bound on the number of registers required is 2. However, no register
assignment exists so that the code may be written by using only two registers. The lifetimes of
VI and VI overlap, and therefore both variables must be stored in different registers. Since the
lifetime of V3 overlaps with both VI and VI, it requires a different register to be stored.

Hendren et al. propose in [HGAM92] the concept of chameleon intervals. A variable lifetime is
represented as an interval, and an interval is always related to a single register. A Chameleon
interval represents a variable that is stored into different registers during its lifetime. The value
of the variable may be moved from one register to another, instead of the traditional register
spills (storing the spilled value in memory). Note that both special instructions of movements
among registers and special buses interconnecting registers are required to implement chameleon
intervals. Figure 7.6(c) shows how chameleon intervals allow the use of only two registers in the
schedule from Figure 7.6(a).

Instead of considering the maximum of variables whose lifetime overlap at any cycle, other authors
consider the sum of all the registers required by all instructions as the number of registers required
by the schedule [NG93, WKEE94, GAG94]. In [WKEE94] a methodology is proposed based on
the register requirement graph, which is a directed graph with a topology similar to that of the
initial TT-graph. However, each edge e = (u, v) is labelled with a number representing the estimated
difference between X(u) and X(v) in the worst case. [NG93] presents an integer linear technique
in which the register pressure is calculated by using the same approach. [GAG94] uses the same
technique as [NG93] to compute the register requirements.

1 Similar results are obtained when assuming registers are used from the first cycle of u plus one until the last
cycle of v.

I
I

124 CHAPTER 7 _

7.3.4 Lower bounds on registers |

Minimum variable lifetime I

Henceforth, we will use the term variable lifetime to refer to the lifetime of the variable associated H
to a given dependence. For a dependence e = (u, v), the minimum variable lifetime occurs when |
u is ALAP scheduled and v is ASAP scheduled. As in [EDA94], we reserve a virtual register for
each variable during all its lifetime. The number of registers required for a given dependence e is _

^ variable with the lowest lifetime requires the minimum number of registers. •

A lower bound on the number of registers required by any schedule is the number of registers
required when:

II (7.1)

I
• All variables have the minimum lifetime M

• The instructions are scheduled in a way that minimizes the overlapping of variable lifetimes. m

A lower bound on the number of registers required by any schedule of a ?r-graph can be computed •
by adding the minimum variable lifetimes for all dependences, and dividing it by II [Huf93]. ™

minjvarJifetime(e) •

I
Note that this lower bound does not require to know how the instructions have been scheduled.

Absolute and relative lower bounds

As the minimum lifetime of a variable depends on the type of architecture, the minimum number ™
of registers required for a 7r-graph also depends on the architecture. The IASAP and IALAP
values are related to the schedule of a given iteration. However, for a given dependence e = (u, v), I
u and v may be scheduled at different iterations. Therefore, the distance 6(e) must be considered |
to .calculate the variable lifetime of e. By using equations from Sections 4.5 and 4.4, we have that
IALAP(Ui] = II- D+(u), and IASAP(vi+f(e)) = H(v) + II • 6(e). m

Two different types of dependences must be considered when calculating the minimum variable
lifetime:

• Cyclic dependences: a cyclic dependence is a dependence e = (u, u) which forms a cycle. Since
all iterations are scheduled in the same way, the distance between w¿ and u¿+¿(e) is exactly _
II • 6(e) cycles. Moreover, the value read by u must be alive during the issue latency of u •
(see definition 3.4 of ILU). Therefore, the minimum lifetime for a variable representing a ™
self-recurrence is:

I

I

I

I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I

RESIS : Register Optimization , . 125

— High-level synthesis (see Figure 7.3(a)):

min.varJifetime(u, u) = II • 6(e) — Lu + ILU

— Superscalar Processors (see Figure 7.3(b)):

min.varJifetime(u, u) = II • 6(e)

- VLIW processors (see Figure 7.3(c)):

min-varJifetime(u, u) = II • 6(e) + Lu

Note that IASAP and IALAP values do not have to be calculated for cyclic dependences.

• Linear dependences: A dependence is linear if it is not cyclic. We will use here IASAP(v) =
H(v) + II • 6(e) and IALAP(u) = 11- D+(u).

- High-level synthesis (see Figure 7.3(a)):

min.varJifetime(u, v) = IASAP(v) — IALAP(u) — Lu + ILV

min.varJifetime(u, v) = H(v) + D+(u) + ILV - Lu + II • (6(e) - 1)

— Superscalar Processors (see Figure 7.3(b)):

min-varJifetime(u,v) = IASAP(v] — IALAP(u)

min.varJifetime(u, v) = H(v) + D+(u) + II • (¿>(e) — 1)

— VLIW processors (see Figure 7.3(c)):

min-varJifetime(u, v) = IASAP(v) - IALAP(u) + Lv

miri-varJifetime(u,v) — H(v) + D+(u) + Lv + ÍÍ • (<5(e) — 1)

The minimum number of registers required for any schedule of a ?r-graph is given by Equation
(7.1). Two different 7r-graphs are distinguished by UNRET, (1) the initial 7r-graph and (2) the
7r-graph which produces a feasible schedule. Therefore, two different lower bounds on the number
of registers can be defined, according to the 7r-graph considered.

Definition 7.1 : Absolute Lower Bound on Register Pressure

The absolute lower bound on register pressure of a loop is ihe lower bound computed for the initial
TT-graph.

Definition 7.2 : Relative Lower Bound on Register Pressure

The relative lower bound on register pressure of a schedule is the lower bound computed for the
TT-graph which produces the final the schedule.

126 CHAPTER 7

• K •
Retiming

71*
Scheduling " '

s
Code

generation
CODE

ABSOLUTE
LOWER
BOUND

RELATIVE
LOWER
BOUND

MINIMUM
REGISTER
REQUIREMENT

ACTUAL
REGISTER
REQUIREMENT

Figure 7.7 Lower bounds on registers

In general, the initial 7r-graph contains the greatest number of ILDs of all the equivalent 7r-graphs
representing the loop. Therefore, variable lifetimes are the shortest possible, and thus the absolute
lower bound is a lower bound for any schedule of the loop. The relative lower bound is a lower
bound for the schedules of a given 7r-graph. Therefore, a good scheduling algorithm is the one
that obtains similar results when comparing the relative lower bound with the minimum number
of registers required by the schedule.

Figure 7.7 shows in which part of the loop pipelining process each lower bound on the number of
registers is computed. The results presented ..in Appendix. C show that,the schedule proposed at
Chapter 5 is a good scheduling algorithm.

7.4 SPAN REDUCTION

7.4.1 Introduction

The SPAN of a 7r-graph is defined as \max - Amín +1, where \max and Am,;n are the maximum and
minimum values for A respectively. After finding a schedule, UNRET tries to reduce the SPAN
while maintaining the initiation interval. In general, a reduction of the SPAN leads to:

» a reduction in the variable lifetimes

• a reduction in the number of required registers to store partial results across iterations

• a. reduction in the iteration time . , ' . , . . •

• a reduction in the size of the prologue and the epilogue

• a reduction in the number of times the loop must be unrolled to generate code when modulo
variable expansion [LamSS] is used

Figure 7.8 shows an example of the effectiveness of reducing the SPAN in an architecture with 2
FUs.

The idea of the algorithm to reduce the SPAN is as follows: First, the maximum value for A (Xmax)
is computed by exploring all nodes in the 7r-graph. Then, .this value is iteratively decreased until

I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RESIS : Register Optimization 127

Ao ,Do

lí.

Oreg

2reg

2reg

(d)

Figure 7.8 Example of SPAN reduction
(a) 7r-graph example before SPAN reduction
(b) Scheduling of (a), requiring 3 registers
(c) 7T-graph after SPAN reduction
(d) Scheduling of (c), requiring 2 registers

a 7r-graph with minimum SPAN is found (minimum SPAJV=loop unrolling degree) or the maximal
positive path (MPP) of the current 7r-graph is longer than the expected initiation interval.

Figure 7.9 shows a flow diagram of the algorithm to reduce the SPAN. The heuristics used to
select a, node are explained in Section 7.4.2. Section 7.4.3 shows the algorithm to reduce the index
of the selected node. In Section 7.4.4 the algorithm to transform the jr-graph into an equivalent
one with the same SPAN but less positive and negative scheduling dependences (PSDs and NSDs)
is described. When the SPAN of the ?r-graph cannot be further reduced, the variable lifetimes
of nodes whose SPAN is not maximal are reduced. The function to do so is explained in Section
7.4.5. The scheduling algorithm used by SPAN reduction is somewhat different from the one used
by UNRET. The differences are presented in Section 7.4.6. The overall algorithm is detailed in
Section 7.4.7.

7.4.2 Heuristics to select a node to reduce the SPAN

In order to reduce the SPAN, two different approaches may be used: try to reduce \max of TT or
try to increase Am¿n. Dependence retiming, as defined in Section 3.5.1, transforms the loop by
increasing the distance of the dependence and the index of the source node. Although we also use
a similar transformation to increase the index of the target node, experiments have shown that
such a transformation is used less frequently than in the first one. Thus, it seems more logical to
reduce the maximum index than to increase the minimum index. Consequently, a node is selected
from among those nodes u so that:

• \(u) = \max-

• No dependence (w, u) exists such that 6(u, v) — 0

Among all nodes verifying the former conditions, the node which will produce the 7r-graph with
the shortest MPP is selected. Selecting a node takes O(VE) time.

128

7t //

1 1

YES / SPAN
reducible and

MPP < II

OUTPUT SCHEDULE

Figure 7.9 Flow diagram of SPAN reduction

CHAPTER 7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

RESIS : Register Optimization j 129

function reduce_scheduling-dependences(T, II);
TTi := TT;
Repeat

sched := scheduling(w,II);
if no schedule has been found then

e :=select_edge(:r, \max);
if edge-selected then

7T :=dependence_retiming(7r, e);
if (quality(Tr) > quality(Trl)) then v\ := TT;

until (no edge selected or schedule found);
return true if a schedule has been found;

Algorithm 7.1 Function reduce_schedulingjJependences

7.4.3 Reduce index transformation

A transformation called reduce-index is used to reduce Xmax • Reduce.index(u) is based on depen-
dence retiming, and it is only applied to nodes so that the transformed TT-graph has non-negative
dependences. Reduce^index(u) decreases A(w) by also transforming ¿(e) for the incoming and
outgoing edges of u as follows:

• A'(u) = A(«) - 1

• V(w,v) €E, S'(u,v) = 5(u ,v) - l

• V(u,u) €E, S'(v,u) = 6(v,u) + l

7.4.4 Reducing the number of scheduling dependences

In order to make the scheduling task easier, the algorithm attempts to improve the quality of the
7r-graph without increasing the SPAN. This is done by reducing the number of PSDs and NRDs
(negative restrictive dependences). Function reduce.scheduling-dependences performs such a task
(Algorithm 7.1) by means of dependence retiming.

An edge is selected to be retimed only once without improving the quality of the 7r-graph. We
try to reduce PSDs before NRDs because PSDs constrain the scheduling process more. Therefore,
the heuristics used to select an edge for retiming (in order of priority) are as follows:

1. the head-edge of a critical path

2. the tail-edge of a critical path

3. the head-edge or the tail-edge of a positive path not maximal

4. the negative restrictive dependence with the shortest distance

I
I

130 CHAPTER 7 _

In order to reduce the complexity, scheduling is called once after a transformations. The parameter |
a has been tuned by doing experiments with a wide set of loops. The best behavior (the same

result that for a = I but in the lowest time) has been for a = number
2°

f edSes •

We will use the following observations to calculate the computational complexity of function
red,uce-shifl.ing_dependences: _

1. Experiments have shown that an edge is selected only a few times (K times, with K <C \E\).
The repeat loop executes K • \E\ times as maximum. •

2. Scheduling is performed once every a transformations. As will be shown in Section 7.4.6, the •
complexity of the scheduling algorithm used by SPAN reduction is the same as that used by
unrolling-and.retiming shown in Chapter 5. That is, it executes in O(V^ + VE) time. •

3. Functions select-edge and quality have a lower execution time than scheduling. ™

Therefore, the execution time of reduce-scheduling.dependences is O(V2E + E"2). I

7.4¿5 Reducing local maxima I

On one hand, the algorithm to reduce SPAN is based on reducing the index of nodes whose index is
X,nax- Therefore, no reduction is done with nodes having lower indices. However, the index of such •
nodes may also be reduced, also reducing the variable lifetimes and thus the register requirements. •

On the other hand, the function reduce-scheduling.dependences increases the distance of some •
dependences. As a side effect, the indices of some nodes are also incremented. Since such indices •
never reach the value \max, and since heuristics are used to decide which dependences must be
retimed, the indices o f some, nodes may be unnecessarily incremented. _

Given the previous argumentation, the index of head nodes of local paths whose index is smaller •
than \max is reduced after SPAJVhas been reduced. These nodes are called local maxima.

1. A node u is selected among those that fulfill: I

• A(w). < Xmax •.,
• Ve = (u , v) &E , 6(e) > 0 " , ,

2. The node which will produce the shortest positive path is selected.

3. Among nodes producing paths with the same depth, we prefer nodes without predecessors _
(the distance of the dependences from the predecessors increases if the index of the node is •
decreased. Therefore, variable lifetimes from the predecessors also increase and new positive ™
paths may be created).

The algorithm to reduce local maxima performs scheduling each step by looking for a schedule ™
requiring fewer registers than the last one found. To do so, the algorithm repeatedly selects a

I

I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RESIS : Register Optimization . 131

function reduce_local_maxima(7r, sched, II);
•ïïî := x;
loop

u :— select_node_to_reduce-locaLmaxima(7r2);
exit if no node selected;
7r2 —reduce_index(7r2, u);
new-sched :=scheduling(7r2, JJ);
if schedule found

then
7T := 7r2;
sched := new_sched;

else undo_reduce_index(7r2, u);
return sched;

Algorithm 7.2 Function reduce_local_maxima

node, reduces its index and performs scheduling. If no schedule is found, it undoes the index
reduction and selects another node (if possible). Nodes are selected only once if the number of
required registers is not reduced. Algorithm 7.2 shows the approach used to reduce local maxima.

In order to calculate the computational complexity of reduce JocaLmaxima we will use the following
observations:

1. Function select-node.to.redticeJocaLmaxima explores once every node in the 7r-graph. There-
fore, its execution time is O(V).

2. Since the distance of any edge must be 6(e) < f^""//7"1] > we conclude that a node can be
reduced as maximum K = [j/7"1] times. Experiments have proved that K <C V.

3. Functions reduceJndex and undo.reduce Jndex execute in O(E) time.

4. As will be shown in Section 7.4.6, the execution time of the scheduling algorithm is O(V'2 +
VE}.

In the worst case, the loop executes (|V| — 1) • K times (at least one node has an index equal to
^max- Since K '<C V, the execution time of reduceJocaLmaxima is O(V3 +

7.4.6 Scheduling

The scheduling algorithm used by the SPAN reduction algorithm is quite similar to the one used
by retiming-and-scheduling, and shown in Chapter 6. The only difference between both algorithms
is the priority function used to select which instruction must be scheduled at each moment. The
priority function of the scheduling algorithm used by SPAN tries to minimize variable lifetimes,
since the initiation interval has already been minimized by retiming.and-scheduling. The criteria
used to select an instruction for scheduling are as follows:

I
132 CHAPTER 7

1. O-Mobility. The nodes that have no mobility are the first nodes scheduled. •

2. The number of incoming edges: This priority function reduces variable lifetimes, and therefore
the register pressure. I

3. The remainder criteria are the same used by retiming-and-scheduling, in the same order.

I
7.4.7 SPAN Reduction. Final algorithm •

Algorithm 7.3 presents the final approach used to reduce the SPAN. The input parameters are •
the 7r-graph (TT), the expected initiation interval (IIK), the unrolling degree (K) and the number I
of registers required by the schedule found by retiming,and-scheduling (reg).

A reduction in the SPAN does not always produce a reduction in the number of required régis- I
ters. Therefore, the register requirements are calculated for each schedule found. Function num-
ber-of-registers perform such calculations. 7r-graphs consuming fewer registers are successively
stored. I

In order to calculate the computational complexity of reduce-span, we will use the following ob-
servations: ' • ' , - , : • • '. •

1. Function select-node executes in 0(VE) time. Function reduce.index executes in O(E) time.
The execution time of function maximum-index is O(V). I

2. Reduce-scheduling-dependences executes in O(V2E + E2) time.

3. The lower bound on the number of registers required by the schedule, computed by function •
number-of,registers, can be calculated in 0(E) time by exploring all edges in the 7r-graph and I
by updating a table of II positions, one for each cycle of the schedule. The number of registers
is calculated by using the method described at Section 7.3.2 and illustrated in Figure 7.5. _

• • • • - • ' ' • • ' - "" • - • ' . I
In the worst case, the loop executes \V\ • K times, with K <C V (as experiments have proved).
Therefore, the execution time of reduce^span is O(V3E + VE2). _

7.5 INCREMENTAL SCHEDULING |

7.5.1 Overview

After reducing the SPAN, we try to reduce the register requirements by rearranging some instruc- I
tions without changing their iteration indices. Code rearranging strategies have previously been
proposed by other authors [SJ93, VVB+93]. Such strategies fine-tune the schedule by moving in- •
structions. These moves are steered by using exact cycle count measurements and more accurate •
estimators for the area component. Incremental scheduling techniques are used not only to reduce
register pressure, but also to reduce area cost in general. Figure 7.10 shows an example of the way
to reduce register requirements by incremental scheduling. •

AVe consider two different movements of instructions in the schedule:

I

I

I

I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RESIS : Register Optimization

function reduce-span (w, UK, K, reg);
num_registers_old := reg;
T2 := TT;
Do

M :—select_node(7T2);
7T2 :=reduceJndex(7T2, u);
Sched :=reduce_scheduling_dependences(7T2, UK);
if schedule found then

num_registers_new := number .of _registers(Sch);
if num_registers_old > num_registers_new then

7T := 7T2; ;
num_registers_old := num_registers_new;

while (K-\< \max) and (MPP(it-¿) <JIK);
Sched:=reduce_locaLmaxima(7r, Sched,
return Sched;

Algorithm 7.3 Fimction reduce.span

0 (A)

l

2 (B;

3

I.Reg

2 Reg

IReg

(a)

Figure 7.10 Reducing registers by incremental scheduling.

133

134 CHAPTER 7

INPUT SCHEDULE

Figure 7.11 Flow diagram of incremental scheduling.

• Re-schedule: moves an instruction from the current cycle to another cycle if sufficient resources
are available.

• Swap: swaps the scheduling of two instructions. The swapping is performed when both
instructions have a similar execution pattern.

Figure 7.11 shows the flow diagram of the algorithm to rearrange instructions within the schedule
of an iteration. It works as follows:

1. Compute the relative lower bound (RLE) on the number of registers required by the schedule.
This is done to stop the search when a schedule requiring such resources is found.

2. Compute MaxReg, the maximum number of registers required at any cycle. The algorithm
ends if MaxReg — RLE. . „ . •

3. Select a cycle c which requires MaxReg registers.

4. Select an instruction to move across cycle c. The lifetime of the variable read or written by
the selected instruction must be alive at cycle c.

5. Move the selected instruction forward (if the variable is written) or backwards (if the variable
is read) until crossing cycle c. This movement decrements the number of registers required

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RESIS : Register Optimization 135

function incremental-scheduling;
Calculate relative lower bound (RLE);
Calculate MaxReg;
c:=select-cycle(MaxReg);
loop

«:=select-iiode-to_move(c);
exit if no node selected;
success:=move-node(M, c);
if success

then
Calculate MaxReg
exit if MaxReg = RLB;
c:=select-cycle(MaxReg);

else restore schedule; {movement failed}
return MaxReg;

Algorithm 7.4 Function incremental-scheduling

at cycle c. Swapping the instruction for another one is only done when re-scheduling the
instruction is not successful.

6. If no successful move can be done with the instruction, select another instruction to move
across cycle c and go to 5. If the instruction is moved successfully, go to 2. The process is
repeated until no instruction can be moved. An instruction can be selected only once while
the number of registers of the schedule is not reduced.

Algorithm 7.4 performs the previously described incremental scheduling.

The following sections describe the heuristics used to select an instruction to be moved (Section
7.5.2) and how an instruction is moved within the schedule (Section 7.5.3). Finally, Section 7.5.6
presents the computational complexity of the algorithm.

7.5.2 Selecting an instruction to move

Let u be the instruction to move, and let c be the cycle across which u must be moved. If u has
been scheduled before c (5(w) < c), u will be moved forward across cycle c. Otherwise, It will be
moved backwards across cycle c. The criteria used to select a node to be moved are as follows:

1. First, we try to select nodes to be moved forward. This is done because the scheduling
algorithm schedules as soon as possible the instructions. Since a forward movement delays
the instruction, the variable lifetime may be reduced. Nodes are selected among those that
have no predecessors scheduled before (or at) cycle c and have at least one successor scheduled
after cycle c (otherwise, no register reduction will be produced). The node which produces
the longest variable lifetime is selected.

I
I

136 CHAPTER 7 —

2. If no node with such characteristics exists, we try to select a node to be moved backwards. A •
node is selected among those that are scheduled after cycle c. The node selected is the one
with the largest difference between the number of required input data (written in registers) _
and the number of data outputs to be written in registers. The number of input data stored in •
registers is approximated by the number of predecessors of the node. The number of output *
data is zero for instructions like store, and one for the remainder instructions. Among nodes
with the same difference, the node which produces the variable with the longest lifetime is I
selected. |

An instruction is selected only once if no movements are carried out within the schedule. The •
execution time of selecting a node to be moved is O(VE). m

7.5.3 Moving an instruction I

This Section presents how a movement is performed within the schedule. A movement consists •
of moving a node (forward or backward across a given cycle c, attempting to prevent the variable •
lifetime from being alive at cycle c. The instruction to move is scheduled (if possible) after cycle
c if movement is forward, and before or at cycle c if movement is backwards. _

*
The swapping of two instructions is only performed when the instruction selected for movement
cannot be re-scheduled because of the lack of available resources.1

7.5.4 Re-scheduling

An instruction u is re-scheduled as follows:

Node v is moved across cycle c without increasing the number of registers required at cycle c. The
swapping is recursively done by following the same algorithm as that used to move u. That is,

I

1. Unschedule u (u was scheduled at cycle S'(w)). •

2. If u must be moved forward, try to schedule u from cycle c+ 1 to cycle ALAP(u).

3. If u must be moved backwards, try to schedule u from cycle c to cycle S(u). •

Note that both explorations are not as greedy as possible. For example, if u must be moved
forward, we could try to schedule u from cycle ALAP(u) to cycle c+ 1 instead of from cycle c+ 1 •
to cycle ALAP(u). A similar argumentation can be performed for a backwards move. It seems |
that the algorithm would quickly converge towards the final solution. However, experiments have
shown that in some cases this approach obtains worse results. •

7.5.5 Swapping •

In order to swap u with another node, a node v is selected among those that have a similar
execution pattern as u (both u and v use the same resources at the same cycle). _

I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i

RESIS : Register Optimization 137

first of all we try to reschedule v without moving any other node. If v cannot be rescheduled, we
attempt to put v in the space used by other node x, and then we try to swap x for another node
which has been scheduled after cycle c.

Although this is a recursive behavior, experiments have shown that the depth of the search is not
very great and the recursive exploration is not expensive. In fact, the theoretical complexity is
not greater than O(V). In order to calculate this complexity, we have taken into account that a
node is moved only once if the number of registers is not reduced. Therefore, no more than |V\
nodes can be recursively moved without success. Since \V\ nodes can be selected to be swapped
with u, the computational complexity of swapping u with another node is O(V2). Given that
the complexity of moving a node is dominated by the complexity of swapping, we conclude that
moving a node executes in O(V2) time.

7.5.6 Computational complexity of incremental
scheduling

The following observations are taken into account to calculate the computational complexity of
function incremental-scheduling:

• Compute the relative lower bound on the number of required registers executes in O(V + E),
as can easily be derived from the definitions in Section 7.3.4.

• AÍ ax Re g can be computed in O(E) time, as shown in Section 7.4.7.

• The execution time of selecting a node to be moved is O(VE), as shown in Section 7.5.2.

• Moving a node executes in O(V2) time, as shown in Section 7.5.3.

• The number of iterations of the loop is very difficult to compute. Experiments have shown
that it is never greater than the number of instructions. Therefore, we will assume that the
loop will seldom iterate more that \V\ times.

By taking into account the previous observations, we conclude that the execution time of incre-
mental-scheduling is O(V3}.

Since the execution time of reducing SPAJVis O(V3E + VE2), we conclude that the total execution
time of RESIS is O(V3E + VE2).

7.6 EXPERIMENTAL RESULTS

This section presents a summary of the results obtained by RESIS. More data can be found in
Appendix C.

138 CHAPTER 7

FUs

oo
6
5
4
3

MS
II

4
4
4
5
6

Reg

6
6
7
8
8

after
SB.

. 8
8
9
7
7

after
IS
8
8
9
7
7

time
SR

0.16
0.16
0.16
0.18
0.08

time
IS

0.01
0.01
0.01
0.01
0.01

diff

+2
+2
+2
-1
-1

Table 7.1 Register reduction in a modulo scheduling algorithm for the Cytron example

FUs
*

8
4
3
3
2
2
1

+

15
8
6
5
4
3
2

MS
II

1
2
3
3
4
4
8

Reg
28
16
12
12
10
11
10

after
SR
28
16
10
10
9
8
8

after
IS
28
13
6
6
5
5
3

time
SR
0.01
0.01
0.23
0.23
0.30
0.25
0.38

time
IS

0.11
0.10
0.01
0.01
0.01
0.01
o.oi

diff

-3
-6
-6
-5
-6
-7

Table 7.2
Filter

Register reduction in a modulo scheduling algorithm for the' 16-Point Digital FIR

FUs
+
5
4
3
3
2
1

-

5
4
3
3
2
1

*

6
4
4
3
2
1

MS
II

3
4
5
6
8
16

Reg

20
18
13
12
16
13 •

after
SR
20
18
18
18
18
15

after
IS

. 18
17
16
18
18
12

time
SR

0.55
0.60
0.85
1.06
1.11
1.31

time
IS

0.21
0.20
0.01
0.01
0.01
0.01

diff

-2
-1
+3
+6
+2
-1

Table 7.3
Transform

Register reduction in a modulo scheduling algorithm for the Fast Discrete Cosine

7.6.1 High-level synthesis

In order to show the efficiency of RESIS, we have use RESIS to reduce the register pressure in
the schedules obtained by a modulo scheduling approach. The" heuristics used by "the modulo
scheduling to select which instruction must be scheduled are based on the positive depth of each
node. The node with the greatest positive depth is scheduled at each moment.

Tables 7.1 to 7.3 show the data obtained for the HLS examples. For each benchmark, the first
columns show the available resources for each case. The next column shows the initiation interval
and the register requirements of the schedule found by the modulo scheduling (MS). The next
columns show the registers used by the schedule after each step of RESIS, as well as the CPU-
time used by each step. The final column (diff) shows the register reduction achieved.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RESIS : Register Optimization 139

FUs

00

6
5
4
3

MS
II

4
4
4
5
6

Reg

6
6
7
8
8

after
IS
6
6
7
8
8

time
IS

0.06
0.05
0.08
0.11
0.05

diff

Table 7.4 Incremental scheduling after modulo scheduling for the Cytron example

FUs
*

8
4
3
3
2
2
1

+

15
8
6
5
4
3
2

MS
II

1
2
3
3
4
4
8

Reg

28
16
12
12
10
11
10

after
IS
28
13
8
8
6
8
3

time
IS

0.11
0.05
0.08
0.11
0.10
0.13
0.08

diff

-3
-4
-4
-4
-3
-7

Table 7.5 Incremental scheduling after modulo scheduling for the 16-Point Digital FIR Filter

Tables 7.1 to 7.3 show the registers required by the schedule after performing SPAN reduction (see
the column labelled after SK). We do not consider such schedules if they require more registers
than those obtained by UNRET. However, in order to show how reducing the SPAN may influence
the final number of required registers incremental scheduling is executed by using such schedules.
Note that, in some case, the number of registers increases as the SPAN decreases for Tables 7.1
and 7.3. Note also that the great improvement is found in those examples with greater quantity
of available parallelism (see Table 7.2).

We have also carried out experiments by only executing incremental scheduling (without previously
executing SPAN reduction). The results (see tables 7.4 to 7.6) suggest very interesting conclusions.
On one hand, the register requirements after execute only incremental scheduling are sometimes
better than those obtained after SPAN reduction plus incremental scheduling. This suggests
that reducing variable lifetimes is not always efficient from the point of view of reducing register
pressure. This is probably because the scheduler has less freedom to schedule instructions, since
the distance of some dependences is decreased. On the other hand, reducing the SPAN before
incremental scheduling works better in some cases. Therefore, we conclude that the SPAN must
be selectively reduced. A way to do so is by giving the ability of moving operations across
consecutive schedules to the incremental scheduling function. We believe that this new approach
would probably obtain better results.

140 CHAPTER 7

FUs , .
+
5
4
3
3
2
1

-

5
4
3
3
2
1

*

6
4
4
3
2
1

MS
II

3
4
5
6
8
16

Reg

20
18
13
12
16
13

after
IS
18
17
12
11
10
10

time
IS

0.20
0.21
0.18
0.18
0.20
0.18

diff

-2
-1
-1
-1
-6
-3

Table 7.6
form

Incremental scheduling after modulo scheduling for the Fast Discrete Cosine Trans-

7.6.2 Superscalar and VLIW processors

As performed with the HLS examples, we have executed RESIS with the schedules obtained by a
modulo scheduling approach in order to show the efficiency of RESIS. A complete list of results
can be found in Appendix C.

As an example, Table 7.7 shows.the reduction obtained in the, number of registers for a VLIW
processor by using 3 FP adders, 2'FP multipliers,- 1 FP divisor and 2 load/store units. For each
benchmark, the first two columns show the initiatioifintervai and1 the register requirements of the
schedule found by the modulo scheduling (MS). The next columns show the registers used by the
schedule after each step of RESIS, as well as the CPU-time used by each step. The final column
(diff) shows the register reduction achieved.

The results obtained show that the number of registers required by superscalar processors and by
VLIW processors is quite similar for the same loops. This fact suggests that an instruction which
produces a result and another instruction which consumes it are closely scheduled. Since this is
one of the purposes of the register reduction phase, we claim that it is very effective. Moreover,
the number of required registers is closed to the relative lower bound, also indicating the goodness
of the approach. The effectiveness of UNRET is manifested by the fact that the relative lower
bound is closed to the absolute lower bound, and a schedule with the minimum initiation interval
is found in most cases.

7.7 SUMMARY AND CONCLUSIONS

In this chapter we present RESIS, a new algorithm for register optimization. RESIS is divided
into two steps, namely SPAN reduction and incremental scheduling. SPAN reduction is based on
reducing the maximum index (A) for any instruction in the schedule. Incremental scheduling is a
code reordering technique, oriented to reduce the number of registers required by the schedule.

SPAN reduction reduces the iteration time, variable lifetimes, and the size of the prologue and
the epilogue of the loop execution. A reduction in the SPAN also reduces the number of times
the loop must be unrolled to generate code.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

RESIS : Register Optimization

SPEC-FPPPP I Loopl 20 0.13 0.01

Linpack Loopl 13 13 13 0.08 0.01

141

Application
Program

SPEC-SPICE

SPEC-DODUC

Loopl
Loop2
LoopS
Loop4
LoopS
Loop6
Loop 7
LoopS

LooplO
Loopl-f
LoopS
Loop?

MS
II
1
2
6
10
2
2
2
2
3

20
21
2

Reg

5
15
3
11
2

35
41
6
3

10
8
28

after
SR
5
15
3
11
2

34
41
6
3

10
8
28

after
IS
5

14
3
11
2

34
41
6
3

10
7

28

time
SR
0.06
0.10
0.10
0.33
0.06
0.08
0.08
0.06
0.10
0.18
0.13
0.08

time
IS

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

diff

-1

-1

-1

Livermore
Loopl
LoopS
Loop23

2
3
8

16
5
18

16
5
15

15
5
14

0.11
0.08
0.33

0.01
0.01
0.01

-1

-4

Whetstone

Loopl
Loop2
LoopS
Cyclel
Cycles
Cycle4
CycleS

17
6
5
4
2
2
2

8
9
5
2
4
6
10

8
9
5
2
4
6
10

8
9
5
2
4
6
10

0.26
0.15
0.13
0.11
0.10
0.06
0.06

0.01
0.01
0.01
0.01
0.01
0.01
0.01

Table 7.7 Register reduction in a modulo scheduling algorithm by assuming a VLIW processor
with 3 FP adders, 2 FP multipliers, 1 FP divisor and 2 load/store units

I
I

142 . CHAPTER 7 -

Incremental scheduling is based on moving instructions within the schedule. It attempts to reduce |
the maximum ..number of variables whose lifetime overlaps at any cycle. ¡Two movements are
considered: reschedule an instruction and swapping two instructions. _

This chapter also presents different lower bounds on register requirements: *

• an absolute lower bound for the number of registers required by any schedule of the loop. •

• a, relative lower bound for the number of registers required by any schedule of a given 7r-graph.

• a lower bound on the number of registers required by a given schedule, calculated as the •
maximum of the register requirements for each cycle. Such a lower bound might not be
reached for a register allocation algorithm.

The results obtained by JlESISshow that it is a good approach for reducing the number of registers
required by a schedule. RESIS has been used with success for optimizing the schedules found by •
a, modulo scheduling algorithm. However, RESIS improves the schedules found by UNRET only •
a few times. Therefore, we claim that UNRET is also a good algorithm from the point of view of
register, utilization. , Results also suggest that reducing variable lifetimes (by SPAN reduction) is
not always efficient from the point of. view. of reducing register pressure. .Therefore,. we conclude •
that SPAN reduction must be used selectively. •

I

I

I

I

I

I

I

I

I

I

I

