
UNIVERSITAT POLITÈCNICA DE CATALUNYA

LOOP PIPELINING WITH
RESOURCE AND TIMING

CONSTRAINTS

Autor: Fermín Sánchez

October, 1995

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6
UNRET: LOOP PIPELINING WITH

RESOURCE CONSTRAINTS

6.1 INTRODUCTION

Some software pipelining techniques [SDX86, AN88a, PLNG90] find a loop schedule by assuming
infinite resources. Following this, the schedule is reorganized in order to satisfy resource con-
straints. Other approaches consider resource constraints during the scheduling process [RG81,
Lam88, Rim93], These later techniques are more suitable for loop pipelining in real architectures,
and in general they obtain better results than the former.

The number of resources available in parallel architectures (superscalar processors or VLIW pro-
cessors) is limited and depends on the architecture of the processor. In the case of HLS systems,
the area of the chip is limited and therefore the number of resources (FUs, buses, etc.) is finite.
Since resource-constrained scheduling is an NP-hard problem [GJ79], an optimal schedule for these
architectures might not be found by a known polynomial algorithm.

The throughput of a schedule is the ratio between the unrolling degree of the loop and the length
of the schedule. The variations in both magnitudes determine the solution space (all possible
throughputs) for a given loop. When an optimal schedule is not found, the solution space must
be examined a.nd a criterion must be established to determine when an "acceptable" solution has
been found.

83

84 CHAPTER 6

i=i+2

A, B.

C

(a) (b) (c) (d)

Figure 6.1 Different schedules of a loop
(«O T

(b) ̂

(c) Sub-optimal schedule of TT
(d) Time-optimal schedule of 7r2

This chapter presents UNRET (UNrolling and RETiming), a new approach for software pipelin-
ing with resource constraints which takes resources into account during the scheduling process.
UNRET computes the Mil of the loop and tries to find a schedule which executes the loop in MIT
cycles. Since Mil may not be an integer, loop unrolling is used to find a multiple-instanced loop
with an integer Mil. Figure 6.1 shows an example of how the potential parallelism achievable for
a loop schedule may be increased by previous unrolling. For the sake of simplicity, we assume that
all instructions in the figure are sums which can be executed in a single cycle, and two adders are
available.

A loop schedule in Mil cycles may not exist for some loops (MÍÍ is calculated by considering
resources and recurrences, but other factors, such as the topology of the dependences, may also
impose constraints to the scheduling). Even if the schedule exists, the loop pipelining approach
may not be able to find it.

Previous software pipelining approaches [RG81, Lam88], including those that previously consider
loop unrolling [SDX86, BC90, Rim93], explore the solution space in one dimension, i.e. the
expected ÍÍ of the schedule is increased when a schedule with the previous expected initiation
interval is not found.

Conversely, UNRET explores the solution space in both dimensions the unrolling degree of the
loop (K) and the expected initiation interval for the schedule of the loop unrolled K times (IIK)•
To do so, pairs (IlK,K) are generated in decreasing order of the expected throughput of the
schedule until a schedule is found. For each pair (IlK,K), the loop is unrolled K times, repeatedly
transformed (by means, of dependence retiming) and scheduled. If no schedule of T,K is found in
UK cycles, a new pair is explored! Finally, once a schedule has been found, the number of registers
required is reduced. This step will be explained in detail at Chapter 7. The flow diagram depicted
in Figure 6.2 shows the previously detailed strategy.

Section 6.2 describes how the pairs (IlK,K) are generated. Section 6.3 describes how a ?r-graph
is transformed by means of dependence retiming. Section 6.4 presents the algorithm used to find
a schedule, as well as the heuristics proposed to transform the ?r-graph and to decide when to
stop the search. Section 6.5 shows three simple examples to illustrate how UNRET works. Some
results are reported in Appendix B.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UNRET: Loop Pipelining with Resource Constraints

n Architecture

1 1

NO / Found
schedule in
//K cycles

OUTPUT SCHEDULE

Figure 6.2 General overview of UNRET

K Th=MaxTh

2 4 5
77K

MaxII

Figure 6.3 Representing throughput in a diagram

85

6.2 EXPLORING THE SOLUTION SPACE

6.2.1 Throughput diagram

The throughput of any schedule of a loop can be represented in a diagram, as shown in Figure
6.3. The y axis represents the unrolling degree of the loop (K), and the x axis represents the
number of cycles of the schedule (IIK)- A point (II K, K) in the diagram represents a schedule1

1 This schedule may not exist.

86 CHAPTER 6

K
MaxK

MaxTh=~ X-:

MH S' f"-:
K=OptK

(a)

Figure 6.4 (a) Solution space for UNRET
(b) Solution space for other approaches

•ÍAf/71 OptK-M/7
(b)

of K iterations of the loop in UK cycles. The throughput of such a schedule is jj7 iterations per
cycle.

All points representing schedules with the same throughput fall in a line. For example, points A
and C in Figure 6.3 represent two different schedules with the same throughput Th = 0.75. The
throughput of the schedules represented by points B and D is Th = 0.8 and Th = 0.5 respectively.
Note that point B is above the line which includes points A and C, since the throughput of B is
greater than the throughput of A and C. On the other hand, point D is below this line because
it represents a schedule with less throughput.

As shown in Chapter 3, the maximum throughput (MaxTh} achievable by a schedule is bounded
by the recurrences of the loop and the set,of resources of the architecture, (MàxTh = jfjj). All
the schedules achieving maximum throughput fall in the line Th = MaxTh. Any feasible schedule
of the loop must be represented by a point (with integer values for K and UK) below this line.
We are interested in exploring the points in the diagram in decreasing order of throughput. Since
the number of points below the line Th — MaxTh is infinite, we will limit them by constraining
the maximum number of cycles of any schedule. This bound is called M axil.

The points to explore are included in the triangle formed by the UK axis and the lines UK =
MaxII and Th — MaxTh. The shadowed triangle in Figure 6.4(a) represents the solution space.
Figure 6.4 compares the solution space explored by UNRET to the solution space explored by
other approaches.

• Software pipelining techniques which'do not perform loop unrolling explore the points shown
in the arrow represented on the line K — 1. Note that the first point to explore may not
be on the line Th = MaxTh, and therefore may not represent a time-optimal schedule (its
initiation interval is [MIT] > Mil). •"•

• Software pipelining approaches considering loop unrolling explore the points shown in the
arrow represented on the line. K = OptK. OptK is the optimal unrolling degree of the loop.
Given a 7r-graph x with Mil(TT) = f , ÒptK = gcd(a^) [¿C^b',' JÀ90]. Therefore, a theoretical
optimal-time schedule may exist in OptK • Mil cycles. For a given value of K, the distance
between any two points is always an integer value. In general, the distance between two

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UNRET: Loop Pipelining with Resource Constraints 87

Th=MoxTh

8 9 14 15

Figure 6.5 Triangles delimited by MaxII = 9 and MaxII =15

consecutive points is one unit, but this depends on the approach (for example, in [Huf93] the
proposed increment is max([0.04-ITJ, 1). This is done to avoid spending an excessive amount
of time compiling large complex loops).

Whilst the previous approaches explore the solution space in only one dimension (they change
the expected initiation interval for a fixed unrolling degree), UNRET explores the solution
space in two dimensions (it changes both the expected initiation interval and the unrolling
degree), as shown by the shadowed triangle from Figure 6.4(a). Exploring different unrolling
degrees may increase the throughput in face to only explore different initiation intervals. Fig-
ure 6.5 depicts a diagram with two triangles corresponding to MaxII = 9 and MaxII — 15.
The point A = (14,8) belongs to the triangle delimited by the line MaxII = 15, whilst the
point B = (8,4) belongs to both triangles. Although A represents a potential schedule of 14
cycles and B a potential one of only 8 cycles, the schedule throughput of A (Th = ~ = 0.57)
is higher than that of B (Th = I = 0.50).

6.2.2 Farey's series

For a fixed n > 0, the sequence of all the reduced fractions with nonnegative denominator < n
arranged in increasing order of magnitude is called the Farey's series of order n, and denoted by
Fn [Sch90]. For example, F5 is the series of fractions:

0 1 _ 1 1 2 1 3 2 3 4
ï'5'4'3'5'2'5'3'4'5'"'

Figure 6.6 shows a diagram representing such a sequence2. Note that point (4,2) is not in the
sequence, since it is not reduced (it represents the same fraction as point (2,1), as the line that
crosses both points in Figure 6.6 shows).

The throughput of a schedule represented in Figure 6.3 is a fraction with a denominator lower than
or equal to MaxII. Therefore, the Farey's series of order MaxII forms the sequence of points to

2 In order to compare such a diagram to the throughput diagram from Figure 6.3, numerators have been repre-
sented in the y axis and denominators in the x axis.

88 CHAPTER 6

1 2 3 4 5
Den

Figure 6.6 Representing Farcy's series F$ in a diagram

be explored in the throughput diagram. We are interested in exploring the elements of FMO.XII in
decreasing order, starting at the first element E¿ fulfilling EÍ < MaxTh. An approach to perform
such exploration, based on maximizing the resource utilization of the architecture, has previously
been proposed in [SC93a, SC93b]. In the next section, we will explain a simpler way to perform
such an exploration.

6.2.3 Exploring Farey's series in decreasing order of
magnitude

By using the equations from [Sch90], we derive new equations to recursively generate the elements
from Farey's series in decreasing order of magnitude. The ¿th'element of the Farey's series FM ami it
EÍ = yf, can be recursively calculated by using the two following elements as follows:

y¿+2 + M axil
• Af+i —

+ M axil
v*i + l J

Note that two consecutive elements of Farey's series FMO.XII are required to recurrently compute
the previous one. We will now describe the way to compute the two first elements to be considered.
Such elements must be as near, as possible to the fraction representing maximum throughput,
which is the first fraction that may represent a feasible schedule. The throughput of the schedule
represented by the first element must be MaxTh whenever possible.

Theorem 6.1 The lowest fraction with denominator MaxII, with a value greater than or equal
to MaxTh is:

\Maxin
I Mil I
MaxII

(6.2)

Proof:

Let us consider the throughput diagram from Figure 6.7. Point Y is in the line Th — MaxTh,
but it cannot be considered because it is not represented by integer values of UK and K. For

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UNRET: Loop Pipelining with Resource Constraints 89

Th(Y)=

fKyl

MaxII

KY
-MaxTh

MaxII

MaxII

Figure 6.7 First element of Farcy's series to be considered

a given MaxTh and MaxII, we are interested in finding the fraction corresponding to point X.
Since point Y fulfills Th — jfjj, we have:

Th(Y) -
Mil MaxII Mil

Since Farey fractions are formed by integer numerators and denominators, we are interested in
finding \Ky~\- Point X = (MaxII, [7<"y~|) represents the first point which we are looking for, with
a throughput:

r Tf 1 [Maxlf~\
Th(X} = ' I = I Mil I

1 ^ ~ MaxII MaxII

Note that point X may not represent a feasible schedule, since Th(X) may be greater than MaxTh.

D

The fraction expressed by Equation (6.2) is the first to be analyzed. However, to use the recurrence
from Equation (6.1) we need two consecutive fractions. By using theorems from [HW79], we derive
a recurrent equation to compute a fraction from FMOXII by using the next one:

f i =x + .
MaxII-y

fi = y +
Ma*II-y

(6.3)

where x and y are two integers satisfying the relation gcd(—Y¿, X¿) = (—Vj) • x + X¡ • y. The
coefficients x and y can easily be computed by using the extended gcd [HW79]. Algorithm 6.1
calculates the second (previous) Farey fraction by using Equation (6.3). In the algorithm, called
Previous-fraction, function ExtendedGCD(n,ra) returns the list [g , x t y] , where g is gcd(n,m),
and x and y are two integers satisfying the relation g = nx + my. Once both fractions have been
obtained, we can recurrently use Equation (6.1) to compute the remainder elements of the series.

90 CHAPTER 6

function Previous-fraction(Xk,Yk,Z);
{Read the fraction ./"I"1 of the Farey series Fuaxii and

fc+i -i-

y] :=ExtendedGCD(-yjfc+i,
MaxII-

Algorithm 6.1 Algorithm to compute a Farey fraction by using the next one

In summary, the algorithm to compute all the pairs in decreasing order of throughput is as follows:

3Despite not finding any such case in our experiments, we have not been able to prove the contrary.

I
I
I
I

computes the previous fraction ¿£- } I

I

•

The first fraction which may correspond to a feasible schedule is the fraction E j = |4> such that •

*i < MaxTh.
Mi —

Since the fractions are reduced, not all points in the throughput diagram are represented by the •
elements of Farcy's series (an example is given in Figure 6.6. Point (4,2) is not represented in the *
series, since it is not reduced). However, if a schedule is not found for a given point (U/f, /Í),
this does not mean that a schedule for the point (n • UK, n • K) does not exist3 for any integer •
n > 0. Therefore, for each Farey fraction we generate all the equivalent ones with a denominator |
lower than or equal to MaxII. Such equivalent fractions are generated in increasing order of
denominator, since we are interested in first exploring the shortest schedules (for schedules with •
the same throughput). For example, if we are interested in the series F$ in decreasing order of •
magnitude, and the maximum throughput achievable by a schedule is MaxTh = |, the fractions
to explore are: _

4 3 2 3 j . 2 2 1 . l l •
5 ' 4 ' 3 ' 5 ' 2 ' 4 ' 5 ' 3 ' 4 ' 5 •

I

1. Compute the lowest reduced fraction M
x
a
k
xII such that M"^xII > MaxTh. This is the first _

fraction ^ of the series in which we are interested. Equation (6.2) shows such a fraction. •

2. Compute the previous fraction, ££=ij by using Equation (6.3). Generate all the fractions

equivalent to.'r'i~'. with a denominator lower than. or equal to MaxII. H

3. Compute the remainder fractions by recurrently using Equation (6.1). For each fraction,
generate all the equivalent fractions with a denominator lower than or equal to MaxII. This _
calculation is faster than using step 2 for each element. •

I

I

I

I

I

1
1
1
1
1

1
•

1

1

1IB

1

1

1

UNRET: Loop Pipelining with Resource Constraints

6.2.4 Reducing the solution space

Number of points to explore

91

The number of points to explore may be quite large. Since only integer values for K and UK are
explored, the number of points inside the triangle which forms the solution space is in
of thp irm of Hi r t r innr l r (TC- Firnrr fi -KilV Wiimhrr nf nnjiii" ~ MaxK-MaxII

the order

MaxK corresponds to the number of iterations involved into a schedule with maximum through-
put, whose length is MaxII cycles. The throughput of such a schedule is j^jj iterations
0- -r MaxK 1 rnnrl i ir lr th"it MnvK MaxIIsince MaxII — MII , we conclude mai M axi\ — M¡¡ .

Therefore, the number of points in the throughput diagram is in the order of:

J l f -n-TV A f - , r T T MaxII M/i-r/T A - f - r i - f T 2
. ivictxii 'iviaxii Mil wiaxii iviaxn

Number of points K

We conclude that the number of points is proportional to the square of MaxII. Thus
MaxII quadratically decreases the number of points in the solution space.

Reducing MaxII

per cycle.

, reducing

The maximum number of cycles of a schedule is determined by the designer. However, when
MaxII is a large value the solution space is too large. In this cases, it is useful to look
solution rather than an optimal solution if this significantly reduces the solution space.

Let us consider two solution spaces 55i and 552, such that 552 C 55i. We define 552

for a good

as a good
subspace to explore 55i if, for each point (H/f , / \) representing a schedule with throughput jj-,

there exists a point (II'K, K') such that -Mr- > x • jf—, where x G (0, 1] and x approaches to 1.
J.JL ff -*•-*• K

V(IIK,K) € 55i , 3(II'K,K') € 552 such that A- > ¿- > z • -£-
UK UK ILK

The previous equation indicates that, for each point belonging to 55i, a point exists in
a similar throughput.

We assume that, if a schedule exists for a point (IIjf,K), a schedule also exists for
(II'jf,K') such that jjr < jj—.- We cannot demonstrate this assumption, but we have

K ^
in our experiments any case which indicates the contrary.

The solution space can be reduced in two ways, as shown in Figure 6.8:

• By limiting the maximum number of iterations of the loop (K)

552 with

any point
not found

92 CHAPTER 6

ES

Th=MaxTh

MtixII
(a) (b)

I
I
I
I
I
I
I

Figure 6.8 Reducing solution space
(a) By limiting MaxII
(b) By limiting K

• By limiting the maximum number of cycles of the schedule (Maxíí)

Limiting MaxII also produces a reduction in the number of iterations to unroll. Furthermore,
it is better than a simple reduction in K as far as reducing the number of registers required by
the schedule is concerned (in general, the greater the number of cycles, the greater the register
requirements). Thus, for a given maximum number of cycles C determining a solution space SSi,
our objective is to find a MaxII < C determining a solution space SSi such that, for any schedule
S in SSi there exists a schedule in 5^2 with at least a; per cent of the throughput of S.

The number of fractions in FC is greater than the number of fractions in FMCLXII- The fractions in
a Farey's series are not uniformly distributed. Therefore, the number effractions belonging to FC
which are between two consecutive fractions from FMOXII is not constant. We are interested in
studying two consecutive fractions such that the difference between them is maximum. Note that
this is the worst case for our proposal, which is finding a good subspace determined by Maxíí.

For a given Farey's series FC, the maximum difference between two consecutive fractions corre-
sponds to fractions j(§) and ^^- (there are other consecutive fractions with the same difference).
Such a. difference is j*. Figure 6.9 shows the number effractions from FC which are between two
consecutive fractions from FMUXII between which there is the largest difference.

The point labelled ^"^/J1 in Figure 6.9 must represent a schedule with at least x per cent of
the throughput of the point labelled ^. Therefore, we have:

1 MaxII - I
C ~ MaxII

and, by operating with the former equation, we obtain:

1
MaxII

- +l-x

MaxII =

I

I

I

I

I

I

I

I

I

I

I

I

I
1

1
•

1
1
1
1
1
1•r

.

1
1•
1

1
1

1
1

1

UNRET: Loop Pipelining with Resource Constraints

I . . Exploration in decreasing order
C ' ^

y^ X

MaxII y
MaxII

v MaxII-1
N^ MaxII

1
MaxII

Figure 6.9 Comparing number of points in FC and /*AÍOI/J

93

In order to illustrate the effectivity of reducing the solution space, we will show the MaxII calcu-
lated for C = 10, C = 50, C = 100 and C = 200, by assuming x - 0.95.

C = 10 => MaxII = 7

C = 50 => MaxII = 15

C - 100 =» MaxII = 17

C = 200 => MaxII = 19

We conclude that using a small MaxII is possible to achieve a good solution. Reducing the
space may significantly reduce the time required to find a good schedule.

6.2.5 Figures of merit

This section presents a figure of merit to evaluate how good a schedule is.

Definition 6.1 : Time-optimal schedule

A schedule S is time-optimal when its throughput is Th(S) = MaxTh.

Definition 6.2 : £ (Schedule Efficiency Ratio)

We define the efficiency ratio of a schedule S, e, as:

Th(S)
£ ~ MaxTh

The efficiency ratio is a real number belonging to the interval (0..1], which measures

solution

the time
efficiency of a schedule with respect to a (theoretical) time-optimal one. The efficiency ratio of a
time-optimal schedule is s = 1. This figure of merit is independent from the technique used for
loop pipelining.

94 CHAPTER 6

'.
Ai

BI
......U

A2

B2

C

E

V—-.

C

E
;

0

0

(b)

0

•o

(d)

Figure 6.10 MPP(v) < íí does not guarantee a schedule in ÍÍ cycles
(a) Example of 7>graph TT
(b) An incorrect schedule in 3 cycles of IT
(c) 7r-graph TT' equivalent to TT ,
(d) A correct schedule in 3 cycles of TT'

6.3 RETIMING DEPENDENCES

6.3.1 Range for retiming dependences

Theorem 6.2 A necessary condition for a if-graph it to be scheduled in II cycles is MPP(ir) < II.

Proof: All instructions in the a positive path must start their execution inside the II cycles of
the schedule (see definition 4.8). Thus, if the length of the critical path is longer than II, such a
path cannot be scheduled in II cycles. ü

In order to obtain a schedule in Mil cycles, dependences must be retimed until an equivalent
TT-graph TT' is found such that MPP(ir') < MÍÍ(TT').

Figure 6.10 shows an example of how the condition presented in Theorem 6.2 is not a sufficient
condition to find a schedule. In the example, we assume LA = LB — LC — 2 and LD ~ 1.
Therefore, MÍÍ(TT) — | = 2.33. Bold edges indicate the positive scheduling dependences (PSDs),
for an expected initiation interval ÍÍ = 3, and MPP(ir) = 3. Figure 6.10(c) depicts a TT-graph TT'
equivalent to TT. The length of the critical path is 3 in both 7r-graphs. Although MPP(ir) < II,
no schedule in three cycles exists for TT, as Figure 6.10(b) shows. However, a schedule in three
cycles exists for TT', as shown in Figure 6.10(d). Note that the distance of dependence (B,C) in
TT' is greater than the distance of the same dependence in TT.

Given that only PSDs are taken into account to compute the MPP, transforming PSDs into NSDs
(negative scheduling dependences) will reduce the length of the MPP. However, NSDs also impose
constraints on the scheduling process, ,as schedule in Figure 6.10(b) shows. Transforming NSDs
into FSDs (free scheduling dependences) makes the scheduling 'task easier (see Figure 6.10(d)).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
I
I
I

UNRET: Loop Pipelining with Resource Constraints 95

function increase-distance^, e); {e = (u, v)}
S := {v € V | there is a path from u to v};
P := Vc — S; { Vc= connected component which u belongs to }
for each x g Vc do

if ï € P then \(x) := A(x) + 1;
for each (x, y) g Ec do

if x € P and j/ € 5 then 6(x, y) := S(x, y) + 1;
return ?r';

Algorithm 6.2 Algorithm to increase the distance of a dependence not belonging to any recur-
rence without decreasing thé distance of any other dependence.

No advantage is achieved by increasing the distance of an FSD. Therefore, since the range for a
dependence e = (u,v) to be an FSD is 6(e) > £"'^y~:L, the range of variation for the distance of
a dependence is:

6.3.2 Retiming dependences not belonging to recurrences

Theorem 6.3 The distance of a dependence not belonging to any recurrence can be increased
without decreasing the distance of any other dependence.

Proof:

Algorithm 6.2 (increase-distance) increases the distance of a dependence not belonging to any
recurrence without decreasing the distance of any other dependence. We only consider nodes
belonging to the same connected component as u (the rest of nodes is not influenced by dependence
retiming). In the algorithm, Vc and Ec represent respectively the set of nodes and edges of the
connected component which u belongs to, S represent the set of nodes v such that a path exists
from u to v and P represents the set of nodes w such that a path exists from w to some node
v€S

For a given dependence e = (u, v), increase-distance increments S(e). In order to build an equiva-
lent 7r-graph TT', increase-distance also increments X(x) for all nodes x 6 P. We will demonstrate
that such an algorithm produces an equivalent 7r-graph.

Figure 6.11 shows how increase-distance operates on a 7r-graph. Transformations on the labelling
of vertices (A) and edges (<5) are indicated by the symbol "+1".

All the edges (u, v) 6 Ec fall into three categories4:

1. u,v e P:
A'(u) = A(w) + 1 and X'(v) = \(v) + 1. Therefore 6'(u,v) = 6(u,v).

96 CHAPTER 6

(a) (b)

Figure 6.11 Effect of increase-distance in a 7r-graph
(a) An example of increase-distance in a 7r-graph without recurrences. ;

(b) Representation of the three types of edges.

2. M 6 P and v € S:
A'(«) = A(u) + 1, A» = A(w), and 6'(u, v) = S(u, v) + I .

3. u 6 S and v .£ S:
\'(u) - X(u) and X'(v) = X(v). Therefore 6'(u, v) = o(u, v).

Figure 6.11(b) shows the three categories of edges. For the three cases Equation (3.1) holds.
Therefore, we conclude that TT and TT' are equivalent ^graphs. O

S can be built in O(V + E) time by using a depth-first search algorithm [CLR90]. The connected
components in a 7r-graph can be found in O(V + E) time [CLR90]. Therefore, P can also be built
in O(V + E) time. In the worst case, increase-distance modifies the iteration index of all vertices
in the 7r-graph and the distance of all dependences. Therefore, we conclude that increase-distance
executes in O(V + E) time.

6.3.3 Retiming dependences belonging to recurrences

Let us consider a 7r-graph TT and a recurrence R G TT. Let us assume that dependence retiming
is performed in a dependence e € R, obtaining a 7r-graph TT'. Let OR and 6'R be the sum of the
distances of the dependences belonging to recurrence R in TT and TT' respectively.

Lemma 6.1 6ft = 6R

Proof: Let us consider a recurrence R composed of n edges: R = {e\, e?, ..., en}.

4 The case where u 6 S and v Ç. P is not possible. E « Ç 5 and (u, v) e Ec, then v 6 S.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1
1

1
1
1
1
•

1̂v
1
1
1
1

•

1

1
1
1
1
1
I

UNRET: Loop Pipelining with Resource Constraints

0

£^-^>0 x-x 0 ,~\ 0 x~O £.S~\ 2 /-\ 0 ^-^ 0

>® J*^\ 0

n, £^-y^\±s~\^\) TC ífíy¿y^y¿/^y^/^J^r\^^(-r \-^^±^-n^^
(a) (b)

Figure 6.12 Dependence retiming performed in a recurrence

with i < n.

Let us assume that dependence retiming is performed in dependence e¿ € R-
rules of retiming described in Section 3.5.1, <5'(e¡) = ¿(e¿) + 1 and <5'(e¿_i) =
distance of the remainder dependences does not vary. Therefore:

fK = Zfu = rM + fM + ...+fM + fM + ... + f(.

«(.,) + «(«) + ... + «(«,.,)- 1 + ÍW + 1 + - • + !(«.).

¿(ei) + ¿(e2) + • • • + ¿(e¿_i) + <5(e¿) + • • • + 5(en) = } ¿(e) = ¿

97

7p

T\)

According to the
%,-_!) - 1. The

,) =

>n

n

Figure 6.12(b) shows how dependence retiming allows to distribute the distance of the edges in
a. recurrence. This feature may reduce the length of the longest positive path in the recurrence.
Retiming a dependence belonging to a recurrence may vary the distance of some dependences not
belonging to the recurrence, as shown in Figure 6.12(a).

Theorem 6.4 The distance of a dependence belonging to a recurrence cannot be
decreasing the distance of another dependence in the recurrence.

Proof:

increased without

Since the sum of the distances of the edges in a recurrence is constant, increasing the distance
of an edge in t units always implies decreasing the distance of other edges in
Otherwise, lemma 6.1 would not be fulfilled.

a total of t units.
G

I
I

98 CHAPTER 6 —

6.4 FINDING A SCHEDULE WITH MAXIMUM |
THROUGHPUT

6.4.1 Quality of a yr-graph •

Given two equivalent TT-graphs, TT and TT', we are interested in deciding which 7r-graph is more •
appropriate for scheduling before scheduling both 7r-graphs. We assume that 7r-graphs more in I
accord with the heuristics defined in Chapter 5 for the scheduling algorithm will probably be more
suitable. •

Therefore, we are interested in reducing the size of the critical path in a 7r-graph and transforming
as many dependences as possible into FSDs. Since PSDs impose more constraints on the scheduling
process than NSDs, we assume that 7r-graphs with a fewer number of dependences (by considering •
PSDs before NSDs) of each type are better for scheduling. •

Definition 6.3 : min^cycles(u, v) I

Min.-cycles(u,v) is the number of cycles that v must be scheduled after u when v is ASAP sched- _
uled. •

min.cycles(u, v) = Lu — II • 6(u, v) •

A4iri-cycles(u, v) is a quantitative way of measuring the constraints imposed by a dependence e •
on the scheduling. Note that min-cycles(e) > 0 if e is a PSD, whilst min.cycles(e) < 0 if e is an
NSD. Therefore, for a PSD, the greater min-cycles(e), the greater the constraints imposed by e. ^
On the other hand, for an NSD, the greater min_cycles(e), the lower the constraints imposed by •

•e.

Definition 6.4 : PSD-Constraints(ir)í'NSD-constraints(ir) M

The total constraints imposed by the PSDs (NSDs) on the scheduling of IT, PSD -constraints^) M
(N SD -constraints^)), is the average of min-cycles(e) for all PSDs (NSDs) in TT. •

' 2_. min_cycles(e)
nrr-i j • j I \ e£E+ •PSD-Constramts(ir) = •

Number of PSDs •

'• • '" "• • Vj min-cycles(e) m

NSD-constraints^) = *
Number of NSDs

|We will use PSD. constraints^) and NSD. constraints^) to decide between 7r-graphs containing
the same number of dependences of a given type. Note that PSD-Constraints(ir) is a positive
integer, whilst NSD. constraints^) is a negative integer. Finally, according to the heuristics •
defined in Chapter 5, the number of nodes ready to be scheduled on each TT-graph will also be I
considered. .

I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UNRET: Loop Pipelining with Resource Constraints 99

Definition 6.5 : Quality of a 7r-graph

Let TT and IT' be two equivalent ir-graphs. We define that quality^) > quality(it'} if (in order of
priority):

1. MPP(K) < MPP(7r')

2. Number of PSDs in TT < Number of PSDs in -it'

3. PSD. constraints^) < PSD, constraints^')

4- Number of NSDs in TT < Number of NSDs in IT'

5. N SD -constraints^) < NSD-Constraints^')5

6. Number of nodes ready to be scheduled in TT > Number of nodes ready to be scheduled in TT'.

If quality(Tr) > quality(Tr'), we assume that TT is better for scheduling than TT'.

The execution time of comparing the quality of two 7r-graphs is O(V + E).

6.4.2 Finding a schedule in II cycles

Improving the quality of a 7r-graph

Algorithm 6.3 (retiming-and-scheduling) tries to find a schedule of a loop body in a previously
known number of cycles. Retirning-and-scheduling successively transforms a 7r-graph by means
of dependence retiming, looking for an equivalent 7r-graph with better quality. The 7r-graph is
scheduled after each transformation. The algorithm halts when a schedule in the expected number
of cycles is found or the quality of the 7r-graph cannot be further improved.

The first objective of retiming_and-scheduling is reducing the length of the MPP. According to the
definition of quality, when the MPP cannot be further reduced, the number of PSDs and NSDs
must be then reduced.

The length of the MPP may be reduced by transforming dependences belonging to a critical path
(PSDs) into NSDs or FSDs. In order to achieve this purpose, the function select-edge selects
the appropriate edge to be retimed. An edge can only be marked if it belongs to a recurrence.
Otherwise, it can always be transformed into an FSD without decreasing the distance of any other
dependence (see Lemma 6.3). The criteria for selecting and edge, in order of priority, are as
follows:

1. The head-edge of an MPP. This edge is selected because dependence retiming increases its
distance without creating any dependence with a distance lower than zero. When the distance

5 N SD-constTaints(v) is a negative integer which indicates maximum timing constraints. Therefore, decreasing
N SD-constraints^) increases the time frame for scheduling some nodes in TT.

100 CHAPTER 6

I
I
I
I
I

function retiming-and-scheduling(ir,II);
_/ _.
7T . — TTj

unmark(Tr');
Repeat

S :=scheduling(7r',ÍT);
if schedule found then return S; ^
e:=select_edge(7r'); {e = (u,v)} I
if no unmarked edge can be selected •

then return no schedule found;
IT' :— dependence jr etiming(v', e); M
if e is an FSD then mark(e); •
if quality(ir1) > quality(w) then ™

7T := TT';
unmark all edges in TT'; M

Forever |

Algorithm 6.3 Algorithm to find a schedule in a given number of cycles H

of an edge e has increased until e becomes an FSD, e is marked in order not to repeat •
transformations on it (otherwise, the algorithm would never end).

2. The taiLedge of an MPP. The distance of the tail-edge is increased by using a transformation •
similar to dependence_retiming. The head-edge and the taiLedge are the only edges over which •
retiming (or the similar transformation) can be used without creating any dependence with
a distance lower than zero. As in the former case, the tail-edge is marked when it becomes B
an FSD. |

3. The head-edge or the taiLedge from a positive path not maximal.

4. An NSD not marked. Dependence-retiming is performed to attempt to transform it into an |
FSD.

If no edge can be selected by using the previous criteria, we assume that the quality of the ?r-graph ™
cannot be further increased. In this assumption, the algorithm stops the search without finding a
schedule. B

In some cases, a 7r-graph of worse quality than the previous one may be produced after a trans-
formation. Since we ; are interested in continuously improving the1 quality, the 7r-graph with the im
best quality found is always stored, and the new 7r-graphs obtained are compared to it. However, •
dependence-retiming is performed in the current 7r-graph, even though its quality may be worse
than the quality of the best 7r-graph found. This kind of search allows the algorithm to escape
from local maxima of quality. •

Although experiments prove that quality compares two 7r-graphs quite well, it cannot be guaran-
teed that a TT-graph with better quality is actually easier to schedule than a 7r-graph with worse •
quality. For this reason, scheduling is done after each transformation (instead of only once by •
using the best 7r-graph found).

I

I

I

1
i

1̂v

1
1
1
i

UNRET: Loop Pipelining with Resource Constraints 101

Figure 6.13 shows an example in which the 7r-graph (b) has better quality6 than 7r-graph (a), but
a shorter schedule may be found for (a) by using five FUs.

f ' " — "V (a)/^~/Siv /^/Sk
(TO^'(^®> íïiu

^^--_ÎF) ^^--—-qi)\jy vjy

^-+tâi ^^ (b)

(^W®^(^®@)3 U* ; ^
\T\S¿/^ \T\i¿í/^ G(>

— vüy v¿y 1

i = i + 1

HI
1 = 1 +]

Figure 6.13 (a) has a shorter schedule than (b) despite quality(b)>quality(a)

Theorem 6.5 Algorithm retiming^and_scheduling halts.

Proof: All the 7r-graphs representing the same loop are completely ordered by the quality. More-

1
over, although the number of ?r-graphs is infinite, the number of different equivalent 7r-graphs
explored by the algorithm is finite (an upper bound exists for the distance of a dependence, as
shown in Section 6.3). Therefore, there is a 7r-graph with better quality than any other. Retim-

1

1

ing.and.scheduling continuously stores the 7r-graph with the best quality found. If all the markable
edges have been marked without improving the quality of the 7r-graph, retiming.and.scheduling
assumes that the 7r-graph with the best quality has been found, and consequently the algorithm
halts.

Computational complexity

a

The scheduling algorithm executes in 0(V2 + V • E) time (see Chapter 5).

The number of times a dependence (u , v) is retimed depends on 6(u, v) and Lu. Therefore, it
does not depend on l^l and \V\, and thus it does not influence the computational complexity
of the algorithm. In the worst case, all dependences will be retimed. Therefore, we conclude
that the execution time of retiming.and.scheduling is:

O(V2E+VE2)
6 Despite the MPPs from both 7r-graphs are equal, 7r-graph (a) has 13 PSDs, whereas 7r-graph (b) has only 10

I
I

102 CHAPTER 6 _

function retiming-and-scheduling^,!!);
*' := TT;
unmaik all edges in TT';

t := 0;
Repeat

Forever;

Algorithm 6.4 Optimized reiiming-and-scheduling algorithm

Reducing the execution time of retiming_aiid_scheduling

I
m•

if (i mod a = 0) then S :=scheduling(7r', II); ™
if schedule found then return S;
e:=select.edge(7r'); •
if no unmarked edge can be selected •

then return no schedule found;
TT' := dependence-retiming (TT' ,e) ;
if e is an FSD then mark(e); •
if quality^') > gua}ity(if) then |

unmark all edges in TT';

I

I

I

Scheduling is the task with the highest computational complexity in retiming-and.scheduling. The •
scheduler is called after each retiming transformation, and the number of retiming transformations •
performed before finding a 7r-graph with a feasible schedule may be very large. In order to reduce
the execution time of retiming-and.scheduling, we are interested in reducing the number of times •
the scheduler is called. A way to do thisas by executing the scheduler once out of a transformations, £
instead of executing it after each retiming transformation. The parameter a is defined as a function
of the size of the ?r-graph. After several experiments, we have found that a = *-£• is an appropriate «
value for a. •

Although not scheduling the 7r-graph after each transformation could, in principle, produce sub-
optimal results, comparison with the results obtained with a = I shows no detectable influence. •
On the other hand, a significant CPU-time reduction has been achieved. The optimized retim- •
ing^and_scheduling algorithm described in lines above is the Algorithm 6.4.

As can easily be calculated, the computational complexity of the optimized retíming.and-scheduling I
algorithm is O(V2 + VE).

6.4.3 General algorithm

The objective of UNRETis finding the shortest schedule for a loop in a given architecture. Algo- •
rithm 6.5 presents the general (7JVñJST.,algorithm. The. algorithm always halts, since: •

I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UNRET: Loop Pipelining with Resource Constraints 103

algorithm UNRET;
Calculate Mil;
if Mil < MaxII then exit; {scheduling impossible}
Repeat

Generate pair (K,IIjf)',
7TA" := unroll(w,K); {builds TTK}
schedule=retiming_and_scheduling(7r/f, J/jc);

until a schedule is found or there are no more pairs to generate;
if not schedule found

then return schedule not found;
else return schedule;

Algorithm 6.5 UNRET Algorithm

• a schedule is found by retiming-and-scheduling or

• all the points in the throughput diagram are generated without finding a correct scheduling

Figure 6.14 depicts a detailed flow diagram of UNRET.

Architecture 7t Maxll

L·Ji

N0 / Found
schedule in
//K cycles

NO SCHEDULE
FOUND IN LESS

THAN Maxll CYCLES

YES

SCHEDULE FOUND

Figure 6.14 Flow diagram of UNRET

104 CHAPTER 6

uk+8=*zk+7
vk+8=*xk+7
wk+2=uk+2 vk+2

zk+8=zk+7 + 4

xk+8=xk+7 + 4

(C)

E S 3g s e
P» >̂¡ (T j

•z «a

uk+8 vk+8
wk+; qk zk+8 xk+8

(d)

Figure 6.15 Example 1. Schedule for the inner product in 1 cycle
(a) Initial TT-graph
(b) Transformed 7r-graph
(c) New loop body
(d) Schedule in the Cydra 5

The computational complexity of UNRET is dominated by the computational complexity of re-
timing.and-scheduling. Our results show that only a few points are generated in the worst cases,
and in most cases a schedule with maximum throughput is found for the first point explored.

Once a schedule has been found, the number of required registers is reduced. This step will be
explained in detail at Chapter 7.

6.5 EXAMPLES

We will use three different examples to illustrate how UNRET works. Each of the examples shows
a particular feature of the algorithm.

6.5.1 Example 1

We will use the inner product example to illustrate how UNRET may find a schedule with maxi-
mum throughput. Figure 6.15(a) shows the 7r-graph representing the compiled inner product.

When the loop executes in the Cydra 5 architecture defined in Chapter 3, we have MZI(Tr) = 1
(and therefore MaxTh(ir) — 1). That is, a schedule of one iteration in one cycle may exist.

Let us assume M axil = 5. The first point in the throughput diagram which corresponds to
a schedule with maximum throughput is (IIjf,K) = (1,1). Therefore, UNRET retimes the loop
until an equivalent 7r-graph which has a schedule in one cycle is found. Figures 6.15(b) and 6.15(c)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UNRET: Loop Pipelining with Resource Constraints 105

cycle MBMl
1 «i = *2Q

«2 = *zi
Us — *Z2
«4 = *2s
«s = *24

8
9
10

15
16
17
18
19
20
21
22
23

«8 = *2?

«g = *28

MEM2
Vi = *XQ

V2 = *Xl

V$ — *X2
114 = *373

117 = *XQ

vs = *x^
Vg = *a,'8

«jo = *2g t;jo =

«15 = *2l4

ADDRl
21 = 2 0 + 4

22 = 2l + 4

23 = 22 + 4

24 = 23 + 4
25 = 24 + 4
26 = 25 + 4

27 = 26 + 4

28 = 27 + 4

29 = 28 + 4

210 = 2g + 4

ADDR2
xi = xo + 4
072 = Xl + 4

X3 - X2 +4
Xi = x3 +4

xç, = x^ + 4
I6 = ^5 + 4

xs = XT + 4
xg = x$ + 4

= 3:9+4

FMUL FADD

U>2 = «2 «2

U>3 = «3 «3
«J4 ^ «.4 «4

215 = 214 + 4 ̂ 15 = • 4 «Jg ^ «g «g

«JlO = «10 «10
^11 = Un Vu

U»i2 = «12 «12
«-"13 = «13 «13
W14 = «14 «14
ÍU15 = «15 t/15

9l = 90 + «il

97 = 96 + W7
98 = 97 + U'S
99 = 98 + Wg
910 = 99 + «JlO

911 = 910 + «Jll
912 = 911 + W12

913 = 912 + «-"13

914 = 913 + *"14
915 = 914 + «-"15

Figure 6.16 Overlapped execution of inner product

show such a 7r-graph and the associated loop body. The found schedule is shown in Figure 6.15(d).
This schedule has maximum throughput, and therefore the schedule efficiency ratio is s — 1.

In [DHB89] a schedule in 1 cycle is also found by using the same architecture. The software
pipelining technique used overlaps the execution of consecutive iterations of the loop until a repet-
itive pattern is found. The detailed execution of the loop is shown in Figure 6.16. Since the result
is the same obtained by UNRET, Figure 6.16 allow us to show the shape of the prologue (cycles
1st to 8th) and the epilogue (cycles 16th to 23rd) for this loop schedule.

6.5.2 Example 2

This example shows how unrolling a loop may increase the execution throughput of the schedule.
We will use the first example proposed in Section 2.3. Figure 6.17(a) shows the initial ?r-graph.
We will illustrate here the way to achieve the schedules shown in Figures e.H(a) and 6..W(t>.) by
assuming that all instructions are additions which can be executed in an adder in a single cycle.

Scheduling by using 4 adders

First, we will assume an architecture with four adders. The objective is finding a schedule no
longer than 15 cycles (MaxII = 15). The lower and upper bounds for the loop are MÍÍ(TT) = |
and MaxTh(ir) = |, indicating that four iterations may^e executed each 3 cycles.

The first point generated by using Farey's series FIS is (íí/f./í) = (5,4), labelled X in the
throughput diagram from Figure 6.17(b). If no schedule exists for this point, the next points to

106 CHAPTER 6

12

(a)
5 10 15]IK

(b)

Figure 6.17 Example 2.
(a) 7r-graph example
(b) Points representing schedules with maximum throughput for 4 adders

(a)

Figure 6.18 Example 2.
(a) initial 7r-graph unrolled 4 times
(b) 7r-graph unrolled 4 times after retiming several dependences

(b)

explore are the points Y - (10, 8) and Z = (15,12). Note that Y and Z do not belong to Farcy's
series FI$ since they represent a schedule with the same throughput as point X, but they are not
reduced.

UNRET selects X as the first point to explore, unrolls the 7r-graph four times (K = 4) and
attempts to find a schedule in five cycles (IIK — 5). The initial unrolled ?r-graph is shown in
Figure 6.18(a).

Figure 6.19(a) shows the found schedule. Note that no retiming has been necessary to find the
schedule. The schedule is a time-optimal schedule for four adders (e = 1).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UNRET: Loop Pipelining with Resource Constraints 107

A¡ A

p r*H u
Di u
Ei E

+ 1 Ai+2 Ai+3
+ 1 Bi+2 Bi+3
+] Ci+2 Ci+3
i+l Di+2 Di+3
+ 1 Ei+2 Ei+3

i = i+4

C¡+Ci+lCi+2Ci+3
Di Di+1 Di+2 Di+3 Ai+4 Ai+5 Ai+6Ai+7
Ei Ei+l Ei+2 Ei+3 Bi+4 Bi+5 Bi+6Bi+7

i = i + 4

(b)

Figure 6.19 Different schedules for the loop
(a) Schedule with 4 adders
(b) Schedule with 8 adders

108 CHAPTER 6

(b)

Figure 6.20 Example 3. H-graph and schedule for 4 adders
(a) Example of 7r-graph
(b) Schedule found
(c) 7r-graph corresponding to the found schedule

(c)

Scheduling by using 8 adders

Let us now assume that the architecture has eight adders. We will use the same MaxII — 15. The
first pair generated in this case is (íí/v',/í) = (3,4). UNRET unrolls the ir-graph four times and
performs dependence retiming successively until a schedule in three cycles is found. Figure 6.18(b)
shows the retimed 7r-graph corresponding to the schedule found in three cycles and depicted in
Figure 6.19(b). This schedule has e = I , and therefore it is a time-optimal schedule for the number
of adders considered. In fact, this schedule achieves the maximum throughput of the loop.

6.5.3 Example 3

Finally, we will illustrate the effectiveness, of using Farey's series when a time-optimal schedule
is not found. We will use the second example shown in Section 2.3 to accomplish this purpose.
Figure 6.20(a) shows the initial 7r-graph with five additions which can be executed by an adder in
a single cycle. We will assume that the architecture has four adders.

We have executed UNRET by assuming MaxII = 8 and MaxII = 15. In both cases, the first pair
explored, (IIK, /í)=(5,4), represents a schedule with a throughput Th = 0.8. A schedule with such
characteristics does not exist, as recently proved in [CBS95] by using an integer linear approach.
Therefore, UNRET does not find a schedule for this pair and new pairs are generated until a
schedule is found. ,The first pair for which a schedule is foundjs, in both cases,,.(7rx,/i)3= (4,3).
The throughput of the schedule is Th = 0.75, and the schedule efficiency ratio is e — y^. This
point is marked by an arrow in Figure 6.21(a).

Other approaches considering loop unrolling [RG81, SDX86, Rim93] explore the solution space
in only one dimension. Since they do not find a schedule at point (íí/f, A')=(5,4), they increase
the expected initiation interval without modifying the current unrolling degree. Therefore, their
second attempt consists of looking for a schedule for point (II K , ̂)=(6,4). This point is marked
X in Figure 6.21(a). The schedule associated has Th = 0.66 and e = 0.83. Figure 6.21 compares
the solution space explored by UNRET to the solution space explored by other techniques [RG81,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UNRET: Loop Pipelining with Resource Constraints 109

Th=MaxTh

3L
Th=MaxTh

2 4 6 8 10 12 14 15

(a)

2 4 6 8 10 12 14
(b)

Figure 6.21 Example 3.
(a) Points to explore for FB and FIS
(b) Points to explore by other techniques [RG81, Huf93, Rau94]

Huf93, Rau94]. The arrow in Figure 6.21(b) indicates the point for which a schedule is found by
such techniques.

The exploration of Farcy's series allows us to search for several points representing schedules with
throughput between | and |. For M axil = 8 the sequence of fractions generated has been |, |.
The time used by UNRET to find the schedule was 0.46 seconds. For MaxII — 15, the sequence
generated was f , ^, jf, ¿|, |, |f, f . The total time used to explore all points was 13.1 seconds by
using retiming-and-scheduling Algorithm 6.3, and 12.5 seconds by using retiming-and-scheduling
optimized Algorithm 6.4. Figure 6.21(a) depicts the points corresponding to the fractions explored
for MaxII = 15 in the throughput diagram. Although more points were explored for MaxII — 15,
the result obtained was the same as for MaxII - 8. However, some of the points would have
produced a feasible schedule.

6.6 EXPERIMENTAL RESULTS

This section presents some results obtained by UNRET. A more complete set of results is pre-
sented in Appendix B. UNRET significantly improves some results obtained by other approaches,
achieving optimal schedules in most cases.

6.6.1 High-level synthesis

The first columns in Tables 6.1 and 6.3 show the different number of available resources. Fol-
lowing the resources, the minimum initiation interval computed for each resource-constraints is
specified. The following columns show the initiation interval achieved by different approaches:
Percolation Based Synthesis (PBS) [PLNG90], the microcode compiler ATOMICS integrated in
the CATHEDRAL II compiler (ATM) [GRVD87, GVD89, GRVD90], pipelined synthesis (PLS)
[HHL91], the Theda.Fold (TF) algorithm [LWGL92, LWLG94], the Software Package for Synthe-
sis of Pipelines from Behavioral Specifications (SEHWA) [PP88], the Force Directed Scheduling

110 CHAPTER 6

FUs

oo
6
5
4
3

Mil

3
3

17/5
17/4
17/3

Algorithms
PBS

3
3
4
5
6

ATM
3
3
4
5
6

PLS

3
3
4
5
6

TF
3
3
4
5
6

UNRET

3
3

17/5
17/4
17/3

e = 1
£ = 1

£ = 1

£ = 1

e = 1

(UK, K)

(3,1)
(3,1)

(17,5)
(17,4)
(17,3)

T
(secs)

0.11
0.15
2.18
1.20
0.75

Table 6.1 Cytron's example

FUs
* | ALUs

3
2
2

2
2
1

Mil

6
6
6

Algorithms
FDS

6
7
-

ALPS

6
7
-

MEPS | UNRET

. 6
7
-

6
6
6

£ = 1

e = 1
6 - 1

(HK, K)

(6,1)
(6,1)
(6,1)

T
(secs)

0.06
0.08
0.11

Table 6.2 Differential Equation

• FUs
+
5
4
3
3
2
1

-

5
4
3
3
2
1

*

6
4
4
3
2
1

MU

8/3
4

13/3
16/3

8
16

Algorithms " •
SEHWA

. - •
4
5
6
10
17

PLS | TF
3
4
5
6
10
17

3
4
5
6
8
17

UNRET

8/3
4

•22/5
16/3

8
16

£ = l'~

£ = 1

£ = 0.98
£ = 1

£ - 1

£ = 1

(nK,K)

(8,3)
(4,1)

(22,5)
(16,3)
(8,1)
(16,1)

T
(secs)

13.6
1.43
36.5
14.7
1.06
1.13

Table 6.3 Fast Discrete Cosine Transform

(FDS) [PK89a], the Integer Linear Approach ALPS [HLH91, LHL89] and an approach based on
the Multiple Exchange Pair Selection (MEPS) [PK91]. The schedule efficiency ratio obtained by
UNRET (obtained throughput / optimal throughput) is shown on the right of the found initiation
interval. The penultimate column shows the number of times the loop has been unrolled by UN-
RET (K) and the number of cycles of the found schedule (II K)- The last column shows the CPU
time (T) required to find the schedule when using the retiming-and-scheduling algorithm without
time optimization.

Results from Tables 6.1 and 6.3 show how loop unrolling may increase the throughput of the final
schedule. . ,

Third row of Table 6.3 shows how the exploration of Farey's series is useful for finding good
schedules. Note that an optimal schedule is not found, but the exploration of Farey's series allows
us to find a good schedule (e = 0.98). For the 1st, 3rd and 4th row, UNRET achieves better results
due to the ability of unrolling the loop. For the 6th row UNRET achieves the Mil (16 cycles)
without unrolling by scheduling only one iteration of the loop, while the remaining techniques
require 1 7 cycles. ' - ' . . . v . . •

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UNRET: Loop Pipelining with Resource Constraints 111

Application
Program

SPEC-SPICE

SPEC-DODUC

| SPEC-FPPPP

Livermore

| Linpack

Whetstone

Loopl
Loop2
Loop3
Loop4
LoopS
Loop6
Loop?
LoopS
LooplO

Loopl-f
LoopS
Loop 7

Mil

1
2
6
10
2
2

1.5
1.5
3

20
20
2

UNRET
II

1
2
6

10
2
2

1.5
1.5
3

20
20
2

Loopl || 20 || 20

Loopl
LoopS
Loop23

1.5
3
8

1.5
3
8

Loopl || 1 || 1

Loopl
Loop2
LoopS
Cyclel
Cycle2
Cycle4
CycleS

17
6
5
4
2

1.33
1.33

17
6
5 .. ,
4
2

1.33
1.33

T
0.01
0.13
0.05
0.41
0.08
0.13
0.21
0.11
0.06

0.21
0.15
0.08

0.10

0.51
0.11
0.38

£

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.08 | 1

0.33
0.11
0.15
0.06
0.11
0.10
0.11

1

1

1

1

1

1

1

(UK, K)
(1,1)
(2,1)
(6,1)
(10,1)
(2,1)
(2,1)
(3,2)
(3,2)
(3,1)
(20,1)
(20,1)
(2,1)

HRMS
II

1
2
6
10
2
2 j
2
2
3

20
20
2

(20,1) || 20

(3,2)
(3,1)
(8,1)

2
3
8

(1,1) II 1

(17,1)
(6,1)
(5,1)
(4,1)
(2,1)
(4,3)
(4,3)

17
6
5
4
2
2
2

T
0.01
0.05
0.05
0.25
0.01
0.13
0.13
0.03
0.02

0.27
0.20
0.20

0.20

0.03
0.03
0.13

0.03

0.15
0.13
0.03
0.02
0.03
0.02
0.03

£

1

1

1

1

1

1

0.75
0.75

1

1
1
1
1 I I

0.75
1
1
1 I I
1
1
1
1
1

0.66
0.66

Table 6.4 Comparison for an architecture with 3 FP adders, 2 FP multipliers, 1 FP divisor and
2 load/store units

Since ALPS is an integer linear programming approach, its results are time-optimal. UNRET
finds schedules with the same initiation interval as ALPS for all cases (more results can be found
in Appendix B). Moreover, some results are improved because the schedule is overlapped (see
table 6.2). An example is shown in Appendix B) (see Figure B.l(b)).

6.6.2 Superscalar and VLIW processors

By using the set of 24 benchmark loops proposed in Appendix A, we compare the results obtained
by UNRET with a modulo scheduling approach, called HRMS [LVA95]. Table B.9 shows the
results obtained by using an architecture composed of 3 FP-adders, 2 FP-multipliers, 1 FP-divisor
and 2 load/store units.

Table B.9 shows that UNRET obtains the same results as HRMS for the same unrolling degree.
However, the utilization of the optimal unrolling degree improves the results achieved by HRMS
in 21 per cent of all cases. This is because, in general, systems which do not perform unrolling try
to find a schedule in [MIT] cycles when Mil is not an integer. Note that optimal schedules are
found in all cases. Therefore, Farey's series do not require to be explored.

112 CHAPTER 6

6.7 SUMMARY AND CONCLUSIONS

I
I
I
I

In this chapter we present UNRET, a new algorithm for loop pipelining with resource constraints. «
UNRET generates pairs (K,IIff) in decreasing order of expected throughput (77^-), and tries to •
find a schedule of the loop body unrolled K times in UK cycles. Farey's series are used to generate
the sequence of pairs.

In order to find a schedule for a given pair, a new software pipelining algorithm is proposed. The I
algorithm, called unrolling.anajreiiming, successively transforms the initial loop body by means
of dependence retiming, searching for another loop body more "suitable" for scheduling. Quality m
is defined in order to decide when a loop body is more appropriate for scheduling than another •
equivalent one. The quality of the loop body is improved until it cannot be further improved or
a schedule in UK cycles is found. If no schedule is found for the current pair (K,IIjf), a new _
pair (K1 ,II'K) is generated, and the previous steps are repeated until a schedule in the expected •
initiation interval is found or no further pairs can be generated. •

The main contributions of UNRET are the following: H

1. Unlike the software pipelining approaches proposed by other authors, UNRET explores the
solution space in two dimensions. Current software pipelining approaches explore the solution •
space in Only one dimension, increasing the expected initiation interval when a schedule is •
not found by using the previous initiation interval. UNRET explores the solution space in
two dimensions, the initiation interval and the unrolling degree of the loop. •

2. Since the minimum initiation interval of the loop is known in advance, a figure of merit, e, is *
defined to measure how far the found schedule is from the theoretically optimal one.

3. A new software pipelining approach, based on dependence retiming, is proposed. The al- •
gorithm, called retiming^and.scheduling, explores several equivalent configurations of a loop
body, looking for a schedule in the expected II. This approach differs from previous ones, _
which usually explore a single configuration of t ne loop. •

4. Retiming and scheduling are'separated into individual tasks. Thus, different scheduling algo-
rithms may be used. •

5. By using the dependence theory described in Chapter 4, quality is defined to "guess" when •
a given configuration of a loop body is easier to schedule than another equivalent one. This
enables the retiming task to guide the process independently from the scheduling algorithm. •

The software pipelining approach proposed in this Chapter is appropriate to HLS systems, since
it produces very promising results in less time than other approaches. On the other hand, the •
approach described in this chapter may help.the compiler to find the best schedule for executing •
a loop in a given architecture. The exploration of Farey's series has proven to be very useful
when a time-optimal schedule is not found. Exploring the solution space in two dimensions will •
produce, in general, better results than exploring it in only one dimension. Since this exploration •
represents little execution time in face to the time required by a software pipelining approach, it
may be included by a compiler without significantly increasing the time to compile a loop. _

We. also,show how a high percentage of the throughput can be obtained (at least) by significantly ™
limiting the maximum number of cycles of a schedule. This limitation produces a reduction in the

I

I

I

I
I ,, „,,:

UNRET: Loop Pipelining with Resource Constraints 113

• number of schedules to explore, avoids code explosion and allows us to obtain schedules which use
a reduced number of registers.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

