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PREFACE

This work presents three algorithms to solve three different problems:

• UNRET is proposed to solve loop pipelining with resource constraints.

• TCLP is proposed to solve loop pipelining with timing constraints.

• RESIS is proposed to reduce the number of registers required by a schedule.

Loop pipelining with resource constraints can be defined as follows: "given a set of resources,
finding a pipelined schedule of a loop in the minimum number of cycles". Loop pipelining with
timing constraints can be defined as follows: "given a maximum time to execute an iteration of
a loop, finding a schedule which requires the minimum set of resources (or the minimum area)".
Whilst loop pipelining with timing constraints is a typical problem in the high-level synthesis of
VLSI circuits, loop pipelining with resource constraints is present in both the high-level synthesis
of VLSI circuits and compilers for parallel architectures.

In parallel architectures, the number of registers available to store partial results (during loop
execution) is limited, and it is defined by the architecture. In a VLSI circuit, a register consumes
space in the chip. Therefore, it is interesting in both areas to obtain a schedule which requires as
few registers as possible.

UNRET and TCLP are related to the extraction of the parallelism of a loop. Chapter 1 in-
troduces different ways to exploit such a parallelism, as well as the subjects on which this work
is focused: high-level synthesis of VLSI circuits and compilation techniques for superscalar and
VLIW processors.

UNRET and TCLP belong to a family of techniques known as software pipelining. An overview
and classification of such techniques is presented in Chapter 2.

In Chapter 3 we define two transformations to exploit the parallelism in a loop: dependence
retiming and loop unrolling. Both transformations will be used by UNRET and TCLP. The
maximum parallelism available for exploitation in a loop is limited. Chapter 3 also shows how this
maximum parallelism can be calculated.

A data dependence exists between two instructions when the result produced by the first one is
consumed by the second one. Data dependences impose a partial execution order in the instruc-
tions of a loop. According to whether a data dependence does not influence in the scheduling, or
it influences the scheduling within an iteration or across consecutive iterations, we classify data
dependences into three categories: free scheduling dependences, positive scheduling dependences
and negative scheduling dependences. Chapter 4 presents the theory behind this classification.

xxi
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xxii LOOP PIPELINING WITH RESOURCE AND TIMING CONSTRAINTS _

Chapter 5 describes the scheduling algorithm used by UNRET and TCLP. The algorithm takes re- I
sources into account, as well as multiple-cycle (possibly pipelined) functional units and instructions
that have complex execution patterns (they use several functional units during several cycles). —

Chapter 6 presents UNRET. UNRET uses dependence retiming and loop unrolling to find a ™
pipelined schedule of the loop. Loop unrolling is in general required to extract the maximum
parallelism. Dependence retiming enables us to obtain different (but equivalent) configurations I
for the same (possibly unrolled) loop. Each configuration is scheduled by using the algorithm |
presented in Chapter 5, attempting to find a schedule which executes the loop with the maximum
parallelism. When no schedule exists for any configuration of the loop, UNRET decides a new •
target parallelism (and unrolling degree) and explores new configurations. •

Once a schedule has been found, the number of required registers is reduced while maintaining —

the parallelism. In Chapter 7 we propose RESIS, an algorithm oriented to such a purpose. RESIS •
works in two phases. First, several configurations of the loop are explored, attempting to reduce •
the number of different iterations involved in the pipelined schedule. Each configuration is inde-
pendently scheduled by using the algorithm from Chapter 5. Following this, some instructions are •
individually rescheduled in order to reduce the register requirements. I

Chapter 8 presents TCLP, an algorithm for loop pipelining with timing constraints. TCLP is •
based on ideas similar to UNRET. The timing constraint is given in the form of a maximum •
number of cycles to execute each iteration of the loop. TCLP analytically calculates a minimum ~
set of resources (theoretically) required to execute the loop with the given timing constraint.
Several configurations of the loop are explored in order to find a schedule by using the calculated •
set of resources. If no schedule is found, the set of resources is Successively increased and new |
configurations are explored until a schedule is found. Once a schedule fulfilling the given timing
constraint has been found, TCLP attempts to optimize several characteristics of the schedule. •
First of all, TCLP attempts to reduce the set of resources while maintaining the length of the •
schedule. Following this, it attempts to increase the parallelism of the schedule by exploring
different unrolling degrees. Finally, RESIS is used to reduce the number of required registers. _

Chapter 9 presents the conclusions of this work, summarizes the main contributions performed
and indicates futures áreas of work. " ' . ' '' " • ' ' • ' " • ' • '
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