VERIFICATION WITH RELATIVE TIMING

When you are courting a nice girl an hour seems like a second. When you
sit on a red-hot cinder a second seems like an hour. That’s relativity.
—Albert Einstein - Quoted in the News Chronicle, 1949

Summary

This chapter presents the theoretical aspects of our relative timing-based verification
approach for timed systems. Most of the material was already published in [PCKPO00].

First, two small examples conduct a review of the notion of relative timing and an
outline of the overall verification strategy.

Next, the different theoretical aspects of the verification approach are introduced. A
trace semantics is defined to unify the reasoning with the different computational models
used by the verification. The main notion presented is that of enabling compatibility,
which makes possible that the timing analysis over the set of events in a trace, can be also
applied over a set of traces which share the same enabling orderings. Event structures are
then introduced as a model that represents succinctly a set of enabling-compatible traces,
and for which efficient timing analysis algorithms exist. The enabling-compatible product
of transition systems is then presented as a way to refine the untimed state space of a
system with a set of relative timing constraints.

Finally, all these ideas are combined together in a fully automated iterative verification
methodology. Relevant aspects such as the correctness and the convergence of the approach
are discussed.
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4.1 Introduction

The verification of concurrent systems typically suffers from the well known state ex-
plosion problem. In systems with a finite number of states, the problem is often alleviated
by using symbolic techniques to represent the reachable states. This is also combined
with partial order techniques or abstractions that reduce the complexity of the models.
However, when time is an essential dimension in the verification problem, complexity is
drastically affected. Since the correctness of the system depends on the actual values of
event delays and not only on its functional behavior, the verification becomes unmanage-
able even for moderate-size systems. More precisely, computing the reachability space of
a timed system is proved to be a PSPACE-complete problem [AD94], and demonstrated
to be highly complex in several practical contexts. Although several techniques have been
devised to alleviate such complexity (see Chapter 3), the size of the untimed state space
is still the major bottleneck for the analysis of highly concurrent systems.

This chapter describes a novel approach that extends the applicability of the conven-
tional methods based on symbolic reachability analysis, to the verification of safety prop-
erties in timed systems. The approach is based on two fundamental facts:

m The observation that the set of runs of a transition system can be covered by a set
of event structures [NPW81]. This reduces the verification problem to that of: the
timing analysis over small sets of events from which timing constraints that prove
the correctness or incorrectness of a system can be derived; and the incorporation

of such constraints into the system along an incremental refinement process.

» The use of relative timing [SGR99] allows to represent the timed domain of a system
in an efficient way. When considering precise delay bounds in timed systems, the
complexity blow-up often makes the analysis an intractable problem, even for small
systems. Instead, relative timing considers the effect of delays in a system in terms
of relative ordering of events (e.g. a happens before b).

The verification approach can be briefly summarized as follows. Rather than calculating
the exact timed state space, an off-line timing analysis is performed on a set of event struc-
tures that covers the runs leading to system failures. Several timing analysis algorithms
have been provided for acyclic graphs, including exact and approximated methods. In our
case, the timing analysis is efficiently performed by using McMillan and Dill’s algorithm
[MD92], which is the precursor of most latter algorithms. The resulting timing constraints
are incorporated to the system in the form of relative timing information along a series
of iterative refinements of the original untimed state space. If some of the runs leading to
failure situations cannot be proved to be timing-inconsistent, then the system is incorrect
and the failure run is a counterexample.
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Due to the incremental incorporation of timing information along the verification, our
approach works with over-approximations of the actual timed state space of the system.
Being the completely untimed state space used as starting point the roughest approxi-
mation possible. This fact allows the efficient verification of safety properties but makes
impossible the verification of liveness properties, for example. For safety properties, it is
enough to prove that no “undesired” situations (states) are reachable by the system. If
“undesired” states do not appear in the over-approximations, they will neither appear in
the exact timed state space, but not vice versa. Therefore, the verification can produce
“false-negatives” but never “false-positives”, i.e. it is conservative for safety properties.
On the contrary, for liveness properties it must be proved that some “desired” situation
is actually reachable. For that kind of proof, the exact timed state space (or an under-
approximation for conservativeness) must be computed.

The use of event structures for timing analysis was also proposed in [KBS02]. However,
no algorithm was presented that can handle a general class of transition systems for
verification. Moreover, the approach presented here, not only verifies the correctness of the
system with respect to a set of given safety properties, but also provides as back-annotation
a set of timing constraints sufficient to prove such correctness. This information is crucial
in frameworks in which synthesis and verification are iteratively invoked to design systems
that must meet functional and non-functional constraints.

We want to remark that the application of the method for the verification of untimed
systems does not involve any additional overhead with respect to the conventional symbolic
methods (e.g. [BCM192]).

4.1.1 Relative Timing

So far we have talked about the idea of relative timing but no illustrative example has
been provided that can help to understand some of its benefits, specially in areas other
than the verification of timed systems. In this section we reproduce partially an example
from [CKK™'02] where relative timing is used to improve the synthesis of asynchronous
control circuits. The synthesis process takes relative timing information into account thus
allowing the generation of smaller and faster circuits.

EXAMPLE 4.1 Consider the asynchronous circuit in Figure 4.1 (a). The delays of the
gates are represented by intervals of the form [d, D], which indicate that the output of the
gate driving a given signal x will change §(x) time units after the gate became enabled,
with d < §(x) < D. That is, the firing time is bounded by the given delay interval.

After the occurrence of a rising transition of signal y, the behavior represented by the
STG of Figure 4.1 (b) is enabled to happen. The rising transition of signal b appears to
be concurrent with the rising transition of signals ¢ and d. The corresponding underlying
TS is depicted in Figure 4.1 (c).
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Figure 4.1 Relative timing in the synthesis of circuits: (a) timed circuit, (b) portion of the STG and (c)
corresponding TS for the untimed behavior, (d) corresponding LzTS and (e) optimized circuit.

If the actual delays of the gates driving these signals are considered, it is easy to realize
that b+ will always happen before d+. Clearly, the earliest time for d+ to occur is § time
units after a—, whereas the latest time for b+ to occur is only 3 time units after a—. This
observation can be translated into the fact that state s5 of the untimed TS will never be
reached (see the resulting LzTS in Figure 4.1 (d)).

Provided that b+ will always happen before d+, the causality relation b+ — e— is always
guaranteed by the actual delays and the causality relation d+ — e—. Thus, a potential
optimization of the circuit may consider the relative timing constraint between b+ and d+,
and ignore the explicit causality relation b+ — e—, which leads to the optimized circuit
of Figure 4.1 (e). W4l

Along the process described in the example, neither the exact times at which each event
occurs nor the exact times at which the states are reached need to be determined. Instead
the reasoning is done in terms of “which event occurs before each other”. This type of

reasoning is particularly useful in the early stages of the design flow, when the exact
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timed behavior of a system is difficult to determine and precise delay constraints are hard
to satisfy. Conversely, it is much simpler to deal with constraints that just state which
event must be faster than other, without taking care of the exact delay slack between
them. Moreover, it is much easier to keep these type of constraints satisfiable along the
successive design steps.

Using similar ideas, Intel’s Strategic CAD Lab has recently designed an asynchronous
instruction length decoder for the x86 instruction set [RSG199]. The circuit exhibits a
promising increase in performance with respect to its synchronous counterpart, thanks to
the optimizations achieved using the relative timing information. The techniques pioneered
by this design have been evolved and formalized using the LzTS model [CKK 98] and
automated in the logic synthesis tool PETRIFY [CKK197].

Finally remark, that although this section has referred to asynchronous circuits, they
are just an example of application. The relative timing paradigm is applicable to the
design, synthesis and verification of timed systems in general.

4.2 Overview

This section provides an overview of the verification approach with relative timing
presented in this chapter. For that purpose, an simple illustrative example is developed.

This work develops a formal approach to verify that a system with certain timing
constraints satisfies a given safety property P. The system is modeled by means of a
timed transition system, A, composed by an underlying transition system, A~, and two
functions, ' and §%, which associate minimal and maximal delays, respectively, to each
event of the system. A given sequence of events of a TTS is said to be timing-consistent if
it is possible to assign increasing time values to all the events such that their firing times
are within the allowed bounds. The modeling formalism of timed transition systems was
introduced in Section 2.3.

The verification problem is posed in terms of the following language inclusion test:
L(A) C L(P) [Gup92], where L(A) corresponds to the set of all possible behaviors of
A, and L(P) is the set of all possible behaviors satisfying property P. The approach
consists in building successive conservative approximations of £(A) starting from L£(A7),
by adding relative timing constraints [SGR99] in an iterative manner. We start from the
TS Ag = A™, i.e. the original system without timing constraints, and try to prove the
inclusion L(Ag) C L(P). If the inclusion holds, then L(A) C L(Ay) C L(P), which
indicates that A satisfies P without any timing assumption. The verification succeeds.

If P is not satisfied in some state, a run p that leads to a failure is generated. If the
run is timing-consistent, then the system is incorrect, i.e. violates the required property.
However, if the run is not timing-consistent, it can be used to refine the untimed state
space and remove other timing-inconsistent runs leading to failure states. To do this, a



58 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

suffix p' of the run p is taken and an event structure that covers p’' is built. Timing
analysis on the event structure is performed by using the polynomial algorithm for acyclic
marked graphs in [MD92]. A set of relative timing constraints are derived that prove the
timing-inconsistency of p'.

The state space of the (timed) event structure is composed with the untimed abstraction
of the system Ag, in such a way that at least the failure run p is removed and no
timing-consistent run is removed. A series of successive approximations A; of A are
constructed iteratively, with containment L(A) C L(A4;) and monotonic convergence,
L(Aj11) C L(A;). At every step L(A;) C L(P) is checked. Verification stops successfully
if the inclusion holds, or fails if a counterexample run is found. For a discussion on the
convergence of the method refer to Section 4.6.6.

Iterative approaches for the verification of real-time systems have been also presented
in [AK95, BSV95]. The major novelty of the approach presented in this thesis is the use
of event structures to perform efficient off-line timing analysis, and to incorporate the

resulting timing information in the form of relative timing constraints.

EXAMPLE 4.2 Figure 4.2 depicts the TTS modeling a simple timed system. Figures 4.2
(a) and (b) show respectively, the underlying (untimed) TS and the delay intervals of events
a, b, ¢ and g. The delay interval for the rest of events is assumed to be unbounded,
i.e. [0,00). Figure 4.2 (e) depicts the state space of the system, when the delays are taken
into account the shadowed states are not reachable. A crucial observation is that all runs
in the TS of Figure 4.2 (a) that start and end at state sy can be covered by the two
event structures depicted in Figures 4.2 (¢) and (d): black states are covered by the event
structure (c¢), white states are covered by the event structure (d) and grey states are covered
by both event structures. Thanks to this fact the later verification process can be carried
out with just a couple of refinements.

Assume that the property to be verified indicates that event g must always precede event
d in any possible run after having visited state so. The property holds in the timed state
space since no state where d can fire before g is reachable. Conversely, the property does
not hold in the untimed state space, for example in state syy where d can fire before g.

The analysis starts by generating a run that leads to the failure situation, for example
a run from sy to sig followed by the firing of d before g can be generated (Figure 4.3
(a)). Next, an event structure that captures the causality relations of the events in the
run is derived (Figure 4.8 (b)). Notice that, in the event structure, c is only triggered
by a but not triggered by b, as one may expect by looking at the transition system. This
is due to the fact that the event structure only contains those causality relations derived
from the run. In the failure run under analysis, ¢ is not enabled in s; and is enabled
after having fired a from si. Thus a triggers c, while b is concurrent to it.
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Figure 4.2 Example of verification with relative timing: (a,b) TTS and delay intervals. (c,d) Event
structures covering the runs starting from so. (e) Timed state space (shaded states are unreachable).

By timing analysis over the event structure, we find that b and g always precede c.
These timing relations are shown as the dotted arcs incorporated to the event structure in
Figure 4.3 (c). Such timing analysis is only valid for the causal relations expressed in the
event structure, but it is not valid, for example, in the case when b triggers c. Figure 4.3
(d) depicts the state space of the timed event structure, where the shadowed states are not
reachable due to the timing relations. Namely, event c is prevented to fire in some states,
where its firing would be inconsistent with the timing analysis.

Finally, all this information is incorporated into the system (Figure 4.3 (e)) by compos-
ing the original system and the event structure. An event structure being derived from a
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Figure 4.3 Example of verification with relative timing (first iteration): (a) A failure run and its corre-

sponding event structure (b). The event structure annotated with timing arcs (c). (d) State space of the

event structure (shaded states are unreachable). (e) LzTS obtained after composition.

particular run gives only partial behaviors of the original system. When the behaviors of

the system and the event structure mismatch, the special symbol 1 is used. Some states

in the composed system are split into two instances depending on whether they are reached

by runs matching (enabling compatible) the event structure or not (see states ss, Sg, Si1

and s13). Figure 4.3 (e) shows the resulting system. Notice that the set of runs is smaller

than that of the original system, but larger than that of the actual state space when the

delays are considered (Figure 4.2 (e)), and that only timing-inconsistent runs have been

removed.
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Figure 4.4 Example of verification with relative timing (second iteration): (a) A failure run and its
corresponding event structure (b). The event structure annotated with timing arcs (c). (d) State space of

the event structure (shaded states are unreachable). (d) LzTS obtained after composition.

This completes the first refinement of the untimed state space taken as starting point.
This step has removed some of the failure runs but not all of them. For example, if the
new state (sig, L) is reached, d can fire before g and this contradicts the property under
verification. Figure 4.4 summarizes one more refinement. In the resulting system all
the failure runs have been removed, which proves that the system satisfies the property.
Although it is not generally true, in this case the final state space contains exactly the

same runs than the actual state space shown in Figure 4.2 (e).

W42



62 CHAPTER 4 : VERIFICATION WITH RELATIVE TIMING

Several objects and notions have been mentioned along the previous example, such as
event structures, enabling compatibility, etc. These and other notions, as well as the
theoretical aspects of the verification with relative timing are presented in detail in the

following sections.

4.3 Trace semantics

As we have discussed in the previous section, the verification problem is posed in terms
of the language generated by the system under verification and the language of all behav-
iors satisfying a given property. The verification process involves lazy transition systems
and event structures (see Section 4.4) as major models. The process consists in an itera-
tive incremental refinement of the system under verification with the timing information
derived from the event structures.

A common semantics that unifies the models involved in the verification process can be
defined in terms of traces. Based on traces, we will derive several notions that formalize
our refinement approach for verification. This flow, illustrated in Figure 4.5, covers the
contents of Sections 4.3 and 4.4.

4.3.1 Traces and languages

We extend the usual notion of trace [Maz88] by associating the set of enabled events
to the firing of each event in a sequence of event firings. Thus, each element of the trace
keeps track of which events are enabled and which event fires at each step.

DEFINITION 4.1 (TRACE)
Let X be an alphabet of events. A trace 6 = Ey i)Egl -+ 18 a sequence such
that Vi > 1 : E; C X and e; € E;, where E; denotes the set of events enabled
when €; fires.
H41
Henceforth, and for the sake of simplicity, all events in a trace will be assumed to be
distinct. This assumption can always be enforced by renaming different occurrences of the
same event. This renaming does not affect the validity of the theory presented.

Although it is an abstract notion, a trace has a direct correspondence with the notion of
run in transition systems. Since a TS is a particular case of LzTS, and a TTS is described
in terms of a TS plus certain delays, the following definition also applies to those models.

DEFINITION 4.2 (TRACES IN LAZY TRANSITION SYSTEMS)
e e e e
Each run p=s; —1>52—2> -+ of a LZTS defines a trace 0, = E; —1>E2—2> -« where

E; is the set of events enabled at s;, i.e. FE; = E(s;).
W 4.2

Notions defined over the runs of a transition system can be naturally extended for
their traces counterparts. Specially relevant for the verification problem are the notion of
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Figure 4.5 From traces to language refinement.

enabling interval of an event along a run (see Definition 2.4), and the notion of timing-
consistent run (see Definition 2.7).

Figure 4.6 (a) depicts a run, taken from the TTS in Figure 4.2, and its corresponding
trace. A state of the run is substituted in the trace by the set of events enabled at such
state in the transition system. The enabling intervals of the events in the trace are depicted
as vertical lines in Figure 4.6 (b).

Next, the language of a system is defined by the set of traces that it can generate. In
the case of a TTS only the traces defined by the runs that satisfy the delays associated to
the events of the system are considered. That is:

DEFINITION 4.3 (LANGUAGES)
The language L(A) of a LzTS A s the set of traces defined by all runs of A.
The language L(A) of a TTS A= (A7,6",8%) is the set of traces defined by all
timing-consistent runs of A~.
W43
LEMMA 4.1 (LANGUAGE INCLUSION)

Let A= (A™,6',6%) bea TTS. Then, its language is a subset of that of its underlying
TS, ie. L(A) CL(AT).
41

The proof of the lemma directly follows from Definition 2.7 and Definition 4.3.

4.3.2 Trace-based verification

In order to solve the verification problem for safety poperties, the language of the
TTS that models the system under verification must be computed or, at least, conserva-
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Figure 4.6 A trace taken from the TTS in Figure 4.2: (a) the original run (left) and the trace (right),
(b) enabling intervals of the events in the trace, and (c) timing analysis of the trace.

tively estimated. According to Definition 4.3 this requires a mechanism to check whether
a trace of the underlying TS is timing-consistent or not (see Definition 2.7). Checking the
timing-consistency of a trace can be formulated quite simply by means of a set of expres-
sions that bound the firing times of the events in the trace according to their delays.
The firing time of event e;, denoted by ft(e;), is bounded according to the expression:

ft(e;) +0'(er) < ft(es) < fte;) + 0" (es) (4.1)

where e; is the event that triggers e; in the trace. Event enabled in the initial state of
the trace have no trigger event, therefore its firing time is only bounded by its delays.

On the other hand, there are events in the trace which are disabled by the firing of
another event. For example in the right of Figure 4.7, event e; is enabled in the trace
but its actual firing is prevented by the firing of another (disabler) event e;. The disabling
of e; must occur before the maximum delay since e; was enabled, has elapsed. Otherwise
er should have fired yet. Conversely, the disabling can occur as soon as e is enabled,
no matter if its minimum delay has already elapsed or not. Therefore, the firing time of
the disabler event e; is bounded according to the following expression:

ftlej) < ftlei) < ftlej) + 6" (ex) (4.2)

where e; is the event that triggers e, in the trace. Since for the disabling to occur in
the trace (firing of e;), the disabled event e, must be already enabled by the firing of
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Figure 4.7 Enabling and disabling in a trace: (a) event e; enables event e;, and (b) event e, is disabled
by the firing of event e; (the disabler).

e;, the firing of e; always happens before that of e;. Hence, the inequality in the left of
expression (4.2) is actually redundant.

Finally, the order in which the events fire along the trace provides additional information
for the timing analysis, .e. time must monotonically increase as long as new events fire.
Assuming that the events that fire in the trace are numbered according to their firing

order, the following expression must hold:

V1<i: ft(er) < ft(eir1) (4.3)

The conjunction of expressions (4.1), (4.2) and (4.3) determine the timing-consistency
of the trace. If a solution can be found that assigns firing times to the events of the trace
according to the set of inequalities, the trace is timing-consistent. Otherwise, the trace
is not timing-consistent and therefore it does not belong to the language generated by
the system. Checking the timing-consistency of a trace using the formulation provided by
expressions (4.1), (4.2) and (4.3) can be easily performed using linear programming.

EXAMPLE 4.2 (CONT.) Fligure 4.6 (¢) shows the set of constraints of the linear pro-
gramming model to check the timing-consistency of the trace of Figure 4.6 (b). Since no
disabling situation appears in the trace, only expressions (4.1) and (4.3) apply.

In this case, the problem has no solution if the delays shown in Figure 4.2 (b) are con-
sidered. Therefore, the trace is not timing-consistent and does not belong to the language
of the system. Notice that this result is coherent with that obtained in Exzample 4.2. The
trace was removed from the LzTS obtained after the first refinement of the verification

approach (see Figure 4.3). W42

Provided the formulation developed above for the timing analysis on a trace, a trace-
based method for the verification of timed systems can be devised. The method must
consider all the traces leading from the initial state of the system up to the states where

violations of the properties under verification occur. The system is correct if no failure
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trace exists when the delays are taken into account, i.e. if none of the failure traces in
timing-consistent. On the contrary, a timing-consistent failure trace provides a counterex-
ample that proves the incorrectness of the system.

The impossibility of this trace-based method for verification is obvious. The number of
traces between two states of the system may be extremely large or even infinite if cycles
are allowed. Moreover, the number of failure states would suffer from the state explosion
problem as well. Therefore, some strategy to alleviate this complexity is required.

4.3.3 Enabling compatibility

This section provides a fundamental result that helps addressing the complexity problem
exposed by the trace-based verification method outlined above. In short, Theorem 4.1
estates that the results obtained from the timing analysis over a given trace can be applied
to all those traces that have the same causality relations. The theorem is based upon the
notion of enabling-compatibility, that characterizes the relation between traces in which
events are enabled (disabled) by the same triggers (disablers), and events fire in the same
order. Since the time at which an event fires or is disabled only depends on the instant
it became enabled plus certain delays within the given bounds, the timing analysis for a
trace is also applicable to all the traces that are enabling-compatible.

The notion of trace, as it is given by Definition 4.1, does not explicitly distinguish
between those events in a trace that fire after being enabled for some time, and those
events that are disabled by the firing of another event in the trace. However, the disabling
phenomenon is relevant for the timing analysis over a set of traces and must be properly
modeled. In the following definition, that complements Definition 4.1, each element of the
trace keeps track of which events are enabled, which event fires at each step, and which
events are disabled due to such firing.

DEFINITION 4.4 (DISABLING IN A TRACE)
Let 0 = E11>E22> -« be a trace. The set D; C E;, 1 > 1 1is the set of events
disabled by the firing of event e; in 0, defined by D; ={d € E; |d #e; ANd &€ Ej11}.
The set of all the events disabled along trace 6 s the set D(0) = UDi . We
i>1
denote by e; dis d the fact that event e; disables event d . FEvent e; is the

disabler of d in 6. W44

EXAMPLE 4.3 The circuit in Figure 4.8 (a) reacts to changes at the input signal a by
producing some changes at the output signals d, e and f. In a particular run, after firing
a+, the AND gate driving signal d is enabled to rise since inputs b and e are both
high. However, a negative transition of e disables the gate switch. This situation can be
observed in the corresponding untimed TS of Figure 4.8 (b). Transition d+ is enabled
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Figure 4.8 (a) Circuit with a potential disabling at gate d. (b) Portion of the timed state space (shad-
owed states are unreachable). (c¢) A run and the corresponding trace illustrating the enabling intervals and

the disabling of event d+ due to the firing of e-. (d) Timing analysis of the trace.

in state sy after b+. However, when e— occurs and state sia is reached, d+ cannot
happen anymore. Thus, event d+ is enabled for some time and then becomes disabled.

The trace in Figure 4.8 (c) illustrates the disabling phenomenon. Given Es = {d+,e-}
corresponding to state sy and the firing of e-, Fg ={a-} (s12) is reached where d+ is
no longer enabled. Thus we have D5 = {d+} C E5 and e- dis d+ .

Figure 4.8 (d) shows a linear programming model to check the timing-consistency of
the trace. According to Definition 2.7 for timing-consistency and the formulation of the
problem in the previous section, the inequality ft(e-) < ft(b+) + 0“(d+) indicates that
e~ must disable d+ before its maximum possible firing time has elapsed. This constraint

to expression (4.2) from Section 4.5.2. i3
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Figure 4.9 Enabling-compatible (left) and non-enabling-compatible mappings (center and right).

With all the above, the following definition introduces the cornerstone notion of the
verification strategy presented in this thesis.

DEFINITION 4.5 (ENABLING-COMPATIBLE TRACE MAPPING)
Let 6 = ---—>E02>E11>E22>---e—n>En+1—>--- be a trace over the alphabet
e’ el /
of events ¥ and let 0" = Ei—1>Eé—2>e—m>E,'n+1 be a trace over the alphabet
W CX. Let 0, = EllEzl oo I Eniy be a fragment of 6.

An enabling-compatible mapping of 0; onto €' is a function map : {E1,...,Ept1} —
{El,....E], .} such that:

a) map(E;) = E} (initialization)
b) V1<i<n, map(E;) = E;NY (projection)
¢) V1<i<n, (map(E;) =map(Eiy1) N & ¢ X)) V
(map(E;) = E; A map(Ei;1) = E;'—I—l N e = e;) (firing)
W45

The mapping of § onto €' is a function that preserves the enabledness of the events in
¥'. Initially, the events enabled in E| must also be enabled in E) (initialization condition).
Next, the events of ¥’ enabled along 6 and 6’ must be the same (projection condition).
Moreover, § may fire events that are not relevant to 8 (when map(E;) = map(F;11) in
the firing condition). The second part of of the firing condition captures implicitly the
disabling of events produced by the firing of e; in 6 and the firing of € in ¢', that is if an

event is disabled in one trace it must be disabled also in the other trace. Since the firing
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time of an event only depends on its enabling time and its delay (see Section 2.3), this
notion will allow us to apply the timing analysis of 6 to € in the fragment 6.

Figure 4.9 shows three examples of trace mapping of the shadowed fragment. The
mapping at the left, with X' = {a,c,d, g}, is enabling-compatible. The mapping at the
center, with ¥’ = {b,c,d}, is not enabling-compatible since it violates the projection
condition when taking E; = {b,c,g} and map(E;) = {b}. Clearly, a enables c in 6,
whereas c is enabled by b in #'. The mapping at the right, with ¥’ = {a, b, c, g}, is not
enabling-compatible since it violates the projection condition when taking E; = {c,g} and
map(E;) = {g}. The firing of b in #' disables ¢ whereas this does not happen in 6.

The following theorem is the main theoretical result of the verification approach pre-
sented in this thesis. The theorem relies on the notion of enabling-compatibility between
traces. Since the time at which events fire or are disabled only depends on the enabling
instant plus certain delay, the timing analysis on a trace is also applicable to all the traces
that share the same enabling, disabling and firing order. That is the timing analysis
applies to the set of enabling-compatible traces.

THEOREM 4.1 (ENABLING-COMPATIBILITY AND TIMING-CONSISTENCY)
Let 6, 6 and 0; be traces with the same conditions as in Definition 4.5. Let
map be an enabling-compatible mapping from 60, onto 0. Let &' and 6* be two
functions that assign arbitrary min/max delays to the events in %' and 0 and oo
delays to the events in X\ X', respectively.

Then, 0 is timing-consistent <= 6 is timing-consistent.

Proof:

Given that events not in X' have delays in the interval [0,00), no attention must
be paid to their timing-consistency. So the proof can be concentrated on the events
in X' that appear in 0; and 0.

Let 71 < --- < 1, be the time stamps assigned to FEy,...,Ey,y1  that make
0 timing-consistent. The same time stamps can be assigned to 6 as follows.
Let j be the smallest index such that map(E;) = E.. Then we assign the time
stamp t; to E;. Under this assignment we have that for any e, € X', the
time stamp assigned to FirstEnabled(6, E;,e) is the same as the one assigned to
FirstEnabled(¢', map(E;),e;). This is ensured by Definition 4.5, that enforces the
set of enabled events in X' to be the same in E; and map(E;). Then, since
the disabling of an event e € X N'Y' must be due to the firing of another event
e, € XNY and such events are enabled and fire at the same time in both sides,
the disabling of e must also occur at the same time stamp in 6 and 6. Now, by
Definition 2.7 of timing-consistency, it immediately follows that the assignment of
time stamps also makes ' timing-consistent.
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Given a set of consistent time stamps assigned to Ej,... ,E;nﬂ, they can also be

1

assigned to Ey,...,E,+1 by the function map™". Timing-consistency immediately

follows by using a reasoning similar to the previous case. w4l

The previous theorem states that the timing analysis of a trace can be reduced to the
timing analysis of those events that are causally related (events in 3'). Therefore, the
events that are concurrent with all the events of ¥’ can be abstracted out. Hence, the
timing analysis for one trace can be applied to all those traces that have the same causality

relations among the events in Y.

We want to remark that the notion of enabling-compatibility as well as the previous
theorem have been updated with respect to those in [PCKPO00] in order to properly ac-
commodate the disabling notion into the theory.

4.4 Event structures

This section presents the basic theory on causal event structures (CES). A CES describes
all the possible sequential and concurrent executions of a set of events. Thus, it allows
to capture a set of enabling-compatible traces under a single mathematical object. Event
structures are the only object for which we perform timing analysis, which is rather simple
and efficient because CESs are acyclic directed graphs. The timing constraints derived from
such analysis apply to the whole set of enabling-compatible traces covered by the CES.

The usual notion of CES is not able to model the disabling of events, which is a relevant
phenomenon for our verification approach. A class of event structures with conflict rela-
tions was proposed in [NPW81]. However, such relations are symmetric and correspond
to mutual disabling of competing events. A more general relation is required for our pur-
poses that models the asymmetry of event disabling, such as it appears in digital circuits,
for example. The main reason for considering asymmetric conflict relations is because, in
our verification approach, event structures are derived from traces and a particular trace
can only capture a single branch of a conflict relation. Consider the portion of TS in
Figure 4.10 (a). It contains a symmetrical conflict since x and y mutually disable each
other. Two important facts are observed in the trace of Figure 4.10 (b) extracted from
such TS:

m Only the disabling of y due to the firing of x is captured by the trace.

m Since y is disabled, it can no longer fire along the trace and therefore it cannot
enable other events.

The first fact leads to the need for considering an asymmetric conflict relation. The second
fact imposes the restriction that a disabled event cannot have causal successors in the event
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Figure 4.10 (a) Portion of a TS with a symmetric disabling relation. (b) A trace and the corresponding
CES that capture the disabling.

structure. With these two ideas in mind an asymmetric conflict relation, denoted by >, is
added to the notion of causal event structure used in [PCKPO00], such that the disabling
of events along a trace is properly handled.

DEFINITION 4.6 (CAUSAL EVENT STRUCTURE)
A causal event structure (CES), CS = (3, <,p), is a finite set ¥ of events, a
precedence relation <C X x X (irreflezive, antisymmetric and transitive) called the
causality relation, and a conflict relation > C X xX (irreflezive and antisymmetric).
> s inherited via < in the sense of: V e1,ez,e3 € ¥ | ej>ex A e <e3 = egbes.
Moreover < and > satisfy the following two properties:

m <N>=0 and
me ey = AHAe3EX : ey <eg.

That is, the causality and the disabling relations are disjoint, and disabled events

cannot be causal predecessors of other events in the CES.
4.6

Notice that this definition excludes symmetric conflicts, i.e. mutual disabling between
events, by the anti-symmetry of >. This fact does not constitute a limitation of the model
but an intended feature that fits in our purposes.

Given a CES CS = (3, <,>) and two events e, e’ € X, the disabling relation between
e and €' is defined as follows:

de
e n, € 2] e>e AVe,el€X i [eg<e ANef<e ANep>e] = eg=e A el =¢]

>, identifies the minimal elements (under <) of the > relation. The > relation identifies
pairs of events which are inconsistent due to the disabling of some of the predecessors,
and propagates to causally-related events generating other conflicts.
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A CES can then be depicted as a Hasse diagram, by showing the transitivity-irredundant
< relations in form of solid arcs and the >, relations as dashed arcs. Figure 4.10 (b)
shows a CES that contains the disabling relation x>, y. Other examples of causal event
structures without disabling relations can be seen in Figure 4.3 (b) and Figure 4.4 (b).

Given a CES CS = (X,<,>) and a set of events X C X, the following sets can be
defined [RE8S]:

(TX)s = {e1€¥|Te2e€X : e <eg}
(X7)s Y {ee0|TereX @ ey <e}
CX)s Y {eeX| BeyeX : eg<e}
(X°)< o {e1€X | Aea € X : e <ea}
UX)s © {e1e2|TFeyeX : ey <e} = (CX)JUX

When it is clear from the context, we will just write X, X7, °X | X°and | X .
Intuitively, X is the part of CS before X , X7 is the part of CS after X ,
°X are the root (with no predecessors) events of CS , and X° are the sink (with no
successors) events of CS. Finally, | X is called the left-closure of X .

DEFINITION 4.7 (WORDS AND PREFIXES)
A word of the events of CS = (X, <,>) is a sequence w =ej---e, € &" (n <| X ),
such that all the events are distinct and V1 <1i,7<n:

e <e = i<j (events are ordered in w according to <), and

moe>,e; = e €w (disabled events do not appear in w).

Given a word w = ey ---€;ej41 - €y, thei-th prefix of w is denoted by w; = ey ---¢;.
The empty prefiz is denoted by wy.
4.7

Notice that an event e; for which a disabling relation e;>,e; exists in the CES cannot
fire along a word w. However, e; will become enabled somewhere in w as long as its
predecessors by < fire in w. Also, e; will be disabled when its predecessors by > fire
in w. This notions are formally captured by the following definition:

DEFINITION 4.8 (EVENTS ENABLED /DISABLED BY A PREFIX)
Let CS = (2,<,>) be a CES and let w be a word of CS. The set of events
enabled by a prefix w; is defined as E(w;) = {ey Fwi | Ve; €X 1 ej <e, = ¢ €
wi N ejbyer = e €w} . Similarly, the set of events disabled by a prefix w; is
defined as D(w;) ={ep w; | Jej €X : ejp e =€ € w;} .
W48

That is, an event e is enabled by a prefix w; if all the causal predecessor events (by <)
are in w;, none of its disablers are in w; and e is not in w;. Also, an event is disabled by
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wj if it was enabled and later disabled along w; but it never fired. £(w;) contains all the
events still enabled by the sequence of firings in w;, while D(w;) accumulates all the events
disabled along w;. In the sequel we will denote by D C X the set of all events that are
disabled along some word of a CES, i.e. D={e; € ¥ |Je; € L:ej>e;}.

The notion of word in a CES is similar to the general notion of trace. This fact is
expressed by the following definition:

DEFINITION 4.9 (TRACES GENERATED BY WORDS)
Let CS = (3,<,>) be a CES andlet w=-ejey---e, be a word of CS. The trace

generated by w is defined as: 0, = E(wg)gg(wl)l---en;;ﬁ(wn_1)e—n>® .
W49

According the this definition, events disabled in the CES can appear only in the sets of
enabled events in each state of 6, but never in the transitions between states.

DEFINITION 4.10 (CAUSAL EVENT STRUCTURE GENERATED BY A TRACE)
Let 0 = E11>E22>---en;>1Ene—n>En+1 be a finite trace with D(6) as the set
of disabled events along it. The causal event structure CSy = (X, <,>) generated
from 0 s defined as follows:

n
" Y= UE
=1

Not only the firing events are included but all those enabled along the trace,
including the disabled ones.

Iei<ej<:>7j<j/\{/3Ek69:{ei,ej}gEk}AeigD(O).
The last condition emphasizes the fact that disabled events can not be causal
predecessors of other event since they do not fire along the trace.

e; dise; im0 ,or
B e b>e &
er>e; N ep <g

> captures the non-symmetric conflicts along the trace, that is e; may disable
e; but this has nothing to do with e; disabling e;. Both relations can never
appear together in the same trace. >, corresponds ezactly to the dis relation

of the trace.
W 4.10

EXAMPLE 4.3 (CONT.) Figure 4.11 (a) depicts a trace extracted from the TTS in
Figure 4.8. The trace contains the disabling of event d+. Figure 4.11 (b) shows the
CES derived from the trace according to Definition 4.10. The disabling relation between
e— and d+ s represented by the dashed arc.
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Figure 4.11 (a) A trace extracted from the TTS of Figure 4.8, (b) CES obtained from the trace (events
are annotated with their delay bounds), and (c) lazy CES induced by the delays.

The following sequences of events are words of the CES : a+b+c—f-e—, a+f-c—e-b+,
a+c-bte-f— | ete.

Consider w = a+b+c-f-e— , then w; = a+ s the first prefir of w, wy = a+b+ is
the second prefix of w, etc. The set of events enabled and disabled by wy are E(we) =
{c—,d+,f=} and D(we2) = 0. Similarly, the set of events enabled and disabled by ws are
E(ws) =0 and D(ws) = {d+}. Finally, according to Definition 4.9, w generates the
trace of Figure 4.11 (a). W43

Despite of the previous example, Figure 4.10, Figure 4.3 and Figure 4.4 show other
examples of CESs derived from a given trace.

We use CESs derived from failure traces to perform timing analysis. Hence, relative
timing relations among the events in the CES can be found that help to prove the timing-
consistency or timing-inconsistency of a failure trace. Moreover, thanks to Theorem 4.1,
the timing relations derived from the analysis also apply to the set of traces enabling-

compatible with the failure trace.

4.4.1 Timing analysis on event structures

CESs with timing assumptions can be derived from traces with events annotated with
minimum and maximum delay bounds (see Definition 4.10). These assumptions are cap-
tured by the notion of mazimal separation time between the events of a CES. The mazimal

separation time of two events e; and ey is computed as the maximum difference be-
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tween their firing times, provided any possible assignment of delays to the events in the
CES. That is, Sepmaz(e1,e2) = max{ft(e1) — ft(ez) | for any delay assignment}, where
ft denotes the firing time of an event.

In [MD92] several algorithms for the timing analysis on acyclic graphs where presented.
Those algorithms included: a polynomial algorithm for the timing analysis with max
constraints only; an exponential, but feasible in practice, algorithm for the case with max
and linear constraints; and a branch and bound approach for the general case including
min/maz and linear constraints. The information obtained from these algorithms can be
used to analyze whether two concurrent events are actually ordered in the timed domain.
That is, e; precedes ey in the timed domain if Sepq.(e1,e2) < 0. Appendix A provides
details on the timing analysis algorithm of [MD92] for maz constraints.

The verification approach presented in [PCKPO00] used the algorithm of [MD92] with
only maz constraints to perform timing analysis on CES derived from traces without
disabling relations. However, such algorithm is not sufficient when the disabling of events
is involved. The following example illustrates why.

EXAMPLE 4.3 (CONT.) Recall the circuit of Figure 4.8 (a) where a falling transition
of gate e disables the rising transition of gate d. Assume also, that a situation in which
if “f— occurs before e~ once a+ has happened” is considered a failure by the designer
of the circuit. A trace that captures such failure and also includes the aforementioned
disabling situation is shown in Figure 4.11 (a). Provided the delay bounds of the events
shown in Figure 4.8 (a), it can be proved that the trace is not timing-consistent. Notice
that if e- disables d+, then e— must fire before the maximum possible firing time of
d+ has elapsed (see Definition 2.7). That is, the latest firing time of e— must be, some
amount of time before 6 time units, after a+ fired. This means that e— will always fire
before f—, whose minimum delay is also 6 time units and is also triggered by the reference
event a+. This fact can be better analyzed by looking at the CES in Figure /.11 (b), in

which events have been annotated with their respective delay intervals.
W43

According to the discussion in the previous example, the timing analysis on the CES should
provide a relative timing relation showing the fact that e— always fires before f—. How-
ever, the maz-only algorithm cannot handle the disabling situation and no such timing
relation can be obtained. This indicates that e— and f— can occur concurrently in the
timed domain. Which, in turn, implies that the failure trace is possible even when the
delays are considered. Therefore the circuit is faulty. This leads to contradiction since the
failure trace of the example is not timing-consistent.

The source of the contradiction resides in the fact that the disabling relation between
e— and d+ cannot be expressed in the maz-only algorithm for timing analysis, which can
only handle the causal relations among the events. Moreover, such disabling relation is
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relevant for the timing analysis of this case. If the disabling is not considered, the relative
timing relation between e- and f- necessary to prove the timing-inconsistency of the
failure trace, cannot be found.

Disabling relations are incorporated to the timing analysis of a CES in the form of linear
constraints. Such constraints express the fact that if event e; disables event e, then
e; fires before the maximum delay of e; has elapsed, since it was enabled by its trigger
e;. Otherwise e; should have fired before the disabling could take place. More formally,
given a CES CS = (¥, <,»), such that e; >, e, and e; < e, (e;,e5,e, € X) a linear
constraint of the form ft(e;) < ft(e;) +0"(ex) is added to the timing analysis. Then the
timing analysis algorithm for maz and linear constraints in [McM92] can be used.

In the previous example, a linear constraint corresponding to the disabling of d+ by
e— is imposed to the timing analysis, such that e— must fire before the delay of d+ elapses.
That is ft(e-) < ft(b+) + 0“(d+). Under this condition, which reflects what happens in
the trace, we have that Sepp,.,(e—,f-) < 0. As we expected, this means that e~ precedes
f— in the timed domain.

The maximum separation times computed by the timing analysis algorithm can be
incorporated to the CES in the form of relative timing constraints between pairs of events.
Thus, e; precedes ey in the timed domain if Sep,,q:(e1,e2) < 0. We refer to these new
relations as lazy relations, expressing the fact that es is lazy to fire until e; has fired.
This notion of laziness is similar to that for lazy transition systems (see Section 2.4).

DEFINITION 4.11 (LAzy CES GENENERATED BY A TRACE)
Let 0 = EIL---Ene—%EnH be a trace of a TTS A = (A~,6',6%) , and let
CSy = (X, <,>). Thetriple LCS = (X, <',>) is called a lazy causal event structure
(LzCES), where <’ = <UT ,and T CX x X isa set of lazy relations such

that T = {(ej,e;) € xX | e £ej A e £e A Sepmaz(ei,e) <0} .
411

The LzCES obtained after the timing analysis on the CES of Example 4.3 is shown in
Figure 4.11 (c). The lazy relations corresponding to the relative timing information are
depicted as dotted lines. Despite of the previous example, Figure 4.3 and Figure 4.4 show
other examples of LzCESs derived from a given trace.

The delays assigned to the events in the CES for timing analysis play a crucial role in
the context of our verification approach. Failure traces and/or CESs may come from a
variety of sources: a designer, who’s knowledge about the possible sources of failures in a
system can be useful to guide the verification; a CES derived not from a whole trace that
starts from the initial state, but from a portion of trace that ensures a localized failure
analysis that involves less events; etc. In these cases, the prehistory of the enabledness of

some events involved in the analysis may be unknown to the verification algorithm. As
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a consequence, given a CES C'S = (X, <,>) , the minimum delay bound for all the root
events ((°X)<) i.e. those for which no causal predecessor exists, is conservatively set to 0.
That is, mimicking an infinitely early enabling time. With this strategy, timing analysis
is still exact in case the CES has only one root event, since the relative firing order of all
other events does not depend on the enabling time of their common predecessor.

A LzCES , obtained by the techniques described in previous sections, partially specifies
the behavior of the system under verification and incorporates a set of relative timing
constraints. Such timing constraints are mapped back to the system under verification by
means of composing appropriately the system and the LzCES.

4.5 Enabling-compatible product

This section describes how to refine the set of traces produced by a LzTS by considering
the timing constraints coming from event delay bounds. The timing constraints are derived
by a timing analysis on a CES corresponding to an eligible trace of a LzTS in the untimed
domain. The refinement is performed through the parallel composition of a LzTS and a
LzCES. Defining such composition requires both descriptions to be represented in a uniform
way. To satisfy this requirement we first introduce a state-based representation for CESs.

4.5.1 State-based representation of a CES

An underlying transition system can be obtained from a CES. This process relies on the
notion of configuration, which plays the role of global state of the CES.

DEFINITION 4.12 (CONFIGURATION)
Let CS =(2,<,>) be a CES.C CX is a configuration iff:

m C s left-closed, i.e. Ve; € C all predecessors of e; by < are in C, and

m disabled events do not belong to C, ie. & €C = JAej €X : e, 6.

Notice that both ) and the set of not disabled events X\D are trivial configurations.
Event e € ¥ is enabled in configuration C iff ~{e} CC and Ve; € ¥ | ;b

e; : e &C. We denote by E(C) the set of all enabled events in configuration C.
W 4.12

Configuration C precisely identifies a state of a CES, as the set of events occurred so far,
such that if e € C all its causal predecessors must be also in C.

Every prefix w; of a word w in a CES is left-closed and disabled events do not
fire along it (see Definition 4.7). Thus every prefix w; defines a configuration which is
reached by firing the events from w;. Consideration of all possible words of a CES and
their prefixes gives the set of reachable configurations, C', where the initial configuration
due to the empty prefix wy is denoted by T. The set of reachable configurations together
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Figure 4.12 (a) Graph of reachable configurations for the LzCES of Figure 4.11 (c). (b) Corresponding

graph of reachable enablings. Shadowed configurations are not reachable due to the laziness of event f—.

with the partial order induced by the strict set inclusion C, defines the graph of reachable

configurations.

DEFINITION 4.13 (GRAPH OF REACHABLE CONFIGURATIONS)
Let CS = (X,<,») be a CES, and C be the set of reachable configurations of
CS. The graph of reachable configurations (GRC) of CS is a Hasse diagram over

C and the partial order C interpreted in set-theoretical sense. - i3

For the general case of a LzCES, LC'S = (X, </, ), the graph of reachable configurations
can be modeled by a LzTS G = (C,%,T, T,EnR) where: there is one state per config-
uration; C;——Co € T iff Cy is reached by firing e € & from C;; the initial state
corresponds to the initial configuration T; and EnR(e) ={C e C | e € £(C)}.

EXAMPLE 4.3 (CONT.) Figure 4.12 (a) depicts the resulting graph of reachable con-
figurations for the CES in Figure /.11 (b). In this graph every arc (Ci,e,C2) 1is at-
tributed by an event e which expands configuration Cy into Cy (the firing event).
The shadowed configurations are those unreachable due to the laziness of f— relative to
b+ and e- as imposed by the lazy arcs of the LzCES of Figure 4.11 (¢). Thus, we have
that EnR(f+) = {{a+}, {a+,b+},{a+,c-},{a+,b+,c-},{a+,c—,e-},{a+,b+,c—,e-}} and
FR(f+) = {{a+,b+,c—,e-}}. W43
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The following theorem shows that a configuration in a CES is uniquely defined by the set
of events enabled in it. The result applies in general to a LzCES since its set of reachable
configurations is a subset of that of the original CES from which the LzCES was derived.

THEOREM 4.2 (CONFIGURATIONS AND ENABLINGS)
Any pair of configurations C1 and Cy (C1 # Co) of a CES CS = (3,<,>) has
different sets £(C1) and E(C2) of enabled events, i.e. Cy #Co = E(C1) # E(C2) .
Proof:
By contradiction. Suppose that E(C1) = E(C2) . Two cases arise:

The configurations are ordered (similarly for Cy C Cy).

Then, any sequence of firings o , from Cy to Co must contain at least one event
e€ &(Cr) . If £(C1) =E&(Ca) , we have that e fires in C; but is again enabled in
Co . Therefore, e < e , which is a contradiction.

‘ CigC N CoCy ‘ The configurations are not ordered.

Let us consider the nearest predecessor configuration Cs such that C3 C Cy and
C3 C Cy , and there is no configuration C4 such that C4 C Cy, C4 C Cy and
C3CCy .

Let e be the first event firing in any feasible sequence of firings o1 from Cs3 to Cy .

Clearly, e does not appear in any feasible sequence of firings oo from Cs to Co
otherwise C1 and Co would be reachable from C4 such that Cgi>C4. Therefore,
e should be still enabled in Cy. Since we assumed that E£(C1) = £(C2) we have
that e is again enabled in Ci and therefore, e < e , which is a conlradiction. g ,,

In the sequel we will indistinctly use configurations or their enablings to characterize
the states of a CES. Based on this one-to-one correspondence instead of a graph of reach-
able configurations one could consider an isomorphic graph of reachable enablings (GRE).
Figure 4.12 (b) shows the GRE corresponding to the GRC of Figure 4.12 (a).

4.5.2 Refining the reachability space by timing constraints

At this moment we have two objects at hand: a lazy TS A, and another lazy TS G
obtained from an event structure CSy. CSp is derived from a particular trace 6 of
A (actually by an appropriate suffix), thus giving only a partial specification of the
behavior of A. CSp is refined through timing analysis yielding the lazy TS G.

Refining the behavior of A by the timing constraints incorporated in G can be done
by calculating the enabling-compatible product of G and A, which is a particular case of
transition system product under the restrictions of making synchronization by the same
transitions and the same enabling conditions.

For sake of simplicity, and before introducing the rules of the enabling-compatible prod-
uct below, we will add the special configuration | to G. 1 denotes the fact that the
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product is not synchronizing, i.e. there is no enabling-compatibility with the state space
of the CES and therefore, timing analysis does not apply for the involved traces.

Given the system A = (S, X 4,T4,s0, EnR4) and the state space of the LzCES containing
G = (CU_L,Eg,Tg,T, EnRg>, with Xg C X4, the
enabling-compatible product of A and G is a new LzTS (S',%4,T",s), EnR’) where:

the relative timing constraints

" S'CSx(CUL),
m sy =(sp, T) if E(T) C&(sp), and sy = (sp, L) otherwise, and
m Ve € X4, EnR'(e) = {(s,C) € S" | s € EnR4(e)} .

The transition relation 7" is defined by the rules below. The rules are implied by the
conditions of Definition 4.5 on enabling-compatibility of traces. The fact that (s,C) €
S’ denotes that s and C have been reached by prefixes that are enabling-compatible,
and that map(€(s)) = £(C). Given a state of the product (s,C) with C # L, we will
say that the state is in the timed domain, indicating that the timing analysis performed
on (CSy can be applied to s.

The rules that define the enabling-compatible product are as follows:

Transitions entering the timed domain

Conditions
enter = s—s' €Ty A E(T) CE(S)NBg

Transition
(s, L)=>(s, T)

These transitions are fired when the events enabled in T are also enabled in s’. Thus,

timing analysis can start being applied from (s', T).

Staying inside the timed domain

Transition

Conditions

(s,C)—=(s',C)
(s,C)—=(s,C")

insidel = s—s' €Ty A E(s)NBg=E(s)N g

inside2 = s—s' €Ty A C—=C'e€Tg A E(S)NZSg =E(C)

Insidel corresponds to the condition in which e does not synchronize with G. Here
the enablings of configuration C must be preserved, i.e. the firing of e cannot disable
or enable events in Y.

For inside2, both A and G make a synchronized move which might affect the events
from g in exactly the same way: if a € 3¢ becomes enabled in A due to this move,
it should also become enabled in G, and viceversa.

Exiting or staying outside the timed domain

Conditions
exit = s—s' € Ty A —(enter V insidel V inside2)

Transition
(s,C) (s, 1)
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It can be shown that, in the enabling-compatible product, only the traces of the original
LzTS which are enabling-compatible with the event structure are refined. This refinement
excludes the traces which are not timing-consistent with respect to the timing constraints
coming from the timing analysis on the event structure. All other traces are not changed,
thus guaranteeing the conservativeness of the approach.

EXAMPLE 4.3 (CONT.) Figure 4.13 summarizes the refinement of the state space of
the circuit of the running Example 4.3. The figure shows the circuit (a) and a portion
of its untimed state space (b). A given trace and the LzCES derived from it using the
delays of the circuit are shown in (c) and (d), respectively. The LzTS corresponding to
the GRC of the LzCES is shown in (e). Finally, (f) shows a portion of the resulting
LzTS after performing the enabling-compatible product of (e) and the original TS of (b).
States annotated with L correspond to those states where the enabling-compatibility is
not satisfied, and thus are out of the product. Notice that all traces where event d+ fires
lead out of the product, since they are not enabling-compatible with the LzCES (d), where
event d+ is disabled. W43

Despite of the previous example, Figure 4.3 and Figure 4.4 show other examples of

enabling-compatible product.

4.6  Verification methodology

The different elements of the verification methodology have been introduced along the
previous sections. The complete verification algorithm is presented in this section. Rele-
vant aspects such as the correctness and the convergence of the approach are discussed.

The proposed verification methodology follows a fully automated iterative approach.
The verification flow is graphically depicted in Figure 4.14.

The verification starts by taking a LzTS equivalent to the underlying TS of the system
under analysis, modeled as a TTS. In that case the enabling and the firing information of
all the events coincide since no timing information has been considered yet.

Given a safety property P, a trace is identified that leads to some state in which P is
violated. If the trace is timing-consistent then the system does not satisfy the required
property and the trace provides a counter-example. On the contrary, if the trace is not
timing-consistent, it is used to refine the untimed state space and remove other timing-
inconsistent traces. Causality information between the events in the trace is extracted and
a CES is built from it. Timing analysis on the CES is performed by using the algorithm
in [McM92]. The extracted temporal information is used to obtain a LzCES which is
composed with the original LzTS, thus including the temporal information necessary to
prove that some of the states in the system are unreachable. In particular, at least the
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Figure 4.13 (a) Circuit with a potential disabling at gate d. (b) Portion of the untimed state space and
(c) trace extracted from it. (d) LzCES induced by the trace (c) and delays. (e) LzTS of the corresponding
GRC and (f) resulting LzTS after the enabling-compatible product of (b) and (e).
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Figure 4.14  Flow of the verification methodology.

LzTS

failure trace found in the initial step is removed. The process is repeated until no violation
of the property P exists or a timing-consistent failure trace is found.

Along the series of refinements each LzCES is reported. At the end of the process,
the resulting set of LzCESs constitute a set of sufficient relative timing constraints that
prove the correctness of the system. They can also be used as valuable back-annotation
information to help the designer improve his/her knowledge of the parts of the system
which are critical for its correct operation.

4.6.1 Iterative refinement

Figure 4.15 shows the timed verification algorithm, where A is the TTS that models
the system under verification, and P is a safety property. In general, a set of safety
properties can be handled simultaneously with similar computational effort.

First, a LzTS A’ is obtained corresponding to the underlying TS of A. The enabling
information in A’ coincides with that of firing, since no refinement with the timing
information has been carried out yet.

The function untimed_verification checks whether a trace violating the property P is
present in A’. If such a trace exists, a finite prefix, 6, demonstrating the wrong behavior
is returned. This prefix is checked for timing-inconsistency by building and analyzing the
corresponding causal event structure (see function build_event_structure in Figure 4.16).
If no CES can disprove the feasibility of the trace 6 the verification returns 6 as an
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function timed_verification ( A = (Sz,%4,Ta,504,0',6%), P)
A" = (54,84,Ta,504,EnR) ;
repeat
0 := untimed_verification(A’, P);
if (empty 6) return(SUCCESS);
LCS := build_event_structure(A’, 8, 6', 6»);
if (empty LCS) return(FAIL, 6);
A" := compose(A’, LCS);
A= A",
end repeat
end function

Figure 4.15 Main algorithm of the relative timing-based verification approach.

function build_event_structure ( A' = (S, %, T, so, EnR), 6, &', 6% )
0" := shortest_suffiz(0);
repeat
0" := add_predecessor (6", 0);
CS := build_event_structure(A’, 0");
if (timing_consistent(CS, &', 6*))
L := compute_lazy_arcs(CS, &', 6*);
LCS := add_lazy_arcs(CS, L);
return (LCS);
end if
while (6" # 0);
return (empty CS);
end function

Figure 4.16  Algorithm for the derivation of a LzCES from a trace.

example of violation of P. Otherwise the system is refined through the composition with
the LzCES LC'S. LCS contains a set of relative timing constraints that apply over a set
of enabling-compatible traces, including 6.

The timed_verification algorithm does not depend on any particular implementation of
the untimed_verification function. We have implemented, however, an approach based on
efficient symbolic model checking techniques [BCM™92]. Basically, we explore A’ looking
for failure states where P is violated. Then, a backward traversal is performed to generate
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Figure 4.17 Generation of the sufficient shortest suffix of a trace. Three steps are needed to obtain a
LzCES that proves the timing-inconsistency of the trace.

a trace, leading from the initial state to the failure one, reproducing the discrepancy with
P. A fast simulation-guided traversal technique [PP03] has been also implemented. With
this technique, the cost of the search for property violations is drastically reduced, and
the failure trace is incrementally built during the process. Moreover, significant savings in
CPU time and memory requirements are achieved.

4.6.2  Off-line timing analysis of failures

The function build_event_structure (see Figure 4.16) builds the shortest suffix 6" of
the trace 6 generated by the function untimed_verification. 6" is built such that the
timing analysis shows a timing-inconsistency with the delays §' and 6% imposed by A.
A causal event structure C'S is constructed by using the causal relations of the events in
0" (see Section 4.4).

Function timing_consistent performs timing analysis over C'S. It implements the al-
gorithm described in [MD92] for timing analysis over an acyclic graph of events with
min/max and linear constraints (see Section 4.4.1).

If the timing analysis shows that the trace is not timing-consistent, function com-
pute_lazy_arcs extracts a set of relative timing constraints from C'S, i.e. a set of additional
orderings between the events of #” imposed by the delay bounds. These new constraints
are added to the initial CS in the form of lazy arcs by the function add_lazy_arcs. The
resulting lazy event structure LC'S models only those orderings of the events of #” which

are timing-consistent with the delays imposed by A.
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EXAMPLE 4.4 Recall the example developed in Section 4.2. Consider the TS of Fig-
ure 4.2 (a) and the delay bounds specified in Figure 4.2 (b). Recall also that, in this
ecxample, the property being verified states that event g must always fire before event d.
Thus, the following trace {x}i%{a,b}i>{b,c,g}%{b,g}i){d,g}i){g}é{y} illus-
trates a violation of the property.

The shortest possible suffixz is given by the trace {d,g}%{g}i{y}, from which the
simple event structure of Figure 4.17 (a) is derived. Clearly, the timing analysis cannot
be exact since g was already enabled in the pre-history of the trace. Thus, the lower
delay bound of g 1is conservatively set to 0. The timing analysis can conclude nothing
about the occurrence order of events d and g, since both can fire concurrently. The
algorithm continues by moving one step backwards along the trace and repeats the same
process again, building the corresponding CES incrementally. Figure /.17 depicts the three
attempts needed to find the shortest sufficient suffix of the original failure trace.

According to the causality relations extracted from the suffiz of Figure 4.17 (c), timing
analysis concludes that events b and g occur before event ¢ (and consequently before
d). This relative timing constraints are depicted by the dotted arcs in the corresponding
lazy event structure. The derived timing relations demonstrate the infeasibility of the given

failure trace in the timed domain. W44

We have illustrated the process of deriving a sufficient LzCES that proves the timing-
inconsistency of a trace, by considering its shorter suffix. This, however, does not guarantee
the maximum effectiveness of the later refinement of the state space of the system, with
the timing constraints in the LzCES. In some cases, using the shortest prefix of the trace
results in better pruning of the set of failure traces. Similarly, the removal from the
LzCES of timing-unrelated concurrent events, or the addition of causal predecessors that
improve the knowledge of the enabling prehistory of the events, may affect the quality of
the LzCES obtained.

A set of trade-offs must be considered, which correlate aspects such as: how many events
are added to the CES such that the timing analysis can still be carried out effectively; how
readable will be the resulting LzCES so that it can be useful for back-annotation; how
effective in removing failure traces will be the later enabling-compatible product with the
system, etc.

4.6.3 Incorporation of relative timing constraints

Finally, we develop the composition algorithm (the compose function) that implements
the enabling-compatible product (see Section 4.5) between A’ and the LzCES LC'S. The
result is a new LzTS A” in which all traces contradicting the timing orderings of the
events in LCS have been removed from A’. Therefore L(A") C L(A’). The resulting
system A” is a new LzTS where:
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s The state space may be split in two parts: one following the enabling orders
(enabling-compatible) of the events in LCS, and the other one where the en-
ablings are not followed. The former corresponds to the state subspace where the
constraints imposed by LCS apply (the timed subspace). In the latter, LC'S does
not apply (the untimed subspace).

m In the timed subspace, some events are prevented to fire when they are enabled.
More precisely, the composition with LC'S allows only those firing orderings which
are consistent with the timing analysis.

4.6.4 Back-annotation

A nice feature of the verification approach is its back-annotation capability. Namely,
the LzCESs used to represent the timing constraints applied along the series of iterative re-
finements of the state space of the system under verification, are reported at each iteration
of the process.

Given the causality relations modeled by a LzCES and the delays of the events, each
LzCES contains a set of additional ordering relations between the events in the timed
domain. They provide a set of sufficient conditions for the system under verification to
be correct. Moreover, the relative timing nature of such ordering relations and the fact
that a CES often contains a small set of events, make the information contained in the
LzCES rather easy to interpret.

As a result, the verification approach, not only verifies the correctness of a timed system
with respect to a set of safety properties. In case the system does not satisfy the properties,
a timed trace showing the sequence of events that lead to a failure and their firing times
according to the delays of the system, is provided as counterexample to prove the system
malfunction. Otherwise, if the system is correct, a set of timing constraints that prove
such correctness is provided in the form of LzCESs.

All this back-annotation information may result crucial in design frameworks where
synthesis and verification are invoked iteratively, for the design of systems that must meet

functional and non-functional constraints.

4.6.5 Correctness

The correctness of the timed_verification algorithm is guaranteed by the following facts:

m The language of the TTS being verified is a subset of the language of the initial
untimed abstraction, i.e. its underlying TS. This condition is proved by Lemma 4.1.

s Conservativeness: the compose function does not remove any trace which is timing-
consistent with the delays §' and 6 of the verified TTS. This is guaranteed by
the composition rules of the enabling-compatible product (see Section 4.5).
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m Convergence: for a particular class of systems the verification requires only few re-
finements to converge (more details in Section 4.6.6). For the general class of systems
a pre-defined upper bound on the number of refinements can be imposed. Although
this could produce false negatives during verification, it is in full correspondence to
the conservative nature of the suggested verification approach. However, in most
practical cases, those systems where the upper bound on the number of refinements
is required, are systems which untimed state space is indeed too big to be handled
by conventional symbolic techniques.

4.6.6 Convergence

Each composition step of the original LzTS A’ with the lazy event structure LCS im-
plicitly performs an unfolding of A’ separating traces that are enabling-compatible with
LC'S and those which are not.

The convergence of the refinement procedure for the class of Marked Graphs is guaran-
teed by the known results on termination of separation times analysis in a finite number
of unfolding iterations [HB94]. Nevertheless the upper bound on the number of iterations
could be quite high (depends on the ratio of critical and sub-critical cycles). This is an
inherent limitation of exact separation analysis and, for practical applications, it is better
to work with pre-established separation bounds and do not unfold beyond those bounds.
Although it gives only conservative verification, an acceptance of pre-defined upper bounds
seems to be a reasonable option because the largest class of systems for which the separa-
tion times analysis could be performed exactly are free and unique choice systems [HB94].
Beyond them the calculation of separation times is inherently conservative.

However there is an important practical class of systems for which the refinement pro-
cedure is especially simple and is exact for few unfolding iterations. The characterization
of this class is done in terms of the so-called nodal states.

DEFINITION 4.14 (NODAL STATE)

Let A= (S,%,T,sp) beaTS. A state s € S is called nodal if Vs’ € S, s3s€eT,
e€&(s)=edg&(d).
W 4.14

Definition 4.14 points that all direct predecessors of a nodal state are synchronized in
that state, i.e. at the moment when a system arrives to a nodal state all concurrent
activities have been finished. Figure 4.18 illustrates the concept by showing two portions
of a transition system. State s in the left portion is a nodal state since all the events
enabled in s (c and d) are not enabled in any of the precedessor states of s. Conversely,
in the right portion state s is not nodal since event e is not newly enabled in s. Other
examples of nodal states can be found, for example, in the TS of Figure 4.2, where states
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Figure 4.18 Example of a nodal (left) and a not nodal state (right).

so, s1 and sj3 are nodal. This TS has no conflicting events (no choice) and therefore
each of the nodal states is a “global synchronizer” because it breaks all the TS cycles.

Nodal states are natural points from which the timing analysis is convenient to start.
Any event enabled somewhere in a path to a nodal state must fire before reaching this
state and, hence, timing analysis from a nodal state does not depend on the prehistory of
the process behavior. We will call a TS in which every trace passes through at least one
nodal state as strongly synchronized. Note that the requirement of breaking traces by a
set of nodal states is essential here because it is easy to construct an example of TS with
choices, in which different branches of a choice would have different nodal states and none
of them could serve as a “global synchronizer” for the whole TS.

In a strongly synchronized TS, given a failure trace € with an “improper” ordering
of the pair of events a and c, checking the timing-consistency by a and c¢ might
be reduced to consideration of the suffix 6; starting from the nodal state closest to the
enabling of events a and c.

By 6; one can construct the corresponding CES to check whether a and c¢ might
occur in the order they have in 6. However in case of cyclic behavior, 6 might continue
in such a way that the first n occurrences of events a and c¢ satisfy the checked
properties while their n 4+ 1 occurrences have an “improper” ordering. The nice feature
of strongly synchronized TSs is that timing analysis made for trace 6 can be equally
applied for “later” occurrences of a and c¢ because the analysis, started at a nodal
state, does not depend on the enabledness prehistory of the events. Therefore timing-
inconsistency of 6 implies also timing-inconsistency for any cyclic unfolding of 6, from
which it immediately follows the exactness and convergence of the suggested procedure
for verification.

The practical significance of the class of strongly synchronized TS could be shown
by analyzing the known set of asynchronous circuits benchmarks (see Chapter 5): more
than 80% of the specifications are strongly synchronized. Beyond the class of strongly
synchronized TSs our verification procedure would be conservative in general. Still in
many cases it might require just few iterations in unfolding the TS to reach the exact
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separation analysis. For example, [AH99] shows the fast convergence of separation times
analysis for pipelined specifications, which are inherently not strongly synchronized.
Finally remark that no formal study has been carried out about the convergence of the
verification method in the absence of nodal states. Nevertheless, our intuition indicates
that the method should generally converge after a bounded number of iterations that
guarantee a precise-enough timing analysis. Similar results have been already obtained in
the context of marked graphs, where a bounded number of unfoldings suffice to compute
the cycle times of a system [NK94]. A detailed formal study on the topic is left for future

work.

4.7 Conclusions

This chapter has presented a novel verification methodology for safety properties in
timed systems. The methodology combines relative timing with conventional methods
based on symbolic reachability analysis. Two fundamental facts are at the basis of the
approach: the set of traces of a transition system can be covered by a set of event struc-
tures, and the use of relative timing allows to represent the timed domain of a system in
an efficient way.

Rather than calculating the exact timed state space, the verification approach performs
an off-line timing analysis on a set of event structures that covers the traces leading to
failure states. This timing analysis is efficiently performed by using McMillan and Dill’s
algorithm [MD92]. The resulting timing constraints are incorporated to the system in the
form of relative timing information along a series of iterative refinements of the original
untimed state space. Finally, if some of the traces leading to failure situations cannot be
proved to be timing-inconsistent, then the system is incorrect and the failure trace is a
counterexample.

The approach presented here, not only verifies the correctness of the system with respect
to a set of given safety properties, but also provides as back-annotation a set of timing
constraints sufficient to prove correctness. This information is crucial in frameworks in
which synthesis and verification are iteratively invoked to design systems that must meet
functional and non-functional constraints.

The key features of the verification approach can be summarized by:

m Relative timing allows to avoid the computation of the exact timed state space of
the system. Instead, the timed behavior of events is captured by means of partial
orders that represent simple facts, such as if an event happens before another.

m The timing analysis is performed locally for a set of failure traces that are covered
by an event structure. Therefore, only a subset of the events is involved and the
timing analysis can be carried out efficiently.
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m Because of the iterative nature of the approach, timing information is only consid-
ered in an on-demand basis, as long as it is required to prove the infeasibility in the
timed domain of a set of failure traces.

m The verification not only proves or disproves the correctness of the system with
respect to a set of safety properties. In case the system is correct the algorithm
provides the set of relative timing relations used for the proof, which can be used as
valuable back-annotation information. In case the system is incorrect, a counterex-

ample failure trace is provided.

Several issues remain open for future developments of the proposed verification ap-
proach. Among others:

m Although BDDs are a good data structure for the representation of symbolic boolean
information, they often suffer from a memory blow-up during the intermediate com-
putations, thus limiting the applicability of certain algorithms. Therefore, it would
be desirable to experiment with other data structures which provide similar benefits
than BDDs and allow better manipulation of bigger sets of states.

® Similarly, in order to reduce the memory requirements during the verification of big
systems, partial order techniques [GW91, Pel96, VdJL96, ABHT97, BJLY98] could
be combined with symbolic methods for state space representation and exploration.

» Incorporate symbolic algorithms for timing analysis (e.g. [AH99]), such that actual
delay values are not required for verification. Instead, the verification can be tuned

to discover the appropriate delays that make a system correct for a given property.

m CESs can model only conjunctive causality relations. However, the causality rela-
tions in a TS can be more general, involving disjunctive causality or combinations
of both. As a consequence, our approach may need several refinements in order to
cover the different causality relations among a set of events. Therefore, it would
be desirable to allow the CESs to incorporate other types of causality relations.
This would require to review the notions of enabling-compatibility, the way timing
analysis is carried out in a CES, the enabling-compatible product, etc.

m Another interesting feature to enrich the verification approach would be the possi-
bility to quantify the effectiveness of an enabling-compatible product before actually
performing it. This would allow to choose the best LzCESs at each iteration, so that
the biggest number of failure traces are pruned, or the least possible state splitting
is produced, etc.

m The back-annotation produced by the tool consists of a set of LzCESs that contain
the relative timing constraints used along the verification process. Some of those
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constraints may appear several times in different iterations, thus being redundant.
Therefore, it would be desirable to have a mechanism to summarize the set of timing
constraints and provide them in a more readable form to the user of the tool.



