
Chapter 3

Contact Uncertainty Analysis

This Chapter analyzes the sources of uncertainty that a�ect a planar assembly task and
their e�ect on the contact situations involving one or several basic contacts. The approach:

� makes the analysis in physical and con�guration space, taking into account
the dependence between the sources of uncertainty and considering possible
complementary contact situations,

� presents a contact identi�cation procedure which uses the nominal C 0-space,
� introduces a method to reduce uncertainty and to adapt the motion commands during
the task execution,

� includes a force analysis.

3.1 Sources of uncertainty

Modelling and sensing uncertainties a�ect the task planning and execution. The nominal
model of a task is the description of the nominal objects involved in the task, and the
speci�cation of their nominal initial and goal con�gurations. Modelling uncertainties
include deviations of the shape and size of the objects and the uncertainty in their
positioning. Sensing uncertainties deal with the uncertainty in the sensory information of
con�guration and force.

The manipulation and fusion of the sources of uncertainty a�ecting the geometry of
the task has been done following di�erent approaches like, for instance, verifying the
assemblability by propagating tolerances [10, 67, 68], extending the degrees of freedom of
the Con�guration Space [33], mapping the real world uncertainty into the Con�guration
Space [5] or considering probabilities [35].

In this work uncertainties are propagated considering the worst case for each uncertainty
source in order to cover all the real possible cases. For three degrees of freedom the
di�erent sources of uncertainty are classi�ed below. Figure 3.1 illustrates the sources of
uncertainty that a�ect the geometry of the task.
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Figure 3.1: Sources of uncertainty that a�ect the geometry of the task.

3.1.1 Modelling uncertainty

a) Manufacturing tolerances of object shape and size.

There exist several approaches dealing with homogeneous speci�cation of tolerances;
typically they are based on the nominal object description [82, 9] and, in some cases,
they also consider the assembly context [35, 56, 55, 19, 114].

In the proposed approach, each object vertex is constrained to be inside a circle of radius �t
centered on its nominal position. Let (vx0; vy0) and (vx; vy) be the nominal and the actual
vertex position in the object reference system, respectively. Then:

k(vx; vy)� (vx0; vy0)k � �t (3.1)

�t will be expressed as �ts and �tm to distinguish between the tolerances of the static objects
and those of the manipulated object. The e�ect of manufacturing tolerances is a possible
change in the shape and size of the object that may allow a set of contact situations
di�erent from the nominal ones (i.e. the ones allowed by the nominal geometry). Those
that can only appear due to the deviations from the nominal geometry will be called
complementary contact situations. Figure 3.2 shows a complementary contact situation
due to the e�ect of the manufacturing tolerances.

b) Imprecision in the positioning of the static objects.

It depends on how the objects are positioned in the work environment. A reasonable
assumption is that the static objects are placed in the workspace by feeders in such a way
that each object vertex lies inside a circle of radius �s centered on its nominal position.
Let (ax0; ay0) and (ax; ay) be the nominal and the actual vertex position in the world
reference system, respectively. Then:

k(ax; ay)� (ax0; ay0)k � �s (3.2)
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Figure 3.2: Complementary contact situation due to the manufacturing tolerances of the
static object (for clarity the manipulated object has been drawn without tolerances).

�s depends on �ts and on the feeder error but, since the positioning operation can reduce
the uncertainty, it can be regarded as a source itself. When there is more than one static
object in the work environment, the imprecision in the positioning of the objects can give
rise to complementary contact situations as it is shown in Figure 3.3.

c) Imprecision in the positioning of the object in the robot gripper.

The position of the vertices of the manipulated object depends on the uncertainties from
sources (a), (b), plus the imprecision in the position and orientation of the robot (source
(d) in Section 3.1.2) and undesired slippings of the object in the gripper; nevertheless,
since the grasping operation can reduce these uncertainties [79], it can be regarded as a
source itself.

It is assumed that each object vertex lies inside a circle of radius �m centered on its nominal
position. Let (hx0; hy0) and (hx; hy) be the nominal and the actual vertex position in the
gripper reference system, respectively. Then:

k(hx; hy)� (hx0; hy0)k � �m (3.3)

3.1.2 Sensing uncertainty

d) Imprecision in the position and orientation of the robot.

There are several works dealing with this source of uncertainty, the main topics tackled
being the origin of the uncertainty [27, 61] and the resulting uncertainty at the robot
end-e�ector considering the robot kinematics [8, 78].
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Figure 3.3: Complementary contact situation due to the imprecision in the positioning of
the static objects.

In the proposed approach the worst case uncertainty at the robot end-e�ector is
considered, since this is normally the way in which the robot manufacturers specify
the robot precision. Let (xo; yo; �o) and (xr; yr; �r) be the observed and the actual
con�guration of the robot, i.e. the position and orientation of the gripper reference system
with respect to the world reference system. The actual position is constrained to be inside
a circle of radius �pr centered at the observed position; and the actual orientation has a
maximum deviation ��r with respect to the observed one:

k(xr; yr)� (xo; yo)k � �pr (3.4)

j�r � �oj � ��r (3.5)

Let �om and �oM be de�ned as:

�om = �o � ��r (3.6)

�oM = �o + ��r (3.7)

Then, equation (3.5) will be rewritten as:

�r 2 [�om ; �oM ] (3.8)

e) Imprecision of the force/torque sensor. Since typical force/torque sensors provide
each component value with a speci�ed resolution, its uncertainty can be modelled for three
degrees of freedom considering that the components, fx, fy and fq, of the generalized
force ~g (Section 2.8) have independent maximum deviations �fx, �fy and �fq , respectively.
In the tridimensional force space this is equivalent to an uncertainty rectangular



3.2. ANALYSIS IN PHYSICAL SPACE 63

Ug

fx

fy

fq
2�fy

2�fq

2�fx~g

Figure 3.4: Force uncertainty parallelepiped Ug.

parallelepiped Ug centered in the observed generalized force ~go = [fxo fyo fqo]T and with
sides having a length of 2�fx, 2�fy and 2�fq (Figure 3.4):

kfx � fxok � �fx (3.9)

kfy � fyok � �fy (3.10)

kfq � fqok � �fq (3.11)

3.2 Analysis in physical space

This section studies how modelling and sensing uncertainties a�ect the position and
orientation of the contact edge and the position of the contact vertex. Let �v and �tv
be the uncertainty in the position of the the contact vertex due to the imprecision in the
positioning of the objects and to the manufacturing tolerances, respectively. Let �e and
�te be de�ned in a similar way for the vertices of the contact edge. Then, for type-A basic
contacts:

�v = �s

�tv = �ts
�e = �m

�te = �tm (3.12)

And for type-B basic contacts:

�v = �m

�tv = �tm
�e = �s

�te = �ts (3.13)
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3.2.1 Modelling uncertainty on the contact edge

The contact edge, e, must satisfy two conditions, that constrain its position and
orientation according to uncertainty:

Condition 1: The extremes of e must lie inside uncertainty circles of radius �e centered
on the nominal position of the extremes of the nominal edge.

Condition 2: The length l of e must satisfy l 2 [l0� 2�te ; l0+2�te ], l0 being its nominal
length.

Let � be the deviation in the orientation of e with respect to its nominal orientation. It
is assumed that j�j < �=2.

Proposition 1: The maximum value �max of j�j is:

�max =

8><>:
arcsin( �e

l0=2
) if (l0 �

q
l20 � 4�2e)=2 � �te � �e

2 arcsin(

r
�2e��

2

te

l0(l0�2�te )
) otherwise

(3.14)

Proof: The maximum possible deviation in the orientation of e occurs when the edge is
tangent to the uncertainty circles of its vertices (Figure 3.5a). Then, the length of the

actual edge is l =
q
l20 � 4�2e and the maximum deviation is determined by the expression

�max = arcsin( �e
l0=2

). For a given �e, this maximum orientation is reachable only if the
minimum possible length of the edge, l0 � 2�te, satis�es l0 � 2�te � l. This condition
can be rewritten to show that this maximum orientation is reachable when the maximum
deviation �te lies in the range (l0 �

q
l20 � 4�2e)=2 � �te � �e.

When this is not satis�ed, i.e. 0 � �te � (l0 �
q
l20 � 4�2e)=2, the maximum deviation is

reached for the minimum possible length of the edge, i.e. l0 � 2�te. The expression of the
maximum deviation is obtained by using the cosinus theorem (Figure 3.5b):

�2e =

 
l0
2

!2

+

 
l0 � 2�te

2

!2

� 2

 
l0
2

! 
l0 � 2�te

2

!
cos �max (3.15)

and the trigonometric expression cos� = 1� 2 sin2 �
2
. As a result:

�max = 2arcsin(

vuut �2e � �2te
l0(l0 � 2�te)

) (3.16)

If �te = 0, like in Figure 3.5b, this expression becomes:

�max = 2arcsin(�e=l0) (3.17)

�
Corollary 1: For a given deviation �, the range of orientations of the manipulated
object that may produce contact is [�m + �; �M + �], being [�m; �M ] the nominal range
of contact orientations.
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Figure 3.5: The maximum deviation in the orientation of the contact edge.

Let Va = (vax; vay) and Vb = (vbx; vby) be the vertices of e such that Va is �rst encountered
when the border of the object is followed counterclockwise. Let  be the orientation of the
outward normal of e and va0 = (vax0; vay0) and vb0 = (vbx0 ; vby0) be the nominal positions
of Va and Vb, respectively. Let �nally C(x; y; r) be a circle of radius r centered on (x; y).

Proposition 2: The region R(e; Va; �) where the vertex Va of e lies for a given
deviation � is:

R(e; Va; �) = C(vax0; vay0; �e)\
[

8l2[l0�2�te ;l0+2�te ]

C(vbx0� l sin( +�); vby0+ l cos( +�); �e)
(3.18)

Proof: From condition 1 Va satis�es:

Va 2 C(vax0; vay0; �e) (3.19)

From condition 2 Va satis�es:

Va 2
[

8l2[l0�2�te ;l0+2�te ]

C(vbx0 � l sin( + �); vby0 + l cos( + �); �e) (3.20)

Then, R(e; Va; �) is the intersection of the circle of equation (3.19) and the reunion of
circles of equation (3.20). �
A similar reasoning can be done for vertex Vb. RegionR(e; Va; �) is illustrated in Figure 3.6
for two di�erent values of �te .

Corollary 2.1: R(e; v; �1) � R(e; v; �2) if j�1j > j�2j and �1�2 � 0.

Corollary 2.2: The border of R(e; Va; �) has two arcs a1 and a2 (Figure 3.6a) of the
circles de�ned by (3.20) corresponding to the maximum and minimum possible lengths of
e, respectively, if 2�te < �e.
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Figure 3.6: Region R(e; Va; �) for di�erent values of �te.

Proposition 3: The region E(�) that contain all the possible realizations of e for a given
deviation � in its orientation is the positive linear combination of the regions R(e; Va; �)
and R(e; Vb; �).

Proof: The vertices Va and Vb of any realization of e are inside the regions R(e; Va; �)
and R(e; Vb; �), respectively, and any point of e can be expressed as a positive linear
combination of Va and Vb. �
Figure 3.7 shows the region E(�) for two di�erent deviations in the orientation of e for
some given values of �e and �te.

E(�) can be partitioned into three disjoint �gures Lr(�), LVa(�) and LVb(�), as shown in
Figure 3.8a, being Lr(�) the rectangle of maximum area inscribed in E(�) with two of its
sides over the parallel sides of the border of E(�). The width, d(�), and length, l(�), of
the rectangle Lr(�) decrease with � in the following way:

d(�) = 2(�e � l0
2
j sin�j) (3.21)

l(�) = l0 cos� (3.22)

Let L(�) be the geometric �gure obtained from LVa(�) and LVb(�) as shown in Figure 3.8b.
L(�) will be used in Section 3.3.4 to compute the e�ect of uncertainty on the contact
con�gurations. The center (cx; cy) of the maximum inscribed circle will be considered the
center of L(�). If � = 0 region L(�) is a circle:

L(0) = C(cx; cy; �e) (3.23)

Corollary 3: The larger the deviation in the orientation the smaller E(�), since the area
of Lr(�) decreases with �.



3.2. ANALYSIS IN PHYSICAL SPACE 67

�e
2�te

�e
2�te

E(�2)E(�1)

Figure 3.7: Region E(�) of possible positions of the contact edge for two deviations in its
orientation.

3.2.2 Modelling uncertainty on the contact vertex

The vertices of the manipulated object lie inside uncertainty circles of radius �v centered on
their nominal positions. Nevertheless, the position of the vertices depend on the deviation
in the orientation of the adjacent edges. Let V = (vx; vy) be the contact vertex and em
and eM be its adjacent edges, such that em is �rst encountered when the border of the
object is followed clockwise. Let also �m and �M be the deviations in the orientations of
em and eM , respectively.

Proposition 4: The region V(�m; �M ) where the contact vertex lies is:

V(�m; �M ) = R(em; V; �m) \R(eM ; V; �M ) (3.24)

Proof: From corollary 2.1 the region where V lies for any �m and �M is expressed by
equation (3.24), since:

� R(em; V; �m) is the region where V lies for a given deviation �m when �M = 0, and

� R(eM ; V; �M ) is the region where V lies for a given deviation �M when �m = 0.

�
Corollary 4.1: If �m = 0 and �M = 0, then:

V(0; 0) = C(vx; vy; �v) (3.25)

since

R(em; V; 0) = C(vx; vy; �v)

R(eM ; V; 0) = C(vx; vy; �v) (3.26)
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Figure 3.8: a) Partition of E(�) into three disjoint regions Lr(�), LVa(�) and LVb(�)
b) Geometric �gure L(�).

Corollary 4.2: For a given pair of deviations �m, �M , the range of orientations of the
manipulated object that may produce contact is [�m � �m; �M � �M ], being [�m; �M ] the
nominal range of contact orientations.

Corollary 4.3: The maximum values �mmax
and �Mmax

of j�mj and j�M j, respectively,
have an expression analogous to that of the maximum value �max of j�j computed in
proposition 1.

Figures 3.9a and 3.9b show the regions R(em; V; �m) and R(eM ; V; �M ), respectively.

3.2.3 Sensing uncertainty

The sensing uncertainty in the robot position is expressed in equation (3.4). Its e�ect on
the position of the topological element of the contact corresponding to the manipulated
object is the following:

� type-A: The region where the contact edge lies is E(�) convolved with a circle of
radius �pr .

� type-B: The region where the contact vertex lies is V(�m; �M ) convolved with a circle
of radius �pr .

These regions will be approximated by E(�) and V(�m; �M ), respectively, computed with
a larger uncertainty radius:

� type-A: �e = �m + �pr

� type-B: �v = �m + �pr
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Figure 3.9: a) Region R(em; V; �M ) b) Region R(eM ; V; �m).

Figure 3.10 shows the additional region introduced by this approximation.

The sensing uncertainty in the robot orientation is expressed in equation (3.8). Its e�ect
is not directly considered in the position and orientation of the topological elements of
the contact, but by explicitly considering the range where the actual orientation lies, as
expressed in the following de�nition.

De�nition: The observed con�guration co is compatible with the occurrence of contact i
i� this can take place at one or more orientations of the range [�om ; �oM ].

3.3 One basic contact situations

3.3.1 Nominal contact condition

Let Fi be the C-face representing the nominal contact con�gurations for a given basic
contact i between a vertex Vi and an edge ei, and let co = (xo; yo; �o) be the observed
con�guration.

The nominal contact condition for contact i can be expressed in physical space, in C-space
and in C 0-space in the following way, respectively:

Vi \ ei 6= ; (3.27)

co \ Fi 6= ; (3.28)

(xo; yo) \ f 0i(�o) 6= ; (3.29)

The contact condition is satis�ed if �o 2 Ri
�, i.e. �o 2 Ri

� is a necessary condition for
contact i to take place.
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Figure 3.10: Additional region introduced by approximating the convolution region by the
uncertainty regions computed with radius �m + �pr.

3.3.2 Contact condition in the presence of uncertainty

The e�ect of the uncertainty in the contact con�gurations is tackled as follows:

� The nominal C-space is used to determine if a observed con�guration is a contact
con�guration.

� A set of con�gurations is associated to co and to each basic contact i such that
contact i can take place i� this set intersects Fi.

Proposition 5: There exists an orientation �io 2 [�om ; �oM ] such that co is compatible
with the occurrence of contact i i� this can take place at �io.

The proof is found in Section 3.3.3.

The contact condition in the presence of uncertainty is expressed in physical space by the
following proposition.

Proposition 6: A basic contact can take place i� for orientation �io:

V(�m; �M ) \E(�) 6= ; (3.30)

for some values of the deviations �m, �M and �.

Proof: A point pi satisfying pi 2 [V(�m; �M ) \ E(�)] simultaneously satis�es pi 2
V(�m; �M ) and pi 2 E(�). Therefore, it can simultaneously be a position where the
contact vertex can lie and a position where a point of the contact edge can lie, i.e. a
position where equation (3.27) is satis�ed, and hence a position where the basic contact
can take place. �
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Proposition 7: The condition

�io 2 [�im � �m + �; �iM � �M + �] (3.31)

is a necessary condition for contact i to take place.

Proof: A contact is possible if the actual orientation of the robot lies inside the
corresponding range of contact orientations. From corollaries 1 and 4.2, the range of
nominal contact orientations is shifted by the deviations �, �m and �M . Considering all
of them gives rise to expression (3.31). �
Corollary 7.1: From corollary 2.1 it follows that:

L(�1) � L(�2) if j�1j > j�2j
V(�m1; �M ) � V(�m2; �M ) if j�m1j > j�m2j
V(�m; �M1) � V(�m; �M2) if j�M1j > j�M2j

(3.32)

Therefore, the uncertainty in the position of the topological elements of the contact for
all the possible values of the deviations can be taken into account by only considering the
uncertainty region de�ned by the deviations with minimum absolute value.

Corollary 7.2: If �i
� is de�ned as:

�i
� =

8><>:
0 if �io 2 [�im; �

i
M ]

�io � �im if �io < �im
�io � �iM if �io > �iM

(3.33)

then, proposition 7 can be rewritten as:

� � �M � �i
� if �io > �iM

� � �m � �i
� if �io < �im

(3.34)

i.e. a contact can take place if the deviations in the orientations of the edges is enough
to cover the orientation gap �i

�.

From corollaries 7.1 and 7.2, the following values of the deviations will be considered for
the analysis of the contact con�gurations:

a) �io > �iM :

�m = 0

� � �M = �i
� (3.35)

The contact is possible for some given pairs (�; �M) and for any value of �m
(Figure 3.11a). Therefore, V(�m; �M ) = V(0; �M ) = R(eM ; V; �M ).

b) �io < �im:

�M = 0

� � �m = �i
� (3.36)

The contact is possible for some given pairs (�; �m), and for any value of �M
(Figure 3.11b). Therefore, V(�m; �M ) = V(�m; 0) = R(em; V; �m).
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c) �io 2 Ri
�:

�m = 0

�M = 0

� = 0 (3.37)

The contact is possible for any value of the deviations. Therefore, the contact vertex
and the vertices of the contact edge can lie anywhere within their uncertainty circles
as expressed in equations (3.23) and (3.25).

Let � be de�ned as:

� =

(
�m if �io < �m
�M if �io > �M

(3.38)

For a given basic contact i, the contact condition of equation (3.30) will be tested using the
nominal C-space by associating to co a set of con�gurations Ui(�; �) such that contact i
can take place i� Ui(�; �) interects Fi. Ui(�; �) will be called Contact Position Region.
Therefore, proposition 8 follows.

Proposition 8: When equation (3.30) is satis�ed, the Contact Position Region Ui(�; �)
satis�es:

Ui(�; �) \ f 0i(�it) 6= ; (3.39)

where �it is de�ned as:

�it = �io +�i
� (3.40)

Corollary 8.1: Proposition 8 can be rewritten as:

Ui(0; 0) \ f 0i(�io) 6= ; if �io 2 [�im; �
i
M ]

Ui(�M ; �) \ f 0i(�iM) 6= ; if �io > �iM with � � �M = �i
�

Ui(�m; �) \ f 0i(�im) 6= ; if �io < �im with � � �m = �i
�

(3.41)

Corollary 8.2: Contact i can take place for an observed con�guration co i�
equation (3.39) is satis�ed for a given set of values � and �.

De�nition: The Contact Position Domain Ui(�i
�) is the union of the Contact Position

Regions Ui(�; �) for all the pairs of deviations � and � satisfying � � � = �i
�:

Ui(�i
�) =

[
8�;�j���=�i

�

Ui(�; �) (3.42)

Proposition 9: If equation (3.30) is satis�ed for some given values � and �, the Contact
Position Domain satis�es:

Ui(�i
�) \ f 0i(�it) 6= ; (3.43)
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Figure 3.11: Di�erent values of �m, �M and � that satisfy equation (3.31) for orientations
(a) �io > �M and (b) �io < �m.
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Corollary 9: Contact i can take place for a observed con�guration co i� equation (3.43)
is satis�ed.

3.3.3 The orientation �io

By proposition 5, the test to verify if co is compatible with the occurrence of contact i is
performed at only one orientation. This Section gives the proof of this proposition and
the procedure to compute this orientation.

Proposition 5: There exists an orientation �io 2 [�om ; �oM ] such that co is compatible
with the occurrence of contact i i� this can take place at �io.

Proof: Let dp(�) be the distance from the observed position (xo; yo) to the line
containing f 0(�), with � 2 Ri

�:

dp(�) = jDp(�)�Df (�)j (3.44)

where (Figure 3.12a):

� Dp(�) is the distance from the origin of fWg to the observed position (xo; yo) in
the direction  W (for type-A basic contacts  W =  T + �+ � and for type-B basic
contacts  W is independent of �):

Dp(�) = xo cos W + yo sin W (3.45)

� Df (�) is the distance from the origin of fWg to the line containing f 0(�), as de�ned
in equations (2.4) and (2.5) for type A and type B basic contacts, respectively.

The distance dp is minimum at one or two orientations of the range [�om ; �oM ]. Let �
i
o be

one of these orientations. Then:

� If the contact can take place at orientation �io then co is compatible with the
occurrence of contact i, since �io 2 [�om ; �oM ].

� If co is compatible with the occurrence of contact i, i.e. (3.43) is satis�ed for an
orientation � 2 [�om ; �oM ], then (3.43) is also satis�ed for orientation �io, since for
this orientation the observed position is closest to the nominal contact positions. �

Computing �io

Let introduce:

�l : orientation such that dp(�l) = 0.
@dp

@�
: the derivate of dp with respect to �.

�h : orientation such that @dp
@�

�����
�h

= 0.
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Figure 3.12: Orientation �io for a type-B basic contact: (a) �io = �om (b) �io = �l (c)
�io = �h (d) �io = �oM .
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For type-A basic contacts:

�l = � T � � + 2arctan(
(xi � xo)�

q
(xi � xo)2 + (yi � yo)2 � d2T

�(yi � yo) + dT
) (3.46)

@dp
@�

=

(
(xi � xo) sin( T + �+ �) � (yi � yo) cos( T + �+ �) if Dp(�) � Df (�)

�(xi � xo) sin( T + �+ �) + (yi � yo) cos( T + �+ �) if Dp(�) < Df (�)
(3.47)

�h = arctan(
yi � yo
xi � xo

)� k� �  T with k = f0; 1g (3.48)

For type-B basic contacts:

�l =  W + � � i � arccos(
xo cos w + yo sin W

hi
) (3.49)

@dp
@�

=

( �h sin( W + � � i � �) if Dp(�) � Df (�)
h sin( W + � � i � �) if Dp(�) < Df (�)

(3.50)

�h =  W + k� � i with k = f0; 1g (3.51)

If jxo cos w+yo sin W
hi

j > 1 then �l does not exist, otherwise there are two possible values. If
both of them satisfy �l 2 [�om ; �oM ] then one of them is arbitrarily chosen.

The algorithm to compute �io is as follows (Figure 3.12):

Find-orientation(co; i)

IF [�om; �oM ] \Ri
� = ; RETURN the extreme of [�om; �oM ] closest to Ri

�

ELSE

Compute �l

IF �l 2 [�om ; �oM ] RETURN �l

ELSE:

Compute sm = @dp
@�

�����
�om

and sM = @dp
@�

�����
�oM

IF sm > 0 and sM > 0 RETURN �om

IF sm < 0 and sM < 0 RETURN �oM

IF sm < 0 and sM > 0 THEN

Compute �h

RETURN �h

IF sm > 0 and sM < 0

Compute �h

IF �o > �h RETURN �oM

ELSE RETURN �om

END
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�v
�e+�v

Ui(�; �)

f 0(�o)

�s

Figure 3.13: Contact Position Region Ui(�; �) when �io 2 Ri
�.

3.3.4 Construction of the Contact Position Region

The Contact Position Region:

a) Is a circle of radius (�e + �v + �pr) centered at the observed position (Figure 3.13)
when �io 2 Ri

�, since � = � = 0 and the contact vertex and the vertices of the contact
edge can lie anywhere within their uncertainty circles.

b) Is a region that intersects f 0(�m) or f 0(�M) when the contact can take place at an
orientation �io 62 Ri

� (equation (3.41)).

Let V(�) be de�ned as follows:

V(�) =

(
V(�; 0) if �io < �im
V(0; �) if �io > �iM

(3.52)

Let Po = (Pox; Poy) be the center of U
i(�; �) which is obtained from (xo; yo) by:

(a) Rotating an angle � around the center (xv; yv) of the edge adjacent to the contact
vertex:

x0o = xv + (xo � xv) cos�� (yo � yv) sin�

y0o = yv + (xo � xv) sin�+ (yo � yv) cos� (3.53)

(b) Rotating an angle �� around the center (xe; ye) of the contact edge:

x00o = xe + (x0o � xe) cos(��)� (y0o � ye) sin(��)
y00o = ye + (x0o � xe) sin(��) + (y0o � ye) cos(��) (3.54)
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(c) Translating, in the direction of the nominal contact edge, a distance t:

t =

(
lo(1� cos �) if (cos ; sin )(xo � xe; yo � ye) > 0
�lo(1� cos �) otherwise

(3.55)

 being the orientation normal to the nominal contact edge:

Pox = x00o + d cos( + �=2)

Pox = y00o + d sin( + �=2) (3.56)

Then, the algorithm to compute the Contact Position Region is the following:

Ui(�; �)-construction(co)

IF �io 2 Ri
� THEN Ui(�; �) = C(xo; yo; �e + �v).

ELSE

(1) Rotate L(�) and V(�) an angle �� around their respective centers.

(2) Find the convolution region of the regions obtained in the previous step.

(3) Center the obtained region at Po.

END

The border of the convolution region of step (2) is obtained when the center of one
�gure traverse the border of the other. This border can be described by up to �ve
arcs of circumferences and two straight segments, as detailed below, if the following
approximations are done:

� R(e; V; �) is computed considering that the condition of corollary 2.2 is not satis�ed,
and therefore the border of R(e; V; �) does not have the arcs a1 and a2. As a
consequence, the shape of L(�) is always that of Figure 3.14a.

� The region where the topological element of the contact corresponding to the
manipulated object lies is approximated by (Section 3.2.3):

type-A : Region L(�) computed with �e = �m + �pr

type-B : Region V(�) computed with �v = �m + �pr

The following nomenclature is used (Figure 3.14):

� The border of region L(�) is composed of two arcs and two straight segments, as in
Figure 3.14a, which are described by the following variables:

le: length of the contact edge

 : orientation of the normal to the contact edge

re = �e � (le=2)j sin�j, radius of the maximum inscribed circumference

e = arccos((2re � �e)=�e)

and the following points of L(�) described with respect to its center, P�, once L(�)
has been rotated an angle �� around it:
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L(�)
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�e = �s
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F
e
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�
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�v = �m+�pr

(xo; yo)

�pr

 

v

A

B�v
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V(�)

�
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P�

Figure 3.14: a) Region L(�) and V(�), where the uncertainty �pr in the position of the
robot is taken into account in �v, since it is a type-B basic contact b) Regions L(�) and
V(�) rotated �� around the respective centers.
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D = ((�e � re) cos ; (�e � re) sin )

E = (�(�e � re) cos ;�(�e � re) sin )

F = (Dx + �e cos(e +  ); Dy + �e sin(e +  ))

G = (Ex + �e cos(� + e +  ); Ey + �e sin(� + e +  ))

� Region V(�) is described by the following variables:

lv: length of the edge adjacent to the contact vertex

rv = �v � (lv=2)j sin(��)j, radius of the maximum inscribed circumference.

v = arccos((2rv � �v)=�v)

and the following points with respect of the center, P�, once L(�) has been rotated
an angle �� around it:

C = ((�v � rv) cos ; (�v � rv) sin )

A = (Cx + �v cos(v +  ); Cy + �v sin(v +  ))

B = (Cx + �v cos(�v +  ); Cy + �v sin(�v +  ))

Then, the border of Ui(�; �) is composed of the following arcs (Figure 3.15a), described
with respect to its center Po:

arc a: center: C 0
a = A+D

C 00
a = F + C

if
�!

CbC 0
a �

�!

CbC 00
a< 0 then Ca = C 0

a else Ca = C 00
a

radius: Ra = �e if Ca = C 0
a else Ra = �v

limits: [e +  ; arctan(Cb � Ca) +  ]

arc b: center: Cb = E + C
radius: Rb = �e + �v
limits: [arctan(Cb � Ca) +  ; � +  ]

arc c: center: Cc = G+ C
radius: Rc = �v
limits: [� +  ; arctan(Cd � Cc) +  ]

arc d: center: Cd = E + C
radius: Rd = �e + �v
limits: [arctan(Cd � Cc) +  ; arctan(Cd � Ce) +  ]

The arc does not exist if
�!

CdCc �
�!

CdCe< 0

arc e: center: Ce = B + E
radius: Re = �e
limits: [arctan(Cd � Ce) +  ; 2� +  ]

Figure 3.16 shows the obtained region Ui(�; �) for two di�erent pairs of values of � and �.
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Figure 3.15: a) Arcs that compose the border of Ui(�; �) b) Bounding box Box(Ui(�; �))
that approximates Ui(�; �).
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Figure 3.16: Contact Position Region Ui(�; �) when �io > �M , for two di�erent pair of
values (�; �).
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Bounding box

In order to simplify the contact identi�cation algorithm (Section 3.3.6), an oriented
bounding box Box(Ui(�; �)) is computed. The sides of the oriented bounding box are:

r = 2(re + rv) = �e � (le=2)j sin�j + �v � (lv=2)j sin(��)j (3.57)

and
d = 2(de + dv) (3.58)

where de and dv are de�ned as follows:

de =

(
�e sin e if re < �e=2
�e otherwise

(3.59)

dv =

(
�v sin v if rv < �v=2
�v otherwise

(3.60)

The vertices of Box(Ui(�; �)) with respect to Po are (Figure 3.15b):

V1 = (�d sin + r cos ; d cos  + r sin )

V2 = (�d sin � r cos ; d cos  � r sin )

V3 = (d sin � r cos ;�d cos  � r sin )

V4 = (d sin + r cos ;�d cos  + r sin ) (3.61)

In the worst case the area of Box(Ui(�; �)) is a 27% bigger than the area of Ui(�; �).
This can be shown by computing the areas when � = � = 0, since for these values
the di�erence is maximum. Ui(0; 0) is a circle of radius (�v + �e) and the corresponding
bounding box is a square of sides 2(�v + �e). Let AU and AB be the areas of Ui(�; �) and
of Box(Ui(�; �)), respectively:

AU = �(�v + �e)
2

AB = 4(�v + �e)
2 (3.62)

Then:
AB � AU

AU
= 27% (3.63)

Let Drm and DrM be the distances from the origin of fWg to the sides of Box(Ui(�; �))
that are parallel to the contact edge, and Ddm and DdM be the distances from the origin
of fWg to the sides of Box(Ui(�; �)) that are perpendicular to the contact edge:

Drm = Pox cos( ) + Poy sin( )� r

DrM = Pox cos( ) + Poy sin( ) + r

Ddm = Pox cos( + �=2) + Poy sin( + �=2)� d

DdM = Pox cos( + �=2) + Poy sin( + �=2) + d (3.64)

where (Pox; Poy) is the center of Ui(�; �) de�ned in (3.56). These distances will be used
to compute the bounding box of the Contact Position Domain.
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3.3.5 Construction of the Contact Position Domain

The Contact Position Domain:

a) Is a circle of radius (�e + �v + �pr) centered at the observed position (Figure 3.13)
when �io 2 Ri

�, since �
i
� = 0.

b) Can be represented, when �io 62 Ri
�, as the union of only a �nite set of Contact Position

Regions, in order to avoid the complexity of �nding the border of the union of all the
Contact Position Regions satisfying � � � = �i

� (equation (3.42)). The number of
Contact Position Regions considered is such that the deviation in orientation between
them is an order of magnitude less than the error in the orientation of the robot, i.e.
j�i � �i+1j < ��r=10.

The algorithm to compute the Contact Position Domain is the following:

Ui(�i
�)-construction(co)

IF �io 2 Ri
� THEN Ui(�; �) = C(xo; yo; �e + �v).

ELSE

Compute �max and �max, the maximum possible values of � and � from (3.14)

�min = j�i
�j � �max

�min = j�i
�j � �max

�� = �max � �min

�� = �max � �min

� = ��r=10

n = TRUNC(
min(j�i

�
j;��;��)

�
+ 1)

Ui(�i
�) = ;

FOR k=1 TO n

�k = �min + k��=(n� 1)

�k = �i
� + �

Ui(�i
�) = Ui(�i

�) [Ui(�k; �k)

END

Figure 3.17 shows the approximation of Ui(�i
�) for three di�erent orientations

satisfying �io < �im.

Bounding box

An oriented bounding box, Box(Ui(�i
�)), can also be computed for Ui(�i

�) in order to
simplify the contact identi�cation algorithm. The sides of Box(Ui(�i

�)) are computed
by �nding the boxes Box(Ui(�; �)) whose sides are at a maximum or minimum distance
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n = 25
�� = 0:2269
�� = 0:2139
�� = 0:2819

n = 11
�� = 0:4161
�� = 0:0927
�� = 0:0927

n = 5
�� = 0:0377
�� = 0:2136
�� = 0:2953

Figure 3.17: Approximation of Ui(�i
�) by the reunion of Ui(�; �) for a �nite set of pairs

(�; �), for three di�erent orientations satisfying �io < �im.

from the origin of fWg. Let:

� �rm be the value of � such that Drm is minimum

� �rM be the value of � such that DrM is maximum

� �dm be the value of � such that Ddm is minimum

� �dM be the value of � such that DdM is maximum

where Drm, DrM , Ddm and DdM where de�ned in (3.64). To compute these values of �,
the derivates with respect to � of the distances expressed in (3.64) must be computed.
Taking into account that:

� (xe; ye) is the center of the contact edge

� (xv; yv) is the center of the adjacent edge of the contact vertex used to compute the
center Po of Ui(�i

�)

� Po is expressed in equation (3.56)

� r is expressed in equation (3.57)

� sign(�) = j�j

�
if � 6= 0 and sign(�) = 1 otherwise

� � can be expressed as � = � ��i
�

� the value of d expressed in (3.58) is approximated by d = �e + �v
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then, the expressions of the derivates are the following:
@Drm

@�
= (yv � ye) cos( + �)� (xv � xe) sin( + �) + sign(�)(

le

2
cos(�)�

le

2
sin(� ��i

�))(3.65)

@DrM

@�
= (yv � ye) cos( + �)� (xv � xe) sin( + �)� sign(�)(

le

2
cos(�) +

le

2
sin(� ��i

�))(3.66)

@Ddm

@�
= �(yv � ye) sin( + �)� (xv � xe) cos( + �) (3.67)

@DdM

@�
=

@Ddm

@�
(3.68)

Let D0 be @D
@�
, and let �m and �M be the minimum and maximum possible values of �

for a given �i
�:

if �i
� � 0

8>>>><>>>>:
�M =

(
�i
� if �max > �i

�

�max otherwise

�m =

(
0 if �max > �i

�

�i
� � �max otherwise

if �i
� < 0

8>>>><>>>>:
�M =

(
0 if �max > ��i

�

�i
� + �max otherwise

�m =

(
�i
� if �max > ��i

�

��max otherwise

where �max and �max are the maximum values of j�j and j�j, respectively, as computed
in proposition 1 and corollary 4.3.

Then, the expressions of �rm, �rM , �dm and �dM are equal to:

� �m or �M when the derivates of the distances evaluated at these extreme values have
the same sign,

� the value that satis�es D0 = 0, otherwise.

�rm =

8>>><>>>:
�m if D0

rm(�m) > 0 and D0
rm(�M ) > 0

�M if D0
rm(�m) < 0 and D0

rm(�M) < 0

arctan(
2(yv�ye) cos( )�2(xv�xe) sin( )+sign(�)(le�lv sin(�i

�
))

2(yv�ye) sin( )+2(xv�xe) cos( )+sign(�)lv sin(�i
�
)

) , otherwise
(3.69)

�rM =

8>>><>>>:
�M if D0

rM(�m) > 0 and D0
rM(�M ) > 0

�m if D0
rM (�m) < 0 and D0

rM(�M) < 0

arctan(
2(yv�ye) cos( )�2(xv�xe) sin( )�sign(�)(le�lv sin(�i

�
))

2(yv�ye) sin( )+2(xv�xe) cos( )�sign(�)lv sin(�i
�
)

) , otherwise
(3.70)

�dm =

8><>:
�M if D0

dm(�m) > 0 and D0
dm(�M) > 0

�m if D0
dm(�m) < 0 and D0

dm(�M) < 0
� � arctan(xv�xe

yv�ye
) , otherwise

(3.71)

�dM =

8><>:
�m if D0

dM(�m) > 0 and D0
dM(�M ) > 0

�M if D0
dM(�m) < 0 and D0

dM(�M) < 0
� � arctan(xv�xe

yv�ye
) , otherwise

(3.72)
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Figure 3.18: Box(Ui(�i
�)).

Once these values of � have been obtained, the lines that contain the sides of Box(Ui(�i
�))

can be expressed as:

x cos( ) + y sin = xrm cos + yrm sin (3.73)

x cos( ) + y sin = xrM cos + yrM sin (3.74)

x cos( + �=2) + y sin( + �=2) = xdm cos( + �=2) + ydm sin( + �=2) (3.75)

x cos( + �=2) + y sin( + �=2) = xdM cos( + �=2) + ydM sin( + �=2) (3.76)

where (Figure 3.18):

Prm = (xrm; yrm)

(
xrm = Pox(�rm)� r(�rm) cos 
yrm = Poy(�rm)� r(�rm) sin 

(3.77)

PrM = (xrM ; yrM )

(
xrM = Pox(�rM) + r(�rM) cos 
yrM = Poy(�rM) + r(�rM) sin 

(3.78)

Pdm = (xdm; ydm)

(
xdm = Pox(�rm)� d cos( + �=2)
ydm = Poy(�rm)� d sin( + �=2)

(3.79)

PdM = (xdM ; ydM )

(
xdM = Pox(�rM) + d cos( + �=2)
ydM = Poy(�rM ) + d sin( + �=2)

(3.80)
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Finally, the vertices of Box(Ui(�i
�)) can be obtained by projecting in the direction of  

the points Pdm and PdM into the lines that contain Prm and PrM . Let de�ne:

d1 = (xdm � xrm; ydm � yrm) � (cos( + �=2); sin( + �=2)) (3.81)

d2 = (xdm � xrM ; ydm � yrM) � (cos( + �=2); sin( + �=2)) (3.82)

d3 = (xdM � xrM ; ydM � yrM) � (cos( + �=2); sin( + �=2)) (3.83)

d4 = (xdM � xrm; ydM � yrm) � (cos( + �=2); sin( + �=2)) (3.84)

Then, the vertices of Box(Ui(�i
�)) are (Figure 3.18):

P1 = (x1; y1)

(
x1 = xrm + d1 cos( + �=2)
y1 = yrm + d1 sin( + �=2)

(3.85)

P2 = (x2; y2)

(
x2 = xrM + d2 cos( + �=2)
y2 = yrM + d2 sin( + �=2)

(3.86)

P3 = (x3; y3)

(
x3 = xrM + d3 cos( + �=2)
y3 = yrM + d3 sin( + �=2)

(3.87)

P4 = (x4; y4)

(
x4 = xrm + d4 cos( + �=2)
y4 = yrm + d4 sin( + �=2)

(3.88)

3.3.6 Contact identi�cation

In the presence of uncertainty, a given observed con�guration co = (xo; yo; �o) is a contact
con�guration of a basic contact i if equation (3.43) is satis�ed:

Ui(�i
�) \ f 0i(�it) 6= ;

The algorithm Contact-Identi�cation(co,Ui(�i
�)) to test equation (3.43) uses the algorithm

Contact-Identi�cation(co, U
i(�; �)) that tests if equation (3.39) is satis�ed for any given

possible pair of values � and �:

Ui(�; �) \ f 0i(�it) 6= ;

The algorithms are the following:
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Contact-Identi�cation(co, U
i(�i

�))

(1) IF �io 2 Ri
� THEN

(1.1) IF C(xo; yo; �e + �v) \ f 0(�io) 6= ; RETURN TRUE

(1.2) ELSE RETURN FALSE

(2) ELSE

(2.1) IF Box(Ui(�i
�)) \ f 0(�it) = ; RETURN FALSE

(2.2) FOR k=1 TO n

r = Contact-Identi�cation(co, Ui(�k; �k))

IF r = TRUE THEN RETURN TRUE

(2.3) RETURN FALSE

END

Contact-Identi�cation(co, U
i(�; �))

(1) IF Box(Ui(�; �)) \ f 0(�it) = ; RETURN FALSE

(2) IF the perpendicular projection of the center ofUi(�; �) into the line containing f 0(�it)
belongs to f 0(�it) THEN RETURN TRUE

(3) ELSE

(3.1) IF f 0(�it) intersects any of the arcs of Ui(�; �) RETURN TRUE

(3.2) ELSE RETURN FALSE

END

As an example Figure 3.19 shows:

a) An edge of an static object and a vertex of a manipulated object (with its adjacent
edges) which can produce a type-B basic contact.

b) A situation where the observed con�guration may correspond to a contact
con�guration, since Ui(�i

�) \ f 0i(�
i
t) 6= ; and hence E(�) \ V(�) 6= ;, (where

� = � = 0 since �io 2 Ri
�).

c) A situation where the observed con�guration may not correspond to a contact
con�guration, since Ui(�1; �1) \ f 0i(�it) = ; and hence E(�1) \ V(�1) = ; (where
�1 � �1 = �io � �M , since �io 62 Ri

�).

d) The previous situation for di�erent values of the deviations. SinceUi(�2; �2) \ f 0i(�it) 6= ;
and hence E(�2)\V(�2) 6= ;, for these deviations the contact is possible. Therefore
the observed con�guration is considered a possible contact con�guration.

The same is illustrated in Figure 3.20 for a type-A basic contact.



90 CHAPTER 3. CONTACT UNCERTAINTY ANALYSIS

E(0)

V(0)

a) b)

c) d)

co

co

Ui(�i
�)

f 0i(�M)

contact vertex

contact
ed
ge

h

f 0i(�h)

Ui(�i
�)

f 0i(�
i
o)

E(�1)

V(�1) f 0i(�
i
t) = f 0i(�M)

Ui(�1; �1)

co

Ui(�2; �2)

co

f 0i(�
i
o)

V(�2)

f 0i(�
i
t) = f 0i(�M)

E(�2)

Figure 3.19: Contact identi�cation of a type-B basic contact.



3.3. ONE BASIC CONTACT SITUATIONS 91

a) b)

c)
d)

co

Ui(�2; �2)

contact
edge

contact
vertex

f 0i(�m)

contact
vertex

Ui(�2; �2)

f 0i(�
i
t) = f 0i(�

i
o)

co

f 0i(�
i
o)

Ui(�1; �1)

co

V(�1)

E(�1)

f 0i(�
i
t) = f 0i(�M)

f 0i(�
i
o)

co

V(�2)

E(�2)

Ui(�2; �2)

f 0i(�
i
t) = f 0i(�M)

f 0i(�M)

Figure 3.20: Contact identi�cation of a type-A basic contact.
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Simpli�ed contact identi�cation algorithm

A simpli�ed contact identi�cation procedure can be used, which only takes into account
the bounding boxes. This results in:

� A faster test (since the test with the arcs of circumferences is avoided).

� The possible occurrence of false positives (i.e. the identi�cation of a contact for a
con�guration where the contact is not possible).

The algorithm is as follows:

Simpli�ed-Contact-Identi�cation(co, U
i(�i

�))

(1) IF �io 2 Ri
� THEN

(1.1) IF C(xo; yo; �e + �v) \ f 0(�io) 6= ; RETURN TRUE

(1.2) ELSE RETURN FALSE

(2) ELSE

(2.1) IF Box(Ui(�i
�)) \ f 0(�it) = ; RETURN FALSE

(2.2) FOR k=1 TO n

IF Box(Ui(�k; �k)) \ f 0(�it) 6= ; RETURN TRUE

(2.3) RETURN FALSE

END

3.4 More than one basic contact situations

Let:

co = (xo; yo; �o): be the observed con�guration.

S: be a set of basic contacts.

CS : be the nominal contact situation involving the basic contacts of S.

Proposition 10: There exists an orientation �So 2 [�om ; �oM ] such that co is compatible
with the occurrence of contact situation CS i� CS can take place at �So .

Proof: Let de(�) be the distance from the observed position (xo; yo) to the closest nominal
contact position of CS corresponding to orientation �. Let �So be an orientation of the
range [�om; �oM ] such that de is minimum. Then:

� If the contact can take place at orientation �So then co is compatible with the
occurrence of contact situation CS, since �So 2 [�om ; �oM ].

� If co is compatible with the occurrence of contact situation CS, then the contact
can take place at orientation �So , since for this orientation takes place the minimum
possible distance between the observed position and a nominal contact position. �
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The orientation �So is computed as follows:

� If CS only involves one basic contact i then �So = �io, where �
i
o is obtained by using

the algorithm Find-orientation(co; i) of Section 3.3.3.

� Otherwise, if [�om; �oM ] \ RS
� = ;, then �So is the extreme of [�om; �oM ] closest to

RS
� .

� Otherwise, if CS involves two basic contacts and Rij
� is a unique orientation

�e 2 [�om; �oM ], then �So = �e.

� Otherwise, if CS involves more than two basic contacts and �v 2 [�om; �oM ] is the
orientation of the nominal C-vertex, then �So = �v.

� Otherwise, �So is computed as follows. Let (ex(�); ey(�)) be the position of the C 0-
edge for a given orientation �, (e0x(�); e

0
y(�)) its derivate, and (tx(�); ty(�)) be the

unitary vector in the direction (e0x(�); e
0
y(�)), i.e. in the direction of the tangent

to the C 0-edge at a given orientation �. Let also de�ne the following vectors
(Figure 3.21):

~vm = (ex(�om)� xo; ey(�om)� yo) (3.89)

~vM = (ex(�oM )� xo; ey(�oM )� yo) (3.90)

~we = (ex(�oM )� ex(�om); ey(�oM)� ey(�om)) (3.91)

~ve =
~we

j~wej (3.92)

The distance de(�) is:

de(�) =
q
(ex(�)� xo)2 + (ey(�)� yo)2 (3.93)

And its derivate is:

d0e(�) =
(ex(�)� xo)e0x(�) + (ex(�)� xo)e0y(�)

de(�)
(3.94)

The minimum of de occurs:

{ At one of the extremes of [�om; �oM ] if d0e(�om) and d
0
e(�oM ) have the same sign.

The sign of d0e(�) is the same as the sign of the following scalar product:

(ex(�)� xo; ey(�)� yo) � (tx(�); ty(�)) (3.95)

If the range [�om; �oM ] is small, then (tx(�om); ty(�om)) and (tx(�oM ); ty(�oM))
can both be approximated by ~ve. Therefore, the sign of d0e(�om) and d

0
e(�oM )

can be determined as the sign of ~vm � ~ve and ~vM � ~ve, respectively. If both
signs are negative it means that the minimum of de occurs for the maximum
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Figure 3.21: a) C 0-edge of a contact situation involving two type-B basic contacts, b) An
example where �So = �oM , since for the given observed position ~vM �~ve < 0 and ~vm �~ve < 0,
c) An example where �So = �om, since ~vM � ~ve > 0 and ~vm � ~ve > 0, d) An example where
�So 2 [�om; �oM ], since ~vM � ~ve > 0 and ~vm � ~ve < 0

value of the range, i.e. �So = �oM (Figure 3.21b). If both signs are positive it
means that the minimum of de occurs for the minimum value of the range, i.e.
�So = �om (Figure 3.21c).

{ At the orientation � 2 [�om; �oM ] such that d0e(�) = 0 if d0e(�om) and d
0
e(�oM)

have di�erent sign. Assuming that � varies linearly along the line that connects
(ex(�om); ey(�om)) and (ex(�oM); ey(�oM)), then the value �So that satis�es
d0e(�

S
o ) = 0 is approximated by (Figure 3.21d):

�So = �om � ~vm � ~ve
j~vmj (�oM � �om)

The algorithm to compute �So is as follows:
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Find-orientation(co; CS)

IF CS only involves one basic contact i THEN RETURN Find-orientation(co; i)

ELSE IF [�om; �oM ] \RS
� = ; RETURN the extreme of [�om; �oM ] closest to RS

�

ELSE IF CS involves more than two basic contacts THEN RETURN �v

ELSE IF CS involves two basic contacts and
Rij
� is a unique orientation THEN RETURN �e

ELSE

IF ~vm � ~ve > 0 and ~vM � ~ve > 0 RETURN �om

ELSE IF ~vm � ~ve < 0 and ~vM � ~ve < 0 RETURN �oM

ELSE RETURN �om � ~vm�~ve
j~vmj

(�oM � �om)

END

3.4.1 Contact uncertainty dependence

De�nition: Given a set S of basic contacts, a source of uncertainty is independent if it
can give rise to complementary contact situations, and it is dependent otherwise.

� Given the deviation produced by a dependent source of uncertainty on a toplogical
element of S, then the deviation produced by this source of uncertainty on all the
other topological elements is determined. The following sources of uncertainty are
dependent:

a) The uncertainty in the position and orientation of the robot.

b) The uncertainty in the positioning of the manipulated object in the robot gripper.

c) The uncertainty in the positioning of an static object when all the contacts of S
involve the same static object.

� Given the deviation produced by an independent source of uncertainty on a toplogical
element of S, then the deviation produced by this source of uncertainty on all the
other topological elements is not known, although it may be constrained to a subset
of all the possible deviations (e.g. the manufacturing tolerances when the involved
topological elements are contiguous1). The sources of uncertainty not considered in
the previous item are independent.

Let:

D: be the set of dependent sources of uncertainty a�ecting the basic contacts of S.

I: be the set of independent sources of uncertainty a�ecting the basic contacts of S.

�D: be the sum of the maximum deviations in the contact position due to D.

�I : be the sum of the maximum deviations in the contact position due to I.

1Two edges are contiguous if both end at the same vertex, two vertices are contiguous if they are the
endpoints of the same edge, and a vertex and an edge are contiguous if the edge ends at the vertex.
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The values of �D and �I are the following:

a) If the contacts involve the same static object:

�D = �pr + �s � �ts + �m � �tm (3.96)

�I = �tm + �ts (3.97)

b) If the contacts involve di�erent static objects:

�D = �pr + �m � �tm (3.98)

�I = �tm + �s (3.99)

Weighting the e�ect of dependent and independent sources of uncertainty

Let �Si
� be the deviation in orientation of contact i 2 S:

�Si
� =

8><>:
0 if �So 2 Ri

�

�So � �im if �So < �im
�So � �iM if �So > �iM

(3.100)

�Si
� may be due to the dependent and the independent sources of uncertainty:

j�Si
� j = j�S

�D
j+ j�Si

�I
j (3.101)

where �Si
�I

is the deviation in orientation due to the independent sources of uncertainty
that a�ect contact i, and �S

�D
is the the deviation in orientation due to the dependent

sources of uncertainty that a�ect all the contacts of S (Figure 3.22a).

The balance between dependent and independent sources of uncertainty that will be
considered is such that the uncertainty in the contact position is maximum. The value of
�S
�D

is choosen such that for each contact i 2 S, the sum of the areas of the associated
Contact Position Domains due to the dependent and independent source of uncertainty
is maximum.

�S
�D

is computed as follows. Let approximate the area of a Contact Position Region by
the area A of its bounding box:

A = r d (3.102)

Where r and d are computed as follows:

� If the values of j�Si
� j are small enough to approximate sin j�Si

� j by j�Si
� j, and the

values of j�j and j�j are expressed as a function of j�Si
� j:

j�j = qj�Si
� j (3.103)

j�j = (1� q)j�Si
� j (3.104)

where q 2 [0; 1], then equation (3.57) becomes:

r = (�e + �v)� (
le

2
q +

lv
2
(1� q))j�Si

� j (3.105)
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Figure 3.22: Balance between dependent and independent sources of uncertainty.
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� d is approximated by:
d = �e + �v (3.106)

Therefore, the area A is:

A = r d

= (�e + �v)
2 � (�e + �v)(

le
2
q +

lv
2
(1� q))j�Si

� j
= Amax � kj�Si

� j (3.107)

where:

Amax = (�e + �v)
2 (3.108)

k = (�e + �v)(
le
2
q +

lv
2
(1� q)) (3.109)

Considering the Contact Position Regions due to the dependent and independent sources
of uncertainty, equation (3.107) is particularized as:

AD = ADmax � kDj�S
�D
j (3.110)

AI = AImax � kI j�Si
�I
j (3.111)

where:

ADmax = �2D (3.112)

AImax = �2I (3.113)

kD = �D(
le
2
q +

lv
2
(1� q)) (3.114)

kI = �I(
le
2
q +

lv
2
(1� q)) (3.115)

Then, the sum of AD and AI is:

AT = AD + AI

= ADmax + AImax � kI j�Si
�I
j � kDj�S

�D
j (3.116)

Taking into account (3.101), AT can be expressed as:

AT = ADmax + AImax � kI j�Si
� j+ (kI � kD)j�S

�D
j (3.117)

To determine the value of j�S
�D
j that maximizes AT , the following derivate is computed:

@AT
@j�S

�D
j = (kI � kD) (3.118)

Then, the maximum of AT is found for the minimum or for the maximum value
of j�S

�D
j:
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� The choosen extreme depends on the values of �I and �D:

If �I > �D, since (
le
2
q+ lv

2
(1� q)) is always positive, then (kI �kD) > 0; therefore

the maximum of AT is found for the maximum value of j�S
�D
j.

Otherwise, if �I < �D, the maximum of AT is found for the minimum value of
j�S

�D
j.

� The minimum and maximum values of j�S
�D
j are computed as follows. Let j�Si

�D
jmax

be the maximum absolute value of the deviation in orientation of contact i 2 S
due to the dependent sources of uncertainty. Then, the range of possible contact
orientations of contact i considering the dependent sources of uncertainty is:

[�im � j�Si
�D
jmax; �iM + j�Si

�D
jmax] (3.119)

Let j�Si
�I
jmax be de�ned in a similar way for the independent sources of uncertainty.

The values of j�Si
�D
jmax and j�Si

�I
jmax are the sum of the corresponding maximum

values of j�j and j�j. Therefore the extremes of j�S
�D
j are:

a) Maximum of j�S
�D
j: The maximum value of j�S

�D
j is bounded either by j�Si

� j as
in Figure 3.22b, or by j�Si

�D
jmax as in Figure 3.22c, for any contact i 2 S:

min
8i2S

(j�Si
�D
jmax; j�Si

� j) (3.120)

b) Minimum of j�S
�D
j: The minimum value of j�S

�D
j depends on weather the

orientation gap j�Si
� j for each contact i 2 S can be covered by the independent

uncertainty sources (Figure 3.22d), or not (Figure 3.22e):

max
8i2S

(j�Si
� j � j�Si

�I
jmax; 0) (3.121)

The following algorithm computes the value of j�S
�D
j and j�Si

�I
j 8i 2 S, such that AT is

maximum for a given �So .

Uncertainty-balance(�So )

Compute j�Si
� j 8i 2 S

IF �I > �D THEN j�S
�D
j = min8i2S(j�Si

�D
jmax; j�Si

� j)
ELSE j�S

�D
j = max8i2S(j�Si

� j � j�Si
�I
jmax; 0)

Compute j�Si
�I
j = j�Si

� j � j�S
�D
j 8i 2 S

RETURN j�S
�D
j and j�Si

�I
j 8i 2 S

END



100 CHAPTER 3. CONTACT UNCERTAINTY ANALYSIS

!!!!
!!!!
!!!!

f 0i(�
Si
t )

f 0j(�
Sj
t )

U
Si
I
(xo; yo;�

Si
�I
) = U
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contact i: vertex Vi vs. edge ei

contact j: vertex Vj vs. edge ej

nominal position
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Figure 3.23: E�ect of independent sources of uncertainty: the current con�guration of the
manipulation object is at a possible contact con�guration of a nominal two-basic contact
situation, since USi

I (xo; yo;�
Si
�I
) \ f 0i(�Sit ) 6= ; and U

Sj
I (xo; yo;�

Sj
�I
) \ f 0j(�Sjt ) 6= ;.

3.4.2 Independent sources of uncertainty

Let USi
I (x; y;�

Si
�I
) be the Contact Position Domain Ui(�Si

�I
) built considering D = ; and

I 6= ;, and located with respect to (x; y)2. USi
I (x; y;�

Si
�I
) is a circle of radius �I centered

at (x; y) when �So 2 Ri
�, since in this case �Si

�I
= 0.

Proposition 11: Assuming D = ;, co may be a contact con�guration of CS i�:

USi
I (xo; yo;�

Si
�I
) \ f 0i(�Sit ) 6= ; 8i 2 S (3.122)

where �Sit is de�ned as:

�Sit = �So + �Si
� (3.123)

Proof: From corollary 9, the observed con�guration is compatible with the occurrence
of all the basic contacts of S, when equation (3.122) is satis�ed. This occurrence can be
simultaneous, since the uncertainties are independent. �

2The construction algorithm of Section 3.3.4 locates the Contact Position Domains with respect to
the observed position (xo; yo).
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Figure 3.24: E�ect of independent sources of uncertainty: the current con�guration of the
manipulation object is at a possible contact con�guration of a complementary two-basic
contact situation, since USi

I (xo; yo;�
Si
�I
) \ f 0i(�Sit ) 6= ; and U

Sj
I (xo; yo;�

Si
�I
) \ f 0j(�Sjt ) 6= ;.

As an example Figure 3.23 shows a contact situation with two type-B basic contacts i
and j involving di�erent static objects. Only the sources of uncertainty a�ecting the
static objects are considered, which in this case are independent sources of uncertainty
(i.e. �I = �s). In this example, since �So 2 Ri

� and �So 2 Rj
�:

�Si
�I

= �
Sj
�I

= 0

�Sit = �
Sj
t = �So

USi
I (xo; yo;�

Si
�I
) and U

Sj
I (xo; yo;�

Sj
�I
) are both equal to a circle of radius �s.

The current con�guration of the manipulated object may correspond to a contact
con�guration, since equation (3.122) is satis�ed, i.e. USi

I (xo; yo;�
Si
�I
) \ f 0i(�Sit ) 6= ; and

U
Sj
I (xo; yo;�

Sj
�I
) \ f 0j(�Sjt ) 6= ;.

Complementary contact situations may arise due to independent sources of uncertainty,
since equation (3.122) can be satis�ed regardless of the existence of the nominal contact
situation. Figure 3.24 shows a contact situation similar to Figure 3.23, where in this case
the manipulated object is at a con�guration that is compatible with the occurrence of a
complementary two-contact situation.
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3.4.3 Dependent sources of uncertainty

Let:

PS(�) : be the nominal contact position of CS for an orientation �:

PS(�) =
\
8i2S

f 0i(�) (3.124)

USi
D (�

S
�D
) : be the Contact Position Domain Ui(�S

�D
) built considering D 6= ; and

I = ;. It is a circle of radius �D centered at (xo; yo) when �So 2 Ri
�, since in this case

�S
�D

= 0.

Proposition 12: Assuming I = ;, co may be a contact con�guration of CS i�:

PS(�
S
t ) 2 USi

D (�
S
�D
) 8i 2 S (3.125)

where �St is de�ned as:
�St = �So +�S

�D
(3.126)

Proof: If equation (3.125) is satis�ed then:

USi
D (�

S
�D
) \ f 0i(�St ) 6= ; 8i 2 S (3.127)

is satis�ed and therefore, from corollary 9, the observed con�guration is compatible with
the occurrence of all the basic contacts of S, and from equation (3.124) this occurrence
is simultaneous. �
As an example Figure 3.25 shows a nominal contact situation with two type-B basic
contacts i and j involving di�erent static objects. The only uncertainty source considered
is the uncertainty in the positioning of the robot, which is a dependent uncertainty source
(i.e. �D = �pr). In this example �So 2 Rij

� , and therefore, US
D(�

S
�D
) is a circle of radius �D,

since �S
�D

= 0. The current con�guration of the manipulated object may correspond to
a contact con�guration, since equation (3.125) is satis�ed, i.e. PS(�

S
t ) = [f 0i(�

S
t )\ f 0j(�St )]

satis�es PS(�St ) 2 USi
D (�

S
�D
) and PS(�St ) 2 USj

D (�S
�D
).

3.4.4 Dependent and independent sources of uncertainty

Let US
D(�

S
�D
) be de�ned as:

US
D(�

S
�D
) =

\
8i2S

USi
D (�

S
�D
) (3.128)

US
D(�

S
�D
) is a circle of radius �D centered at (xo; yo) when �So 2 RS

� , otherwise it will be
approximated by the intersection of the corresponding bounding boxes.
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t )
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t ) �St = �So

ej

Vi

ei

Vj

�s
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D(�

S
�D
) �So 2 RS

�

PS(�
S
t )

(xo; yo)

Figure 3.25: E�ect of dependent sources of uncertainty: the current con�guration of the
manipulation object is at a possible contact con�guration of a nominal two-basic contact
situation, since PS(�St ) 2 US

D(�
S
�D
).

Proposition 13: The observed con�guration co may be a contact con�guration of CS i�:

USi
I (xt; yt;�

Si
�I
) \ f 0i(�Sit ) 6= ; 8i 2 S (3.129)

where (xt; yt) is the point of US
D(�

S
�D
) such that USi

I (xt; yt;�
Si
�I
) is closest to

f 0i(�
Si
t ) 8i 2 S.

Proof: If equation (3.129) is satis�ed, from corollary 9, the observed con�guration is
compatible with the occurrence of all the basic contacts of S. This occurrence can
be simultaneous, since the Contact Position Domains of (3.129) are built considering
independent sources of uncertainty, and are all located with respect to (xt; yt), which is a
position compatible with the observed position (xo; yo) considering the dependent sources
of uncertainty. �

Determination of (xt; yt) when �So 2 RS
�

Let �rst consider two basic contacts i and j, and let de�ne the following nomenclature
(Figure 3.26):

� li and lj: lines that contain f 0i(�
S
o ) and f

0
j(�

S
o ), respectively.

� Dli and Dlj : distances from (xt; yt) to li and lj, respectively.
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S
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)

 i
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(xt; yt)

Figure 3.26: Nomenclature.

� dli and dlj : distances from USi
I (xt; yt;�

Si
�I
) and U

Sj
I (xt; yt;�

Sj
�I
) to li and lj,

respectively.

� b: line such that dli = dlj is satis�ed when (xt; yt) 2 b.
� Ol: intersection of li and lj .

� O: point that coincides with Ol if f
0
i(�

S
o ) and f

0
j(�

S
o ) intersect, or otherwise O is the

point computed as follows:

1- compute the intersections of b with the four segments formed with the extremes
of f 0i(�

S
o ) and f

0
j(�

S
o ).

2- O is the intersection point which is closest to Ol.

� (xi; yi): point of US
D(�

S
�D
) which is closest to li.

� (xj; yj): point of U
S
D(�

S
�D
) which is closest to lj.

When �So 2 RS
� then:

� �S
�D

= 0

� �Si
�I

= �
Sj
�I

= 0

� �Sit = �
Sj
t = �So

� US
D(�

S
�D
) is a circle of radius �D centered at (xo; yo):

US
D(�

S
�D
) = C(xo; yo; �D) (3.130)
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� USi
I (xt; yt;�

Si
�I
) and U

Sj
I (xt; yt;�

Sj
�I
) coincide and are equal to a circle of radius �I

centered at (xt; yt):

USi
I (xt; yt;�

Si
�I
) = U

Sj
I (xt; yt;�

Sj
�I
) = C(xt; yt; �I) (3.131)

Then, since equation (3.131) holds:

dli = Dli � �I .

dlj = Dlj � �I .

b is the bisecting line of li and lj .

(xi; yi) = (xo; yo)� �D(cos i; sin i)

(xj; yj) = (xo; yo)� �D(cos j; sin j)

Therefore, (xt; yt) is computed by the following algorithm, which is illustrated in
Figure 3.27:

Determine-position(co;�S
�D
;�Si

�I
)

IF O 2 US
D(�

S
�D
) RETURN O

ELSE

Intersect b with US
D(�

S
�D
)

IF the intersection exists RETURN the intersection point closest to O

ELSE

IF US
D(�

S
�D
) belongs to the angular sector de�ned by b and li RETURN (xj; yj)

ELSE RETURN (xi; yi)

END

For more than two basic contacts, the position (xt; yt) is computed as the mid-point of
the positions obtained for each pair of basic contacts.

Determination of (xt; yt) when �So 62 RS
�

When �So 62 RS
� the algorithm to determine (xt; yt) is the same as the one detailed in the

previous Section, but some of the variables used vary in order to consider the following
items:

(1) The center of USi
I (xt; yt;�

Si
�I
) is determined from (xt; yt) by the two rotations

described in the algorithm Ui(�; �)-construction of Section 3.3.4

(2) The shape of USi
I (xt; yt;�

Si
�I
) and US

D(�
S
�D
) depend on the values of �Si

�I
and �S

�D
.

The corresponding bounding boxes will be considered to simplify the computations.
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Figure 3.27: Determination of (xt; yt).

The changes are the following:

a) Lines li and lj :

Taking (1) into account, the minimum distance from the center of USi
I (xt; yt;�

S
�I
)

to f 0i(�
Si
t ) can be computed as the distance from (xt; yt) to a line li obtained from

the line that contains f 0i(�
Si
t ) by:

{ Rotating an angle �rmi
around the center of the corresponding contact edge,

where �rmi
is the deviation for which USi

I (xt; yt;�
S
�I
) is closest to f 0i(�

Si
t )

(Section 3.3.5).

{ Translating in its perpendicular direction a distance:

d�i = (xo � x0o) cos( i + �rmi
) + (yo � y0o) sin( i + �rmi

) (3.132)

where (x0o; y
0
o) is de�ned in equation (3.53).

The line lj is computed in a similar way.



3.4. MORE THAN ONE BASIC CONTACT SITUATIONS 107

b) Distances dli and dlj :

Taking (2) into account, if rIi(�rmi
) and rIj(�rmj

) are the widths r of Box(USi
I ) and

Box(U
Sj
I ) computed for the deviations �rmi

and �rmj
, respectively, then:

dli = Dli � rIi(�rmi
) (3.133)

dlj = Dlj � rIj(�rmj
) (3.134)

c) Line b:

Is the line de�ned by the point Ol and the vector:

~v = (dli cos i + dlj cos j; dli sin i + dlj sin j) (3.135)

d) Points (xj; yj) and (xi; yi):

Taking (2) into account, if rDi(�rmi
) and rDj(�rmj

) are the widths r of Box(US
D)

and Box(US
D) computed for the deviations �rmi

and �rmj
, respectively, then:

(xi; yi) = (xo; yo)� rDi(�rmi
)(cos i; sin i) (3.136)

(xj; yj) = (xo; yo)� rDj(�rmj
)(cos j ; sin j) (3.137)

Examples

As an example, Figure 3.28 shows a contact situation with two type-B basic contacts i
and j involving di�erent static objects. Since �So 2 Rij

� then:

�Si
�I

= �Si
�I

= �S
�D

= 0

�Sit = �
Sj
t = �So

US
D(�

S
�D
) is a circle of radius �D centered at the observed position (xo; yo).

USi
I (xt; yt;�

Si
�I
) and U

Sj
I (xt; yt;�

Sj
�I
) are circles of radius �I centered at (xt; yt).

In this example, the current con�guration of the manipulated object may correspond to a
contact con�guration, since equation (3.129) is satis�ed, i.e. USi

I (xt; yt;�
Si
�I
)\f 0i(�Sit ) 6= ;

and U
Sj
I (xt; yt;�

Sj
�I
) \ f 0j(�Sjt ) 6= ;.

Figure 3.29 shows a similar example to that of Figure 3.28 but in this case �So 2 Ri
� and

�So 62 Rj
�. In this example:

�S
�D

= 0

�Si
�I

= 0

�
Sj
�I

= �So � �jM

�Sit = �So and �
Sj
t = �jM
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U
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�D
)

U
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t )
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(xo; yo)�D

(xt; yt)
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�I = �s + �tm

�D = �pr + �m � �tm

b

Figure 3.28: E�ect of dependent and independent sources of uncertainty: The
current con�guration of the manipulation object is at a possible contact con�guration
of a nominal two-basic contact situation, since USi

I (xt; yt;�
Si
�I
) \ f 0i(�

Si
t ) 6= ; and

U
Sj
I (xt; yt;�

Si
�I
) \ f 0j(�Sjt ) 6= ;. In this example �Sit = �

Sj
t = �So .
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Figure 3.29: Two-basic contact situation where �So satis�es �So 2 Ri
�, �

S
o 62 Rj

�. In this
example the deviations in the orientation of the topological elements of the contact are
considered to be produced only by the independent uncertainty sources.
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US
D(�

S
�D
) is the circle of radius �D, shown in Figure 3.29b together with a point

(xt; yt) 2 US
D(�

S
�D
)

USi
I (xt; yt;�

Si
�I
) is the circle of radius �I centered at (xt; yt) shown in Figure 3.29c

U
Sj
I (xt; yt;�

Sj
�I
) is the Contact Position Domain Uj(�

Sj
�I
) located with respect to

(xt; yt), shown in Figure 3.29d

Since USi
I (xt; yt;�

Si
�I
) \ f 0i(�Sit ) 6= ; and U

Sj
I (xt; yt;�

Sj
�I
) \ f 0j(�Sjt ) 6= ;, the con�guration

of the manipulated object can be a contact con�guration of the two-contact situation.

3.4.5 Contact identi�cation

The contact identi�cation procedure for contact situations involving more than one basic
contact must consider the dependencies between the sources of uncertainty. Given an
observed con�guration co = (xo; yo; �o) and contact situation CS involving a set S of
basic contacts then, for proposition 13, the contact identi�cation procedure must verify
USi
I (xt; yt;�

Si
�I
) \ f 0i(�Sit ) 6= ; for all the contacts of S.

Given the position (xt; yt) and the deviation in orientation due to dependent sources of
uncertainty �S

�D
, this is done by using the contact identi�cation algorithms for one basic

contact detailed in Section 3.3.6.

The contact identi�cation algorithm is the following:

Contact-Identi�cation(co, CS)

IF CS only involves one basic contact i THEN

r = Contact-Identi�cation(co, Ui(�i
�))

RETURN r

ELSE

�So = Find-orientation(co; CS)

fj�S
�D
j;�Si

�I
g = Uncertainty-balance(�So )

(xt; yt) = Determine-position(co;�
S
�D
;�Si

�I
)

FOR i = 1 TO S

r = Contact-Identi�cation(co, U
Si
I (xt; yt;�

Si
�I
))

IF r = FALSE THEN RETURN FALSE

RETURN TRUE

END
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3.5 Uncertainty reduction

The sensory information of con�guration and force may be used during the execution of
the assembly task to:

� Estimate the position and orientation of the topological elements involved in the
contacts.

� Reduce the uncertainty.

Therefore, it is possible to make the task execution more reliable as it evolves towards its
goal, since:

� The commands to be executed may be modi�ed with the estimated values and hence
the motion may become more accurate.

� The estimation of the current contact situation may become more exact.

Given a basic contact i compatible with a observed con�guration, the following items are
tackled in this section:

� Estimation of the orientation of the contact edge (Section 3.5.1)

� Estimation of the position of the contact vertex (Section 3.5.2)

� Estimation of the position of the contact edge (Section 3.5.3)

� Use of the previous estimations to modify the C-arcs where the contact i is involved
(Section 3.5.4)

3.5.1 Estimation of the orientation of the contact edge

Let R� be the range of possible values of the deviation � in the orientation of the contact
edge. From the geometry of the contact, R� = [��max; �max], where the value of �max
was determined in proposition 1. Figure 3.30a shows the topological elements of a type-B
basic contact and Figure 3.30d shows the minimum and the maximum deviations in the
orientation of the contact edge.

Proposition 14: If contact i takes place at a given observed orientation co,
then R� � [��max; �max].
Proof: Let de�ne (Figure 3.30b):

 : orientation of the normal to the contact edge.

Va and Vb: vertices of de contact edge such that Va is �rst encountered when the border
of the object is followed clockwise.

A and B: extremes of f 0i(�o) corresponding to Va and Vb.

~!A = co � A

~v = B � A
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�A = arcsin( ~v�~!A
j~vjj~!Aj

)

�A = arcsin( �e+�v
j~!Aj

)

SA: boundle of lines crossing the circumference where the contact vertex lies and the
circumference where Va lies.

SA can be computed in C 0-space as the boundle of lines crossing A and the circumference
of radius �e + �v centered at co. The orientations of the lines of SA belong to the range
[ + �=2 + �Amin;  + �=2 + �Amax], where:

�Amin = �A � �A

�Amax = �A + �A (3.138)

Let ~!B , �B, �B, SB, �Bmin and �Bmax be de�ned in a similar way (Figure 3.30c).

Provided that contact i is taking place at the current observed con�guration, the
supporting line l of the contact edge satis�es:

l 2 SA AND l 2 SB (3.139)

Therefore, the range R� is (Figure 3.30e):

R� = [��m; �M ] (3.140)

�m = max(��max; �Amin; �Bmin) (3.141)

�M = min(�max; �
A
max; �

B
max) (3.142)

�

For each new observed contact con�guration, R� is updated:

�m = max(�m; �
A
min; �

B
min)

�M = min(�M ; �
A
max; �

B
max) (3.143)

The contact identi�cation becomes more precise if this reduction in the uncertainty of
the orientation of the contact edge is taken into account to built the Contact Position
Domain. On the other hand, once R� has been determined, an estimated value of the
deviation, �e, is used to modify the robot commands by changing the orientation  of the
contact edge by ( + �e) (Section 3.5.4). From corollary 2.1, the estimated value is the
deviation with smallest absolute value:

�e 2 R� such that j�ej < j�ij 8�i 2 R� (3.144)

The initial estimated value is �e = 0, since initially R� = [��max; �max].

3.5.2 Estimation of the position of the contact vertex

The position of the contact vertex corresponding to a basic contact i is estimated as
follows, when contact i occurs at the current observed con�guration co = (xo; yo; �o).
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Figure 3.30: a) Topological elements involved in a type-B basic contact, b) c) boundle
of lines, SA and SB, crossing the circumference where the contact vertex lies and the
circumferences where Va and Vb lie, respectively, computed in C 0-space, d) minimum and
maximum deviation of the orientation of the contact edge due to uncertainty, e) minimum
and maximum deviation of the orientation of the contact edge due to uncertainty, for a
given observed contact con�guration co.
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Let de�ne (Figures 3.31 and 3.32):

d1 = Dp(�o)�Df(�o) (3.145)

d2 = �e + �v � jd1j (3.146)

d3 = [�v � d2
2
]sign(d1) (3.147)

where sign(d1) =
jd1j
d1

if d1 6= 0 and sign(d1) = 1 otherwise, and Dp(�o) and Df (�o) were
de�ned in Section 3.3.3 as:

� Dp(�o) = xo cos W + yo sin W : the component of the vector from the origin of fWg
to the observed position (xo; yo) in the direction  W (for type-A basic contacts
 W =  T + �o + � and for type-B basic contacts  W is independent of �).

� Df (�o): the distance from the origin of fWg to the line containing f 0(�o) as de�ned
in equations (2.4) and (2.5) for type A and type B basic contacts, respectively.

The region where the actual contact vertex lies when contact i occurs at the current
observed con�guration co = (xo; yo; �o) is:

(1) V(�) if �o 62 Ri
�

(2) V(0; 0) if �o 2 Ri
� and V(0; 0) � E(0).

(3) V(0; 0) \E(0), otherwise (the shaded region of Figure 3.31a).

Then, the vertex with nominal position (vx; vy) is estimated as:

(1) the center of V(�) if �o 62 Ri
�

(2) the nominal vertex if �o 2 Ri
� and V(0; 0) � E(0).

(3) otherwise as:
Ve = (vxe; vye) = (vx + d3 cos ; vy + d3 sin ) (3.148)

For type-B basic contacts the estimated vertex will be expressed as:

he =
q
v2xe + v2ye

e = arctan(vye=vxe) (3.149)

For the analysis of the reaction forces (Section 3.6.1), the region where the actual vertex
lies may be approximated by a segment, lv, which has the following extremes (Figure 3.32):

Mx = vxe + dv cos( + �=2)

My = vye + dv sin( + �=2)

Nx = vxe + dv cos( � �=2)

Ny = vye + dv sin( � �=2) (3.150)

where, respectively:
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(1) dv is expressed by (3.60)

(2) dv = �v

(3) dv is expressed as:

dv =

(
�v sin[arccos(

d2��v
�v

)] if d2 < �v
�v otherwise

(3.151)

3.5.3 Estimation of the position of the contact edge

Given a basic contact i which can occur at a given observed con�guration co = (xo; yo; �o),
and the following estimated values:

� �e, vxe and vye for a type-A basic contact

� �e, he and e for a type-B basic contact

then, the distances dT and dW , which determine the position of the contact edge, are
estimated as:

dTe = D(�o)� vxe cos( T + �o + �) � vye sin( T + �o + �) (3.152)

dWe = D(�o)� he cos( W + �e + � � e � �o) (3.153)

where D(�o) = xo cos( W + �e) + yo sin( W + �e)

3.5.4 Modi�cation of the C-arcs

The C-arcs (both Cc-arcs and Cf -arcs) were determined in Chapter 2, being any
con�guration of the C-arcs expressed as a function of the C-edges of the C-item or C-
prism where the C-arc is de�ned.



3.6. FORCE ANALYSIS 117

The expression of the C-edges were described in equation (2.11) as:

x =
Di sin( Wj)�Dj sin( Wi)

sin( Wj �  Wi)

y = �Di cos( Wj)�Dj cos( Wi)

sin( Wj �  Wi)

q = ��

where Dk with k = fi; jg was described in equations (2.5) and (2.4), depending on the
type of basic contact:

Dk = xk cos W + yk sin W + dT for type-A basic contacts
Dk = hk cos( W + � � k � �) + dW for type-B basic contacts

(3.154)

Therefore, the C-arcs, which were o�-line determined from the nominal geometry, can be
on-line modi�ed by changing the nominal values describing the position of the contact
vertex and the position and orientation of the contact edge by the corresponding estimated
values computed in the previous Sections.

3.6 Force analysis

Let assume that the force sensor has its reference frame coincident with fTg, the reference
frame of the manipulated object.

De�nition: The Generalized Force Domain GS, associated to a observed con�guration
co compatible with a contact situation CS involving a set S of basic contacts, is the set
of the generalized reaction forces that may arise when CS takes place at con�guration co.

Let G0
S be the dual representation of GS.

3.6.1 One basic contact situations

The Generalized Force Domain Gi of a contact situation with only one basic contact i is
composed of the forces satisfying the following two conditions:

� Contact-point condition: the line of the reaction force must intersect the region where
the contact vertex may lie for the current observed contact con�guration co.

� Direction condition: The direction of the reaction force must be in the range
[ � � ;  + � ] where  is the normal to the contact edge and � is the deviation
that takes into account the e�ect of friction and of the uncertainties a�ecting the
direction of the reaction force.
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Figure 3.33: Approximation of region V(0; 0) by the segment lv.

Contact-point condition

The region where the contact vertex may lie for the observed contact con�guration co
has been determined in Section 3.5.2. The maximum area of this region is obtained for
the deviation � with minimum absolute value, and for the orientation �io. In order to
compute Gi, this region is approximated by the segment lv, since nearly all the lines of
forces intersecting this region will intersect lv. The maximum error introduced by this
approximation is produced when the region is the circle V(0; 0). This maximum error
is computed as follows (Figure 3.33). Let Asector and Atriangle be the areas of the sector
and the triangle formed with the points A, B and the origin O. Then the area A of the
shadded region represents the area not considered by the approximation:

A = Asector � Atriangle = �2v(� � sin � cos � ) (3.155)

Then:

error =
A

AV(0;0)
=
�2v(� � sin � cos � )

��2v
=
� � sin � cos � 

�
(3.156)

For example, if � = �=6 then the error is 12%.

Direction condition

The reaction force direction is determined by the direction  of the normal to the contact
edge when no uncertainty and friction are considered. When these e�ects are taken into
account, the reaction force direction belongs to the range:

[ + �m � arctan�� ��l
2
;  + �M + arctan�+

��l
2

] (3.157)
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where:

� [� arctan�; arctan�] is the range of deviations due to the e�ect of friction, � being
the friction coe�cient.

� [�m; �M ] is the range of deviations due to the uncertainty in the orientation of the
contact edge (Section 3.5.1).

� [���l
2
; ��l

2
] is the range of deviations due to the uncertainty in the orientation of the

robot, taking into account the current observed con�guration:

��l � �oM � �om (3.158)

��l is computed as follows. Let de�ne (Figure 3.34):

(xom; yom) = (xo � (�e + �v) cos ; yo � (�e + �v) sin )

(xoM ; yoM ) = (xo + (�e + �v) cos ; yo + (�e + �v) sin )

Dpm(�
i
o) = xom cos W + yom sin W

DpM (�
i
o) = xoM cos W + yoM sin W

dpm(�
i
o) : distance from the line containing f 0(�io) to the position (xom; yom)

dpm(�
i
o) = jDpm(�

i
o)�Df(�

i
o)j (3.159)

dpM (�
i
o) : distance from the line containing f 0(�io) to the position (xoM ; yoM )

dpM (�
i
o) = jDpM (�

i
o)�Df(�

i
o)j (3.160)

�lm ; �lM : orientations that satisfy dpm(�lm) = 0 and dpM (�lM ) = 0, respectively.
They are obtained from equations (3.46) and (3.49) for type-A and type-B basic
contacts, respectively:

If �lm < �om or if �lm does not exist, then �lm = �om

If �lM > �oM or if �lM does not exist, then �lM = �oM

Finally, ��l = �lM � �lm .

Estimation of the orientation of the contact edge

The observed generalized force can also be used to constrain R� (as done in Section 3.5.1
from the con�guration information), when the basic contact i is the only one compatible
with the observed con�guration and force. Let de�ne (Figure 3.35):

~f : the observed force

	: orientation of the observed force with respect to the world reference frame

�: maximum deviation in the direction of the force due to the force sensor uncertainty

�: friction coe�cient
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Figure 3.34: a) Topological elements involved in a type-B basic contact b) Positions
(xom; yom) and (xoM ; yoM ) involved in the computation of ��l.

Then, the minimum and maximum values of � compatible with the observed force are:

�fmin = 	� � � arctan��  

�fmax = 	+ � + arctan��  (3.161)

and then, the range R� is updated as:

�m = max(�m; �
f
min)

�M = min(�M ; �
f
max) (3.162)
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Figure 3.35: Uncertainty in the direction of the reaction force.

Dual representation of Gi

The dual representation of the Force Generalized Domain Gi is computed as follows. Let
de�ne (Figure 3.36):

a; c : lines with orientation  + �m � arctan� � ��l
2

passing through the extremes of
the segment lv.

b; d : lines with orientation  + �M + arctan� + ��l
2

passing through the extremes of
the segment lv.

W : region where the lines of forces of Gi lie; it is the union of cones cab and ccd.
W0 : region W computed when � = 0.

The dual region representing the forces satisfying the contact-point condition is the conedm0n0, where m0 and n0 are the dual lines of the extremes M and N of the segment lv,
i.e. the cone dm0n0 is the set of dual points of the lines of forces crossing lv (property 5 in
Appendix B).

The dual region representing the forces satisfying the direction condition is the
cone da0b0, where a0 and b0 are lines perpendicular to a and b, respectively, passing
through the origin, i.e. the cone da0b0 is the set of dual points of all the lines
of forces with orientation within the range de�ned by the orientations of a and b,
i.e. [ + �m � arctan�� ��l

2
;  + �M + arctan�+ ��l

2
] (property 3 in Appendix B).

Then, G0
i is:

G0
i = dm0n0 \da0b0 (3.163)
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Let H(P1; :::; Pn) be the convex hull de�ned by the points P1; :::; Pn. The points of G
0
i are

the dual points of the lines of W, and its vertices are the dual points A0, B0, C 0 and D0

of the lines a, b, c and d, respectively. Then:

G0
i = H(A0; B0; C 0D0) (3.164)

Partition of the dual plane

The dual plane has been partitioned in Section 2.8.3 into regions that bound the directions
of applied forces that produce similar movements of the manipulated object (i.e. produce
the same sense of sliding and rotation about the contact point, or produce sticking at it).
The border of these regions is determined by the dual lines �0t, �

0
f and �

0
r representing the

planes de�ned by the contact reference frame (�t, �f and �r, respectively).
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Let D�0

t
, D�0

f
, D�0

r
DT 0

r
, DN 0 and DT 0

p
be the regions where the dual lines �0t, �

0
f and �0r,

and the dual points T 0
r, N

0 and Tp may lie due to uncertainty (Figure 3.37). Then, the
algorithm to partition the dual plane shown in Section 2.8.3 is modi�ed as follows when
uncertainty is considered.

Dual-plane-partition()

(1) Compute DT 0

r
as the segment lv

(2) Compute D�0

f
as the cone dmn (the dual region of lv)

(3) Compute D�0

t
as the region W0

(4) Compute DN 0 as the dual region of D�0

t

(5) Compute G0
i as the dual region of W

(6) Compute DT 0

p
as the resulting parallelogram of the intersection of D�0

f
and D�0

t
.

(7) Compute D�0

r
as the dual region of DT 0

p
.

(8) Compute D�0

r0
as the dual region of D�0

f
\W

END

In step (4), the edges of DN 0 can be obtained by computing the dual segments of the
cones composed with the lines of the border of D�0

t
. In step (7), the dual region of DT 0

p

can be computed as the union of the dual cones of the edges of DT 0

p
.

The partition of the dual plane considering uncertainty is used in Chapter 4 to determine
if an applied velocity command can produce an error-corrective compliant motion.

3.6.2 More than one basic contact situations

The Generalized Force Domain GS of a contact situation involving a set S of basic
contacts, which can simultaneously ocurr taking into account the uncertainties, is the
set of the forces resulting from the composition of all possible compatible reaction forces,
one at each basic contact. Therefore, the dual representation G0

S is the set of all non-
negative linear combinations of possible compatible dual reaction forces, one at each basic
contact.

Let s be any sub-set of S with inf(n� 1; 3) basic contacts.

Proposition 14:

GS �
[
8s�S

Gs (3.165)

Proof: If a generalized reaction force ~go satis�es ~g 2 Gs, then it is the resultant of one
force at each of the basic contacts of s and zero force at the other(s). Therefore ~g 2 GS.

�



3.6. FORCE ANALYSIS 125

From proposition 14, G0
S can be expressed as:

G0
S =

24 [
8s�S

G0
s

35 [ [H0
S] (3.166)

H0
S being a dual region associated to the basic contacts of S.

Proposition 15: For a contact situation with only one basic contact i, H0
i = G0

i.

Proof: For n = 1 the sets s are empty sets then
S
8s�SG

0
s = ;. �

Proposition 16: For a contact situation with two basic contacts i and j,G0
ij = G0

i [G0
j [H0

ij ,
with H0

ij = H(A0
i; B

0
i; A

0
j ; B

0
j) [H(A0

i; B
0
i; C

0
j ; D

0
j) [H(C 0

i; D
0
i; A

0
j ; B

0
j) [H(C 0

i; D
0
i; C

0
j ; D

0
j).

Figure 3.38 shows the four convex hulls that compose the region H0
ij and Figure 3.39

shows the domain G0
ij = G0

i [G0
j [H0

ij .

Proof:

Claim 1: Since G0
i is a trapezium, any point F 0

i 2 G0
i can be expressed as a linear

combination of two points, F 0
1i and F

0
2i, belonging to the diagonals A0B0 and C 0D0,

respectively, (i.e. F 0
i 2 F 0

1iF
0
2i) and satisfying F 0

1iF
0
2i � G0

i.

Claim 2: 8F 0
ij 2 G0

ij there exists a trapezium Q0
F with border @Q0

F such that F 0
ij 2 Q0

F

and @Q0
F � (G0

i [G0
j [ H0

ij). Being F 0
ij 2 G0

ij a linear combination with positive
coe�cients of F 0

i 2 G0
i and F 0

j 2 G0
j , then, from claim 1, F 0

ij 2 Q0
F , with

Q0
F = H(F 0

1i; F
0
2i; F

0
1j ; F

0
2j). The edges of @Q0

F whose vertices are on the same
domain belong to that domain (from claim 1). The edges of @Q0

F whose vertices
are on di�erent domains belong to H0

ij because the vertices are on the diagonals of
the domains and these diagonals are the segments that de�ne H0

ij .

Claim 3: G0
i[G0

j[H0
ij has no holes. Each of the four trapeziums that de�ne H0

ij can be
decomposed into two trapeziums sharing the edge formed by the intersection points
of the two diagonals of each domain. The union of trapeziums sharing an edge has
no holes, then as H0

ij is the result of the union of eight trapeziums sharing an edge,
it results that H0

ij has no holes. On the other side, as neither G0
i nor G0

j have holes
and all the vertices of H0

ij belong to G
0
i or G

0
j, the union of G0

i, G
0
j and H

0
ij have no

holes.

Claim 4: G0
ij � (G0

i [ G0
j [ H0

ij). From claim 2 and 3, 8F 0
ij 2 G0

ij there exists a
trapezium Q0

F that satis�es F 0
ij 2 Q0

F and Q0
F � (G0

i [G0
j [H0

ij).

Claim 5: (G0
i [G0

j [ H0
ij) � G0

ij . H
0
ij � G0

ij because the trapeziums that determine
H0

ij are build with the diagonals of G0
i and G0

j . Also, by de�nition, G0
i � G0

ij and
G0

j � G0
ij .

From claims 4 and 5 G0
ij = G0

i [G0
j [H0

ij . �
Proposition 17: For a contact situation with three basic contacts i, j and k,
G0

ijk = G0
ij [G0

ik [G0
jk [H0

ijk, with H0
ijk = H(F 0

i ; F
0
j ; F

0
k), for any F 0

i 2 G0
i, F 0

j 2G0
j

and F 0
k 2G0

k.
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0
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Proof: Let F 0
ijk 2 G0

ijk be a linear combination of any N 0
i 2 G0

i, N
0
j 2 G0

j and N
0
k 2 G0

k

and let de�ne N0 = H(N 0
i ; N

0
j ; N

0
k).

Claim 1: The border of N0 satis�es @N0 � (G0
ij [G0

ik [G0
jk [H0

ijk). By construction,
@N0 = N 0

iN
0
j [N 0

iN
0
k [N 0

jN
0
k and N

0
iN

0
j � G0

ij , N 0
iN

0
k � G0

ik and N 0
jN

0
k � G0

jk.

Claim 2: G0
rs \G0

rt is a connected region 8 r; s; t 2 fi; j; kg. Since G0
r is a connected

region that satis�es G0
r � (G0

rs \ G0
rt) then 8P 0 2 (G0

rs \ G0
rt) such that

P 0 62 G0
r, there should exist a path p that connects P 0 with G0

r and that satis�es
p � (G0

rs \G0
rt). Let R0

s 2 @G0
r, R0

t 2 @G0
r, S 0 2 G0

s and T 0 2 G0
t be points that

satisfy P 0 2 R0
sS

0, P 0 2 R0
tT 0, P 0R0

t 6� G0
r and P 0R0

s 6� G0
r (Figure 3.40); then:

a) P 0R0
s � G0

rs, since P 0R0
s � R0

sS
0 and R0

sS
0 � G0

rs.

b) P 0R0
s � G0

rt since as R0
tT 0 � G0

rt, R0
sT

0 � G0
rt and @G0

r is a closed line, then
8Q0 2 P 0R0

s there exists a segment R0T 0 with R0 2 @G0
r such that Q0 2 R0T 0

and therefore as R0T 0 � G0
rt then Q0 2G0

rt.

From a) and b) P 0R0
s is the path p that connects P 0 with G0

r and that satis�es
p � (G0

rs \G0
rt).

Claim 3: (G0
ij [G0

ik [G0
jk [H0

ijk) has no holes. From claim 2 8 r; s; t 2 fi; j; kg such
that r 6= s 6= t, G0

rs [G0
rt has no holes and, since by construction @N

0 is convex and
from claim 1 @N0 � (G0

ij [G0
ik [G0

jk), then (G0
rs [G0

rt [H0
ijk) has no holes. As

this is satis�ed 8 r; s; t 2 fi; j; kg then (G0
ij [G0

ik [G0
jk [H0

ijk) has no holes.

Claim 4: G0
ijk � (G0

ij[G0
ik[G0

jk[H0
ijk). From claims 1 and 3N0 � (G0

ij [G0
ik [G0

jk [H0
ijk),

8F 0
ijk 2G0

ijk.
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Claim 5: (G0
ij [ G0

ik [ G0
jk [ H0

ijk) � G0
ijk. By de�nition G0

ij � G0
ijk, G0

ik � G0
ijk,

G0
jk � G0

ijk and H
0
ijk � G0

ijk.

From claims 4 and 5 G0
ijk = G0

ij [G0
ik [G0

jk [H0
ijk. �

Proposition 18: For a contact situation with n > 3 basic contacts H0
S = ;.

Proof: Since planar movements have only three degrees of freedom
S
8s�SG

0
s cover all

the possible non-negative linear combinations spanned by the n basic contacts. �

3.6.3 Contact identi�cation from force information

An observed generalized reaction force ~go is compatible with the contact situation
determined by a set S of n basic contacts i� [7]:

Ug \GS 6= ; (3.167)

where Ug is the uncertainty force parallelepiped centered at ~go (Section 3.1.2). Figure 3.41
shows Ug together with its dual representation U 0

g.

Condition (3.167) is expressed in the dual plane as:

U 0
g \G0

S 6= ; (3.168)

From equation (3.166), this condition is satis�ed if and only if at least one of the following
two conditions is satis�ed:

U 0
g \ [

S
G0

s] 6= ; (3.169)

U 0
g \H0

S 6= ; (3.170)
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Figure 3.41: Generalized force uncertainty Ug and its representation U 0
g.

Given an observed reaction force ~go and the domain G0
S of a contact situation, the

following algorithm evaluates the above conditions. The algorithm returns \compatible"
when ~go is compatible with G0

S and \incompatible" otherwise; this result is stored in a
global variable RS that is used to speed up further evaluations of condition (3.169) for
other contact situations. The function test(H0

S, ~go) directly evaluates condition (3.170)
for a given observed reaction force ~go; it returns \true" when the condition is satis�ed
and \false" otherwise.

classify(G0
S, ~go)

FOR each s 2 S
IF G0

s has not been yet classi�ed THEN Rs = classify(G0
s; ~go)

IF Rs = \compatible" THEN

RS = \compatible"

RETURN RS

9>>>>>>>>>>>=>>>>>>>>>>>;
cond: (3:169)

IF test(H0
S; ~go) = \true" THEN RS = \compatible"

ELSE RS = \incompatible"

RETURN RS

9>>>>>=>>>>>;
cond: (3:170)

END

For a given observed force ~go, let de�ne:

V 0
q : the dual point representing the generalized force with head on vertex q of Ug, with
q 2 f1; :::; 8g.
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e0q: the straight segment containing the dual points representing the generalized forces
with heads on the edge q of Ug, with q 2 f1; :::; 12g.

P0
q: the polygon containing the dual points representing the generalized forces with heads
on the face q of Ug, with q 2 f1; :::; 6g.

Eq: the dual point of the line that contains e
0
q.

The function test evaluates condition (3.170) by sequentially testing the following three
conditions and returning \true", as soon as one of them is satis�ed, or \false" otherwise:

V 0
q 2 H0

S; for any q 2 f1; :::; 8g (3.171)

e0q \H0
S 6= ;; for any q 2 f1; :::; 12g (3.172)

P0
q � H0

S; for any q 2 f1; :::; 6g (3.173)

The evaluation of any of the conditions (3.171) to (3.173) assumes that the previous ones
are not satis�ed and it is performed in a di�erent way depending on the number of the
basic contacts involved, as it is speci�ed below.

One Basic Contact i

From proposition 15 and equation (3.163):

� Condition (3.171) is satis�ed if V 0
q belongs to both

dm0n0 and da0b0:
[V 0
q 2 dm0n0] AND [V 0

q 2 da0b0] (3.174)

Figure 3.42a shows a case in which the dual representations of two vertices of Ug are
inside G0

i.

� Condition (3.172) is satis�ed if a segment e0q crosses either
dm0n0 being inside da0b0, orda0b0 being inside dm0n0, or both regions being its supporting line the dual line of a

point of W:

[(e0q � dm0n0) AND (e0q \ da0b0 6= ;)] OR
[(e0q \ dm0n0 6= ;) AND (e0q � da0b0)] OR

[(e0q \ dm0n0 6= ;) AND (e0q \ da0b0 6= ;) AND (Eq 2W)] (3.175)

Figures 3.42b and 3.42c show two situations in which an edge e0q intersects G
0
i.

� Condition (3.173) is satis�ed if any arbitrary point (e.g. vertex A0) of G0
i belongs

to P0, since the edges of P0 do not cross H0
i:

A0 2 P0
q (3.176)

Figure 3.42d shows a case in which a face P0
q contains G

0.
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Figure 3.42: Examples of the classi�cation conditions for one basic contact: a) [V 0
q 2dm0n0] AND [V 0

q 2 da0b0] b) [(e0q \ dm0n0 6= ;) AND (e0q � da0b0)] c) [(e0q \ dm0n0 6=
;) AND (e0q \da0b0 6= ;) AND (Eq 2W)] d) A0 2 P0

q
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Two Basic Contacts i and j

From proposition 16:

� Condition (3.171) is satis�ed if V 0
q belongs to any of the four polygons that

compose H0
ij :

[V 0
q 2 H(A0

i; B
0
i; A

0
j ; B

0
j)] OR [V 0

q 2 H(A0
i; B

0
i; C

0
j ; D

0
j)] OR

[V 0
q 2 H(C 0

i; D
0
i; A

0
j ; B

0
j)] OR [V 0

q 2 H(C 0
i; D

0
i; C

0
j ; D

0
j)] (3.177)

Figure 3.39 shows a case in which an observed reaction force is compatible with a
domain G0

ij because the dual representations of three vertices of Ug lies inside H0
ij .

� Condition (3.172) is satis�ed if e0q intersects any arbitrary polygon of those
composing H0

ij , since it is already known that the vertices of e0q are not inside H
0
ij .

Selecting one of these polygons the condition is tested as:

e0q \H(A0
i; B

0
i; A

0
j ; B

0
j) 6= ; (3.178)

� Condition (3.173) is never satis�ed since, P0
q 6� G0

i, P0
q 6� G0

j 8q 2 f1; :::; 6g
and e0q \H0

ij = 0 8q 2 f1; :::; 12g.

Three basic contacts i, j and k

From proposition 17 the border of H0
ijk satis�es @H0

ijk � (G0
ij [G0

ik [G0
jk). Since the

function test is only called when condition (3.169) is not satis�ed it is already known that
U 0
g \G0

ij = ;, U 0
g \G0

ik = ; and U 0
g \G0

jk = ;; therefore, U 0
g is either completely inside

H0
ijk or completely outside. As a consequence, it is only necessary to test if a point of U 0

g

is inside H0
ijk; then:

� Condition (3.171) is satis�ed if

V 0
q 2 H(F 0

i ; F
0
j ; F

0
k) for any given q (3.179)

� Conditions (3.172) and (3.173) are never satis�ed.

More than three basic contacts

From proposition 18 the function test(H0
S , ~go) always returns \false".


