Chapter 3

Contact Uncertainty Analysis

This Chapter analyzes the sources of uncertainty that affect a planar assembly task and
their effect on the contact situations involving one or several basic contacts. The approach:

e makes the analysis in physical and configuration space, taking into account
the dependence between the sources of uncertainty and considering possible
complementary contact situations,

e presents a contact identification procedure which uses the nominal C’-space,

e introduces a method to reduce uncertainty and to adapt the motion commands during
the task execution,

e includes a force analysis.

3.1 Sources of uncertainty

Modelling and sensing uncertainties affect the task planning and execution. The nominal
model of a task is the description of the nominal objects involved in the task, and the
specification of their nominal initial and goal configurations. Modelling uncertainties
include deviations of the shape and size of the objects and the uncertainty in their
positioning. Sensing uncertainties deal with the uncertainty in the sensory information of
configuration and force.

The manipulation and fusion of the sources of uncertainty affecting the geometry of
the task has been done following different approaches like, for instance, verifying the
assemblability by propagating tolerances [10, 67, 68], extending the degrees of freedom of
the Configuration Space [33], mapping the real world uncertainty into the Configuration
Space [5] or considering probabilities [35].

In this work uncertainties are propagated considering the worst case for each uncertainty
source in order to cover all the real possible cases. For three degrees of freedom the
different sources of uncertainty are classified below. Figure 3.1 illustrates the sources of
uncertainty that affect the geometry of the task.
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Figure 3.1: Sources of uncertainty that affect the geometry of the task.

3.1.1 Modelling uncertainty

a) Manufacturing tolerances of object shape and size.

There exist several approaches dealing with homogeneous specification of tolerances;
typically they are based on the nominal object description [82, 9] and, in some cases,
they also consider the assembly context [35, 56, 55, 19, 114].

In the proposed approach, each object vertex is constrained to be inside a circle of radius ¢
centered on its nominal position. Let (v,0,v,0) and (v,, v,) be the nominal and the actual
vertex position in the object reference system, respectively. Then:

122y 2y) = (020, vy0) || < € (3.1)

e will be expressed as €;, and ¢;,, to distinguish between the tolerances of the static objects
and those of the manipulated object. The effect of manufacturing tolerances is a possible
change in the shape and size of the object that may allow a set of contact situations
different from the nominal ones (i.e. the ones allowed by the nominal geometry). Those
that can only appear due to the deviations from the nominal geometry will be called
complementary contact situations. Figure 3.2 shows a complementary contact situation
due to the effect of the manufacturing tolerances.

b) Imprecision in the positioning of the static objects.

It depends on how the objects are positioned in the work environment. A reasonable
assumption is that the static objects are placed in the workspace by feeders in such a way
that each object vertex lies inside a circle of radius €, centered on its nominal position.
Let (a.0,a,0) and (a,,a,) be the nominal and the actual vertex position in the world
reference system, respectively. Then:

(a2, ay) = (aeo, ayo) || < € (3:2)
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Figure 3.2: Complementary contact situation due to the manufacturing tolerances of the
static object (for clarity the manipulated object has been drawn without tolerances).

e, depends on ¢, and on the feeder error but, since the positioning operation can reduce
the uncertainty, it can be regarded as a source itself. When there is more than one static
object in the work environment, the imprecision in the positioning of the objects can give
rise to complementary contact situations as it is shown in Figure 3.3.

¢) Imprecision in the positioning of the object in the robot gripper.

The position of the vertices of the manipulated object depends on the uncertainties from
sources (a), (b), plus the imprecision in the position and orientation of the robot (source
(d) in Section 3.1.2) and undesired slippings of the object in the gripper; nevertheless,
since the grasping operation can reduce these uncertainties [79], it can be regarded as a
source itself.

It is assumed that each object vertex lies inside a circle of radius €, centered on its nominal
position. Let (hgo, hyo) and (h,, h,) be the nominal and the actual vertex position in the
gripper reference system, respectively. Then:

(s hy) = (oo, o)l < € (3:3)

3.1.2 Sensing uncertainty

d) Imprecision in the position and orientation of the robot.

There are several works dealing with this source of uncertainty, the main topics tackled
being the origin of the uncertainty [27, 61] and the resulting uncertainty at the robot
end-effector considering the robot kinematics [8, 78].
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Figure 3.3: Complementary contact situation due to the imprecision in the positioning of
the static objects.

In the proposed approach the worst case uncertainty at the robot end-effector is
considered, since this is normally the way in which the robot manufacturers specify
the robot precision. Let (z,,Yo,$o) and (z,,y,,d,) be the observed and the actual
configuration of the robot, i.e. the position and orientation of the gripper reference system
with respect to the world reference system. The actual position is constrained to be inside
a circle of radius ¢, centered at the observed position; and the actual orientation has a
maximum deviation €4 with respect to the observed one:

(20, yr) = (%0, Yo)l| < €p, (3.4)
|§b'r' - ¢o| S €, (35)
Let ¢,,, and ¢,,, be defined as:
¢Om = ¢o_e¢r (3‘6)
QSOAI = ¢0+E¢r (37)

Then, equation (3.5) will be rewritten as:

QST‘ E [¢0m7 QSOJ\/I] (38)

e) Imprecision of the force/torque sensor. Since typical force/torque sensors provide
each component value with a specified resolution, its uncertainty can be modelled for three
degrees of freedom considering that the components, f,, f, and f,, of the generalized
force g (Section 2.8) have independent maximum deviations es,, €5,
In the tridimensional force space this is equivalent to an uncertainty rectangular

and €y, , respectively.
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Figure 3.4: Force uncertainty parallelepiped U,.

parallelepiped U, centered in the observed generalized force g, = [fzo fyo f40]® and with
sides having a length of 2¢;,, 2¢; and 2¢, (Figure 3.4):

ny - fyo” < €f, (310)
||fq - fqo” S efq (311)

3.2 Analysis in physical space

This section studies how modelling and sensing uncertainties affect the position and
orientation of the contact edge and the position of the contact vertex. Let ¢, and ¢,
be the uncertainty in the position of the the contact vertex due to the imprecision in the
positioning of the objects and to the manufacturing tolerances, respectively. Let ¢, and
€:, be defined in a similar way for the vertices of the contact edge. Then, for type-A basic

contacts:
€y = €
€, — €
66 = e’nl
€, — €., (312)
And for type-B basic contacts:
€ = €Enm
€, = Et,
€. = €,
Ete = Etg (3 ]_ 3)
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3.2.1 Modelling uncertainty on the contact edge

The contact edge, e, must satisfy two conditions, that constrain its position and
orientation according to uncertainty:

Condition 1: The extremes of e must lie inside uncertainty circles of radius ¢, centered
on the nominal position of the extremes of the nominal edge.

Condition 2: The length [ of e must satisfy [ € [ly — 2¢;,,lp + 2€;, ], [y being its nominal
length.

Let 8 be the deviation in the orientation of e with respect to its nominal orientation. It
is assumed that |G| < /2.

Proposition 1: The mazimum value Byq. of |B| is:

arcsin(l;;Q) if (I — \/l% —4e2)/2 < &, <€
Bmaz = 2. (3.14)
2 arcsin( ﬁ) otherwise

Proof: The maximum possible deviation in the orientation of e occurs when the edge is
tangent to the uncertainty circles of its vertices (Figure 3.5a). Then, the length of the

actual edge is | = /12 — 4€2 and the maximum deviation is determined by the expression
Bmaz = arcsin(lfz). For a given €., this maximum orientation is reachable only if the
minimum possib(e length of the edge, ly — 2¢,, satisfies [y — 2¢;,, < [. This condition
can be rewritten to show that this maximum orientation is reachable when the maximum

deviation ¢;_lies in the range (I — /12 — 4€2)/2 < &, < e..

When this is not satisfied, i.e. 0 < ¢, < (lp — /12 — 4€2)/2, the maximum deviation is
reached for the minimum possible length of the edge, i.e. [y — 2¢;,. The expression of the
maximum deviation is obtained by using the cosinus theorem (Figure 3.5b):

LY [lo—2¢ \° L\ (1 —2
€ = (50) + (%) -2 (%) (%) oS Brnau (3.15)

and the trigonometric expression cos 3 = 1 — 2 sin? g As a result:

Boe = 2arcsin,| —e e (3.16)
( lo(lo — 2¢t,)
If ¢, = 0, like in Figure 3.5b, this expression becomes:
Binaz = 2arcsin(e./ly) (3.17)
o

Corollary 1: For a given deviation 3, the range of orientations of the manipulated
object that may produce contact is [y, + 3, du + 5], being [¢m, @] the nominal range
of contact orientations.
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Figure 3.5: The mazximum deviation in the orientation of the contact edge.

Let V, = (Vaz, Vay) and Vi, = (v, vsy) be the vertices of e such that V; is first encountered
when the border of the object is followed counterclockwise. Let 1 be the orientation of the
outward normal of e and v,, = (Vazy, Vay,) and vy = (Vbwy, Vby, ) be the nominal positions
of V,, and V}, respectively. Let finally C(z,y,r) be a circle of radius r centered on (z,y).

Proposition 2: The region Re,V,,[3) where the vertex V, of e lies for a given
deviation 3 1s:

R(e, Vi, 8) = C(Vany, Vayy, €c) N U C(Vbsy — Usin(Y + B), vpy, +{cos(v+ ), €)

VIE[lg—2es, Do +2ez, ]
(3.18)

Proof: From condition 1 V, satisfies:
Vi € C(Vasg, Vayo s €c) (3.19)
From condition 2 V, satisfies:

V. € U C (Vo — Isin(¥ + B), vpy, + Lcos(y + B),€.) (3.20)
Vle[lu—QF.tc o +2€f{3]

Then, R(e, V,, ) is the intersection of the circle of equation (3.19) and the reunion of

circles of equation (3.20). o

A similar reasoning can be done for vertex V. Region R(e, V,, ) is illustrated in Figure 3.6
for two different values of ¢, .

Corollary 2.1: R(e,v,01) C R(e, v, f2) if |51] > |B2| and B162 > 0.

Corollary 2.2: The border of R(e,V,, ) has two arcs a; and ap (Figure 3.6a) of the
circles defined by (3.20) corresponding to the maximum and minimum possible lengths of
e, respectively, if 2¢;, < e..
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Figure 3.6: Region R(e,V,, () for different values of ¢, .

Proposition 3: The region E(3) that contain all the possible realizations of e for a given
deviation (3 in its orientation is the positive linear combination of the regions R(e, V,, ()

and R(e, V4, 3).

Proof: The vertices V, and Vj, of any realization of e are inside the regions R(e, V,, ()
and R(e, V4, 3), respectively, and any point of e can be expressed as a positive linear
combination of V, and V;. o

Figure 3.7 shows the region E(3) for two different deviations in the orientation of e for
some given values of €, and ¢, .

E(() can be partitioned into three disjoint figures L,.(3), Ly, (8) and Ly, (3), as shown in
Figure 3.8a, being L, (5) the rectangle of maximum area inscribed in E(3) with two of its
sides over the parallel sides of the border of E(3). The width, d(3), and length, {(3), of
the rectangle L,(5) decrease with 5 in the following way:

dip) = 2(e.— %U| sin 3]) (3.21)

(B) = lycosf (3.22)

Let L(3) be the geometric figure obtained from Ly, (3) and Ly, (3) as shown in Figure 3.8b.
L(3) will be used in Section 3.3.4 to compute the effect of uncertainty on the contact

configurations. The center (c,, ¢,) of the maximum inscribed circle will be considered the
center of L(f). If 5 = 0 region L(f) is a circle:

L(0) = C(cy, ¢y, €) (3.23)

Corollary 3: The larger the deviation in the orientation the smaller E(f), since the area

of L,(8) decreases with .
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Figure 3.7: Region E(B) of possible positions of the contact edge for two deviations in its
orientation.

3.2.2 Modelling uncertainty on the contact vertex

The vertices of the manipulated object lie inside uncertainty circles of radius €, centered on
their nominal positions. Nevertheless, the position of the vertices depend on the deviation
in the orientation of the adjacent edges. Let V = (v,,v,) be the contact vertex and e,
and ej; be its adjacent edges, such that e, is first encountered when the border of the
object is followed clockwise. Let also a,, and ajs be the deviations in the orientations of
e and ey, respectively.

Proposition 4: The region V(a,,, anr) where the contact vertex lies is:
V(Oé'myaM) = R(e’m)‘/; a'm) N R(6M7V7 OéM) (324)

Proof: From corollary 2.1 the region where V lies for any «,, and oy, is expressed by
equation (3.24), since:

e R(e,n, V,a,,) is the region where V lies for a given deviation «,, when ay = 0, and

e R(ey,V,ay) is the region where V lies for a given deviation ays when o, = 0.

Corollary 4.1: If a,, = 0 and ay; = 0, then:
V(0,0) = C(vy, vy, €,) (3.25)
since

R(en, V,0) = C(v,,vy,€,)
R(en,V,0) = C(v,,vy,€,) (3.26)
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b)

Lv,(8)

Figure 3.8: a) Partition of E(53) into three disjoint regions L,.(3), Ly, (8) and Ly, ()
b) Geometric figure L(G).

Corollary 4.2: For a given pair of deviations «,,, ajs, the range of orientations of the
manipulated object that may produce contact is [¢,, — m, 3 — aps], being [@,,,, dar] the
nominal range of contact orientations.

Corollary 4.3: The maximum values a,,,,,, and ay,,,, of || and |ay|, respectively,

have an expression analogous to that of the maximum value f,,,, of || computed in
proposition 1.

Figures 3.9a and 3.9b show the regions R(e,,, V, o, ) and R(ey, V, apr), respectively.

3.2.3 Sensing uncertainty

The sensing uncertainty in the robot position is expressed in equation (3.4). Its effect on
the position of the topological element of the contact corresponding to the manipulated
object is the following:

o type-A: The region where the contact edge lies is E(8) convolved with a circle of
radius ¢, .

e type-B: The region where the contact vertex lies is V (e, apr) convolved with a circle
of radius ¢, .

These regions will be approximated by E(3) and V(a,,, ay), respectively, computed with
a larger uncertainty radius:

o type-A: €. =€, + €,
o type-B: €, = €, + €,
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Figure 3.9: a) Region R(e,,, V, anr) b) Region Rien, V, ).

Figure 3.10 shows the additional region introduced by this approximation.

The sensing uncertainty in the robot orientation is expressed in equation (3.8). Its effect
is not directly considered in the position and orientation of the topological elements of
the contact, but by explicitly considering the range where the actual orientation lies, as
expressed in the following definition.

Definition: The observed configuration ¢, is compatible with the occurrence of contact ¢
iff this can take place at one or more orientations of the range [¢,,, , Po,, |-

3.3 One basic contact situations

3.3.1 Nominal contact condition

Let F; be the C-face representing the nominal contact configurations for a given basic
contact i between a vertex V; and an edge e;, and let ¢, = (z,, Yo, §,) be the observed
configuration.

The nominal contact condition for contact ¢ can be expressed in physical space, in C-space
and in C'-space in the following way, respectively:

Vine;, # 0 (3.27)
cNF; # 0 (3.28)
(%0, 90) N fi(go) # 0 (3:29)

The contact condition is satisfied if ¢, € R, i.e. ¢, € Rfj) is a necessary condition for
contact ¢ to take place.
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Regions V(am, apr) and L(8)
] Regions V(auy, apr) and L(B3) convolved with a circle of radius €,

i Additional region introduced by the approximation

Figure 3.10: Additional region introduced by approximating the convolution region by the
uncertainty regions computed with radius €,, + €p, .

3.3.2 Contact condition in the presence of uncertainty

The effect of the uncertainty in the contact configurations is tackled as follows:

e The nominal C-space is used to determine if a observed configuration is a contact
configuration.

e A set of configurations is associated to ¢, and to each basic contact ¢ such that
contact ¢ can take place iff this set intersects F;.

Proposition 5: There exists an orientation &' € [¢,, ,do,,] such that ¢, is compatible
with the occurrence of contact ¢ iff this can take place at ¢!.

The proof is found in Section 3.3.3.

The contact condition in the presence of uncertainty is expressed in physical space by the
following proposition.

Proposition 6: A basic contact can take place iff for orientation ¢ :

V(am,an) NE(B) #0 (3.30)

for some values of the deviations o, ay and (3.

Proof: A point p; satisfying p; € [V(oy,, ay) N E(F)] simultaneously satisfies p;, €
V(am,ay) and p; € E(B). Therefore, it can simultaneously be a position where the
contact vertex can lie and a position where a point of the contact edge can lie, i.e. a
position where equation (3.27) is satisfied, and hence a position where the basic contact
can take place. o
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Proposition 7: The condition

(}52 € [ :n_am—i_ﬁa ¢§\/[ _OéM'i'ﬁ] (331)

1s a necessary condition for contact i to take place.

Proof: A contact is possible if the actual orientation of the robot lies inside the
corresponding range of contact orientations. From corollaries 1 and 4.2, the range of
nominal contact orientations is shifted by the deviations (3, a,, and aj;. Considering all
of them gives rise to expression (3.31). o

Corollary 7.1: From corollary 2.1 it follows that:

L(61) C L) if 61| > |B2]
V(aml’aM) - V<a7rz.27aM) if |O['m1| > |a'm2| (332)
V(am,ap1) C V(am,ans) if |ayi| > oo

Therefore, the uncertainty in the position of the topological elements of the contact for
all the possible values of the deviations can be taken into account by only considering the
uncertainty region defined by the deviations with minimum absolute value.

Corollary 7.2: If A’fﬁ is defined as:
. 0 if ¢ €[, b
Ay =4 & — o, if ¢, < ¢y, (3.33)
¢ — ¢y i ¢, > Py

then, proposition 7 can be rewritten as:

B—ay > Al if 6> 8

f—am <Ay I ¢, < ¢,
i.e. a contact can take place if the deviations in the orientations of the edges is enough
to cover the orientation gap A;

(3.34)

From corollaries 7.1 and 7.2, the following values of the deviations will be considered for
the analysis of the contact configurations:

a) ¢, > d
a, = 0
B—ay = A} (3.35)
The contact is possible for some given pairs (5, ay) and for any value of a,,
(Figure 3.11a). Therefore, V(ay,, ay) = V(0,an) = Rien, V, anr).
b) ¢, < ¢
oy = 0

B—anm = A (3.36)

The contact is possible for some given pairs (5, a.,), and for any value of ay
(Figure 3.11b). Therefore, V(an, an) = V(am,0) = R(en, V, ).
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c) ¢, € Ry:
Ay =
Ay =
g =0 (3.37)
The contact is possible for any value of the deviations. Therefore, the contact vertex
and the vertices of the contact edge can lie anywhere within their uncertainty circles
as expressed in equations (3.23) and (3.25).

Let a be defined as:

oo i B < P
o _{ NI N (3.38)

For a given basic contact 4, the contact condition of equation (3.30) will be tested using the
nominal C-space by associating to ¢, a set of configurations U’(a, 3) such that contact i
can take place iff U'(«, 3) interects F;. U*(a,3) will be called Contact Position Region.
Therefore, proposition 8 follows.

Proposition 8: When equation (3.30) is satisfied, the Contact Position Region U'(a, 3)
satisfies:

U'(a, 8) N fi(4)) # 0 (3.39)

where ¢! is defined as:
5= 6+ A (3.40)

Corollary 8.1: Proposition 8 can be rewritten as:

U(0,0) N fi(gs) 0 if ¢} € [4],, Sl |

U’f(aM,,B) N fl'(ngﬁv[) £ 0 if qﬁf? > ng"M with 0 — ay = A:f/) (3.41)
U, B) N fi(¢h,) 0 i ¢, < ¢, with 8 — a., = A}

Corollary 8.2: Contact ¢ can take place for an observed configuration ¢, iff
equation (3.39) is satisfied for a given set of values a and (.

Definition: The Contact Position Domain U'(A}) is the union of the Contact Position
Regions U*(a, 3) for all the pairs of deviations a and 3 satisfying 8 — a = Afﬁ:

uay) = U U(ap) (3.42)
Vaﬂw—a:A;

Proposition 9: If equation (3.30) is satisfied for some given values o and (3, the Contact
Position Domain satisfies:

U'(Ay) N fi(}) # 0 (3.43)
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Figure 3.11: Different values of a,,, apr and 8 that satisfy equation (3.31) for orientations
(a) ¢, > ¢u and (b) ¢! < Py




iiAl L1710 9. \CA VSO DE LV D VELAATE Ui Y N Ve I U, v Sy SEabe B DE U DN NVF Y

Corollary 9: Contact ¢ can take place for a observed configuration ¢, iff equation (3.43)
is satisfied.

3.3.3 The orientation gbf,

By proposition 5, the test to verify if ¢, 1s compatible with the occurrence of contact i is
performed at only one orientation. This Section gives the proof of this proposition and
the procedure to compute this orientation.

Proposition 5: There exists an orientation ¢’ € [¢,,. ,Po,,| such that c, is compatible
with the occurrence of contact i iff this can take place at ¢!.

Proof: Let d,(¢) be the distance from the observed position (z,,y,) to the line
containing f'(¢), with ¢ € Rff,:

dp(¢) = |Dp(8) = Ds(9)] (3.44)
where (Figure 3.12a):

e D,(¢) is the distance from the origin of {W} to the observed position (z,,,) in
the direction ¢y (for type-A basic contacts Yy = 7 + ¢ + m and for type-B basic
contacts ¥y is independent of ¢):

D,(¢) = z,cos Yy + y,sin ¢y, (3.45)

e D(¢) is the distance from the origin of {WW} to the line containing f’(¢), as defined
in equations (2.4) and (2.5) for type A and type B basic contacts, respectively.

The distance d,, is minimum at one or two orientations of the range [¢,, , ,,,]- Let ¢! be
one of these orientations. Then:

o If the contact can take place at orientation ¢! then ¢, is compatible with the
occurrence of contact i, since ¢! € [P, , Doy, |-

o If ¢, is compatible with the occurrence of contact ¢, i.e. (3.43) is satisfied for an
orientation ¢ € [¢,,., o], then (3.43) is also satisfied for orientation ¢, since for
this orientation the observed position is closest to the nominal contact positions. ¢

Computing ¢!

Let introduce:

¢ : orientation such that d,(¢;) = 0.

E;% : the derivate of d, with respect to ¢.
¢, : orientation such that 9dp | =,

¢
2
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Figure 3.12: Orientation @' for a type-B basic contact: (a) ¢! = ¢, (b) &' = ¢ (c)
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For type-A basic contacts:

(2 — o) £ /(i — 20)2 + (4 — %0)2 —
od, { (2, — 2o)sin(Yr + ¢ +7) — (45 — Yo) cos(Yr + ¢ + ) if D,(¢) > D‘f%“)

¢ = —Yr — 7w + 2arctan( ) (3.46)

d¢ —(zi — zo) sin(yr + ¢ + ) + (vi — yo) cos(¢r + ¢ + ) if Dy(¢) < Dy
én = arctan(yf%io) — kr — 4y with k= {0,1} (3.48)

For type-B basic contacts:

o= Yw+T—y— arccos(xo €05 Yu ;zl— Yo 51Tl ¢W) (3.49)
9d, _ { —hsin(Yw +7 — v — @) if Dy(8) > Ds() (3.50)
0¢ hsin(w +7 =7 — ¢) if Dy(¢) < Ds(¢) '

én = Yw + kv —; with & ={0,1} (3.51)

o mm/}‘”;y“ SiI”/)W| > 1 then ¢; does not exist, otherwise there are two possible values. If

If
both of them satisfy ¢; € [@o,,, Po,,] then one of them is arbitrarily chosen.

The algorithm to compute ¢! is as follows (Figure 3.12):

Find-orientation(c,, 1)

IF [Pom, Porr] N R; = () RETURN the extreme of [¢om, dour] closest to Ré)

ELSE
Compute ¢;
IF ¢ € [o,,, Do, ] RETURN ¢y
ELSE:
Compute s, = %i; and sy = %—‘ff
Pom bony

IF s,, > 0 and sp; > 0 RETURN ¢,
IF 5,, < 0and sy < 0 RETURN ¢,_,
IF s,, < 0 and sy > 0 THEN
Compute ¢y,
RETURN ¢,
IF s,, >0and sy <0
Compute ¢y,
IF ¢, > ¢, RETURN @,
ELSE RETURN ¢,

END
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/()

Figure 3.13: Contact Position Region U'(a, 3) when ¢! € pr.

3.3.4 Construction of the Contact Position Region

The Contact Position Region:

a) Is a circle of radius (e, + €, + €,,) centered at the observed position (Figure 3.13)
when ¢! € R, since a = 3 = 0 and the contact vertex and the vertices of the contact
edge can lie anywhere within their uncertainty circles.

b) Is a region that intersects f'(¢,,) or f'(¢r) when the contact can take place at an
orientation ¢, ¢ R, (equation (3.41)).

Let V(a) be defined as follows:

V(e,0) if ¢, <4,

Vie) :{ V(0,a) if ¢ > ¢y (3:52)

Let P, = (P,, P,,) be the center of Ui(a,ﬁ) which is obtained from (z,,y,) by:

(a) Rotating an angle a around the center (z,,y,) of the edge adjacent to the contact
vertex:

x; = x,+ (:EO — :cv) cosa — (yO — yq,) sin

Y, = Yo+ (xo— @) sina+ (y, — yy) cOS (3.53)

(b) Rotating an angle —3 around the center (z.,y.) of the contact edge:

wy = e+ (z, — ) cos(—f) — (v, — ye) sin(—P)
Yo = Yot (2, —x)sin(=F) + (¢, — ye) cos(=f) (3.54)
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(c) Translating, in the direction of the nominal contact edge, a distance ¢:

L l,(1—cosp) if (cos, sin ) (zo — Tey Yo — Ye) > 0 (3.55)
| —lo(1 —cosfB) otherwise '

1 being the orientation normal to the nominal contact edge:

P, = z'+ dcos(y + 7/2)
P, = vy +dsin(¢ +7/2) (3.56)

Then, the algorithm to compute the Contact Position Region is the following:

U*(a, 3)-construction(c,)
IF ¢}, € R}, THEN U(a, 8) = C(z,, Yo, € + €0).
ELSE
(1) Rotate L(3) and V(a) an angle —(3 around their respective centers.
(2) Find the convolution region of the regions obtained in the previous step.
(3) Center the obtained region at P,.
END

The border of the convolution region of step (2) is obtained when the center of one
figure traverse the border of the other. This border can be described by up to five
arcs of circumferences and two straight segments, as detailed below, if the following
approximations are done:

e R(e,V, ) is computed considering that the condition of corollary 2.2 is not satisfied,
and therefore the border of R(e,V,3) does not have the arcs a; and a;. As a
consequence, the shape of L() is always that of Figure 3.14a.

e The region where the topological element of the contact corresponding to the
manipulated object lies is approximated by (Section 3.2.3):

type-A : Region L(8) computed with ¢, = ¢, + ¢,
type-B : Region V(a) computed with ¢, = ¢, + ¢,

The following nomenclature is used (Figure 3.14):

e The border of region L((3) is composed of two arcs and two straight segments, as in
Figure 3.14a, which are described by the following variables:

l.: length of the contact edge
1. orientation of the normal to the contact edge
re = €. — (l./2)| sin 8], radius of the maximum inscribed circumference

Yo = arccos((Qre — ee)/ee)

and the following points of L(/3) described with respect to its center, Py, once L(53)
has been rotated an angle —( around it:
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Figure 3.14: a) Region L(B) and V(a), where the uncertainty €, in the position of the
robot is taken into account in €,, since it is a type-B basic contact b) Regions L(() and
V(a) rotated —3 around the respective centers.
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((e. — 7re) cosy, (€, — 7.) sin )

(—(ec — 1) cosp, —(e. — 7)) sin )

(Dy + €. cos(Ye + 9), Dy + €. sin(y. + ¢))
= (

(

Q"UDJD
I

E, 4+ e.cos(m+ v, +v), B, + e sin(m + . + ¢))
e Region V(a) is described by the following variables:

l,: length of the edge adjacent to the contact vertex

ry = €, — ({,/2)| sin(—a)|, radius of the maximum inscribed circumference.
¥o = arccos((2r, — €,)/€)

and the following points with respect of the center, P,, once L(() has been rotated
an angle —3 around it:

C = ((e, — ry)cost, (€, — 7y) sin )
A= (C, + € co8(vp + 1), Cy + €, 8in(y, + )
B = (C, + €, cos(—, + ), Cyy + €, sin(—7, + ¥))

Then, the border of U*(«,3) is composed of the following arcs (Figure 3.15a), described
with respect to its center P,:

arc a: center: C!, = A+ D
C'=F+C
— —
if CyC! x CpCl'< 0 then C, = (), else C, = (]
radius: R, = €. if C, = C! else R, = ¢,
limits: [y, + ¢, arctan(Cy, — C,) + 9]

arc b: center: C, = FE +C
radius: R = €. + ¢,
limits: [arctan(C, — C,) + ¢, 7+ 9]

arc c: center: C. =G+ C
radius: R, = €,

limits: [ + ¢, arctan(Cy— C.) + 9]

arc d: center: C;=FE + C
radius: Ry = ¢, + ¢,
limits: [arctan(Cy — C.) + d), arctan(C’d —C.)+ ]

The arc does not exist if CdC' X C’dC' <0

arc e: center: C, = B+ F
radius: R, = ¢,
limits: [arctan(Cy — C.) + ¢, 27 + 9]

Figure 3.16 shows the obtained region U*(a, 3) for two different pairs of values of a and (3.



J.J. ALy 1AV VUYL AN JEdd U AN

arc a arc b : arc ¢

arc d

V2 - —

Figure 3.15: a) Arcs that compose the border of U'(a, ) b) Bounding box Boz(U'(a, 3))
that approzimates U'(a, 3).
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(dn) i(om)

Figure 3.16: Contact Position Region U'(a, 3) when ¢! > ¢y, for two different pair of
values (a, 3).
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Bounding box

In order to simplify the contact identification algorithm (Section 3.3.6), an oriented
bounding box Boz(U'(a,3)) is computed. The sides of the oriented bounding box are:

r=2(re+71,) =€ — (I./2)]sin 5] + €, — (1,/2)| sin(—a)] (3.57)
and

d=2(d. +d,) (3.58)

where d, and d, are defined as follows:

_J eesiny. if Te < €0/2
de = { €, otherwise (3.59)
4 - { €,8in"y, if T < €,/2 (3.60)
€ otherwise

The vertices of Boz(U"(«a,3)) with respect to P, are (Figure 3.15b):

Vi = (=dsiny +rcost,dcost) + rsiny)
Vo = (—dsiny —rcostp,dcost) — rsini)
V3 = (dsiny —rcostp,—dcostp — rsin)
Vi = (dsiny +rcosyp, —dcos ) + rsiny) (3.61)

In the worst case the area of Box(U'(a,3)) is a 27% bigger than the area of U(a, 3).
This can be shown by computing the areas when a = § = 0, since for these values
the difference is maximum. U*(0,0) is a circle of radius (¢, + €.) and the corresponding
bounding box is a square of sides 2(¢, +¢€.). Let Ay and Ap be the areas of U'(«,3) and
of Boz(U"(a, 3)), respectively:

AU - 7(61) + 66)2
Ap = 46 +€) (3.62)
Then:
Ap — Ay

o= 2% (3.63)

Let D,,, and D, s be the distances from the origin of {W} to the sides of Boz(U'(a,3))
that are parallel to the contact edge, and Dy, and Dy, be the distances from the origin
of {W} to the sides of Box(U"(a,3)) that are perpendicular to the contact edge:

)

D, = P,.cos(¢p)+ P, sin(¢)) —r

D,y = P,.cos(¢p)+ P,,sin(¢p) +r

Dy = Poycos(yp +7/2)+ P,ysin(¢p +7/2) — d
(

D Py cos() +7m)2) 4+ Pyysin(p + 7/2) + d (3.64)

where (P,,, P,,) is the center of U’(a, 3) defined in (3.56). These distances will be used

to compute the bounding box of the Contact Position Domain.
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3.3.5 Construction of the Contact Position Domain

The Contact Position Domain:

a) Is a circle of radius (e, + €, + ¢,,) centered at the observed position (Figure 3.13)
when ¢! € R, since Afﬁ =0.

b) Can be represented, when ¢! & R, as the union of only a finite set of Contact Position
Regions, in order to avoid the complexity of finding the border of the union of all the
Contact Position Regions satisfying 3 — a = A}, (equation (3.42)). The number of
Contact Position Regions considered is such that the deviation in orientation between
them is an order of magnitude less than the error in the orientation of the robot, i.e.

|8; = Bit1] < €4, /10.

The algorithm to compute the Contact Position Domain is the following:

U’(A})-construction(c,)
IF ¢, € R, THEN U(a, 3) = C(Z0, Yo, € + €).
ELSE
Compute g and Bya., the maximum possible values of a and g from (3.14)
Qmin = |A;5| — Bimaz
Bnin = |Af;s| — Qmax
Ay = Qnae — Xnin

§ =¢4./10
n = TRUNc(m—i“('%(';A“’A"” +1)
U (A}) =0
FOR k=1 TO n
ag = Qmin + kAL /(n—1)
O = Afﬁ +

Ui(AL) = Ui(AL) U U (g, i)

END

Figure 3.17 shows the approximation of U‘(Aj}) for three different orientations
satisfying ¢’ < @' .

Bounding box

An oriented bounding box, Box(Ui(Afb)), can also be computed for Ui(Ai,)) in order to
simplify the contact identification algorithm. The sides of Box(Ui(Af/))) are computed
by finding the boxes Boz(U"(«a, 3)) whose sides are at a maximum or minimum distance
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A, = 02139 A = 0.0927 A, = 0.2136

Figure 3.17: Approximation of U‘(Afb) by the reunion of U'(a, 8) for a finite set of pairs
(o, ), for three different orientations satisfying ¢, < &

m*

from the origin of {W}. Let:

e (3., be the value of 8 such that D,,, is minimum
e (3. be the value of @ such that D, 1s maximum
® (4. be the value of # such that Dy, is minimum
e (411 be the value of 3 such that Dgy, is maximum
where D,..., D,ar, Day, and D gy where defined in (3.64). To compute these values of g,

the derivates with respect to G of the distances expressed in (3.64) must be computed.
Taking into account that:

e (z.,y.) is the center of the contact edge

(24, yy) is the center of the adjacent edge of the contact vertex used to compute the

center P, of U'(A})

P, is expressed in equation (3.56)

e 7 is expressed in equation (3.57)
e sign(f) = l%l if B # 0 and sign(8) = 1 otherwise

_ i
® « can be expressed as a = [ — A}

the value of d expressed in (3.58) is approximated by d = ¢, + ¢,
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then, the expressions of the derivates are the following:

OD'I"m . . le ’ le . - L
= (Yo — ye)cos(yp + B) — (xy — xe) sin(yp + B) + mgn(ﬂ)(E cos(f) — £} sin(f8 — A;))(3.65)

0B
ag/;M = (5o — yo) cos(tp + B) = (2 — z,) sin(th + ) — sign(ﬁ)(% cos(f) + lzisill(ﬁ — A}))(3.66)
Do = g )i+ ) (o~ ) <o+ ) (3.67)
aza)/},M _ aggm (3.68)
Let D’ be %—g, and let 3,, and §3; be the minimum and maximum possible values of

for a given Ajy:

Bmae Otherwise

/BM — { Alg{) if /BWLCLQJ > A;‘)

if A% >0 , 4
e, o o if Qe > A
"o Aé — Qpas Otherwise
0 if Qpas > —Aﬁ[)
P =\ A herwi
@ + a,pee Otherwise

if A, <0 ; : .
B A o

—Bmaz otherwise

where O,,4, and ., are the maximum values of |3| and |a|, respectively, as computed
in proposition 1 and corollary 4.3.

Then, the expressions of B,,., By, Bam and Bgyr are equal to:

e (3, or By when the derivates of the distances evaluated at these extreme values have
the same sign,

e the value that satisfies D’ = 0, otherwise.

By if D!, (Bn)>0and D, (By) >0

rm

ﬁmn . ﬁM if D:ﬂm(,@m) < 0 and D:“m(/gM).< 0 (3 69)
' 2(yo—ye) cos(hp) —2(zy—z¢ ) sin(4hp)+S1EN(B) (I — 1 sin(A;)) ’
2(yu—ye ) sin(y)+2(wo—we) cos(4))+SIGN ()l sin(AY)

arctan( ), otherwise

By if D)y(Bm) > 0and D), (Bu) >0

By = 4 B if Diyg(B) < 0and Dy (Bu) <0 o (3.70)
2(yo—ye) cos(p)—2(zy—2, ) sin(eh) —S1N(B) (I.—1, s1n(Al¢))
2(yz,—ye)sin(a,/))+2('mv—;r,e)cos('t/))—Sign(ﬂ)lU sin('AZ))

By if D) (B) > 0and D, (Buy) >0
Bam = Bm if D4, (Bm) < 0and D!, (Bu) <0 (3.71)

—1) — arctan(%) , otherwise
v Je

B if Dy(Bm) > 0and DYy, (Bar) > 0
Bam = Bu i Dpr(Bin) < 0 and Dy (Bar) <0 (3.72)

—1) — arctan(%) , otherwise
v €

arctan( ), otherwise
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Figure 3.18: Boz(U'(A})).

Once these values of 3 have been obtained, the lines that contain the sides of Boa:(U’:(Afb))
can be expressed as:

x cos(y
x cos(¥
z cos(y) + m/2) 4+ ysin
zcos(y) + m/2) 4+ ysin

P

where (Figure 3.18):

Tapm =

LTrm = -Poz(/61m) -
Yrm = POI,I(/BI 'm) -

Tdm = Po:l: (ﬂwn)
Ydm = Pm/( rm)

+ysiny = Z,.,C08Y + Yy, siny
+ysiny = x,7co8Y + Y SIinY
Y+7/2) = zgmcos(Y + 7/2) + ygmsin(y + 7/2)
Y+7/2) = zaycos(Y+ 7/2) + yau sin(y + 7/2)

7(Brm) cos
7(Bym) sin ¢
Por(ﬁrM) + T(ﬂrM) COs ¢
Poy(ﬁ" ) + T(ﬁrM) sin 'Qb
dcos(y + 7/2)
dsin(¢ + 7/2)
Po(Brm) + dcos(yp + 7/2)
Poy(Brmr) + dsin(y¢ 4+ 7/2)

3.73
3.74
3.75
3.76

(3.73)
(3.74)
(3.75)
(3.76)

(3.77)
(3.78)
(3.79)

(3.80)
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Finally, the vertices of Box(Ui(Afb)) can be obtained by projecting in the direction of 1
the points P, and Py, into the lines that contain P,,, and P,j;. Let define:

di = (Tam — Trms Ydm — Yrm) - (cos(¢ + 7/2),sin(¢ + 7/2)) (3.81)
do = (Tam — Torty Yam — Yrur) - (cos(vp + m/2),sin(yp + 7/2)) (3.82)
ds = (Tam — Trpt, Yarr — Yrua) - (cos(yp +7/2),sin(yp + 7/2)) (3.83)
dy = (Tam — Tem, Yasr — Yrm) - (cos( + m/2),sin(yp + 7/2)) (3.84)

Then, the vertices of Boaj(Ui(Af'/))) are (Figure 3.18):

Po= | ST (255
Po= | 2T (50
P, = (xg,yg){ v ﬁfi cczlj;?f((zzb:://;)) (3.87)
H=<%%%Ziixﬁ$$ﬁ:ﬂ? (3.88)

3.3.6 Contact identification

In the presence of uncertainty, a given observed configuration ¢, = (z,, ¥,, ¢,) is a contact
configuration of a basic contact ¢ if equation (3.43) is satisfied:

U'(AG) N fi(d)) # 0

The algorithm Contact-ldentification(c,, U*(AY)) to test equation (3.43) uses the algorithm
Contact-ldentification(c,, U'(a, 3)) that tests if equation (3.39) is satisfied for any given
possible pair of values a and (:

U'(a, B) N fI(¢)) # 0

The algorithms are the following:
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Contact-Identification(c,, U*(A}))
(1) IF ¢, € R THEN
(1.1) IF C(z0, Yo, €c + €,) N f'(¢") # 0 RETURN TRUE
(1.2) ELSE RETURN FaLsE
(2) ELSE
(2.1) IF Boz(U'(A})) N f'(¢}) = 0 RETURN FaLsE
(2.2) FOR k=1 TO n
r = Contact-ldentification(c,, U*(a, 5r))
IF » = TRUE THEN RETURN TRUE
(2.3) RETURN FALSE
END

Contact-Identification(c,, U'(a, 3))
(1) IF Boz(U' (e, 3)) N f'(¢:) = @ RETURN FALSE

(2) IF the perpendicular projection of the center of U*(a, 3) into the line containing f'(¢!)
belongs to f'(4:) THEN RETURN TRUE

(3) ELSE
(3.1) IF f'(#}) intersects any of the arcs of U’(a, 3) RETURN TRUE
(3.2) ELSE RETURN FaLsE
END

As an example Figure 3.19 shows:

a) An edge of an static object and a vertex of a manipulated object (with its adjacent
edges) which can produce a type-B basic contact.

b) A situation where the observed configuration may correspond to a contact
configuration, since U‘(Afb) N fl(#)) # @ and hence E(B) N V(a) # 0, (where
B = a =0 since gbﬁ) € Rf/))

¢) A situation where the observed configuration may not correspond to a contact
configuration, since U*(ay,31) N fi(#:) = © and hence E(3;) N V(a;) = 0 (where
pi1 — a1 = ¢, — du, since ¢, € Ry).

d) The previous situation for different values of the deviations. Since U'(ag,82) N f1(¢L) # 0

and hence E(52) NV (az) # 0, for these deviations the contact is possible. Therefore
the observed configuration is considered a possible contact configuration.

The same is illustrated in Figure 3.20 for a type-A basic contact.
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Figure 3.19: Contact identification of a type-B basic contact.
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Figure 3.20: Contact identification of a type-A basic contact.
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Simplified contact identification algorithm

A simplified contact identification procedure can be used, which only takes into account
the bounding boxes. This results in:

o A faster test (since the test with the arcs of circumferences is avoided).

e The possible occurrence of false positives (i.e. the identification of a contact for a
configuration where the contact is not possible).

The algorithm is as follows:

Simplified-Contact-Identification(c,, U'(A}))
(1) IF ¢! € Ry THEN
(1.1) IF C(z0, Yo, €c + €,) N f'(¢°) # 0 RETURN TRUE
(1.2) ELSE RETURN FALSE
(2) ELSE
(2.1) IF Box(U'(A})) N f'(¢;) = 0 RETURN FaLse
(2.2) FOR k=1 TO n
IF Box(U'(ay, B)) N f'(4:) # @ RETURN TRUE
(2.3) RETURN FALSE
END

3.4 More than one basic contact situations

Let:
Co = (@, Yo, Po): be the observed configuration.
S: be a set of basic contacts.

Cg: be the nominal contact situation involving the basic contacts of S.

Proposition 10: There exists an orientation ¢> € [d,,,, o] such that c, is compatible
with the occurrence of contact situation C iff C's can take place at ¢5.

Proof: Let d.(¢) be the distance from the observed position (z,, y,) to the closest nominal
contact position of C'g corresponding to orientation ¢. Let ¢5 be an orientation of the
range [@om, donr] such that d. is minimum. Then:

o If the contact can take place at orientation ¢° then ¢, is compatible with the
occurrence of contact situation Clg, since ¢5 € [¢o,, , Doy, -

o If ¢, is compatible with the occurrence of contact situation Cyg, then the contact
can take place at orientation ¢7, since for this orientation takes place the minimum
possible distance between the observed position and a nominal contact position. <
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The orientation ¢> is computed as follows:

e If Cs only involves one basic contact i then ¢ = ¢! where ¢' is obtained by using
the algorithm Find-orientation(c,, %) of Section 3.3.3.

e Otherwise, if [Py, Porr] N Rg = (), then ¢ is the extreme of [Py, Ponr] closest to
RS.
¢

o Otherwise, if Cs involves two basic contacts and Rj/f is a unique orientation

d)e € [d)oma ¢0M]7 then ¢§ = ¢e-

e Otherwise, if Cs involves more than two basic contacts and ¢, € [Pom, Ponr] is the
orientation of the nominal C-vertex, then ¢5 = ¢,.

e Otherwise, ¢3 is computed as follows. Let (e.(¢),e,(¢)) be the position of the C'-
edge for a given orientation ¢, (e,(¢), e, (¢)) its derivate, and (t,(¢),t,(¢)) be the

unitary vector in the direction (e}(¢),e,(¢)), i.e. in the direction of the tangent

to the C'-edge at a given orientation ¢. Let also define the following vectors

(Figure 3.21):

Un = (€x(Pom) — To, €y(Pom) — Yo) (3.89)
Uy = (ew(¢oM)—$o7€y(¢oM)—yo) (3~90)
We = (€a(Porr) = €alPom): €y(Porr) = €y(Pom)) (3.91)
v, = |Zif| (3.92)

The distance d.(¢) is:

de(®) = \/(ea(@) — 20)2 + (e4(@) — 1) (3.93)

And its derivate is:

d(¢) =

(3.94)

The minimum of d, occurs:

— At one of the extremes of [Py, Ponr] if dL(Gon) and d.(Ponr) have the same sign.
The sign of d.(¢) is the same as the sign of the following scalar product:

(€2(@) = 2o, €4() = Yo) - (£(), 1(9)) (3.95)

If the range [@om, dorr| is small, then (t,(dom ), ty(Pom)) and (tu(dorr), ty(Porr))
can both be approximated by @,. Therefore, the sign of d.(¢om) and d.(¢oum)
can be determined as the sign of v, - U, and ¥y, - v,, respectively. If both
signs are negative it means that the minimum of d. occurs for the maximum
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b)

d)

Ty >0 Upr - U >0

?7m?76>0 U7n've<0

Figure 3.21: a) C'-edge of a contact situation involving two type-B basic contacts, b) An
ezample where ¢5 = ¢,r, since for the given observed position Ty - v, < 0 and @, - ¥, < 0,
¢) An example where QSf = Pom, since Uy - U, > 0 and ¥,, - U, > 0, d) An example where
¢S € [Pom, Do, since Ty - T, > 0 and Ty, - 7, < 0

value of the range, i.e. ¢° = ¢our (Figure 3.21b). If both signs are positive it
means that the minimum of d, occurs for the minimum value of the range, i.e.

¢ = Gom (Figure 3.21c).
— At the orientation ¢ € [Pom, Ponr| such that d.(¢) = 0 if d.(¢dom) and d(donr)

have different sign. Assuming that ¢ varies linearly along the line that connects

(em(gbmn),ey(gbom)) and (em(qﬁoM),ey(qﬁoM)), then the value gbf that satisfies
d.(¢3) = 0 is approximated by (Figure 3.21d):

— —

Ui * Ve

"
| Um |

(;55 = ¢0m -

((ZSOM - ¢om)

The algorithm to compute @7 is as follows:
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Find-orientation(c,, Cs)

END

IF C's only involves one basic contact ¢ THEN RETURN Find-orientation(c,, %)
ELSE IF [¢om, Porr] N R;? = () RETURN the extreme of [@,.n, donr] closest to Rg
ELSE IF Cg involves more than two basic contacts THEN RETURN ¢,

ELSE IF Cs involves two basic contacts and
Ri}f is a unique orientation THEN RETURN ¢,

ELSE
IF %, - %, > 0 and ¥y - 7, > 0 RETURN @,,,
ELSE IF @, - 7, < 0 and @y - 7 < 0 RETURN ¢,us

ELSE RETURN ¢ — 225 (dorr — dom)

3.4.1 Contact uncertainty dependence

Definition: Given a set S of basic contacts, a source of uncertainty is independent if it
can give rise to complementary contact situations, and it is dependent otherwise.

Let:
D:
I:

Given the deviation produced by a dependent source of uncertainty on a toplogical
element of S, then the deviation produced by this source of uncertainty on all the
other topological elements is determined. The following sources of uncertainty are
dependent:

a) The uncertainty in the position and orientation of the robot.
b) The uncertainty in the positioning of the manipulated object in the robot gripper.

c) The uncertainty in the positioning of an static object when all the contacts of S
involve the same static object.

Given the deviation produced by an independent source of uncertainty on a toplogical
element of S, then the deviation produced by this source of uncertainty on all the
other topological elements is not known, although it may be constrained to a subset
of all the possible deviations (e.g. the manufacturing tolerances when the involved
topological elements are contiguous'). The sources of uncertainty not considered in
the previous item are independent.

be the set of dependent sources of uncertainty affecting the basic contacts of .S.

be the set of independent sources of uncertainty affecting the basic contacts of S.

ep: be the sum of the maximum deviations in the contact position due to D.

er: be the sum of the maximum deviations in the contact position due to I.

ITwo edges are contiguous if both end at the same vertex, two vertices are contiguous if they are the

endpoints of the same edge, and a vertex and an edge are contiguous if the edge ends at the vertex.
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The values of €p and ¢; are the following:

a) If the contacts involve the same static object:

€D = €p, T € — €+ €y — €, (3.96)
€] = €, T €, (3.97)

b) If the contacts involve different static objects:

€D = €p, T Ey — €&, (3.98)
€1 = €, +¢€ (3.99)

Weighting the effect of dependent and independent sources of uncertainty

Let A;gi be the deviation in orientation of contact ¢ € S

0 if ¢5€R;
AJ =1 ¢5—¢i, if ¢S <¢l, (3.100)
@5 — Py if 95 > iy

A(‘Z" may be due to the dependent and the independent sources of uncertainty:

Si
A

= AL |+ A7 (3.101)

where Ai’l is the deviation in orientation due to the independent sources of uncertainty
that affect contact ¢, and AgD is the the deviation in orientation due to the dependent
sources of uncertainty that affect all the contacts of S (Figure 3.22a).

The balance between dependent and independent sources of uncertainty that will be
considered is such that the uncertainty in the contact position is maximum. The value of
AgD is choosen such that for each contact : € S, the sum of the areas of the associated
Contact Position Domains due to the dependent and independent source of uncertainty
is maximum.

AgD is computed as follows. Let approximate the area of a Contact Position Region by
the area A of its bounding box:

A=rd (3.102)
Where r and d are computed as follows:

o If the values of |A£l| are small enough to approximate sin |A£’| by |Ai"|, and the

values of |a| and || are expressed as a function of |Ai"

B8] = qlAF (3.103)
o] = (1-q)AF] (3.104)
where ¢ € [0, 1], then equation (3.57) becomes:
le 1, v
r= (€ +€)— (§q+ S —q))|A7 (3.105)
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c) >
d) - >
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- |Aij| >
A%,
|A§D| =0
° < A3 ~
- |A§j| >
e o3

Figure 3.22: Balance between dependent and independent sources of uncertainty.
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e d is approximated by:

d=c. + e (3.106)
Therefore, the area A is:
A = rd
= (ke — (b a)(Za+ 21— 9)IAT]
= Amas — k|AY (3.107)
where:
Amae = (et 6)? (3.108)
b= (atea)(let 20 -g) (3.109)

Considering the Contact Position Regions due to the dependent and independent sources
of uncertainty, equation (3.107) is particularized as:

AD = AD’mam - kD|AgD| (3110)
Ar = Appae — kil A, (3.111)
where:
ADmaw = 62D (3112)
AIm.aa: = 6% (3113)
l€ l’u
ko = en(59+ 5 (1-q)) (3.114)
le L
ko= ealgq+ 5 (1—q) (3.115)
Then, the sum of Ap and Ay is:
Ar = Ap+ A;
= ADm/a,m + Ahnam - ]{3]|Ai;| - kD|A£D| (3116)
Taking into account (3.101), Ar can be expressed as:
Ar = Apmas + Atmaz — k1| AJ| + (kr — kp)|A]_| (3.117)

To determine the value of |A£D| that maximizes Ar, the following derivate is computed:

0Ar
g = (1 =ko) (3.118)

Then, the maximum of A7 is found for the minimum or for the maximum value

of |A] |:
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The following algorithm computes the value of |A£D| and |A£;

e The choosen extreme depends on the values of ¢; and €p:

e The minimum and maximum values of |A£D| are computed as follows. Let |A

If e > €ep, since (%q—l— %”(1 —q)) is always positive, then (k; —kp) > 0; therefore
the maximum of Ap is found for the maximum value of |A£D |.

Otherwise, if ¢; < €p, the maximum of Ar is found for the minimum value of
s

|A¢D|.

S;

‘f’D mazx
be the maximum absolute value of the deviation in orientation of contact ¢ € S
due to the dependent sources of uncertainty. Then, the range of possible contact
orientations of contact ¢ considering the dependent sources of uncertainty is:

(5, — |A

mazx stfw + |ASLD

maz) (3.119)

Let |A£} |maz be defined in a similar way for the independent sources of uncertainty.
The values of |Ai§)|m(m and |Ai§|m(w are the sum of the corresponding maximum
values of |a| and ||. Therefore the extremes of |A£D| are:
a) Mazimum of |A3 |: The maximum value of |A3 | is bounded either by |A£i| as
in Figure 3.22b, or by |A(‘Z;|,,,Law as in Figure 3.22¢, for any contact i € S:

: Si S;
min([AG] o [A4]) (3.120)

b) Minimum of |AgD|: The minimum value of |A(‘2D| depends on weather the

orientation gap |Ai’ for each contact i € S can be covered by the independent
uncertainty sources (Figure 3.22d), or not (Figure 3.22e):

Si
vax(ad

— |A% | naz, 0) (3.121)

Vi € S, such that Ap is

maximum for a given ¢7.

Uncertainty-balance(¢?)

END

Compute |Ai"| ViesS

IF €; > ep THEN [AS | = minyies(|A] |maa, |A)
mazs 0)
Compute |AJ | = |AJ| —|AZ | Vie S

RETURN |AS | and |AJ | Vi€ S

)

ELSE [AJ, | = maxwies(|A7 | — [A3
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7 Si
Fi(7")
€s
Rl WS s s; S5 s
S o US (00,90, A3 ) = U (20,90, A7)
. ‘ } \
| \ !
| /f // (»7707'yo) '
| i |
! €
| s
| S
| . / J
| €i f]'(th )
| |
! |
! |
|
| %
L e e m == == -
B S [N U I Y S N
- ' ! V. L
. - J Lo L1 nominal position
\ P T . . (s o
i € AN I I .-
, | - -~ real position
| |
| : contact 2: vertex V; vs. edge e;
|
__________________________ L
contact j: vertex Vj vs. edge ¢;

Figure 3.23: Effect of independent sources of uncertainty: the current configuration of the
manipulation object is at a possible contact configuration of a nominal two-basic contact

situation, since U (z,, Yo, A;S;;) N (¢7) # 0 and Ufj(a:o, Yo, Af;j) N f]’(qbf’) £ 0.

3.4.2 Independent sources of uncertainty

Let U}gi(:c, Y, Ai}) be the Contact Position Domain U‘(Ai;) built considering D = () and
I # 0, and located with respect to (z,y)>. U}gi(x,y, Ai}) is a circle of radius ¢; centered
at (z,y) when ¢° € R, since in this case A(‘le = 0.

Proposition 11: Assuming D = 0, ¢, may be a contact configuration of Cg iff:
U7 (20,90, A3 N Fi(97) 0 Vie s (3.122)

where ¢ is defined as:
¢ = 45 + A (3.123)

Proof: From corollary 9, the observed configuration is compatible with the occurrence
of all the basic contacts of S, when equation (3.122) is satisfied. This occurrence can be
simultaneous, since the uncertainties are independent. o

2The construction algorithm of Section 3.3.4 locates the Contact Position Domains with respect to
the observed position (z,,¥,).
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s; Siy — U (o S;
€q U[ (mosyo:Ad‘,I)_U]J(”'a:yav¢t )
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€;
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’
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Figure 3.24: Effect of independent sources of uncertainty: the current configuration of the

manipulation object is at a possible contact configuration of a complementary two-basic
contact situation, since U7’ (2o, Yo, Ailj) N fZ'(QStS’) # 0 and Ufj (Zos Yos Ai}) N f;(quJ) £ 0.

As an example Figure 3.23 shows a contact situation with two type-B basic contacts ¢
and j involving different static objects. Only the sources of uncertainty affecting the
static objects are considered, which in this case are independent sources of uncertainty
(i.e. €7 = ¢€,). In this example, since ¢ € Ry and ¢ € Ry:
Si _ A5 _
Dgp =By, =
S,‘ S;
=@y = ¢§

U}q"(ajo, Yo, Ai’j) and Uf‘i(;vo, Yo, Ai}) are both equal to a circle of radius e,.

The current configuration of the manipulated object may correspond to a contact
configuration, since equation (3.122) is satisfied, i.e. U}gi(xu,yo,Aij) N fz’(gbf’) # () and

U (20,90, AT 1 F1(659) 0.

Complementary contact situations may arise due to independent sources of uncertainty,
since equation (3.122) can be satisfied regardless of the existence of the nominal contact
situation. Figure 3.24 shows a contact situation similar to Figure 3.23, where in this case
the manipulated object is at a configuration that is compatible with the occurrence of a
complementary two-contact situation.
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3.4.3 Dependent sources of uncertainty

Let:

Ps(¢) : be the nominal contact position of Cs for an orientation ¢:

Ps(¢)= () fi(¢) (3.124)

Vi€eS

U%’(A;?;D) : be the Contact Position Domain U*(A3 ) built considering D # § and
I =10. 1t is a circle of radius ep centered at (z,,y,) when ¢5 € R, since in this case

S
Az =0.
Proposition 12: Assuming [ =0, c, may be a contact configuration of Cs iff:

Ps(¢7) € UF(AS)) VieS (3.125)

where ¢7 is defined as:
¢ = ¢35 + AF, (3.126)

Proof: If equation (3.125) is satisfied then:
U (AL )N fi(¢7) #0 Vies (3.127)

is satisfied and therefore, from corollary 9, the observed configuration is compatible with
the occurrence of all the basic contacts of S, and from equation (3.124) this occurrence
is simultaneous. o

As an example Figure 3.25 shows a nominal contact situation with two type-B basic
contacts ¢ and j involving different static objects. The only uncertainty source considered
is the uncertainty in the positioning of the robot, which is a dependent uncertainty source
(i.e. €p = €, ). In this example ¢ € RZ)], and therefore, U%(AgD) is a circle of radius €p,
since AgD = 0. The current configuration of the manipulated object may correspond to
a contact configuration, since equation (3.125) is satisfied, i.e. Ps(¢?) = [f!(¢7) N f]'(qﬁf)]

satisfies Pg(¢?) € Uy (A;gD) and Ps(¢7) € U%j(A(‘zD).

3.4.4 Dependent and independent sources of uncertainty

Let U%(AgD) be defined as:

Uj(AS) = Vﬂs U (AS) (3.128)
1€

U3 (A7) is a circle of radius €p centered at (x,,%,) when ¢3 € RS, otherwise it will be
approximated by the intersection of the corresponding bounding boxes.
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Fi(¢7)

Figure 3.25: Effect of dependent sources of uncertainty: the current configuration of the

manipulation object is at a possible contact configuration of a nominal two-basic contact
situation, since Ps(¢7) € U (AS,).

Proposition 13: The observed configuration ¢, may be a contact configuration of Cg iff:
U (2,00, AJ) O fl(¢7) £0 Vie S (3.129)

where (z4,v;) is the point of U%(AgD) such that U}ql(:nt,yt,Aij) is closest to
fll¢) Vie s.

Proof: If equation (3.129) is satisfied, from corollary 9, the observed configuration is
compatible with the occurrence of all the basic contacts of S. This occurrence can
be simultaneous, since the Contact Position Domains of (3.129) are built considering
independent sources of uncertainty, and are all located with respect to (z,v;), which is a
position compatible with the observed position (z,,,) considering the dependent sources
of uncertainty. o

Determination of (z;,1;) when ¢5 € R}

Let first consider two basic contacts ¢ and j, and let define the following nomenclature
(Figure 3.26):

e /; and [;: lines that contain f/(¢5) and fj'(gbf), respectively.

e Dy, and Dy, distances from (2t,y) to l; and [;, respectively.
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(i, 9:)
(flim 'yo)
[ ]

Ub(Ag,)

F(63)

Figure 3.26: Nomenclature.

e d;, and d;;: distances from Ufi(a:t,yt,Ai;) and Ufj(a:t,yt,Ai;) to [, and [},
respectively.

b: line such that dj, = dj; is satisfied when (@4, y1) € b.

e O;: intersection of [; and [;.

O: point that coincides with Oy if f/(¢5) and fJ’(ngf) intersect, or otherwise O is the
point computed as follows:

1- compute the intersections of b with the four segments formed with the extremes
of fi(¢7) and fi(¢7)-

2- O is the intersection point which is closest to O;.

e (z;,y;): point of U%(A;ED) which is closest to /.

(2;,y;): point of U3 (AZ ) which is closest to [;.

When ¢° € R;S; then:
e AS =0
Si _ ASi
° A¢I - A¢I -
v S;
o 67 = g5 = ¢S

o U3 (A7) is a circle of radius ep centered at (x,,,):

U3 (ASF,) = C(0, Yo €p) (3.130)
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. U}g"(ajt,yt,Aij) and U}gj (a:t,yt,Aii) coincide and are equal to a circle of radius ¢;
centered at (z, y:):

) ) S S
Ufz ($t7 Yt A:/S:ZI) = U[] ($t7 Y, Ad)j) = C(xta Yt, 6[) (3131)
Then, since equation (3.131) holds:

di, = Dy, —e;.

d,j = Dy, — ;.

b is the bisecting line of /; and [;.
(37@'7?;/1') = (%,yo) - ED(COS ;, sin %‘)
(75, 9;) = (%0,40) — €p(cos ¢, sin ;)

Therefore, (z;,vy;) is computed by the following algorithm, which is illustrated in
Figure 3.27:

Determine-position(c,, AZZD; A;f})
IF O € Uj(A7 ) RETURN O
ELSE
Intersect b with U%(AiD)
IF the intersection exists RETURN the intersection point closest to O
ELSE
IF U%(AQED) belongs to the angular sector defined by b and I; RETURN (z;, ;)
ELSE RETURN (;, ;)
END

For more than two basic contacts, the position (z¢,y:) is computed as the mid-point of
the positions obtained for each pair of basic contacts.

Determination of (z;,;) when ¢S ¢ R(‘?)

When ¢° ¢ Ré’; the algorithm to determine (x4, y;) is the same as the one detailed in the
previous Section, but some of the variables used vary in order to consider the following
items:

(1) The center of Ufi(xt,yt,Aij) is determined from (z;,v;) by the two rotations
described in the algorithm U"(a, 3)-construction of Section 3.3.4

(2) The shape of U3 (x4, us, Ai}) and U (AJ ) depend on the values of Ag; and A7 .
The corresponding bounding boxes will be considered to simplify the computations.
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a) b)

Up(Ag,)

bSO £1(65) b

(@iyi)
(ﬂ?tj’y‘t)*”/’

(@j.95)

Figure 3.27: Determination of (¢, y:).

The changes are the following:

a) Lines l; and l;:
Taking (1) into account, the minimum distance from the center of U7 (zy, v, A3

to fZ'(qu’) can be computed as the distance from (x4, y;) to a line [; obtained from
the line that contains ft’(qﬁ;q’) by:

— Rotating an angle (,,,, around the center of the corresponding contact edge,
where (,,,, is the deviation for which U}g"(xt,yt,AiI) is closest to fz'(gbts’)
(Section 3.3.5).

— Translating in its perpendicular direction a distance:
d(u‘ = (.TIO — l’;) COS(¢i + /6‘1-7n,i) + (yo - y:)) Sin<1/)i + ﬁTmi) (3132)
where (z!,v/) is defined in equation (3.53).

The line /; is computed in a similar way.
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b) Distances dj, and dy;:

Taking (2) into account, if r7,(5ym,;) and 77, (ﬂrm,j) are the widths r of Bow(U}gi) and
Bo;v(Uf'j) computed for the deviations (,,,, and (3,,,,, respectively, then:

dl- = -Dli - ‘rli(ﬁrmi) (3133)

z

d; = Dy —r1j(Bem,) (3.134)

c) Line b:
Is the line defined by the point O; and the vector:

¥ = (dj, cos; + d,j cos ¥y, dy, sin1); + d,j sin 1) (3.135)

d) Points (z;,y;) and (z;,vi):

Taking (2) into account, if 7p;(B,m,) and rp;(Bym,) are the widths 7 of Boz(U3%)
and Boz(U?%) computed for the deviations 3,,,, and Brm;, Tespectively, then:

(‘rivyi) = (:rm yO)_TDi(ﬁTmi)(COSwi;Sinlpi) (3136)
(i, yi) = (To,%0) — 7D (Brm, ) (cos j, sin 1)) (3.137)

Examples

As an example, Figure 3.28 shows a contact situation with two type-B basic contacts ¢
and j involving different static objects. Since ¢° € ng then:

Si _ ASi _ AS
A¢>I_A¢1_AD_O

S,‘ S
o=y = ?bf
U%(AEZD) is a circle of radius ep centered at the observed position (z,,,).

Uf"(:vt, Yt Ag}) and Uf’j(xt, Yt Ai}) are circles of radius €; centered at (z¢, y:).

In this example, the current configuration of the manipulated object may correspond to a
contact configuration, since equation (3.129) is satisfied, i.e. U}gi(azf, Yt, Ag;) N f{(qﬁf’) # 0

and Uy (24,31, AJ) N f1($77) # 0.

Figure 3.29 shows a similar example to that of Figure 3.28 but in this case ¢° € Ré) and
¢S ¢ Ry In this example:

A =0

A =0

Aj = 05— b

6 = 65 and ¢, = Yy
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HCA

€] = €s + etm,

€p = epr + €m — €,

TR

Figure 3.28: Effect of dependent and independent sources of uncertainty: The
current configuration of the manipulation object is at a possible contact configuration
of a mominal two-basic contact situation, since Ufi(;vt,yt,Ai;) N f{((ﬁf‘) # 0 and

Uy (w0, AJ) 0 f5(607) # 0. In this example ¢ = 67 = 4.
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Figure 3.29:

Si Si
U7 (=, un\A )

; @ ) \_F(87) = £1(6hy)

d)

N
Hrj @ ED N\ GPr + €7n - etm
N N a7 = Fihy)
Sl S = £ ]

@ Flé7) = Fi(#hy)

€] X €5 T €,

RS = F6D)

Two-basic contact situation where ¢ satisfies ¢5 € RY, ¢° ¢ Ré). In this
example the deviations in the orientation of the topological elements of the contact are
considered to be produced only by the independent uncertainty sources.
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U3 (AJ,) is the circle of radius ep, shown in Figure 3.29b together with a point
(@, 1) € Up(AF,)

U}g‘i(xt, Y, Ai}) is the circle of radius €; centered at (z¢,y:) shown in Figure 3.29¢

Ufj(xt,yt,Aii) is the Contact Position Domain Uj(Aji) located with respect to
(24, y¢), shown in Figure 3.29d

Since U}g"(xt,yt,Ai;) N fi(¢7") # 0 and U}gj(:ct,yt,A:zj) N f]'(czﬁfj) # (), the configuration

of the manipulated object can be a contact configuration of the two-contact situation.

3.4.5 Contact identification

The contact identification procedure for contact situations involving more than one basic
contact must consider the dependencies between the sources of uncertainty. Given an
observed configuration ¢, = (&,,%,,%,) and contact situation Cg involving a set S of

basic contacts then, for proposition 13, the contact identification procedure must verify
U}gi(;vhyt, Ai}) N f7'(d)fi) # (b for all the contacts of S.

Given the position (z;,1;) and the deviation in orientation due to dependent sources of
uncertainty AgD, this is done by using the contact identification algorithms for one basic
contact detailed in Section 3.3.6.

The contact identification algorithm is the following:

Contact-Identification(c,, Cs)
IF Cg only involves one basic contact + THEN
r = Contact-Identification(c,, Ul(Afb))
RETURN r
ELSE
¢35 = Find-orientation(c,, Cs)
{|A§D|,Ai;} = Uncertainty-balance(¢?)
(2t,y:) = Determine-position(c,, AgD , Ai’l)
FOR:=1TO S
r = Contact-ldentification(c,, Uf"(a:t,yt,Agj))
IF 7 = raLse THEN RETURN FaLsE
RETURN TRUE
END




Udviuod/auvr Adiv eI 4 1uu/ad/0U V1T A\ULY 111

3.5 Uncertainty reduction

The sensory information of configuration and force may be used during the execution of
the assembly task to:

e Estimate the position and orientation of the topological elements involved in the
contacts.

e Reduce the uncertainty.

Therefore, it is possible to make the task execution more reliable as it evolves towards its
goal, since:

e The commands to be executed may be modified with the estimated values and hence
the motion may become more accurate.

e The estimation of the current contact situation may become more exact.

Given a basic contact ¢ compatible with a observed configuration, the following items are
tackled in this section:

e Estimation of the orientation of the contact edge (Section 3.5.1)

e Estimation of the position of the contact vertex (Section 3.5.2)

e Estimation of the position of the contact edge (Section 3.5.3)

e Use of the previous estimations to modify the C-arcs where the contact ¢ is involved
(Section 3.5.4)

3.5.1 Estimation of the orientation of the contact edge

Let Rg be the range of possible values of the deviation 3 in the orientation of the contact
edge. From the geometry of the contact, Rs = [—fmaz; Omaz], Where the value of Gn4s
was determined in proposition 1. Figure 3.30a shows the topological elements of a type-B
basic contact and Figure 3.30d shows the minimum and the maximum deviations in the
orientation of the contact edge.

Proposition 14: If contact i takes place at a given observed orientation c,,
then R[i g [_/Bm,am; m,am]'
Proof: Let define (Figure 3.30b):

: orientation of the normal to the contact edge.

V, and Vj: vertices of de contact edge such that V, is first encountered when the border
of the object is followed clockwise.

A and B: extremes of f/(¢,) corresponding to V, and V.
L_U’A = Cy — A
7=B-—A
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TXD 4 )
][ty

€5+€U)
[&al

54 = arcsin(

&4 = arcsin(

S4: boundle of lines crossing the circumference where the contact vertex lies and the
circumference where V, lies.

S4 can be computed in C'-space as the boundle of lines crossing A and the circumference
of radius €. + ¢, centered at c¢,. The orientations of the lines of S4 belong to the range

[V +7/2 4+ B2 b +x/2464,.], where:

Sin = 6a—¢&a

Let &g, 8, £p, Sp, BB, and B2 be defined in a similar way (Figure 3.30c).

mn max

Provided that contact ¢ is taking place at the current observed configuration, the
supporting line [ of the contact edge satisfies:

€S, AND [ € Sp (3.139)

Therefore, the range Ry is (Figure 3.30e):

Rﬂ = [_Bma /QM] (3140)

ﬁm = lnaX( _ﬁmaazaﬁim,a ,Bgm) (3141)

ﬂM = Inin(ﬂmazaﬂfl,am;ﬁg,am) (3142)
&

For each new observed contact configuration, Rs is updated:

ﬁvn = max(,@m, 'rﬁfin? 'ﬁ'én)

The contact identification becomes more precise if this reduction in the uncertainty of
the orientation of the contact edge is taken into account to built the Contact Position
Domain. On the other hand, once Eg has been determined, an estimated value of the
deviation, [., is used to modify the robot commands by changing the orientation v of the
contact edge by (¢ + (.) (Section 3.5.4). From corollary 2.1, the estimated value is the
deviation with smallest absolute value:

Be € Rg such that |B.] < |6 VB € Rg (3.144)

The initial estimated value is 8, = 0, since initially R = [—Bmaz, Bmaz)-

3.5.2 Estimation of the position of the contact vertex

The position of the contact vertex corresponding to a basic contact ¢ is estimated as
follows, when contact i occurs at the current observed configuration ¢, = (24, Yo, Po)-
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Figure 3.30: a) Topological elements involved in a type-B basic contact, b) ¢) boundle
of lines, S4 and Sp, crossing the circumference where the contact vertex lies and the
circumferences where V, and Vy, lie, respectively, computed in C'-space, d) minimum and
mazimum deviation of the orientation of the contact edge due to uncertainty, e) minimum
and mazimum deviation of the orientation of the contact edge due to uncertainty, for a
given observed contact configuration c,.
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Let define (Figures 3.31 and 3.32):

di = Dy(¢,) = Ds(¢0) (3.145)
d2 = € + €y — |d1| (3146)
d3 = [GU — dé]sign(dl) (3147)

where sign(d;) = |Zli_i| if dy # 0 and sign(d;) = 1 otherwise, and D,(¢,) and D¢(¢,) were
defined in Section 3.3.3 as:

o D,(¢,) = x,coshw + Y, sin Yy the component of the vector from the origin of {W'}
to the observed position (z,,y,) in the direction ¥y (for type-A basic contacts
Yw = ¢¥r 4+ ¢, + ™ and for type-B basic contacts ¢y is independent of ¢).

e D(¢,): the distance from the origin of {W} to the line containing f'(¢4,) as defined
in equations (2.4) and (2.5) for type A and type B basic contacts, respectively.

The region where the actual contact vertex lies when contact ¢ occurs at the current
observed configuration ¢, = (z,, Yo, ¢,) is:

(1) V(a)if ¢, ¢ R,
(2) V(0,0) if ¢, € R} and V(0,0) C E(0).
(3) V(0,0) N E(0), otherwise (the shaded region of Figure 3.31a).

Then, the vertex with nominal position (v,,v,) is estimated as:
(1) the center of V(a) if ¢, ¢ be
(2) the nominal vertex if ¢, € Rés and V(0,0) C E(0).

(3) otherwise as:

Ve = (va,, vy, ) = (v, + d3cos ), v, + dssin ) (3.148)

For type-B basic contacts the estimated vertex will be expressed as:

— /2,2 2
he - Ume + U'!le

Y. = arctan(v, /v, ) (3.149)

For the analysis of the reaction forces (Section 3.6.1), the region where the actual vertex
lies may be approximated by a segment, [,, which has the following extremes (Figure 3.32):

M, = v, +d,cos(vp+7/2)
M, = v, +d, sin(¢ + 7T/Q)
N, = v, +d,cos(yp —7/2)
N, = v, +d,sin(¢ —7/2) (3.150)

where, respectively:
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Figure 3.32: Estimation of the position of the contact edge (h, and .).

(1) d, is expressed by (3.60)
(2) dv = €y

(3) d, is expressed as:

d - { €0 sin[a,rccos(dzﬁ_%)] if dy < e, (3.151)

€ otherwise

3.5.3 Estimation of the position of the contact edge

Given a basic contact ¢ which can occur at a given observed configuration ¢, = (., Yo, @),
and the following estimated values:

o 3., v, and v, for a type-A basic contact

e 3., h. and 7, for a type-B basic contact

then, the distances dpr and dy, which determine the position of the contact edge, are
estimated as:

dre = D(¢,) — vy, cos(Pp + ¢o + 1) — vy, sin(¢r + ¢, + 7) (3.152)
dwe = D(¢,) —hecos(dw + Be + 7 — e — @) (3.153)

where D(¢,) = z,cos(Vw + Be) + yosin(¢w + 5e)

3.5.4 Modification of the C-arcs

The C-arcs (both C.-arcs and Cj-arcs) were determined in Chapter 2, being any
configuration of the C-arcs expressed as a function of the C-edges of the C-item or C-
prism where the C-arc is defined.
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The expression of the C-edges were described in equation (2.11) as:

D; sin(¢w;) — D; sin(Yw:)
sin(Yw; — Ywi)
_ Dicos(¢w,) — D, cos(Yw)
sin(Yw; — Ywi)

q = po

where D), with k = {i,j} was described in equations (2.5) and (2.4), depending on the
type of basic contact:

D, = xcostw + ypsin Yy + dp for type-A basic contacts

Dy = hjcos(w + 7 — v — @) + dw for type-B basic contacts (3.154)

Therefore, the C-arcs, which were off-line determined from the nominal geometry, can be
on-line modified by changing the nominal values describing the position of the contact
vertex and the position and orientation of the contact edge by the corresponding estimated
values computed in the previous Sections.

3.6 Force analysis

Let assume that the force sensor has its reference frame coincident with {7'}, the reference
frame of the manipulated object.

Definition: The Generalized Force Domain Gg, associated to a observed configuration
¢, compatible with a contact situation C's involving a set S of basic contacts, is the set
of the generalized reaction forces that may arise when Cg takes place at configuration c,.

Let G's be the dual representation of Gg.

3.6.1 Omne basic contact situations

The Generalized Force Domain G; of a contact situation with only one basic contact 7 1s
composed of the forces satisfying the following two conditions:

o Contact-point condition: the line of the reaction force must intersect the region where
the contact vertex may lie for the current observed contact configuration c,.

e Direction condition: The direction of the reaction force must be in the range
[ — €y, ¥ + €4] where 9 is the normal to the contact edge and ¢, is the deviation
that takes into account the effect of friction and of the uncertainties affecting the
direction of the reaction force.
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Figure 3.33: Approzimation of region V(0,0) by the segment [,.

Contact-point condition

The region where the contact vertex may lie for the observed contact configuration c,
has been determined in Section 3.5.2. The maximum area of this region is obtained for
the deviation a with minimum absolute value, and for the orientation ¢!. In order to
compute G;, this region is approximated by the segment [,, since nearly all the lines of
forces intersecting this region will intersect [,. The maximum error introduced by this
approximation is produced when the region is the circle V(0,0). This maximum error
is computed as follows (Figure 3.33). Let Ascctor and Agriangie be the areas of the sector
and the triangle formed with the points A, B and the origin O. Then the area A of the
shadded region represents the area not considered by the approximation:

A = Asector — Atriangle = 612,(61/, — sin €, cos €y) (3.155)
Then: y ) ' ‘
e2(€, — SN €y COS € €, — SII €, COS €
error — = “( ¥ ¥ 1/)) . L4 L (3.156)
Av(0,0) Te2 T

For example, if ¢, = 7/6 then the error is 12%.

Direction condition

The reaction force direction is determined by the direction ¥ of the normal to the contact
edge when no uncertainty and friction are considered. When these effects are taken into
account, the reaction force direction belongs to the range:

Ad
2 b

Ay

[¢ + ™ — arctan u — Y+ BM 4 arctan p + 7] (3.157)
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where:

e [—arctan y, arctan u| is the range of deviations due to the effect of friction, x4 being
the friction coeflicient.

o [3™,BM] is the range of deviations due to the uncertainty in the orientation of the
contact edge (Section 3.5.1).

° [—%, %] is the range of deviations due to the uncertainty in the orientation of the
robot, taking into account the current observed configuration:

Aqbl S QS()M - Qbom (3158)

A¢y is computed as follows. Let define (Figure 3.34):
(Zoms You) = (To — (€c + €) cOS P, Y, — (€ + €,) sin D))
(oyrs Yoyy) = (2o + (€c + €,) cOs Y, y, + (€. + €,) sin )

W (9h) = To,, COS Py + Yo, SN Y

(%) = T4y, COSUW + Yoy, sin Yy

M
(¢%) : distance from the line containing f'(¢!) to the position (z,,,,¥o,, )

dp,, (8,) = 1Dy, (8,) — D¢(d))] (3.159)

D,
D,
d,

d,, (¢!) : distance from the line containing f'(¢!) to the position (z,,,, Yo, )
dpri(05) = |Dpy(8)) — Dy ()] (3.160)

éu,,, P, orientations that satisfy d, (¢,) = 0 and d,,,(¢1,,) = 0, respectively.
They are obtained from equations (3.46) and (3.49) for type-A and type-B basic
contacts, respectively:

If ¢, < ¢,,, orif ¢ does not exist, then ¢; = ¢,
If ¢1,, > ¢,,, orif ¢;,, does not exist, then ¢;,, = ¢,,,
Finally, A(ZSI = QZSIM — d)lm.

Estimation of the orientation of the contact edge

The observed generalized force can also be used to constrain Rg (as done in Section 3.5.1
from the configuration information), when the basic contact i is the only one compatible
with the observed configuration and force. Let define (Figure 3.35):

the observed force

orientation of the observed force with respect to the world reference frame

maximum deviation in the direction of the force due to the force sensor uncertainty

T o> E oy

friction coeflicient
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Figure 3.34: a) Topological elements involved in a type-B basic contact b) Positions
(Zopys Yop, ) and (o4 Yoy, ) involved in the computation of A¢y.

Then, the minimum and maximum values of 3 compatible with the observed force are:

,B,f,m = U —§—arctanpy—
Bl.. = W+8+arctanpy — P (3.161)

and then, the range Rj is updated as:

ﬁm = Inax(/ﬁmaﬁj;ﬂn)
ﬂM - min(ﬁMvﬂ%fq,ax) (3162)
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Figure 3.35: Uncertainty in the direction of the reaction force.

Dual representation of G;

The dual representation of the Force Generalized Domain G; is computed as follows. Let

define (Figure 3.36):

Ady
2

a, ¢ : lines with orientation ¢ + ™ — arctan yu — passing through the extremes of

the segment [,.

b, d : lines with orientation 9 4+ # + arctan u + % passing through the extremes of
the segment [,,.

W . region where the lines of forces of G; lie; it is the union of cones ab and cd.

W : region W computed when p = 0.

The dual region representing the forces satisfying the contact-point condition is the cone
m/n', where m' and n’ are the dual lines of the extremes M and N of the segment [,,,
i.e. the cone m/n’ is the set of dual points of the lines of forces crossing {, (property 5 in

Appendix B).

The dual region representing the forces satisfying the direction condition is the
cone (?E’, where @' and &' are lines perpendicular to a and b, respectively, passing
through the origin, i.e. the cone a'b is the set of dual points of all the lines
of forces with orientation within the range defined by the orientations of a and b,

ie. [¢ + 0™ — arctan p — %, W 4+ BM 4+ arctan p + %] (property 3 in Appendix B).

Then, G/ is: o
G =mn' Nab (3.163)
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contact edge
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Figure 3.36: Dual representation of G;.

Let H(Pi, ..., P,) be the convex hull defined by the points Py, ..., P,. The points of G| are
the dual points of the lines of W, and its vertices are the dual points A’, B, C' and D’
of the lines a, b, ¢ and d, respectively. Then:

G/, = H(A', B, C'D') (3.164)

Partition of the dual plane

The dual plane has been partitioned in Section 2.8.3 into regions that bound the directions
of applied forces that produce similar movements of the manipulated object (i.e. produce
the same sense of sliding and rotation about the contact point, or produce sticking at it).
The border of these regions is determined by the dual lines 7}, 7r} and 7! representing the
planes defined by the contact reference frame (II;, Iy and II,, respectively).
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14T it L1710 9. \CA VSO DE LV D VELAATS Ui Y N Ve I U, v Sy Ve B DE N DN NVF Y

Let D, DW}, D.; D7y, Dys and D7y be the regions where the dual lines 7, 7} and ,,
and the dual points 7/, N’ and T, may lie due to uncertainty (Figure 3.37). Then, the
algorithm to partition the dual plane shown in Section 2.8.3 is modified as follows when
uncertainty is considered.

Dual-plane-partition()

—~
—
~—

Compute Dy, as the segment [,

—
N
~—

Compute D,,} as the cone mn (the dual region of 1,)

—
w
~—

Compute D, as the region W,

—
N
~—

Compute Dy as the dual region of D/

—
(6]
~

Compute G/ as the dual region of W

—
(@]
~—

Compute D7, as the resulting parallelogram of the intersection of DW} and D.

—
N
~—

Compute D, as the dual region of DT,S'
Compute Dy as the dual region of lef N'W

—
(o0]
~—

E

=
O

In step (4), the edges of Dy can be obtained by computing the dual segments of the
cones composed with the lines of the border of D,. In step (7), the dual region of Dy,
can be computed as the union of the dual cones of the edges of Dry.

The partition of the dual plane considering uncertainty is used in Chapter 4 to determine
if an applied velocity command can produce an error-corrective compliant motion.

3.6.2 More than one basic contact situations

The Generalized Force Domain Gg of a contact situation involving a set S of basic
contacts, which can simultaneously ocurr taking into account the uncertainties, is the
set of the forces resulting from the composition of all possible compatible reaction forces,
one at each basic contact. Therefore, the dual representation G's is the set of all non-
negative linear combinations of possible compatible dual reaction forces, one at each basic
contact.

Let s be any sub-set of S with inf(n — 1, 3) basic contacts.

Proposition 14:

GsD |J G, (3.165)
VsCS

Proof: If a generalized reaction force g, satisfies g € Gy, then it is the resultant of one
force at each of the basic contacts of s and zero force at the other(s). Therefore § € Gg.

<
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From proposition 14, G's can be expressed as:

s = [ U Gls] U [H] (3.166)

VsCS

H's being a dual region associated to the basic contacts of S.
Proposition 15: For a contact situation with only one basic contact i, H; = G/.

Proof: For n = 1 the sets s are empty sets then Uy,sG’s = 0. o

Proposition 16: For a contact situation with two basic contacts 7 and j, G}; = G} U G, UH/;,

with HY; = H(Al, B}, A}, B)) U H(A,, B, C!, D)) UH(C!, D}, A, B}) UH(C!, D!, C!, D).

Figure 3.38 shows the four convex hulls that compose the region H’; and Figure 3.39
shows the domain G’; = G} U G, UH;;.

Proof:
Claim 1: Since G'; is a trapezium, any point F] € G’ can be expressed as a linear
combination of two points, F|, and Fi., belonging to the diagonals A'B’' and C'D’,
respectively, (i.e. F! € F{,F};) and satisfying F{,F3; C G.

Claim 2: VF}; € Gj there exists a trapezium Q' with border OQ'r such that Fj; € Q'F
and 0Qr C (G} U G U HY;). Being F}; € Gj; a linear combination with positive
coefficients of F; € Gj and F] € G, then, from claim 1, Fj; € Q'F, with
QF = H(FY;, Fy,, Fij, Fy;). The edges of 9Q'r whose vertices are on the same
domain belong to that domain (from claim 1). The edges of 0Q’r whose vertices
are on different domains belong to H’;; because the vertices are on the diagonals of

the domains and these diagonals are the segments that define H;.

Claim 3: G;UG’;UH; has no holes. Each of the four trapeziums that define H’; can be
decomposed into two trapeziums sharing the edge formed by the intersection points
of the two diagonals of each domain. The union of trapeziums sharing an edge has
no holes, then as H’j; is the result of the union of eight trapeziums sharing an edge,
it results that H’; has no holes. On the other side, as neither G nor G’; have holes
and all the vertices of H’; belong to G’ or G}, the union of G/, G; and H’; have no
holes.

Claim 4: G C (G} UG, UH/);). From claim 2 and 3, VF], € Gl there exists a
trapezium Q'r that satisfies F}; € Qr and Qr C (G, UG, UH))).

Claim 5: (G} U G UHY;) C GY;. H); C G; because the trapeziums that determine
H’;; are build with the diagonals of G and G/;. Also, by definition, G C G/, and
G C GY;.

From claims 4 and 5 G’; = G; U G UH/;. o

Proposition 17: For a contact situation with three basic contacts 7, j and k,
ik = Gy UGH UGl UHY;, with Hip = H(F], F}, Fy), for any F} € G}, F] € G
and F} € G.
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Figure 3.38: Regions H(Aj, B}, A}, B}), H(A;, B}, C}, D), H(CDj,A; B;) and
H(C;, Dy, CF, D).
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Figure 3.39: Generalized Force Domain G’; = G} U G; U H/;.

Proof: Let I}, € Giji. be a linear combination of any N; € G, N} € G; and N;, € G,

and let define N' = H(N|, N}, Ny ).

Claim 1: The border of N' satisfies ON' C (G’; U G, U G’ U H);j1.). By construction,
ON' = N/N;U N[N, UNIN; and N/N; C G, N/N; C G’ and N;N; C G.

Claim 2: G.s N Gl is a connected region ¥ r,s,t € {i,7,k}. Since G'. is a connected
region that satisfies G| C (G)s N G);) then VP' € (G|, N G);) such that
P' ¢ G'., there should exist a path p that connects P’ with G. and that satisfies
p C (Ghs N Ght). Let R, € 0G), R, € 0G/,, S’ € Gs and T’ € G} be points that
satisfy P’ € R.S', P' € RT', P'R, ¢ G', and P'R, ¢ G/, (Figure 3.40); then:

a) P'R! C G\, since P'R!, C R'S" and R'S" C G/,.

b) P'R, C G/ since as R/T' C G4, R.T' C G4 and 9G/, is a closed line, then
VQ' € P'R! there exists a segment R'T" with R' € 9G/. such that Q' € R'T"
and therefore as R'I" C G',; then Q' € G,.

From a) and b) P'R! is the path p that connects P’ with G/ and that satisfies

Claim 3: (G U G, U GY, U HYji) has no holes. From claim 2 V r,s,t € {7, j,k} such
that » # s # t, G, U G’ has no holes and, since by construction N’ is convex and
from claim 1 ON' C (G); U G, U Gj1), then (G, U G' UH’j;) has no holes. As
this is satisfied V 7, s,t € {7, 7, k} then (G; U G’ U G, U H/;;) has no holes.

Claim 4: Gy, C (G};UG}, UG, UHY; ;). From claims 1 and 3N’ C (G}, U G, U G, U HY;),
VEF].. € G

ik
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Figure 3.40: G'., N G’y is a connected region ¥ r,s,t € {i,7,k}.

Claim 5: (G'; U Gy U G U HYj,) C Gl By definition G C Gy, Gl C Gy,
G’ C GYji, and HYj, C Gy

From claims 4 and 5 G, = G; U G, U G, U HY;y,. o
Proposition 18: For a contact situation with n > 3 basic contacts H's = (.

Proof: Since planar movements have only three degrees of freedom Uy,cs G's cover all
the possible non-negative linear combinations spanned by the n basic contacts. o

3.6.3 Contact identification from force information

An observed generalized reaction force g, is compatible with the contact situation
determined by a set S of n basic contacts iff [7]:

U,NGg#0 (3.167)
where U, is the uncertainty force parallelepiped centered at §, (Section 3.1.2). Figure 3.41
shows U, together with its dual representation U,.
Condition (3.167) is expressed in the dual plane as:

U,NGs#0 (3.168)

From equation (3.166), this condition is satisfied if and only if at least one of the following
two conditions is satisfied:

UL N UG, #
U,NHs #

(3.169)

0
0 (3.170)
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Figure 3.41: Generalized force uncertainty U, and its representation U, .

Given an observed reaction force g, and the domain G's of a contact situation, the
following algorithm evaluates the above conditions. The algorithm returns “compatible”
when g, is compatible with G's and “incompatible” otherwise; this result is stored in a
global variable Rg that is used to speed up further evaluations of condition (3.169) for
other contact situations. The function test(H's, g,) directly evaluates condition (3.170)
for a given observed reaction force g,; it returns “true” when the condition is satisfied
and “false” otherwise.

classify (G's, g,)

FOR each s € S
IF G, has not been yet classified THEN R, = classify(GY, g,)
IF R, = “compatible” THEN cond. (3.169)
Rg = “compatible”
RETURN Rg

IF test(H's, §,) = “true” THEN Rg = “compatible”
ELSE Rg = “incompatible” cond. (3.170)
RETURN Ry

END

For a given observed force g,, let define:

V,: the dual point representing the generalized force with head on vertex ¢ of U, with
q€{l,..,8}.
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e!: the straight segment containing the dual points representing the generalized forces

q
with heads on the edge ¢ of U,, with ¢ € {1,...,12}.

P.: the polygon containing the dual points representing the generalized forces with heads
on the face ¢ of U,, with ¢ € {1,...,6}.

E,: the dual point of the line that contains e;,.

The function test evaluates condition (3.170) by sequentially testing the following three
conditions and returning “true”, as soon as one of them is satisfied, or “false” otherwise:

V, €eHs, forany qe{l,..,8} (3.171)
e; NH's £0, forany qe€{l,..,12} (3.172)
P, D H, forany qe€{l,..,6} (3.173)

The evaluation of any of the conditions (3.171) to (3.173) assumes that the previous ones
are not satisfied and it is performed in a different way depending on the number of the
basic contacts involved, as it is specified below.

One Basic Contact 1

From proposition 15 and equation (3.163):
o Condition (3.171) is satisfied if V] belongs to both m'n' and a/'b';

[V € m'n/] AND [V € a'b] (3.174)
Figure 3.42a shows a case in which the dual representations of two vertices of U, are
inside G/,.

e Condition (3.172) is satisfied if a segment e, crosses either m'n! being inside cﬁ, or

a'bl being inside m'n’, or both regions being its supporting line the dual line of a
point of W:

[(e;, C m'n’) AND (e N a't/ # 0)] OR
[(e;;, N m!n/ # @) AND (e; C a't’)] OR
[(e;, N m/n’ # () AND (e, Na'b' # @) AND (E, € W)] (3.175)
Figures 3.42b and 3.42c show two situations in which an edge e intersects G7.

e Condition (3.173) is satisfied if any arbitrary point (e.g. vertex A') of G’ belongs
to P’, since the edges of P’ do not cross Hj:

A e P, (3.176)

Figure 3.42d shows a case in which a face P, contains G'.
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d) \\\

Figure 3.42: Examples of the classification conditions for one basic contact: a) [Vq' €
m'n’] AND [V! € a'¥] b) [(¢, N m/n’ # B) AND (¢, C a'¥')] c) [(e, N m'n' #
0) AND (e, N @'t/ # §) AND (E, € W)] d) A’ € P,

¢)
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Two Basic Contacts i and j

From proposition 16:

e (ondition . 1s satished 1 elongs to any of the four polygons that
Condition (3.171) i isfied if V, belong y of the f polyg I
compose H;:

! ! / ! /! ! !/ ! ! !
[V, € H(A], B}, A}, B;)] OR [V, € H(A], B;,C}, D};)] OR
! ! !/ !/ / ! ! ! ! !
Figure 3.39 shows a case in which an observed reaction force is compatible with a
domain G’; because the dual representations of three vertices of U, lies inside HY;.

o Condition (3.172) is satisfied if e intersects any arbitrary polygon of those
composing Hjj, since it is already known that the vertices of e; are not inside H;.
Selecting one of these polygons the condition is tested as:

e NH(AL B, AL, B) 0 (3.178)

o Condition (3.173) is mnever satisfied since, P; 2 G}, P, B G} Vge {1,..,6}
and e, NHj; = 0Vq € {1,...,12}.

Three basic contacts i, j and k

From proposition 17 the border of H’j;, satisfies 0H};;, C (G); U G, U G';). Since the
function test is only called when condition (3.169) is not satisfied it is already known that
U,NG3 = 0, U,N G = 0 and U,NGY, = (); therefore, U, is either completely inside
H',;;. or completely outside. As a consequence, it is only necessary to test if a point of U;
is inside H';j;; then:

o Condition (3.171) is satisfied if
V, € H(F;,F}, F},) for any given ¢ (3.179)

e Conditions (3.172) and (3.173) are never satisfied.

More than three basic contacts

From proposition 18 the function test(H's, §,) always returns “false”.



