
Post-Quantum Cryptography: Lattice-based
encryption

Author: Eduard Sanou

Advisor: Javier Herranz,
Mathematics Applied to Cryptography (MAK)

Tutor: Fernando Martı́nez,
Department of Mathematics

Master in Innovation and Research in Informatics
Advanced Computing specialization

Facultat d’Informàtica de Barcelona (FIB)
Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

July 8, 2016

Abstract

Post-Quantum Cryptography has gained attention in the recent years
from the research community due to the disastrous consequences that effi-
cient quantum computers would have on current public-key cryptosystems.
In this work we explore the main aspects of lattice theory, provide defini-
tions for some of the most relevant lattice problems and explain how lattice
theory can be used as a framework to build post-quantum cryptosystems.
In particular, we detail and analyze a public-key encryption scheme that re-
lies on the hardness of the Ring Learning With Errors (Ring-LWE) problem.
We propose sets of parameters and provide an efficient implementation of
the scheme written in C++ which allows us to provide benchmarking re-
sults. Finally, we propose an adaptation of the e-voting scheme employed
by Scytl (also described in this work) to make use of the previously de-
scribed encryption scheme, along with the necessary modifications to make
it a post-quantum e-voting scheme.

i

Acknowledgements

I would like to thank Javier Herranz for his help, advice and interesting
discussions on schemes proposals as well as the reviews he did to earlier
versions of this thesis. I would also like to thank Paz Morillo for her help
and reviews of earlier versions of this thesis as well as for the fun times spent
learning lattice theory together.

ii

Contents
1 Introduction 1

2 Basic cryptography concepts 4
2.1 Public-key encryption . 4
2.2 Security . 4
2.3 Homomorphic encryption . 5

2.3.1 Fully homomorphic encryption 5

3 Basic lattice concepts 6
3.1 Lattice . 7
3.2 Rank . 8
3.3 Norm . 8
3.4 Fundamental parallelepiped . 8
3.5 Determinant . 9
3.6 Minima . 10
3.7 Orthogonality defect . 10
3.8 Lattice duality . 11
3.9 q-ary lattices . 11
3.10 Lattice problems . 17

4 Learning With Errors (LWE) 18
4.1 Problem definition . 18
4.2 Cryptanalysis . 20

4.2.1 Gram-Schmidt orthogonalization 21
4.2.2 Lattice reduction algorithm - LLL and BKZ 21
4.2.3 Lattice decoding algorithm - Babai’s Nearest Planes . . . 22

5 Ring lattices 24
5.1 Definition . 24
5.2 Ring-LWE . 28

5.2.1 Efficiency . 29

6 Lattice-based public-key cryptography 29
6.1 Asymmetric encryption . 29
6.2 Digital signature . 29

iii

7 Ring-LWE encryption 30
7.1 Definition . 30
7.2 Decryption error probability . 32
7.3 Choosing the parameters . 35

7.3.1 Regev’s procedure [Reg09] 37
7.3.2 Linder and Peikert’s procedure [LP11] 37

7.4 Homomorphic sum in Ring-LWE 37

8 Implementation of Ring-LWE encryption 39
8.1 NFLlib . 39
8.2 Parameters proposal and analysis 40
8.3 Benchmarking . 42

9 E-voting 43
9.1 Voter’s anonymization . 43
9.2 E-voting at Scytl . 45
9.3 Post-Quantum proposal . 49

10 Conclusions 51

References 57

Appendix A Ring-LWE source code 58

Appendix B Sage code 61
B.1 Error probability . 61
B.2 Babai’s Nearest Plane . 61

iv

1 Introduction
For the past three decades, public key cryptography has become an essential tool
to protect the digital communications in our infrastructures. It is used in personal
communications, business networks and governments to guarantee authenticity
and confidentiality in the exchanged data.

The main cryptographic functionalities used nowadays are public key encryp-
tion, digital signatures and key exchange schemes. These primitives are primar-
ily implemented using three main constructions: RSA (Rivest-Shamir-Adleman),
Diffie-Hellman key exchange and elliptic curves, whose security relies on the dif-
ficulty of solving certain number theoretic problems like integer factoring and the
discrete logarithm.

In 1994, Peter Shor proposed an algorithm designed to run in a quantum com-
puter that could solve the integer factorization problem in polynomial time. Addi-
tionally, this algorithm could also be used to solve the discrete logarithm problem
in polynomial time, rendering most of the currently used public key cryptography
schemes insecure.

This situation has led to a substantial amount of research on quantum com-
puters (machines that take advantage of quantum mechanical phenomena to solve
problems that are hard on classical computers). It is still not clear if efficient and
scalable quantum computers would ever be created, but if this happened to be the
case, the confidentiality and integrity of digital communications would be seri-
ously compromised because current public-key cryptosystems would be broken.

To address this issue, the scientific community has been working on two main
solutions: quantum cryptography and post-quantum cryptography.

Quantum cryptography consists in building cryptographic schemes that take
advantage of quantum mechanic phenomena like the BB84 quantum key distribu-
tion scheme [BB84]. It has been argued that this solution would be quite expen-
sive due to the hardware requirements as well as quite impractical at scale, due to
restrictions imposed by quantum physics [Ber09].

The other solution, which we study in this thesis, is post-quantum cryptog-
raphy and consists in building cryptographic schemes that can run on classical
computers and work with existing networks that are able to resist attacks on both
classical and quantum computers1.

1In practice, post-quantum resistance can’t be proved. We can only rely on the fact that after
many years studying specific computational problems, no one has found an efficient algorithm to
solve them using a quantum computer.

1

To rise awareness of the importance of finding post-quantum replacements for
current public-key cryptosystems, we refer the reader to the announcement that
the National Security Agency of the USA (NSA) published in August 2015 about
its plan to transition to a new cipher suite that is resistant to quantum attacks in
the not too distant future; advising institutions that haven’t made the transition to
the current recommended algorithms to wait for the upcoming quantum resistant
algorithms2.

Currently there are four main proposals for post-quantum public-key cryp-
tosystems: hash-based cryptography, code-based cryptography, lattice-based cryp-
tography and multivariate-quadratic-equations cryptography. In this thesis we will
only explain lattice-based cryptography. To learn about the other problems, the
reader can find introductions for each one in the Post-Quantum Cryptography
book [BBD09].

To avoid scaring the reader, we want to clarify that currently used secret-key
cryptography (like AES) is quantum resistant, because it doesn’t rely on integer
factoring nor solving the discrete logarithm problem. Nevertheless, in 1996, Lov
Grover proposed a quantum algorithm that can be used to break secret-key algo-
rithms by brute-forcing a key space of O(N1/2), where N is the length of the key.
This means that to maintain the same level of security in secret-key cryptography
in a post-quantum situation, the number of bits in the key should be doubled.

In this work we will focus on a post-quantum asymmetric encryption scheme.
We argue that having post-quantum encryption schemes is more urgent than hav-
ing post-quantum signature schemes. As long as efficient quantum computers
aren’t constructed, both pre-quantum encryption and signature schemes will be
secure: no authorized entity will be able to compromise the confidentiality and
integrity of the encrypted messages, and no entity will be able to forge signatures
and so they will be verified without tampering. Once efficient quantum computers
appear, we could easily stop trusting pre-quantum signatures, but any encrypted
message that was intercepted at any time could be decrypted, thus breaking con-
fidentiality. This means that we should be using post-quantum encryption algo-
rithms long before efficient quantum computers appear, whereas there is less hurry
for post-quantum signatures.

As mentioned before, we focus on lattice-based cryptography in this work.
This field has become popular in the recent years not only because of the poten-
tial cryptographic applications in a post-quantum world, but also because of the

2https://web.archive.org/web/20160420221628/https://www.nsa.gov/ia/
programs/suiteb cryptography/index.shtml/post

2

https://web.archive.org/web/20160420221628/https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml/post
https://web.archive.org/web/20160420221628/https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml/post

average case to worst case complexity reductions that some lattice problems have,
which is something not found in previous cryptosystems.

Finally, we study how the current e-voting scheme employed by the electronic
voting company Scytl works and we take the challenge of proposing an adaptation
on the required parts to make it a post-quantum e-voting scheme.

Outline The remainder of this article is organized as follows. In Section 2 we
give some basic definitions of cryptography concepts needed to understand the
schemes and properties discussed in this work. In Section 3 we give the defini-
tions of the main lattice concepts and we provide a novel lemma followed by a
proof to help understand the geometry of lattices defined in a particular structure
commonly used in cryptographic schemes. We also give the definitions of some
relevant hard lattice problems. In Section 4 we focus on the Learning With Er-
rors problem, giving its definition and detailing the process of cryptanalysis. In
Section 5 we introduce the concept of ring lattices, detailing their advantages as
well as adapting the previously defined Learning With Errors problem to these
kind of lattices. Section 6 gives an introduction of the current state of two main
public-key cryptography primitives in the lattice world. In Section 7 we focus on
a public-key encryption scheme based on ring lattices, detailing it and analyzing
its theoretical properties. In Section 8 we discuss our implementation of the previ-
ous scheme with specific parameter proposals, followed by an extensive analysis
and benchmarking showing our practical results. Finally, in Section 9 we give an
introduction to e-voting, followed by a detailed description of the current e-voting
scheme used by Scytl which we later adapt as necessary to make it quantum resis-
tant. Finally, Section 10 gives the conclusions of this work.

3

2 Basic cryptography concepts

2.1 Public-key encryption
An asymmetric, or public-key, encryption schemes is a triple of randomized algo-
rithms having the following interfaces

• The key generator (given the security parameter) outputs a public key and a
secret key.

• The encryption algorithm takes a public key and a valid message, and out-
puts a ciphertext.

• The decryption algorithm takes a secret key and a ciphertext, and outputs a
message or a distinguished “failure” symbol.

The scheme is said to be correct if generating a public/secret key pair, then
encrypting a message using the public key, then decrypting the resulting ciphertext
using the secret key yields the original message (maybe with all but negligible
probability).

2.2 Security
There are two main notions of security:

• Semantic Security, or more formally, indistinguishablity under chosen-plaintext
attack (IND-CPA). It considers the following experiment, which is parametrized
by a bit b ∈ {0, 1}: generate a public/secret key pair, and give the public
key to the attacker, who must reply with two valid messages m0,m1; en-
crypt mb using the public key and give the resulting “challenge ciphertext”
to the attacker. The scheme is said to be semantically (or IND-CPA) secure
if it is infeasible for an attacker to distinguish between the two cases b = 0
and b = 1, i.e., its probabilities of accepting in the two cases should differ
by only a negligible amount.

• Active security, or more formally, indistinguishablity under chosen-ciphertext
attack (IND-CCA). It augments the above experiment by giving the attacker
access to a decryption oracle, i.e., one that runs the decryption algorithm
(with the secret key) on any ciphertext the attacker may query, except for

4

the challenge ciphertext. (This restriction is of course necessary because
otherwise the attacker could just request to decrypt the challenge ciphertext
and thereby learn the value of b). The scheme is said to be actively (or IND-
CCA) secure if it is infeasible for an attacker to distinguish between the two
cases b = 0 and b = 1.

2.3 Homomorphic encryption
Homomorphic encryption is a special property of some encryption schemes such
that certain operations can be carried out on some ciphertexts, generating a new
ciphertext that when decrypted, the obtained plaintext corresponds to the result
of operations performed on the plaintexts underlying the original ciphertexts. For
instance, homomorphic addition would allow us to add two ciphertexts, where the
decryption of the result would match the addition of the corresponding plaintexts
of the original two ciphertexts.

This can be a desirable feature in specific systems, as it allows an untrusted
party to perform computations on the encrypted data (without the need of reveal-
ing the content of such data), and so it ensures confidentiality of processed data.
For example, in an e-voting context it could be desirable to sum encrypted ballots
into one encrypted result so that only one decryption is performed (whose result
will match the addition of all the ballots’ plaintext) thus making it harder to link
the ballots content to each voter. A more detailed analysis of this example can be
found in Section 9

Homomorphic encryption schemes are malleable by design and so don’t pro-
vide active security (see Section 2.1): an attacker could apply a known operation
to the “challenge ciphertext”, send the result to the oracle, and apply the inverse
of the operation to reveal the plaintext selected by the challenger.

A partial homomorphic cryptosystem only allows a specific kind of operation
on the encrypted data. There are several cryptosystems that have this feature such
as RSA and ElGamal which are multiplicative homomorphic for some moduli.
Other schemes allow addition operations (see Section 7.4 for a detailed example).

2.3.1 Fully homomorphic encryption

A cryptosystem that supports computing arbitrary functions (practically achieved
by supporting addition and multiplication) on the ciphertexts is known as fully ho-
momorphic encryption (FHE) and provides much more flexibility. These schemes
allow the construction of arbitrary programs that can take as input encrypted data

5

and produce an encryption of the result. This theoretical problem had been pro-
posed more than 30 years ago, without knowing if it was even possible to solve.
In 2009 the first fully homomorphic encryption scheme was presented by Craig
Gentry using lattice-based cryptography [Gen09], which was soon followed by
efficiency improvements by Marten van Dijk, Shai Halevi, Vinod Vaikuntanathan
and Craig Gentry himself [DGHV09]. After that, many advances have been made
on the topic (with some new schemes not based on lattices) that keep improv-
ing the efficiency of the operations on the encrypted data, making it a very active
research topic nowadays.

Unfortunately, despite the many advances, the best implementations are still
quite inefficient: using the fastest implementation, in [GHS12] the authors achieve
an homomorphic evaluation of a single AES-128 encryption operation in 4 min-
utes using a modern computer, with the possible parallelization improvement us-
ing CPU optimizations to evaluate the encryption of 120 AES-128 blocks in the
same amount of time (leading to an amortized rate of 2 seconds per block). As
a comparison, a modern computer is capable of encrypting a single normal AES-
128 block in 20 µs, that is, 8 orders of magnitude faster.

This thesis only provides an introduction to lattice based cryptography, and as
such, fully homomorphic schemes are not included in the contents.

3 Basic lattice concepts
In the following sections, standard notation will be used. Scalar integers will be
represented in the lowercase roman alphabet (such as k and n). Vectors will be
represented by boldface lowercase roman letters (such as v and w). Matrices will
be represented in boldface uppercase roman letters (such as B and H).

Most of the definitions in this section are taken from the publications [MR09]
and [Pei16].

6

3.1 Lattice
Definition 1 (Lattice). A lattice is a set of points in an n-dimensional space with
a periodic structure. More formally, an n-dimensional lattice L is any subset of
Rn that is both:

1. an additive subgroup: 0 ∈ L, and −x,x + y ∈ L for every x,y ∈ L; and

2. discrete: every x ∈ L has a neighborhood in Rn in which x is the only
lattice point.

Given k-linearly independent vectors b1, . . .bk ∈ Rn, the rank k lattice gen-
erated by them is the set of vectors:

L(b1, . . .bn) =

{
k∑
i=1

zibi : zi ∈ Z

}
= {Bz : z ∈ Zn}

Where Bz is the usual matrix-vector multiplication. Here we say that b1, . . .bk

is a basis for the lattice L = L(b1, . . .bk). We denote the basis matrix for
b1, . . .bk as B = (b1, . . .bk), i.e., the matrix whose columns are b1, . . .bk.
For convenience, we will use the notation L(B) = B · Zk, where we note that
L(B) = L. See Figure 1 for an example of a two dimensional lattice.

Figure 1: Two dimensional lattice generated from the basis b1 = [2, 5],b2 = [7, 3]

7

It is not difficult to see that if U is a unimodular matrix (i.e., an integer square
matrix with determinant ±1), the bases B and BU generate the same lattice. (In
fact, L(B) = L(B′) if and only if there exists a unimodular matrix U such that
B′ = BU). In particular, any lattice admits an infinite number of bases, and this
fact is at the core of many cryptographic applications.

3.2 Rank
As seen in the previous section, the rank of a lattice is the number of linearly
independent vectors in any [equivalent] basis of that lattice. A lattice will be full-
rank when the number of linearly independent vectors in any basis of this lattice
is equal to the number of dimensions in which the lattice is embedded. In such
instances, it is clear that any basis for such a lattice will be formed by a set of n
vectors, each of n dimensions, allowing us to describe the basis as a square matrix.

3.3 Norm
Many problems in lattice theory involve distances between points. While all the
lattice problems can be defined with respect to any norm obtaining equivalent
hardness [KS99], the most commonly used one is the Euclidean norm. We will
operate exclusively with the Euclidean norm in this work.

Definition 2 (Euclidean norm). Let w ∈ Rn. The Euclidean norm is the function
‖.‖2 defined by

‖w‖2 =

√√√√ n∑
i=1

|wi|2

3.4 Fundamental parallelepiped
Definition 3 (Fundamental parallelepiped). For a set of linearly independent vec-
tors B = {b1, . . . ,bk}, its fundamental parallelepiped is

P1/2(B) := B ·
[
−1

2
, 1
2

)k
=

∑
i∈[k]

ci · bi : ci ∈
[
−1

2
, 1
2

)
Figure 2 shows the fundamental parallelepiped of the lattice shown at Figure 1.

8

Figure 2: In gray, the fundamental parallelepiped of the two-dimensional basis
b1 = [2, 5],b2 = [7, 3]

3.5 Determinant
The determinant of a lattice geometrically corresponds to the inverse of the density
of the lattice points in Rn, or equivalently, to the n-dimensional volume of the
fundamental parallelepiped defined by the lattice basis B.

For the case when the lattice is full-rank, we can compute the determinant of
a lattice as the absolute value of the determinant of the basis matrix

det(L(B)) = |det(B)|

Notice that the value of the determinant is independent of the choice of the
basis: lattice equivalence is shown by means of a transformation by an unimodular
matrix U applied to a basis from the lattice, and so we have

det(U) = ±1

|det(BU)| = |det(B)| · |det(U)| = |det(B)|

And so the choice of basis for a particular lattice has no effect on the volume
of the fundamental parallelepiped.

9

To compute the determinant of a lattice that is not full-rank (i.e., it has rank
k with k < n), the process is a bit more involved. We first will need to find an
orthonormal basis b̃1, . . . , b̃k ∈ Rn of the space in which the lattice is embedded,
and then transform the lattice basis B by expressing it in this orthonormal basis,
which will yield a square matrix B′ ∈ Rk×k. We can then find the determinant
of the lattice by computing the absolute value of the determinant of the matrix
B′. Note that an orthonormal basis of the space in which the lattice is embedded
can be computed by applying the Gram-Schmidt process (see Section 4.2.1) to the
lattice basis B, and then normalizing the obtained vectors.

3.6 Minima
The minimum λi(L) of a lattice L is defined as the radius of the smallest hy-
persphere centered at the origin, containing i linearly independent lattice vectors.
Notice that the minimum distance between two points belonging to a given lat-
tice will be λ1(L), which is equivalent to the length of a shortest nonzero lattice
vector3:

λ1(L) := min
v∈L\{0}

‖v‖

3.7 Orthogonality defect
Many lattice problems have computational hardness proportional to the orthogo-
nality of the basis used to define the lattice. As mentioned before, a lattice can be
expressed with infinite many equivalent bases; but not all of them will have the
same orthogonality. For a specific lattice, we informally say that a basis is good if
it has high orthogonality, and that it is bad if it has low orthogonality. Moreover, a
lattice generated with random coefficients drawn from a uniform distribution will
have low orthogonality with high probability.

To compare the orthogonality of lattice bases, we define the orthogonality
defect as

δ(B) =

∏n
i=1 ‖bi‖

det(L(B))

The orthogonality defect is equal to 1 if and only if the basis B is completely
orthogonal. As orthogonality decreases, the orthogonality defect increases.

3Lattices have multiple shortest vectors.

10

It is common to normalize this metric by taking the n’th root (where n is the
rank of the lattice), so that if the vectors are multiplied by some constant factor,
the orthogonality defect is scaled by the same factor.

A related metric can be found in the research literature to also measure the
quality of a basis: the Hermite factor δn0

δn0 =
‖b0‖

n
√
det(L(B))

Where b0 is the shortest non-zero vector from the lattice basis B. Similarly to
the orthogonality defect, we can also refer to δ0 itself, and call it the root-Hermite
factor.

3.8 Lattice duality
Definition 4 (The dual lattice). The dual of a lattice L ⊂ Rn is defined as

L∗ := {w : 〈w,L〉 ⊆ Z}

That is, the set of points whose inner products with the vectors in L are all
integers.

3.9 q-ary lattices
Definition 5 (q-ary lattice). A q-ary lattice is a lattice L satisfying qZn ⊆ L ⊆ Zn
for some (probably prime) integer q. In other words, the membership of a vector
x in L is determined by x mod q.

Most lattice-based cryptographic constructions use problems defined on q-ary
lattices (where the q is a known parameter) as their hard on average problem. Note
that any integer lattice L ⊆ Zn is a q-ary lattice for some q, e.g., whenever q is an
integer multiple of the determinant det(L).

For practical lattice-based cryptographic constructions, there are two common
forms of expressing q-ary lattices, which allows easy operations in the implemen-
tations. They are the following, where q is usually prime and A ∈ Zn×mq :

Λq(A) = {y ∈ Zn : y = Az mod q : z ∈ Zm}

We will call this the Λq form.

11

Λ⊥q (A) = {y ∈ Zn : ATy = 0 mod q}

This second lattice contains all the vectors that are orthogonal modulo q to the
columns of A. We will call this the orthogonal Λq form.

It can be seen that these lattices are dual to each other, up to normalization;
namely, Λ⊥q (A) = qΛq(A)∗ and Λq(A) = qΛ⊥q (A)∗

As we will see later, finding the lattice point given a perturbation of it using
the Λq form is related to solving the LWE problem, whereas finding short vectors
using the orthogonal Λq form is related to solving the SIS problem.

One interesting observation we can make is that in the Λq form, A is usually
not a basis of the lattice. We can see this for example with the fact that usually, no
integer linear combination of the columns of A can generate all the points of the
form qZn. Consider for example the two dimensional q-ary lattice defined with
b1 = [2, 5],b2 = [7, 3] (the same vectors used in figure 1) and q = 17. There is
no integer solution to the following equation, which would show how to construct
the point [q, 0]

17 = 2z1 + 7z2

0 = 5z1 + 3z2

Another observation we draw is that any q-ary lattice has full rank because it
contains qZn. From this observation, it is easy to see that with high probability,
a q-ary lattice defined with n independent vectors in Znq with q prime (that is, the
case where we have A ∈ Zn×nq in the Λq(A) expression) is the same as Zn×n.
This situation can be seen in the example shown in Figure 3. It will not be the
case whenever det(A) = 0 mod q. The explanation for this behavior can be seen
in a more general case in Lemma 1.

12

(a) Using L form. (b) Using Λq form.

Figure 3: The two lattices have been generated with the same pair of vectors, but
the one on the right has been generated using the Λq form with q = 17

(a) Using L form. (b) Using Λq form.

Figure 4: The two lattices have been generated with the same vector, but the one
on the right has been generated using the Λq form with q = 5

13

To get a better intuition on the geometry of a lattice defined in the Λq form, we
propose the following lemma, for which we have developed a more general proof
as part of this thesis. See Figures 3 and 4 for two examples where the lemma
applies.

Lemma 1. For any k ≤ n and any q with its prime factors having multiplicity 1;
any q-ary lattice with qk points in the space defined by the hypercube [0, q)n can
be expressed with k vectors in Znq in the Λq form.

Proof. We analyze this lemma by finding the cardinality of the set generated by
the q-ary lattice expressed in Λq form with matrix A ∈ Zn×mq

c = #{y ∈ Zn : y = Az mod q : z ∈ Zm}

We factor q into k primes, assuming that there are no powers of primes in the
factorization of q

q =
l∏

i=1

pi

We want to find the number of unique y that can be generated from the fol-
lowing expression with z ∈ Zm

Az ≡ y mod q

And from the Chinese Reminder Theorem, we know that we can get the fol-
lowing bijection

Az(1) ≡ y(1) mod p1
Az(2) ≡ y(2) mod p2

...

Az(l) ≡ y(l) mod pl

Where we can easily find, for each i ∈ {1, . . . , l}, the number of unique y(i)

generated by calculating prank A mod pi
i , where the rank of a matrix modulo pi is

defined as the size of the largest non-vanishing (non-zero) minor modulo pi.
So, we conclude that the cardinality of Λq with matrix A ∈ Zn×mq is:

c =
l∏

i=1

prank A mod pi
i

14

Now, if the cardinality of a given Λq is qk with k ≤ n, we can factor qk:

qk =
l∏

i=1

pki

So we know that in the Chinese Reminder Theorem, for each i ∈ {1, . . . , l} it
will be required that rank A′ mod pi = k, and so there will exist some A′ ∈ Zn×kq

for which the given Λq = Λq(A
′).

Here we show a possible Λq expression of the examples shown in Figure 3
(A1) and Figure 4 (A2) where the relation between the lattice cardinality and the
number of vectors in the Λq expression follows Lemma 1.

A1 =

(
2 7
5 3

)
q = 17

rank A1 mod 17 = rank
(

2 7
5 3

)
mod 17 = 2

#Λq(A1) = 172 = 289

A2 =

(
1
3

)
q = 5

rank A2 mod 5 = rank
(

1
3

)
mod 5 = 1

#Λq(A2) = 51 = 5

Here we show an example of calculating the cardinality of two random Λq

lattices. In Figure 5 we show a visual representation of the two lattices from the
example.

15

A3 =

(
1 0
0 3

)
q = 6 = 2 · 3

rank A3 mod 2 = rank
(

1 0
0 1

)
mod 2 = 2

rank A3 mod 3 = rank
(

1 0
0 0

)
mod 3 = 1

#Λq(A3) = 22 · 31 = 12

A4 =

(
5 1
2 2

)
q = 6 = 2 · 3

rank A4 mod 2 = rank
(

1 1
0 0

)
mod 2 = 1

rank A4 mod 3 = rank
(

2 1
2 2

)
mod 3 = 2

#Λq(A4) = 21 · 32 = 18

(a) Λq(A3). (b) Λq(A4).

Figure 5: Cardinality of Λq lattices for two different set of q and matrices A3 and
A4.

16

3.10 Lattice problems
Many lattice problems have been studied for a long time and have been conjec-
tured or proved to be hard on the average case, which contrast with other problems
on which cryptographic schemes have been based that are only hard on the worst
case (notice that even most NP-hard problems are probably only worst case hard).
Moreover, the simplicity and flexibility of some of these average-case hard prob-
lems (like LWE) combined with proofs that show that they are probably as hard
as certain lattice problems in the worst case, and the fact that they appear to re-
quire time exponential in the main security parameter to be solved, makes them
excellent candidates to base cryptographic schemes on.

Most of the lattice problems exist in two versions: the exact and the approx-
imation problem; the later one being a generalization of the exact problem and
defined with an approximation factor γ(n) in terms of the lattice dimension. Con-
versely, the exact version is a particular instance of the approximation version
with γ(n) = 1. It has been proved that the approximation versions up to a polyno-
mial factor of n are hard problems, and those are the ones used in cryptographic
schemes. On the other hand, when the approximation factor reaches an exponen-
tial factor of n, these problems become easy to solve.

Some of the main lattice problems are defined below (the Learning With Errors
problem definition can be found in its own at Section 4.1).

Definition 6 (Approximate Shortest Vector Problem (γ-SVP)). Given a lattice
basis B, find a non-zero vector v ∈ L(B) such that ‖v‖ ≤ γ · λ1(L).

Definition 7 (Approximate Closest Vector Problem (γ-CVP)). Given a lattice ba-
sis B and a target vector t (not necessarily in the lattice), find a lattice point
u ∈ L(B) such that v = arg min

v∈L
‖t− v‖, ‖u− v‖ ≤ γ‖t− v‖.

Definition 8 (Shortest Independent Vector Problem (SIVP)). Given a lattice basis
B and a parameter q ∈ Z, find a set of shortest q linearly independent lattice
vectors (i.e., a set of linearly independent vectors s1, . . . , sq ∈ L(B) such that
s1, . . . , sq ≤ λq(B)).

Definition 9 (Bounded Distance Decoding Problem (BDDγ)). Given a basis B of
an n-dimensional lattice L = L(B) and a target point t ∈ Rn with the guarantee
that dist(t,L) < d = λ1(L)/(2γ(n)), find the unique lattice vector v ∈ L such
that ‖t − v‖ < d. This is a special case of the CVP problem where the vector
given is guaranteed to be close to a lattice point.

17

Where we define the distance dist(t,L) with t ∈ Rn as the distance from the
point t to the closest point in the lattice L, and where γ(n) is a function used to
bound the maximum possible distance in the problem.

The definition of the Learning With Errors problem can be found in the next
Section, along with some related theorems.

4 Learning With Errors (LWE)

4.1 Problem definition
Definition 10 (Learning With Errors (LWE) - [Reg09]). Let n, q (possibly prime)
be positive integers, X be a discrete probability distribution on Z called the error
distribution (possibly the discrete Gaussian distribution) and s a secret vector
in Znq . We denote by Ls,X the probability distribution on Znq × Zq obtained by
choosing a ∈ Znq uniformly at random, choosing e ∈ Z according to X and
considering it in Zq, and returning (a, c = 〈a, s〉+ e) ∈ Znq × Zq.

Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Znq × Zq are
sampled according to Ls,X or the uniform distribution on Znq × Zq.

Search-LWE is the problem of recovering s from (a, c = 〈a, s〉+e) ∈ Znq ×Zq
sampled according to Ls,X .

For either version of the problem, the number m of LWE samples available is
a polynomial of n.

Notice that we can use the fact that Decision-LWE is hard to treat LWE
samples as pseudorandom elements, considering that they can’t be easily distin-
guished from uniform samples.

Solving LWE instances where the coefficients of s are taken from the X error
distribution is at least as hard as solving LWE instances where s is taken uniformly
from Znq . To prove this we use the following lemma:

Lemma 2 ([ACPS09]). Given access to an oracle Ls,X returning samples of the
form (a, c = 〈a, s〉+ e) ∈ Znq × Zq with a← U(Znq), e← X and s ∈ Znq , we can
construct samples of the form (a, c) = (a, 〈a, e〉+e) ∈ Znq ×Zq with a← U(Znq),
e ← X and e ← X (Zn) at the loss of n samples overall. This is also called the
normal form in [Pei16].

18

Proof. Given an instance

A =

[
A1

A2

]
, b =

[
b1

b2

]
Here A1 ∈ Zn×nq is invertible and b1 ∈ Znq , we transform it to the instance

Ā = −A2 ·A−11 , b̄ = Āb1 + A2

As before, Ā is uniformly random, because A2 is independent of A1. Now
observe that when the input comes from an LWE distribution, each bi = Ais+ ei
for some s ∈ Znq , where the entries of each ei are independently drawn from X ,
so we have

b̄ = Ā ·A1s + Āe1 + A2s + e2 = Āe1 + e2.

That is, the instance Ā, b̄ comes from the LWE distribution with secret e1,
and finding e1 yields the original secret s = A−11 (b1 − e1).

Certain instantiations of LWE are computationally hard and have worst-case
hardness theorems to support this belief. For a discrete Gaussian error distribution
ψ = Ds with s ≥ 2

√
n, solving search-LWEn,q,ψ is at least as hard as quantumly

approximating the shortest vector problem (γ-SVP) on any n-dimensional lattice
to within γ(n) = O(n · q/s) approximation factors, i.e., there exists a quantum
reduction from approximate SVP (in the worst case) to search-LWEn,q,ψ [Reg05].
Moreover, for q ≥ 2n/2 there is a classical reduction from approximate SVP for
the same approximation factors [Pei09].

Decision-LWE and Search-LWE are equivalent problems under mild condi-
tions on the modulus q and the Gaussian parameter s. The search to decision
reduction is trivial: if search is solved, s is obtained, which can be used to verify
that b are LWE samples by checking that e = b−As is small.

The other direction is shown in the proof below.

Lemma 3 ([Reg09]). Let n ≥ 1 be some integer, 2 ≤ q ≤ poly(n) be a prime,
and X be some distribution on Zq. Assume that we have access to a procedure
W that, for all s, accepts with probability exponentially close to 1 on inputs from
Ls,X and rejects with probability exponentially close to 1 on uniformly random
inputs. Then, there exists an efficient algorithm W ′ that, given samples from Ls,X
for some s, outputs s with probability exponentially close to 1.

19

Proof. We show howW ′ finds the first component s(0) of s; finding the other com-
ponents is similar. For any k ∈ Zq consider the following transformation. Given
a pair (a, c) as input to W ′, let it output the pair (a + (l, 0, . . . , 0), c + lk) where
l ∈ Zq is chosen uniformly at random. It is easy to see that this transformation
takes the uniform distribution to itself. On the other hand suppose the input pair
(a, c) is sampled from Ls,X . If k = s(0) then this transformation takes Ls,X into
itself. If k 6= s(0) then this transformation takes Ls,X to the uniform distribution.
There are only polynomially many (namely q) possibilities for s(0), so we can try
all of them as possible k values. For each k value, let the output of W ′ be the
input to W . Then as W can distinguish Ls,X from uniform, it can tell whether
k = s(0).

4.2 Cryptanalysis
There are two main strategies to attack cryptosystems based on the LWE prob-
lem (see Section 7 for an example of such cryptosystem): one is referred as a
distinguishing attack while the other is referred as a decoding attack.

As the name suggests, the distinguishing attack tackles the decision version
of LWE: the adversary distinguishes an LWE instance (A, t = As + e) from
uniformly random which is typically enough to break an LWE problem as seen
in Lemma 3. To do so, the adversary finds a short non-zero integer vector v such
that Av = 0 mod q, which can be seen as a short vector in the dual of the LWE
lattice Λq(A), that is, Λ⊥q (A). Notice that this involves solving the approximate
SVP. For further details on how the attack works, see [MR09].

On the other hand, the decoding attack, which we explain in detail here, tackles
the search version of LWE, and thus, is able to recover the secret s from an LWE
instance. The attack can be seen as solving the LWE problem by considering it as
a bounded-distance decoding problem with the lattice Λq(A); which implies, in
fact, that it will only have a chance of working if the error is small enough.

To solve the BDD problem on lattices, the standard method is to apply Babai’s
Nearest Plane algorithm [Bab85], which given a lattice basis and a target point,
returns a lattice point that is ‘relatively close’ to the target point. The success prob-
ability of the Nearest Plane algorithm to return the closest lattice point depends
on the quality of the input basis. This decoding algorithm uses the Gram-Schmidt
orthogonalization process, which is detailed in Section 4.2.1.

To improve the success probability of the Nearest Planes algorithm we can first
apply a lattice reduction algorithm on the input basis as explained in Section 4.2.2,
which will return a better basis for the lattice, i.e., a more orthogonal basis.

20

4.2.1 Gram-Schmidt orthogonalization

The Gram-Schmidt orthogonalization is the process of, given an ordered set of
linearly independent vectors (which define a lattice) B = {b1, . . . ,bk} ⊂ Rn,
generating a set of orthogonal vectors B̃ defined iteratively as b̃1 = b1 and b̃i as
the component of bi orthogonal to the span(b1, . . . ,bi−1) for i = 2, . . . , k:

b̃i = bi −
1−i∑
j=1

µjib̃j where µji =
〈b̃j,bi〉
〈b̃j, b̃j〉

As seen from the definition, the Gram-Schmidt orthogonalization works by
projecting each vector on the space orthogonal to the span of the previous vectors,
and as such, the last several vectors are typically very short. Notice also that the
order of the vectors is important in the orthogonalization process: changing the
order of the vectors b1, . . . ,bk will generally change the output vectors. Further-
more, the vectors b̃1, . . . , b̃k are generally not a vectors of the lattice L(B).

Figure 6 and Figure 7 show the Gram-Schmidt orthogonalization of two dif-
ferent basis for the same lattice: one good (low orthogonality defect) and the other
one bad (high orthogonality defect).

4.2.2 Lattice reduction algorithm - LLL and BKZ

The last several Gram-Schmidt vectors of B are typically very short, which will
make the parallelepiped P1/2(B̃) very ‘long and skinny‘, and so the Gaussian
error vector e is very unlikely to land in it, causing the Nearest Plane to return an
incorrect answer.

As mentioned before, to improve this situation we can apply a reduction al-
gorithm on the lattice basis, which will make the parallelepiped P1/2(B̃) more
evenly spread in every direction. Gamma and Nguyen, in their work to analyze
lattice reduction algorithms [GN08], identified the Hermite factor (see Section 3.7
for the definition) of the reduced basis as the main parameter to evaluate the run-
time of the algorithm as well as the quality of the reduced basis. As the basis gets
reduced, not only the vectors become more ‘orthogonal’, they also get smaller,
with the optimal case where a shortest vector will be in the basis.

The general reduction algorithm is BKZ [SE94] which is parametrized by the
block size k. For k = 2 the algorithm runs in polynomial time and it behaves as the
LLL algorithm [LLL82], but it will only contain a short vector within exponential
factors of a shortest vector. When k = n, i.e., the full size of the basis, then the
quality of the output basis is optimal, but requires at least exponential runtime.

21

The LLL algorithm works by taking pairs of vectors with decreasing norm
and subtracting multiples of the smallest one from the bigger one. This process is
done iteratively until no vector norm can be decreased.

On the other hand, the BKZ algorithm divides the vectors from the input basis
in blocks of k vectors, and generally speaking, subtracts linear combinations of
these vectors to reduce the norm of the other vectors. As in LLL, this process
is done iteratively until no more improvements can be made on the norms of the
vectors.

For further details on these lattice reduction algorithms, we refer the reader to
the original papers [LLL82] and [SE94], or to the summary presented in [ACPS09].

4.2.3 Lattice decoding algorithm - Babai’s Nearest Planes

To break LWE by a decoding attack given (A,b = A · s + e), the following
condition must hold: ‖e‖ << λ1(L(A)); otherwise, e hides the original lattice
point in an unrecoverable way (b would be closer to a different lattice point than
the original). This way, as mentioned before, we can see an LWE instance as an
instance of a BDD problem where b is a point which is bounded in distance from
a lattice point v = A · s. In this case, we could bound the distance with high
probability, for instance, with three times the standard deviation of the Gaussian
distribution used in the error of the LWE problem.

Babai’s Nearest Plane algorithm takes a lattice basis B = b1, . . . ,bk and a
target point t ∈ Rn as input, and returns a lattice point v ∈ L(B) that is ‘rel-
atively close’ to t. The success probability of the Nearest Plane algorithm to
solve the BDD problem depends on the orthogonality defect of the input basis.
Specifically, the Nearest Plane algorithm will recover the correct lattice point v
if t ∈ v + P1/2(B), that is, if the target vector lands in the parallelepiped gen-
erated by the Gram-Schmidt vectors of B centered at v. Figure 6 shows how an
instance of the BDD problem (the point in red) can be solved by the Nearest Plane
algorithm when the basis is good, since the point lands inside the Gram-Schmidt
parallelepiped centered in the original lattice point. On the other hand, in Figure 7
a bad basis is used, and the Nearest Plane is unable to decode the correct lattice
point: the target point (in red) has landed outside the parallelepiped of interest.

The algorithm works by recursively computing the closest vector on the sublat-
tice spanned by subsets of the Gram-Schmidt vectors b̃1, . . . , b̃k. The procedure
can be found in the Appendix B.2, written in Python for Sage.

22

(a) Showing the fundamental parallelepiped
of the lattice basis.

(b) Showing the fundamental parallelepiped
from the Gram-Schmidt vectors.

Figure 6: Lattice representation with a good quality basis, with a perturbed lattice point
in red. The basis vectors are shown in red and blue, whereas the Gram-Schmidt vectors
are shown in red and green.

(a) Showing the fundamental parallelepiped
of the lattice basis.

(b) Showing the fundamental parallelepiped
from the Gram-Schmidt vectors.

Figure 7: Lattice representation with a bad quality basis, with a perturbed lattice point in
red. The basis vectors are shown in red and blue, whereas the Gram-Schmidt vectors are
shown in red and green.

23

Although this algorithm can be run in polynomial time, as stated before, the
success rate of finding the right lattice point lies on the quality of the input basis,
that is, how well reduced it is. Reducing a random basis such that the Nearest
Planes algorithm finds the right lattice point with high probability takes exponen-
tial time, which is sound with our previous knowledge of the hardness of LWE.

Some authors have proposed modifications of the Nearest Plane algorithm
[LP11] to reduce the computational cost of the lattice reduction step by gener-
alizing it such that it admits a time/success trade-off. This modification consists
in expanding the exploration space by trying multiple (di) distinct planes during
each step i in the recursion. This has the effect of making the parallelepiped
P1/2(B̃) wider in the direction of the desired vectors b̃i by some factors di.

5 Ring lattices
Several schemes based on LWE have appeared in the literature through the years,
although two main factors have made them impractical. The first difficulty arises
from the size of the keys (which correspond to a lattice basis): being an n×n ma-
trix they get easily big for a reasonable secure dimension n. The second issue has
been the operation speed; although matrices multiplications can be parallelized,
the operation overall is not very competitive with other classical schemes.

To solve these inconveniences, the usage of ring lattices (or ideal lattices) to
design cryptographic schemes was proposed.

5.1 Definition
The basis A ∈ Zn×n of an ideal lattice is constructed with a vector a ∈ Zn
iteratively multiplied by a transformation matrix F ∈ Zn×n defined from a vector
f ∈ Zn, as follows

F∗a = [a,Fa, . . . ,Fn−1a] where F =

0T

. . . −f
I

. . .

The lattices that follow this particular structure have been named ideal lattices

because they can be equivalently characterized as ideals of the ring of modular
polynomials Z[x]/〈f(x)〉 where f(x) = xn + fnx

n−1 + · · ·+ f1 ∈ Z[x].

24

That means that working on the polynomial domain modulo f(x) is equivalent
to working on the ideal lattice domain characterized by F, as seen in the following
example for n = 4 and a specific f .

We consider the coefficients for a and s to be

aT = (a1, a2, a3, a4) sT = (s1, s2, s3, s4)

And use the following f

fT = (1, 0, 0, 0)

First we do the operations working with lattice representation, i.e., with matrices
and vectors

F =

0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

A = F∗a =

a1 −a4 −a3 −a2
a2 a1 −a4 −a3
a3 a2 a1 −a4
a4 a3 a2 a1

As =

a1 −a4 −a3 −a2
a2 a1 −a4 −a3
a3 a2 a1 −a4
a4 a3 a2 a1

s1
s2
s3
s4

 =

a1s1 − a4s2 − a3s3 − a2s4
a2s1 + a1s2 − a4s3 − a3s4
a3s1 + a2s2 + a1s3 − a4s4
a4s1 + a3s2 + a2s3 + a1s4

Now we perform the same operations working with polynomials modulo f(x).

a, s and f will now be polynomials

a(x) = a1 + a2x+ a3x
2 + a4x

3

s(x) = s1 + s2x+ s3x
2 + s4x

3

f(x) = x4 + 1

25

And so the product will be

a(x)s(x) mod f(x) =

(a1 + a2x+ a3x
2 + a4x

3)(s1 + s2x+ s3x
2 + s4x

3) mod (x4 + 1) =

a1s1 + a1s2x+ a1s3x
2 + a1s4x

3

+a2s1x+ a2s2x
2 + a2s3x

3 + a2s4x
4

+a3s1x
2 + a3s2x

3 + a3s3x
4 + a3s4x

5

+a4s1x
3 + a4s2x

4 + a4s3x
5 + a4s4x

6 =

[
x4 + 1 = 0 mod (x4 + 1)
x4 = −1 mod (x4 + 1)

]

= (a1s1 − a4s2 − a3s3 − a2s4)
+(a2s1 + a1s2 − a4s3 − a3s4)x
+(a3s1 + a2s2 + a1s3 − a4s4)x2

+(a4s1 + a3s2 + a2s3 + a1s4)x
3 mod (x4 + 1)

And we see that the coefficients of the vector from the multiplication result
in the lattice representation are the same as the coefficients of the multiplication
result in the polynomial representation.

Notice that using ideal lattices, we are able to express a rank n ideal lattice
with only n values, rather than n× n as it was the case for general lattices, which
allows a more compact representation that requires less space.

Moreover, working with the polynomial representation with certain modules
allows a speedup in operations commonly used in lattice-based schemes: poly-
nomial multiplication can be performed in O(n log n) scalar operations, and in
parallel depth O(log n), using the Fast Fourier Transform (FFT), also called the
Number Theoretic Transform in some contexts.

To get an intuition of how this works, notice that if two polynomials are eval-
uated at n different points, we obtain two n-dimensional vectors that can be mul-
tiplied coefficient wise, from which a polynomial can be recovered by means of

26

interpolation; and this is equivalent to the result obtained by the multiplication of
the two polynomials. To be more specific, to do the evaluation and interpolation
(polynomial recovery), the FFT and the inverse FFT are used respectively, which
cost O(n log n) each. In the transformed space (evaluations), the multiplication’s
cost is O(n).

Regarding the polynomial used in the modulo, which defines the ring, we are
mainly interested in using cyclotomic polynomials since they allow the previously
mentioned multiplication speedup. Although not required to follow the rest of
this work, the cyclotomic polynomials are defined as the polynomials of degree
n = ϕ(m) whose m roots are

ωim = e
2π
√
−1

m
i, for 1 ≤ i < m with i coprime to m

We only focus on cyclotomic polynomials in this work because they follow
all the security proofs from the literature and, as stated previously, because they
allow fast multiplications. Moreover, different cyclotomic polynomials may be
used in the construction of lattice problems with equivalent hardness, but we will
only use the ring Z[x]/〈xn + 1〉 where n is a power of 2 (we used this ring in the
previous example), as proposed by [LPR13].

When working with the ring Z[x]/〈xn+1〉, where we know that f(x) = xn+1
is a cyclotomic polynomial, for n a power of 2, one obtains the family of the so
called “anti-cyclic integer lattices”, i.e., lattices in Zn that are closed under the
operation that cyclically rotates the coordinates and negates the cycled element.

Regarding the hardness of the problems seen in Section 3.10, no algorithm is
known that solves them on ideal lattices any better than on general lattices; so it
is reasonable to assume that solving lattice problems on ideal lattices is as hard
as the general case, and thus we can use them to construct secure cryptographic
schemes.

27

5.2 Ring-LWE
Ring-LWE is parametrized by a ring R of degree n over Z, a positive integer
modulus q defining the quotient ring Rq = R/qR, and an error distribution X
over R. As mentioned previously, one usually takes R to be a cyclotomic ring,
and X to be a discrete Gaussian distribution4.

Definition 11 (Ring-LWE (R-LWE) - [LPR10]). Let n, q (possibly prime) be
positive integers, X be a discrete spherical probability distribution on Rq called
the error distribution (possibly the discrete Gaussian distribution) and s a secret
element in Rq. We denote by As,X the R-LWE probability distribution on Rq×Rq

obtained by choosing a ∈ Rq uniformly at random, choosing e ∈ Zn according to
X and considering it in Rq, and returning (a, b = a · s+ e mod q) ∈ Rq ×Rq.

Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Rq ×Rq are
sampled according to As,X or the uniform distribution on Rq ×Rq.

Search-LWE is the problem of recovering s from (a, b = a · s + e mod q) ∈
Rq ×Rq sampled according to As,X .

For either version of the problem, the number m of R-LWE samples available
is a polynomial of n.

Similarly to LWE, certain instantiations of Ring-LWE are supported by worst-
case hardness theorems [LPR13]. For a discrete Gaussian error distribution ψ =
Ds with s ≥ 2 · ω(

√
log n) and for any ring, solving R-LWE is at least as hard as

quantumly approximating the SVP on any ideal lattice to within γ(n) =O(
√
n · q/s)

approximation factors.
Moreover, for any cyclotomic ring and for appropriate moduli q, decision R-

LWE is classically equivalent to searchR-LWE for any spherical error distribution
[LPR13], such as the discrete Gaussian error used along this thesis. This shows
that the R-LWE distribution is in fact pseudorandom assuming that the search
problem is hard.

4Actually, for a general cyclotomic, X is a discrete Gaussian distribution in the canonical
embedding of R, but for the particular case of Rq = Z[x]/〈xn+1〉, with n a power of 2, a spherical
distribution in the canonical embedding turns out to be a spherical distribution in the coefficients
of Rq . The definition of the canonical embedding relates to the Number Theory background used
in the security proofs for ideal lattices and is out of the scope of this work.

28

5.2.1 Efficiency

In most applications, each sample (a, b) = Rq ×Rq from the R-LWE distribution
can replace n samples (a, c) ∈ Znq × Zq from the standard LWE distribution. To
see this, notice that the (a, b = a·s+e mod q) ∈ Rq×Rq sample can be expressed
in matrix notation as (F∗a,b = F∗a · s + e) ∈ Zn×nq × Znq , where a,b, s, e ∈ Znq
are vectors constructed by taking the polynomial coefficients from a, b, s, e ∈ Rq

(see Section 5.1 for a detailed example of this equivalence). We see that the matrix
notation can be split into n LWE samples: (Fia, b(i) = Fia · s + e(i)) ∈ Znq × Zq
for i ∈ {0, . . . , n− 1}, where b(i) and e(i) are the ith coefficients of the vectors b
and e respectively.

With this we can reduce the size of the public and the secret key in the schemes
by a factor of n.

We also notice that the most expensive operation in R-LWE is the polynomial
multiplication, which can be computed in O(n log n) as mentioned in Section 5.

6 Lattice-based public-key cryptography

6.1 Asymmetric encryption
A simple and efficient semantically secure lattice-based public-key cryptosystem
is detailed in Section 7, along with a study of its decryption error probability, a
review of proposals on choosing the parameters, and an analysis of the homomor-
phic properties of this scheme.

6.2 Digital signature
Several digital signature schemes have been presented in the recent years, both
using general lattices and ideal lattices. The earliest proposals for lattice-based
signatures were the GGH [GGH97] scheme and NTRUSign [HHPSW03], but un-
fortunately, both schemes can be broken in a strong asymptotic sense. A particular
difference between asymmetric encryption and a signature scheme based on hard
lattice problems is that usually, in an encryption scheme the secret is only used
one time; whereas in signature schemes the secret is used every time a signature is
generated. This was problematic for the earliest signature proposals: every signa-
ture exposes some information of the secret key and thus it can be recovered after
analyzing a few signatures (by means of estimating their probability distribution).

29

New schemes have been recently proposed that fix this issue; for instance,
BLISS [DDLL13], which has even been implemented in the StrongSwan open
source VPN software [str05] [str15] , the very recent ring-TESLA [ABBKM16],
or GLP [GLP12]. In particular, BLISS solves the problem of revealing secret
information in the signature by controlling the signature probability distribution
by means of repeating the signature process several times before returning the
signature itself to modify the distribution (and thus remove any information about
the secret key).

7 Ring-LWE encryption

7.1 Definition
Here we describe a simple and efficient semantically secure public-key cryptosys-
tem. The selection of the ring must be carefully done so that the security of the
scheme is guaranteed; for correctness in the security proofs (see [LPR13] for the
details) and considering implementation optimizations using the Number Theo-
retic Transform, we fix the ring R = Z[x]/〈xn + 1〉 with n a power of 2. All
the arithmetic operations will be done in Rq, which is the previous ring where all
coefficients are modulo q.

The original definition of the algorithm requires choosing ‘small elements’
in R from an error distribution at several points. For practical purposes we will
construct these ‘small elements’ in R by taking their coefficients from an error
distribution X which will be a discrete Gaussian distribution with parameter σ.

• Key generation
Choose a uniformly random element a ∈ Rq as well as two random ‘small’
elements s, e ∈ R from X . Output s as the secret key and the pair (a, b =
a · s+ e) ∈ Rq ×Rq as the public key.

• Encryption
To encrypt an n-bit message z ∈ {0, 1}n, we view it as an element of R
by using its bits as the 0-1 coefficients of a polynomial. The encryption
algorithm then chooses three random ‘small’ elements r, e1, e2 ∈ R from X
and outputs the pair (u, v) ∈ Rq ×Rq as the encryption of z, where

30

u = r · a+ e1 mod q

v = b · r + e2 + bq
2
ez mod q

• Decryption
The decryption algorithm simply computes

v − u · s = (r · e− s · e1 + e2) + bq
2
ez mod q

For an appropriate choice of parameters (namely q and σ), the coefficients
of (r · e − s · e1 + e2) ∈ R have magnitude less than q/4, so the bits of z can
be recovered by rounding each coefficient of v − u · s back to either 0 or b q

2
e,

whichever is closest modulo q.
Notice that the cryptosystem can be extended to encrypt messages with ele-

ments bigger than a bit, i.e., z ∈ {0, 1, . . . , k}n. In order to do so, we will map
the n-symbol message z to an element of R by scaling it with a factor of b q

2k
e,

instead of b q
2
e. Finally, in the decryption step, the symbols of z can be recov-

ered by rounding each coefficient of v − u · s back to b q
2k
e for i = {0, 1, . . . , k}

whichever is closest modulo q. The symbols will be properly decrypted whenever
the coefficients of (r · e− s · e1 + e2) ∈ R have magnitude less than q/2k.

The scheme is semantically secure following the pseudorandomness of Ring-
LWE: recall from the definition of the Ring-LWE problem in Definition 11, Sec-
tion 5.2 that differentiating Ring-LWE samples from uniform (random) samples
is hard. Moreover, analogous to Lemma 2, Section 3.10, Ring-LWE samples are
pseudorandom even when the secret is also chosen from the error distribution, by
a transformation to the normal form. Therefore, the public key (a, b) ∈ Rq × Rq

is pseudorandom, so that without loss of generality, we may replace it with a truly
uniform pair. Then we see that the pairs (a, v), (b, v) ∈ Rq × Rq, which consti-
tute the entire view of a passive adversary, are Ring-LWE samples with secret r
and hence also pseudorandom (considering that the addition of the message com-
ponent b q

2
ez modulo q doesn’t change the pseudorandomness of the Ring-LWE

sample), which implies semantic security.

31

7.2 Decryption error probability
The decryption procedure for Ring-LWE consists in computing the following

v − u · s = (r · e− s · e1 + e2) + b q
2k
ez mod q

Where we consider the error term to be

err = (r · e− s · e1 + e2) ∈ R

Which will cause a decryption error when a coefficient of the err polynomial
exceeds q

2k
where k is the symbol size (i.e., each symbol has log2(k) bits) used in

the message z.
We now consider that we are working under the ring R = R[x]/〈xn + 1〉 with

n a power of 2.
As we have seen before in Section 5, the multiplication of two polynomials

a, b ∈ Rq is equivalent to the product of the matrix A = F∗a ∈ Zn×nq with the
vector b ∈ Znq modulo q, where the vectors a and b are created with the obvious
embedding from Rq to Znq , that is, the coefficients of the polynomial are taken as
the coefficients of a vector.

When working on the ring of cyclotomics we have the property that if the coef-
ficients of a follow a symmetric distribution probability (such as a zero-centered
discrete Gaussian distribution as it will be in our case), all the elements in all
the columns of A follow the same exact distribution. This happens because the
operator F corresponds to working with the class of anti-cyclic lattices and thus
performs a shift on the vector and negates the shifted coefficient.

This way, if the coefficients of a follow a discrete Gaussian distribution with
a parameter σ, all the elements in A will follow a discrete Gaussian distribution
with the same parameter σ as well.

From this observation we can express the distribution of each coefficient of
err as:

Xerr =
n∑
i=1

X i
rX

i
e −

n∑
i=1

X i
sX

i
e1

+Xe2

Where n is the number of coefficients of the polynomials (or equivalently
the dimension of the ideal lattice), and each X i

∗ is the discrete Gaussian variable
with parameter σ corresponding to the coefficients of each polynomial. We can
see, as we already know, that each coefficient of the polynomial that results from

32

multiplying two polynomials a and b in Rq is computed naively by adding n mul-
tiplications of pairs of coefficients from a and b. This is easily seen if we see the
operation in the lattice embedding.

Now, considering the fact that all X i
∗ follow the same symmetric distribution

with a known standard deviation, we can find the exact standard deviation ofXerr.
Let X and Y be two independent random variables following a zero mean

symmetric distribution with standard deviation σ2
X and σ2

Y , respectively:

E[X] = E[Y] = 0

X = −X
Y = −Y

XY = −XY

σ2
X = E[X2]− E[X]2 = E[X2]

σ2
XY = E[X2Y 2]− E[XY]2 = E[X2Y 2] = E[X2]E[Y 2] = σ2

Xσ
2
Y

σ2
X+Y = E[(X + Y)2]− E[X + Y]2 = E[X2 + 2XY + Y 2] =

E[X2] + 2E[XY] + E[Y 2] = E[X2] + E[Y 2] = σ2
X + σ2

Y

Thus, if we apply the formulas to Xerr we obtain that

σ2
Xerr = 2nσ4 + σ2

We can now use the fact that n will be a large enough value (we use values of
256 or 512 for practical instantiations of Ring-LWE in cryptographic schemes) to
approximate Xerr as a zero-centered Gaussian distribution with parameter σXerr
following the central limit theorem because Xerr is the addition of 2n + 1 inde-
pendent variables.

We will have a decryption error on a symbol whenever its corresponding co-
efficient of the err polynomial is bigger than q/2k. The probability of this event
happening is analyzed here, where Pde is the probability that a symbol from the
message z is erroneously decrypted:

33

Pde = Pr
[
|Xerr| >

q

2k

]
= 2Pr

[
Xerr >

q

2k

]
= 1− 2Pr

[
0 < Xerr <

q

2k

]
=

1− 2

(
Pr
[
Xerr <

q

2k

]
− 1

2

)
= 1− 2

[
CDFσXerr

(q
2k

)
− 1

2

]
Where CDFσ is the cumulative distribution function of a Gaussian with pa-

rameter σ.
Whereas the previous equation allows us to compute the decryption error prob-

ability per symbol given some Ring-LWE parameters, it makes it hard to reason
about the relation between the parameters and the obtained error. To improve this
situation we can rearrange the formula substituting the random variable Xerr by
a standard normal random variable. Before that, we give an approximation to the
standard deviation of Xerr:

√
2nσ4 + σ2 ≈

√
2nσ4 =

√
2nσ2

Considering our constraints in our parameters, we argue that the error intro-
duced by this approximation is very small considering that we are providing the
s = σ

√
2π parameter with 4 decimals:

n ≥ 256

σ ≥ 8√
2π∣∣∣∣∣

√
2nσ4 + σ2 −

√
2nσ4

√
2nσ4 + σ2

∣∣∣∣∣ =

∣∣∣∣∣1−
√

2nσ2

√
2nσ2 + 1

∣∣∣∣∣ ≤ 9.589× 10−5

Now we do the random variable substitution, obtaining:

N(0, 1)← Y

Y =
Xerr√
2nσ2

Pde = Pr
[
|Xerr| >

q

2k

]
= Pr

[
|Y | > q

2k
√

2πσ2

]
Now we can see that to maintain a fixed decryption error probability per sym-

bol, we need to keep the factor zα = q

2k
√
2πσ2 constant. Moreover, to find different

34

sets of parameters that give the same error probability Pde, we just need to com-
pute the critical value of the normal distribution (i.e., zα s.t. Pr [|Y | > zα] = Pde)
once, by means of a numerical approximation of the Gauss error function (erf)
required to compute the cumulative distribution function of the standard normal
distribution.

Finally, we analyze the probability of error when decrypting a message, Pme;
that is, the probability that at least one symbol in the message gets decrypted
erroneously. We use erri as the event that the symbol i in a given message is
decrypted erroneously (Pr[erri] = Pde).

Pme = Pr[err1 ∪ err2 ∪ · · · ∪ errn] ≤
Pr[err1] + Pr[err2] + · · ·+ Pr[errn] = n · Pde

Where we have used the union bound (Pr[A∪B] ≤ Pr[A]+Pr[B]) to bound
the error probability per message.

A different approach for estimating the probability of decryption error per
symbol can be found in [LP11]. In that case, the authors use two lemmas that
bound the tail of a discrete Gaussian distribution to find a non-tight upper bound
on the decryption error probability in an LWE encryption scheme. From their
result, the authors propose a procedure to obtain the parameters of the encryption
scheme given the upper bound in the decryption error probability.

7.3 Choosing the parameters
The authors of the paper “On the concrete hardness of Learning with Errors”
[APS15] provided a Sage [Sag] module for estimating the bit security of LWE
instances [APGS15], in order to provide designers with an easy way to choose
parameters that resist known attacks and also to enable comparisons of different
cryptanalysis for a given set of parameters.

With the help of this module we are able to provide proposals of parameters
for practical uses in Ring-LWE encryption intended for asymmetric encryption
only (i.e., no homomorphic operations) where we are able to achieve the desired
security level and decryption error probability. Note however that these parame-
ters will be defined based on the best attacks to LWE. It is still unknown if attacks
can take advantage of the special structure of ring lattices using a proper set of
parameters.

35

For homomorphic operations, an upper bound on the number of operations
that will be applied to the ciphertexts must be provided because this value will de-
termine the decryption error after the operations. This is because the error proba-
bility keeps growing after every homomorphic operation (see Section 7.4), so the
parameters q and s must be set accordingly. Another option for homomorphic
operations is to take advantage of the results of fully homomorphic encryption;
particularly the bootstrapping algorithm, which is a procedure to reduce the error
in the ciphertext after a number of homomorphic operations. This later option is
out of the scope of this thesis.

We can find two proposals of methods to choose LWE parameters in the lit-
erature that consider the requirements of security reductions [Reg09] and an up-
per bound on the decryption error probability [LP11]. But these proposals don’t
consider all the known attacks, and may give unreasonable parameters for some
settings. For an implementation of LWE oracles generating samples according to
these proposals see [LS15].

Unfortunately, the runtime and memory consumption of the LWE known at-
tacks are estimations that require numerical computations (sometimes a bit inten-
sive). This means that we are unable to provide a general formula to achieve some
desired characteristics, but we are left with the tedious task to manually tune and
adjust the parameters repeatedly until we verify that the desired level of security
is reached according to the estimations from the Sage module.

Recall that in schemes relying on LWE we will have samples of the form
(a, c = 〈a, s〉 + e) ∈ Znq × Zq, with e drawn from a discrete Gaussian distri-
bution with standard deviation σ.

The list of LWE parameters is the following:

• n: dimension of the lattice.

• q: modulo used in the operations (this also defines the modulo in the q-ary
lattice).

• s: parameter for the Gaussian error.

• σ = s/
√

2π: standard deviation for the Gaussian error.

• α = s/q: spread of the Gaussian error relative to q.

36

7.3.1 Regev’s procedure [Reg09]

Select n as the security parameter.

q = next prime(n2)

s =
q√

n · log22n

7.3.2 Linder and Peikert’s procedure [LP11]

Select n as the security parameter, and δ as the upper bound on decryption proba-
bility error per symbol.

Solve the following equation for c, and compute st with the result

2 · n · log(c) + n(1− c2) + 40log2 = 0

st =

√
2π
√

2 · n · log(2/δ)

c
The parameters will be

q = next prime(b2 · blog2(256/st)ec)

s =
√
st · bq/4c

7.4 Homomorphic sum in Ring-LWE
The proposed Ring-LWE scheme allows homomorphic addition without any mod-
ification, as seen in the following equations where the elements with super index
(i) refer to some ciphertexts generated as defined in Section 7 and the elements
with super index (s) refer to the summation of the (i) elements, that is, the result
of adding the ciphertexts.

We define a public key from a secret key

a, b = a · s+ e

Each ciphertexts will have the form

u(i) = a · r(i) + e
(i)
1

v(i) = b · r(i) + e
(i)
2 + b q

2k
ez(i)

37

And so, the summation of ciphertexts will be

u(s) =
∑
i

u(i) =
∑
i

a · r(i) +
∑
i

e
(i)
1 = a

∑
i

r(i) +
∑
i

e
(i)
1

r(s) =
∑
i

r(i) e
(s)
1 =

∑
i

e
(i)
1

v(s) =
∑
i

v(i) =
∑
i

(b · r(i) + e
(i)
2 + b q

2k
ez(i)) =

b
∑
i

r(i) +
∑
i

e
(i)
2 + b q

2k
e
∑
i

z(i)

r(s) =
∑
i

r(i) e
(s)
2 =

∑
i

e
(i)
2 z(s) =

∑
i

z(i)

So the decryption of the result ends up being

v(s) − u(s) · s = (r(s) · e− s · e(s)1 + e
(s)
2) + b q

2k
ez(s) =∑

i

(r(i) · e− s · e(i)1 + e
(i)
2) + b q

2k
e
∑
i

z(i)

It can be seen that the summation of Ring-LWE ciphertexts, each one with
its own randomness but using the same public key, results in a new Ring-LWE
ciphertext that contains the summation of the plaintext underlying the summed
ciphertexts.

From the equation results we also see that after performing the summations,
the error of all the original ciphertexts is added in the final ciphertexts. This
means that the error grows linearly with the number of operands in the summation.
For this reason, in the design of an encryption system where we wish to use the
homomorphic properties of the Ring-LWE scheme, we should know in advance
the maximum number of elements that will be summed in order to find the proper
parameters (namely s and q) that allow those many operations while keeping the
final decryption error probability upper bounded to a small (or negligible) value.
From this we also see that, intuitively, if we want to target an upper bound of the
final decryption error probability, the q parameter will grow at least linearly with
the maximum number of operations that we support, with the consequence that
the keys and ciphertexts would grow with the same factor. Notice however that

38

this is just a general idea: keeping the same n and s while growing q may lower
the security of the scheme, so further analysis would need to be done in this sense,
which we leave as future work.

8 Implementation of Ring-LWE encryption

8.1 NFLlib
NFLlib [ALGG15] is an efficient NTT-based open-source C++ library dedicated
to ideal lattice cryptography. It is specialized in elements from the ring of poly-
nomials modulo a cyclotomic whose degree is a power of two of the form R =
Z[x]/〈xn+1〉with n a power of 2. The library combines algorithmic optimizations
(Chinese Remainder Theorem, optimized Number Theoretic Transform) together
with programming optimization techniques (SSE and AVX2 specializations, C++
expression templates, etc.).

The library provides an API to generate elements of the ring R that will work
in modulo q (for arbitrarily large q) in the following three ways: by manually
specifying the coefficients, by drawing the coefficients from a uniform distribu-
tion given a range, by drawing the coefficients from a discrete Gaussian distribu-
tion with a given parameter σ. The specific selection of the q parameter is internal
to the library in order to be able to apply the Chinese Remainder Theorem opti-
mizations to hold arbitrarily large coefficients; the user is only able to select the
number of bits used for the q parameter.

Internally, the library has precomputed tables of prime numbers (along with
related values needed to operate with the Chinese Reminder Theorem) that are the
size (in bits) of CPU words minus 2 bits; specifically: 14, 30 and 62. The user
can then select multiples of these values as the size in bits of q, which will be
generated by a product of primes (each one the size of a word minus 2 bits). With
this decomposition, the library is able to perform all the operations in the Chinese
Reminder Form, allowing each congruence for each polynomial coefficient to be
stored in a single CPU word, which in turn allows fast arithmetic operations: there
is no need to use any “big num” library. In fact, the library works with the Chi-
nese Reminder Form all the time except when the full polynomial coefficients are
requested. This optimization has as a consequence the fact that the library doesn’t
always work with q prime.

From the generated polynomials, the library offers the following operations:
coefficient-wise sum, coefficient-wise product, number theoretic transform, and

39

inverse number theoretic transform (the later two operations are needed to perform
the standard product between polynomials efficiently).

8.2 Parameters proposal and analysis
To propose LWE parameters to use in our implementation based on NFLlib, we
fix n, q and a probability of decryption error per symbol and then we do a bi-
nary search using the approximation formulas shown in Section 7.2 to obtain the
s parameter for the discrete Gaussian distribution. Notice that the proposed q pa-
rameters are some of the ones available in NFFlib; as mentioned before, the library
only allows us to select the number of bits but not the value itself. The procedure
to obtain s in such a way can be found in function find s at Appendix B.1.

In Table 1 we show a comparison of the LWE parameter proposals found in
[LP11] with our proposals, with the s parameter computed as mentioned above.
The last column of the table shows the estimated decryption error probability us-
ing our approximation implemented in Appendix B.1.

name n q s α P(err)
192 LP 192 4093 8.8700 0.002167 0.0031%
256 LP 256 4093 8.3500 0.002040 0.0046%
320 LP 320 4093 8.0000 0.001955 0.0072%
256 14 256 15361 16.5554 0.001078 0.0100%
256 30 256 1073479681 4376.4140 0.000004 0.0100%
512 14 512 15361 13.9214 0.000906 0.0100%
512 30 512 1073479681 3680.2387 0.000003 0.0100%
256 14’ 256 15361 14.7648 0.000961 0.0001%
256 30’ 256 1073479681 3903.1101 0.000004 0.0001%
512 14’ 512 15361 12.4155 0.000808 0.0001%
512 30’ 512 1073479681 3282.1790 0.000003 0.0001%

Table 1: Comparison of parameters proposals for use in Ring-LWE schemes with
estimated error probability, where LP refers to the proposals from the work of
Linder and Peikert [LP11] and the rest are proposals from this thesis.

The Sage module provided by [APS15] will estimate the cost of different at-
tacks on the given parameters of an LWE instance. The main procedure gives us

40

various parameters for each attack, which can be divided into three groups: mem-
ory cost (mem), the number of LWE oracle calls needed to perform the attack
(smp) and different forms of runtime costs. Depending on the attack, the run-
time cost may be expressed as the number of binary operations (bop), the runtime
cost of the BKZ 2.0 lattice reduction algorithm (bkz2) along with the number of
calls to the sieve algorithm (sieve)5 and the number of extra enumerations when
exploring the possible decodings (enum).

The attacks analyzed by the module are the following: Meet-in-the-Middle
(MitM), BKW, distinguishing attack (SIS), decoding attack (Dec) and Kannan.
The decoding attack is the one explained in Section 4.2 with further improvements
found in [LP11] and [LN13]. To learn more about the rest of the attacks we refer
the reader to [APS15] where they are described in detail with references to the
publications where they first appeared.

In Table 2 we show the cost estimates for different attacks given by the Sage
module on the LWE parameter proposals found in [LP11] as well as our parameter
proposals.

MitM Coded-BKW SIS Dec Kannan

name bop mem smp bop mem smp bkz2 sieve smp bop enum smp bkz2 sieve smp

192 LP 314 311 7 103 88 87 123 107 25 91 75 16 109 95 14
256 LP 404 401 8 128 112 111 190 141 29 121 105 23 180 128 15
320 LP 493 489 8 141 124 124 260 174 36 153 137 29 264 163 15

256 14 531 527 8 132 116 115 180 136 27 117 101 21 168 123 15
256 30 1562 1557 8 173 155 154 98 92 18 83 67 13 86 84 15
512 14 986 983 9 230 213 212 489 264 46 240 224 30 536 260 16
512 30 3047 3042 9 681 664 663 301 185 27 168 152 18 287 173 16

256 14’ 510 506 8 132 116 115 174 132 25 114 98 21 158 119 15
256 30’ 1541 1536 8 173 155 154 95 90 18 81 64 17 83 83 15
512 14’ 944 940 9 216 199 198 469 256 44 232 216 29 509 251 16
512 30’ 3005 3000 9 681 664 663 293 182 27 166 150 15 277 170 16

Table 2: Analysis of attacks to the LWE problem for different sets of parameters.
All the values are in log2 scale.

Considering the high number of LWE oracle calls required for most of the
attacks, they couldn’t be used against certain schemes where not enough LWE
samples are exposed (for instance, consider the Ring-LWE scheme explained in

5The sieve is a method to solve the exact SVP and it’s used in the BKZ 2.0 algorithm as a
subroutine, while working in smaller dimensions.

41

Section 7 where only n samples are exposed in the public key, and 2n samples are
exposed in the ciphertext).

Even though the proposals 256 30 and 256 30′ seem weaker than the rest,
considering the SIS, Dec and Kannan attacks, it’s hard to estimate the security
parameter because we don’t know whether the attacks could be adapted to use
a lower number of samples (at the cost of increasing their runtime), and if so,
how worse they would perform, considering that the current trade off would have
been optimized for performance. Moreover, most of the work in the literature
focuses on attacks on LWE and other lattice problems, leaving the cryptanalysis
of specific lattice-based schemes untouched, which corresponds to a very specific
instance of the problem and can’t be generalized. Nevertheless there is literature
on cryptanalysis on the older lattice-based encryption scheme called NTRU. From
that work for example, Bernstein et. al. are able to provide a security estimate for
their proposal NTRU Prime [BCLV16]. It remains a future work for the research
community to cryptanalize specific Ring-LWE schemes.

8.3 Benchmarking
In order to evaluate the performance of Ring-LWE encryption a C++ implementa-
tion has been developed using the NFLlib library [ALGG15]. The cryptographic
scheme is implemented as described in Section 7. The full source code of the
implementation can be found in the publicly available git repository [San16].

The source code available at the git repository includes error checking proce-
dures in various functions, queries to a monotonic clock to benchmark the speed
of the different operations and counting of the decryption error rates for a big
number of encryption/decryption operations of random plaintexts. To ease the un-
derstanding of the source code, a cleaned version that only contains the essential
functions to perform key generation, encryption and decryption can be found in
the Appendix A.

For the analysis of performance of the cryptographic operations of the imple-
mentation the proposed parameters from Section 7.3 have been used.

The results of the benchmark can be seen in the Table 3, where “msg err”
refers to the percentage of decryption errors per ciphertext, “sym err” refers to the
percentage of decryption errors per symbol, and “pk size” and “sk size” refers to
the public key and private key sizes respectively.

42

name key gen encrypt decrypt msg err sym err pk size sk size
256 14 165 µs 218 µs 125 µs 2.8300% 0.0113% 7.0 kb 3.5 kb
256 30 200 µs 271 µs 135 µs 2.7340% 0.0109% 15.0 kb 7.5 kb
512 14 365 µs 456 µs 264 µs 5.1440% 0.0104% 14.0 kb 7.0 kb
512 30 415 µs 575 µs 261 µs 5.1600% 0.0104% 30.0 kb 15.0 kb
256 14’ 165 µs 217 µs 126 µs 0.0220% 0.0001% 7.0 kb 3.5 kb
256 30’ 198 µs 268 µs 125 µs 0.0300% 0.0001% 15.0 kb 7.5 kb
512 14’ 336 µs 450 µs 280 µs 0.0440% 0.0001% 14.0 kb 7.0 kb
512 30’ 404 µs 546 µs 264 µs 0.0760% 0.0001% 30.0 kb 15.0 kb

Table 3: Benchmarking results for the Ring-LWE scheme, taken from 50000 runs
using random plaintexts.

9 E-voting
Electronic voting (also known as e-voting) consists of adapting some (or all) of
the steps involved in a voting process to use electronic mechanisms. The defini-
tion ranges from aiding in the process of vote counting to implementing a full-
functioning online voting system that allows people to vote from their homes. In
general, some of the advantages of electronic voting are: speeding the counting
of ballots, reducing the cost of paying staff to count votes manually and provide
improved accessibility for disabled voters as well as better commodity to regular
voters.

An e-voting scheme must comply with the standards and laws established by
regulatory bodies, and must be capable of fulfilling strong requirements associ-
ated with security, integrity, privacy, auditability among others. Some of these
requirements can be achieved by means of cryptographic protocols.

9.1 Voter’s anonymization
One of the main features desired in an e-voting system is the anonymity of the
voters: despite the fact that during the process we will verify that each accepted
ballot comes from an authorized voter, we want the relation between the voter and
the contents of their ballot to remain secret.

To achieve this, there have been two main proposals in the literature:

• Tally homomorphic: This approach takes advantage of encryption schemes
that support homomorphic operations (addition in this case). In this form,

43

each voter will send their encrypted ballot (probably with a signature to
prove the voter’s authenticity to a server). The encrypted ballots will then
be summed to generate a new ciphertext, which will then be decrypted by a
trusted authority with its secret key, to reveal the ballot count results. No-
tice that at some point before the summation of the encrypted ballots, the
validity of the selected options underlying each encrypted ballot must be
checked; for example, ballots containing multiple answers to a single an-
swer question must be rejected.

• Mix-nets: A different approach is to add a “scrambling” operation in the
process before counting. The encrypted ballots will be stripped from their
signature, and then re-encrypted and randomly permuted by one or several
mix-nets, with the purpose of removing the relation between the casted en-
crypted ballot and the encrypted ballot that will be used for the counting.
Once the encrypted ballots have been mixed, they are decrypted individ-
ually to count the results by a trusted authority. Notice that this method
requires the mix-nets to provide a plaintext equality proof so that the cor-
rectness of their scrambling process, i.e., that the contents of their output
are the same as the contents of their input, can be verified by some entity.

The concept of using mix-nets for lattice-based cryptography is very new in
the research literature, and as such, there are not many proposed schemes. Nev-
ertheless, there has been extensive research on the general topic of mix-nets with
applications on e-voting. For instance, there is the work by Jens Groth [Gro10]
that provides a mix-net scheme for general homomorphic encryption schemes
(so that it could be adapted to work with Ring-LWE encryption), with further
improvements on the zero-knowledge proofs of knowledge sizes in [BG12] and
[CKLM12]. There is also a parallel work by Douglas Wikström [Wik11] which
improves on efficiency by doing an offline commitment on the permutation before
the ciphertexts are received.

This thesis only gives an introduction to the elements required to adapt an e-
voting scheme to make it quantum resistant, and so, providing anonymity for the
voters is left as future work.

44

9.2 E-voting at Scytl
The voting scheme implemented by Scytl6 uses the mix-net strategy to provide
anonymity properties for the voters.

Apart from the standard cryptographic properties desired in an e-voting scheme,
Scytl provides a novel property called “cast as intended”, which allows the voter
to verify that the ballot server received the vote they selected without the need to
trust the software running in the voting machine (which may be a personal com-
puter). In order to achieve this property, a set of return codes are used as explained
later.

The actors that participate in the voting procedure are the following: the N
voters, the ballot server, the mix-net, the counter and the key generator.

The ballot must be defined in terms of M questions with Qj answers each
question.

The following indexes will be used:

• i ∈ [1, . . . , N] to refer to a voter i.

• j ∈ [1, . . . ,M] to refer to ballot question j.

• k ∈ [1, . . . , Qj] to an answer k of the ballot question j.

The voting procedure consists of several steps:

1. Ballot definition

For each answer k of each question j, a unique prime number pj,k different
than 1 is assigned. These prime numbers will be public.

2. Key Generation

This step must be performed by a trusted entity: the key generator.

First, a random Login Key LK of sufficient length is generated for each
voter. This key can be split into two smaller keys: the voter’s ID (IDi) and
the voter’s password (PWDi).

The following asymmetric key pairs are generated:

• PKb, SKb: ElGamal key pairs for ballot encryption.

• PKvi , SKvi with i ∈ [1, . . . , N]: RSA key pairs for voter signature.

6https://www.scytl.com/

45

https://www.scytl.com/

The following secret keys are generated:

• SKrci: secret keys used in the return code procedure for each voter.

Additionally, a procedure is defined to derive a symmetric key KKi from
the voter’s password PWDi.

A set of return code tables will be generated for each question j in the ballot,
which will contain two columns: long code and return code. The long code
is computed by LCi,j,k = HMAC(p

SKrci
j,k , IDi) for each possible answer j

of every question k and each voter i. The return code (RCi,j,k) is computed
by expressing the long code in decimal form and taking the last 4 digits.
There will be M return code tables of length N

∑M
j=1Qj each, containing

the long code and return codes for the answers k corresponding the each
question j. In each return code table, the entries will be scrambled to avoid
revealing the voter i and the answer k of any entry.

SKvi and SKrci are symmetrically encrypted with the KKi key (derived
from PWDi) producing the ciphertext KSi which we call the keystore.

Finally, SKb is given to the counter. The set of IDi, PKvi , KSi and the M
return code tables are given to the ballot server.

3. Voting Card generation

For each voter, a voting card must be generated and be sent in a confidential
manner. For example, it could be printed on paper and sent via conventional
mail.

The voting card must contain the following information:

• Login Key LKi

• For each question j

– For each answer k that belongs to the question j: return code
RCi,j,k

See Figure 8 for an example with some sample questions.

4. Voting

The voter sends a request to the ballot server with their IDi to retrieve
the keystore KSi. If the voter sent their unique IDi, they will be able to

46

vbMjNt749rkDLSz8Key Login:

ID PWD

1. President
A. Jane Boss
B. Mary Command
C. Joe Rule

2. Treasurer
A. Ada Bank
B. Johnny Cash

3827
4569
7286

Return Code

9453
6928

Figure 8: Voting Card example.

decrypt KSi using the key KKi derived from PWDi to obtain SKvi and
SKrci . Since the tuple IDi and PWDi is unique and secret for each voter,
no voter can decrypt the keystore of another voter.

The voter, with the help of the voting software, proceeds to select the prime
numbers pj,k associated to their desired answers to form the ballot. On one
hand, the voter will encrypt the product of the selected primes pj,k with
ElGamal using the key PKb, generating the ciphertext Vi, and then send it
to the ballot server. On the other hand, the voter will encrypt each prime
pj,k deterministically using SKrci , generating the ciphertext Ai,j . The voter
sends these ciphertexts along with a signature (Sigi) of them using the key
SKvi .

The ballot server will first verify the authenticity of the vote by checking the
signature Sigi against the public key PKvi associated with the IDi. Sec-
ondly the ballot server will verify that the contents of the vote Vi are the
same as the elements Ai,j , using an equality proof of knowledge. If the ver-
ification succeeds, the ballot server computes the corresponding long codes
LCi,j,k of the elements Ai,j and verifies that they are in the proper tables,
sends the associated return codes RCi,j,k to the voter and stores the en-

47

crypted vote Vi with it’s signature Sigi. By computing the proof of knowl-
edge and checking that the long codes are in the correct tables (i.e., the
tables corresponding to each question j), the ballot server verifies that the
received vote is valid (i.e., each question has only one answer). After val-
idating all the votes and verifying their authenticity, the ballot server can
sign the concatenation of all the votes. On the other hand, the voter is able
to check that their intended options have been received successfully and
without modification to the ballot server by checking that the received re-
turn codes match the ones listed in the voting card for the intended options.
Furthermore, there’s an additional step not detailed here for succinctness in
which the voter sends a final confirmation to the ballot sever after verifying
the correctness of the return codes.

5. Vote mixing

The mix-net will receive the encrypted votes Vi (with their corresponding
signatures Sigi detached) from the ballot server and will perform a ran-
dom permutation in the order of the received votes as well as a blind re-
encryption of the votes (V ′i). The mix-net must provide a proof of the cor-
rect permutation and re-encryption of the votes, that can be used to verify
that the votes content hasn’t been modified.

6. Vote counting

The counter will receive the anonymous votes V ′i from the mix-net, for
which the correctness can be verified by means of checking the correct-
ness of the mix-net proof, which proves that those anonymous votes have
the same contents as the input votes used by the mix-net, which are verified
to be the votes casted by the voters by checking the vote server signature on
their concatenation.

The counter will then proceed to decrypt the anonymous votes V ′i and to
obtain the contained answers by factorizing the plaintext (which will pro-
vide the primes pj,k associated with each answers). After decryption, the
answers are counted to provide the results, which can be made public.

In the previous description, some simplifications have been made on how the
voter receives the key store (KSi) from the server in order to focus on the parts
relevant to this thesis analysis (namely, an authenticated login mechanism for the
voter before retrieving the key store has been skipped).

48

9.3 Post-Quantum proposal
For a recent proposal on a post-quantum e-voting scheme, as an alternative to
the idea we propose in this thesis, we refer the reader to [CGGI16]. In the cited
paper, the authors present an e-voting scheme that uses LWE fully homomorphic
encryption in order to provide a tally homomorphic system. The scheme performs
several bootstrapping operations on the encrypted ballots (which contain a single
question with a single answer) to allow small sized ciphertexts to be sent by the
voters while also allowing counting the results by using homomorphic addition.
The authors also propose a new procedure to distribute the decryption task among
trusted parties where each one provides independent proofs of the correct decryp-
tion. The presented work is rather theoretical and it lacks a proposal of specific
parameters in the LWE instantiation, which would be needed to evaluate the size
of the keys and ciphertexts, and more importantly, to verify that time needed to
perform all the required bootstrapping operations and decryptions is reasonable.

In the following part of this section we will propose an adaptation of the cur-
rent voting scheme used by Scytl to make it post-quantum.

The first observation we make to the Scytl scheme in its current implementa-
tion is that it doesn’t allow vote repetition: the ballot cannot be changed once it
has been sent. This characteristic comes as a legal requirement in some countries,
so it’s not always a design choice. For this reason, we propose a simplification
of the return codes mechanism by adapting the vote encryption process to be de-
terministic. Since the voter is not allowed to vote more than once, the voter will
only be able to encrypt a ballot once, so there is no security penalty with this
modification.

We only give an initial idea of a possible proposal, leaving the anonymization
of the votes as future work and skipping specific details of the signature procedure.

Our proposal consists in the following modifications:

• Instead of using ElGamal to encrypt the ballots, we would use the Ring-
LWE encryption scheme described in Section 7. With this change, the key
pairs PKb, SKb would now correspond to the Ring-LWE scheme.

• Instead of using RSA to sign the ballots, we would use a lattice-based sig-
nature scheme like the ones mentioned in Section 6.2. In this case we leave
the selection of a specific digital signature scheme as well as its details and
analysis for future work, as in this thesis we have focused on a public-key

49

encryption scheme. With this change, the key pairs PKvi , SKvi would now
correspond to a lattice-based signature scheme.

• We remove the secret keys used in the return code procedure SKrci .

• We define a “deterministic” randomness for each unique pair of voter and
ballot question, for example, constructed like RNDi,j = hash(PWDi‖j)
(where the operator ‖ is the concatenation), so that each voter can obtain
these values without modifying the fields found in the Scytl voting card.

• Since each answer is encrypted only individually now, the plaintext corre-
sponding to each answer would now be a binary vector instead of a prime
number. The vector (with size the number of answers for the given ques-
tion) would have all elements set to 0 except for the element in the position
corresponding to the selected answer, which would be set to 1.

• In the voting step, instead of encrypting the product of the prime num-
bers pj,k associated with the desired answer; the voter just encrypts, for
every question k, the desired answer in vector form (as described above)
individually using the Ring-LWE scheme with the key PKb and random-
ness RNDi,j , thus making it a deterministic encryption, similarly to the
second encryption part of the Scytl voting step. We call these encrypted
answers Ai,j for their similarity with the original scheme. On the other
hand, during the key generation, the long codes would have been com-
puted with all the possible Ai,j encryptions for every voter, i.e., LCi,j,k =
HMAC(EncPKb,RNDi,j(vj,k)), where EncPKb,RNDi,j obviously refers to
the Ring-LWE encryption using key PKb and randomness RNDi,j , and
vj,k is the answer vector of question j and selected answer k.

With this modification we are able to remove the plaintext equality proof
in the return code procedure: the return codes are now generated with the
encrypted answers that will form the ballot used in the counting, which are
now deterministic, and so the ballot server can still verify the validity of
the ballot and the voter can verify that the ballot server has received the
intended answers.

• Now the voters’ ballot that gets stored in the ballot server would be split into
one ciphertext for every question. The voter would sign the concatenation
of the encrypted answers for authentication by the ballot server.

50

We refer to the benchmark results shown in Section 8.3 to argue that the
sizes of keys and ciphertexts are small enough and that the encryption/decryp-
tion speeds are fast to show that the modifications in our proposal are completely
reasonable and don’t cause any penalty on the e-voting scheme.

As mentioned before, even though the anonymization part of the e-voting
scheme is left as future work, we will give some comments on the tally homo-
morphic variant.

If tally homomorphic is desired, a quick analysis following the results in Sec-
tion 7.4 shows us that, should the encrypted ballots be naively summed by the
counter, the size of keys and ciphertexts would grow linearly with the number of
voters, so the scheme could become impractical because we would end up with
keys and ciphertexts too big. A possible solution for this, which is out of the
scope of this thesis, would be to leverage on the results of fully homomorphic
encryption; namely using the bootstrapping process that allows a ciphertext to be
re-encrypted without modifying the plaintext into a new ciphertext with a new (in
this case bigger) q without requiring knowledge of the secret key. The bootstrap-
ping could be performed on the ballot server to allow the voter to encrypt with
a smaller q (and thus use smaller keys and send smaller ciphertexts) while still
allowing the counter to operate on the encrypted ballots.

10 Conclusions
As we have seen, lattice theory offers a new framework to build cryptographic
primitives. Being so recent in the field of cryptography means that there is still a
lot of work to do. Most of the current literature is focused on theoretical results
of lattice problems and scheme proposals are often shown rather briefly. Some of
the practical issues that arise from those schemes are not entirely addressed, for
instance, the problems that occur when working with an encryption scheme that
has a non-negligible decryption error and how to solve them practically.

Focusing more on the details of specific schemes (a trend that is happening
in recent publications) will help with the task of the much needed cryptanalysis
of such proposed schemes, which is a bit lacking currently. Only attacks on the
underlying hard problems are studied in the literature, and those may not always
relate directly to attacking the proposed schemes.

More research and analysis on this topic (particularly, on specific schemes) is
needed before any post-quantum algorithm is recommended for use. The current

51

proposals have not received nearly as much scrutiny from the cryptographic com-
munity as the currently deployed algorithms. Apart from building confidence in
post-quantum cryptography, we also face the challenge to improve its efficiency
and usability.

Current lattice-based scheme proposals, like the one described in this thesis,
are still quite new; so we should proceed with caution. Nevertheless, we should
be already thinking about proposing standards for lattice-based schemes if we
want to replace current pre-quantum schemes. In that sense, it is expected that
the National Institute of Standards and Technology of the USA (NIST) will soon
announce a competition for post-quantum public-key schemes7, where researchers
will be able to propose their best schemes which will be analyzed in depth for
some years by the cryptography community before determining a winner.

Regarding the public-key encryption scheme based on the Ring-LWE problem
described in this work, as seen in Section 8.3, the benchmarking results are very
promising: the speed of the operations is very fast and the key and ciphertexts
sizes are very competitive. This makes it a proper candidate to replace current
pre-quantum schemes. Moreover, thinking further on an e-voting scheme, where
the number of transactions per users are very low (each voter only casts a ballot
once, where the number of questions is usually small), even if the ciphertexts grow
a bit the impact on the e-voting scheme is minimal.

Studying a post-quantum e-voting scheme proposal made us realize that if
voting is only allowed once per voter, we can simplify the return code mechanism,
reducing the complexity of the scheme without compromising any feature. From
this fact, and considering the rest of our proposal in Section 9.3, we conclude that
adapting a current e-voting scheme to make it post-quantum should be completely
feasible without any apparent drawback.

7http://www.nist.gov/itl/csd/nist-kicks-off-effort-to-defend-encrypted-
data-from-quantum-computer-threat.cfm

52

http://www.nist.gov/itl/csd/nist-kicks-off-effort-to-defend-encrypted-data-from-quantum-computer-threat.cfm
http://www.nist.gov/itl/csd/nist-kicks-off-effort-to-defend-encrypted-data-from-quantum-computer-threat.cfm

References
[ALGG15] Carlos Aguilar, Tancrède Lepoint, Adrien Guinet, and Serge Guel-

ton. NFLlib: NTT-based Fast Lattice library. 2015. URL: https:
//github.com/quarkslab/NFLlib.

[ABBKM16] Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer,
and Giorgia Azzurra Marson. “An Efficient Lattice-Based Signa-
ture Scheme with Provably Secure Instantiation”. In: Progress in
Cryptology - AFRICACRYPT 2016 - 8th International Conference
on Cryptology in Africa, Fes, Morocco, April 13-15, 2016, Pro-
ceedings. 2016, pp. 44–60.

[APGS15] Martin R. Albrecht, Rachel Player, Florian Göpfert, and Sam Scott.
Estimator for the Bit Security of LWE Instances. 2015. URL: https:
//bitbucket.org/malb/lwe-estimator.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. “On the con-
crete hardness of Learning with Errors”. In: J. Mathematical Cryp-
tology 9.3 (2015), pp. 169–203.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai.
“Fast Cryptographic Primitives and Circular-Secure Encryption
Based on Hard Learning Problems”. In: Advances in Cryptology
- CRYPTO 2009, 29th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings.
2009, pp. 595–618.

[Bab85] László Babai. “On Lovász’ Lattice Reduction and the Nearest Lat-
tice Point Problem (Shortened Version)”. In: STACS 85, 2nd Sym-
posium of Theoretical Aspects of Computer Science, Saarbrücken,
Germany, January 3-5, 1985, Proceedings. 1985, pp. 13–20.

[BG12] Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Ar-
gument for Correctness of a Shuffle”. In: Advances in Cryptology
- EUROCRYPT 2012 - 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cam-
bridge, UK, April 15-19, 2012. Proceedings. 2012, pp. 263–280.

[BB84] Charles H. Bennett and Gilles Brassard. “Quantum cryptography:
Public key distribution and coin tossing”. In: Theor. Comput. Sci.
560 (1984), pp. 7–11.

53

https://github.com/quarkslab/NFLlib
https://github.com/quarkslab/NFLlib
https://bitbucket.org/malb/lwe-estimator
https://bitbucket.org/malb/lwe-estimator

[Ber09] Daniel J. Bernstein. “Post-Quantum Cryptography”. In: ed. by
Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009. Chap. Introduction
to post-quantum cryptography, pp. 1–14.

[BBD09] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, eds.
Post-Quantum Cryptography. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009.

[BCLV16] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange,
and Christine van Vredendaal. NTRU Prime. Cryptology ePrint
Archive, Report 2016/461. http://eprint.iacr.org/. 2016.

[CKLM12] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah
Meiklejohn. “Malleable Proof Systems and Applications”. In: Ad-
vances in Cryptology - EUROCRYPT 2012 - 31st Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques, Cambridge, UK, April 15-19, 2012. Proceed-
ings. 2012, pp. 281–300.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. “A Homomorphic LWE Based E-voting Scheme”. In:
Post-Quantum Cryptography - 7th International Workshop, PQCrypto
2016, Fukuoka, Japan, February 24-26, 2016, Proceedings. 2016,
pp. 245–265.

[DGHV09] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. Fully Homomorphic Encryption over the Integers. Cryp-
tology ePrint Archive, Report 2009/616. http://eprint.iacr.
org/. 2009.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyuba-
shevsky. “Lattice Signatures and Bimodal Gaussians”. In: Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I. 2013, pp. 40–56.

[GN08] Nicolas Gama and Phong Q. Nguyen. “Predicting Lattice Reduc-
tion”. In: Advances in Cryptology - EUROCRYPT 2008, 27th An-
nual International Conference on the Theory and Applications of
Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008.
Proceedings. 2008, pp. 31–51.

54

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[Gen09] Craig Gentry. “A fully homomorphic encryption scheme”. crypto.
stanford.edu/craig. PhD thesis. Stanford University, 2009.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. “Homomorphic
Evaluation of the AES Circuit”. In: Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2012. Proceedings. 2012, pp. 850–
867.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. “Public-Key
Cryptosystems from Lattice Reduction Problems”. In: Advances
in Cryptology - CRYPTO ’97, 17th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 17-21,
1997, Proceedings. 1997, pp. 112–131.

[Gro10] Jens Groth. “A Verifiable Secret Shuffle of Homomorphic Encryp-
tions”. In: J. Cryptology 23.4 (2010), pp. 546–579.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann.
“Practical Lattice-Based Cryptography: A Signature Scheme for
Embedded Systems”. In: Cryptographic Hardware and Embed-
ded Systems - CHES 2012 - 14th International Workshop, Leuven,
Belgium, September 9-12, 2012. Proceedings. 2012, pp. 530–547.

[HHPSW03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H.
Silverman, and William Whyte. “NTRUSIGN: Digital Signatures
Using the NTRU Lattice”. In: Topics in Cryptology - CT-RSA
2003, The Cryptographers’ Track at the RSA Conference 2003,
San Francisco, CA, USA, April 13-17, 2003, Proceedings. 2003,
pp. 122–140.

[KS99] Aviad Kipnis and Adi Shamir. “Cryptanalysis of the HFE Public
Key Cryptosystem by Relinearization”. In: Advances in Cryptol-
ogy - CRYPTO ’99, 19th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 15-19, 1999, Pro-
ceedings. 1999, pp. 19–30.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. “Factoring poly-
nomials with rational coefficients”. In: Mathematische Annalen
261.4 (1982), pp. 515–534.

55

crypto.stanford.edu/craig
crypto.stanford.edu/craig

[LP11] Richard Lindner and Chris Peikert. “Better Key Sizes (and At-
tacks) for LWE-Based Encryption”. In: Topics in Cryptology -
CT-RSA 2011 - The Cryptographers’ Track at the RSA Conference
2011, San Francisco, CA, USA, February 14-18, 2011. Proceed-
ings. 2011, pp. 319–339.

[LN13] Mingjie Liu and Phong Q. Nguyen. “Solving BDD by Enumera-
tion: An Update”. In: Topics in Cryptology - CT-RSA 2013 - The
Cryptographers’ Track at the RSA Conference 2013, San Fran-
cisco,CA, USA, February 25-March 1, 2013. Proceedings. 2013,
pp. 293–309.

[LS15] The Developers of LWE and Sage. (Ring-)LWE oracle genera-
tors. 2015. URL: http : / / doc . sagemath . org / html / en /
reference/cryptography/sage/crypto/lwe.html.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal
Lattices and Learning with Errors over Rings”. In: J. ACM 60.6
(2013), p. 43.

[MR09] Daniele Micciancio and Oded Regev. “Post-Quantum Cryptog-
raphy”. In: ed. by Daniel J. Bernstein, Johannes Buchmann, and
Erik Dahmen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Chap. Lattice-based Cryptography, pp. 147–191.

[Pei09] Chris Peikert. “Public-key cryptosystems from the worst-case short-
est vector problem: extended abstract”. In: Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009. 2009, pp. 333–342.

[Pei16] Chris Peikert. “A Decade of Lattice Cryptography”. In: Founda-
tions and Trends in Theoretical Computer Science 10.4 (2016),
pp. 283–424.

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes,
and cryptography”. In: Proceedings of the 37th Annual ACM Sym-
posium on Theory of Computing, Baltimore, MD, USA, May 22-
24, 2005. 2005, pp. 84–93.

[Reg09] Oded Regev. “On lattices, learning with errors, random linear codes,
and cryptography”. In: J. ACM 56.6 (2009).

[Sag] The Developers of Sage. SageMath, the Sage Mathematics Soft-
ware System. URL: http://www.sagemath.org.

56

http://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/lwe.html
http://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/lwe.html
http://www.sagemath.org

[San16] Eduard Sanou. C++ implementation of ring-LWE asymmetric en-
cryption scheme using NFLlib. 2016. URL: https://gitlab.
com/dhole/ring-LWE.

[SE94] Claus-Peter Schnorr and M. Euchner. “Lattice basis reduction: Im-
proved practical algorithms and solving subset sum problems”. In:
Math. Program. 66 (1994), pp. 181–199.

[str05] The Developers of strongSwan. strongSwan, the OpenSource IPSec-
based VPN Solution. 2005. URL: https://www.strongswan.
org/.

[str15] The Developers of strongSwan. Bimodal Lattice Signature Scheme
(BLISS) implementation in strongSwan. 2015. URL: https://
wiki.strongswan.org/projects/strongswan/wiki/BLISS.

[Wik11] Douglas Wikström. “A Commitment-Consistent Proof of a Shuf-
fle”. In: IACR Cryptology ePrint Archive 2011 (2011), p. 168.

57

https://gitlab.com/dhole/ring-LWE
https://gitlab.com/dhole/ring-LWE
https://www.strongswan.org/
https://www.strongswan.org/
https://wiki.strongswan.org/projects/strongswan/wiki/BLISS
https://wiki.strongswan.org/projects/strongswan/wiki/BLISS

A Ring-LWE source code

1 u s i n g p o l y t y p e = n f l : : po ly f rom modu lus<P TYPE , N, BITS>;
2 u s i n g g a u s s = n f l : : g a u s s i a n<u i n t 8 t ,
3 typename p o l y t y p e : : v a l u e t y p e , 2>;
4 u s i n g f a s t g a u s s = F a s t G a u s s i a n N o i s e<u i n t 8 t ,
5 typename p o l y t y p e : : v a l u e t y p e , 2>;
6

7 s t r u c t Pub l i cKey {
8 / / a and b a r e s t o r e d i n t h e NTT form f o r e f f i c i e n c y .
9 p o l y t y p e a i ;

10 p o l y t y p e b i ;
11 } ;
12

13 s t r u c t Sec re tKey {
14 / / s i s s t o r e d i n t h e NTT form f o r e f f i c i e n c y .
15 p o l y t y p e s i ;
16 } ;
17

18 s t r u c t E n c r y p t i o n {
19 p o l y t y p e u ;
20 p o l y t y p e v ;
21 } ;
22

23 s i z e t q = p o l y t y p e : : g e t m o d u l u s (0) ;
24 s i z e t q 1 2 = q / 2 + 1 ;
25 s i z e t q 1 4 = q / 4 ;
26 s i z e t q 3 4 = q / 2 + q / 4 + 1 ;
27

28 vo id
29 p o l y f r o m b i t v e c t o r (p o l y t y p e &p , s t d : : v e c t o r<bool> &vec)
30 {
31 / / S i n c e po ly c o e f f i c i e n t s a r e 0 o r 1 , we can f i n d them a l l a t cm = 0
32 f o r (s i z e t i = 0 ; i < p . d e g r e e ; i ++) {
33 p (0 , i) = (boo l) vec [i] ;
34 }
35 r e t u r n 0 ;
36 }
37

38 vo id
39 b i t v e c t o r f r o m p o l y (s t d : : v e c t o r<bool> &vec , p o l y t y p e &p)
40 {
41 f o r (s i z e t i = 0 ; i < p . d e g r e e ; i ++) {
42 vec [i] = (boo l) p (0 , i) ;
43 }
44 r e t u r n 0 ;
45 }
46

47 vo id
48 s c a l e p o l y 1 q 2 (p o l y t y p e &p)
49 {
50 f o r (a u t o& i t : p) {
51 i t ∗= q 1 2 ;
52 }
53 }
54

58

55 vo id
56 s c a l e p o l y q 2 1 (p o l y t y p e &p)
57 {
58 f o r (a u t o& i t : p) {
59 i f (i t < q 1 4 | | i t > q 3 4) {
60 i t = 0 ;
61 } e l s e {
62 i t = 1 ;
63 }
64 }
65 }
66

67 vo id
68 g e n k e y p a i r (Pub l i cKey &pk , Sec re tKey &sk , g a u s s &g a u s s s)
69 {
70 pk . a i = p o l y t y p e ((n f l : : un i fo rm ())) ;
71 sk . s i = p o l y t y p e (g a u s s s) ;
72 p o l y t y p e e (g a u s s s) ;
73

74 pk . a i . n t t p o w p h i () ;
75 sk . s i . n t t p o w p h i () ;
76

77 pk . b i = pk . a i ∗ sk . s i ;
78 e . n t t p o w p h i () ;
79 pk . b i = pk . b i + e ;
80 }
81

82 vo id
83 e n c r y p t (Pub l i cKey &pk , s t d : : v e c t o r<bool> &msg , E n c r y p t i o n &enc ,
84 g a u s s &g a u s s s)
85 {
86 p o l y t y p e zq2 ;
87 p o l y f r o m b i t v e c t o r (zq2 , msg) ;
88 s c a l e p o l y 1 q 2 (zq2) ;
89

90 p o l y t y p e r (g a u s s s) ;
91 p o l y t y p e e1 (g a u s s s) ;
92 p o l y t y p e e2 (g a u s s s) ;
93

94 r . n t t p o w p h i () ;
95 enc . u = pk . a i ∗ r ;
96 enc . v = pk . b i ∗ r ;
97 enc . u . i n v n t t p o w i n v p h i () ;
98 enc . v . i n v n t t p o w i n v p h i () ;
99 / / No need t o i n v n t t a and b b e c a u s e t h e y a r e l o c a l c o p i e s

100 enc . u = enc . u + e1 ;
101 enc . v = enc . v + e2 + zq2 ;
102 }
103

104 vo id
105 d e c r y p t (Sec re tKey &sk , s t d : : v e c t o r<bool> &msg , E n c r y p t i o n &enc)
106 {
107 / / We use a copy of u b e c a u s e we w i l l be t r a n s f o r m i n g (n t t) i t ’ s v a l u e s
108 / / d u r i n g t h e p r o c e s s .
109 p o l y t y p e u = enc . u ;
110 p o l y t y p e zq2 ;
111

59

112 u . n t t p o w p h i () ;
113 zq2 = u ∗ sk . s i ;
114 zq2 . i n v n t t p o w i n v p h i () ;
115 zq2 = enc . v − zq2 ;
116

117 s c a l e p o l y q 2 1 (zq2) ;
118

119 b i t v e c t o r f r o m p o l y (msg , zq2) ;
120 }

rlwe.cpp

60

B Sage code

B.1 Error probability

1 d e f p e r r o r (n , q , s , sym =2) :
2 # sym : number o f symbols
3 s igma0 = s / s q r t (2∗ p i . n ())
4 s igma = s q r t (2∗ n∗ s igma0 ∗∗4 + sigma0 ∗∗2)
5 T = R e a l D i s t r i b u t i o n (’ g a u s s i a n ’ , s igma)
6 p e r r = 1 − 2∗ (T . c u m d i s t r i b u t i o n f u n c t i o n (q / (sym∗2)) − 0 . 5)
7 r e t u r n p e r r
8

9 d e f b i n s e a r c h (t a r g e t y , min x , max x , func , eps = 0 . 0 0 1 , i t e r =1000000) :
10 eps = t a r g e t y ∗ eps
11 f o r i i n r a n g e (i t e r) :
12 m = min x + (max x − min x) / 2
13 y = func (m)
14 i f y <= max (t a r g e t y − eps , 0) :
15 min x = m
16 e l i f y > (t a r g e t y + eps) :
17 max x = m
18 e l s e :
19 r e t u r n m. n ()
20 r e t u r n m. n ()
21

22 d e f f i n d s (n , q , p e r r , max s) :
23 f unc = lambda s : p e r r o r (n , q , s)
24 s = b i n s e a r c h (p e r r , 1 , max s , func)
25 r e t u r n s

err–prob.py

B.2 Babai’s Nearest Plane

1 from sage . modules . misc i m p o r t g r am schmid t
2

3 d e f n e a r e s t p l a n e (B , w0) :
4 # B : l a t t i c e b a s i s , w0 : t a r g e t v e c t o r
5 n = B [0] . d e g r e e ()
6 w = m a t r i x (QQ, n)
7 y = m a t r i x (ZZ , n)
8 B1 , mu = gram schmid t (l i s t (B))
9 w[n−1] = w0

10 f o r i i n r a n g e (n) [: : − 1] :
11 l i = (w[i]∗B1 [i]) / (B1 [i]∗B1 [i])
12 y [i] = round (l i) ∗B[i]
13 i f i != 0 :
14 w[i −1] = w[i] − (l i − round (l i)) ∗ B1 [i] − round (l i) ∗B[i]
15 r e t u r n sum (y)

nearest–plane.py

61

	Introduction
	Basic cryptography concepts
	Public-key encryption
	Security
	Homomorphic encryption
	Fully homomorphic encryption

	Basic lattice concepts
	Lattice
	Rank
	Norm
	Fundamental parallelepiped
	Determinant
	Minima
	Orthogonality defect
	Lattice duality
	q-ary lattices
	Lattice problems

	Learning With Errors (LWE)
	Problem definition
	Cryptanalysis
	Gram-Schmidt orthogonalization
	Lattice reduction algorithm - LLL and BKZ
	Lattice decoding algorithm - Babai's Nearest Planes

	Ring lattices
	Definition
	Ring-LWE
	Efficiency

	Lattice-based public-key cryptography
	Asymmetric encryption
	Digital signature

	Ring-LWE encryption
	Definition
	Decryption error probability
	Choosing the parameters
	Regev's procedure Reg09
	Linder and Peikert's procedure LP11

	Homomorphic sum in Ring-LWE

	Implementation of Ring-LWE encryption
	NFLlib
	Parameters proposal and analysis
	Benchmarking

	E-voting
	Voter's anonymization
	E-voting at Scytl
	Post-Quantum proposal

	Conclusions
	References
	Appendix Ring-LWE source code
	Appendix Sage code
	Error probability
	Babai's Nearest Plane

