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Abstract. In Geometriae Dedicata 79 (2000), 101–108, Rudolf
Winkel conjectured: For a given algebraic curve f = 0 of degree

m > 4 there is in general no polynomial vector field of degree less

than 2m − 1 leaving invariant f = 0 and having exactly the ovals

of f = 0 as limit cycles. Here we show that this conjecture is not
true.

1. Introduction

A planar vector field

(1) X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

is polynomial of degree n if P andQ are real polynomials in the variables
x and y, and the maximum degree of P and Q is n.

A periodic orbit of a vector field X in R2 is a limit cycle if it is
isolated in the set of all periodic orbits of X.

In 1900 Hilbert [4] in the second part of its 16–th problem proposed to
find an estimation of the uniform upper bound for the number of limit
cycles of all polynomial vector fields of a given degree, and also to study
their distribution or configuration in the plane. This has been one of the
main problems in the qualitative theory of planar differential equations
in the XX century. The contributions of Écalle [2] and Ilyashenko [5]
proving that any polynomial vector field has finitely many limit cycles
have been the best results in this area. But until now it is not proved
the existence of an uniform upper bound. This problem remains open
even for the quadratic polynomial vector fields.

If f = f(x, y) is an irreducible polynomial of degree m in the ring
R[x, y], then f = 0 is an irreducible algebraic curve of degree m in R2.
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A limit cycle is algebraic of degreem if it is a contained in an irreducible
algebraic curve of degree m.

Hilbert also asked about the possible distributions of the limit cycles
of polynomial vector fields. Recently, it has been proved that any finite
configuration of limit cycles is realizable by polynomial vector fields.
More precisely, we say that a configuration of limit cycles is a finite
set of disjoint simple closed curves of the plane pairwise disjoint. Two
configurations of limit cycles are (topologically) equivalent if there is a
homeomorphism of R2 applying one configuration into the other. We
say that the vector field X realizes a given configuration of limit cycles
if the set of all limit cycles of X is equivalent to that configuration.
Recently, in [6] it is proved that any configuration of limit cycles is
topologically realizable as algebraic limit cycles by a polynomial vector
field of a convenient degree.

In [7] Winkel did the following conjecture about the algebraic limit
cycles of polynomial vector fields.

Conjecture 1. For a given algebraic curve f = 0 of degree m > 4
there is in general no polynomial vector field of degree less than 2m− 1
leaving invariant f = 0 and having exactly the ovals of f = 0 as limit
cycles.

Here we will work with the one–parameter family of irreducible al-
gebraic curves

(2) f = f(x, y) =
1

4
+ x − x2 + px3 + xy + x2y2 = 0 ,

of degree m = 4 with 0 < p < 1/4. These curves have three connected
components, one is an oval and each of the other two is homeomorphic
to a straight line, see Figure 1. We note that the oval of f = 0 borns
at the point (2,−1/4) when p = 1/4. Then, when p decreases the oval
increases its size and ends having infinite size at the irreducible curve
1/4 + x − x2 + xy + x2y2 = 0 when p = 0.

We must mention that the curve f = 0 has no singular points, i.e.
there is no real solutions of the system f = 0, ∂f/∂x = 0 and ∂f/∂y =
0.

First we will prove that the oval of the curve (2) is the unique limit
cycle of a 13–parameter family of polynomial vector fields of degree 5.
Since 2m− 1 = 7 > 5, this provides a counterexample to Conjecture 1.
Many other counterexamples can be constructed changing the algebraic
curve f = 0.

Let f ∈ R[x, y]. The algebraic curve f(x, y) = 0 is an invariant
algebraic curve of the vector field X if for some polynomial K ∈ R[x, y]
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Figure 1. Algebraic limit cycle of degree 4.

we have

(3) Xf = P
∂f

∂x
+Q

∂f

∂y
= Kf.

The polynomial K is called the cofactor of the invariant algebraic curve
f = 0. We note that since the polynomial system has degree n, then
any cofactor has at most degree n − 1. Since on the points of the
algebraic curve f = 0 the gradient (∂f/∂x, ∂f/∂y) of the curve is
orthogonal to the vector field X, we have that X is tangent to the
curve f = 0. Hence, the curve f = 0 is formed by trajectories of
X. This justifies the name of invariant algebraic curve given to the
algebraic curve f = 0 satisfying (3) for some polynomial K, because it
is invariant under the flow defined by X.

Our main result is the following one.

Theorem 2. Let a, b, c, d, e and p arbitrary real numbers. Then,
the algebraic curve f = 0 given by (2) is invariant by the 6–parameter
family of real polynomial vector fields (1) of degree 5 given by

(4)
P = −2af2f3

∂f1

∂y
− 2(b+ ic)f1f3

∂f2

∂y
− 2(b − ic)f1f2

∂f3

∂y
,

Q = 2af2f3
∂f1

∂x
+ 2(b+ ic)f1f3

∂f2

∂x
+ 2(b − ic)f1f2

∂f3

∂x
,

where i =
√

−1, f1 = f , f2 = x−d+ i(y− e) and f3 = x−d− i(y− e).
Moreover, if ac 6= 0, 0 < p < 1/4 and the point (d, e) is in the interior
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of the bounded region limited by the oval of f = 0, then the unique
limit cycle of this vector field is the algebraic one formed by the oval of
f = 0.

In Section 2 we present some basic definitions and results that we
shall use in Section 3 for proving Theorem 2.

We note that if we do an affine transformation of the polynomial dif-
ferential system ẋ = P (x, y), ẏ = Q(x, y), where P and Q are the ones
given in the statement of Theorem 2, and a rescaling of the indepen-
dent variable, then the polynomial vector fields of degree 5 associated
to the new differential systems form a 13–parameter family providing
a counterexample to Conjecture 1.

In fact a weaker counterexample formed by an 8–parameter family
of quadratic polynomial vector fields follows from the next theorem
proven in [1].

Theorem 3. The quadratic polynomial differential system

ẋ = 2(1 + 2x − 2px2 + 6xy) ,
ẏ = 8 − 3p − 14px − 2pxy − 8y2 ,

with 0 < p < 1/4 possesses the irreducible invariant algebraic curve
f = 0. Moreover, if 0 < p < 1/4, then the unique limit cycle of this
system is the algebraic one formed by the oval of f = 0.

2. Preliminary definitions

In this section U will be an open subset of R2. Let X be a C1 vector
field defined in U . A nonconstant C1 function H : U → R is a first
integral of X in U if H remains constant along the trajectories of X
contained in U . Then, the level curves H(x, y) = h in U are almost
sufficient to describe the phase portrait of X in U , since every level
curve is the union of orbits of X.

A function R : U → R2 is an integrating factor for the polynomial
vector field X on U if there exists a function

H : U → R

such that

(5)
ẋ = R(x, y)P (x, y) = −∂H

∂y
(x, y),

ẏ = R(x, y)Q(x, y) =
∂H

∂x
(x, y).

This is a Hamiltonian system defined in U , and the function H is called
the Hamiltonian of the system.
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Clearly, from the definition of integrating factor it follows that a
function V : U → R2 is an inverse integrating factor for the polynomial
vector field X on U if there exists a function

H : U \ {V (x, y) = 0} → R

such that

(6)
ẋ =

P (x, y)

V (x, y)
= −∂H

∂y
(x, y),

ẏ =
Q(x, y)

V (x, y)
=

∂H

∂x
(x, y).

This Hamiltonian system is defined in

U \ {V (x, y) = 0}.

We say that the Hamiltonian H is associated to the inverse integrating
factor V and vice versa. Note that given X if we know H we know V ,
and vice versa.

Usually the expression of the inverse integrating factor V is easier
than the expression of its associated Hamiltonian H. So, for studying
the integrability of a planar differential system is better to look for V
than to look for H. But the main reason for working with the inverse
integrating factor is the following result due to Giacomini, Llibre and
Viano [3], which will play a main role in our proof of Theorem 2. Here,
we provide an easier and direct proof, which also appears in Llibre and
Rodŕıguez [6].

Theorem 4. Let X be a C1 vector field defined in the open subset U
of R2. Let V : U → R be an inverse integrating factor of X. If γ is a
limit cycle of X, then γ is contained in Σ = {(x, y) ∈ U : V (x, y) = 0}.

Proof: Due to the existence of the inverse integrating factor V defined
in U , we have that the vector field X/V is Hamiltonian in U \ Σ.
Since the flow of a Hamiltonian vector field preserves the area and in
a neighborhood of a limit cycle a flow does not preserve the area, the
theorem follows.

3. Proof of Theorem 2

A straightforward computation shows that the algebraic curve f =
0 given by (2) is invariant by the polynomial vector field X whose
components P and Q are given in the statement of Theorem 2. In fact,
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the cofactor K of f = 0 is

K = 4[be − cd+ (c − bd+ 2cd − 2be − ce)x+ (be − b − cd)y +

(b − 2c − 3cdp+ 3bep)x2 + 2(b+ c)xy − by2 +

3cpx3 − (2bd+ 2ce+ 3bp)x2y − 2(cd − be)xy2 +

2bx3y + 4cx2y2 − 2bxy3].

Now the key point in the proof of Theorem 2 is to show that the
unique limit cycle of X is the oval γ contained in f = 0 for 0 < p < 1/4
when ac 6= 0 and (d, e) is a point contained in the interior of the
bounded region limited by γ. In order to prove that, first with another
easy computation we check that

V = f · [(x − d)2 + (y − e)2],

and

H = 2a log f + 2b log[(x − d)2 + (y − e)2] − 4c arg[(x − d) + i(y − e)],

are the inverse integrating factor and its associated Hamiltonian for
our polynomial vector field X.

Since V is polynomial, V is defined in the whole R2. Therefore,
by Theorem 4 and since V (x, y) = 0 if and only if (x, y) ∈ {f =
0} ∪ {(d, e)}, it follows that if the vector field X has some limit cycle,
this must be the oval γ of f = 0. Now, we shall prove that this oval is
a limit cycle. Hence, Theorem 2 will be proved.

We observe that P and Q are real because they can be written as

P = (be − cd) + [c+ 4(be − cd) − 2a(d2 + e2)]x − by +

4[c+ (a+ c)d − be]x2 − 4[b+ cd − (a+ b)e]xy −
2[a+ 2c+ 2p(cd − be)]x3 + 4[b+ c − a(d2 + e2)]x2y −
2(a+ 2b)xy2 + 4cp x4 + 4(2ad − bp)x3y −
4(cd − 2ae − be)x2y2 − 4ax4y + 4cx3y2 − 4(a+ b)x2y3,

Q = 2a(d2 + e2) − bd − ce+ [b − 4((a+ b+ ad)d+ (c+ ae)e)]x+

[c+ 2a(d2 − 2e+ e2)]y − 4(−c+ ad+ bd − 2ae+ ce)xy +

2[a+ 2b+ 2d(2a+ b) + 2ce+ 3ap(d2 + e2)]x2 + 2a(1 − 2e)y2 −
4(a+ b+ 3adp+ bdp+ cep)x3 + 2(a+ 2b − 2c − 6aep)x2y +

4(−a+ c+ ad2 + ae2)xy2 + 2ay3 +

2(3a+ 2b)p x4 + 4cp x3y − 2(4ad+ 2bd+ 2ce − 3ap)x2y2 −
8aexy3 + 4(a+ b)x3y2 + 4cx2y3 + 4axy4.
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Since f = 0 is an invariant algebraic curve of the vector field X, the
oval γ is formed by solutions of X. Now we shall prove that on the oval
γ there are no singular points of X and, therefore, γ will be a periodic
orbit. Assume that (x0, y0) is a singular point of X contained on the
oval γ; i.e., P (x0, y0) = Q(x0, y0) = f(x0, y0) = 0. From (4) we have
that

P (x0, y0) = −2af2(x0, y0)f3(x0, y0)
∂f

∂y
(x0, y0) = 0,

Q(x0, y0) = 2af2(x0, y0)f3(x0, y0)
∂f

∂x
(x0, y0) = 0.

Since a 6= 0 and f2(x0, y0)f3(x0, y0) = (x0 − d)2 + (y0 − e)2 6= 0, we

obtain that
∂f

∂x
(x0, y0) = 0 and

∂f

∂y
(x0, y0) = 0. This is not possible,

otherwise the point (x0, y0) would be a singular point of the algebraic
curve f = 0, and this curve has no singular points when 0 < p < 1/4.
Hence, the oval γ is a periodic orbit of the vector field X. Now, we
shall prove that γ will be a limit cycle, and this will complete the proof
of Theorem 2.

We define the first integral H of X as follows

H = eH = f 2a[(x − d)2 + (y − e)2]2be−4c arg[(x−d)+i(y−e)].

Then we note that the oval γ and the point (d, e) are in the level
H(x, y) = 0, and that they are the unique orbits of X in this level.
Now suppose that γ is not a limit cycle. Then, there is a periodic orbit
γ′ = {(x(t), y(t)) : t ∈ R} different from γ and sufficiently close to γ
such that the bounded component B limited by γ ′ contains the point
(d, e).

As γ′ is different from γ, there exists h 6= 0 such that

H(x(t), y(t)) = f 2a(x(t), y(t))[(x(t) − d)2 + (y(t) − e)2]2be−4cθ(t) = h,

where θ(t) = arg[(x(t)−d)+i(y(t)−e)]. The function f 2a(x(t), y(t))[(x(t)−
d)2 + (y(t) − e)2]2b is bounded on γ ′. Clearly, since the point (d, e) is
in the bounded region limited by γ ′ the angle θ(t) tends to either +∞
or −∞, when t → +∞. Since c 6= 0, this fact is in contradiction with
equality H(x(t), y(t)) = h 6= 0. Consequently, we have proved that γ
is a limit cycle. In short, Theorem 2 is proved.
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