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Abstract—This paper presents a preliminary approach to
networked control systems (NCS) that relies on an event-driven
control method based on Lyapunov sampling. The goal is to study
and develop approaches for NCS capable of offering controllers
with low bandwidth demands.

The paper starts by presenting the theoretical framework
required for applying Lyapunov sampling to a set of closed-
loop systems that share a serial bus line. The discussion permits
identifying which requirements must be fulfilled in order to
guarantee overall stability. In addition, the feasibility of the
theoretical framework in terms of implementation requires to
address problems caused by the implicit distributed architecture
of the NCS. In particular, an efficient implementation approach
is described for the CAN network. Simulation results illustrate
the operation and benefits of the presented approach.

I. INTRODUCTION

For networked control systems (NCS, [7]) it is important to

identify methods for sensing and control capable of efficiently

using the limited network bandwidth. It is well accepted

that event-driven sampling methods offer controllers with a

lower resource utilization than standard periodic discrete-time

control laws. Recent and representative results on event-driven

control can be found in [2], [3], [6], [12] and [9].

In particular, for a given closed-loop system, the event-

driven control method presented in [9], called Lyapunov

sampling, enforces control updates in such a way that the

system energy expressed in terms of a Lyapunov function is

decreased at a given rate. Control updates are triggered when

a Lyapunov-based event-condition holds.

In this paper we explore the application of Lyapunov

sampling [9] to a set of networked control loops. For each net-

worked closed-loop system, sampling, control signal compu-

tation, and actuation is performed in separated nodes, namely

sensor, controller and actuator respectively. In short, a control

update for a given networked control system refers to the

transmission of the two messages, sensor-to-controller and

controller-to-actuator, required for each closed-loop operation.

The intuitive idea of our theoretical analysis we present

is to treat a set of N networked closed-loop systems as

an aggregated extended closed-loop system, namely N -NCS,

under Lyapunov sampling. This requires to define a single

event condition in terms of a Lyapunov function for the N -

NCS, and to trigger all control updates each time the event-

condition holds.

We show that the specification of the Lyapunov sampling

for the set of networked closed-loop systems is theoretically

feasible as long as some requirements regarding stability are

met. We also address two main problems that appear in its

deployment in a networked architecture. The first one is related

to the distributed evaluation of the event-condition. The second

one is related to the serialization of transmissions each time

the event-condition holds, which is a main issue in NCS [5].

Event-driven control in NCS has been recently treated for

example in [11] and [4]. We believe that our approach is

complementary to their contributions in the sense that we

also offer event-driven transmissions for each closed-loop

operation. However, the difference relies in the fact that in

our approach the event-condition that triggers control updates

is specified in the system-energy domain rather than the

state-space domain. Also, we address the feasibility of the

implementation in the CAN [1] network.

The rest of this paper is organized as follows. Section II

presents the networked control systems model and reviews

prior work on Lyapunov sampling. In Section III the theoret-

ical approach is developed. Section IV presents the strategies

for a feasible implementation. Sections V and VI present the

simulation set-up and simulation results, respectively. Finally,

Section VII concludes the paper.

II. PRELIMINARIES

A. System Model

The theoretical set-up we consider is that N closed-loop

systems, each one given by

ẋi(t) = Aixi(t) + Biui(t) (1)

where xi ∈ R
ni×1, Ai ∈ R

ni×ni , Bi ∈ R
ni×mi , ui ∈ R

1×mi ,

and Ci ∈ R
1×ni , share a serial bus that can only be used by

a system at a time for transmitting a limited amount of data.

In other words, at any instant tk, only one control update of

the form

∀t ∈ [tk, tk+1) ui(t) = Lixi(tk) (2)

is executed.

Each closed-loop system specification (1)-(2) does not

model the network delay. This is done on purpose to simplify

the theoretical approach and notation. But including a time

delay in the formulation would not alter the main results.
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B. Lyapunov Sampling Revisited

In this section we review the Lyapunov sampling mecha-

nism introduced in [9].

Consider a single continuous linear time-invariant control

system given by (1). Let Vi : R
ni → R

Vi = xT
i Pixi (3)

be a (local or global) Lyapunov function for the system in

the classical sense, i.e., continuous and positive definite. The

Lyapunov sampling method mandates to issue the control

updates by a linear state feedback controller (2) using only

samples of the state at discrete instants tk given by the

Lyapunov sampling triggering mechanism

Vi(xi(tk+1)) = ηiVi(xi(tk)) , ηi ∈ R
+, (4)

where

0 < η∗
i < ηi < 1, (5)

η∗
i = max

xi(0)

V ∗
i (xi(0))

Vi(xi(0))
, (6)

and

V ∗
i (xi(0)) = min

t
Vi(xi(t, xi(0))) ∀t ≥ 0 (7)

being Vi(xi(t, xi(0))) the solution of (1)-(2) when ui(t) =
Lixi(0) for a given initial condition xi(0).

The application of this triggering mechanism ensures sta-

bility of the closed-loop system in the Lyapunov sense. In

particular, the stability is guaranteed by the construction of

the event-condition (4) as long as ηi fulfils (5), where η∗
i

is defined by (6)-(7). And in terms of resource demand, it

produces an aperiodic sequence of control updates whose

average frequency depends on the system energy decay ratio

given by ηi, which becomes a design parameter in terms of

trading off resource usage and control performance. Noting

that different values of Vi(xi(tk)) in (4) define a set of contour

curves in the system energy domain, a value of ηi near to 1
specifies closer contour curves, that is, more frequent control

updates.

III. THEORETICAL APPROACH

In this section we present the theoretical approach of Lya-

punov sampling to the set of networked closed loop systems.

First, we present the N -NCS model under Lyapunov sampling,

and discuss stability issues. Second, to solve the bus contention

problem that the theoretical framework introduces, we specify

which rule is enforced in order to have only one control update

at a time. This requires to study the N -NCS energy variation

in terms of each networked closed-loop system.

A. N -NCS Model

Let

ẋ(t) = Ax(t) + Bu(t) (8)

be the N -NCS that includes the set of N decoupled systems,

where

x(t) =











x1(t)
x2(t)
...

xN (t)











, A =











A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · AN











B =











B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...

0 0 · · · BN











, u(t) =











u1(t)
u2(t)
...

uN(t)











.

And let V : R

∑

i
ni → R defined as

V = x
TPx (9)

be a Lyapunov function for (8) where

P =











P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...

0 0 · · · PN











. (10)

Function V can be understood as a common Lyapunov function

for the N networked closed loop systems.

Lyapunov sampling as described in Section II-B applied to

the N -NCS would specify that control updates

u(t) = Lx(t) =











L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...

0 0 · · · LN





















x1(t)
x2(t)
...

xN (t)











(11)

should be enforced when the Lyapunov sampling condition

V(x(tk+1)) = ηkV(x(tk)), ηk ∈ R
+, (12)

holds.

We conjecture that considering (8)-(11) and V , the energy

decay ratio ηk in (12) can be similarly defined as ηi in (4). In

other words, we leave for future work the theoretical analysis

required for proving that system (8)-(11) with V where control

updates are triggered by (12) is stable by construction when

some given requirements for ηk hold. Note that for the N -NCS

under Lyapunov sampling, we leave the door open to having

a varying decay ratio ηk. However, for the simulation results

presented at the end of this paper, ηk has been heuristically

selected constant.

B. Bus Contention, Energy and Execution Rule

By construction, and assuming that the previous conjecture

holds, the N -NCS under Lyapunov sampling (8), (11) and

(12) is stable if all control signals are updated each time

the event condition holds. However, this approach would rise

transmission conflicts: messages would collide in the bus of

the networked architecture.

In order to solve this problem, we study the N -NCS

energy variation, V̇. From this study, we establish a rule that
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permits updating only one control signal at a time without

compromising stability.

The following proposition states how the N -NCS energy

varies after the event-condition (12) holds.

Proposition 1: Consider the N -NCS (8) with its Lyapunov

function V defined in (9). The energy contribution vi of each

ith closed-loop system in V̇ is

vi =
∂V

∂xi

(Aixi + Biui) (13)

Proof: The energy variation is given by

V̇ =
dV

dt

=
∂V

∂x

dx

dt

=
[

∂V
∂x1

∂V
∂x2

· · · ∂V
∂xn

]

(Ax(t) + Bu(t))

=
∂V

∂x1
(A1x1 + B1u1) +

∂V

∂x2
(A2x2 + B2u2)

+ · · · +
∂V

∂xN

(ANxN + BNuN ). (14)

It is interesting to note that the energy contribution (13) of

each closed loop system to the global energy variation only

uses local information, and therefore, it can be easily computed

at each sampler node. That is, for each ith closed-loop system,

the energy contribution vi only depends on its own state vector

xi and control signal ui. Note that if system (8)-(11) is not

decoupled, the computation of vi would require using others

nodes’ information. The latter case is left for future work.

When the event-condition (12) holds, by definition V̇ ≤ 0.
By assuming that ηk can be appropriately chosen in such a

way that at each occurrence of the event condition we have i)

V̇ < 0 , and ii) ∀i, i = 1, 2, . . . , N , vi < 0, then we specify

that the only control update that should be issued at each event

condition corresponds to the specific networked closed-loop

system providing the weakest energy contribution, which can

be defined as

w = argmax
i

∂V

∂xi

(Aixi + Biui). (15)

We call weak system the wth closed-loop system providing

the weakest energy contribution.

IV. FEASIBLE IMPLEMENTATION STRATEGY

The previous theoretical analysis indicates that the appli-

cation of the Lyapunov sampling requires updating only the

control signal of the weakest closed-loop system without com-

promising overall stability. Therefore, at each event condition,

we need to identify which is the weakest system. In addition,

all sensor nodes must be able to detect the event-condition.

A. Distributed Detection of the Event Condition

The event condition (12) is defined in terms of all N -NCS

states. However, it has to be evaluated at each sampler node

in order to decide whether the control update for each given

networked closed-loop system should be triggered by sending

the sensor-to-controller message.

We consider that all sampler nodes oversample each plant

at a fast rate given by a short sampling period h. And at

each oversample, the i-sampler node of the ith-system obtains

the ni states, either measured or observed. In order to obtain

the states of the other closed-loop systems, a predictor is

implemented in the i-sampler. By having the N -NCS model

(8), by knowing the N -NCS initial state x(0) and L in (11),

the open loop predictor

x(k + 1) = (Φ(h) + Γ(h)L)x(k), (16)

where Φ(t) = eAt and Γ(t) =
∫ t

0
eAsdsB, can be used by

any sampler node to obtain the rest of states at each sample.

In fact, a closed-loop predictor could be a better approach

in order to obtain the same unknown states. This alternative

approach would remove the assumption of knowing the initial

state, would be robust against perturbations and noise, and

would be able to take advantage of the state information that

may be enforced to be traveling in the bus. However, for paper

readability, we will leave for future work the formulation of

the closed-loop predictor and we will spend more space in the

simulation results for illustrating the operation of the presented

approach.

It is important to note that due to the discretization in-

troduced by (16), the event condition (12) must be slightly

changed to

V(x(tk+1)) ≤ ηkV(x(tk)), ηk ∈ R
+. (17)

In fact, in any implementation, the inequality in (17) rather

than the equality in (12) must be used also due to quantization

effects or noise.

B. Selection of the Weakest Closed-loop System

As outlined in Section III-B, each energy contribution vi can

be computed locally, at each sampler node. Moreover, rather

than updating all control loops when the event-condition holds,

we can update only the weakest system and still ensure overall

stability. Therefore, the problem of selecting which networked

closed-loop system to update among all of them requires

computing the global function weakest energy contribution

(15) that takes information, energy contributions (13), from

the different and physically distributed sampler nodes. This

function has to be computed efficiently and with a small (and

bounded) number of transmissions.

The key idea of the solution adopted in this paper, and

inspired in the approaches presented by [10] or [8], is to

observe that CAN permits to schedule messages on a priority

based semantics, and that a feasible implementation for se-

lecting the node with weakest energy could take advantage of

this property provided that nodes are perfectly synchronized.

Hence, we propose to encode the energy contribution vi of

each networked control system into each sensor-to-controller

message identifier in order to have the solution implemented

at the CAN bitwise arbitration resolution. Then, each time

the event-condition for the N -NCS holds, all sampler nodes
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try to send the sensor-to-controller message at the same time

instant. However, the distributed bitwise arbitration of CAN

only grants bus access to the sampler-to-controller message

with highest priority, that is, the sampler message with the

weakest contribution. Then, the controller node, after receiving

a sampler-to-controller message, computes the control signal

using Li and the ith state (also coded in the incoming

message), and sends it to the corresponding actuator.

Note that in the set-up we consider, after a ith-sensor-

to-controller message has been sent, no other messages will

appear in the bus before the ith-controller-to-actuator is sent.

Another message could enter the bus if the time spent by the

ith-controller would be longer than the next event condition

to hold, which is unlikely to happen. Time intervals between

event conditions are of the order of milliseconds while con-

troller computations take few microseconds in current micro-

controllers. Future work will further study this aspect.

V. SIMULATION SET-UP

We present a simple simulation set-up consisting of a set

of N = 2 networked control loops to illustrate the operation

and the benefits of the presented approach. In fact, two similar

approaches are presented:

• 2-NCS-1-LF: this corresponds to the 2-NCS under Lya-

punov sampling approach defined in Section III. Only one

control update belonging in this case to one of the two

closed loop systems will be triggered each time the event

condition (17) defined on a single Lyapunov function V

holds.

• 2-NCS-2-LF: this approach is introduced for comparative

performance evaluation. Each networked control loop

triggers its control updates when its own event condition

of the form (4) (with inequality), defined in terms of

its particular Lyapunov function, holds. This would be

the direct but unrealistic application of the Lyapunov

sampling approach [9] to NCS, unrealistic in the sense

that no bus contention problems are considered. Although

it is not realistic, it provides interesting numbers for

baseline comparisons.

A. Plants, Controllers and Event Conditions

Let us consider that each plant is a double integrator system,

where

A1 = A2 =

[

0 1
0 0

]

, B1 = B2 =

[

0
1

]

.

We arbitrarily select the gains

L1 = L2 =
[

225 30
]

.

The initial conditions for both plants are slightly different

and defined as

x1(0) =

[

1
−3

]

and x2(0) =

[

1
−4

]

.

We call first system to (A1, B1, L1, x1(0)) and second

system to (A2, B2, L2, x2(0)).

For the 2-NCS-1-LF, the event condition (17) depends on

the Lyapunov function

V(x) = 3.416x2
1,1 + 0.0089x1,1x1,2 + 0.0168x2

1,2

+3.416x2
2,1 + 0.0089x2,1x2,2 + 0.0168x2

2,2

characterized by

P =









3.4167 0.0044 0 0
0.0044 0.0168 0 0

0 0 3.4167 0.0044
0 0 0.0044 0.0168









,

with ηk = 0.9, where xi,j denotes the jth state of the ith

control loop. Whenever the event condition holds, we only

update the weak control loop. To do so, we evaluate for both

systems i = 1, 2

vi = ∂V
∂xi

(Aixi + Biui)

= 6.833xi,1xi,2 + 0.0089x2
i,2

+ 0.0089uixi,1 + 0.0336uixi,2

and update the control signal whose vi is maximum.

For the 2-NCS-2-LF, for each ith control loop, i = 1, 2, the
same event condition (4) (with inequality) has been defined,

depending on a Lyapunov function

Vi(xi) = 3.416x2
i,1 + 0.0089xi,1xi,2 + 0.0168x2

i,2

characterized by

Pi =

[

3.4167 0.0044
0.0044 0.0168

]

,

with ηi = 0.9. For each system, whenever the event-condition

holds, the corresponding control update is triggered.

Each sensor node oversamples each plant with h = 0.001s.

VI. SIMULATION RESULTS

Figure 1 shows the systems’ responses, that is, the states

evolution xi,1 and xi,2 for both systems. In addition, it plots

on top of the states evolution the triggering of the control

updates: circles for the first system and squares for the second

system. As it can be seen in the figure, both responses, starting

from the different initial conditions, are very similar. The

interesting observation is that control updates for each system

occurs during different time intervals, which means that during

those intervals, the system with control updates was the weak

system. In Figure 1 and also in the following figures, we

plot for both systems a control update at time zero or at

the beginning of the simulation run. This has been done on

purpose only for fair comparative analysis. Hence, it should

be ignored, and the first real control update always occurs at

time t > 0.
The following list explains the first steps taken in the

operation of the 2-NCS-1-LF approach illustrated in Figure 1:

1) starting from x(tk = 0) =
[

1 −3 1 −4
]T

, the

2-NCS system energy is V(x(tk)) = 7.19, data that is

known at each sensor node;

2) then each sensor node has to detect when V(x(tk+1))
will be less or equal than 0.9 · V(x(tk)) = 6.47;
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Fig. 1. States evolution for the 2-NCS-1-LF

3) to do so, each sensor node, at each millisecond, measures

its own state variables, observes the state variables of the

other system, and checks whether the event condition

holds;

4) and this happens at time tk+1 = 0.024s, when

x(0.024) =
[

0.85 −6.91 0.83 −7.04
]T

, be-

cause V(x(0.024)) = 6.44;
5) then, both sensor nodes compute their energy contri-

bution, v1 = −9.66 and v2 = −15.89, and send the

sensor-to-controller message with identifier codifying vi,

as explained in Section IV-B;

6) the CAN bitwise arbitration grants the bus access only

to the sensor node sending v1, because it provides the

weakest energy contribution. This message triggers the

control signal computation u1 in the controller node.

Then, this node sends the controller-to-actuator message,

finishing the control update for the first system;

7) afterward, the process starts again. That is, step 2) and

3) have to be repeated to check whether V(x(tk+1)) ≤
0.9 · V(x(0.024)) = 5.80;

8) similar to step 4) this happens at time tk+1 = 0.040s,

when x(0.040) =
[

0.77 −6.73 0.74 −8.30
]T

,

because V(x(0.040)) = 5.78;
9) similar to step 5), then, both sensor nodes compute vi,

v1 = −38.49 and v2 = −13.19, and send the sensor-to-

controller message with identifier codifying vi;

10) in this case, the sensor sending v2, the weakest energy

contribution, wins bus access. This message triggers the

control signal computation u2 in the controller node.

Then, this node will send the controller-to-actuator mes-

sage, finishing the control update for the second system;

After performing step 6), it can be identified (and also

observed in Figure 1) that the first control update for the first

system occurs at 0.024s. And after performing step 10), it can

be identified that the first control update for the second system

occurs at 0.040s. Afterward, by looking at Figure 1, it can be

0 0.2 0.4 0.6 0.8 1
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−6

−5

−4

−3
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−1

0

1

x
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x
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first system control updates
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second system control updates

Fig. 2. Trajectories for the 2-NCS-1-LF in the phase portrait
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Fig. 3. Trajectories for the 2-NCS-2-LF in the phase portrait

also observed that 10 consecutive control updates occur for

the first system, then 15 for the second system, etc...

Figure 2 gives a complimentary view of Figure 1, plotting

both systems’ trajectories in the phase portrait, as well as,

the occurrence of control updates. For comparison purposes,

Figure 3 gives the same information than figure 2 but for

the 2-NCS-2-LF approach. In this case, for each closed-loop

system, the sensor triggers the control update each time the

“individual” event condition holds.

Comparing Figures 2 and 3 it can be observed that the

2-NCS-1-LF approach has the advantage of reducing the

overall number of control updates. In particular, during the

0.5s simulation run, the 2-NCS-1-LF demands 87 control

updates, 30 for the first system and 57 for the second system.

Meanwhile, the 2-NCS-2-LF demands 182 control updates, 91
for each system. On the other hand, comparing both figures it

can be observed that the trajectories achieved by the 2-NCS-1-
LF are not as smooth as those obtained by 2-NCS-2-LF, thus
indicating lower control performance.
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Fig. 5. 2-NCS-1-LF sampling intervals

In addition, if in 2-NCS-1-LF we change the decay ratio

ηk = 0.9 to 0.85, the number of control updates is reduced,

as shown in Figure 4. However, the shape of the system

trajectories indicate further control performance degradation.

Figures 5 and 6 provide complimentary information on the

resource demands of the networked controllers in terms of the

sampling intervals. As it can be seen in Figure 5, when one

system uses the network, the other one does not. Therefore,

serialization of transmissions is achieved. In addition, compar-

ing Figures 5 and 6, it can also be seen that sampling intervals

for 2-NCS-1-LF are clearly longer than the ones obtained by

2-NCS-2-LF, hence, demanding less network bandwidth.

VII. CONCLUSIONS

This paper has presented an approach to networked control

systems where control updates are triggered i) according to

a Lyapunov-based event-condition and ii) in such a way that

transmission are serialized. It has been shown to be beneficial

in terms of reducing transmissions. Future work will focus
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Fig. 6. 2-NCS-2-LF sampling intervals

on a deeper study of the Lyapunov-based event-condition

for the N -NCS in order to identify which properties can

ensure overall stability when control updates are serialized.

A physical implementation of the approach is also planned.
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