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ABSTRACT  

    One of the most important steps in the research carried out in the seventeenth 

century into new ways of calculating quadratures was the proposal of algebraic 

procedures. Pietro Mengoli (1625-1686), probably the most original student of 

Bonaventura Cavalieri (1598-1647), was one of the scholars who developed 

algebraic procedures in their mathematical studies. 

   Algebra and geometry are closely related in Mengoli's works, particularly in 

Geometriae Speciosae Elementa (Bologna, 1659). Mengoli used algebraic 

procedures to deal with problems of quadratures of figures determined by 

coordinates which are now represented by y =K. xm. (t-x)n. This paper analyses the 

interrelation between algebra and geometry in the above-mentioned work, showing 

the complementary nature of the two disciplines, and how their conjunction allowed 

Mengoli to calculate these quadratures in an innovative way. 

 

   L'un des plus grands pas en avant, au XVIIe siècle, dans la recherche de 

nouvelles méthodes de quadrature fut l'introduction des procédures algébriques. 

                                                             
1 A first version of this work was presented at the University Autònoma of Barcelona on June 26, 1998 for my Doctoral 
Thesis in the history of sciences.  
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Pietro Mengoli (1625-1686), probablement le plus intéressant des élèves de 

Bonaventura Cavalieri (1598-1647), fut l'un de ceux qui développa ce type de 

procédures dans ses travaux mathématiques. 

    Algèbre et géométrie sont étroitement liées dans les ouvrages de Mengoli, en 

particulier dans les Geometriae Speciosae Elementa (Bologna, 1659). Mengoli 

emploie des procédures algébriques pour résoudre des problèmes de quadrature 

de figures déterminées par des ordonnées que nous noterions par y =K. xm. (t-x)n. 

Le but de cet article est d'analyser les rapports entre algèbre et géométrie dans 

l'ouvrage ci-dessus, de montrer leur complémentarité et d’indiquer comment celle-

ci a permis à Mengoli de mettre en oeuvre une nouvelle méthode dans le calcul 

des quadratures. 

MSC 2000 subject classifications 01 A45, 14-03, 40 A25. 
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 INTRODUCTION 

      One of the greatest innovations in seventeenth century mathematics was the 

introduction of algebraic procedures to solve geometric problems. Two of the most 

important advances in mathematics during that century were the foundation of 

what is now called analytic geometry, and the development of infinitesimal 

calculus. Both attained their exceptional power by establishing connections 
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between algebraic expressions and figures, and between algebraic operations and 

geometrical constructions 2. 

     The publication in 1591 of In Artem Analyticen Isagoge by François Viète (1540-

1603) drew attention to these connections. Viète used symbols not only to 

represent unknown quantities but also to represent known ones. In this way he was 

able to deal with equations in a completely general form. Viète solved equations 

creating a link with geometry through the Euclidean theory of proportions; he 

equated algebraic equations with proportions by means of the product of medians 

and extremes of one proportion, thus introducing a new way of working out 

equations3. So, as Viète's work became known during the early years of the 

seventeenth century, some mathematicians began to consider the utility of 

algebraic procedures in solving geometric problems. Among these scholars was 

Pierre de Fermat (1601-1665)4, although the most influential figure in the research 

on the relationship between algebra and geometry was René Descartes (1596-

1650) who wrote La Géométrie in 16375.  

                                                             
2 In the early seventeenth century a tradition had already developed in Italy of using algebra as an "art" to solve equations. 
The connection between algebra and geometry is present in most Italian algebrists: Leonardo da Pisa (1180-1250), Luca 
Pacioli (1445-1514), Niccolò Tartaglia (1500-1557), Girolamo Cardano (1501-1576) and Rafael Bombelli (1526-1573), but 
these algebrists of the "cinquecento" only made geometric demonstrations to justify the solutions of algebraic equations. 
3 On Viète see Viète, 1970, 12, Freguglia, 1999 and Giusti, 1992. 
4 Fermat did not publish during his lifetime and his works circulated in the form of letters and manuscripts. On Fermat see 
Fermat, 1891-1922, 65-71 and 286-292; Mahoney, 1973, 229-232. However, parts of his work are explained in other 
publications. For instance Hérigone's course contains an exposition of Fermat's work on tangents, see Hérigone, 1644, 59-
69 and Cifoletti, 1980, 129. 
5 The interpretation of Descartes' program causes conflicting opinions even today. On the one hand Bos, Boyer and Lenoir 
state that, for Descartes, algebra is merely a labor-saving instrument. "For Descartes the equation of a curve was primarily a 
tool and not a means of definition or representation." (Bos, 1981, 323). Besides, the equation is a tool that permits 
classification of the curves. For these historians, Descartes’ purpose in writing La Géométrie was to find a method for solving 
geometric problems, as was usual at that time, and the equation is not the last step on the way towards  the solution. Giusti, 
on the other hand, says that for Descartes the curve is the equation. Giusti emphasizes the algebraic component of La 
Géométrie as key to Descartes' program. Among the many studies on this program the following are particularly useful: 
Mancosu, 1996, 62-84; Bos, 2001, 225-412; Giusti, 1987, 409-432.   
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     From that moment on, over a period of roughly a hundred years, mathematics 

became algebraized6. This process marked a change from a mainly geometrical 

way of thinking to a more algebraic or analytical approach and was implemented in 

a slow and irregular manner7. Not all mathematicians in this period practised 

algebraic procedures. Some of them accepted these new techniques as an "art" 

and tried to justify them according to a more "classical" form of mathematics; 

others disregarded algebra because their research evolved along other paths. 

Finally, a few accepted these new techniques as a complement to their 

mathematical procedures8. 

     To some extent, Pietro Mengoli (1625-1686)9, a mathematician from Bologna, 

student of Bonaventura Cavalieri (1598-1647), can be included in the last of these 

groups. As we will see, in Mengoli's work Geometriae Speciosae Elementa (1659), 

algebra and geometry are complementary to each other. Mengoli dealt with 

problems of quadrature of figures using algebraic procedures to obtain his results.  

     At the beginning of Geometriae Speciosae Elementa Mengoli claimed that his 

geometry was a conjunction of those of Cavalieri and Archimedes, which he 

already knew, together with the tools that Viete's "specious algebra" offered him, 

Both geometries, the old form of Archimedes and the new form of indivisibles of my tutor, 

Bonaventura Cavalieri, as well as Viète's algebra, are regarded as pleasurable by the 

learned. Not through their confusion nor through their mixture, but through their perfect 

                                                             
6 On this process of algebraization see Bos, 1998, 291-317; Mancosu, 1996, 84-86;  Pycior, 1997, 135-166; Panza, 2004,1-
30. 
7 An exhaustive analysis of this change in thought can be found in Mahoney, 1980, 141-155. 
8 On this subject see Hoyrup, 1996, 3-4, Massa, 2001, 708-710. 
9 The name of Pietro Mengoli appears in the register of the University of Bologna in the period 1648-1686. He studied with 
Bonaventura Cavalieri and ultimately succeeded him in the chair of mechanics. He graduated in philosophy in 1650 and 
three years later in canon and civil law. He took holy orders in 1660 and was prior of the church of Santa Maria Madalena in 
Bologna until his death. For more biographical information on Mengoli, see Natucci, 1970, 303; Massa, 1998, 9-26; 
Baroncini-Cavazza, 1986,1. 
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conjunction, a somewhat new form [of geometry will arise] – our own – which cannot 

displease anyone11. 

      He established a new form of geometry in order to calculate quadratures. 

Mengoli knew the value of these quadratures by the method of the indivisibles and 

he tried to prove these results using a new algebraic approach. This algebraic 

method was based on the underlying ideas of the method of indivisibles and 

Archimedes’ method of exhaustion, that is to say through a perfect conjunction, not 

through the confusion or the mixture, as will be explained below.      

    In Section 1 we will analyse the "specious" language in Mengoli's works and 

describe his notation and algebraic tools. In Section 2 we will show the relationship 

between algebra and geometry through his system of coordinates, the figures or 

"forms", the triangular tables of figures and the calculation of their quadratures.   

 

  MENGOLI'S "SPECIOUS" LANGUAGE  

       In 1655, Mengoli wrote a work in verse dedicated to Queen Christina of 

Sweden12, Via Regia ad Mathematicas per Arithmeticam, Algebram Speciosam, & 

Planimetriam, ornata Maiestatae Serenissimae D. Christinae Reginae Suecorum in 

which he showed her a "royal path" for understanding mathematics. It is divided 

into three parts: arithmetic, in which he explains operations with numbers; 

"specious" algebra, where he shows how to use letters to solve equations; and 

planimetry, in which he deals with plane figures and their properties. It is clear that 

he assumed algebra as a part of mathematics alongside arithmetic and geometry. 

                                                             
11 " Ipsae satis amabiles litterarum cultoribus visae sunt utraque Geometria, Archimedis antiqua, & Indivisibilium nova 
Bonaventura Cavallerij Praeceptoris mei, necnon & Viettae Algebra: quarum non ex confusione, aut mixione, sed coniuntis 
perfectionibus, nova quaedam, & propria laboris nostri species, nemini poterit displicere."(Mengoli, 1659, 2-3) 
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In this work he did not define the terms arithmetic and planimetry, but he did 

explain “specious algebra” and stressed its usefulness13. Indeed his position in 

regard to algebra differed sharply from that of his master Cavalieri, Torricelli and 

others in whose works algebraic calculus was deliberately excluded14. So, at the 

beginning of the second part of Via Regia, that is, the part devoted to "specious" 

algebra, Mengoli describes it as an art in the following way: 

About the utility of Specious [Speciosa] Algebra 

One alone among Mathematics will be called Specious Algebra, an art in which nothing is 

hidden to the investigator. If one asks if it is or else it is not, [the question involves] telling 

the truth; if one asks how much it is, this art is enough for that. Now that [this art] gives 

suitable methods to the general numbers to make and to prove made and proved notions. 

That is, it will operate with two types of general numbers, those one looks for (unknown 

quantity) and those one can give arbitrarily (data)15. 

    Mengoli considered algebra as an art that provided suitable methods of 

demonstration for results that are already known. On this definition, here algebra 

does not seem to be of any use in obtaining new results. 

    In this work Mengoli adopted Viète’s algebraic symbols. He explained that 

numbers would be represented by letters and presented algebra as a language; 

metaphorically he compared linguistic and algebraic figures: consonants 

represented dates; vowels, unknowns;  syllables, algebraic expressions of one 

                                                                                                                                                                                          
12 This work for the Queen was commissioned on occasion of her visit to Bologna. 
13 Mengoli thought that the Queen already knew the significance of arithmetic and planimetry, but felt that “specious algebra” 
was a new part of mathematics that required a supplementary explanation.   
14 Also, in England, Thomas Hobbes (1588-1679) in his Examinatio et emendatio mathematicae hodiernae (1660) 
emphatically condemned the new algebra. In his opinion geometry and its subordinate arithmetic were sciences, whereas 
algebra which he essentially regarded as symbolic reasoning, was an art able to record the inventions of geometry efficienfly 
and quickly, but not a science. Isaac Barrow (1630-1677) who also opposed algebra, considered arithmetic as one part of 
geometry, geometry the only science par excellence and algebra as a tool of logic. On this subject see Pycior, 1997, 135-
166. 
15 "De Utilitate Algebra Speciosa. Una, Mathematicas inter, Speciosa vocatur Algebra: quaerenti qua nihil arte latet. Sive 
rogas, utrum sic, vel non, dicere verum est; sive rogas, quantum est: ars facit ista satis. Utpote quae numeris generalibus 
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letter;  punctuation signs,  rules of addition, subtraction...; words, algebraic 

expressions of several letters; text, equalities; verses, equations. He did not make 

examples with letters or with numbers of these metaphoric comparisons16. His 

originality lies in this explicit presentation. However, in this first study he did not 

make contribution to the formation of symbolic language.   

       We may wonder why Mengoli did these metaphorical comparisons. We think 

that his aim was didactic, that is to say, the "royal path" shown to the Queen for her 

to understand mathematics would be the easier way. However Mengoli's view on 

symbolic language was to be better understood in his later following work where, 

as it will be explained here-below, Mengoli developed Viète's algebra which 

allowed him to obtain new results.  

     Mengoli published Geometriae Speciosae Elementa, in 1659, a 472-page text 

on pure mathematics with six Elementa, in which algebra became an essential 

element. The title already suggests this development of "specious" algebra, which 

Mengoli named it "Specious Geometry"17. Taking Viète's symbolic language as a 

base, he created new algebraic tools to work with geometric figures that allowed 

                                                                                                                                                                                          
instruit aptos, ad facere, ad facta,& dicta probare, modos. Scilicet intererit generalis uterque fuisse; Quem-quaeris numerus, 
quem-dare cunque potes."[Mengoli, 1655, 19] 
16 For instance Mengoli defined word as an algebraic expression this way: "One word is composed of a certain number of 
letters, the same number of exponents, only one sign and one multiple. So the character that is produced by the product of 
letters I have pleasure in calling word". (Mengoli, 1655, 22). Finally, Mengoli made a classification of equations up to the third 
degree in accordance with the degree and with the signs. Although Viète’s classification was more complete there are some 
coincidences in the words used: antithesi, which meant transposition of terms of one equation; subgraduales, which referred 
to the terms with a lesser degree than the equation, etc.  
17 Geometriae Speciosae Elementa (1659) has an introduction entitled Lectori elementario, which provides an overview of 
the six Elementa, or individually titled chapters, that follow. In the first Elementum, De potestatibus, à radice binomia, et 
residua (pp. 1-19), Mengoli shows the first 10 powers of a binomial given with letters for both addition and subtraction, and 
says that it is possible to extend his result to higher powers. The second, De innumerabilibus numerosis progressionibus (pp. 
20-94), contains calculations of numerous summations of powers and products of powers in Mengoli's own notation, as well 
as demonstrations of certain identities. In the third, De quasi proportionibus (pp. 95-147), he defines the ratios "quasi zero", 
"quasi infinity", "quasi equality" and "quasi a number". With these definitions, he constructs a theory of quasi proportions on 
the basis of the theory of proportions found in the fifth book of Euclid's Elements. The fourth Elementum, De rationibus 
logarithmicis (pp. 148-200), provides a complete theory of logarithmical proportions. He constructed a theory of proportions 
between the ratios in the same manner as Euclid did with the magnitudes in the fifth book of Elements. From this new theory 
in the fifth Elementum, De propriis rationum logarithmis (pp. 201-347) he found a method of calculation of the logarithm of a 
ratio and deduced many useful properties between the ratios and their powers. Finally, the sixth Elementum, De 
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him to develop a new method for determining quadratures, as we will show below. 

We might even think that Mengoli wished to create a new field: the "specious 

geometry" taking Viète's "specious algebra" as a model. But in our opinion Mengoli 

had unintentionally created a new part of the new mathematical field, which was 

beginning to emerge at that time, inspired by the works of Descartes and Fermat. 

    Mengoli’s main algebraic sources were the texts by Viète, Pierre Hérigone 

(1580-1643)18 and Jean Beaugrand (1595-1640),19 as he tells us at the beginning 

of the book:  

On the other hand as François Viète and other Analysts...; To those symbols that Viète, 

Hérigone, Beaugrand...20.  

     In the second book of his six-volume textbook Cursus Mathematicus Hérigone 

wrote a part of 296- page entitled Algebra composed of twenty chapters. He dealt 

with equations and their solutions, his algebra is clearly inspired en Viète but his 

notation and presentation was very different21.   

   At this point we may wonder whether Mengoli knew Descartes' Géométrie or the 

works of Fermat. He did not cite Descartes as a source; nor does the treatment of 

                                                                                                                                                                                          
innumerabilibus quadraturis (pp. 348-392) involves calculating the quadratures of figures determined by coordinates now 
represented by y =K. xm. (t-x)n. An exhaustive analysis of this work can be found in Massa [1998, 1-300].   
18  Hérigone, mathematician, wrote a six-volume textbook entitled Cursus mathematicus (Paris, between 1634 and 1644) 
which contained a book of algebra. On Hérigone's algebra see Hérigone (1644, second and sixth book) and Cifoletti [1990, 
p. 129]. 
19  Beaugrand was also a mathematician; in 1635 he spent an entire year in Italy and visited Cavalieri in Bologna. He 
published a version of In Artem analyticem Isagoge, which was in fact the work of Viète extended with some "scolies" and a 
mathematical compendium. More references in Cifoletti [1990, pp. 114-128] 
20 "Porrò cum Francisco Viettae, alijsque placuerit Analystis,..."; "Quibus characteribus à Vietta, Herigonio, 
Beaugrand..."[Mengoli, 1659, 11-12]. 
21 Notice that Hérigone distinguished between vulgar algebra, which dealt with numbers and specious algebra, which dealt 
with species. He defined Algebra in this way: "La doctrine analytique ou l'Algebra est l'art de trouver la grandeur incognue, 
en la prenant comme si elle estoit cognue,& trouvant l'egalité entre icelle & les grandeurs données". He also defined 
specious algebra: "Mais l'Algebre Specieuse n'est pas limitée par aucune genre de probleme, & n'est pas moins utile à 
inventer toutes sortes de theoremes, qu'à trouver les solutions & demonstrations des problemes." (Hérigone, 1644, 1) Also 
in the sixth book of his Cursus Hérigone wrote two parts about algebra, "supplement of algebra"(73 page) and "isagoge of 
algebra" (74-98). In this supplement Hérigone published Fermat's method of maximum and minimum.(Hérigone, 1644, 59-
69).    
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algebraic symbols throughout this work suggest that he had read him22. As for 

Fermat, his manuscripts and letters circulated among Parisian mathematicians and 

reached Italy through Beaugrand and Mersenne23. So, it is possible that Mengoli 

knew Fermat's results: Ricci, Torricelli and Cavalieri certainly did. He may also 

have known Fermat's method of maximum and minimum, which was published by 

Hérigone in the Sixth Book of his Cursus Mathematicus (Hérigone, 1644, 59-69). 

Mengoli did not cite Fermat as a source in his Geometriae but conceivably this 

work could be inspired by a reading of Fermat's method in Hérigone or in Fermat's 

manuscripts.    

 

a) Mengoli's notation 

     One of the main difficulties in understanding Mengoli's book concerns the 

notation; it is original and becomes more complicated as the text progresses24. 

     On a separate page, under the title Explicationes quarundam notarum, before 

the first Theorem in the Elementum primum of Geometriae Speciosae Elementa, 

Mengoli outlined the basic notation that he would use throughout the book: 

addition, subtraction, the equals sign, and ratio. He also named all the letters and 

algebraic expressions that his analysis would involve.  

      There are certain differences between these signs and those defined by Viète, 

Descartes and Hérigone. For instance, equality was represented with two points, 

whereas Viète used the abbreviation of the word aequalis, Descartes wrote the 

                                                             
22 According to Luigi Pepe, Descartes’ Géométrie did not reach a wide readership in Italy. Pepe claimed to have found two 
references, one in Giannantonio Rocca (1607-1659), a pupil of the Jesuit College of Parma, who had the translation of 
Descartes`Géométrie .(Pepe, 1982,263]. Mengoli wanted to square the figures as an answer to a question proposed by 
Rocca [Mengoli, 1659, 348]. This is the only association with Descartes' Géométrie that we have found. 
23 On the difussion of Fermat's works in Italy see Mahoney, 1973, 56. 
24 In a letter to Collins, Isaac Barrow said that Mengoli's style was harder than Arabic (Gregory, 1939,49). 
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symbol ∝ and Hérigone wrote 2/2. To multiply, Viète used the word in, whereas 

Mengoli, Descartes and Hérigone wrote one letter next to the other. Mengoli used 

a semicolon to express the ratio between two quantities; Viète, used the 

expression ad , Descartes à and Hérigone wrote the symbol π.  

    To represent the quantities by symbols Mengoli did not distinguish between 

vowels and consonants, which could represent data, unknowns or variables. He 

used both capitals and lower case letters; in general, lower case represented data 

and capital letters variables. He invented names for the letters and expressions he 

used. In some cases these names were the same as Viète's, such as the word 

radix (the first power); others, such as triprimam (a3r), unisextam (a r6 ), and so 

forth, are original creations. To represent powers, Viète retained the words A 

quadratus, A cubus, and so on. Descartes wrote the exponents as they are written 

today, with one exception: on occasion, he wrote xx to represent the square. 

Mengoli neither used words like Viète, nor used the exponents like Descartes, but 

he wrote the exponents on the right side of the letter, x2, like Hérigone25. For 

instance, to represent one proportion Mengoli (1659, 8) wrote 

"a ; r : a2 ; ar"  for  a : r = a2 : ar. 

    Indeed in the seventeenth century there were no standard criteria either for the 

symbols or for the names26. 

 

 

 

                                                             
25 On the same page Mengoli also explained how he represented a proportion, a composition of ratios and a power of a ratio. 
He defined the composition of ratios as a ratio obtained by multiplying the antecedents and the consequents. 
26On the origins of algebraic language see Malet, A. (1984), 169-179. 
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b) Algebraic tools 

     As far as the definitions of the Elementum primum are concerned, Mengoli 

defined the powers of a quantity in continuous proportion to the unity, u, like 

Descartes (Descartes, 1979, 138). When Mengoli used these definitions in the 

demonstrations, he wrote 

u : a = a : a2 =  a2 : a3 =... 

     In the fourth definition, he introduced the "rationalis", which we can call the unity 

u = 1, 

4. Quantity, from which the progression of continuously proportional is ordered, in infinity, 

will be called "Rationalis" and it will be represented by the symbol u28. 

  Then in the fifth definition, Mengoli introduced the radix a, and in the sixth the 

powers of a29. 

5. And the first following quantity from "Rationali" will be called Radix or first Power and it 

will be represented by a letter of the alphabet.   

6. And the following remainders will be called the second, third and so on Powers, in 

accordance with their order. And any [power] will be represented by the letter of their radix 

with the number of the order on the right side. For example from radix "a", second power 

"a2", third "a3", and so on31.   

                                                             
 
28 "4. Quantitas, unde progressio continuè proportionalium, ordinatur in infinitum, dicetur, Rationalis.& significabitur 
charactere u"[Mengoli, 1659, 4]. 
29Curiously, though Mengoli never mentioned zero, either as a power or as a number, he defined the order of u as one unit 
less than the first power [Mengoli, 1659, 4].  
 
31 " 5 . Et prima consequens à rationali, dicetur, Radix, vel Potestas prima.& significabitur, charactere cuiusq; litterae 
alphabeti. 6. Et reliquae consequentes, dicentur Potestates radicis, Secunda, Tertia, & deinceps, iuxta suum cuiusque 
ordinem. Et significabitur unaquaeque, eidem litterae suae radicis, adscriptoque ordinis numero. Ut radicis a, secunda 
potestas a2, tertia a3, & sic deinceps" [Mengoli, 1659, 4]. 
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      Mengoli put these quantities in a triangular table, the table "of proportionals" 

[proportionalium], to make their identification easier32. The table presents numbers 

expressed by letters so that in every row the first two elements always have the 

same ratio a:r, a and r both being integers. They also have the same ratio in the 

diagonals 1:a and 1:r, respectively, because the letter u placed in the vertex 

represents the unity (see Figure 1). 

u 

a                 r 

a2                ar               r2 

a3               a2r             a r2              r3 

Tabula  Proportionalium33 

FIGURE  1 

    Throughout the book the triangular tables were useful algebraic tools for 

Mengoli’s calculations. In the Elementum primum, the terms of triangular tables are 

numbers and they are used to obtain the development of any binomial power. In 

the Elementum secundum, the terms of triangular tables are summations used to 

obtain the sum of the pth-powers of the first t-1 integers. Finally, in the Elementum 

sextum, the terms of triangular tables are figures and they are used to obtain the 

quadrature of these figures. Therefore, Mengoli's originality stems not from the 

definition of these tables but from his treatment of them. On the one hand, he uses 

them and Viète's algebra to create other tables with algebraic expressions stating 

                                                             
32 Mengoli noted its similarity to a table shown in Euclid VII.2. We have not found this table in Euclid's Elements, but there is 
a reference to a similar table in a 13th-century Latin edition of the Elements published by Johan Ludvig Heiberg and H. 
Menge in Bosmans [1924, 22]. 
33 He composed this table "of proportionals" with the table of combinatory numbers to obtain a new triangular table. Its 
elements are the development of the powers of the binomial a + r or a - r, adding the corresponding signs depending on 
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clearly their formation laws; on the other hand, he employs the relations between 

these expressions and the combinatory numbers of the arithmetic triangle to prove 

the results. It is significant that he used the symmetry of triangular tables and the 

regularity of their rows in order to generalise the proofs. Mengoli took it for granted 

that if one result was true for one row of the table, this very result was also true for 

all rows and there was no need to prove it in the remaining rows. For instance, he 

proved the development of the powers of the binomial a+r, for the second row, 

- u : a = a : a2 = r : ar = a + r : a2  + ar. 

- u : r = r :  r2 = a : ar = a + r : r2  + ar. 

- u : a+ r =  a + r : a2  +2 ar + r2 . 

- a2  +2 ar + r2 is a second power of a + r34. 

      The arithmetic manipulation of the algebraic expressions helped Mengoli to 

obtain new results and new procedures. In Elementum secundum he invented a 

manner of writing and calculating finite summations of powers and products of 

powers. He did not write them giving values or writing the numbers using the sign + 

and suspension points, but by representing the numbers by letters. In this way he 

created an innovative and useful construction that would allow him to calculate 

these summations, which he assumed as new algebraic expressions. He 

considered an arbitrary number or tota, represented by the letter t., and divided it 

into two parts, a (abscissa) and r = t-a (residua)35. In his words,  

                                                                                                                                                                                          
wheter the binomial contains an addition or subtraction. He demonstrated these developments in Theorems 8 and 10 of the 
first Elementum (Mengoli, 1659, 15). 
34 It's noteworthy that here Mengoli is using propositions of the theory of proportions of the fifth book of Euclid's Elements. 
(Mengoli, 1659, 16). 
 
35 Mengoli stated an "arbitrary number" [quantitas utcunque] although here he only puts examples of integers. As we will 
show later in the quadratures he divided the unit into t parts of side 1/t; ;that is to say, a = 1/t ,and  r = 1-1/t. 
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The parts of tota will be called the separated part [abscissa] and the remaining part 

[residua] and the separated part will be represented by the letter a and the remainder by r 

36. 

     He then took tota equal to 2, 3,... and gave examples up to 10. That is to say, if 

t is 2, a is 1, and r is 1. If t is 3, a may be 1 or 2 and r is then 2 or 1, respectively. 

He also calculated the squares and cubes of a, the products of a and r, of the 

squares of a and r, etc. He then proceeded to add all the numbers a that he 

separated from the same number t , for instance if t is 3, the summation will be 3, 

because it is the sum of 1 and 2; if t is 4, the summation will be 6, because it is the 

sum of 1, 2, and 3, and so on. He wrote O.a37 to express this sum from a=1 to a=t-

1 

∑
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=
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1

1

.
ta

a

aaO  

 

     Mengoli put all these summations of powers and products of powers in a 

triangular table which he called the table "of symbols" [Speciosa] (See figure 2).  

O.u 

                                                          O.a     O.r 

                                                     O.a2    O.ar   O.r2 

                                                O.a3   O.a2r  O.ar2  O.r3 

Tabula Speciosa 

                                                             
36 "Et partes totae, dicentur, Abscissa, &Residua: &significabitur abscissa, charactere a; & residua, r."[Mengoli, 1659, 21]. 



 15

FIGURE  2 

   The terms of this table that he called "species" are summations of the type 

 O.u = (t -1) 

O.a = 1 + 2 + 3+...+(t-1) 

O.r = (t-1) + (t-2) + (t-3)+...+1 

O.a2 = 12 + 22 + 32 +...+(t-1)2 

O.ar =1.(t-1) + 2.(t-2) + 3.(t-3) +...+(t-1).1   

    Mengoli composed his table "of symbols" with the table of combinatory numbers 

to obtain a new table. Then he used new relations between the terms of these 

tables to calculate the summations of positive integers and summations of products 

of powers indefinitely38. Specifically in Theorem 22 of Elementum Secundum he 

proved 39 

)().(..)1( 1
1

1
∑∑

+<

++
−=

=

−=−






 +
++

nms

snmn
ta

a

m ttata
n

nm
nm  

     He took advantage of the properties of the combinatory numbers to find and 

demonstrate the value of the sum of the pth powers of the first t-1 integers using 

the number t as the starting-point for their construction. Mengoli reached this result 

by using Viète's algebra to express the summations. Algebra allows him to obtain a 

certain level of generalisation. 

                                                                                                                                                                                          
37 Obviously "O. " meant Omnes and was due to his master Cavalieri and his Omnes lineae. 
38 The formula was, in fact, not new. The first recognition as a general rule was apparently made in 1636 by Fermat, who 
announced that he had solved "what is perhaps the most beautiful problem of all arithmetic"(Fermat; 1891-1922, 69), 
namely, given an arithmetic progression, to find the sum of any power. Fermat stated the rules but wrote neither the formula 
nor the demonstration. Mengoli stated the rule, demonstrated it and performed 36 calculations. He ended with the statement: 
"And in infinity, it can be demonstrated, with the method shown above, that every summation is equal to some totae" 
(Mengoli; 1659, 44). 
39 On this demonstration see Massa, 1997, 266-268. 
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     Another of Mengoli’s original contributions was the justification and use of the 

notion of variable in the Elementum tertium. His idea was that letters could 

represent not only given numbers or unknown quantities, but variables as well: that 

is, determinable indeterminate quantities. For example, the summations were 

indeterminate quantities but they were determinate when the value of t was known. 

To clarify this idea Mengoli stated: 

When I write O.a, ...you have the summation [massa] of all the abscissae: but what value 

this summation is you do not yet know if I do not write of which number the summation is. 

But if I assign O.a to the summation of the number t, you do not know either how much it is 

if at the same time I do not assign the value of the letter t. But when I allow you to fix a 

value for the letter t, and you, using this licence, say that t is equal to 5, immediately you will 

accurately assign O.a equal to 10, t2 equal to 25, t3 equal to 125, and O.r equal to 10, and if 

the letters t are determinate, the quantities O.a, O.r, t2 ,t3 , [which are] determinable [but] 

indeterminate quantities40. 

    Mengoli applied his idea of variable to calculate the "quasi ratios" of these 

summations. The value of the ratio between summations is also indeterminate but 

is determinable by increasing the value of t. The ratio does not really reach this 

value, which we can be interpreted as its actual value; instead, it tends towards it 

as t increases. It is in this sense that Mengoli understood the expression 

"determinable indeterminate ratio".  

                                                             
40 "Cum scripsero O.a... habes massam ex omnibus abscissi: sed quota sic haec massa, nondum habes, nisi scripsero cuius 
numeri sit massa. Quod si assignavero O.a, numeri t massam esse; neque sic habes, quota sit, nisi simul assignavero, 
quotus est numerus, valor litterae t...Cum verò licentiam dedero, ut quotum quemque litterae t valorem taxes; tuque 
huiusmodi usus licentia dixeris, t  valere quinario: statim profecto assignabis & O.a, valere 10; & t2, valere 25;& t3 , valere 
125; & O.r, valere 10; & determinatae litterae t, determinatas esse quantitates O.a, O.r, t2 , t3 . Quare data licentia antequam 
usus fueris, habebas profecto O.a, O.r, t2 ,t3 , quantitates indeterminatas determinabiles"[Mengoli, 1659, 61]. 
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     Mengoli proceeded to give examples and clarified his notion of "ratio quasi a 

number", as it will be explained below. From this idea he constructed the theory of 

"quasi proportions", which was useful to calculate the quadratures.  

 

 

  ALGEBRAIC TREATMENT OF GEOMETRIC FIGURES 

    Mengoli developed algebraic analysis in geometric figures in the Elementum 

sextum of Geometriae41. This chapter, entitled De innumerabilibus quadraturis 

involves calculating quadratures of plane figures in the interval (0,t) determined by 

coordinates now represented by y = K xm. (t-x)n.  

      In a preliminary calculation, using his master Cavalieri’s method of indivisibles42 

Mengoli demonstrated the value of quadratures of these figures43. Immediately 

afterwards he went on to acknowledge that he did not publish the results on 

account of the attacks levelled against that method:  

Meanwhile I left aside this addition that I had made to the Geometry of Indivisibles, because 

I was afraid of the authority of those who think false the hypothesis that the infinity of all the 

lines of a plane figure is the same as the plane figure. I did not publish it not because I 

agreed with them, but because I was doubtful of it, and I tried...to establish new and secure 

                                                             
41 This sixth Elementum, with the title De innumerabilibus quadraturis (pp. 348-392) contains (besides a letter to Cassini), 
three triangular tables, 36 definitions, 11 propositions (4 of them he named problems) and lastly, two pages on barycenters. 
42 Cavalieri’s method of indivisibles  is set forth basically in two works: Geometria indivisibilibus continuorum nova quadam 
ratione promota (Bologna, 1635) and Exercitationes geometricae sex (Bologna, 1647). The demonstration of quadratures of 
parabolas y= x m  for m any positive integer was published by Cavalieri in this last book. On Cavalieri’s indivisibles, see: 
Andersen, K. (1984/85); Giusti, E. (1980); Malet, A. (1996) and Massa, Mª R. (1994). 
43 Interestingly, he did this using a lemma and three quasi-algebraic propositions of Jean Beaugrand and he stated that he 
would use one algebraic path because the procedure was shorter. These Beaugrand's propositions are found in Cavalieri’s 
Exercitatione quarta. In the introduction to this part Cavalieri explained that when he was working on quadratures father 
Nicerone went to Paris, and Cavalieri told him of his discoveries; Nicerone then passed on the information to Beaugrand. 
Later Cavalieri learnt of Beaugrand’s death, from Mersenne; Mersenne also told him of the solutions that Beaugrand had 
found to the proposed quadratures. Cavalieri incorporated these solutions so that they should not be lost (Cavalieri, 1647, 
243-245). 
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foundations for the same method of indivisibles or for other methods, which were 

equivalent44. 

    Mengoli recognised that the basis of Cavalieri's method of indivisibles was not 

sufficiently sound. As he wanted to provide a solid foundation for the method, he 

started out on a new path to square the figures45. He sought to make his procedure 

for introducing algebra into geometry clear from the beginning. First, using his own  

system of coordinates, he expressed the figures he wanted to square by algebraic 

expressions. Second, he put these algebraic expressions in a triangular table for 

their classification. Third, he associated algebraic expressions to figures by 

presenting their geometrical construction, and finally he used triangular tables and 

quasi proportions to find and prove the values of the quadratures.  

 

a) Mengoli's system of coordinates 

       In the first definitions of Elementum Sextum Mengoli described his own system 

of coordinates. He proposed a line segment, which he named "Rationalis", whose 

measure is any quantity. He then put this segment in a straight line and named it 

"Tota".  

                                                             
44 "Ipsam interim accessionem, quam Geometriae Indivisibilium feceram, praeterivi: veritus eorum authoritatem, qui falsum 
putant suppositum, omnes rectas figurae planae infinitas, ipsam esse figuram planam: non quasi hanc sequens partem; sed 
illam quasi non prorsus indubiam debitans: tentandi animo, si possem demum eandem indivisibilium methodum, aut aliam 
equivalentem novis, & indubijs prorsus constituere fundamentis."[Mengoli, 1659, 364] 
45 As we have noted above after 1650 through the influence of Viète and, above all, Descartes, algebraic methods became 
increasingly accepted in the field of geometry. Other mathematicians of the period - such as Fermat, Gilles Personne de 
Roberval (1602-1675), John Wallis (1616-1703), and Blaise Pascal (1623-1662) - also used these methods  in a different 
approach. They aimed, among other things, to calculate the result which today would look 

like
1

1...1
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=
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+ pt

t
lim

p

pp

 for t tending to infinity. This would have allowed them to square the parabolas y = xp, for 

p any positive integer. Mengoli also calculated this as we will explain, using the theory of quasi proportions and the triangular 
tables. Informations on these subject may be found in the following sources: on Fermat, 1973,230; on Roberval see Auger, 
1962, 18-21 and Walker, 1986, 41-44; on Wallis, 1972, 365-392 and on Pascal see Boyer, 1943, 240 and Pascal, 1954, 171. 
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1. One of the line segments will be taken, of any quantity, which will be called Rationalis. 2. 

And [one] will be put in a straight line equal to Rationali, which will be called Tota46.  

     Next Mengoli defined a base as a straight-line segment the length of which is t 

or one. He used the word abscissa47 as our x, but in a segment measuring the unit 

u or t. Mengoli always worked within a finite base in which the abscissa was 

represented by the letter "a" and the remainder was represented by the letter "r= t-

a" or "1-a", depending on whether the base was a given value t or the unit u.  

3. And a position is given, which will be called Base.  4. And one of the ends [of the base] 

will be called the end of the abscissae. 5. And the other one the end of the remainders. 6. 

And the quantity [that goes] from any point of the base to the end of the abscissae, as far as 

the same base is extended, will be called abscissa48. 

    He considered a base AR, 

A---------B-------------------------R 

     A is the end of the abscissae, R is the end of the remainders, AB is the 

abscissa and BR is the remainder.  

   As for the word ordinate49, Mengoli first defined the ordinates of known figures, 

such as the square (or rectangle) and the triangle, from his construction on every 

point of the base. For instance in the square (or rectangle) he stressed how to 

draw these lines 

                                                             
46 "1.Assumatur inter lineas, una quaelibet quantitas; quae, Rationalis, dicetur. 2. Et exponatur quaedam recta linea, rationali 
aequalis; quae dicetur, Tota."[Mengoli, 1659, 367] 
47 The word abscissa appears in Fermat, 1891-1922, 195; in Torricelli, 1919, III, 366, in Cavalieri, 1966, 858-859 and in 
Stefano Degli Angeli, 1659, 175-179. Another word used with the same meaning was "diameter". 
48 "3. Sitque data positione; quae dicetur, Basis. 4. Eiusque alterum extremorum punctorum, dicetur, Finis abscissarum. 5. 
Alterum, Finis residuarum. 6.Et ab unoquoque puncto in basi sumpto, usque ad finem abscissarum, quatenus ipsa basis 
extenditur, quantitas dicetur Abscissa."[Mengoli, 1659, 367]  
49 Mengoli used the word "ordinata" instead of the word "applicata" which was used at that time. Descartes defined the 
ordinates as "celles qui s'appliquent par ordre", (Descartes,1954, 67). Here there is a note that affirmes: "The equivalent of 
"ordination application" was used in the fifteenth century on translating Apollonius". The note also states that Hutton’s 
Mathematical Dictionary of 1796 gave “applicata” as the word corresponding to the ordinate and explained that the 
expression "ordinata applicata" was also used. In fact Fermat and Cavalieri used "applicata". Mengoli in Circolo (1672) 
named them "ordinatamente applicate" (Mengoli, 1672,5). 
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10. Over a base is described a square, and I suppose that from any of the points of the 

base a straight line will be traced to the opposite side, maintaining itself parallel at all times 

to the sides of the square; this will be called ordinate in [the] square50.  

He defined the ordinates traced in a triangle made as half of a square. 

15. The diagonal of the square, traced from the end of the abscissae, makes a half-square 

triangle. [In] which I suppose that from any of the points of the base a straight line will be 

traced to the aforementioned diagonal, once again parallel to the sides [of the square]; this 

[line] will be called ordinate in triangle.51 

      Mengoli did not define the ordinates in the case of mixed-line figures through 

his constructions, but he explained that they are equal to abscissae or power of 

abscissae and named them "ordinate in form". The equality between ordinates and 

the power of abscissae was used by means of proportions such as 

1 : y = (1 : x)n 

 

b) Geometric figures as algebraic expressions 

     Mengoli defined the figures that he wanted to square as "extended by their 

ordinates". He called them "forms" and expressed them by an algebraic expression 

beginning with FO. He never mentioned the word "curve" - only the word figure or 

forma which dates from the previous century and was identified by measuring the 

quantity of one quality. The word appears in the work of Oresme (1323-1382) 

Tractatus de latitudinibus formarum (1346) among others52. A form was any 

quantity or quality that was variable in nature. The intensity or latitude was 

                                                             
50 "10 . Super basi describatur quadratum: & ab uno quolibet puncto in basi sumpto, recta ducatur, usque ad oppositum 
latus, reliquis lateribus quadrati parallela: quae dicetur, Ordinata in quadrato."[Mengoli, 1659,368] 
51 "15. A fine abscissarum ducta diameter quadrati, facit semiquadratum triangulum: cuius ab unoquolibet puncto in basi 
sumpto recta ducatur, usque ad praedictam diametrum, alteri lateri parallela, quae dicetur, Ordinata in triangulo. "[Ibid,368] 
52 On Oresme see Clagett, 1968, 91-92; Lindberg, D.C. (ed.), 1978, 231-241; Crombie, A.C., 1980, 82-95. 
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measured vertically over a base that measured the longitude, and the area of the 

described figure measured the quantity. 

       Mengoli began with known figures such as the square and the triangle and 

then progressed to mixed-line figures. He expressed the square and the triangle 

algebraically:  

12. And the square, extended by its ordinates, is called "Form all rationals", and "Form all 

"totals"" and it will be represented by the characters FO. u and FO. t 53. 

17. And in the same manner the triangle [made] by its ordinates extended will be called 

"Forma omnes abscissae" [Form all abscissae] and it will be represented by the character 

FO.a54. 

    The first mixed-line figure that he defined was determined by one branch of 

parabola, y=x2, the base and heights (ordinates) being within the square. 

20. If over the base a figure is constructed, not extended more than by ordinates within the 

square but in which any ordinate is the "second" abscissa [a2], it will be called "Form all 

second abscissae", and it will be represented by the character FO. a2 55. 

     When he used this definition in the demonstrations he explained: 

The ratio of the base AR [u] to the ordinate by B [y] is "the double" of the ratio AR [u] to AB [x]. 56 

(In modern notation 1 : y = (1 : x)2). In the same way, he also defined the "Form all 

products of the abscissa and the remainder" and the "Form all second remainders", 

representing them by the characters FO. ar, FO. r2. The ordinates of these figures 

                                                             
53 " 12. Et quadratum, per suas ordinatas extensum, dicetur, Forma omnes rationales, & Forma omnes totae. & significabitur 
characteribus FO.u, & FO.t."[Mengoli,1659, 368] 
54 "17. Ipsumque triangulum per suas ordinatas extensum, dicetur, Forma omnes abscissae. & significabitur charactere, 
FO.a."[Ibid, 368] 
55 "20. Si super basi concipiatur figura extensa non nisi per ordinatas in quadrato: sed in qua, unaquaelibet ordinata est 
abscissa secunda, dicetur, Forma omnes abscissae secundae. & significabitur charactere FO a2." [Mengoli, 1659, 369] 
56 "Basis AR, ad ordinatam per B, duplicata habet rationem eius, quàm habet ad AB."[Mengoli, 1659, 372]. 
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verify the proportions 1 : y = (1 : x). (1 :(1-x)) and 1: y = (1:(1-x))2 respectively. And 

generally he defined the figure extended by any ordinate57 

23. And generalising, if over the base a figure is constructed, not extended more than by 

ordinates within the square, in which any ordinate is considered as some element of the 

proportional table [see figure 1]. [This figure] is called "Form all possible proportionals" and 

an appropriate character will represent it. For instance "Form all third abscissae", FO.a3, 

"Form all products of the second abscissae and the remainders" biprimae, Fo. a2r, "Form all 

products of the abscissa and second remainders", unisecundae, FO. ar2, "Form all third 

remainders", FO. r3 and so on58.  

 

c) Triangular tables of figures 

    After defining the figures and assigning new algebraic expressions he decided to 

work with these new algebraic objects. Mengoli’s approach here was deeply 

original. He used these new symbols, such as FO. a., which he had associated 

with geometric figures, to perform algebraic calculations. So, he put these 

algebraic symbols in triangular tables as he had done in other Elementa in order to 

work with them as if they were arithmetic expressions. Mengoli explained that 

when these figures [forms] constructed over a base are put in a triangular table as 

                                                             
57 In a later work, Circolo (Bologna, 1672), Mengoli defined the same ordinates as powers of abscissae through other 
proportions and named them "ordinatamente applicate". "Et altresì sopra la Rationale s'intendano descritte tre figure, una 
nella quale le ordinatamente applicate alla base sono le terze proportionali della tota, e dell'abscissa, ch'io chiamo Abscisse 
seconde: l'altra nella quale le ordinatamente applicate alla base sono le quarte proportionali della tota dell'abscissa, e della 
residua, ch'io chiamo Uniprime: la terza nella quale le ordinatamente applicate alla base sono le terze proportionali della tota 
e della residua, ch'io chiamo Residue Seconde, ..." [Mengoli, 1672,, 5] Mengoli also defined the ordinates named third 
abscissae as the fourth proportional of the "tota", the abscissa and the second abscissa. Afterwards he defined the ordinates 
called the products of the second abscissae and the remainders again as the third proportional, and in this case he stressed 
that all the ordinates, "in infinity", could be defined in this way. 
58 "23. Et generaliter, si super basi concipiatur figura , extensa non nisi per ordinatas in quadrato; & in qua, unaquaelibet 
ordinata, est assumpta quaedam in tabula proportionalium: dicetur, Forma omnes tales proportionales aptoque significabitur 
charactere. Vt Forma omnes abscissae tertiae, FO.a3: Forma omnes biprimae, FO.a2r: Forma omnes unisecundae, FO.ar2: 
Forma omnes residuae tertiae, FO.r3. & sic deinceps."[Mengoli,1659, 369] Let me stress that Mengoli wrote the exponents in 
the right side of the letter.  
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he had done before, they become a new one which he called Tabula Formosa, 

table of "forms" (See figure 3).                                             

                                                              FO.u. 

FO.a.      FO.r. 

FO.a2.   FO.ar.     FO.r2. 

FO.a3.  FO.a2r.     FO.ar2.   FO.r3. 

Tabula Formosa 

FIGURE 3 

       The figure at the vertex represented a square of side 1. The two figures of the 

first row represented two triangles. The first "FO.a" is determined by the bisectrix of 

the first quadrant y=x, the axis of abscissae and the straight line x=1, and the 

second triangle "FO. r" is determined by the straight y=1-x traced from the point 

(1,0) to the point (0,1) and the axis of abscissae. The three figures of the second 

row are determined by the ordinates of a parabola, the axis of abscissae and the 

straight line x=1. The first figure, "FO.a2", is determined by the ordinates y=x2, the 

second, "FO.ar", by the ordinates y= x.(1-x) and the third, "FO.r2", by the ordinates 

y=(1-x)2 and so on in the other rows. Below are my designs of these figures 

arranged as a triangular table (see figure 4). 
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FO.  u 

 

                             

                    

                            FO.  a                                                    FO.  r 

                

 

 

        FO.   a2                                      FO.  ar                               FO.   r2 

 

FIGURE 4 
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       From this table "Formosa" [of forms or figures], Mengoli derived a second table 

multiplying its own elements, term by term, by those in the table of combinatorial 

numbers. He called this new one Subquadraturarum, "of subquadratures". (See 

figure 5). 

                 1                                           FO.u. 

           1            1                              FO.a.      FO.r. 

      1         2           1                   FO.a2.   FO.2ar.     FO.r2. 

 1        3           3         1        FO.a3. FO.3a2r.   FO.3ar2.   FO.r3. 

                                              Tabula Subquadraturarum 

FIGURA 5 

     Mengoli called the first row of the triangular tables "of order one", the second "of 

order two", and so on. He then formed a third table multiplying each of the rows of 

the previous table by the order of the row plus one: so he multiplied the first row by 

two, the second one by three and so on. He called this new table quadraturarum, 

"of quadratures" (See figure 6). 

FO.u 

                First base                       FO.2a .        FO.2r 

               Second base          FO.3a2.      FO.6ar.     FO.3r2 

              Third base          FO.4a3. FO.12a2r.  FO.12ar2.  FO.4r3 

Tabula quadraturarum 

FIGURE 6 

     Mengoli put algebraic expressions of figures in triangular tables in order to 

classify them and to be able to work with these groups at the same time, as will be 

explained in the following paragraphs. The figures placed in these triangular tables 
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could thus be infinite in number; it is only necessary to increase the degree of 

algebraic expression and to calculate the coefficients through the laws of formation 

of the table. The symmetry of the table and the regularity of its rows allowed 

Mengoli to generalise the proofs.  

 

d) Representation and geometrical construction of figures 

      As far as the graphic representation of these figures is concerned, Mengoli only 

designed a horizontal axis as a base, which he called rational. He did not design a 

vertical axis, and he always drew the ordinates as lines perpendicular to the base. 

However, he made few drawings in Geometriae Speciosae Elementa59. 

     In Mengoli's work the graphic representation of figures was not so much a 

design but an accurate description of a figure that was informative enough to allow 

a design to be made of it. Mengoli did not design figures but he made clear that the 

drawings of these figures could be deduced from their own definitions and their 

positions in the triangular table. He made three groups of figures and for each 

group he demonstrated their characteristics in one specific power of algebraic 

expression. So Mengoli considered the description proved for all the figures of the 

table due to the table’s symmetry and the regularity of its rows.   

    In the First Theorem of Elementum Sextum, he demonstrated that in all the 

figures of the lateral of the table Formosa, FO.am (determined by y=xm), the 

ordinates increase and the maximum ordinate is found at the end of the base and 

is equal to it.  

                                                             
59 In a later work, Circolo (1672), in which he wished to calculate the quadrature of circle, he did not make any drawings. 
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   The demonstration is based on its own definition of the ordinates: that is to say, 

for n=2, he established the proportion 1 : y = (1 : x)2. In order to make this 

demonstration, he started from the inequality of the abscissae and from there he 

obtained the inequality of the ordinates, through this same proportion.  

    Mengoli also demonstrated that all the figures in the opposite lateral of the table, 

FO. rn , were determined by ordinates that were always decreasing. 

    As for the figures in the middle of the table, in the Second Theorem he 

demonstrated that in the figures FO. am rn, determined by  y = xm .(1-x)n, the 

ordinates first increase and then decrease, reaching their maximum value in an 

abscissa that divides the base AR in the ratio m : n. The demonstration is made 

with the figure FO. a2r3, where the abscissa B that verifies AB : BR = 2 : 3 has the 

maximum ordinate, A is the end of the abscissae, R is the end of the remainders 

and D is any division of the base AR.  

A---------------D-----B------------------R 

     He proved that the ordinates of the figure increased to this maximum value and 

then decreased to the ordinate of the end of the base. Using modern notation, the 

demonstration can be summed up as follows. We know that u=1, a = x = abscissa, 

r = 1-x = residua, and we will denote by Ord B= the ordinate of the abscissa B= y, 

AR = 1 = base. The following proportions are thus established: 

AR : AB = 1 : x ;  AR : BR = 1 : 1-x; 

AR  : Ord B = 1 : Ord B = (1 : y)  = (1 : x)2 . (1 : (1-x))3 

     Moreover, taking the abscissa D, x1= AD any division of the base smaller than 

x, and using the letter y1 as the ordinate of this abscissa we realise that  

Ord D : AR = Ord D : 1 = (y1 : 1) = (x1 : 1)2. ((1-x1) : 1)3 
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     And operating and composing the two proportions, it follows that 

(Ord D) : (Ord B) = (y1) : (y) = ((x1)2. (1-x1)3) : ((x)2. (1-x)3) 

     Now Mengoli proved that the antecedent - Ord D- is smaller than the 

consequent - Ord B - for any abscissa D, and he was thus able to affirm that the 

ordinate of the abscissa B is maximum60. 

     Let us stress that these descriptions of the design of the figures do not depend 

on the unit of measure that one takes, but on the type of algebraic expression in 

accordance with the position in the triangular table61.  

    According to Bos (2001,3), in the seventeenth century, a figure was "known" or 

"given" when one could construct it starting from given elements.62 So Mengoli had 

to ensure that all the algebraic expressions in the triangular table, which were new 

algebraic objects, could be identified with one geometric figure. He enunciated this 

Proposition Three as a Problem, and demonstrated how to construct the ordinate 

in a proposed algebraic expression of a figure and a given point. Let us show the 

demonstration63: 

 

                                                             
60 For this demonstration he needed to use some results obtained in the Elementum quintum in which he constructed the 
logarithm of a ratio. Through the property of the logarithm that the product of the power of a ratio and its logarithm is equal to 
the logarithm of the ratio raised to this exponent, he obtained a relation between the ratios and their powers in certain 
specific conditions. The proposition that Mengoli used is "Given four quantities, disposed arithmetically, if it is verified that the 
first to the last is as one number to one number, then the first to the second raised to the number homologous to the first will 
be bigger than the third to the fourth raised to the number homologous to the fourth. If it is verified that the second to the third 
is as one number to one number, then the first to the second raised to the number homologous to the second will be smaller 
than the third to the fourth raised to the number homologous to the third." [Mengoli, 1659, 338] Mengoli applied this theorem 
to four quantities [segments], which have the same differences and of which two are in a specific ratio to each other. Mengoli 
named them arithmetical ordinates. So he considered AD, AB, BR, RD and proved that they were arithmetically ordinate 
quantities since  
AB - AD = x - x1 = RD - BR = (1 - x1) - (1 - x) = BD and besides AB : BR = 2 : 3. He could then apply the theorem and set up 
the following inequality (AD : AB)2 = (x1 : x)2< [(1-x) : (1-x1)]

3 = (BR : RD)3. Multiplying the antecedent of the first ratio by the 
consequent of the second ratio and vice versa, Mengoli demonstrated that the ordinate by D is smaller than the ordinate by 
B. For this demonstration Mengoli only used algebraic procedures and the Euclidean theory of proportions. 
61 Mengoli defined the figures like Roberval, Fermat and others throughout the proportion between ordinates and abscissa 
but he could use the same demonstration for any figure of the same type. Information on Roberval may be found in the 
following sources: Auger, 1962,18-21; Walker, 1986, 41-44. 
62 Today the geometrical construction of algebraic expressions of figures presents no difficulty, but in Mengoli’s time the 
geometrical construction was a very important issue. On this subject see Bos, 1981 and  2001. 
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Probl. I. Prop. 3. 

Find the ordinate of a proposed figure, of a given point and a given base64. 

Hypothesis 

That is, given FO. 10 a2r3, over a given base AR, in which a given point B. It is necessary to 

find the ordinate of B65. 

Construction.66 

Given AR, and given AB, BR, the recta BC will be found, to which AR is a ratio composed of 

given ratios AR to AB squared, AR to BR cubed, and of the ratio one tenth: and BC will be 

put perpendicular to AR. I say BC is the ordinate of B, in FO.10 a2r3 67. 

Demonstration 

The ratio AR to BC will be composed of ratios AR to AB squared, AR to BR cubed, and of 

one tenth; but AR is u; AB, is a; BR, is r. So the ratio AR to BC will be composed of ratios "u 

to a", squared, "u to r", cubed, and of one tenth. But u to 10 a2r3 will be composed of these: 

then AR to BC is like u to 10 a2r3. But AR is u, so BC is 10 a2r3: then BC is the ordinate of B, 

in FO. 10 a2r3 68. 

    Note here that Mengoli not only worked with proportions of segments but also 

equated segments with the letters of the triangular table and consequently with the 

algebraic expression of the figures. He equated the product of segments with the 

composition of ratios because he knew exactly how to work with the Euclidean 

theory of proportions. But, unlike Descartes, he did not define an algebra of 

                                                                                                                                                                                          
63 Mengoli here drew one horizontal axis AR and a perpendicular line (not in the middle) with the letter B over the base and 
the letter C at the top of the perpendicular line. 
64 "Formae propositae, in data basi, per datum punctum, ordinatam invenire."[Mengoli, 1659, 377]. 
65 "Esto proposita FO.10ª2r3, super data basi AR, in qua datum punctum B. Oportet per B ordinatam invenire."[Mengoli, 
1659, 377] 
66 Throughout the book Mengoli presented Theorems and Problems. In this case he wrote the word Construction, as Euclid 
did, before the demonstration and explained the construction used in it.  
67 "Data AR, datisque AB, BR, inveniatur recta BC, ad quàm AR, rationem habet compositam ex datis rationibus, AR ad AB 
duplicata, AR ad BR triplicata, & ex ratione subdecupla:& collocetur BC perpendiculariter ad AR. Dico BC, esse ordinatam 
per B, in FO.10 a2r3."[Mengoli, 1659,377] 
68 " Ratio AR ad BC, componitur ex rationibus AR ad AB duplicata, AR ad BR triplicata, & ex subdecupla: sed AR, est u; AB 
est a; BR est r: Ergo AR ad BC ratio, componitur ex rationibus u ad a duplicata, u ad r  triplicata, & ex subdecupla: sed ex 
ijsdem componitur u ad 10 a2r3: ergo AR ad BC est ut u ad 10 a2r3: sed AR est u: ergo BC est 10 a2r3: ergo BC est 
ordinata per B, in FO. 10 a2r3. Quod&c."[Ibid,378]. 
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segments. Rather, he demonstrated, for a given measure, only how to construct 

the ordinate in a given algebraic expression of a figure by using the composition of 

ratios. In this way, he established an isomorphic relation between the new 

algebraic objects and the geometric figure that allowed him to study figures by their 

algebraic expressions.  

  

e) Calculation and demonstration of the value of quadratures 

     Mengoli knew the value of these quadratures through Cavalieri’s indivisibles, 

but he was keen to find another way to demonstrate them. From Viète's symbolic 

language he created new algebraic expressions and furthermore he made an 

innovative development of Viète's algebra through the triangular tables and the 

theory of "quasi proportions". Notice that the Euclidean theory of proportions is 

very important in this Mengoli's work. He considered Euclid's Elements as the book 

of mathematics by excellence and developed new theories, the theory of "quasi 

proportions" and the theory of logarithmic ratios taking as a model the Euclidean 

theory of proportions69.  

     Therefore in order to understand this demonstration of the value of quadratures 

more clearly, let us now consider the basic ideas of this theory of "quasi 

proportions" used in it. He set up this theory on the notion of "ratio quasi a 

number", which he clarified thoroughly.  He considered values up to 10 in the ratio 

O.a to t 2 ; for instance, if t = 3 , then the ratio O.a to t 2  is 3 to 9; if t = 4, then the 

ratio is 6 to 16; if t = 5, then the ratio is 10 to 25; ...if t =10, then the ratio is 45 to 

                                                             
69 The knowledge of algebraic language granted Mengoli to extend the Euclidean theory of proportions in order to create his 
new theories. On the importance in Mengoli's work of the Euclidean theory of proportions see Massa, 2003, 472-474.  
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100. He argued that the ratio takes different values as the value of t increases. 

Moreover, these values are nearer to 1/2 than any other given ratio. So Mengoli 

called it ratio quasi 1/2. The difference between 1/2 and the ratio, which is 

determined when the value of t increases, is thus smaller than the difference 

between 1/2 and any other given ratio. The "limit" of this succession of ratios or of 

this ratio, as far as it is thus determinable, is 1/2, and Mengoli terms this "limit" ratio 

quasi 1/2. The idea of "ratio quasi a number" suggests, though in an imprecise 

way, the modern concept of limit70. 

    This notion, together with the idea of determinable indeterminate ratio explained 

above (see page 16), allowed Mengoli to make the definitions of ratio "quasi 

infinite", "quasi null", "quasi equality" and "quasi a number" in the Elementum 

tertium:  

1.A determinable indeterminate ratio, which, when determined, can be greater than any 

given ratio, as far as is thus determinable, will be called quasi infinite71. 

2.And one that can be smaller than any given ratio, as far as it is thus determinable, will be 

called quasi null.  

3.And one that can be smaller than any given ratio greater than equality, and greater that 

any given ratio smaller than equality, as far as it is thus determinable, will be called quasi 

equality. Or otherwise, that which can be nearer to equality than any given ratio not equal to 

equality, as far as, it is thus determinable, will be called quasi equality.  

4.And one that can be smaller than any ratio larger than a given ratio, and larger than any 

ratio smaller than the same given ratio, as far as is thus determinable, will be called quasi 

equal to this given ratio. Otherwise one that can be nearer to any given ratio than any other 

                                                             
70 In his Circolo  of 1672, Mengoli again uses quasi ratios and explains: "Dissi quasi, e volsi dire, che vadino accostandosi ad 
essere precisamente tali."(Mengoli, 1672, 49). 
71 To clarify the notion of "ratio quasi infinite" Mengoli considered values up to 10 in the ratio O.a to t ; for instance, if t=4, 
then the ratio is 6 to 4;  if t=7 then the ratio is 21 to 7;  if t=10 then the ratio is 45 to 10.  He argued that the ratio takes values 
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ratio not equal to it, as far as it is thus determinable, will be called quasi equal to the same 

(given) ratio. 

5.And the terms of ratios quasi equal between them will be called quasi proportional. 

6.And (the terms) of quasi equality ratios will be called quasi equal72.  

     The sixth and final definition, in light especially of the third definition can be read 

as: "And the terms of ratios that are nearer to equality than any other given ratio 

other than equality, as far as these ratios are determinable, will be called quasi 

equal". In the demonstration of the values of quadratures Mengoli used this 

interpretation of the definition of quasi equality ratio. In fact, he considered a "maior 

inaequalitas" ratio73 and proved that he could find a number that allowed him to set 

up a ratio smaller than the "maior inaequalitas" ratio given.   

   In Elementum tertium Mengoli following these six definitions established ratios 

between all sorts of summations and the number t. (Recall that these are all 

constructed using t and that these summations have t-1 addends with different 

exponents). He calculated what these ratios tend toward when the number is very 

large, obtaining in this way all possible quasi ratios. Specifically, in Theorem 42, 

Mengoli demonstrated that the summation expressed above (Theorem 22, see 

                                                                                                                                                                                          
always greater as the value of t increases, so the ratio is quasi infinite.  For the ratio quasi null he considered values up to 10 
in the ratioO.a to t3 . (Mengoli, 1659, 64-65). 
72 "1.Ratio indeterminata determinabilis, quae in determinari, potest esse maior, quam data, quaelibet, quatenus ita 
determinabilis, dicetur, Quasi infinita.2. Et quae potest esse minor, quàm data quaelibet, quatenus ita determinabilis, dicetur, 
Quasi nulla.3. Et quae potest esse minor, quàm data quaelibet minor inaequalitas; & maior, quàm data quaelibet minor 
inaequalitas, quatenus ita determinabilis, dicetur, Quasi aequalitas. Vel aliter, quae potest esse propior aequalitati, quàm 
data quaelibet non aequalitas, quatenus talis, dicetur, Quasi aequalitas. 4. Et quae potest esse minor, quàm data quaelibet 
non maior, proposita quadam ratione; & maior, quàm data quaelibet minor, propositâ eâdem ratione, quatenus ita 
determinabilis, dicetur, Quasi eadem ratio. Vel aliter, quae potest esse propior cuidam propositae rationi, quàm data 
quaelibet alia non eadem, quatenus talis, dicetur, Quasi eadem.5. Et rationum quasi earundem inter se, termini dicentur, 
Quasi proportionales.6. Et quasi aequalitatum, dicentur, Quasi aequales." (Mengoli, 1659, 97). 
73 The inaequalitas of a ratio denotes a number other than unity, and so ratios minor inaequalitas and maior inaequalitas 
correspond to numbers smaller and larger than unity, respectively. 
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page 15) "tends" to tm+n+1 when the number of addends increases74. This quasi 

ratio is used in the demonstration of value of the quadratures, as we will explain. 

       Let us return now to the procedure of Mengoli’s demonstration of the value of 

quadratures of these geometric figures described above and to the use of 

triangular tables. (See Figure 6). 

  

FO.u 

FO.2a .        FO.2r 

FO.3a2.      FO.6ar.     FO.3r2 

FO.4a3. FO.12a2r.  FO.12ar2.  FO.4r3  

Tabula quadraturarum 

FIGURE 6 

       The table of the quadratures of figures determined by coordinates now 

represented by "y = xm. (1-x)n " has (m + n+ 1) . (m +
n

 n) as coefficients. Notice that 

(m + n) is the order of the row and that this value coincides with the degree of the 

algebraic expression. Mengoli used the technique of multiplying all the elements of 

the table by (m+ n +1) and by the corresponding combinatorial number to perform 

all quadratures of the table at the same time. He knew that the value of these 

quadratures is the inverse of these products. 








 +
++

=−∫
n

nm
nm

xx nm

.)1(

1
)1(.

1

0

 

                                                             
74 On this subject see Massa, 1997, 271-275. 
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     So in the table of quadratures (see figure 6) he put these products as the 

coefficients of the figures which he wanted to square75. Thus, all that remained was 

to prove that the quadratures of these new figures (with these coefficients) were 

the area of the square of side 1 (if t=1). In modern notation, that is to say, 
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       Consider now Mengoli's techniques to prove this value of quadratures. For this 

demonstration Mengoli used the theory of "quasi proportions" explained above. He 

established two quasi equality ratios: the first one, between a new figure (the 

"ascribed" figure) and the figure or form which he wanted to square, and the other 

one, between this "ascribed" figure and the square of side 176. After establishing 

these two quasi equality ratios, Mengoli used a theorem that he had previously 

demonstrated, which showed that given two quasi equality ratios with the same 

antecedents, therefore the consequent of each ratio is also equal.  

     For the first quasi equality ratio he used Archimedes' definitions of inscribed and 

circumscribed figures. The inscribed figure is determined by all the maximum 

rectangles included in the figure and the circumscribed figure, is determined by all 

the minimum rectangles including the figure77. The ascribed figure is determined by 

all the rectangles built over the ordinates of the divisions of the base. So, the 

                                                             
75 Mengoli knew that one factor, the combinatorial number, corresponded to the coefficient of the bynomial developement of 
[x + (1-x)]m+n = [1]m+n  and the other factor could be found through the relation between the summation of powers and the 
degree. For instance if we wish to calculate the quadrature of figure FO. X25 .(1-x) 30 it will be necessary to multiply by 56 and 

by the combinatorial number 







25

55
. 

76 For these demonstrations Mengoli used the definitions of Elementum tertium of quasi equality.  
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ascribed figure is determined by t-1 rectangles when one divides the base in t 

parts. 

33. The figure composed of just as many rectangles, as there are ordinates through the 

points of division and of the adjacent to these ordinates, will be called "ascribed" of the 

form78.  

    Mengoli demonstrated that the circumscribed figure is larger than the ascribed 

one in a rectangular quantity (the area of the rectangle determined by the 

maximum ordinate and one of the equal parts of the base). He also proved that the 

ascribed figure is larger than the inscribed figure, but the difference in size is not 

greater than this rectangular quantity (Proposition 5). Immediately, using the theory 

of quasi proportions (Proposition 6), Mengoli proved that the circumscribed and 

inscribed figures of any of these figures in the table of quadratures are "quasi 

equal". That is to say, he demonstrated that it is possible to find a number of 

divisions of the base in a way that the ratio between the circumscribed and the 

inscribed figures can be nearer to equality than any other given ratio not equal to 

equality79. With this result he was already able to affirm that the ascribed figure, 

determined by rectangles, and the figure or form, determined by ordinates, were 

quasi equal (Proposition 7)80.  

       This demonstration follows Archimedes but uses the quasi ratio's method 

instead of the reduction to the absurd. Another difference is that in Archimedes the 

                                                                                                                                                                                          
77 The circumscribed and inscribed figures were already known and used for instance by Luca Valerio (1604, 13-14), James 
Gregory in Malet (1996, 83) , Fermat, Newton and others. 
78 "33. Figura vero ex tot parallelogrammis, quot sunt ordinatae per puncta divisionum, & ad ipsas ordinatas iacentibus 
composita, dicetur, Adscripta formae." [Mengoli, 1659,.371] 
79 Notice that Mengoli's ascribed, inscribed and circumscribed figures are explicitly determined by a finite number of 
rectangles. 
80 He used the Proposition 67 of Elementum quintum , which established ratios of quasi equality between two magnitudes 
that are situated between two quasi equals. 
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figure between the inscribed and circumscribed figures is used directly, but Mengoli 

used a new figure, determined by a finite number of rectangles, which he named 

the ascribed figure. By this he meant the figure or form extended by its ordinates 

like the figure to which the ascribed figure, determined by rectangles, is 

"approximated" when the number of these rectangles increases. However we 

should not suppose that for Mengoli the rectangles of the ascribed figure became 

the ordinates of the figure, because the figure exists independently of the existence 

of the ascribed figure. Its previous existence is due to the fact that the ascribed 

figure is determined by the rectangles constructed over the ordinates of the 

divisions of the base of the figure.  

     In fact, like Newton in Lemma II of the Principia (Newton, 1972, 73-74), Mengoli 

might have stated that the ratios between the curvilinear, the inscribed and the 

circumscribed figures are ratios of equality. But it is evident that he needed the 

ascribed figure to be able to establish ratios with finite terms. For Mengoli the 

ascribed figure is a tool to clarify the nature of the figure, and furthermore to 

demonstrate the quasi ratio that gives the value of the quadratures. 

     As regards the second quasi equality ratio between the ascribed figure and the 

square of side 1, Mengoli first established a proportion. The proportion is 

established between the ratio of the square of side 1 to the ascribed figure and the 

ratio of one power of t to a summation of powers.  
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    He then applied the theory of quasi proportions to this proportion. That is to say, 

in one side, he made the number of rectangles infinite and on the other side he 

made the number of addends infinite. Since he knew the second ratio is a quasi 

equality ratio by the theory of quasi proportions, then the first ratio between the 

square and the ascribed figure is also a quasi equality ratio. 

      Now we will look at the foundation of this demonstration, which establishes the 

proportion between the ratio of the square of side 1 to the ascribed figure and the 

ratio of a power of "t" to the summation of powers. (See figure 7). 

 

FIGURE 7 

      Mengoli made the demonstration using the specific figure FO. 10 a2r3 from the 

table of "subquadratures" however, as we have explained above, it can be 

generalised for any figure of the table (Proposition 8). He divided the base of the 

square in t parts and on these constructed the ordinates of the figures and the 

square. He also constructed the rectangles of the ascribed figure and of the square 
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of side 1. First, he established a proportion for each rectangle of these figures. For 

each division these rectangles were proportional to the ratio of the ordinates of 

each figure because each rectangle had the same base: 

Rectangle of the square (AQ): rectangle of the ascribed figure (AK) = DQ : DK. 

DQ = ordinate of the square; DK= ordinate of the ascribed figure 

     But the ordinate of the square is equal to the base of the square. He could then 

apply the proportion between the base of the square, that is one, and the ordinate 

of the figure. 

     In the case of the first division the value is 

DQ : DK = (1 : 10) .(1: (1/t))2.(1: (1-1/t))3 = 1 : [10. 12. (t-1)3] / t5 = t5 : 10 . 12. (t-1)3 

Rectangle (square) = AQ; rectangle (ascribed) =AK, then 

AQ : AK = DQ : DK = t5 : 10 . 12. (t-1)3 

AQ : AK = t5 : 10 . 12. (t-1)3 

     In the case of the second division the value is:  

rectangle (square) : rectangle (ascribed)=1 : [10. 22. (t - 2)3] / t5  = t5 :10. 22 (t - 2)3  

DR : DL = t5 :10. 22 (t - 2)3 

and so on. 

     Adding all the rectangles, in the antecedent, t rectangles because is the square 

and in the consequent, t-1 rectangles because is the ascribed figure. On the other 

side, in the antecedent, adding t5, he obtained t6 and in the consequent he obtained 

the algebraic expression of the finite sum81. Notice that the demonstration of this 

                                                             
81 Mengoli then multiplied both consequents by (m + n + 1) and applied the theory of quasi proportions. As the second ratio 
is quasi equality (Theorem 42) then the first ratio, between the square of side 1 to the ascribed figure to one figure of the 
table of the quadratures, is also quasi equality.  
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proportion is based on the identification between the algebraic expression and the 

figure through the proportion between segments and quantities82. 

     Following Malet's interpretation (Malet, 1996, 68-71) we would say that this 

proportion established by Mengoli aimed to give a solid foundation, to a certain 

degree, to Cavalieri's indivisibles method. This proportion can be interpreted as the 

ratio between the finite summation of ordinates and the ratio between figures. He 

then applied the quasi proportions, and thus did not have to establish proportions 

between infinity as Cavalieri did, because he established finite ratios which "tend" 

to other ratios, that is to say, quasi ratios. 

      One of the weak points of this demonstration is the step from a ratio of quasi 

equality between summation of powers and powers (numbers) to a ratio between 

figures. But Mengoli had based the theory of quasi proportions on the Euclidean 

theory of proportions, so for him it was valid for any magnitude, figure or number. 

     Let me emphasise that this demonstration does not depend on the degree and 

can be used in all cases where the quasi ratio of the summation of powers is 

known.  

 

 

 

 

                                                             
82 It is obvious that Mengoli, like Roberval and Wallis, knew the result of the demonstration. But these authors made the 
summations of powers and proved their value in some cases. From these results they obtained the general rule and then 
applied it directly, making limits of ratios between sums of ordinates and areas of the figures. Mengoli, on the other hand, 
constructed the theory of quasi proportions to make the limits, and moreover to demonstrate the value of the area he did not 
apply them directly to the figures but made an intermediate step and used the ascribed figure. Mengoli could have used 
infinitesimals, as did Roberval, Wallis and others, but he seemed to find them difficult to use, and resorted to the ascribed 
figure and to Archimedes’ method of exhaustion to base his demonstration of quadratures. 
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CONCLUDING REMARKS 

     Mengoli, like Viète, considered his algebra as a technique of symbols 

concerning abstract magnitudes. He dealt with species, forms, triangular tables, 

quasi ratios and logarithmic ratios. But the most innovative aspect of Mengoli's 

work is his use of letters to enable him to work directly with the algebraic 

expression of the figure. On the one hand, he expressed figures by an algebraic 

expression, in which the ordinate is related to the abscissa through proportional 

means, thus establishing the Euclidean theory of proportions as a link between 

algebra and geometry. On the other hand, he explained the geometrical 

construction of the algebraic expressions of these figures. This allowed him to 

study figures via their algebraic expressions and by constructing the tables of the 

expressions he was able to calculate countless areas of these figures at the same 

time.  

    The triangular table of quadratures that Mengoli constructed in Elementum 

sextum could be extended as far as he desired. He already knew the value of the 

quadratures and looked for a rule that allowed him to associate any figure to an 

algebraic expression. Putting them in the table, with the appropriate coefficients, 

the characteristics and the quadratures of these figures remained determined. He 

classified the figures in three types and studied the properties of each group, again 

using the theory of proportions. Besides, when he demonstrated the value of 

quadratures, the proof is independent of the graphic representation of the figure 

and can be used in all cases where the quasi ratio of the summation of powers is 

known.  
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     At this point we may wonder whether Mengoli knew Descartes’ Géométrie. We 

do not believe that he did: in terms of both the aims and the procedures the 

differences between the two are substantial. Mengoli introduced algebra into 

geometry to solve problems of quadratures; Descartes wanted to solve and classify 

many of geometrical problems and he used algebra as a tool. Mengoli did not 

make an algebra of segments, as Descartes did; that is to say, he did not make a 

geometrical interpretation of each of the algebraic operations that he defined. 

Furthermore, when he demonstrated the equality (a + b)2 = a2 + 2ab + b2 he 

constructed the proof by using the properties of the proportions. His introduction of 

algebra into geometry bore more similarities with Viète's procedures. Viète also 

used the theory of proportions as a link, but he made diagrams without establishing 

coordinates system and he verified the constructions of the solutions of second 

degree's equations without establishing any connection between the ordinates and 

the abscissae. When the relation between the ordinates and abscissae in a 

geometric figure is mentioned, we immediately think of Fermat and his Introduction 

to plane and solid loci of early 1636. But although Mengoli may have drawn his 

inspiration from this work by Fermat, he only established this relation in specifically 

geometric figures such as y = k. xm .(t-x)n; he did not claim to have found a general 

principle, as Fermat did in his Isagoge (Fermat, 1891-1922, Book 1 91). Mengoli 

did not deal with solid problems, nor with problems of geometric locus, as Fermat 

did; what is more, his algebraic method cannot be applied to solve these other 

geometric problems.            

      Although Mengoli's contributions were a step forward in the process of 

algebraization of mathematics, his principal aim was not to demonstrate the 
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equivalence of algebraic expressions and figures and their classification, but rather 

to provide a new method for solving problems of quadratures in an algebraic way. 

One should not forget that Mengoli wished to square the circle by interpolating 

these tables of quadratures. This procedure appeared in his later publication 

Circolo (1672) in which he calculated quadratures of figures determined by 

coordinates today represented by yp = k . xm .(1-x)n. Any attempt to calculate these 

quadratures geometrically would have to be done case by case. 

      This study of Mengoli's work reveals that the basis of his new method of 

quadratures was not the method of indivisibles of his master Cavalieri, but the 

triangular tables and the theory of quasi proportions, as a development of Viète's 

algebra. In this way he created a numerical theory of summations of powers and 

products of powers and limits of these summations, which was unrelated to 

Cavalieri’s Omnes lineae. It is not clear why Mengoli did not follow his master's 

path; perhaps it was because Cavalieri’s method had received a great deal of 

criticism, something that Mengoli could not ignore. After showing that he knew the 

method of indivisibles and could apply it, Mengoli claimed that his purpose was to 

give solid foundations to a new method of calculating quadratures. To this end he 

constructed the triangular tables of figures and applied the theory of quasi 

proportions. Unlike Cavalieri, he never compared two figures through the 

comparison of lines, nor did he superimpose figures; rather, he established quasi 

ratios between figures. But what does it mean to say that a figure is quasi equal to 

another? Mengoli defined the ascribed, inscribed and circumscribed figures 

determined by rectangles built on the divisions of the base. He worked at all times 

with a finite number of divisions. He demonstrated that when the number of 
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divisions increases it is possible to find a number of divisions that become the ratio 

between the circumscribed and inscribed figures nearer to equality than any given 

ratio not equal to equality. He also demonstrated that when the number of divisions 

increases the ascribed figure is quasi equal to the figure determined by the 

ordinates; that is to say, a figure determined by rectangles approximates to a 

mixed-line figure when the number of rectangles becomes infinite. To an extent, 

this first quasi equality recalls Archimedes ' method. 

      Mengoli also established a second quasi equality using algebraic procedures. 

He established a proportion in which the first ratio is between a summation of 

powers and a power and the other between the square and the ascribed figure. 

The step from the figure to an algebraic expression is essential in his 

demonstration. The Euclidean theory of proportions, once more, is the link to find 

this relationship and to allow him to operate with segments and to establish ratios 

and quasi ratios to demonstrate the value of quadratures of these figures.  

    The use of the two quasi equalities that Mengoli established (the ascribed figure 

and the square as well as the ascribed figure and the figure) allows us to 

understand better his words when he states that his geometry is a "perfect 

conjunction " of the geometry of indivisibles, the geometry of Archimedes and the 

algebra of Viète's. That is to say, the collaboration of algebra in its own geometry is 

an essential element in his method of quadratures. 

      For all these reasons we can conclude that in Mengoli's work the 

characteristics of algebraic and geometric thought by no means conflict: rather they 

complement each other, allowing him to obtain better results and to attain his 

goals. Furthermore Mengoli used an original development of Viète's symbolic 
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language through triangular tables, quasi proportions in dealing with geometric 

figures and determining their quadratures. 
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