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Abstract

A continuous-discontinuous model

to introduce fluid pressure in a crack

Montserrat Casado-Antoĺın

In recent years, combined continuous-discontinuous models are starting to be used to sim-

ulate failure processes of quasi-brittle materials –concrete or rocks, for instance. Merging

the strong points of both the continuous and discontinuous model, allows a better char-

acterisation of the whole failure process.

The goal of this thesis is to present a new contribution on this direction. The main

concern of this work is to introduce a fluid pressure in the crack that will cause crack

opening. This contribution is focused on the discontinuous part of the problem, once the

macroscopic crack is generated.

First, the eXtended Finite Element Method (X-FEM) is used to introduce a discontinu-

ity in the displacement field. To this end, nodal enrichment of the cracked elements is

discussed. Then, the pressure term p is analysed. Its contribution only appears in the

discontinuous part of the displacement field, that is the components corresponding to the

enriched degrees of freedom.

Once the technique is elaborated, it is applied to an elastic bulk with different cracks. An

appropriate treatment of the nodal enrichment and the computation of nodal forces, pro-

vide consistent results of crack opening and bulk deformation. Furthermore, propagation

of the crack, element-by-element, is developed in the elastic bulk, obtaining progressive

crack opening.

Finally, the proposed technique is applied to a damageable bulk with different cracks.

In order to overcome pathological mesh-sensitivity, regularisation techniques must be

applied. The appropriate boundary conditions for the regularisation problem and the

damage model are discussed. Finally, several examples show the damage field caused by

the pressure.

iii



iv



Graphical abstract

A continuous-discontinuous model to introduce fluid pressure in a crack

Montserrat Casado-Antolín

X-FEM:  discontinuous displacement field

Propagation

Hydraulic fracture

DAMAGEABLE BULK  

ELASTIC BULK

v



vi



Acknowledgements

First of all, I would like to thank my advisor, Antonio Rodŕıguez, for his guidance all
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Chapter 1

Introduction

1.1 Motivation

In engineering there is a wide range of occasions where dealing with material failure is

an essential task. Typically, quasi-brittle materials –concrete or rocks, for instance– are

studied with one of these two approaches: (a) damage mechanics, where a continuous

model is used to analyse the first stages of the failure process, like damage inception and

propagation; or (b) fracture mechanics, where a discontinuous model is used to study the

last stages of the failure process, treating cracks and material separation, see Sukumar

et al. (2015).

Even though continuous models may be accurate enough to model discontinuities, in some

specific cases, the explicit representation of the crack is of interest. Then a discontinuous

approach may be recommended. Furthermore, this approach can provide a useful tech-

nique to study the interaction between the material and a fluid flowing inside a crack. To

this end, the discontinuous approach can be used to model the introduction of pressure

generated by the fluid.

One of the fields where this technique could be applied is in hydraulic fracturing, see

Figure 1.1. This activity involves the injection of a liquid at high pressure with the

objective of breaking rocks to obtain oil or gas. The response of the fractured rock and

the crack path generated can be modelled with this strategy.

1



2 Introduction

Figure 1.1: Hydraulic fracturing is one of the fields where the proposed model can be

applied.

Another possible application is the study of the ground behaviour of roads in poor condi-

tion, see Figure 1.2. Water can easily flow inside pre-existing cracks, generating pressure

when it freezes in winter. The proposed technique allows to more clearly simulate pave-

ment degradation.

Figure 1.2: Filtrated water freezes and generates pressure in the crack.

One final example of possible applications is carbon sequestration, see Figure 1.3. This

activity consists on storing carbon dioxide in underground cavities, preventing it from

being emitted to the atmosphere, Herzog (2009). Existing cracks can be analysed in

order to guarantee a safe storage of the captured carbon dioxide.

A continuous-discontinuous model proposed by Tamayo-Mas (2013) has been proved to

be suitable for dealing with failure of quasi-brittle materials. This thesis presents a new

contribution to the work cited, introducing the effect of a fluid pressure, once the crack

discontinuity is generated.
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Figure 1.3: Carbon sequestration injects carbon dioxide underground.

1.2 State of the art

Dealing with failure of quasi-brittle materials –such as concrete or rocks– is typically

treated following two approaches: damage mechanics and fracture mechanics, correspond-

ing to continuous and discontinuous models, respectively. Regarding the modelling of a

crack, continuous models work with a smeared representation of the crack, understood

as an area with high strain concentration. Discontinuous models, instead, deal with an

explicit representation, provided by the displacement jump.

In this section, both continuous and discontinuous models are discussed. The main diffi-

culties and the techniques arisen to solve them are outlined.

1.2.1 Continuous models

Continuous models tackle the failure phenomena from the point of view of damage

mechanics. These approaches consider a continuously differentiable displacement field.

Hence, a continuous strain field is derived. Then, fracture is described as a process of

strain localisation and damage growth, and cracks are represented by continuum regions

that have lost their local load-carrying capacity.

The constitutive laws required for the description of quasi-brittle materials must present

strain softening. This means that the stress-strain law is nearly linear up to the peak
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stress and decreases after reaching it. Classical continuum theories use local models, that

is that the stress at a point only depends on the strain history at that point. When they

are used, results exhibit a pathological mesh-dependence, leading to unrealistic results.

In order to overcome this sensitivity to discretisation parameters –such as mesh size–

several solutions have been proposed in the literature, Rabczuk (2013).

Crack-band approach

The crack-band model, presented by Bažant and Oh (1983), consists of adjusting the

post-peak slope of the stress-strain curve by means of the element size. Nevertheless,

as discussed by Jirásek and Bauer (2012), the criterion for estimating the width of the

crack band is not straightforward. In fact, it depends on several parameters such as the

element type, the element shape and the direction of the crack band with respect to the

mesh edges.

Regularised formulations

These models prevent strain localisation into an arbitrarily small volume by means of an

additional material parameter: the characteristic length `. However, this internal length

parameter cannot be directly measured and it may be only inferred by inverse analysis of

test results. These models include non-local integral and gradient-enriched formulations.

In integral-type models, an internal variable Y is replaced by its non-local counterpart Ỹ ,

computed by weighted averaging of Y . For a detailed overview of non-local formulations

that provide an appropriate description of the complete failure process, see Bažant and

Jirásek (2002).

Gradient-type non-local models, see de Borst et al. (1995) and Peerlings et al. (1998), set a

differential –rather than integral– relation between local and non-local variables. Indeed,

a partial differential equation (PDE) relating the local and non-local variables is added

to the system. Tamayo-Mas (2013) discusses the choice of the appropriate boundary

conditions that the PDE requires.

In this dissertation, a gradient-enriched formulation is used to regularise softening. How-

ever, the non-locality is introduced at the level of displacements, as presented by Rodŕıguez-

Ferran et al. (2005).
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1.2.2 Discontinuous models

Discontinuous models deal with the failure process from the point of view of fracture

mechanics. These approaches consider a discontinuous displacement field. Hence, the

strain field has, on the one hand, a regular part computed by standard differentiation of

the displacement field, and on the other hand, a singular part considering the contributions

of the displacement jump. This allows the crack to be represented explicitly.

Several approaches to handle displacement discontinuities have been proposed in the lit-

erature and provide a reliable simulation of failure processes, see (Simo et al. (1993),

Simo and Oliver (1994) and Armero and Garikipati (1996)). Despite that, standard fi-

nite element approximations cannot capture strong discontinuities. Some computational

methods are outlined in this section, for a detailed review, see Jirásek and Bauer (2012)

and Rabczuk (2013).

Remeshing

In remeshing methods, the standard finite element method (FEM) is used. However, the

element edges –in 2D– must be aligned with the crack and the nodes located on these

edges must be doubled. Due to this, the finite element mesh must be reconstructed each

time the crack propagates.

Embedded discontinuities

As presented by Ortiz et al. (1987) and Belytschko et al. (1988), displacement jumps

are captured by enriching the approximation of the displacement field with additional

parameters. The need of remeshing when propagation occurs is avoided and reduced

changes in finite element codes are required since the enrichment is elemental.

eXtended Finite Element Method (X-FEM)

X-FEM is widely used to simulate the presence of crack in a finite element framework. It is

based on the partition of unity concept, which is considered to decompose the displacement

field into a continuous and a discontinuous part. That is, the standard finite element

(FE) interpolation of the displacement field is enriched with discontinuous functions. The

enrichment employed in this technique is nodal.

Approaches of a different nature exist as well. Meshless methods, Belytschko et al. (1996)

and Nguyen et al. (2008), efficiently model evolving discontinuities because of the absence
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of a mesh. In phase-field methods, cracks are assumed to propagate along the minimum

energy path, see Bourdin et al. (2000) and Francfort and Marigo (1998).

In this thesis, X-FEM is the technique used to introduce the crack discontinuity.

1.2.3 Continuous-discontinuous models

Continuous models are suitable to describe the early stages of the failure process, be-

tween the undamaged state and macroscopic crack initiation. Once the crack is intro-

duced, discontinuous models are appropriate to simulate the last stages, incorporating

into the model discontinuous displacement fields. Then, a combination of both approaches

has arisen to achieve a better description of the entire failure process: the continuous-

discontinuous models (see for instance Mazars and Pijaudier-Cabot (1996), Jirásek and

Zimmermann (2001), Wells et al. (2002), Simone et al. (2003) and Comi et al. (2007)).

The continuous-discontinuous technique can be summarised in several stages:

1. Continuous regime. For the first stages of the failure process, non-local continu-

ous models are used. This permits to study damage inception and propagation.

2. Transition. Once the switching criterion is fulfilled, a discontinuity is introduced.

In order to develop an appropriate transition, some issues must be examined:

• Switching criterion. The transition from a continuous to a discontinuous

model is carried out when the damage field reaches a critical value Dcrit. This

critical value determines whether traction-free cracks are introduced (the ma-

terial is fully degraded) or cohesive cracks are inserted (otherwise).

• Crack path definition. The crack path cannot be analytically derived be-

cause linear elastic fracture mechanics cannot be employed in a regularised

bulk. Generally, it is assumed to be known before-hand.

• Energy consistency. When switching from the continuous model to the

discontinuous, the energy not yet dissipated by the bulk has to be transferred

to the cohesive crack. The computation of this energy is not straightforward

and the extension to a multidimensional setting needs further improvements.
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3. Discontinuous regime. The final stages of the failure process are modelled: ex-

plicit macroscopic cracks and material separation.

1.3 Goals and layout of this thesis

The objective of this thesis is to develop a finite element approach to introduce fluid

pressure in a crack. To this end, three goals have been conceived:

1. To propose a technique to consider the action of fluid pressure in a pre-

existing crack. X-FEM has been proved to be efficient when treating with strong

discontinuities, see Belytschko and Black (1999) and Moës et al. (1999). In Chapter

2, the enrichment of the continuous displacement field with this technique in order

to introduce displacement jumps is discussed. Furthermore, special emphasis is

focused on the contribution of the pressure term p in the FE approach and on the

computation of nodal forces in a cracked element.

2. To apply the proposed technique to a crack in an elastic bulk. In Chapter

3, a continuous elastic model is used to simulate the response of the material. The

behaviour of different cracks –considered to be known a priori– in a bulk is analysed.

At the end of the chapter, crack propagation caused by fluid pressure is studied.

3. To apply the proposed technique to a crack in a damageable bulk. In

Chapter 4, a continuous damage model is used to simulate the crack behaviour.

In this chapter, the problem of pathological mesh dependence must be solved by

means of regularised formulation, as discussed by Tamayo-Mas (2013). The Mazars

damage model, Mazars (1986), is used to analyse the behaviour of a pre-existing

crack in the damageable bulk.
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Chapter 2

Introduction of pressure in a crack

The aim of this chapter is to present a technique to introduce pressure in a pre-existing

crack using discontinuous displacement fields.

The eXtended Finite Element Method (X-FEM) is employed to reproduce the crack. The

discontinuity is inserted by means of a decomposition of the displacement field into a

continuous part and a discontinuous part. Hence, the obtained displacement field is

u(x) = u1(x) + ψ(x)u2(x) (2.1)

where u1 and u2 are continuous functions and ψ is the sign function centred at the

discontinuity and defined as

ψ(x) =

{
−1 if x ∈ Ω−

1 if x ∈ Ω+
(2.2)

An interesting feature of X-FEM is that nodes along the crack are not needed to introduce

pressure in the crack. In further sections, this technique is implemented in order to

illustrate it.

2.1 One-dimensional particularisation: uniaxial ten-

sion test

In this section, a one-dimensional particularisation of the continuous-discontinuous model

is described. Particularly, a uniaxial tension test on a bar with a discontinuity in the

9



10 Introduction of pressure in a crack

centre is analysed, see Figure 2.1.

Figure 2.1: Problem statement of the uniaxial tension test.

Governing equations and variational formulation

The equilibrium equation of the problem and its boundary conditions can be summarised

as 
σ′(x) = 0 x ∈ (0, L)

u(0) = 0

u(L) = 0

σ(x = L/2) = −p

(2.3)

where σ is the stress, u is the discontinuous displacement field and p is the pressure

introduced in the crack. The displacement field described in Eq. (2.1) can be now defined

as u(x) = u1(x) + ψ(x)u2(x), where

ψ(x) =

{
−1 if 0 < x < L

2

1 if L
2
< x < L

(2.4)

It is interesting to remark that there are infinite decompositions of the same displacement

field u(x) into u1(x) and u2(x). Thus, Dirichlet boundary conditions can be defined as

u1(0) = 0 u2(0) = 0

u1(L) = 0 u2(L) = 0
(2.5)

The space of admissible displacement variations is decomposed as well by ω(x) = ω1(x) +

ψ(x)ω2(x), with Dirichlet boundary conditions ω1(0) = ω1(L) = ω2(0) = ω2(L) = 0 and

ψ the sign function defined by Eq. (2.4).

Following the weighted residual method and taking into account the decomposition of

the test function w(x), the equilibrium equation is cast in a weak form. Then, following

standard procedures, see Appendix A.1 for details, the two variational statements obtained

read ∫ L

0

(ω1)′σ dx = 0 (2.6a)
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∫ L

0

ψ(x)(ω2)′σ dx = 2ω2(L/2)p (2.6b)

Since a local elastic model is considered, σ is a function that depends on the strain, ε,

where

ε(x) = u′(x) ⇒ σ(x) = Eε(x) = Eu′(x) (2.7)

and E is the Young’s modulus.

According to the displacement field decomposition in Eq. (2.1) and the sign function in

Eq. (2.4), the stress σ can be defined as

σ(x) =

{
E(u1′ − u2′) if 0 < x < L

2

E(u1′ + u2′) if L
2
< x < L

(2.8)

Finite element discretisation

In order to carry out the calculation, a three-finite element mesh is used. The bar is

discretised as described in Figure 2.2.

Figure 2.2: Problem discretisation for the uniaxial tension test.

Finite element discretisation of the weak form in Eq. (2.6), see Appendix A.2 for details,

leads to the discrete weak forms∫ L

0

(ω1)′σdx = 0 ⇒ Ka,a a + Ka,b b = 0 (2.9a)

∫ L

0

ψ(ω2)′σdx = 2ω2(L/2)p ⇒ Kb,a a + Kb,b b = f (2.9b)

where

Ka,a = Kb,b := E

∫ L

0

N
′T

N
′
dx (2.10a)

Ka,b = Kb,a := E

∫ L

0

ψN
′T

N
′
dx (2.10b)
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N
′

is the matrix of shape functions and a and b are the vectors of nodal displacements

associated to u1 and u2 respectively.

It can be observed that the pressure p only appears in the weak form corresponding to

the discontinuous test functions, see Eq. (2.9b). This is the expected behaviour because

the crack pressure has zero virtual work for continuous virtual displacements.

The stiffness matrix K can be now assembled as

K =

[
Ka,a Ka,b

Kb,a Kb,b

]
(2.11)

and the nodal force vector f reads

f = 2pNi(L/2) =
(

0 p p 0
)T

(2.12)

Note that only nodes belonging to elements with a discontinuity present the pressure p,

that is b2 and b3. Indeed, enrichment is only applied to nodes in elements with disconti-

nuity.

The global system of equations Kx = f reads

E

h


2 −1 −1 0

−1 2 0 1

−1 0 2 −1

0 1 −1 2



a2

a3

b2

b3

 = p


0

0

1

1

 (2.13)

after setting a1 = 0, a4 = 0, as boundary conditions state; b1 = 0, b4 = 0, since only nodes

in elements with a discontinuity are enriched; and h the element size, h = L/3.

The solution is

x =
(
a2 a3 b2 b3

)T
=

p

E

(
1
2
h −1

2
h 3

2
h 3

2
h
)T

(2.14)

It is noted that the displacements obtained are proportional to the mesh size h and a

strain defined as p/E.

Considering the displacement decomposition in Eq. (2.1) and the sign function definition

in Eq. (2.4), the nodal displacements in the bar are computed and read

u2 = a2 − b2 = −h p
E

(2.15a)

u3 = a3 + b3 = h
p

E
(2.15b)
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It can be derived from these results that the crack opens following the expected symmetry.

It is interesting to determine the crack opening [|u|] in the discontinuity, computing the

displacement in the middle section by nodal interpolation:

u(L−/2) =
a2 + a3

2
− b2 + b3

2
=
−3

2
h
p

E
(2.16a)

u(L+/2) =
a2 + a3

2
+
b2 + b3

2
=

3

2
h
p

E
(2.16b)

and

[|u|] = u(L+/2)− u(L−/2) = 3h
p

E
= L

p

E
(2.17)

Note that the crack opening can be computed as well as

[|u|] = b2 + b3 =
3

2
h+

3

2
h = 3h

p

E
= L

p

E
(2.18)

This definition corresponds with the fact that only enriched nodes bi are used to introduce

discontinuities, whereas ai nodes control continuity. In Figure 2.3 the crack opening

computed above can be observed. Note that the jump is indeed 3h p
E

= L p
E

.

Figure 2.3: Displacement field and crack opening.

2.2 Two-dimensional extension

An extension of the technique to a two-dimensional problem is introduced in this section.

In this case, a square element with a vertical crack in the centre is considered, see Figure
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2.4.

Figure 2.4: 2D element with vertical crack.

Stiffness matrix and rigid modes

An issue of importance in this analysis are the rigid modes of the element. With the

purpose of verifying them, the eigenvalues of the cracked element must be computed. To

carry this out, the stiffness matrix is needed, see Eq. (2.19) and (2.20),

K =

[
Ka,a Ka,b

Kb,a Kb,b

]
(2.19)

where

Ka,a = Kb,b :=

∫
Ω

BTDB dΩ (2.20a)

Ka,b = Kb,a :=

∫
Ω

ψBTDB dΩ (2.20b)

=

∫
Ω−
ψBTDB dΩ +

∫
Ω+

ψBTDB dΩ

with B the matrix of shape functions derivatives and D the elastic constitutive matrix.

The function eig in Matlab computes the eigenvalues of matrix K. The eigenvalue λ = 0

has a multiplicity of six. This means that the cracked element exhibits six rigid modes,

corresponding to a horizontal translation, a vertical translation and an infinitesimal rota-

tion for each part, Ω− and Ω+, as depicted in Figure 2.5. Therefore, the crack effectively

cuts the element into two fully independent halves.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Six rigid modes of a quadrilateral cracked element. (a) and (b) are horizontal

translations, (c) and (d) vertical translations and (e) and (f) infinitesimal rotations.

Nodal forces

The computation of the nodal force vector f is now discussed. As mentioned previously,

it is not required to have nodes on the crack line. The nodal forces caused by pressure

are obtained by calculating line integrals along the crack line.

Following standard procedures, the variational formulation of the problem and its discrete

weak form can be determined. Hence, the expression of the nodal force vector can be

derived as

2

∫
ΓD

pv2n dΓ = 2p
∑
j

v2
j ·
∫

ΓD

Nj(x) · n dΓ =
∑
j

v2
j · f

p
j (2.21)



16 Introduction of pressure in a crack

Figure 2.6: Notations for an element with a crack.

Therefore, nodal forces are computed by

f = 2p Ij · n, (2.22)

with line integrals defined as

Ij =

∫
Γd

Nj dΓ (2.23)

where p is the pressure introduced, Γd the boundary of the crack, n the unit normal to

Γd, see Figure 2.6, and Nj the two-dimensional shape functions defined as

Nj(x, y) =
1

4
(1± x)(1± y) j = 1, 2, 3, 4 (2.24)

It can be easily proved that
4∑
j

Nj(x, y) = 1 (2.25)

From Eq. (2.25) a property regarding the length of the crack can be derived, see Eq. (2.26).

Thus, it can be used to validate the computation of line integrals.

4∑
j

Ij(x, y) = L (2.26)

where L is the length of the crack.
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Crack opening

The crack opening of a square element with all nodes blocked is now computed, see Fig.

2.7.

Figure 2.7: Problem statement of a square element with a centred discontinuity.

The boundary conditions are prescribed using Lagrange multipliers:

[
K AT

A 0

][
u

λλλ

]
=

[
f

b

]
(2.27)

where K is the stiffness matrix defined in Eq. (2.19), A is the matrix of constraints, u

the displacements field, λλλ the vector of Lagrange multipliers, f the nodal force vector and

b the right-hand side (RHS) vector.

In order to introduce the boundary conditions, matrix A and the RHS vector b must be

defined. Since all nodes are blocked it can be stated that


u1 = a1 − b1 = 0

u2 = a2 + b2 = 0

u3 = a3 + b3 = 0

u4 = a4 − b4 = 0

(2.28)

For the sake of simplicity, matrix A is decomposed in matrices Aa and Ab for the nodal

displacements corresponding to vectors a and b, respectively. Therefore,
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Aa =


I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

 (2.29a)

Ab =


−I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 −I

 (2.29b)

b = 0T (2.29c)

where I is the identity matrix of size n = 2.

As discussed in section 2.1, the vector of nodal forces has zero values in components

corresponding to nodal displacements a and the contribution of the pressure p in the

enriched local displacements b. Hence, the nodal force vector can be defined as

f = [ 0 fp ]T (2.30)

The results obtained solving the system of equations in (2.27) read:

a =
p

E

(
1 0 −1 0 −1 0 1 0

)T
(2.31a)

b =
p

E

(
1 0 1 0 1 0 1 0

)T
(2.31b)

Indeed, considering the displacement field decomposition in Eq. (2.1) and the sign func-

tion in Eq. (2.2), it can be observed that the displacements in the blocked nodes are

zero. Moreover, the vector of Lagrange multipliers λλλ has non-zero values in the x direc-

tion, which is the expected result since the constriction of blocking the nodes has to be

compensated by reaction forces.

Finally, the crack opening is computed taking into account the definition in Eq. (2.17) or

(2.18). It is constant along the crack line and has a value of 2p/E, see Figure 2.8.

[|ux,A|] = b1 + b2 = 2
p

E
(2.32a)

[|ux,B|] = b4 + b3 = 2
p

E
(2.32b)
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Figure 2.8: Crack opening.
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Chapter 3

Discontinuous model of failure for an

elastic bulk

3.1 Crack opening in an elastic bulk

Considering the results obtained in Chapter 2 and the technique used to introduce pressure

in a pre-existing crack, this section aims to study the crack opening in an elastic bulk.

Hence, the Cauchy stress tensor is defined as

σσσ(x) = C : εεε(x) = C : ∇su(x) (3.1)

where C is the tensor of elastic moduli, εεε the small strain tensor and ∇s the symmetrised

gradient.

A two-finite element mesh is used assembling elemental stiffness matrices Ke defined in

Eq. (2.19) and obtaining the nodal force vector f via the computation of line integrals,

Eq. (2.22). Several boundary conditions are tested in order to analyse the crack behaviour.

Note that as all the elements have a discontinuity, all nodes must be enriched, see Figure

3.1.

All nodes blocked

In the first place, all nodes are blocked, see Figure 3.2(a). Thus, the boundary conditions

are prescribed as

ui = ai + ψbi = 0 i = 1, ..., 6 (3.2)

21
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Figure 3.1: Two-finite element mesh with centred crack.

where ψ is the sign function defined in (2.2).

Using the Lagrange multipliers method to prescribe these boundary conditions and con-

sidering the displacement decomposition in Eq. (2.1), the crack opening is computed. As

expected, a uniform crack opening can be observed along the crack line in Figure 3.2(b).

Corner nodes blocked

A second computation is carried out. In this case, the central nodes, 3 and 4, are not

blocked, see Figure 3.3(a). Therefore, only the displacement in nodes 1, 2, 5, 6 must be

equal to zero:

ui = ai + ψbi = 0 i = 1, 2, 5, 6 (3.3)

The results are shown in Figure 3.3(b). The crack opening is bigger in this case, where

less nodes are blocked. Moreover, it is wider in nodes 3 and 4, where no resistance is

applied. It can be observed as well that nodes 3 and 4 move according to the direction of

the pressure applied:

u3 = a3 − b3 = (−0.3− 9.0, 0)
p

E
= (−9.3, 0)

p

E
(3.4a)

u4 = a4 + b4 = (0.3 + 9.0, 0)
p

E
= (9.3, 0)

p

E
(3.4b)

Prescribed displacement

Finally, an inward displacement is prescribed in the central nodes, see Figure 3.4(a).
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(a) (b)

Figure 3.2: All nodes blocked in elastic bulk. (a) Problem statement. (b) Displacement

field and crack opening.

Therefore, the RHS vector will have non-zero values in the components corresponding to

nodes 3 and 4. To sum up, the boundary conditions can be defined as

u1 = a1 − b1 = 0 (3.5a)

u2 = a2 + b2 = 0 (3.5b)

u3 = a3 − b3 = u∗ (3.5c)

u4 = a4 + b4 = −u∗ (3.5d)

u5 = a5 − b5 = 0 (3.5e)

u6 = a6 + b6 = 0 (3.5f)

In order to carry out a numerical computation, a value of 0.5p/E is given to the prescribed

displacement u∗. The results can be observed in Figure 3.4(b), where the crack opening

is narrower in the central nodes than in the extreme ones, due to u∗.
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(a) (b)

Figure 3.3: Corner nodes blocked in elastic bulk. (a) Problem statement. (b) Displace-

ment field and crack opening.

3.2 Behaviour of a crack in a finite element mesh

Up to now, meshes with only two finite elements have been used. This is useful to illustrate

the assembly of elements taking into account the enrichment of the displacement field

or the computation of nodal forces corresponding to the pressure applied in the crack.

Nevertheless, in numerical problems larger meshes are required.

It is convenient to introduce now the three different types of element taking part in the

generation of a finite element mesh containing a crack:

• Standard element. Element that is not crossed by any discontinuity and none of

its nodes is enriched.

• Cracked element. Element that is crossed by a discontinuity and has all or some

of its nodes enriched. If the edge of the cracked element contains the crack tip, the

nodes belonging to this edge are not enriched. This enrichment criterion is depicted

in Figure 3.5.

• Blending element. Element that is not crossed by a discontinuity but has some
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(a) (b)

Figure 3.4: Prescribed displacement in elastic bulk. (a) Problem statement. (b) Displace-

ment field and crack opening.

Figure 3.5: Nodal enrichment of a cracked element.

of its nodes enriched– the nodes shared with a cracked element.

These definitions are depicted in Figure 3.6.

Once the treatment of each element is clarified, four examples are shown in order to study

the behaviour of a crack in an elastic bulk using a larger mesh. That is an outer crack,

an inner crack, two horizontal inner cracks and three inner cracks with different slopes,

respectively.

Outer crack

A first test with an outer crack is carried out. In this case, there is only one crack tip. The



26 Discontinuous model of failure for an elastic bulk

Figure 3.6: Finite element mesh where the different types of element are defined. In blue,

standard elements; in orange, cracked elements; in green, blending elements. Enriched

nodes are circled.

discontinuity, the nodal enrichment and the mechanical boundary conditions are depicted

in Figure 3.7. Square finite elements are used.

Figure 3.7: Outer crack: problem statement.

Obtaining the nodal force vector f by the computation of line integrals along the crack

and using the Lagrange multipliers method to apply the boundary conditions, the nodal

displacements are obtained. As expected, the crack opens and the two separated parts of

the bulk bend, see Figure 3.8(b). The crack opening is computed by nodal interpolation,

as in Eq. (2.18).

Inner crack

A second test is carried out with a crack originated inside the elastic bulk. In this case,

two crack tips appear. The discontinuity, the nodal enrichment and the mechanical boun-

dary conditions are depicted in Figure 3.9.

Following the same procedure as in the outer crack example, the nodal displacements and
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(a) (b)

Figure 3.8: Outer crack: in (a) original mesh, in (b) deformed mesh and crack opening.

Figure 3.9: Inner crack: problem statement.

the crack opening are computed. The results in Figure 3.10(b) exhibit the expected sym-

metry and the awaited strain. In addition, it can be observed that the jump displacement

in the crack tips is zero.

(a) (b)

Figure 3.10: Inner crack: in (a) original mesh, in (b) deformed mesh and crack opening.

Two inner cracks

Now, it is interesting to verify the implementation of the technique in an elastic bulk

where two cracks coexist. The mechanical boundary conditions are depicted in Figure
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3.11.

Figure 3.11: Two inner cracks: problem statement.

The nodal displacements and the crack opening shown in Figure 3.12(b) are effectively

consistent. Two symmetric cracks are obtained, the displacement jump in the crack tips

is zero, the crack opening is wider in the central part of the crack and the bulk exhibits

the expected strain.

(a) (b)

Figure 3.12: Two inner cracks: in (a) original mesh, in (b) deformed mesh and crack

opening.

Three inner cracks with different alignment

Up to now, all the cracks have been aligned to the meshes’ edges. In this test, three

different cracks, with different slopes are considered, see Figure 3.13. The objective of
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this is to validate the application of the method to cracks that are not aligned with the

mesh.

Figure 3.13: Three cracks with different alignment: problem statement.

Following the same procedure as in the previous examples, the displacement field is ob-

tained. Figure 3.14 represents the new mesh coordinates and shows the crack opening

of each crack. The expected strain of the bulk is exhibited and crack tips do not have

displacement jump. Hence, it can be stated that the proposed technique allows crack

location to be independent of the finite element mesh.

Figure 3.14: Three cracks with different alignment: deformed mesh and crack opening.
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3.3 Crack propagation

In this section, the propagation of the crack path is discussed. To do so, an elastic

bulk with a pre-existing crack that crosses three finite elements is considered, see Figure

3.15(a). Regarding the boundary conditions, the degrees of freedom of the left and right

edges of the bulk are blocked.

The action of the pressure is applied and the nodal displacements and the crack opening

are computed using the procedure presented previously, see Figure 3.15(b). After that,

the crack is assumed to propagate a distance of one element for each end. Thus, the crack

crosses now five finite elements. A transitional state is considered: the crack line increases

but the pressure remains as in the previous step, see Figure 3.15(c). Finally, the force

vector is updated and the crack opening becomes wider, see Figure 3.15(d). This process

can be repeated to continue propagating.

(a) (b)

(c) (d)

Figure 3.15: Crack propagation. (a) shows the initial crack, (b) the crack opening once

the pressure is introduced, in (c) the crack propagates and (d) shows the crack opening

caused by the new pressure.
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The crack opening due to propagation exhibits the expected response. The crack path

can be efficiently determined by means of the simplified medial-axis method (θ-SMA), as

discussed by Tamayo-Mas and Rodŕıguez-Ferran (2015).
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Chapter 4

Continuous-discontinuous model of fail-

ure for a damageable bulk

In this chapter, a damageable bulk is analysed. The elastic behaviour in Chapter 3 yields

a linear problem, whereas in this section a non-linear problem must be solved. The

technique used to solve it is the Newton-Raphson method, see Belytschko et al. (2000)

and Crisfield (1991).

In Section 4.1 the need for a regularisation is discussed, in Section 4.2 the damage model

is presented and finally in Section 4.3, three numerical examples are analysed.

4.1 Regularisation

Gradient-enhanced model based on smoothed displacements

Classical continuum theories typically exhibit pathological mesh-dependence, which pro-

vides physically unrealistic results. This means that the element size determines the

response. In order to avoid this behaviour, non-locality is introduced at the level of

displacements, see Rodŕıguez-Ferran et al. (2005),

ũ (x, t)− `2
c∇2ũ (x, t) = u (x, t) (4.1)

where ũ are the non-local or smoothed displacements, u the local displacements and `c

the characteristic length of the non-local damage model.

33
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This model computes the non-local displacements ũ from the local displacements u as

the solution of the second-order PDE in Eq. (4.1). Indeed, the regularisation PDE is in

this case a diffusion-reaction equation.

Boundary conditions

Appropriate boundary conditions for the smoothed displacement field ũ must be imposed.

As discussed in Tamayo-Mas (2013), the combined boundary conditions

ũ · n = u · n
∇ (ũ · t) · n = ∇ (u · t) · n

}
on ∂Ω (4.2)

where n denotes the unit normal to Ω and t is the tangent vector such that {n, t} form an

orthonormal basis for R2; provide the required properties for the regularisation equation.

With this, Dirichlet boundary conditions are prescribed for the normal component of the

displacement field and non-homogeneous Neumann boundary conditions are imposed for

the tangential components. They are prescribed using the Lagrange multipliers method.

In Appendix B, the treatment of the mechanical and the regularisation boundary condi-

tions is discussed.

4.2 Damage model

The damage model used is the simplified Mazars model, which considers only positive

strains,

Y =

√∑
i

[
max (0, εi)

2] (4.3)

where Y is the local state variable and εi are the principal strains.

A linear damage evolution law is considered

D(Y ) =
Yf

Yf − Y0

(
1− Y0

Y

)
(4.4)

where Y0 is the damage initiation state variable and Yf the maximum admissible value

for the state variable.

Figure 4.1 shows the linear damage evolution law. The material has an elastic behaviour

until it reaches the peak stress, associated to a strain Y0. This means the beginning
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Figure 4.1: Constitutive stress-strain law for the local model.

of the softening. In the second branch, the stiffness of the bulk is reduced. It is an

unloading phase until Yf is reached. Then, the material is fully degraded and the damage

parameter D is the maximum, D = 1. Even though Figure 4.1 represents the constitutive

stress-strain law for the local model, the same idea can be extended to non-local models:

σσσ(εεε, ε̃̃ε̃ε) = [1−D(ε̃̃ε̃ε)] C : εεε (4.5)

4.3 Numerical examples

In this section, three numerical examples are described in order to validate the technique

used to introduce pressure in a pre-existing crack, considering a continuous-discontinuous

damage model.

First, two tests of a bulk with an inner crack are carried out, refining the finite element

mesh. Then, a longer crack line is analysed. Finally, the extension of the model to two

cracks in a damageable bulk is discussed.

Finite element mesh refinement

Two tests are carried out using the same damageable bulk. Pressure is introduced in a

centred horizontal crack, and the mechanical boundary conditions consist on blocking the

degrees of freedom of the lateral edges, see Figure 4.2. The dimensionless geometric and

material parameters are summarised in Table 4.1.

Both the mechanical and the regularisation boundary conditions described in Figure 4.2

and Eq. (4.2), respectively, are prescribed using the Lagrange multipliers method, see
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Figure 4.2: Problem statement of a damageable bulk with one inner crack.

Meaning Symbol Value

Height of the bulk H 10

Width of the bulk W 30

Length of the crack Lc 10

Young’s modulus E 20 000

Damage threshold Y0 10−4

Final strain Yf 1.25× 10−2

Table 4.1: Inner crack in a damageable bulk: geometric and material parameters.

Appendix B for details.

In the first test, a mesh of 11× 30 finite elements is used; whereas in the second one, the

discretisation of the problem is performed using a mesh of 21× 60 finite elements. Figure

4.3 shows the results of the damage field obtained after having applied the pressure p.

It can be observed that the material breaks following the direction orthogonal to the crack

line. In addition, strain can be noticed in the top and bottom edges of the bulk. Besides,

the results exhibit the expected symmetry with respect to a horizontal axis. Refining the

mesh, more accuracy is obtained in the damage field and a better gradation of it can be

observed in Figure 4.3(b), where the mesh is finer.

Figures 4.4(a) and 4.4(b) show the curve pressure-crack opening displacement (COD).

Being a damageable bulk, the stiffness of the material, which corresponds to the curve’s

slope, decreases. Note that in the case of an elastic behaviour, it remains constant.
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(a)

(b)

Figure 4.3: Damage field for a bulk with a centred crack. In (a) a mesh of 11× 30 finite

elements is used; in (b) a mesh of 21× 60 finite elements.

Longer crack

The previous two tests are repeated changing the length of the discontinuity: it is a

centred horizontal crack of length Lc = 2W/3. The dimensionless geometric and material

parameters are summarised in Table 4.2. The same procedure as in the previous example

is employed to prescribe the boundary conditions and the same two meshes are used to

discretise the problem.

Meaning Symbol Value

Height of the bulk H 10

Width of the bulk W 30

Length of the crack Lc 20

Young’s modulus E 20 000

Damage threshold Y0 10−4

Final strain Yf 1.25× 10−2

Table 4.2: Inner longer crack in a damageable bulk: geometric and material parameters.

The damage field is shown in Figure 4.5. As expected, having a longer crack, the bulk

is more damaged and it has a higher strain. The expected symmetry is also exhibited.
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Figure 4.4: Pressure-crack opening displacement (COD). In (a) a mesh of 11 × 30 finite

elements is used; in (b) a mesh of 21× 60 finite elements.

Again, the finer mesh shows a better gradation of the damage field and provides more

accuracy in the results.

(a)

(b)

Figure 4.5: Damage field for a bulk with a longer centred crack. In (a) a mesh of 11× 30

finite elements is used; in (b) a mesh of 21× 60 finite elements.

The curves pressure-COD are presented in Figure 4.6. The loss of the material stiffness

is derived from the decrease of the curve’s slope in both tests, due to the damageable
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behaviour of the bulk.
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Figure 4.6: Pressure-crack opening displacement (COD). In (a) a mesh of 11 × 30 finite

elements is used; in (b) a mesh of 21× 60 finite elements.

Bulk with two cracks

Finally, a damageable bulk with two inner cracks is studied. The problem statement

is depicted in Figure 4.7 and the dimensionless geometric and material parameters are

described in Table 4.3. The same mechanical and regularisation boundary conditions as

in the previous examples are prescribed and again, the Lagrange multipliers method is

used to impose them.

Figure 4.7: Problem statement of a damageable bulk with two inner cracks.

Regarding the discretisation of the problem, a mesh of 21×60 finite elements is employed,

since it has been remarked that more accurate results are obtained.
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Meaning Symbol Value

Height of the bulk H 10

Width of the bulk W 30

Length of the crack Lc 7.5

Young’s modulus E 20 000

Damage threshold Y0 10−4

Final strain Yf 1.25× 10−2

Table 4.3: Two inner cracks in a damageable bulk: geometric and material parameters.

Figure 4.8: Damage field for a bulk with two inner cracks.

The results are shown in Figure 4.8. As presumed, the two cracks produce a symmetrical

damage field. Again, the material is damaged following the perpendicular direction to

the crack line and its top and bottom edges exhibit the expected strain.

Finally, the curve pressure-COD in Figure 4.9 shows the loss of stiffness, according to the

characteristic response of a damageable material.
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Figure 4.9: Pressure-crack opening displacement (COD).
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Chapter 5

Concluding remarks and future work

5.1 Concluding remarks

In this dissertation a finite element approach to introduce fluid pressure in a crack has

been developed. To this end, three main contributions discussed in detail in the previous

chapters are presented:

1. A technique to consider the action of fluid pressure in a pre-existing

crack has been proposed. A procedure to treat the pressure term p with X-FEM

is presented in Chapter 2. First, the nodal enrichment of the cracked elements has

been discussed. Then, the computation of line integrals over the crack line is proved

to be an efficient way to obtain nodal forces. Therefore, it can be stated that there

is no need to have nodes along the crack in order to consider the pressure applied

in it.

2. The proposed technique has been applied to a crack in an elastic bulk.

In Chapter 3, the crack opening of pre-existing cracks has been computed for an

elastic material. The appropriate application of the enriching criteria yields realistic

responses of the crack opening. The model has been validated for a bulk with

two coexisting cracks and it has been proved that crack locations are completely

independent of the finite element mesh. Moreover, the propagation of the crack,

element by element, has been properly modelled.
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3. The proposed technique has been applied to a crack in a damageable bulk.

Regularisation has been introduced at the level of displacements, as proposed by

Rodŕıguez-Ferran et al. (2005), in order to avoid pathological mesh-dependence.

Consistent damage fields have been obtained for several cracks in Chapter 4. In

addition, loss of material stiffness can be observed due to the caused damage. Hence,

the model provides a good simulation of failure caused by pressure acting in a pre-

existing crack.

5.2 Future work

The work carried out in this dissertation leaves several directions to be discussed in the

near future. These open research lines can be summarised as

• Arc-length or displacement control implementation. In this work, the force-

displacement response is computed using force control. Therefore, the unload branch

cannot be obtained. In order to overcome this problem, a displacement control

(particularly, a crack opening displacement control) or an arc-length control, see

Belytschko et al. (2000) and Crisfield (1991), are recommended.

• Propagation of crack. An interesting aspect of the behaviour of the crack is its

propagation due to the effect of the pressure. An element-by-element propagation

has been developed for the elastic problem. Thus, it would be interesting to extend

it to the damageable material. Furthermore, a geometrical crack tracking could be

employed by means of the θ−SMA, simplified medial axis, discussed by Tamayo-Mas

and Rodŕıguez-Ferran (2015).

• Crack inception. In this work, only pre-existing cracks have been analysed. The

whole failure process could be simulated, combining the model presented by Tamayo-

Mas (2013), where the crack is generated by external forces with the model presented

in this thesis, where crack pressure opens a pre-existing crack.



Appendix A

Variational formulation and discreti-

sation

In this appendix the variational formulation and the discretisation of the one-dimensional

problem are described. In Section A.1, the variational formulation of the equilibrium

equation is cast in a weak form. Then, in Section A.2, the stiffness matrix is computed.

Special emphasis is placed on the treatment of the discontinuity introduction and the role

of pressure acting in the crack.

A.1 Variational formulation

The equilibrium equation and its boundary conditions
σ′(x) = 0 x ∈ (0, L)

u(0) = 0

u(L) = 0

σ(x = L/2) = −p

(A.1.1)

where σ is the stress, u is the discontinuous displacement field and p is the pressure

introduced in the crack, are cast in a weak form.

Both the displacement field u and the virtual displacement field ω can be decomposed
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into two other continuous displacement fields u1 and u2, and ω1 and ω2, respectively:

u(x) = u1(x) + ψ(x)u2(x) (A.1.2a)

ω(x) = ω1(x) + ψ(x)ω2(x) (A.1.2b)

where ψ is the sign function used to introduce the discontinuity, defined as

ψ(x) =

{
−1 if 0 < x < L

2

1 if L
2
< x < L

(A.1.3)

Considering the weighted residual method, the equilibrium equation is multiplied by the

test function ω and integrated over the domain:∫ L

0

ω σ′ dx = 0 (A.1.4)

From the decomposition of the displacement fields, Eq. (A.1.4) can be cast as∫ L

0

(ω1 + ψω2)σ′ dx = 0, (A.1.5)

and taking first ω1, with ω2 = 0 and then ω2, with ω1 = 0, two variational statements are

derived: ∫ L

0

ω1σ′ dx = 0 (A.1.6a)∫ L

0

ψω2σ′ dx = 0 (A.1.6b)

Using integration by parts, the Gauss’ theorem and the boundary conditions defined by

the governing equations in Eq. (A.1.1), two weak forms can be derived, respectively, from

Eq. (A.1.6a) and (A.1.6b):∫ L

0

(ω1)′σ dx = 0 (A.1.7a)∫ L

0

ψ(ω2)′σ dx = −
∫ L/2

0

ω2σ′ dx+

∫ L

L/2

ω2σ′ dx = 2ω2(L/2)p (A.1.7b)

Indeed, it can be observed that the pressure p only appears in the weak form corresponding

to the discontinuous test functions, see Eq. (A.1.7b). This is the expected behaviour

because the crack pressure has zero virtual work for continuous virtual displacements.
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A.2 Discretisation

The displacement field in Eq. (A.1.2) can be discretised using shape functions as

u1(x) =
4∑

j=1

u1
jNj(x) =

4∑
j=1

ajNj(x) (A.2.1a)

u2(x) =
4∑

j=1

u2
jNj(x) =

4∑
j=1

bjNj(x) (A.2.1b)

ω1(x) = ω2(x) = Ni(x) (A.2.1c)

where Nj are the shape functions and aj and bj are the nodal displacements associated

to u1 and u2 respectively.

Considering a local elastic model and the decomposition of u and ω in Eq. (A.1.2) it can

be stated that ∫ L

0

(ω1)′σ dx = E

∫ L

0

(ω1)′
(
(u1)′ + ψ(u2)′

)
dx = 0 (A.2.2)∫ L

0

ψ(ω2)′σ dx = E

∫ L

0

(ω2)′
(
ψ(u1)′ + (u2)′

)
dx = 2ω2(L/2)p, (A.2.3)

and using the shape functions defined in Eq. (A.2.1), the discrete weak forms are com-

puted:

Ka,a a + Ka,b b = 0 (A.2.4a)

Kb,a a + Kb,b b = f (A.2.4b)

with

Ka,a = Kb,b := E

∫ L

0

N
′T

N
′
dx (A.2.5a)

Ka,b = Kb,a := E

∫ L

0

ψN
′T

N
′
dx (A.2.5b)

As discussed in Section A.1, the force vector has zero values in the equation corresponding

to the continuous virtual displacements, Eq. (A.2.4a).
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Appendix B

Lagrange multipliers

This appendix deals with the treatment of Dirichlet boundary conditions with Lagrange

multipliers, see Belytschko et al. (2000). Special attention is given to the treatment of

the mechanical and the regularisation boundary conditions.

On the one hand, finite element discretisation of the weak form of the equilibrium and

regularisation equations leads to the two discrete weak forms

requil(u, ũ) := fint(u, ũ)− fext = 0 (B.0.1a)

rregu(u, ũ) := −(M + `2
cKBC)u + (M + `2

cD)ũ = 0 (B.0.1b)

On the other hand, the Dirichlet boundary conditions for the mechanical and the regu-

larisation problem, respectively, are defined as

Aequilu = u∗ (B.0.2a)

Areguu = Areguũ ⇒ Aregu(u− ũ) = 0 (B.0.2b)
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Then, the global system can be summarised as

Ku,u Ku,ũ | AT
equil 0

Kũ,u Kũ,ũ | 0 AT
regu

— — — — —

Aequil 0 | 0 0

Aregu −Aregu | 0 0





δu

δũ

δλλλequil

δλλλregu


=



−requil

−rregu

0

0


(B.0.3)

where Aequil is the matrix of mechanical constraints, Aregu the matrix of regularisation

constraints and

Ku,u =
∂requil

∂u
(B.0.4a)

Ku,ũ =
∂requil

∂ũ
(B.0.4b)

Kũ,u =
∂rregu

∂u
(B.0.4c)

Kũ,ũ =
∂rregu

∂ũ
(B.0.4d)

Note that the global matrix is not symmetric. This is due to the fact that Dirichlet

boundary conditions for the regularisation problem tie u and ũ.

This method is discussed using a continuous formulation. The same strategy can be ex-

tended to a continuous-discontinuous model. For a complete overview of this formulation,

see Tamayo-Mas (2013).
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Rodŕıguez-Ferran, A., I. Morata, and A. Huerta (2005). A new damage model based on

non-local displacements. International Journal for Numerical and Analytical Methods

in Geomechanics 29 (5), 473–493. doi: 10.1002/nag.422.

Simo, J. C. and J. Oliver (1994). A new approach to the analysis and simulation of strain

softening in solids. In Fracture and damage in quasibrittle structures, pp. 25–39.

Simo, J. C., J. Oliver, and F. Armero (1993). An analysis of strong discontinuities in-

duced by strain-softening in rate-independent inelastic solids. Computational Mechan-

ics 12 (5), 277–296. doi: 10.1007/BF00372173.

Simone, A., G. N. Wells, and L. J. Sluys (2003). From continuous to discontinuous failure

in a gradient-enhanced continuum damage model. Computer Methods in Applied Me-

chanics and Engineering 192 (41–42), 4581–4607. doi: 10.1016/S0045-7825(03)00428-6.
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