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Abstract

This work addresses the problem of online fault detection of an advanced wind turbine benchmark under

actuators (pitch and torque) and sensors (pitch angle measurement) faults of different type: fixed value,

gain factor, offset and changed dynamics. The fault detection scheme starts by computing the baseline

principal component analysis (PCA) model from the healthy or undamaged wind turbine. Subsequently,

when the wind turbine is inspected or supervised, new measurements are obtained and projected into the

baseline PCA model. When both sets of data—the baseline and the data from the current wind turbine—

are compared, a multivariate statistical hypothesis testing is used to make a decision on whether or not

the wind turbine presents some damage, fault or misbehavior. The effectiveness of the proposed fault-

detection scheme is illustrated by numerical simulations on a well-known large offshore wind turbine in

the presence of wind turbulence and realistic fault scenarios. The obtained results demonstrate that the

proposed strategy provides an early fault detection, thereby giving the operators sufficient time to make

more informed decisions regarding the maintenance of their machines.

1. INTRODUCTION

Wind energy is currently the fastest growing source of renewable energy in the world. As wind turbines

(WT) increase in size, and their operating conditions become more extreme, a number of current and fu-

ture challenges exist. A major issue with wind turbines, specially those located offshore, is the relatively

high cost of maintenance [1]. Since the replacement of main components of a wind turbine is a difficult

and costly affair, improved maintenance procedures can lead to essential cost reductions. Autonomous

online fault detection algorithms allow early warnings of defects to prevent major component failures.

Furthermore, side effects on other components can be reduced significantly. Many faults can be detected

while the defective component is still operational. Thus necessary repair actions can be planned in time

and need not to be taken immediately and this fact is specially important for off-shore turbines where

bad weather conditions can prevent any repair actions. Therefore the implementation of fault detection

(FD) systems is crucial.

The past few years have seen a rapid growth in interest in wind turbine fault detection [2] through

the use of condition monitoring and structural health monitoring (SHM) [3,4]. The SHM techniques are

based on the idea that the change in mechanical properties of the structure will be captured by a change in

its dynamic characteristics [5]. Existing techniques for fault detection can be broadly classified into two

major categories: model-based methods and signal processing-based methods. For model-based fault

detection, the system model could be mathematical—or knowledge-based [6]. Faults are detected based

on the residual generated by state variable or model parameter estimation [7–9]. For signal processing-

based fault detection, mathematical or statistical operations are performed on the measurements (see,

for example, [10]), or artificial intelligence techniques are applied to the measurements to extract the

information about the faults (see [11, 12]).
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With respect to signal-processing-based fault detection, principal component analysis (PCA) is used

in this framework as a way to condense and extract information from the collected signals. Following

this structure, this work is focused on the development of a wind turbine fault detection strategy that

combines a data driven baseline model—reference pattern obtained from the healthy wind turbine—

based on PCA and multivariate hypothesis testing. A different approach in the frequency domain can be

found in [13], where a Karhunen-Loeve basis is used.

Most industrial wind turbines are manufactured with an integrated system that can monitor various

turbine parameters. These monitored data are collated and stored via a supervisory control and data

acquisition (SCADA) system that archives the information in a convenient manner. These data quickly

accumulates to create large and unmanageable volumes that can hinder attempts to deduce the health

of a turbine’s components. It would prove beneficial if the data could be analyzed and interpreted au-

tomatically (online) to support the operators in planning cost-effective maintenance activities [14–16].

This work describes a technique that can be used to identify incipient faults in the main components

of a turbine through the analysis of this SCADA data. The SCADA data sets are already generated by

the integrated monitoring system, and therefore, no new installation of specific sensors or diagnostic

equipment is required. The strategy developed is based on principal component analysis and multivari-

ate statistical hypothesis testing. The final section of the work shows the performance of the proposed

techniques using an enhanced benchmark challenge for wind turbine fault detection, see [2]. This bench-

mark proposes a set of realistic fault scenarios considered in an aeroelastic computer-aided engineering

tool for horizontal axes wind turbines called FAST, see [17].

The structure of the work is the following. In Section 2 the wind turbine benchmark is recalled

as well as the fault scenarios studied in this work. Section 3 presents the design of the proposed fault

detection strategy. The simulation results obtained with the proposed approach applied to the wind

turbine benchmark are given in Section 4. Concluding remarks are given in Section 5.

2. WIND TURBINE BENCHMARK MODEL

A complete description of the wind turbine benchmark model, as well as the used baseline torque and

pitch controllers, can be found in [2]. In this benchmark challenge, a more sophisticated wind turbine

model—a modern 5 MW turbine implemented in the FAST software—and updated fault scenarios are

presented. These updates enhance the realism of the challenge and will therefore lead to solutions

that are significantly more useful to the wind industry. Hereafter, a brief review of the reference wind

turbine is given and the generator-converter actuator model and the pitch actuator model are recalled, as

the studied faults affect those subsystems. A complete description of the tested fault scenarios is given.

2.1 Reference wind turbine, generator-converter model and pitch actuator model

The numerical simulations use the onshore version of a large wind turbine that is representative of

typical utility-scale land- and sea-based multimegawatt turbines described by [18]. This wind turbine

is a conventional three-bladed upwind variable-speed variable blade-pitch-to-feather-controlled turbine

of 5 MW. The wind turbine characteristics are given in [19, 1]. In this work we deal with the full load

region of operation (also called region 3). That is, the proposed controllers main objective is that the

electric power follows the rated power.

In the simulations, new wind data sets with turbulence intensity set to 10% are generated with

TurbSim [20]. The wind speed covers the full load region, as its values range from 12.91 m/s up to

22.57 m/s.

The generator-converter system can be approximated by a first-order ordinary differential equation,

see [2], which is given by:

τ̇r(t)+αgcτr(t) = αgcτc(t) (1)

where τr and τc are the real generator torque and its reference (given by the controller), respectively. In

the numerical simulations, αgc = 50, see [18]. Moreover, the power produced by the generator, Pe(t), is



given by (see [2]):

Pe(t) = ηgωg(t)τr(t) (2)

where ηg is the efficiency of the generator and ωg is the generator speed. In the numerical experiments,

ηg = 0.98 is used, see [2].

The hydraulic pitch system consists of three identical pitch actuators, which are modeled as a linear

differential equation with time-dependent variables, pitch angle β (t) and its reference βr(t). In principle,

it is a piston servo-system, which can be expressed as a second-order ordinary differential equation [2]:

β̈ (t)+2ξ ωnβ̇ (t)+ω2
n β (t) = ω2

n βr(t) (3)

where ωn and ξ are the natural frequency and the damping ratio, respectively. For the fault-free case,

the parameters ξ = 0.6 and ωn = 11.11 rad/s are used, see [2].

2.2 Fault scenarios

Both actuator and sensor faults are considered. All the described faults originate from actual faults in

wind turbines [2]. Table 1 summarizes all the considered fault scenarios.

Table 1 : Fault scenarios.

Fault Type Description

1 Pitch actuator Change in dynamics: high air content in oil (ωn = 5.73 rad/s, ξ = 0.45)

2 Pitch actuator Change in dynamics: pump wear (ωn = 7.27 rad/s, ξ = 0.75)

3 Pitch actuator Change in dynamics: hydraulic leakage (ωn = 3.42 rad/s, ξ = 0.9)

4 Generator speed sensor Scaling (gain factor equal to 1.2)

5 Pitch angle sensor Stuck (fixed value equal to 5 deg)

6 Pitch angle sensor Stuck (fixed value equal to 10 deg)

7 Pitch angle sensor Scaling (gain factor equal to 1.2)

8 Torque actuator Offset (offset value equal to 2000 Nm)

2.2.1 Actuator faults

Pitch actuator faults are studied as they are the actuators with highest failure rate in wind turbines. A fault

may change the dynamics of the pitch system by varying the damping ratio (ζ ) and natural frequencies

(ωn) from their nominal values to their faulty values. The parameters for the pitch system under different

conditions are given in Table 1. The normal air content in the hydraulic oil is 7%, whereas the high air

content in oil fault (F1) corresponds to 15%. Pump wear (F2) represents the situation of 75% pressure in

the pitch system while the parameters stated for hydraulic leakage (F3) correspond to a pressure of only

50%. The three faults are modeled by changing the parameters ωn and ζ in the relevant pitch actuator

model.

For the test, the change in dynamics faults given in Table 1 are introduced only in the third pitch

actuator (thus β1 and β2 are always fault-free).

A torque actuator fault (F8) is also studied. This fault is an offset on the generated torque, which can

be due to an error in the initialization of the converter controller. This fault can occur since the converter

torque is estimated based on the currents in the converter. If this estimate is initialized incorrectly it will

result in an offset on the estimated converter torque, which leads to the offset on the generator torque.

The offset value is 2000 Nm.



2.2.2 Sensor faults

The generator speed measurement uses encoders and its elements are subject to electrical and mechanical

failures, which can result in a changed gain factor on the measurement. The simulated fault, F4, is a

gain factor on ωg equal to 1.2.

Faults 5 and 6 result in blade 3 having a stuck pitch angle sensor, which holds a constant value of

5◦ (F5) and 10◦ (F6), respectively.

Finally, the fault of a gain factor on the measurement of the third pitch angle sensor is studied (F7).

The measurement is scaled by a factor of 1.2.

3. FAULT DETECTION STRATEGY

The overall fault detection strategy is based on principal component analysis and multivariate statistical

hypothesis testing. A baseline pattern or PCA model is created with the healthy state of the wind turbine

in the presence of wind turbulence. When the current state of the wind turbine has to be diagnosed, the

collected data is projected using the PCA model. The final diagnosis is performed using multivariate

statistical hypothesis testing.

The main paradigm of vibration based structural health monitoring is based on the basic idea that

a change in physical properties due to structural changes or damage will cause detectable changes in

dynamical responses. First of all, the healthy structure is excited by a signal to create a pattern. Sub-

sequently, the structure to be diagnosed is excited by the same signal and the dynamic response is

compared with the pattern. This scheme is also know as guided waves in structures for structural health

monitoring [21].

However, in our application, the only available excitation of the wind turbines is the wind turbu-

lence. Therefore, guided waves in wind turbines for SHM cannot be considered as a realistic scenario.

In spite of that, the new paradigm is based on the fact that, even with a different wind turbulence, the

fault detection strategy based on PCA and statistical hypothesis testing will be able to detect some dam-

age, fault or misbehavior. More precisely, the key idea behind the detection strategy is the assumption

that a change in the behavior of the overall system, even with a different excitation, has to be detected.

The results presented in Section 4 confirm this hypothesis.

3.1 Data driven baseline modeling based on PCA

Let us start the PCA modeling by measuring, from a healthy wind turbine, a sensor during (nL− 1)∆
seconds, where ∆ is the sampling time and n,L ∈ N. The discretized measures of the sensor are a real

vector

(

x11 x12 · · · x1L x21 x22 · · · x2L · · · xn1 xn2 · · · xnL

)

∈ R
nL (4)

where the real number xi j, i = 1, . . . ,n, j = 1, . . . ,L corresponds to the measure of the sensor at time

((i−1)L+( j−1))∆ seconds. When the measures are obtained from N ∈ N sensors also during (nL−
1)∆ seconds, all the collected data coming from the N sensors is disposed in a matrix X ∈ Mn×(N·L) as

follows:

X =

















x1
11 x1

12 · · · x1
1L x2

11 · · · x2
1L · · · xN

11 · · · xN
1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
i1 x1

i2 · · · x1
iL x2

i1 · · · x2
iL · · · xN

i1 · · · xN
iL

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
n1 x1

n2 · · · x1
nL x2

n1 · · · x2
nL · · · xN

n1 · · · xN
nL

















(5)

where the superindex k = 1, . . . ,N of each element xk
i j in the matrix represents the number of sensor.



The objective of the principal component analysis is to find a linear transformation orthogonal

matrix P∈M(N·L)×(N·L)(R) that will be used to transform or project the original data matrix X according

to the subsequent matrix product:

T = XP ∈ Mn×(N·L)(R) (6)

where T is a matrix having a diagonal covariance matrix.

3.1.1 Group scaling

Since the data in matrix X is affected by diverse wind turbulence, come from several sensors and could

have different scales and magnitudes, it is required to apply a preprocessing step to rescale the data

using the mean of all measurements of the sensor at the same column and the standard deviation of all

measurements of the sensor [22].

More precisely, for k = 1,2, . . . ,N we define

µk
j =

1

n

n

∑
i=1

xk
i j, j = 1, . . . ,L, (7)

µk =
1

nL

n

∑
i=1

L

∑
j=1

xk
i j, (8)

σ k =

√

√

√

√

1

nL

n

∑
i=1

L

∑
j=1

(xk
i j −µk)2 (9)

where µk
j is the mean of the measures placed at the same column, that is, the mean of the n measures

of sensor k in matrix Xk at time instants ((i−1)L+( j−1))∆ seconds, i = 1, . . . ,n; µk is the mean of

all the elements in matrix Xk, that is, the mean of all the measures of sensor k; and σ k is the standard

deviation of all the measures of sensor k. Therefore, the elements xk
i j of matrix X are scaled to define a

new matrix X̌ as

x̌k
i j :=

xk
i j −µk

j

σ k
, i = 1, . . . ,n, j = 1, . . . ,L, k = 1, . . . ,N. (10)

When the data are normalized using Equation (10), the scaling procedure is called variable scaling

or group scaling [23]. For the sake of clarity, and throughout the rest of the work, the scaled matrix

X̌ is renamed as simply X. Since the scaled matrix X is a mean-centered matrix [23], it is possible to

calculate its covariance matrix as follows:

CX =
1

n−1
XT X ∈ M(N·L)×(N·L)(R) (11)

The subspaces in PCA are defined by the eigenvectors and eigenvalues of the covariance matrix as

follows:

CXP = PΛ (12)

where the columns of P ∈ M(N·L)×(N·L)(R) are the eigenvectors of CX. The diagonal terms of matrix

Λ ∈ M(N·L)×(N·L)(R) are the eigenvalues λi, i = 1, . . . ,N ·L, of CX whereas the off-diagonal terms are

zero, that is,

Λii = λi, i = 1, . . . ,N ·L (13)

Λi j = 0, i, j = 1, . . . ,N ·L, i 6= j (14)



The eigenvectors p j, j = 1, . . . ,N ·L, representing the columns of the transformation matrix P are

classified according to the eigenvalues in descending order and they are called the principal compo-

nents or the loading vectors of the data set. The eigenvector with the highest eigenvalue, called the

first principal component, represents the most important pattern in the data with the largest quantity

of information.

Matrix P is usually called the principal components of the data set or loading matrix and matrix T

is the transformed or projected matrix to the principal component space, also called score matrix. Using

all the N ·L principal components, that is, in the full dimensional case, the orthogonality of P implies

PPT = I, where I is the (N ·L)× (N ·L) identity matrix. Therefore, the projection can be inverted to

recover the original data as

X = TPT (15)

However, the objective of PCA is, as said before, to reduce the dimensionality of the data set X by

selecting only a limited number ℓ < N ·L of principal components, that is, only the eigenvectors related

to the ℓ highest eigenvalues. Thus, given the reduced matrix

P̂ = (p1|p2| · · · |pℓ) ∈ MN·L×ℓ(R) (16)

matrix T̂ is defined as

T̂ = XP̂ ∈ Mn×ℓ(R) (17)

3.2 Fault detection based on multivariate hypothesis testing

The current wind turbine to diagnose is subjected to a wind turbulence as described in Sections 2 and

3.1. When the measures are obtained from N ∈ N sensors during (νL−1)∆ seconds, a new data matrix

Y is constructed as in Equation (5):

Y =

















y1
11 y1

12 · · · y1
1L y2

11 · · · y2
1L · · · yN

11 · · · yN
1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

y1
i1 y1

i2 · · · y1
iL y2

i1 · · · y2
iL · · · yN

i1 · · · yN
iL

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

y1
ν1 y1

ν2 · · · y1
νL y2

ν1 · · · y2
νL · · · yN

ν1 · · · yN
νL

















∈ Mν×(N·L)(R) (18)

It is worth remarking that the natural number ν (the number of rows of matrix Y) is not necessarily

equal to n (the number of rows of X), but the number of columns of Y must agree with that of X; that is,

in both cases the number N of sensors and the number of samples per row must be equal.

Before the collected data arranged in matrix Y is projected into the new space spanned by the

eigenvectors in matrix P in Equation (12), the matrix has to be scaled to define a new matrix Y̌ as in

Equation (10):

y̌k
i j :=

yk
i j −µk

j

σ k
, i = 1, . . . ,ν , j = 1, . . . ,L, k = 1, . . . ,N, (19)

where µk
j and σ k are defined in Equations (7) and (9), respectively.

The projection of each row vector ri = Y̌(i, :)∈R
N·L, i= 1, . . . ,ν of matrix Y̌ into the space spanned

by the eigenvectors in P̂ is performed through the following vector to matrix multiplication:

t i = ri · P̂ ∈ R
ℓ (20)

For each row vector ri, i = 1, . . . ,ν , the first component of vector t i is called the first score or score

1; similarly, the second component of vector t i is called the second score or score 2, and so on.



3.2.1 The random nature of the scores

Since the turbulent wind can be considered as a random process, the dynamic response of the wind tur-

bine can be considered as a stochastic process and the measurements in ri are also stochastic. Therefore,

the vector t i acquires this stochastic nature and it will be regarded as an ℓ-dimensional random vector

to construct the stochastic approach in this work. As an example, in Figure 1, two three-dimensional

samples are represented; one is the three-dimensional baseline sample (left) and the other is referred to

faults 1, 4 and 7 (right).
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Figure 1 : Baseline sample (left) and sample from the structure to be diagnosed (right).

3.2.2 Testing a multivariate mean vector

In this work, the framework of multivariate statistical inference is used with the objective of the clas-

sification of wind turbines in healthy or faulty. With this goal, a test for multivariate normality is first

performed. A test for the plausibility of a value for a normal population mean vector is then performed.

The objective of this work is to determine whether the distribution of the multivariate random

samples that are obtained from the WT to be diagnosed (healthy or not) is connected to the distribution

of the baseline. To this end, a test for the plausibility of a value for a normal population mean vector

will be performed. Let s ∈ N be the number of principal components that will be considered jointly.

We will also consider that: (a) the baseline projection is a multivariate random sample of a multivariate

random variable following a multivariate normal distribution with known population mean vector µµµh ∈
R

s and known variance-covariance matrix ΣΣΣ ∈ Ms×s(R); and (b) the multivariate random sample of

the structure to be diagnosed also follows a multivariate normal distribution with unknown multivariate

mean vector µµµc ∈ R
s and known variance-covariance matrix ΣΣΣ ∈ Ms×s(R).

As said previously, the problem that we will consider is to determine whether a given s-dimensional

vector µµµc is a plausible value for the mean of a multivariate normal distribution Ns(µµµh,ΣΣΣ). This state-

ment leads immediately to a test of the hypothesis

H0 : µµµc = µµµh versus

H1 : µµµc 6= µµµh,

that is, the null hypothesis is ‘the multivariate random sample of the WT to be diagnosed is distributed

as the baseline projection’ and the alternative hypothesis is ‘the multivariate random sample of the WT

to be diagnosed is not distributed as the baseline projection’. In other words, if the result of the test is

that the null hypothesis is not rejected, the current WT is categorized as healthy. Otherwise, if the null

hypothesis is rejected in favor of the alternative, this would indicate the presence of some fault in the

WT.



The test is based on the statistic T 2 –also called Hotelling’s T 2– and it is summarized below. When

a multivariate random sample of size ν ∈ N is taken from a multivariate normal distribution Ns(µµµh,ΣΣΣ),
the random variable

T 2 = ν
(

X̄−µµµh

)T
S−1

(

X̄−µµµh

)

is distributed as

T 2 →֒
(ν −1)s

ν − s
Fs,ν−s,

where Fs,ν−s denotes a random variable with an F-distribution with s and ν − s degrees of freedom,

X̄ is the sample vector mean as a multivariate random variable; and 1
n
S ∈ Ms×s(R) is the estimated

covariance matrix of X̄.

At the α level of significance, we reject H0 in favor of H1 if the observed

t2
obs = ν (x̄−µµµh)

T
S−1 (x̄−µµµh)

is greater than
(ν−1)s

ν−s
Fs,ν−s(α), where Fs,ν−s(α) is the upper (100α)th percentile of the Fs,ν−s distribu-

tion. In other words, the quantity t2
obs is the damage indicator and the test is summarized as follows:

t2
obs ≤

(ν −1)s

ν − s
Fs,ν−s(α) =⇒ Fail to reject H0, (21)

t2
obs >

(ν −1)s

ν − s
Fs,ν−s(α) =⇒ Reject H0, (22)

where Fs,ν−s(α) is such that

P(Fs,ν−s > Fs,ν−s(α)) = α ,

where P is a probability measure. More precisely, we fail to reject the null hypothesis if t2
obs ≤

(ν−1)s
ν−s

Fs,ν−s(α), thus indicating that no faults in the WT have been found. Otherwise, the null hy-

pothesis is rejected in favor of the alternative hypothesis if t2
obs >

(ν−1)s
ν−s

Fs,ν−s(α), thus indicating the

existence of some faults in the WT.

4. SIMULATION RESULTS

To validate the fault detection strategy presented in Section 3, we first consider a total of

24 samples of ν = 50 elements each, according to the following distribution:

• 16 samples of a healthy wind turbine; and

• 8 samples of a faulty wind turbine with respect to each of the eight different fault scenarios de-

scribed in Table 1.

In the numerical simulations in this Section, each sample of ν = 50 elements is composed by the

measures obtained from the N = 13 sensors detailed in [19, Table 4] during (ν · L− 1)∆ = 312.4875

seconds, where L = 500 and the sampling time ∆ = 0.0125 seconds. The measures of each sample are

then arranged in a ν × (N ·L) matrix as in Equation (18).

These 24 samples plus the baseline sample of n = 50 elements are used to test for the plausibility

of a value for a normal population mean vector, with a level of significance α = 10%. Each sample

of ν = 50 elements is categorized as follows: (i) number of samples from the healthy wind turbine

(healthy sample) which were classified by the hypothesis test as ‘healthy’ (fail to reject H0); (ii) faulty

sample classified by the test as ‘faulty’ (reject H0); (iii) samples from the faulty structure (faulty sample)

classified as ‘healthy’; and (iv) faulty sample classified as ‘faulty’. The results presented in Table 3 are



Table 2 : Scheme for the presentation of the results in Table 3.

Healthy Sample (H0) Faulty Sample (H1)

Fail to reject H0 Correct decision Type II error (missing fault)

Reject H0 Type I error (false alarm) Correct decision

Table 3 : Categorization of the samples with respect to the presence or absence of a fault and the result of the test

considering the first score, the second score, scores 1–2 (jointly), scores 1–7 (jointly), and scores 1–10 (jointly),

when the size of the samples to diagnose is ν = 50 and the level of significance is α = 10%.

H0 H1

Score 1

Fail to reject H0 16 1

Reject H0 0 7

Score 2

Fail to reject H0 13 7

Reject H0 3 1

Score 3

Fail to reject H0 16 8

Reject H0 0 0

H0 H1

Scores 1-2

Fail to reject H0 12 0

Reject H0 4 8

Scores 1-7

Fail to reject H0 13 0

Reject H0 3 8

Scores 1-12

Fail to reject H0 16 0

Reject H0 0 8

organized according to the scheme in Table 2. It can be stressed in Table 3 that the sum of the columns

is constant: 16 samples in the first column (healthy wind turbine) and 8 more samples in the second

column (faulty wind turbine).

Table 3 includes both the results using the univariate hypothesis testing fault detection strategy

developed in [19] (for the first, second and third score) and the multivariate hypothesis testing presented

in this work (scores 1-2, 1-7 and 1-12, jointly). It is worth noting that, for a fixed level of significance

α = 10%, all decisions are correct when the first twelve scores are considered jointly.

5. CONCLUDING REMARKS

The silver bullet for offshore operators is to eliminate unscheduled maintenance. Therefore, the imple-

mentation of fault detection systems is crucial. The main challenges of the wind turbine fault detection

lie in its nonlinearity, unknown disturbances as well as significant measurement noise. In this work,

numerical simulations (with a well-known benchmark wind turbine) show that the proposed PCA plus

multivariate statistical hypothesis testing is a valuable tool in fault detection for wind turbines. It is note-

worthy that, in the simulations, when the the first twelve scores are considered jointly all the decisions

are correct (there are no false alarms and no missing faults).

We believe that PCA plus multivariate statistical hypothesis testing has tremendous potential in

decreasing maintenance costs. Therefore, we view the work described in this work as only the begin-

ning of a large project. For future work, we plan to develop a complete fault detection, isolation, and

reconfiguration method (FDIR). That is, a reconfigurable control strategy in response to faults. In the

near future, the next step is to focus our research into efficient fault feature extraction.

ACKNOWLEDGMENTS

This work has been partially funded by the Spanish Ministry of Economy and Competitiveness through

the research projects DPI2014-58427-C2-1-R and DPI2015-64170-R (MINECO/FEDER), and by the

Generalitat de Catalunya through the research project 2014 SGR 859.



REFERENCES

[1] Y Sinha and JA Steel. A progressive study into offshore wind farm maintenance optimisation using risk

based failure analysis. Renewable and Sustainable Energy Reviews, 42:735–742, 2015.

[2] PF Odgaard and KE Johnson. Wind turbine fault diagnosis and fault tolerant control - an enhanced bench-

mark challenge. In Proc. of the 2013 American Control Conference–ACC,(Washington DC, USA), pages

1–6, 2013.

[3] Rohan N. Soman, Pawel H. Malinowski, and Wieslaw M. Ostachowicz. Bi-axial neutral axis tracking for

damage detection in wind-turbine towers. Wind Energy, page to appear.

[4] Douglas Adams, Jonathan White, Mark Rumsey, , and Charles Farrar. Structural health monitoring of wind

turbines: method and application to a hawt. Wind Energy, 14(4):603–623, 2011.

[5] D. Todd Griffith, Nathanael C. Yoder, Brian Resor, Jonathan White, and Joshua Paquette. Structural health

and prognostics management for the enhancement of offshore wind turbine operations and maintenance

strategies. Wind Energy, 17(11):1737–1751, 2014.

[6] Steven X Ding. Model-based fault diagnosis techniques: design schemes, algorithms, and tools. Springer

Science & Business Media, 2008.

[7] Peter Fogh Odgaard, Jakob Stoustrup, Rasmus Nielsen, and Chris Damgaard. Observer based detection

of sensor faults in wind turbines. In Proceedings of European wind energy conference, pages 4421–4430,

2009.

[8] Fengming Shi and Ron Patton. An active fault tolerant control approach to an offshore wind turbine model.

Renewable Energy, 75:788–798, 2015.

[9] Yolanda Vidal, Christian Tutiven, Jose Rodellar, and Leonardo Acho. Fault diagnosis and fault-tolerant

control of wind turbines via a discrete time controller with a disturbance compensator. Energies, 8(5):4300–

4316, 2015.

[10] Jianfei Dong and Michel Verhaegen. Data driven fault detection and isolation of a wind turbine bench-

mark. In Proceedings of IFAC World Congress, volume 2, pages 7086–7091, 2011.

[11] Nassim Laouti, Nida Sheibat-Othman, and Sami Othman. Support vector machines for fault detection in

wind turbines. In Proceedings of IFAC World Congress, volume 2, pages 7067–707, 2011.

[12] Florin Stoican, Catalin-Florentin Raduinea, Sorin Olaru, et al. Adaptation of set theoretic methods to the

fault detection of wind turbine benchmark. In Proceedings of IFAC World Congress, pages 8322–8327,

2011.

[13] Peter Fogh Odgaard and Jakob Stoustrup. Gear-box fault detection using time-frequency based methods.

Annual Reviews in Control, 40:50–58, 2015.

[14] Tan Pang-Ning, Michael Steinbach, Vipin Kumar, et al. Introduction to data mining. In Library of

Congress, page 74, 2006.

[15] ASAE Zaher, SDJ McArthur, DG Infield, and Y Patel. Online wind turbine fault detection through

automated scada data analysis. Wind Energy, 12(6):574, 2009.

[16] Andrew Kusiak, Wenyan Li, and Zhe Song. Dynamic control of wind turbines. Renewable Energy,

35(2):456–463, 2010.

[17] Jason Jonkman. NWTC computer-aided engineering tools (FAST), Last modified 28-October-2013.

[18] J. M. Jonkman, S. Butterfield, W. Musial, and G. Scott. Definition of a 5-MW reference wind turbine

for offshore system development. Technical report, National Renewable Energy Laboratory, Golden,

Colorado, 2009. NREL/TP-500-38060.

[19] Francesc Pozo and Yolanda Vidal. Wind turbine fault detection through principal component analysis and

statistical hypothesis testing. Energies, 9(1):1–20, 2016.

[20] Neil Kelley and Bonnie Jonkman. NWTC computer-aided engineering tools (Turbsim), Last modified

30-May-2013.

[21] Wieslaw Ostachowicz, Pawel Kudela, Marek Krawczuk, and Arkadiusz Zak. Guided Waves in Structures

for SHM: The Time-Domain Spectral Element Method. John Wiley & Sons, Ltd, 2012.

[22] Maribel Anaya, Diego Tibaduiza, and Francesc Pozo. A bioinspired methodology based on an artificial

immune system for damage detection in structural health monitoring. Shock and Vibration, 2015:1–15,

2015.

[23] Maribel Anaya, Diego Tibaduiza, and Francesc Pozo. Detection and classification of structural changes

using artificial immune systems and fuzzy clustering. International Journal of Bio-Inspired Computation,

page to appear.


