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Abstract 9 

Water scarcity in the Mediterranean basin has been solved by using seawater 10 

desalination reverse osmosis technology (SWD-RO). This technology produces brine 11 

which is discharged back into the sea resulting in an environmental impact on marine 12 

ecosystems. Under the circular economy approach, the aim of this work is to recover 13 

resources from NaCl-rich brine (~60-70 g/L), e.g. in the form of NaOH and HCl, by 14 

integration of two ion exchange-based membrane technologies and quantify the 15 

electrical energy consumption. Electrodialysis (ED) incorporating monovalent selective 16 

cation exchange membranes as divalent ions purification and concentration of the NaCl 17 

present in the SWD-RO brine, was integrated with bipolar membrane ED (EDBM) to 18 

produce NaOH and HCl. Current densities of 0.30–0.40 kA/m2 at two temperature 19 

ranges simulating different seawater temperature regimes (15-18 ºC and 22-28ºC) were 20 

tested and a pure NaCl solution was used as starting concentrate stream. NaCl-rich 21 

brines with 100 or 200 gNaCl/L were obtained by ED and then introduced in the EDBM 22 

stack producing HCl and NaOH up to 2 M, depending on the initial concentrations. A 23 

minimum energy consumption of 1.7 kWh/kgNaOH was calculated when working by 24 

EDBM with initial concentrations of 104 g NaCl/L and 0.24 M HCl and NaOH. 25 
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1. Introduction 1 

Water scarcity in the Mediterranean basin has been solved by using seawater and 2 

reverse osmosis as desalination technology (SWD-RO). The process produces brine 3 

which is discharged back into the sea resulting in an environmental impact on marine 4 

ecosystems [1]. Initially, managing the generated brines was considered as an 5 

environmental problem, but it has recently been identified as an opportunity to develop 6 

circular economy concepts to transform a waste (the brine) to a resource for materials 7 

production [2]. Any medium to large SWD-RO plant drives so large amount of 8 

dissolved elements that may be considered as a mine and then, the waterworks site 9 

could be seen not only as a “water factory” but also as a potential chemicals production 10 

site. Although revalorization of SWD-RO brines represents a promising and sustainable 11 

alternative it has been applied so far only on a limited scale because of the large number 12 

of technological gaps to be covered for making it economically feasible [3].  13 

Seawater contains almost all elements in the periodic table [4]. However, only a few are 14 

nowadays profitable extracted conventionally by evaporation: sodium chloride, 15 

potassium chloride, magnesium and bromide salts.  Several extraction schemes for a list 16 

of eight elements have been identified as being potentially economically and technically 17 

viable (Na, K, Mg, Rb, P, Cs, In, Ge) [5]. Valorization approaches of SWD-RO brine to 18 

produce salts through different concentration/precipitation technologies have been 19 

widely reviewed by Kim [6], Van der Bruggen et al. [7] and Pérez-González et al. [8] in 20 

an attempt to attain the zero liquid discharge (ZLD) objectives [9]. Due to the high 21 

salinity and consequently high ionic conductivity, electrically driven membrane 22 

processes such as electrodialysis (ED) based on the selective passage of some 23 

constituents through an ion-exchange membrane (IXM) have been widely researched. 24 

Several studies have been oriented to the brine reuse by the chlor-alkali industry from 25 

SWD-RO brines [10–14]. This industry uses NaCl-rich brines to produce Cl2, NaOH 26 

and H2 by means of ED as a salt valorization option. It was demonstrated that ED 27 

technology concentrates NaCl from SWD-RO brines with competitive electrical 28 

consumptions around 0.20 kwh/kg NaCl to produce 200 g NaCl/L. 29 

Such solutions could be also used as raw materials to produce chemical commodities as 30 

HCl and NaOH if bipolar membranes (BM) are integrated. However,  ED combination 31 

with bipolar membranes (EDBM) has been only applied successfully for chemical and 32 
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biochemical applications, food processing and in less extension for waste management 1 

of metallurgical industries [1,15–19]. When electric current is applied between the 2 

electrodes of the EDBM stack, water splitting is produced in the BM. Therefore, the 3 

produced H+ and OH- ions can be used to generate acid (HX) and base (MOH) from 4 

salts (MX), for example NaCl from the chemical industry to produce HCl and NaOH, 5 

without production of hydrogen, oxygen or undesirable products. Another of the main 6 

features of EDBM process is that water dissociation is accelerated up to 50 million 7 

times compared to the rate of water dissociation in aqueous solutions. Moreover, 8 

EDBM has low voltage drop, maximal energy utilization, space saving, easy installation 9 

and operation, low start-up and running costs and last but not least it can provide 10 

products of high quality. However, one of the drawbacks of EDBM, when applied to 11 

waste valorization, is that it is not as economically competitive as other membrane 12 

separation technologies, due to the electrodes  and ion exchange membranes cost and 13 

the capital cost. Despite this economical limitation, all the features previously 14 

commented have made EDBM an environmentally friendly technology for valorization 15 

and management of industrial brines [1,20–22]. A clear application is, thus, the salt-rich 16 

waste valorization for the production of acids and bases and a growth number of 17 

applications with industrial brines are reported [1,16,17,23,24]. However more limited 18 

applications are devoted to SWD-RO brines to produce acid and base with EDBM at lab 19 

or pilot scale [15,25]. These studies have concluded that the economic and technical 20 

feasibility will be improved if the electrical consumption could be reduced with the 21 

increase of brine concentration and with the reduction of scaling compounds in the 22 

brines (HCO3
-, Ca2+, Mg2+). In our previous study [26], SWD-RO brines (60 g/L NaCl) 23 

were purified in divalent elements by using NF membranes and  1M HCl and 1 M 24 

NaOH were produced by using EDBM with electrical consumptions of 2.6 kwh/kg 25 

NaOH. However, scarce data and studies could be found on the influence of the brine 26 

concentration (e.g. NaCl) on the process efficiency in terms of the production of the 27 

highest NaOH and HCl concentrations and the specific electrical consumption. 28 

The aim of this work is to quantify the performance and the electrical energy 29 

consumption of: a) the concentration and purification of NaCl from SWD-RO brines by 30 

using monovalent selective ion exchange membranes to avoid the presence of divalent 31 

metal ions (Ca, Mg) in ED cells; and b) the integration of an EDBM system for in-situ 32 

production of HCl and NaOH from concentrated NaCl brine (e.g. 100-200 g NaCl/L). 33 
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The specific objectives are to find optimal operation conditions of the integrated 1 

processes of ED and EDBM to achieve the lowest specific electrical consumption and 2 

the highest acid and base concentrations.  3 

2. Materials and methods 4 

SWD-RO brine from the seawater desalination plant of El Prat (Barcelona, Spain) was 5 

used as feed solution for the ED system. Mainly, this brine was rich in NaCl (65.1 ± 6.1 6 

g NaCl/L), although it also contained other major components such as sulfate (5.4 ± 0.2 7 

g/L), Mg2+ (2.6 ± 0.2 g/L), and Ca2+ (0.7 ± 0.04 g/L). Two different ranges of brine 8 

temperature were evaluated: 15 to 18 ºC from a spring season and 22 to 28 ºC from a 9 

summer season. Moreover, a pure NaCl solution was used as initial solution for the 10 

concentrate loop. 11 

In a previous study, Casas et al. [27] evaluated the removal of Ca2+ and Mg2+ as a 12 

potential valorization pathway for seawater desalination brines. Treated brines 13 

contained concentration of Ca2+ and Mg2+ below 10 mg/L. For practical purposes and 14 

taking into account that the Ca-Mg purification process was evaluated previously, fresh 15 

pure NaCl brines simulating the composition of the feed concentrated brines to be used 16 

in the valorization as HCl and NaOH by EDBM were prepared in the present study. 17 

Figure 1 shows also this procedure were pure NaCl was used as input brine for the ED 18 

concentrated loop. 19 

Then, the ED cell was working with an open diluate loop and a NaCl recirculated 20 

concentrate stream. Sequentially, the NaCl-rich concentrated solution produced by the 21 

ED system was introduced in the EDBM cell which was used to produce NaOH and 22 

HCl. Details on the operation conditions are described as follows. 23 
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 1 

Figure 1. Schematic illustration of the evaluated seawater desalination brine valorization 2 

process. Stream concentrations are indicated on the arrows.  3 

 4 

2.1 Experimental description and operation of the ED plant. 5 

An ED pilot using an Eurodia Aqualizer SV-10 stack (620x450x313 mm)  with 50 cell 6 

pairs made of Neosepta cation-exchange membranes (CIMS) and anion-exchange 7 

membranes (ACS) (0.1 m2 effective surface area per membrane) was used [13,14,28].  8 

The main characteristics of the membrane are listed in Table 1.  9 

 10 

Table 1. The main characteristics of the ED and EDBM membrane used. 11 

 
ED  EDBM 

ACS  CIMS  PC  Acid 60  PC SK  PC BP 

Type 
Strongly basic 

anion 
permeable 

Strongly acidic 
cation 

permeable 

Strongly 
alkaline 

(ammonium) 

Strongly 
acidic 

(sulfonic 
acid) 

Water 
splitting 
efficiency 
> 95 % 

General 
use 

Monoanion 
permeselective 

(Cl‐form) 

Monocation 
permeselective 

(Na‐form) 

Monovalent 
acid 

(HCl/HNO3/HF)

Standard 
desalination 

Electric  3.8  1.8  ~ 2  ~ 2.5 
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resistance 
(Ω cm2) 

Burst 
strength 
(MPa) 

0.15  0.10  0.4 – 0.5  0.4 – 0.5 

Thickness 
(mm) 

0.18  0.15  0.16 – 0.20  0.16 – 0.20 
0.20 – 
0.35 

 1 

The intermembrane distance was 0.43 mm and linear flow velocity at the inlet of 2 

desalting and concentrating cells was 11 cm/s. The feeding and the electrolyte circuits 3 

were operated in a single-pass design to achieve higher current densities and minimize 4 

the problems of the increase of temperature in the cell. The concentrate (divalent-free 5 

NaCl-rich) stream was re-circulated to reach the maximum NaCl concentration with 6 

sustainable electrical specific consumption (e.g. current densities <0.4 kA/m2 and 7 

specific electric consumption <0.3kWh/KgNaCl) under the two given brine temperature 8 

ranges evaluated. The SWD-RO brine flow rate through the stack was 0.5 m3/h in both 9 

the feeding and the concentrating stream compartments and 0.15 m3/h in the electrodes 10 

chambers. HCl was added to keep the pH below 4 for the cathodic circuit, below 7 in 11 

the feeding circuit and below 5.5 in the concentrate circuit.  12 

Two temperature ranges simulating different seawater temperature regimes (15-18 ºC 13 

and 22-28ºC) were tested and current densities were varied between 0.3 and 0.40 kA/m2 14 

in order to obtain a NaCl-rich brine with the lower specific electrical consumption (less 15 

than 0.3 kWh/kg NaCl). The SWD-RO brine concentration process was monitored by 16 

in-line measurements of temperature, flow-rate, pressure, current intensity, voltage, 17 

electrical conductivity and pH as it can be seen in Figure 2. 18 

 19 
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Figure 2. ED pilot plant scheme. (P: pressure sensor, T: temperature sensor, C: 1 

conductivity sensor, F: flow-meter, pH: pH-meter, A: ammeter, V: voltmeter). 2 

 3 

2.2 Experimental description an operation of the EDBM plant. 4 

A lab-scale pilot incorporating an EDBM stack PCCell ED 64-004 (PCCell GmbH, 5 

Germany) was used. The dimension of the cell was 0.11x0.11m. A scheme of the 6 

EDBM stack is shown in Figure 3. It was a 4 chamber system (electrode rinse, acid, 7 

base and salt) with an active membrane area of 64 cm2 per membrane. The stack 8 

configuration was composed of three cell triplets; each cell triplet had one cationic 9 

exchange membrane (CEM) (PC-SK), one anionic exchange membrane (AEM) (PC 10 

Acid 60) and one bipolar membrane (BM). The main characteristics of the membrane 11 

are listed in Table 1. The EDBM cell worked under close loop configuration for the four 12 

streams. Two electrodes rinse compartments formed a single circuit located at the cell 13 

ends.  14 

Four pumps were used to impulse each stream into the EDBM unit. All the 15 

performances were carried out at constant voltage (9 V) until the conductivity in the 16 

feed tank was almost zero (values around 2 or 3 mS/cm). Some other parameters were 17 

constant during the experiments, such as pressure drop differences between 18 

compartments (0.3 bar) and the flow rates (ranged from 15 to 20 L/h for the acid, base 19 

and salt stream and around 100 L/h in the electrode rinse stream). Several parameters, 20 

such as, pressure, temperature, flow rate, electrical current, voltage and electrical 21 

conductivity were monitored for all the circuits, while pH of the diluted solution was 22 

also recorded.  23 
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 1 

Figure 3. EDBM pilot plant scheme. (P: pressure sensor, T: temperature sensor, C: 2 

conductivity sensor, F: flow-meter, pH: pH-meter, A: ammeter, V: voltmeter, S.T: salt 3 

tank, A.T: acid tank, B.T: base tank, E.T: electrode rinse tank). 4 

Taking into account that high voltage and/or current density values implies higher acid 5 

and base final concentrations [1,15,25,26], the maximum stack voltage that could be 6 

applied (9 V) due to the membrane stack configuration was used. To apply this voltage 7 

threshold an initial acid and base solution had to be introduced in the corresponding 8 

tank.  9 

Preliminary experiments were carried out with synthetic HCl, NaOH solutions. Also, 10 

NaCl solutions at two different concentration levels mimicking the concentrate solution 11 

obtained as ED brines were used with a nominal concentration of 100 and 200 g NaCl/L 12 

(1.71 and 3.42 M NaCl). Initial HCl and NaOH concentration were needed to avoid a 13 

high resistance in the power supply. HCl and NaOH feed solution for the acid and base 14 

compartment respectively were also prepared with different concentrations (0.05, 0.10 15 

and 0.50 M). For the electrode rinse compartment, a salt solution of nominal 16 

concentration of 45 gNa2SO4/L (0.32 M Na2SO4) was prepared.  17 

Different experiments were carried at a) different initial nominal NaCl concentration 18 

(100 g NaCl/L and 200 gNaCl/L) and b) different initial acid and base concentration 19 

(about 0.05, 0.10 and 0.50 M) to evaluate the effect of these parameters on the final 20 

‐+ 
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concentration of HCl and NaOH produced. The experimental conditions used are 1 

collected in Table 2. 2 

 3 

Table 2. Nominal experimental conditions including voltage, current density and initial 4 

concentrations of the different EDBM stack circuits used. 5 

Constant 
voltage 
(V) 

Current 
density 
(kA/m2) 

Electrode 
(Na2SO4) 

Salt 
(NaCl) 

Acid 
(HCl) 

Base 
(NaOH) 

CiniE (g/L)  CiniS (g/L)  CiniAB (M)  CiniAB (M) 

9  0.5  45 

0.05 
100 

0.05 
200 

0.10 
100 

0.10 
200 

0.50 
100 

0.50 
200 

 6 

2.3 Analytical methodologies and chemical analysis 7 

Samples from ED cell: samples from feed, diluate and concentrate streams were taken 8 

every 2 hours. Chloride (Cl-) concentration was measured potentiometrically through 9 

precipitation with AgNO3 and an AgCl electrode by a Metrohm 721 instrument. Sulfate 10 

(SO4
2−) concentration was measured by ionic chromatography using a Metrohm 761 11 

Compact IC equipped with an Anion Dual 2–6.1006.100 column. Ca2+ and Mg2+ were 12 

determined by atomic absorption spectrophotometry using a Perkin Elmer Analyst 300. 13 

Finally, pH of all the samples was also measured using a glass electrode (Crison pH 14 

Basic 20). 15 

Samples from EDBM cell: samples from salt, acid, base and electrode rinse streams 16 

were taken before and during the experiments. HCl and NaOH samples were analyzed 17 

potentiometrically by acid-base titration (Titration Excellence T-70). Na+ cations and 18 

Cl- and SO4
2- anions concentration on the salt circuits were measured by ionic 19 

chromatography (Dionex ICS-1100 and ICS-1000, respectively).  20 

 21 
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2.4 Optimization of the energy consumption of the EDMB by response surface 1 

methodology (RSM) 2 

Response surface methodology (RSM) was used to determine the optimal initial salt, 3 

acid and base concentrations to obtain the minimum specific energy consumption by 4 

EDBM. A Central Composite Design (CCD) was used to determine the optimal 5 

conditions (e.g. production of concentrated NaOH and HCl solutions with the minimum 6 

energy consumption) for the critical factors (initial salt, acid and base concentrations). A 7 

response surface (Y) was built by fitting a second-order polynomial equation described 8 

by Equation 1: 9 

 ܻ ൌ ߚ ߚ ܺ 

ଶ

ୀଵ

ߚ ܺ
ଶ 

ଶ

ୀଵ

  ߚ ܺ

ଶ

ୀାଵ

ܺ

ଶ

ୀଵ

 (1)

where Xi and Xj represent the measured values of the independent variables, Y is 10 

measured response values or dependent variable and βis are model coefficients 11 

calculated from experimental data by using a fitting approach [29]. 12 

In this case study, the independent variables were the initial salt concentration (CiniS) 13 

and the initial acid and base concentration (CiniAB), while the response was the energy 14 

consumption (Ec(EDBM)) in the EDBM stack. Therefore, the specific energy consumption 15 

(Ec(EDBM)) describing the system could be described by Equation 2: 16 

 
ሺாெሻܿܧ 	ൌ ߚ െ ଵߚ  ܤܣܥ  ଶߚ  ܵܥ  ଷߚ  ሺܥܤܣሻଶ  ସߚ

 ሺܥܵሻଶ  ହߚ  ܤܣܥ   ܵܥ
(2)

where CiniS is the initial salt concentration (gNaCl/L) and CiniAB is the initial acid and 17 

base concentration (M). 18 

The range and levels of experimental variables (salt, acid and base concentrations) used 19 

in this study are collected in Table 3. 20 

 21 

 22 

 23 

 24 
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Table 3. Coded levels and range of independent variables for experimental design 1 

Level  Coded level
Factors 

CiniS  CiniAB 

Low  ‐1  50*  0.05 

Mid  0  100  0.1 

High  1  200  0.5 

* A 50 gNaCl/L solution was used in order to compare between three initial NaCl 2 

concentrations levels. 3 

2.5 Determination of energy consumption and current efficiency of NaCl 4 

concentration in the ED process 5 

The energy consumption (Ec(ED)) for the NaCl concentration by ED was calculated as 6 

the energy necessary to increase the NaCl concentration in the tank. It was calculated 7 

according to Equation 3:  8 

ሺாሻܿܧ  ൬
ܹ݄݇

݇݃ ݈ܥܽܰ
൰ ൌ ܷ  ܫ  ݐ

௧ݒ  ܵܥ
 (3)

 9 

Where Ucell (V) is the mean membrane stack potential, I (A) is the applied current 10 

intensity, t (h) is the operation time, vtank (L) is the NaCl solution volume of the 11 

concentrate tank and CiniS (gNaCl/L) is the sodium chloride concentration obtained at 12 

the end of the performance. 13 

 14 

2.6 Determination of energy consumption and current efficiency in the EDBM 15 

process 16 

Energy consumption (Ec(EDBM)) and current efficiency (Ie) in the EDBM stack were 17 

calculated by means of Equations 4 and 5, respectively. 18 

 Ecሺாெሻ ൬
ܹ݄݇

݇݃ ݐܿݑ݀ݎ
൰ ൌ

ሺU  I  tሻ/1000
m୧୬ୟ୪ ୮୰୭ୢ୳ୡ୲

 (4)

Where U (V) and I (A) are the voltage and current applied in the EDBM stack, 19 

respectively, t (h) is the time of the operation and mfinal product (kg) is the acid or base 20 

produced. 21 

 Ie ൌ
F  ሺV୲  C୲ െ V୧  C୧ሻ

Iୢ  S  t  n
 (5)
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Where F (96500 C/mol) is the faraday constant, V (L) and C (M) are the volume and 1 

concentration of the desired product at time “t” or at initial time “i”, Id (A/cm2) is the 2 

current density, S (64 cm2) the membrane surface, t (s) is the operational time and n is 3 

the cell triplets of the EDBM stack (3 in this study). 4 

 5 

3. Results and discussion 6 

3.1 Concentration of NaCl brines by ED 7 

The NaCl concentration profiles for different current densities (from 0.30 kA/m2 to 0.4 8 

kA/m2) at two different temperature ranges: a) 15 - 18 ºC and b) 22 - 28 ºC, are plotted 9 

in Figure 4. Both temperature ranges provided the expected temperature regimes for 10 

SWD-RO brines as consequence of the seasonal variation on the Mediterranean Sea. 11 

Current densities were limited to values below 0.4 kA/m2 to reduce the specific 12 

electrical consumption. For the two temperature scenarios the concentration of NaCl in 13 

the concentrate tank increased gradually with time (from an initial 60-70 g NaCl/L) 14 

until a plateau was reached by the end of the experiment at concentrations between 185 15 

and 205 g NaCl/L for the low temperatures and between 105 to 135 g NaCl/L for the 16 

high temperatures, depending on the current density applied: the higher the intensity 17 

applied, the higher the final concentration of NaCl reached (Figure 4). 18 
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1 

 2 

Figure 4. Evolution of NaCl concentration by ED. a) Experiments at 15 – 18 ºC, b) 3 

Experiments at 22 – 28 ºC. 4 

Firstly, the applied electrical potential favored the ion migration flux and the electro-5 

osmosis flux. However, the NaCl concentration gradient between the diluate and the 6 

concentrate circuits had an increase of 30 to 130 g/L NaCl, depending on the intensity 7 

and temperature conditions. This NaCl concentration gradient promoted two new mass 8 

transport phenomena: diffusion of NaCl from the concentrate compartment to the 9 

diluate compartment and osmotic flux whereby water was transported from the diluate 10 

compartment to the concentrate one. These two mass transfer phenomena diminished 11 

the desired effect of increasing the NaCl concentration on the concentrate tank and 12 

increased the energy requirements of the process. Then, concentration experiments were 13 

limited to the point where these phenomena were important. As seen in Figure 4, at the 14 

low temperature range (15 - 18 °C), NaCl concentrations between 185 and 205 gNaCl/L 15 
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were achieved after 12 hours of operation, whereas only between 105 and 135 gNaCl/L 1 

at the high temperature range (22 - 28 ºC). Lengthening the experiment time did not 2 

provide any substantial increase in the NaCl concentration (increase differences less 3 

than approximately 1 g/L) after 12 hours of additional concentration.  4 

Experiments at both temperature regimes have shown the temperature influence on ED 5 

mass transport processes and properties of the brine (electrical conductivity and 6 

density), solvent (molecular diffusivity) and membrane (resistance and electrical 7 

conductivity) [30,31]. The temperature influence on the concentration process in ED is 8 

more complex than that exerted by the current intensity because the different mass 9 

transfer processes involved (e.g., it may be because the osmosis transport of NaCl) are 10 

temperature dependent. Although theoretical models to describe this dependence are 11 

still lacking, Tanaka et al. [32] have recently developed a model for the concentration of 12 

seawater to produce salt. This model was based on analysis of a large data base 13 

containing experimental results of ion transport through ion exchange membranes 14 

where the correction of temperature for physical parameters, such as density, electrical 15 

conductivity and membrane resistance was considered.  16 

Experiments also showed that it was possible to produce a NaCl-rich concentrate stream 17 

from SWD-RO brine by means of an ED pilot plant. Due to the single-pass design 18 

circuit for the diluate stream, and the recirculated NaCl-rich concentrate loop, a final 19 

divalent free solution containing concentrated NaCl was obtained. Moreover, as it was 20 

reported previously [14], the rejection of divalent minor ions, such as Ca2+, Mg2+ and 21 

SO4
2-, was favored in the concentrate stream due to the selectivity of the ion exchange 22 

membranes used. In this study, final concentration of Ca2+ and Mg2+ were 0.31 and 0.30 23 

g/L, respectively for the high temperature experiments and 0.55 g Ca2+/L and 0.49 g 24 

Mg2+/L for the low temperature experiments. Then, it can be stated that the divalent ions 25 

migration flux was insignificant in the concentrate loop. Yang et al. [15] also used a 26 

pre-treatment of the seawater RO concentrate to reduce Ca2+ and Mg2+ ions and avoid 27 

scaling using Na2CO3 and NaOH to precipitate Ca2+ as CaCO3 and Mg2+ as Mg(OH)2. 28 

After precipitation, the pH of the RO concentrate was adjusted with HCl to prevent 29 

organic and inorganic fouling on the anion exchange membranes of the EDBM stack.  30 

Recently, the integration of nanofiltration (NF) and EDBM for the valorization of 31 

SWD-RO brine has been evaluated [26], where NF was applied for the removal of 32 
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divalent ions from the SWD-RO brine. NF rejected 20% of NaCl, resulting in an 1 

undesired dilution of the NaCl in the treated brine. In the present study, the application 2 

of ED allowed not only to avoid the presence of divalent ions in the treated brine but 3 

also to increase the nominal NaCl concentration from 65 g/L up to 100 and 200 g/L, 4 

depending on the operation conditions. With this increase of NaCl concentration, it was 5 

possible to achieve higher HCl and NaOH concentrations when compared with those 6 

obtained using NF as purification step. 7 

 8 

3.2 Energy consumption on the concentration of NaCl (Ec(ED))  9 

The energy consumption (Ec(ED)) raised gradually in all the experiments until the 10 

concentration in the tank reached its maximum concentration depending on the 11 

operation conditions (temperature and current density). Experiments were stopped when 12 

the energy consumption increased dramatically because osmosis and ion diffusion 13 

fluxes inside the stack reached a maximum due to the concentration gradient between 14 

the diluate and the concentrate compartments (data not shown). A summary of the 15 

energy consumption for continuous operation (Ec(ED)) for different operation conditions 16 

evaluated is shown in Table 4.  17 

 18 

Table 4. NaCl concentration achieves and energy consumption calculated depending on 19 

experimental conditions 20 

Temperature 
(ºC) 

Current density 
(kA/m2) 

NaCl concentration,   
CiniS (g/L) 

Energy consumption 
Ec(ED) (kWh/kg NaCl) 

16.6  0.40  204.8  0.217 

17.9  0.35  185.4  0.154 

18.2  0.30  187.7  0.148 

21.7  0.40  135.1  0.096 

22.0  0.40  133.9  0.055 

28.3  0.30  104.0  0.161 

 21 

The energy consumption increased if working with higher current density, thus, 22 

0.4kA/m2 was confirmed as the maximum operable point. The temperature affects the 23 

product flow rate, and lower flow rates were obtained at higher temperatures.  24 
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An average of 0.17 kWh/kg NaCl was calculated when around 200 gNaCl/L were 1 

produced, while lower values around 0.10 kWh/kg NaCl were achieved when only 2 

approximately 100 gNaCl/L were concentrated by ED. The values obtained in our pilot 3 

plant were within the range of the published results. For laboratory scale studies [33], 4 

the energy consumption with NaCl solutions up to approximately 100 g/L ranged 5 

between 0.18 and 0.33 kWh/kg with 80% solute recovery and current densities of 0.20 6 

to 0.30 kA/ m2 were reported. Besides, it was reported that an ED industrial target in 7 

Japan was to produce 200 g NaCl/L from seawater with an energy consumption lower 8 

than 0.12 kWh/kg NaCl [34]. 9 

It can be concluded that concentration of NaCl brines by ED is dependent on the 10 

temperature and current density applied. Higher current density and low temperature 11 

lead to higher NaCl concentration. For this reason, in order to achieve 200 gNaCl/L by 12 

ED with specific electrical consumption below 0.2 kWh/kg NaCl, it was preferable to 13 

work during winter-spring seasons (when temperatures are below 20ºC) and at high 14 

current densities. However, during summer season (when temperatures are above 21ºC) 15 

NaCl brines between 100 to 130 g/L were obtained at specific electrical consumption 16 

around 0.1 kWh/kg when using current densities of 0.30 and 0.40 kA/m2. 17 

 18 

3.3 Evaluation of HCl and NaOH production from NaCl brines by means of 19 

EDBM 20 

EDBM (Figure 5) experiments using NaCl brines (nominal concentration of 100-200 21 

gNaCl/L) as feed solution indicated that the desalinating process and the production of 22 

NaOH and HCl occured efficiently as was previously reported [16,17]. For both brines 23 

100 and 200 gNaCl/L, NaCl concentrations at the end of the experiments were around 24 

20 mgNaCl/L. It is important to point out that conductivity of the electrode rinse stream 25 

(Na2SO4) was constant along the whole experiment. This fact indicated that no leak or 26 

non-desired ion transport occurred between the electrode rinse compartment and their 27 

adjacent compartments. Figure 5 also shows the final NaOH and HCl concentrations 28 

obtained with an initial nominal NaCl concentration of 100 g/L (1.71 M NaCl) (Figure 29 

5a) and 200 g/L (3.42 M NaCl) (Figure 5b) as a function of the  initial concentrations 30 

evaluated for the acid and base circuits (from 0.05 to 0.5 M). 31 
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1 

 2 

Figure 5. Salt, acid and base concentration at the initial and final experimental time 3 

under different initial concentration of HCl and NaOH (0.05, 0.10 and 0.50 M). Using 4 

initial nominal NaCl concentration of a) 100 g/L and b) 200 g/L. 5 

Figure 5 demonstrates that the initial acid and base concentration had no significant 6 

effect on their final concentration, in contrast with initial NaCl concentration, which 7 

appeared to effect the final concentration of NaOH and HCl. In fact, working with 8 

initial NaCl 100 g/L (1.71 M) allowed to concentrate NaOH and HCl concentrations up 9 

to 1.26 M and 1.65 M, respectively, whereas using the concentrate stream of ED of 200 10 

g NaCl/L (3.42 M) allowed to achieve final concentrations of NaOH and HCl around 2 11 

M.  12 
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The NaCl percentage that was converted into NaOH and HCl for the different 1 

experiments is shown in Table 5. When current is applied between the electrodes, 2 

proton ions have higher mobility than hydroxyl ones, then, conversion percentage to 3 

HCl could be higher than the NaCl percentage that was converted into NaOH. 4 

 5 

Table 5. NaCl percentage that was converted into NaOH and HCl in the first set of 6 

EDBM experiments. 7 

Initial HCl and NaOH 
concentration 

Initial salt concentration: 
100 g NaCl/L 

Initial salt concentration: 
200 g NaCl/L 

NaOH  HCl  NaOH  HCl 

0.05  65 %  84 %  57 %  61 % 
0.10  69 %  75 %  64 %  59 % 
0.50  46 %  68 %  52 %  54 % 

As it can be seen in Table 5, the higher conversion percentage was achieved working 8 

with the nominal 100 g NaCl/L solution and 0.05 M HCl and NaOH. In general, higher 9 

percentages were obtained with 100 gNaCl/L solutions and higher conversion ratios to 10 

HCl than to NaOH reaching a maximum of 84 %. 11 

The influence of the initial NaCl concentration (~100 and 200 gNaCl/L) on the final 12 

acid and base concentrations for 0.05M HCl and NaOH initial solutions is shown in 13 

Figure 6. In order to make a better comparison, some experiments using 50 g NaCl/L 14 

(approaching the SWD-RO brine composition) as feed solution were conducted. Then, 15 

the results are also shown in Figure 6 comparing the initial and final concentrations 16 

obtained. 17 
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1 
Figure 6. Salt, acid and base concentration at the initial and final experimental time 2 

under different initial concentration of NaCl 3 

Figure 6 shows that working with an initial NaCl concentration of 50 g/L it was possible 4 

to obtain NaOH 0.66 M and HCl 0.90M. These results are in agreement with those 5 

reported by Ibañez et al. [25], who obtained very similar HCl and NaOH concentrations 6 

(0.71 and 0.91M, respectively) under the same current density (0.5 kA/m2) and initial 7 

NaCl concentration of 50 g/L.  The higher concentration values obtained for HCl in 8 

comparison with those for NaOH were associated to the higher exchange capacity of the 9 

anionic membranes and the lower co-ion transport through them. 10 

It should be pointed out that it was possible to raise the final HCl and NaOH 11 

concentration by increasing the initial NaCl concentration. As it is shown in figure 6, by 12 

using a more concentrated NaCl feed (~100 g/L) the NaOH and HCl concentrations 13 

obtained were 1.2 and 1.5 M, respectively, and for NaCl solutions of 200 g/L, it was 14 

possible to concentrate NaOH up to 1.9 M and HCl up to 2.0 M. Thus, higher HCl and 15 

NaOH concentrations can be obtained by working at high current density and high 16 

initial NaCl concentration. As described previously, Yang et al. [15] used a pretreated 17 

seawater RO concentrate as feed solution using a similar EDBM configuration and 18 

reached 0.4 M NaOH, whereas Ibañez et al. [25] obtained NaOH up to 1 M working 19 

with synthetic SWD-RO concentrate. 20 

The maximum NaOH concentration obtained in this work was 2 M (8% w/v), which 21 

agrees with previous published studies where the maximum NaOH concentration 22 
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reached by EDBM at bench- and pilot-scale ranged from 8 to 9.5% (and up to 12.5% if 1 

the electrochemical consumption was increased) [23–25]. These values reported by 2 

bench- and pilot-scale systems are, however, low compared to the one reached by the 3 

current chlor-alkali industry (32-50 % w/v depending on the technology applied).  4 

The initial approach is the on-site use of the NaOH produced or the use by other 5 

industries with distances below 40 km (e.g., reagent for pH adjustment or other 6 

commodities uses). If the objective is out-side use, the production site should consider a 7 

concentration step up to 32-50% by evaporation with an electrical consumption of 8 

2400-4500 kWh/t NaOH [35]. 9 

3.4 Evaluation of the energy consumption on the HCl and NaOH production from 10 

NaCl brines by means of EDBM 11 

Table 6 summarizes the results of the different assays performed on the production of 12 

HCl and NaOH from NaCl brines by the EDBM stack including the initial and final 13 

concentrations of each stream and also the quantity of HCl produced and the energy 14 

consumption to produce NaOH under a voltage of 9 V. Although HCl and NaOH were 15 

obtained from NaCl, taking into account the lowest market prices of HCl in comparison 16 

to NaOH, energy consumption (Ec(EDBM)) was calculated as kWh per kilogram of NaOH 17 

obtained, and HCl was considered a by-product.  18 

Table 6. Experimental results on the specific energy consumption on the production of 19 

NaOH and HCl from NaCl solutions (~ 50, 100 and 200 gNaCl/L) by EDBM at room 20 

temperature (21±1 ºC).  21 

Umax 

(V) 

Ĩ 
(kA/
m2) 

Electrode 
(Na2SO4) 

Salt 
(NaCl) 

Acid 
(HCl) 

Base 
(NaOH) 

Time 
(h) 

 
Ec(EDBM) 

C initial 
(g/L) 

C final 
(g/L) 

C initial 
(g/L) 

C final  
(g/L)

C initial

(M) 
C final  
(M) 

C initial

(M) 
C final  
(M) 

kg HCl  
produced 

kWh/kg 
NaOH 

produced

9.0  0.41  45.50  43.59  53.60  0.01 0.06 0.90 0.05 0.66 2.44 0.031  2.345 

8.9  0.47  42.46  43.37  99.58  0.03 0.07 1.49 0.05 1.16 4.07 0.052  2.460 

8.9  0.52  42.37  47.95 186.15  0.02 0.07 2.01 0.05 1.87 6.75 0.071  2.713 

8.9  0.44  44.66  43.85  52.98  0.01 0.12 0.88 0.10 0.71 2.54 0.028  2.576 

8.8  0.41  43.25  41.93  98.18  0.02 0.11 1.35 0.09 1.25 3.63 0.045  1.822 

8.9  0.52  47.48  45.92 186.88  0.02 0.10 1.99 0.10 2.14 6.24 0.069  2.238 

8.9  0.47  46.86  45.03  52.88  0.02 0.53 1.16 0.44 1.06 2.68 0.023  2.888 

8.9  0.43  44.86  49.19  97.21  0.02 0.54 1.65 0.50 1.26 3.89 0.041  3.104 

8.9  0.59  41.45  45.21 186.61  0.02 0.55 2.23 0.41 2.03 6.94 0.061  3.624 

 22 
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As it reported in the last column of Table 6, a range of Ec(EDBM) values were achieved 1 

from 1.822 up to 3.624 kWh/kg NaOH. In order to define the initial acid, base and salt 2 

concentrations that require the minimum Ec(EDBM), a factorial design was defined to 3 

obtain a general lineal model using the response surface methodology (RSM) and 4 

central composite design (CCD). Table 7 represents the least squares matrix (Z) with 5 

different values of initial salt, acid and base concentration and the response matrix (Y) 6 

of energy consumption. 7 

Table 7. Initial matrix for the statistic model (Z) and response matrix (Y) 8 

Z    Y 

  CiniAB  CiniS  CiniAB
2  CiniS 2  CiniAB∙ CiniS    Ec(EDBM) 

1  0.05  50  0.0025  2500  2.5  2.34 
1  0.05  100  0.0025  10000  5  2.46 
1  0.05  200  0.0025  40000  10  2.71 
1  0.1  50  0.01  2500  5  2.58 
1  0.1  100  0.01  10000  10  1.82 
1  0.1  200  0.01  40000  20  2.24 
1  0.5  50  0.25  2500  25  2.89 
1  0.5  100  0.25  10000  50  3.10 
1  0.5  200  0.25  40000  100  3.62 

 9 

The model coefficients (β) in the factorial design, described by the matrix in Table 7, 10 

were estimated by Equation 6: . 11 

ߚ  ൌ ሾሺܼ  ܼ′ሻିଵሿ  ሾܼᇱ  ܻሿ (6)

Then, the initial salt and acid/base concentration values to obtain the minimum energy 12 

consumption could be estimated by Equation 7: 13 

ሺாெሻܿܧ 	ൌ 3.4589 െ 9.7568  ܤܣܥ െ 0.0116  ܵܥ  18.5658  ሺܥܤܣሻଶ

 4.5173݁ െ 5  ሺܥܵሻଶ  0.0094  ܤܣܥ   ܵܥ
(7)

 14 

A surface plot for Ec(EDBM) values as a function of salt and acid/base concentrations, 15 

including both the experimental (by un-filled circles) and model predicted values, is 16 

shown in Figure 7. Figure 7 shows that for the used EDBM stack the optimum operating 17 

values yielding a minimum energy consumption of 1.7 kWh/kg NaOH, at a constant 18 

voltage of 8.9±0.1V, can be obtained with and initial NaCl concentration of 104±4 g/L 19 

and initial acid and base concentration of 0.24±0.2 M. 20 
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 1 

Figure 7. Surface plot for optimal values of energy consumption versus initial salt and 2 

acid/base concentration. 3 

Scarce data of process performance and energy consumption for application of BM 4 

stacks with brines can be found in the scientific literature. Table 8 summarizes the 5 

published data on brine treatment by means of EDBM for acid and base production. 6 

Different brine types had been used as feed solution with different concentrations. Most 7 

of them had been pre-treated in order to be introduced in the EDBM stack by means of 8 

different techniques. Also, the EDBM cell used included different dimensions, active 9 

surface membrane area and membrane properties (e.g. different manufacturers). Some 10 

authors had calculated the energy consumption of the EDBM process. It is important to 11 

mention that it has not been found any published work on the integration of a brine pre-12 

concentration step before the EDBM, in which the total energy consumption was 13 

calculated. Then, in this work apart from the reported energy consumption of the 14 

production of NaOH and HCl by the EDBM process, the energy consumption of the ED 15 

pre-treatment has also been taken into account: around 0.17 kWh/kg NaCl when the 16 

brine was concentrated up to 200 gNaCl/L and 0.10 kWh/kg NaCl when concentrated 17 

up to 100 g NaCl/L.  18 
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Table 8. Comparison of the published data on brine treatment by EDBM  

Brine Type 
Brine Composition 

(g/L) 
EDBM cell 
(Area (m2)) 

By‐products 

Current 
efficiency (%) / 
Current density 

(kA/m2) 

Energy consumption  Ref. 

SWD‐RO brine. 
Concentrated by ED 

Cl (38.8), Na (20.8), SO4 
(5.41), Mg (2.64), Ca (0.83). 
EDBM feed: NaCl (100;200) 

PCA‐SK  (0.0064) 
PCA‐Acid 60 
PCA‐BM 

HCl 1.99 M 
NaOH 2.14 M 
(200gNaCl/L; 0.5 kA/m2) 

55‐88 / 0.5  1.8‐3.6 kWh/kg NaOH 
1.9 ‐ 3.8 kWh/kg HCl 
0.08 ‐ 0.23 kWh 

This 
work 

Synthetic  SWD‐RO 
concentrate 

NaCl (54), K (0.7), Mg (‐), 
Ca (‐), SO4 (5.3), HCO3(0.2) 

RALEX AMH (0.02) 
RALEX CMH  
NEOSEPTA‐BP1 

HCl 0.6‐0.8 M 
NaOH 0.7‐1.0 M 
(0.25‐1 KA/m2) 

80 / 0.25 
50 / 1.0 

n.a  [25] 

SWD‐RO/ Pre‐
treated for Ca/Mg 
removal 

NaCl (38), K (0.4), Mg (‐), 
Ca (‐), SO4 (3.8), 
HCO3(0.07), Br(0.1) 

Qianqiu AEM (0.0088) 
Qianqiu CEM 
Fumatech –BPM 

HCl 0.7 M 
(0.57 kA/m2) 
NaOH 0.4 M 

50‐66 / 0.35‐
0.57 

7.2‐9.4 kWh/kg HCl  [15] 

Sea water  n.a.  Commercial : (0.012) 
CMI ‐ 7000S 
AMI  ‐ 7001S 
PSDVB – BPM 
Synthetic:  (0.012) 
PSu ‐ CEM, AEM, BPM 

Commercial: 
HCl 0.4 M 
NaOH 0.5 M 
Synthetic: 
HCl 0.6 M 
NaOH 0.7 M 

Commercial: 
15‐45 / 0.05 
 
Synthetic: 
35‐63 / 0.05 

Commercial:  
0.129 kWh 
 
Synthetic: 
0.14 kWh 

[36] 

Industrial Brine  NaCl (70), Ca (‐), TIC (0.01), 
TOC (0.132), pH=12.6 

PCA‐SK (0.0064) 
PCA‐Acid 60 
Fumatech –FBM 
PCA‐PBM 

PBM: (0.572 kA/m2) 
HCl 1.6 M, NaOH 1.7 M 
FBM: (0.523 kA/m2) 
HCl 1.8 M, NaOH 2.0 M 

PBM: 65 / 0.572 
FBM: 81 / 0.523 

n.a.  [23] 

Industrial Brine  NaCl (20),SO4 (2.9), K (6.6), 
Ca (0.8), TIC (0.01), TOC 
(0.02), pH=7.6. 
Ca removal pre‐treatment 

PCA‐SK (0.0064) 
PCA‐Acid 60 
PCA‐BM 

HCl 1.6 M 
H2SO4 0.12 M 
NaOH 1.2 M 
KOH 0.7 M 

Cl: 64 / 0.6 
SO4: 10 / 0.6 
Na: 47 / 0.6 
K: 31 / 0.6 

n.a.  [17] 

Industrial Brine  SO4(89), Ca(0.02), Na(45) 
Ni (0.01), pH=10.5 
Pre‐treatment: pellet 
reactor 

Fumatech FAB 
(0.0064) 
Fumatech FKB 
Fumatech –FBM 

0.29 – 0.59 M mix acid 
0.34 – 0.68 M mix base 
(0.3 to 0.6 kA/m2) 

Mix acid:  
60 / 0.3; 70 / 0.6
Mix base:  
80 / 0.3; 90 / 0.6 

5 – 6 kWh/kg mix acid 
4 ‐5 kWh/kg mix base 

[24] 
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As it can be seen in Table 8, the highest HCl and NaOH concentration was achieved in 1 

this work. This was possible due to the pre-treatment concentration by ED process. The 2 

initial feed for the EDBM in this case was the higher among the reviewed studies. For 3 

the current efficiency, it can be stated that similar values (e.g. from 60-88%) were 4 

calculated in comparison to the other studies. As discussed previously on the literature, 5 

the observed trend is that the amount of electric current converted into the desired 6 

product (current efficiency) decreases with increasing current density within the 7 

evaluated interval working with synthetic SWD-RO concentrate [25], synthetic sea 8 

water brines [37] or synthetic brackish brines [1]. High values of current density 9 

increased the concentration of products more rapidly by leading to an increase of a co-10 

ion leakage. Finally, regarding the energy consumption estimation, each study took into 11 

account different parameters to be referenced. For example, Venugopal et al. [36] 12 

reported as total kWh consumed, and values calculated were in the same range as the 13 

obtained in the present study. Besides, Yang et al. [15] stated it as kWh per each kg of 14 

HCl produced. Their energy consumption values were higher (7.2 - 9.4 kWh/kg HCl) 15 

than the ones calculated in this work (1.9 - 3.6 kWh/kg HCl). Also, Tran et al. [24] 16 

quantified as kWh per each kg of mix acid obtained, but also as kWh per kg of mix base 17 

produced. In both cases, the reported energy consumption (5 -6 kWh/kg mix acid and 4 18 

– 5 kg mix base) were higher than in this study (1.9 - 3.6 kWh/kg HCl and 1.8 – 3.6 19 

kWh/kg NaOH). Only, recently, Wang et al. [38], developed a mathematical model of a 20 

typical three-compartment EDBM process to calculate the energy consumption and total 21 

cost of the process. With an increase in the current density, the energy consumption of 22 

the process increases and the total process cost decreases at first and then increases 23 

gradually with a minimum cost value at a given current intensity. 24 

 25 

4. Conclusions 26 

ED was used in order to pre-concentrate SWD-RO brines from 60-70 g/L up to 100 or 27 

200 g NaCl/L by appropriate current density and temperature control. Low temperatures 28 

helped to concentrate easily the SWD-RO brines up to 200 g NaCl/L, while lower 29 

concentrations (100 g NaCl/L) were achieved at higher temperatures (more than 20 ºC). 30 

The ED energy consumption for 0.30 – 0.40 kA/m2 current densities ranged from 0.10 31 

to 0.17 kWh/kg NaCl produced, depending on the final NaCl concentration achieved. 32 
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Moreover, by working with a NaCl initial concentrated stream it was possible to obtain 1 

a NaCl-rich solution with reduced levels of divalent ions.  2 

According to the EDBM results using NaCl concentrates, HCl and NaOH solutions up 3 

to 2 M concentration were produced. EDBM technique requires an initial acid, base and 4 

salt concentration. The initial acid and base concentrations represented no substantial 5 

effect on the overall performance. Then, the minimum initial HCl and NaOH 6 

concentrations are advised to be used. Moreover, concerning the effect of feed salt 7 

concentration, it was reported that an increase of NaCl led to an increase of acid and 8 

base concentration. Then, the ED process can be a successful pre-treatment in order to 9 

have a more concentrated initial feed in the EDBM and produce a more concentrated 10 

HCl and NaOH. 11 

Energy consumption measured in EDBM was ranged from 1.8 to 3.6 kWh/kg NaOH. 12 

Consumption values were lower to those reported in the literature for similar brines 13 

(e.g., pre-treated RO concentrates). Finally, the lineal model developed identified a 14 

minimum EDBM energy consumption of 1.7±0.1 kWh/kg NaOH for an initial NaCl 15 

concentration of 104±4 gNaCl/L and for the initial concentration of HCl and NaOH 16 

circuits of 0.24±0.04 M. Although the energy consumption values for the production of 17 

acid and base to valorize brines are above the market prices, only for in-situ waterworks 18 

uses or when industries would be forced to follow more sustainable brine management 19 

approaches the proposed solution would have potential interest for implementation.   20 
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