
Multiple Target Task Sharing Support
for the OpenMP Accelerator Model

Guray Ozen1,2, Sergi Mateo1,2,

Eduard Ayguadé1,2 Jesús Labarta1,2 and James Beyer3

1 Universitat Politècnica de Catalunya (UPC–BarcelonaTECH), Barcelona, Spain
2 Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain

name.surname@bsc.es
3 Nvidia Corporation
jbeyer@nvidia.com

Abstract. The use of GPU accelerators is becoming common in HPC
platforms due to the their effective performance and energy efficiency.
In addition, new generations of multicore processors are being designed
with wider vector units and/or larger hardware thread counts, also con-
tributing to the peak performance of the whole system. Although current
directive–based paradigms, such as OpenMP or OpenACC, support both
accelerators and multicore-based hosts, they do not provide an effective
and efficient way to concurrently use them, usually resulting in accel-
erated programs in which the potential computational performance of
the host is not exploited. In this paper we propose an extension to the
OpenMP 4.5 directive-based programming model to support the spec-
ification and execution of multiple instances of task regions on differ-
ent devices (i.e. accelerators in conjunction with the vector and heavily
multithreaded capabilities in multicore processors). The compiler is re-
sponsible for the generation of device-specific code for each device kind,
delegating to the runtime system the dynamic schedule of the tasks to
the available devices. The new proposed clause conveys useful insight to
guide the scheduler while keeping a clean, abstract and machine indepen-
dent programmer interface. The potential of the proposal is analyzed in
a prototype implementation in the OmpSs compiler and runtime infras-
tructure. Performance evaluation is done using three kernels (N-Body,
tiled matrix multiply and Stream) on different GPU-capable systems
based on ARM, Intel x86 and IBM Power8. From the evaluation we
observe speed–ups in the 8-20% range compared to versions in which
only the GPU is used, reaching 96% of the additional peak performance
thanks to the reduction of data transfers and the benefits introduced by
the OmpSs NUMA-aware scheduler.

1 Introduction

The use of accelerators has been gaining popularity in the last years due to
their higher peak performance per watt ratio when compared to multicore-
based multi-processors. A remarkable increase in the number of systems based

Ozen, G., Mateo, S., Ayguadé, E., Labarta, J., Beyer, J. Multiple target task sharing support for the OpenMP accelerator model. A:
International Workshop on OpenMP. "OpenMP: memory, devices, and tasks: 12th International Workshop on OpenMP:
IWOMP 2016: Nara, Japan: October 5-7, 2016: proceedings". Nara: Springer, 2016, p. 268-280.
The final authenticated version is available online at https://doi.org/10.1007/978-3-319-45550-1_19

2 Guray Ozen et al.

on Nvidia and AMD GPUs and Xeon Phi co-processors can be observed in the
Top500 supercomputers list. Besides, with the introduction of new ARM-based
heterogeneous architectures, i.e. sockets that incorporate both general-purpose
cores and specialized co-processors like GPUs, the potential applicability of these
architectures seems evident in all forms of computing.

The programmability wall already risen by multicore architectures is even
higher when heterogeneity needs to be considered. Programmers have to deal
with different programming models, such as OpenMP [2], CUDA [8] or OpenCL
[4], different vector intrinsics and use them with device specific optimization
strategies, incurring portability and productivity issues. In addition the pro-
grammer may need to manage multiple memory address spaces and maintain
their consistent view when necessary.

Existing directive-based programming models [9, 2] and their commercial or
research implementations [5, 3] and variants [6, 10] attempt to lower the pro-
grammability wall by addressing some of these challenges. Nevertheless, all these
proposals do not support offloaded task regions to be concurrently executed by
multiple target devices (cores and accelerators) since the annotation of the same
code-block for these different targets is not standard. Programmer has to man-
ually transform the code, write multiple versions of these code-blocks and inject
code to statically/dynamically offload them to the available devices. Usually this
results in small performance benefits that do not compensate the programming
effort devoted. This and the explicit management of data sharing over usually
low bandwidth interfaces in discrete systems is favouring a programming style
in which the bulk of the computation is performed on the accelerators and the
general-purpose cores are just used to configure and manage the accelerators,
remaining unused most of the time.

This paper contributes with an extension to the OpenMP 4.5 directive-based
programming model to support multiple target device code generation and of-
floading. The proposal is partly inspired in the current device type clause in
OpenACC 2.5, the current capabilities of the OmpSs programming model and
the internal discussions in the OpenMP accelerator model committee. The pro-
posal has been included in the MACC [10] compiler, a research compiler for the
accelerator model in the OmpSs programming model, and the new features in
its runtime system to dynamically schedule tasks to all devices available in the
system. In particular we propose new semantics to the already existing device

clause, we adopt the conditional if device construct to specify different thread
hierarchies and clauses for different devices4, and to add a new hint–to-the–
runtime resources clause. The complete proposal allows the programmer to
annotate offloadable task region for multiple different target devices, consider-
ing as devices both host cores as well as accelerators, and gives hints to the
runtime system to appropriately schedule multiple instances of the task to the
available devices, trying to balance the load assigned to them and taking into
account data locality.

4 Currently under discussion in the accelerators subcommittee of the OpenMP Lan-
guage Committee.

Multiple Target Task Sharing Support for the OpenMP Accelerator Model 3

2 Accelerator support in directive-based approaches

This section briefly describes the heterogeneity support currently provided by
the OpenMP 4.5 specification to accelerators programming [2], the OpenACC
2.5 API [9]and the features supported by the MACC compiler for the OmpSs
programming model [10].

2.1 Heterogeneity support in OpenMP accelerator model

With the aim of providing a smooth and portable path to program accelerator-
based architectures, OpenMP 4.5 provides a programming interface based on a
set of directives to offload the execution of code regions onto accelerators, to map
loops inside those regions onto the resources available in the device architecture,
and to map and move data between address spaces.

The main directive is target, which creates the data environment and offload
the execution of a code region on an accelerator device. The device clause is
used in these directives to specify the actual device that will be used to offload
the execution of that code region; an integer-expression value sets the device
to be used. The specification also brings the teams directive to create a thread
hierarchy on the target device, with a league of thread teams. In each team the
threads other than the master thread do not begin execution until the master
thread encounters a parallel region. The distribute directive specifies how
the iterations of one or more loops are distributed across the master threads
of all teams that execute the teams region. In addition, OpenMP 4.5 includes
the simd directive to indicate that a loop can be transformed so that multiple
iterations of the loop can be executed concurrently using SIMD instructions.

In the current 4.5 specification there is no sufficient support to tailor the
information provided in the target directive to different device types. The
conditional if([directive-name-modifier:] scalar-logical-expression)

clause can be used with target and in combined/composite constructs that
include target and parallel. In if(target:scalar-logical-expression),
when the condition evaluates to false the target region is executed by the host de-
vice in the host data environment. In if(parallel:scalar-logical-expression),
the evaluation of the condition is used to determine the number of threads to
use in the region.

2.2 Heterogeneity support in OpenACC

OpenACC provides directives that allow programmers to specify code regions to
be offloaded to accelerator devices and to control many features of these devices
explicitly. The main construct is kernels, instructing the compiler to optimize
the annotated code region and exploit the available parallelism. OpenACC also
offers the parallel and loop constructs for detailed control of kernel offloading
and parallel execution of loops.

For these directives, the current 2.5 specification offers different clauses that
the programmer use to specify alternative options for different accelerators using

4 Guray Ozen et al.

the device type clause. The argument to the clause is a comma-separated list
of one or more accelerator architecture name identifiers, or an asterisk. A single
directive may have one or several device type clauses. Clauses on a directive
with no device type clause apply to all accelerator device types. Clauses that
follow a device type clause up to the end of the directive or up to the next
device type clause are associated with this device type clause. Clauses as-
sociated with a device type clause apply only when compiling for the named
accelerator device type. For each directive, only certain clauses may follow a
device type clause. For example, for parallel the programmer can specify
async, wait, num gangs, num workers, and vector length.

2.3 Heterogeneity support in OmpSs

The OmpSs task-based programming model offers the programmer a single linear
address space on which the data lays. Directionality clauses for the tasks are
specified as the mechanism to provide the runtime the information to compute
data dependences between tasks and to enforce data consistency on systems with
multiple address spaces by managing transfers between different address spaces
transparently to the programmer.

In the initial versions, OmpSs relied on the use of CUDA and OpenCL for
the specification of tasks to be executed on accelerator devices. The target

construct was used to simply direct the compilation of the source code to the
appropriate backend CUDA or OpenCL compiler and to inject the necessary
code for task offloading, including data movement. The device clause in the
target construct is used not to specify the specific device to execute the region
but the device type than can execute it, delegating to the runtime system the
decision of which device to use in case multiple devices of that type are available.
Different versions for the same task, each one tailored to the device kind specified
in the device clause, can be specified through the implements clause.

MACC Compiler. The MACC5 compiler for the OmpSs programming model
supports almost all directives of the OpenMP 4.5 accelerator model with some
extensions to enhance code generation capability and minor semantic changes in
order to allow their combination with other OmpSs directives.

The target construct is always associated to a task construct and the need
for the OpenMP 4.5 target data and target update constructs is eliminated
reducing programming complexity. The rest of device related OpenMP 4.5 con-
structs (teams, distribute and parallel for) are thoroughly implemented
with the originally specified semantics. MACC adds to OpenMP 4.5 additional
data sharing clauses for the team construct: dist private, dist firstprivate

and dist lastprivate; with the chunk size provided in the dist schedule

clause, the compiler is able to make a better use of the memory hierarchy in
the device (e.g. global, shared and local memory), allocating portions of ar-
rays in different teams and performs the necessary data movement according

5 MACC is an abbreviation for ”Mercurium ACCelerator Compiler”.

Multiple Target Task Sharing Support for the OpenMP Accelerator Model 5

to firstprivate and lastprivate semantics. Also, MACC provides nesting of
teams constructs and conditional clauses make the use of dynamic parallelism
feature of GPU architecture that allows to launch a kernel within a kernel with-
out CPU intervention [11]. It shows it is possible for the compiler to generate
code that is then efficiently executed under dynamic runtime scheduling.

3 Proposal and implementation of multi target approach

In this section we propose an extension to the target directive to provide sup-
port for multiple device and conditional compilation. We also comment its im-
plications in the implementation of the compiler and runtime system.

3.1 Target directive syntax extension

In this paper we propose to extend the target construct in three complementary
ways: (i) by allowing the a use of the any keyword in the device clause, telling
the compiler that the directive applies to more than one device type; (ii) by using
new conditional construct if device to provide different directives for different
device types and (iii) with a new resources clause to give hints to the runtime
system to appropriately balance the scheduling of tasks to the different devices
in the system. Figure 1 shows the proposed syntax extension.

Multiple device targeting example

1 #pragma omp target device(any) distribute parallel for
2 for-loops

Multiple device targeting with conditional compilation example

1 #pragma omp target device(any) [clause[[,] clause] ...]
2 #pragma omp
3 if_device(archtype , subtype) construct -set resources(percentage-integer) \
4 if_device(archtype , subtype) construct -set resources(percentage-integer)
5 structured-block

Fig. 1: Usage of Conditional Multi Targeting support of OpenMP

The upper part in Figure 1 shows an example of use for the any keyword.
When this keyword appears in the device clause, the compiler will have to
generate multiple versions for the target region each one tailored to a different
kind of device. In other cases, it is possible that the same directive set may not be
appropriate for the different devices available. To that end we also propose the
if device construct, allowing the programmer to specify different directive set
for different devices. The lower part of Figure 1 shows the use of this construct.
In the construct-set the programmer can specify for the same code block
different thread hierarchies and clauses according to the OpenMP 4.5 accelerator
model, each one tailored to a device kind. At execution time the runtime system
will decide among the different implementations provided the one that is more
appropriate for each particular instance of the task to be offloaded.

6 Guray Ozen et al.

Finally we also propose the resources clause, providing a hint to help the
runtime system to decide where to schedule the execution of the next task in-
stance. For each device the programmer specifies a value (or expression) over 100
which indicates the amount of ”tokens” consumed every time a task is sched-
uled on that device; once a task finishes its execution, that number of tokens
is restored. If at any time the number of tokens available is not sufficient, the
runtime will not be able to schedule the task to that device, choosing a different
device that requires less resources if possible.

A more specific example illustrating the use of the proposed extensions is
shown in the upper part in Figure 2; the code corresponds to the main loop
of the N-Body simulation kernel that is used later in the evaluation section.
In this example, the programmer specifies in line 4 that the target region can
be executed in different device types. Device specific directives are specified in
lines 5 and 6 for Nvidia accelerators with compute capability 3.5 and for host,
respectively. In addition, the programmer specifies the number of tokens con-
sumed/released every time a task is scheduled to execute or finishes its execution
on every possible device: 2 token (over 100) when task is offloaded to the Nvidia
accelerator or 40 tokens (over 100) when executed in the host. In this case the
programmer expresses that no more than 2 tasks should be scheduled to be exe-
cuted in the host at any time. These combination can be estimated considering
separate performance of multiple targets after some initial experiments, or could
be auto-tuned by the runtime if auto is used instead of an integer number. These
two aspects are not considered in this paper and are subject of current research.

3.2 Compiler and runtime support to the proposed extensions

Figure 3 shows the compilation pipeline in the MACC compiler once the Mer-
curium Intermediate Representation (IR) has been generated. Different device-
specific IR lowering phases can be implemented, each one either transforming
the IR (e.g. for the host device by inserting the appropriate calls to the OmpSs
runtime system) or generating an output file to be compiled by a device-specific
native compiler (e.g. CUDA for the NVIDIA device). The multiple device dis-
patcher unit is in charge of forwarding a new copy of the IR for each device type
in the list of devices in the device clause to the appropriate lowering phase. The
implementation is extensible as shown with dotted lines and the nextgen device
lowering phase. At the end of the compilation pipeline, the compiler driver com-
piles each output file with appropriate back-end compiler and links object files
to generate the final executable file.

Before the execution of the Host lowering phase it can be necessary to execute
a host IR reducer phase when one set of directives are used for all devices. This
phase is in charge of adapting the thread hierarchy supported by the OpenMP
4.5 accelerator model (teams and threads) to the flat thread model. This step
basically selects the outermost loop affected with a distribute or parallel

for directive and transforms it into a parallel for directive. Other directives
in the target region are ignored for host device, except for simd constructs
which are then lowered to specific SIMD operations in the host.

Multiple Target Task Sharing Support for the OpenMP Accelerator Model 7

All-Pairs N-Body Simulation with O(n2) Complexity

1 //N-Body Computation
2 for (int k = 0; k < n; k+=BS)
3 {
4 #pragma omp target device(any) map(tofrom:vx[k:BS],vy[k:BS],vz[k:BS]) nowait
5 #pragma omp if_device(NVIDIA ,cc35) teams distribute parallel for resources (2)
6 #pragma omp if_device(host) parallel for resources (40)
7 for (int i = k; i < k+BS; ++i) {
8 float Fx = 0.0f; float Fy = 0.0f; float Fz = 0.0f;
9

10 #pragma omp simd reduction (+:Fx ,Fy,Fz)
11 for (int j = 0; j < n; j++) {
12 float dy = y[j] - y[i];
13 float dz = z[j] - z[i];
14 float dx = x[j] - x[i];
15 float distSqr = dx*dx + dy*dy + dz*dz+CONST;
16 float invDist = 1.0f / sqrtf(distSqr);
17 float invDist3 = invDist * invDist * invDist;
18 Fx += dx * invDist3; Fy += dy * invDist3; Fz += dz * invDist3;
19 }
20 vx[i] += dt*Fx; vy[i] += dt*Fy; vz[i] += dt*Fz;
21 }
22 }

Transformed NVIDIA-Task Code

1 #pragma omp teams distribute \
2 parallel for resources (2)
3 for (int i ...) {
4 for (int j ...) {
5 ...
6 }
7 }

Transformed Host-Task Code

1 #pragma omp parallel for resources (40)
2 for (int i ...) {
3 #pragma omp simd [clause ...]
4 for (int j ...) {
5 ...
6 }
7 }

Fig. 2: N-Body example of MACC IR Code Transformation

The lower part in Figure 2 shows how the directives are interpreted for each
device type in order to adapt the generic thread hierarchy to each specific device:
NVIDIA on the left and host on the right.

3.3 Compiler and Runtime Support for the resources Clause

For the resources clause, the compiler just parses the two fields for each de-
vice kind and pass this information to the runtime system though an internal
runtime call. This information is used by the runtime system to account for the
total number of resource ”tokens” available at any time. When a task is ready
for execution, the runtime checks if enough tokens are available for any of the
possible target devices; if so, then the runtime subtracts the specified resource
tokens for the selected device from the currently available tokens. When the task
finishes its execution, the runtime adds the same amount of tokens to the total
count. Both operations are done using atomic operations.

4 Evaluation

In this section we present the performance evaluation of the multiple targeted
task-sharing proposal and its implementation in the MACC compiler and OmpSs

8 Guray Ozen et al.

Fig. 3: Overview of device dispatcher and IR lowering units.

runtime system. To that end we use a variety of system configurations and
three small kernel applications: N-Body, tiled matrix multiply and the Stream
benchmark.

4.1 System configurations

Table 1 shows the main characteristics of the four systems that have been used for
the experimental evaluation of the proposal in this paper. The different system
configurations offer different ratios between the performance of the host and the
performance of the accelerator devices.

The 1st system is based on an old generation of Nvidia GPUs (Fermi archi-
tecture) while the 2nd and 3rd systems are based on a more recent Nvidia GPU
(Tesla K40). The first two systems are based on Intel hosts while the 3rd system
is based on the emergent IBM Power8 architecture with high memory band-
width and increased hardware thread counts. Finally the 4th system is based on
ARM SoC with a tiny GPU which just includes one Streaming Multiprocessor
Architecture (SMX).

System Processor Memory Nvidia GPU

1
2 x Intel Xeon(TM) E5649 sockets
6-core/socket at 2.53GHz

24 GB
2 x Tesla M2090
(Fermi, 512 cores)

2
1 x Intel Core(TM) i7-4820K socket
4-core/socket, 2-hw threads/core at 3.70GHz

64 GB
2 x Tesla K40c
(Kepler, 2880 cores)

3
2 x IBM Power S824L sockets
12-core/socket, 8-hw threads/core at 3.52 GHz

1 TB
2 x Tesla K40m
(Kepler, 2880 cores)

4
Nvidia Jetson TK1 SoC
4-core Cortex-A15 up to 2.5GHz

2 GB
1 x GK20A
(Kepler, 192 cores)

Table 1: System configurations

All CUDA codes in this paper have been automatically generated by the
MACC compiler and compiled with nvcc v7.0, except for the 4th system which
makes use of v6.0. GCC 4.9 is used to compile host codes on all systems with -O3
optimization level. The simd construct in OpenMP 4.5 and auto-vectorization
is performed by back-end GCC compiler.

Multiple Target Task Sharing Support for the OpenMP Accelerator Model 9

4.2 OmpSs runtime configurations and thread binding

The OmpSs runtime is used to support the execution of work-sharing and tasking
constructs. In addition, the OmpSs runtime manages host/GPU data transfers
and concurrent kernel execution and CUDA streams. To that end OmpSs reserves
a helper thread in the socket for each GPU device attached to it; the rest of
threads are used to execute host tasks. The execution of host target regions is
assigned to sockets in a round-robin way and work-sharing constructs inside an
host target region are bound to the threads in a single socket,

For the 3rd system based on IBM Power8 processors we have activated the
NUMA-aware scheduler feature in the OmpSs runtime. The runtime detects the
socket architecture of the system and binds threads properly, distributing tasks
according to the memory layout. Besides that, in order to investigate the effect
of multithreading inside a core, we adjust the OmpSs thread binding (using an
environment variable) to use 1, 2, 4 or 8 threads per core.

4.3 Performance results

N-Body. This kernel computes the motion of a set of bodies based on the
forces between them. For this simulation, an all-pairs algorithm is used with
O(n2) complexity, as shown in the upper code in Figure 2. The resources

values have been set to maximize load balancing between tasks executed on the
host processors and the GPU devices.

Fig. 4: N-Body simulation performance results.

Figure 4 shows the performance results obtained for the N-Body kernel. The
plot on the top-right corner shows the GFLOPs achieved when using the cores
in the host for the three first system configurations. The main plot in the same
figure shows how much of that performance is actually contributed to the overall
performance when using one and two GPUs, observing increases in the 8%-14%
and 4%-10% ranges, respectively. This contributed performance is very close to
the ideal performance which could be obtained by just adding the performance
of the CPU to the GPU.

10 Guray Ozen et al.

Finally, the performance of the N-Body kernel has also been evaluated on the
4th system based on the Jetson TK1. The left plot in the Figure 5 shows three
different results: CPU only, GPU only and combined CPU/GPU. In this case,
the performance benefit is up to 20% due to the relatively close performance of
the ARM cores and the small GPU in the SoC.

Fig. 5: N-Body and tiled-gemm performance on Jetson TK1.

Tiled matrix multiply. The kernel performs a dense matrix multiplication of
two square matrices A×B = C. Matrices are divided in blocks and each task is
responsible for the computation of one of such blocks of the output matrix C.
The matrix size is used 8192x8192 double-precision floating-point elements with
512x512 block size.

The matrix multiply kernel is written using six nested loops: the three in-
nermost ones are annotated with MACC directives for multiple target devices.
The MACC compiler transformed them into non-optimized CUDA code (current
implementation lacks of many optimization phases that would be necessary to
generate an optimized kernel) and highly optimized using expensive optimization
features of back-end compiler for the host.

The performance for this kernel has been evaluated on the Nvidia Jetson
TK1 (right plot in Figure 5) and IBM Power8 (Figure 6) platforms. For the
TK1 system we can conclude that the work was shared among the entire SoC
elements, with the cores being able to contribute to the performance of the GPU.

For the Power8 system, the plot on the top-right corner shows the perfor-
mance that is obtained when using different numbers different numbers of SMT
threads. The main plot in that figure then shows how this performance is con-
tributed to the hybrid system, observing performance increases of 30% and 16%
when one and two GPUs are used, respectively. Observe that the best result is
obtained when two SMT threads per core are activated, since each Power8 core
includes two vector unit and load/store unit.

STREAM. This code [7] is commonly used to benchmark the memory band-
width. It consists of four micro-benchmarks accessing three vectors a, b and
c and a scalar variable, inside an iterative loop that repeats their execution a

Multiple Target Task Sharing Support for the OpenMP Accelerator Model 11

Fig. 6: Matrix multiplication performance results

Fig. 7: Stream bandwidth performance avg rate (GB/s)

number of times. Loop tiling has been applied to the outermost loop in these
four operations in order to divide the iterations into multiple tasks and to run
them in parallel. Task dependencies are specified between the tasks computing
the four different operations.

This benchmark is evaluated using the 2nd and 3rd system. Bot use the
same Nvidia GPU (with reported memory bandwidth of 288 GB/s). However,
the processors in the 2nd system report a memory bandwidth of 59.7 GB/s while
the processors in the 3rd system report average 192 GB/s (with a maximum of
275GB/s on the individual micro benchmarks [1]). Therefore, comparing these
two systems provides a good opportunity to see how the runtime is able to fully
exploit the additional bandwidth in the Power8 system.

Figure 7 shows the average bandwidth reported by the Stream benchmark
when different numbers of host threads that are called also SMP workers are
used, for both systems evaluated. For the Power8 system (right plot), an speed
up to 84% over GPU baseline is achieved when using all the cores in the entire
system. For the i7-based system (left plot), the best performance is achieved
when only two cores are used, showing the memory bandwidth bottleneck of
the socket. When GPU tasks are finished, the runtime steals tasks which were

12 Guray Ozen et al.

initially assigned to the CPU, forcing the runtime to copy data from host to
device.

Fig. 8: Output data size of stream benchmark

Finally, Figure 8 shows the total amount of data that is produced by the
different devices. The largest amount of data produced by the CPU is achieved
when 24 cores are used on the Power8 system.

5 Conclusions and future work

In this paper we have proposed an extension to directive-based programming
models to support the possibility of allowing the execution (of multiple instances)
of a target region on different devices in an heterogenous architecture. We have
also analyzed its implementation in the OmpSs compiler and runtime system
and evaluated its performance for a variety of system configurations and some
kernel applications. The proposed extensions ease the use of multiple acceler-
ators in conjunction with the vector and heavily multithreaded capabilities in
multicore processors without any code modification. The new proposed construct
and clause convey useful insight to guide the scheduler while keeping a clean,
abstract and machine independent programmer interface. The performance eval-
uation shows that with the new resources-based scheduler the runtime is able to
take benefit of all devices available in the heterogeneous system.

As part of our current work, we plan to extend our implementation to support
other architectures, like Xeon Phi and FPGA devices. Then, we will also need
to tune our scheduling parameters to fit all of them. We are also investigating
the use of nested (dynamic in CUDA terminology) parallelism in target regions
[11] and how the proposed extensions in this paper interact with them.

6 Acknowledgments

This work is partially supported by the IBM/BSC Deep Learning Center Initia-
tive, by the Spanish Government through Programa Severo Ochoa (SEV-2015-
0493), by the Spanish Ministry of Science and Technology through TIN2015-
65316-P project and by the Generalitat de Catalunya (contract 2014-SGR-1051).

References

[1] Andrew V. Adinetz, Paul F. Baumeister, Hans Böttiger, Thorsten Hater,
Thilo Maurer, Dirk Pleiter, Wolfram Schenck, and Sebastiano Fabio Schi-
fano. Performance evaluation of scientific applications on POWER8. In High
Performance Computing Systems. Performance Modeling, Benchmarking,
and Simulation - 5th International Workshop, PMBS 2014, New Orleans,
LA, USA, November 16, 2014. Revised Selected Papers, pages 24–45, 2014.

[2] OpenMP ARB. OpenMP application program interface, v. 4.5. 2015.
[3] Carlo Bertolli, Samuel F. Antao, Alexandre E. Eichenberger, Kevin O’Brien,

Zehra Sura, Arpith C. Jacob, Tong Chen, and Olivier Sallenave. Coordi-
nating GPU threads for OpenMP 4.0 in LLVM. In Proceedings of the 2014
LLVM Compiler Infrastructure in HPC, LLVM-HPC ’14, pages 12–21, Pis-
cataway, NJ, USA, 2014. IEEE Press.

[4] Khronos OpenCL Working Group. The OpenCL specification, version 2.0.
2014.

[5] The Portland Group. PGI accelerator compilers.
[6] Seyong Lee and Jeffrey S. Vetter. OpenARC: Open Accelerator Re-

search Compiler for directive-based, efficient heterogeneous computing. In
The 23rd International Symposium on High-Performance Parallel and Dis-
tributed Computing, HPDC’14, Vancouver, BC, Canada - June 23 - 27,
2014, pages 115–120, 2014.

[7] J.D McCalpin. Stream: Sustainable memory bandwidth in high performance
computers. Technical report, University of Virginia, 2007.

[8] NVIDIA. CUDA C programming guide version 7.0. NVIDIA Corporation,
2013.

[9] OpenACC-Standard.org. OpenACC application programming interface, v.
2.5. 2015.

[10] Guray Ozen, Eduard Ayguadé, and Jesús Labarta. On the roles of the pro-
grammer, the compiler and the runtime system when programming acceler-
ators in OpenMP. In Using and Improving OpenMP for Devices, Tasks, and
More - 10th International Workshop on OpenMP, IWOMP 2014, Salvador,
Brazil, September 28-30, 2014. Proceedings, pages 215–229, 2014.

[11] Guray Ozen, Eduard Ayguadé, and Jesús Labarta. Exploring dynamic par-
allelism in OpenMP. In Proceedings of the Second Workshop on Acceler-
ator Programming using Directives, WACCPD 2015, Austin, Texas, USA,
November 15, 2015, pages 5:1–5:8, 2015.

