

MASTER THESIS

TITLE: Design and development of a smart car gateway

MASTER DEGREE: Master of Science in Telecommunication Engineering
& Management

AUTHOR: Adrià López Molina

DIRECTOR: Rafael Vidal Ferré

DATE: October 27th 2016

Títol: Design and development of a smart car gateway

Autor: Adrià López Molina

Director: Rafael Vidal Ferré

Data: 27 d’octubre de 2016

Resum

A dia d’avui, el nou paradigma de l’Internet de les coses (Internet of Things)
està al focus de la investigació i innovació, suposant un canvi en el com
interactuarem amb el nostre entorn. Aquest paradigma es basa en la
connectivitat total dels dispositius i instruments que diàriament fem servir.

Dins d’aquest marc, aquest projecte té com a objectiu l’estudi de solucions que
ens permetin millorar la connectivitat dels vehicles i dels seus ocupants traient
profit de l’accés a més d’una tecnologia sense fils.

Concretament, l’estudi que presenta el document es basa en l’anàlisi dels
protocols Multipath TCP i Mobile IPv6 (NEMO) amb la finalitat de poder
suportar la comunicació en entorns de mobilitat. Ambdós protocols serviran
com a base pel disseny d’una porta d’enllaç entre el vehicle i l’entorn que
pugui suportar la millor connectivitat possible en aquest tipus d’escenaris.

A més, es proposa l’ús d’informació de tipus Open Data, principalment oferta
per organitzacions territorials o proveïdors de serveis, que ens ajudarà a
aportar un valor afegit a la pressa de decisions i a les funcionalitats de la porta
d’enllaç.

Finalment, es detalla un cas d’ús en el qual es busca poder aplicar el
coneixement adquirit per tal d’aterrar els resultats teòrics i empírics a una
situació quotidiana. Partint de la definició d’un algoritme que permetrà a la
porta d’enllaç conèixer les diferents casuístiques que poden donar-se a una
ruta aleatòria, l’objectiu és que el sistema sigui capaç de decidir en cada
moment on es garantirà la millor connectivitat tenint en compte d’altres factors
com, per exemple, els punts de connexió Wi-Fi dins la ruta i les situacions on
poder estalviar consum de dades sense perdre qualitat en la descàrrega de
continguts per part de l’usuari.

Title: Design and development of a smart car gateway

Author: Adrià López Molina

Director: Rafael Vidal Ferré

Date: October, 27th 2016

Overview

Nowadays, the new paradigm of the Internet of Things is on the focus of
research and innovation, leading to a change in how we interact with our
environment. This paradigm is based on the full connectivity for all devices and
instruments that we use daily.

Within this context, this project aims to study solutions that allow us to improve
the connectivity of vehicles and their occupants taking advantage of the access
to more than one wireless technology.

Specifically, the study is based on the analysis of the protocols Multipath TCP
and Mobile IPv6 (NEMO) in order to be able to support communications in
mobile environments. Both protocols will serve as a basis for the design of a
gateway between the vehicle and the environment that can support the best
possible connectivity in such scenarios.

In addition, Open Data information is proposed to be used, datasets mainly
offered by regional organizations or service providers, in order to help us to
bring an added value to the decision process and new functionalities to the
gateway.

Finally, a use case is presented with the main objective to apply the acquired
knowledge in an everyday situation. Based on an algorithm definition that takes
care of the different situations that can occur in a random route, the gateway
can decide the best option to ensure the optimum connectivity. This is done
taking into account factors like, for example, the presence of Wi-Fi hotspots in
the route or the situations where data consumption savings can be achieved
without losing quality in content downloading.

INDEX

INTRODUCTION .. 1

CHAPTER 1. INITIAL ANALYSIS ... 4

1.1. Protocols .. 4
1.1.1. Multipath TCP ... 4
1.1.2. Mobile IP ... 6

1.2. Open data ... 7
1.2.1. Mobile coverage ... 8
1.2.2. Wi-Fi coverage.. 9
1.2.3. Traffic status ... 10

1.3. Opportunities ... 11
1.3.1. Multihoming .. 11
1.3.2. Open data integration ... 13

CHAPTER 2. SOFTWARE IMPLEMENTATION ... 15

2.1. Software requirements .. 15
2.1.1. Multipath TCP ... 15
2.1.2. Mobile IP ... 16

CHAPTER 3. TEST BED EVALUATION ... 17

3.1. Test bed description ... 17
3.1.1. Test bed settings .. 18

3.2. Protocol Performance ... 21
3.2.1. NEMO Performance ... 21
3.2.2. MPTCP Performance ... 25
3.2.3. Combination of NEMO and MPTCP ... 32
3.2.4. Results analysis .. 36
3.2.5. Conclusions .. 37

CHAPTER 4. HANDOVER OPTIMIZATION .. 39

4.1. Open data for connectivity improvement ... 39

4.2. Flow diagram description ... 40

4.3. Application in a random route .. 43

4.4. Supported applications ... 47

CHAPTER 5. CONCLUSIONS ... 49

5.1. Future work .. 49

ANNEX I. MOBILITY SOLUTIONS CONFIGURATION 52

I.1 Multipath TCP ... 52

I.1.2 MPTCP test bed ... 52
I.1.3 Test 1 – MPTCP subflows .. 57
I.1.4 Test 2 – Server-Client file transfer .. 58
I.1.4 Test 3 – MPTCP connection properties ... 61

I.2 Mobile IP ... 70
I.2.1 MIPv6 test bed – Installation and configuration.. 70
I.2.2 MIPv6 test bed – Checking connectivity ... 79
I.2.3 Adding NEMO Basic Support ... 80

ANNEX II. OPEN DATA AND OPERATING SYSTEMS 86

II.1 Open data examples .. 86
II.1.1 Overview ... 86
II.1.2 Open data – Spanish territory ... 88
II.1.3 Open data – Catalonian territory .. 91
II.1.4 Open data – Barcelona City territory .. 94

II.2 Automotive Grade Linux (AGL) Demonstrator ... 95

REFERENCES ... 98

Introduction 1

INTRODUCTION

Connected cars look set to be the consumer devices that are going to be one of
the driving forces behind the Internet of Things.

According to many reports, as the Gartner’s one published on January 2015, by
the end of the decade, 250 million ‘smart’ vehicles will be on the world’s road,
offering drivers mobile internet access, communication capabilities between
other vehicles and road infrastructure and the first mass-market elements of
autonomous driving.

One of the first regulated projects of this kind in the EU is eCall [1]. In 2015, the
European Parliament approved a new regulation regarding this technology,
which requires all new cars be equipped with eCall system from April 2018. In
case of a crash, an eCall-equipped car automatically calls the nearest
emergency centre and, in case that nobody can talk, also sends the exact
location of the accident.

Another real case is MirrorLink, a device interoperability standard that offers
integration between a smartphone and a car’s infotainment system. Today this
system is implemented in some car models, but from November 2015 ETSI and
the Car Connectivity Consortium signed a co-operation agreement in which the
first one will formally explore adopting MirrorLink as en ETSI Technical
Specification [2].

Nowadays, car manufacturers as Opel are mounting smart car systems in their
vehicles. Opel OnStar [3] provides personal connectivity and service assistant
in some models and allows the users to connect up to seven devices to the car
network, download routes and traffic information and get real-time information
about car conditions and future maintenance actions.

Following and supporting these approaches, this thesis explores the analysis of
capabilities and requirements in order to design a smart car gateway that allows
the driver to take advantage from the connected car, as long as we can obtain
the best possible connectivity.

In order to do this, TCP/IP protocols Multipath-TCP and Mobile IP are proposed
and analysed considering the mobility particularities that implies an urban
scenario with 3G/4G and Wi-Fi coverage.

First chapter is focused on presenting both protocols and its capacity to take
profit of two radio interfaces. Then, the benefits that open data could give to the
system are presented. The objective is to contextualize these main lines and
provide the theoretical base for the following chapters.

On the other hand, the technical requirements needed for the chosen protocols
implementations are presented in the second chapter in order to study the
technologies behaviour in a test scenario.

2 Design and development of a smart car gateway

Third chapter presents the results of NEMO and MPTCP performance tests,
alone or combined. It starts by presenting the test bed where the tests are done
and continues, talking about its basic settings, the signalling messages for each
protocol and the customization of the fixed part of the network, in order to
reproduce a realistic scenario. Finally, it presents the obtained results for the
protocols performance in the test bed.

Meanwhile, chapter 4 presents a decision algorithm that, with the help of
external open data sources and using the acquired knowledge in the
performance study, tries to determine the best moment to do a handover in a
random route. Afterwards, this algorithm is applied in a particular case in a
particular route in the city of Barcelona.

In addition, this document includes two annexes. In the first one, the setting
methods of MPTCP and NEMO are extended. Test bed preparation,
configuration scripts and first tests done are also shown. Moreover, the second
annex presents more open data examples and an implementation of specific
operating system for the connected car.

4 Design and development of a smart car gateway

CHAPTER 1. INITIAL ANALYSIS

1.1. Protocols

1.1.1. Multipath TCP

Multipath TCP is a set of TCP extensions defined in RFC 6824 [4] that allows a
single TCP connection to send and receive data using different IP addresses
simultaneously.

Fig. 1.1 MPTCP protocol stack, adapted from RFC 6128.

With normal TCP, there is only one data flow per connection, between to pairs
of IP addresses and ports. With MPTCP, data belonging to a same connection
can be transmitted with different source and destination IP addresses and ports.
Packets having the same source and destination IP address and ports belong to
a same subflow.

At the MPTCP connection level (also called data-level by RFC 6824), a
connection can use several subflows and the data is reordered and ready to be
delivered to the application socket. Also, as visible on Figure 1.1 (which
presents high-level architecture of MPTCP by RFC 6128 [5]) the transport layer
is divided in two parts: the application-oriented semantic layer (which ensures
the reliable data transmission) and the network-oriented flow and endpoint
identification (that focuses on congestion control).

MPTCP is also a protocol that allows switching between all the interfaces of a
specified device and only works with TCP applications. When establishing a

Chapter 1. Introduction 5

connection, and MPTCP-enabled host opens a TCP connection by sending a
SYN packet, the destination (also a MPTCP-enabled host) reply with an
SYN/ACK response and finally the first host completes the three-way
handshake with an ACK packet. If the destination host or any other middlebox
on the path does not support MPTCP, the connection falls back to normal TCP.
Figure 1.2 shows a successful MPTCP connection establishment.

Fig. 1.2 MPTCP initial handshake and subflow opening (RFC 6824).

Finally, it is interesting to look at the expected performance of MPTCP and
describe the main characteristics and benefits of this protocol.

- Reliability: MPTCP helps to recover from link failures if several
interfaces are available on any endpoint. For example, imagine an
embedded device that has 3 operative interfaces: Ethernet, Wi-Fi and
3G, where the first one (Ethernet) is the default interface. In the case
where this interface is disconnected, the protocol would activate any of
the other. And in the same way it would make the same operation if the
second one loses coverage or connectivity.

In this way, Multipath TCP protocol (MPTCP) allows not to lose device
connectivity, always being transparent to the user. Links may be added
or dropped as the user moves in or out of coverage without disrupting the
end-to-end TCP connection.

Also MPTCP increases the redundancy and can balance a single TCP
connection across multiple interfaces.

- Throughput: global throughput is expected to be at least as good as the
available throughput on the best path. The total throughput that an
MPTCP connection can achieve would be lower than the sum of the

6 Design and development of a smart car gateway

throughputs of individual TCP flows in network layer. Anyway, MPTCP
increases the throughput, which becomes the sum of all available link-
level channels.

- Latency: the impact of this characteristic is difficult to estimate. It

depends on how the sender splits the data between the different
subflows.

1.1.2. Mobile IP

Mobile IP is a protocol designed (RFC 6275 [6]) to allow user mobility between
networks maintaining a permanent IP address and without changing it.

The main features and advantages of Mobile IP are:

- Continuous connectivity to the network.
- Maintain a permanent IP when user moves.
- Maintain the connectivity between a mobile device and a static node.
- Reduce the effects of changes in location of the mobile device.

An extension of this protocol is NEMO (Network Mobility Basic Support
Protocol). NEMO (RFC 3963 [7]) supports mobility for entire mobile networks
that move and attach to different points in the Internet. It allows session
continuity for every node in the mobile network as the network moves and can
work with all type of applications because mobility is supported at network layer.

In order to maintain the IPv6 addressing for the mobile network, the mobility
capabilities that NEMO provides are distributed between the Mobile Router
(MR) and the Home Agent (HA) entities.

An unchangeable IPv6 Mobile Network Prefix (MNP) is delegated by the home
network to the MR for assigning addresses to the Mobile Network Nodes
(MNN). Following the NEMO model, upon the reception of a Router
Advertisement (RA) message from the Access Router (AR), the MR is aware of
the existence of a new network. In this case, the MR, which already has a fixed
IPv6 address within its home network (Home Address or HoA), generates a new
auto configured IPv6 address within the new visited network (Care-of address
CoA, immediately notified to HA).

Only the MR and the HA are aware of the network change, since MNNs
continue connected with MR using the same address configured by the MNP.
Hence, when any device outside the home network communicates with any of
the MNNs, it uses the MNP-generated address as destination, and packets
follow the route towards the home network. Then HA redirects these IPv6
packets to the current IPv6 CoA of MR, which finally distributes the packets
within the mobile network. HA and MR perform an IPv6 into IPv6 encapsulation
to create a mobility tunnel.

Chapter 1. Introduction 7

Fig. 1.3 Entities involved in NEMO Basic Support.

In this way, the main objective is to preserve session continuity between
Correspondent Nodes (CNs) and all MNNs behind the MR, while this one
changes its point of attachment (see Fig. 1.3).

NEMO is used as part of ITS (Intelligence Transport System) implemented in a
vehicle [8]. In this particular case, the smart car gateway will implement a
Mobile Router (MR), which will keep the car connected to IP level.

1.2. Open data

Open data is considered as a key point in the smart car gateway. The fact to
include external information in the system will give relevant information to the
user in order to be used in many driving circumstances or in entertainment
applications.

To include this kind of external information in the smart car gateway, we can
follow two methods:

- Preload of the external information in the smart car gateway.
- Retrieve of the information using external servers or services.

The first possibility resides on storing the information inside the system of our
smart car, but it can be hard to maintain and should be the user who performs
these operations. This method may be followed, for example, with some kind of
static information that does not change over the time.

The second option is related to get updated information but avoiding
maintaining tasks. This can be done thanks to some online available services
that will allow us to periodically download the information and store it in the

8 Design and development of a smart car gateway

system. Normally, these services can be accessed through specific API’s
(Application Programming Interfaces).

Depends on the API, the content can be fully or partly downloaded. Some
datasets are prepared to get only the updates but others require getting the full
information in every query made to the service. Many of them are from this last
type and, therefore, we should consider the required time to get the full file in
order to decide the optimal type of connection.

For example, Wi-Fi hotpots’ file of Barcelona City [9] can only be fully retrieved
from its API. The file has a size of 186KB and the expended time to download it
from the server is about 685ms, using the home’s Wi-Fi just before leaving the
parking.

1.2.1. Mobile coverage

In this context and as first step, we will initially consider a dataset from the
Catalan Government in order to get updated information about mobility
coverage in all the territory [10]. This is a collaborative project where the
population shares its own mobile data in order to define a centralized coverage
map and indicate information about:

- Mobile coverage level
- Telecommunications provider
- Mobile Technology (2G, 3G or 4G)

The information is provided in CSV format and each file contains:

- Date and hour of the measure
- Position coordinates (Latitude/Longitude in EPSG 3857 format)
- Signal level in ASU format [11]
- Used technology (2G, 3G or 4G)
- Service Operator (Movistar, Vodafone, Orange and Yoigo)

These CSV files are updated every two months and the smart car gateway will
be programmed to retrieve the new files thanks to the connection to the web
services available by the open data website.

The following images show a map of the mobile coverage in all the Catalonia
territory and a map of the 4G’s coverage in Barcelona city area, with the
information retrieved from the May’s file.

Chapter 1. Introduction 9

Fig. 1.4 Mobile coverage in Catalonia and 4G’s coverage in Barcelona

As explained before, data is collected anonymously from smartphone users and
the information is somewhat indicative. Therefore, the more measures taken at
one point, more correct interpretation of the signal level will be.

1.2.2. Wi-Fi coverage

Another web service initially to consider and include in our system should be the
information of available Wi-Fi access points in the territory. In order to unify the
information from the Wi-Fi coverage and the 3G coverage (detailed in the
previous section), it was selected the web service “Wi-Fi hotspots” [9] offered by
the Barcelona City Council. That will allow us to obtain this kind of information
also along the Catalan territory but specifically in Barcelona city area. To match
both data sources, the chosen area to load initially on the system will be the city
of Barcelona.

The information is also available in CSV format (with a new file each month)
and the data contained in the files is the following one:

- Hotspot coordinates (Latitude/Longitude in UTM31 ED50 format)
- Address of the hot spot
- Local equipment that gives the service
- Contact of the local equipment

Next figure shows the hotspots location retrieved from the files.

10 Design and development of a smart car gateway

Fig. 1.5 Wi-Fi hotspots in Barcelona city

Once we can get this updated information about mobile coverage (3G/4G) and
Wi-Fi hotspots location, we could use this information to define route strategies
and decide when to make the handovers between networks while driving.

Based on the results of the experiments presented in the next chapter we can
decide the thresholds for when to connect or disconnect from one technology to
the other, but always maintaining the connectivity of the car.

1.2.3. Traffic status

Traffic status is also a useful and available information that we can retrieve from
external services. This data can help us in order to know the real status of the
roads with information about incidents, congestions, roadworks and adverse
weather.

We can use this API in order to get an XML generated file and load it into our
system, but also we can retrieve the data by the connection to the government
WMS server [12] directly from the car.

Chapter 1. Introduction 11

Fig. 1.6 Traffic status and affectations

Some specific information that we can get with this real-time service:

- Traffic incidents by road and section (Km points).
- Roadworks by road and section.
- Time spent to cross roads sections.

With that, we could better approximate the time spent to make a route not only
by the fact that we can know all about the instant traffic status, but also because
the service can give us the predicted traffic status in about a maximum of 15
minutes.

1.3. Opportunities

1.3.1. Multihoming

Multihoming makes reference to a device that is connected to more than one
network. For example, in our case, a smart car gateway could be connected
using Wi-Fi or 3G/4G networks. The benefits could be:

- Increase the reliability of an IP network.
- Overcome the mobile wideband coverage problems.

Multihoming has some variants:

- Single Link, Multiple IP address
 When the host has multiple IP addresses but only one physical

upstream link.
 If the single link fails, connectivity is down for all addresses.

- Multiple Interfaces, Single IP address per interface

12 Design and development of a smart car gateway

 When the host has multiple NIC (Network Interface Controllers)
and each interface has one (or more) IP addresses.

 If one of the links fails, then its IP address becomes unreachable,
but the other IP addresses may still work.

 Multipath is used to switch network interfaces when one of them
fails, in order to not to lose the connectivity (for other interface still
working). Also Multipath allows using every available network
interface.

- Multiple Links, Single IP address
 Main variant of Multihoming. With the use of a routing protocol (in

most cases BGP) the routing element announces this address to
its upstream links.

 If one of the links fails, the protocol notices this on both sides and
traffic is not sent over the failing link any more.

 This method is usually employed to multihome a site and not for
single hosts.

- Multiple Links, Multiple IP address
 This method uses a specialized Link Load Balancer (or WAN Load

Balancer) appliance between the firewall and the link routers.
 It allows use of all links at the same time to increase the total

available bandwidth and detects link saturation and failures in real
time to redirect traffic.

 Also is used to control routing between the separate address
spaces used by each interface.

MPTCP is designed to take profit of Multihoming. Regarding the improved
resilience and increased throughput that Multihoming should provide, MPTCP
naturally detects if one of the interfaces stops working and allows
communications to continue over the other paths without a break. Besides, also
MPTCP distributes the traffic over the paths to make more efficient use of the
available capacity on the several paths accessed through the different
interfaces.

Moreover, a mobile node maintains continuous communications as it moves
though areas served by dissimilar access networks. Handover is “smooth” since
all the interfaces are used simultaneously, i.e. make-before-break handovers. In
fact, better performance will be achieved when the handovers are “smooth”.

Chapter 1. Introduction 13

Fig. 1.7 Handovers between Wi-Fi hotspots and LTE network.

In the case of NEMO it has been studied its interaction with Multihoming (RFC
4980 [13]) basing on the proposition of a taxonomy to classify the possible
configurations.

A possible Multihoming architecture can be based on including MPTCP and
Mobile IP modules in the MN and the CN stacks, with Mobile IP mechanisms
placed underneath the MPTCP layer [14]. Its approach separates established
session mobility (MPTCP) from initial contact when the mobile is roaming
(Mobile IP). Mobile IP is also included to ensure reachability in case of
simultaneous movement.

A simple scenario could be the following: the connection is initiated between
MN’s HoA and the address of the CN, with Mobile IP playing its standard role
when the CN initiates the connection and the MN is away from home.

If the MN is already away from home, or as soon as it moves away, the Mobile
IP layer of the MN creates a binding between HoA and one of the CoAs
available at the visited network. Mobile IP layer also notifies the MPTCP layer of
the host’s stack so that, as soon as communication is established, MPTCP can
add the CoAs as additional addresses for the MPTCP connection, and then
distribute the traffic based on the available capacity for each path.

In fact, since the MN has multiple interfaces, it may have multiple CoAs and
even multiples HoAs. These can be added to the MPTCP connection and traffic
distributed across them appropriately. Also, when the MN moves, MPTCP uses
the new CoA and Mobile IP updates the HoA-CoA binding.

1.3.2. Open data integration

Focusing on the driver, a lot of data could be included in the gateway. For
example, it can allow setting up some real-time alerts about traffic status or

14 Design and development of a smart car gateway

weather to get the optimal route to destination. Also some additional information
can be included in order to reduce costs or centralize vehicle maintenance book
in car systems for both the user and the manufacturers.

But in this project, we will only consider the useful external information needed
to improve the decisions made by the gateway in a given route. As it will be
extended in following chapter 4, the main objective is to define a decision
algorithm that allows the gateway to determine the best situation where to make
the handover. Open data origins would help the gateway to know more about
the environment and use this information to enhance the decision processes.

In this context, the Wi-Fi hotspots location in Barcelona city, the 3G/4G
coverage areas and the traffic status are the main used datasets to enrich the
decision algorithm.

The first one will give the gateway information about the presence of hotspots in
the route in order to decide if we could make the handover or not to a Wi-Fi
network with the aim, for example, to reduce 4G data consumption. On the
other hand, 3G/4G coverage areas will help us to know if we can maintain the
connectivity when Wi-Fi connection is not available. It is assumed that we will
have 3G/4G coverage in the studied urban scenario, as we will demonstrate for
the case of Barcelona in chapter 4. And finally, the traffic status is a key point in
order to allow the gateway to calculate the total time of the route and the time
spent to cross hotspots coverage areas.

Wi-Fi hotspots and 3G/4G coverage datasets can be preloaded in the gateway
because this information does not change very often. On the other hand, traffic
status should be retrieved via API connection to external services (for example,
like the provided by Google) because of its dynamism.

Chapter 2. Software Implementation 15

CHAPTER 2. SOFTWARE IMPLEMENTATION

2.1. Software requirements

2.1.1. Multipath TCP

There are several ways to install the Multipath TCP Kernel Implementation. In
this section, we’ll explore them in order to decide which one is the best to
perform the tests.

All the related information about Multipath TCP could be found in the official
protocol website (http://www.multipath-tcp.org/) and the implementation code is
also available (https://github.com/multipath-tcp) if we want to develop new
features on the actual stack (not in our case).

The release of protocol’s implementation used in the project is the v0.89, but
also older versions can be acquired. It’s important to mention them and specify
their compatibility with the different Linux distributions.

- MPTCP v0.89: Linux Kernel v3.14 compatible
- MPTCP v0.88: Linux Kernel v3.11 compatible
- MPTCP v0.87: Linux Kernel v3.10 compatible
- MPTCP v0.86: Linux Kernel v3.5.7 compatible

The implementation of MPTCP can be installed as/under:

- Compiling the source code (available on GitHub, as previously detailed).
- Installing it directly from apt-repository.
- Under the following Linux Distributions:

 Debian Squeeze and Debian Wheezy (via apt-repo)
 Ubuntu from v12.10 (via apt-repo)
 Fedora 19 to 21 (pre-compiled images)
 CentOS 7 (pre-compiled images)
 Gentoo (pre-compiled images)
 ArchLinux (via specific Package)
 OpenSUSE (apt-repo)

Important to mention:

 Apt-repository available for all 64-bit Linux flavours.

 Apt-repository for 32-bit systems only available in Debian
Squeeze or Debian Wheezy.

- OpenWRT (Linux distribution for embedded devices)
- Android Systems:

 Samsung Galaxy S2 (Android ICS)
 Google Nexus S
 Google Nexus 4 (Android from 4.2.1 to 4.3)
 Google Nexus 5 (Android 4.4)

http://www.multipath-tcp.org/
https://github.com/multipath-tcp

16 Design and development of a smart car gateway

- User-mode-linux setup
- PlanetLab
- Amazon EC2
- Using Vagrant (a software tool that allows to set up development

environments on a virtual machine) to get a guest running with MPTCP.

All the possibilities mentioned above require Kernel’s Linux modification to run
correctly.

2.1.2. Mobile IP

UMIP is an open source implementation of Mobile IPv6 and NEMO Basic
Support for Linux. It supports the following IETF RFC:

 RFC6275 (Mobile IPv6)

 RFC3963 (NEMO)

 RFC3776 and RFC4877 (IPsec and IKEv2)

We can find all the related information about this implementation in its website
(http://umip.org/), and also the details about its source code, contributions and
installation modes.

It is important to mention that this implementation runs on a mobility-ready
kernel such as kernel sources since 2.6.26 and kernel versions from 3.8.2 (in
3.* kernels, mobility is broken up to version 3.8.1).

The implementation of UMIP (Mobile IPv6 & NEMO) can be installed from:

- The source code (compiling it).
- Specific Packages through apt-repository.

http://umip.org/

Chapter 3. Test Bed Evaluation 17

CHAPTER 3. TEST BED EVALUATION

3.1. Test bed description

The main objective in this chapter is to evaluate the performance of MPTCP
and NEMO running separately and combined. In order to do that, a test bed has
been designed and implemented. The test environment has to reproduce similar
conditions as in the case of a mobile device interacting with MPTCP-enabled
and NEMO-capable network devices.

After some attempts and alternative setups, Ubuntu 14.04.1 with 3.14 kernel is
the combination selected in order to support both protocols running at the same
time.

Another important fact to mention is that, in our case, this NEMO
implementation does not support MCoA (Multiple Care of Address). MCoA
allows having multiple CoA’s in order to avoid the configuration of a new CoA
each time the gateway changes from an access point to another. This fact
makes that its combination with MPTCP has sense because MPTCP will be in
charge to maintain the connectivity in handover situations.

In terms of hardware, the test environment will use two physical laptops with
one of them running three virtual machines. The following figure illustrates the
setup.

Fig. 3.1 Implemented Test Bed

Hardware is disposed as follows:

- 1 Physical laptop running NEMO as a Home Agent (HA) [Home Agent].
 With 1 virtual machine running Multipath TCP [Server].
 With 1 virtual machine as gateway 1, acting also as access point

[GW with Wi-Fi interface].

18 Design and development of a smart car gateway

 With 1 virtual machine as gateway 2, acting also as access point
[GW with 4G interface].

- 1 Physical laptop running Multipath TCP and NEMO, acting as a Mobile
Router (MR) [Smart car gateway].

As seen in previous section 1.1.3, this disposal corresponds to the case of
multiple interfaces with a single address per interface.

The virtual machine acting as a gateway 2 simulates its 4G interface using
bandwidth limitation software TC [15] on its own Ethernet interface. With the
help of that tool, bandwidth was limited to 40 Mbps (average obtained
bandwidth after field tests of 4G technology in an outdoor experiment). Wi-Fi
interface works in 802.11g mode with a maximum speed of 54 Mbps. However,
we want to reproduce a public Wi-Fi access, the throughput is limited to 256
Kbps [16].

Table 3.1. Bandwidth limitations on each interface (Wi-Fi & 4G)

3.1.1. Test bed settings

We will use the test bed to understand the impact of the delay in the exchange
of signalling messages on both protocols.

To conveniently prepare the scenario in order to achieve this goal, we should
first look for typical delay values that then, we will apply to perform the study. In
order to do that, we will start by considering the signalling messages of
registration mechanisms in both protocols.

Figure 3.2 shows NEMO signalling messages in a transmission defining the
following times.

- Tra: time until the reception of the Router Advertisement.

- Tcoa: configuration time of CoA address, from the reception of the RA
message to the send of the Binding Update (BU) to the HA in order to
notify the new IP. Duplicate Address Detection mechanism is not
activated.

- Tmipv6: time spent from the sending of the Binding Update (BU) by the
MR to the reception of the Binding Acknowledgement (BA) message
from the HA. In this time the HA configures the tunnel and the needed
routes to reach the MR.

Interface Bandwidth

Wi-Fi 256 Kbps

4G 40 Mbps

Chapter 3. Test Bed Evaluation 19

Fig. 3.2 NEMO Signalling messages

On the other hand, figure 3.3 shows MPTCP signalling messages. In this case,
there is only one time to consider.

- Tmptcp: time spent to establish a MPTCP subflow using a three-way
handshake. As shown in the figure it is augmented with MPTCP specific
option MP_CAPABLE inserted in the SYN and SYN+ACK, with the aim
that both endpoints know that the other end supports MPTCP.
MP_CAPABLE option in the third message of the three-way handshake
is inserted to allow the server to postpone the state creation until the end
of the handshake. Hence, MPTCP runs exactly like TCP. On the other
hand we should take into account that for any additional MPTCP subflow,
it will be done by another regular TCP three-hay handshake.

Fig. 3.3 MPTCP Signalling messages

20 Design and development of a smart car gateway

The fact that this implementation of NEMO doesn’t support route optimization
implies that all messages will always pass through HA. Having this in mind, we
can identify three different types of RTT (Round-Trip delay Time) between all
the devices in our scenario with NEMO and MTCP activated.

- RTT MR-AP: between MR and AP.
- RTT MR-HA: between MR and HA.
- RTT MR-Server/CN: between MR and Server/CN

That can be decomposed as follows:

- RTT MR-HA = RTT MR-AP + RTT AP-HA
- RTT MR-Server/CN = RTT MR-AP + RTT AP-Server/CN

In order to simplify it, we will consider that RTT MR-AP is a constant value
associated to the access technologies on each interface. In our case, we have a
Wi-Fi interface and a 4G interface. Then, our focus will be in the impact of the
delays of the fixed part of the network.

To assign realistic values of RTT MR-AP in both interfaces, a set of measures
were done in the test bed with the help of ping [17] command. The results
obtained for each interface are shown below:

- RTT MR-AP (Wi-Fi interface): 2,5 ms
- RTT MR-AP (4G interface): 1,4 ms

In the other hand, RTT AP-HA and RTT AP-Server/CN are the associated values to
the fixed network. We can approach these values by knowing the total RTT in
the scenario with values RTT MR-HA and RTT MR-Server/CN, which can be
estimated by another set of measures.

To do that, some field tests were done in a real scenario to local, regional,
national and international sites in order to define specific values for RTT MR-HA
and RTT MR-Server/CN. With the help of Fing application [18] and its utility to
ping external hosts, a set of 5 measures (each one composed by an average of
50 ping executions) for each site has been done with the following average
results.

Table 3.2. RTT obtained values in the field tests

Host Type Host RTT (3G) RTT (4G) RTT (Wi-Fi)

Local site www.barcelona.cat 60 ms 87 ms 33 ms

Regional site www.lacaixa.es 392 ms 91 ms 37 ms

National site www.google.com 438 ms 108 ms 53 ms

International site www.helsinki.fi 455 ms 141 ms 155 ms

http://www.barcelona.cat/
http://www.lacaixa.es/
http://www.google.com/
http://www.helsinki.fi/

Chapter 3. Test Bed Evaluation 21

And with these results, we can obtain an approximated value of the RTT in the
fixed network for each access technology.

Table 3.3. Fixed network RTT for 4G interface considering previous results

Host Type Total RTT (4G) RTT MR-AP (4G) RTT fixed network (4G)

Local site 87 ms

1,4 ms

85,6 ms

Regional site 91 ms 89,6 ms

National site 108 ms 106,6 ms

International site 141 ms 139,6 ms

Table 3.4. Fixed network RTT for Wi-Fi interface considering previous results

Host Type Total RTT (Wi-Fi) RTT MR-AP (Wi-Fi) RTT fixed network (Wi-Fi)

Local site 33 ms

2,5 ms

30,5 ms

Regional site 37 ms 34,5 ms

National site 53 ms 50,5 ms

International site 155 ms 152,5 ms

The previous values are real but related to particular websites. For this reason
we will round them to get representative values in order to observe a gradual
evolution of the delay impact. Therefore, we will choose the values of 30ms,
60ms, 90ms, 120ms and 150ms in order to study the impact of the RTT for the
fixed network (RTT AP-HA and RTT AP-Server/CN) in our scenario. These values
will be configured in the test bed with the help of TC/netem [19] command.

3.2. Protocol Performance

We should try to reproduce a real situation in order to make the measurements.
For that reason, the smart car gateway (mobile node, acting as MR) will try to
download a file from the MPTCP capable server (acting as CN) to emulate the
traffic, as for example, in the case where the car wants to update its gateway’s
firmware to the newest version from the manufacturer’s server.

There are some tests that will imply a link failure. The procedure to simulate this
failure will be the activation/deactivation of the interfaces with the help of ifconfig
[20] command.

3.2.1. NEMO Performance

The main indicator to analyse in NEMO performance is the total time that the
mobile router (MR) spends in the handover from an access point (i.e. gateway 2
with 4G interface) to another one (i.e. gateway 1 with Wi-Fi interface). As

22 Design and development of a smart car gateway

explained in chapter 4, this time is also important in order to define optimal
strategies for handovers when, for example, crossing a road with a specific
speed and covered with several Wi-Fi access points.

Handover time is measured while traffic is generated from the Server to the MR.
In our case, when the smart car gateway tries to download the firmware file
mentioned before. Also Wireshark was used in order to obtain all the traffic
traces in the MR and in the Server with the aim to analyse the packets and
measure the total time and the individual ones.

As mentioned before, this NEMO implementation does not support Route
Optimization. This fact implies that the transmission between Server and MR
always passes through the HA.

As seen in previous section (see Figure 3.2), the signalling messages
associated to NEMO are Tra, Tcoa and Tmipv6. The duration of the handover
for MIPv6 is the addition of these three times.

Figure presented below shows the results acquired in the tests without delay
addition. The following bar chart represents the minimum, maximum and
average value of the accumulated individual times for NEMO (Tra, Tcoa and
Tmipv6) when there is coverage of the two networks and one of them is forced
down for the handover.

Fig. 3.4 Obtained time results when running NEMO without delay addition.

All these results were obtained after 30 samples and we can observe that the
total time is highly variable. Minimum time is 141 milliseconds and the maximum
one is 1,286 seconds.

This variability is due to the CoA’s configuration time, ranging from about 30
milliseconds to about 1 second, becoming the time that affects at most the total
handover time. It is measured since the MR receives an RA (RA’s are send
every 3 ms) until it sends the BU to the HA.

Chapter 3. Test Bed Evaluation 23

The following figure shows throughput measurements without delay addition for
NEMO in each possible mode regarding to active interfaces: 4G only or Wi-Fi
only.

Fig. 3.5 Obtained throughput results with NEMO in 4G interface.

Fig. 3.6 Obtained throughput results with NEMO in Wi-Fi interface.

Analysing the results, we obtain that the utilization of theoretical maximum
throughput is about 61% in the case of 4G technology and 54% in the case of
public Wi-Fi.

Note that MIPv6 suffers an increase in packet size due its larger IP header
(about 20 bytes more than a standard TCP/IP packet size). This could be a key
point when comparing the behaviour of NEMO respect to MPTCP or a non-
mobility scenario.

The next step is to check the effect of the added delays. As explained in
previous section 3.1, delays from 30ms to 150ms in steps of 30ms are used in
order to study several realistic cases. The following chart shows the obtained
results. Time measures are taken considering 30 samples for each case.

24 Design and development of a smart car gateway

Fig. 3.7 Obtained time results considering delays from the MR with NEMO.

Each bar represents the time for each individual time: Tra, Tcoa and Tmipv6. As
we can observe, the total amount of time increases at higher delay values
produced by the increase of Tmipv6 component. This increase also
corresponds to the value of the added RTT. The other components, associated
with the reception of RA (Tra) and the configuration of the CoA (Tcoa), remain
stable in most of the cases.

In terms of throughput, a set of measures has been made focusing on the
moment when a handover is produced from the 4G interface to the Wi-Fi
interface. The following figures show the results for each case (Figure 3.9
shows the detail when 4G interface is disconnected and only Wi-Fi is active).

Fig. 3.8 Throughput measures with added delays in a handover situation.

Chapter 3. Test Bed Evaluation 25

Fig. 3.9 Zoom when 4G interface is disconnected and Wi-Fi interface is active.

As we can see, when making the handover from 4G to Wi-Fi, we have a portion
of time (in a range between 3-6 seconds) without connectivity. This behaviour
can be explained by the fact that a new CoA needs to be configured in the new
access point.

A possible solution that could reduce this effect would be the usage of MCoA
functionality in NEMO. Having multiple COA's will allow us to not having to
configure the new address when changing the access point. It can be achieved
a make-before-break behaviour but only in situations where we can predict a
handover.

However, as explained in section 3.1, our implementation of NEMO does not
support this feature and therefore we could not test it.

Now we could assume that the handover time can fluctuate between 141
milliseconds and 1,83 seconds, considering the total time for the handover
when configuring the higher added delay of 150ms (Figure 3.7). This could
affect us the way to determine the handovers on the route followed by the car,
given that in some situations the speed that the car has and therefore the time it
takes to cross the coverage area of a given AP, may be less than the greater of
the experimental values in completing the total handover from one network to
another. In this kind of situations and also considering the portion of time that
we can lose the connectivity during the handover, the best option would be to
not change the network even if we can pass from a 4G coverage to a Wi-Fi
coverage (for example, to reduce 4G data consumption). This will be extended
in chapter 4 with a real example.

3.2.2. MPTCP Performance

MPTCP tests were oriented in order to know how the protocol is able to add the
different IP addresses of the active interfaces in our smart car gateway and use

26 Design and development of a smart car gateway

them to send appropriated subflows when the MR moves from one network to
another.

Regarding on the active interfaces, three situations can be given on the effect of
MR’s mobility.

- Wi-Fi only: when the mobile node is connected to the Wi-Fi path and
disconnected from 4G one.

- 4G only: when the mobile node is connected to the 4G path and
disconnected from Wi-Fi one.

- Both Wi-Fi and 4G: when the mobile node is connected to both paths.

The last case can occur when switching from a network to another (make
before break MPTCP mechanism) or when a better utilization of the links can be
reach in situations where both type of connections can be available. In this last
case, we will get a better throughput in the data transmission as explained in
previous sections.

The following chart shows the obtained throughput results in all the possible
situations with the help of iperf [21]. Measures were taken in an interval of one
minute.

Fig. 3.10 Obtained throughput results in each mode with MPTCP.

Analysing each technology separately, we obtain a utilization of theoretical
maximum throughput of 89% in the case of 4G and 71% in the case of public
Wi-Fi. The following figure shows in detail the results obtained in the case of
public Wi-Fi.

Chapter 3. Test Bed Evaluation 27

Fig. 3.11 Obtained and detailed throughput results of public Wi-Fi.

But as we can see in the figure 3.10, using MPTCP considerably increases the
throughput. However, it seems that MPTCP does not manage to reach full
throughput utilization on both interfaces in Wi-Fi + 4G mode.

If it were the case, the throughput obtained would have been close to the sum
of the available throughputs of the two interfaces, but the results on figure 3.10
shows that is not the case. The available throughput with concurrent multipath
is about 87% (average of 35,1 Mbps) of the sum of the average measured
single-path throughput (40,26 Mbps: 40 Mbps of 4G + 256 Kbps of public Wi-
Fi).

There is a possible explanation for this apparent underutilization and is related
to the coupled congestion control algorithm. It may explain why MPTCP cannot
get as much throughput as two separate TCP connections. The coupled
congestion control only ensures that MPTCP gets as much throughput as TCP
would get on the best path. It is possible to get more throughput but it is not
guaranteed and it takes some time. The congestion window increase of MPTCP
subflows is slower than normal TCP subflows, and MPTCP takes more time to
reach the maximum throughput than two individual TCP flows [22].

This behaviour is necessary to ensure fairness at shared bottlenecks but it may
explain bandwidth underutilization when network characteristics are frequently
changing for mobile experiments. However, it means that MPTCP is not suited
for short transfers because the connection will not have time to reach a high
throughput and the different interfaces will be activated and consume energy for
little or no benefit.

On the other hand, regarding to the effect of the added delays introduced in
previous section 3.1, the following chart shows the obtained results after
measures on each different case: 30ms, 60ms, 90ms, 120ms and 150ms.
These delays are configured in the gateway when trying to download the
firmware file.

28 Design and development of a smart car gateway

Fig. 3.12 Obtained time results considering delays from the GW with MPTCP.

Each bar represents the time of the three-way handshakes associated with the
two MPTCP subflows (Tmptcp, as shown in Figure 3.3) and we can see the
variability due to the added delays.

As seen in previous figure 3.3, MPTCP has a message exchange of 2 RTT’s
instead of 1 RTT in the case of NEMO (see Figure 3.2) and, for that, the impact
of the delays is more significant.

In order to analyze the effect of the added delays in terms of throughput, it has
been done a set of tests when making a handover from 4G connection to Wi-Fi
connection, like in previous section 3.2.1.

The handover is manually made as follows: starting from a 4G connection, it is
forced the activation of Wi-Fi interface and finally it is also forced the break of
the 4G link. This behaviour allows us to take benefit of the MPTCP capability to
work with two different interfaces at the same time and fits in a real situation
where in the city the 4G connection remains constant and the Wi-Fi connection
appears intermittently (make-before-break mechanism).

Following figures show the results (Figure 3.14 shows the detail when 4G
interface is disconnected and only Wi-Fi is active).

Chapter 3. Test Bed Evaluation 29

Fig. 3.13 Throughput measures with added delays in a handover situation.

Fig. 3.14 Zoom when 4G interface is disconnected and Wi-Fi interface is active.

In this case we remain connected without any break in the connection. We can
see that, when RTT values increase, it’s more difficult to take the second
connection. Probably this can be caused by the fact that for higher RTT,
acknowledgements spend more time to come back.

Unlike in NEMO, we can see that for MPTCP the Wi-Fi connection is better
utilized.

Figure 3.15 shows the behaviour when we simulate a mobile scenario in which
the MR passes from Wi-Fi network to 4G network. 4G coverage is available for
durations of 20 and 25 seconds in two different steps along the test.

30 Design and development of a smart car gateway

Fig. 3.15 Throughput with MPTCP handover

The 4G path is able to provide a short boost in overall download throughput of a
TCP connection initiated over public Wi-Fi. We observe that MPTCP connection
is able to remain active and perform handover [23]. This fact will be extended at
chapter 4 when analysing the behaviour of the scenario in a mobility
environment.

Regarding at the moment when 4G interface is deactivated, we could see that
MPTCP recovers quickly to the Wi-Fi connection. MPTCP need to perform a
three-way handshake and then continue sending data into the Wi-Fi subflow. In
the experiments we obtain that MPTCP reaches the average download speed
of Wi-Fi network after 100ms, almost immediately.

Fig. 3.16 Wi-Fi connection reestablishment.

The last test with MPTCP is intended to reproduce cases when losing Wi-Fi or
4G coverage. When the smart car is receiving the file by its two available
interfaces (Wi-Fi and 4G), a failure is manually caused in one of the links.
Thanks to MPTCP capabilities, the file transmission was still active due to that

Chapter 3. Test Bed Evaluation 31

the protocol is able to redirect the traffic initially divided into two subflows to the
active interface in that time.

The following charts show all the operations done in the test bed in order to
check this behaviour and the obtained results in terms of bandwidth utilization
when each interface was connected and disconnected. Measures are taken
considering and average RTT of 90ms (average between RTTs used in
previous tests). Figure 3.18 shows the time stage when only Wi-Fi interface is
active.

Fig. 3.17 Throughput measures while connecting/disconnecting interfaces

Fig. 3.18 Zoom in time stage when only Wi-Fi interface is active.

As we can see, the file transmission is constant over the time even when any
interface is disconnected and the throughput values are similar to the obtained
in previous sections. Once both interfaces are active, the throughput is more or
less the 87% of the sum of the average single-path throughput. But when any
interface is disconnected, file transmission is still active and the throughput is
adjusted to the available interface.

Wi-Fi down Wi-Fi up

4G down

4G up

4G down

32 Design and development of a smart car gateway

When the 4G interface is disconnected, the throughput is reduced considerably
to approximately a 1% of the total available throughput when both interfaces are
receiving traffic. Anyway, the transmission remains constant without stopping
the packet flow. As we can see in the following sections, this fact should reduce
data consumption of 4G but decreasing the throughput considerably.

The reasons that cause the link failure are an important fact to take into account
regarding on the impact of the added delays in the fixed network. In this
particular case, the link failure is caused manually and therefore, MPTCP will
work in order to re-establish the connection when the broken link is manually
connected again. MPTCP component Tmptcp is affected by the added delays
because of the message exchange of 2 RTT’s, as observed in the previous
section (Figure 3.12). When the broken link is reconnected, Tmptcp will be
based on the three-way handshake time that the affected subflow has to make
in order to re-join the transmission.

3.2.3. Combination of NEMO and MPTCP

This section presents the throughput measures in a scenario with NEMO and
MPTCP running at the same time and also considering the addition of delays in
the fixed network.

In this case, we should take into account that the RTT to the Home Agent it is
not necessary the same that the RTT to the MPTCP Server. Thus, for example,
in terms of RTT it is possible to have a nearby HA and a far MPTCP Server.

In order to approximate this possible situation, the tests will take into account
the two extreme cases: when we can have a nearby HA (far MPTCP Server) or
a far HA (nearby MPTCP Server). For the first case we will assume a RTT of
30ms to the HA and for the second one a RTT of 150ms. These two situations
could help us to understand all the other possible scenarios.

For each case, a set of throughput measures are made regarding to all the
possible values of RTT: 30ms, 60ms, 90ms, 120ms and 150ms.

- Nearby HA

As explained before, this scenario is approximated by configuring a RTT to the
HA of 30ms, assuming that this could allow us to analyse the behaviour when
having a nearby HA and a more or less far Server MPTCP. Following figure
shows the results for each value of added delays in this situation.

Chapter 3. Test Bed Evaluation 33

Fig. 3.19 Throughput measures with added delays in a handover situation.

Fig. 3.20 Zoom when 4G interface is disconnected and Wi-Fi interface is active.

We can see that for each case we don’t lose the connectivity when making the
handover, as seen in previous point when we talked about MPTCP working
alone. But now, it is more difficult to take advantage of the Wi-Fi connection.

On the other hand, comparing the results to the case when NEMO is running
alone, we can see that this situation lets us to avoid losing the connectivity in
the handover.

Trying to understand the throughput variability in each different case of RTT, we
will start presenting the signalling messages when both protocols work at the
same time. Anyway, as we can see in the received packet flows by the MR,
some of the packets are received through the HA and others are received
directly to the MR’s CoA.

34 Design and development of a smart car gateway

Fig. 3.21 NEMO and MPTCP Signalling messages

The first step is to configure the new CoA in the Wi-Fi network before the BU
message is sent to the HA. MIPv6 handover ends when the MR receives the BA
message from the HA. Performing all these steps introduces a significant delay
and it can be seen when in figure 3.20 the connection takes more time to reach
the optimal throughput of the new network.

Also in figure 3.20, when we reach the optimal throughput of Wi-Fi connection,
there are fluctuations in the average throughput for most of the cases. A
possible explanation can be the fragmentation of IPv6 packets caused by
MIPv6 tunnelling, when the HA encapsulates the data packets ready to be
tunnelled to the MR’s CoA. The HA adds an IPv6 header with the source
address the HA address and the destination address the MR’s CoA, exceeding
the maximum packet size. For that reason, the HA performs fragmentation and
this affects to the transmission throughput.

In summary, the combination of MPTCP and NEMO offers better performance
compared to NEMO working alone in terms of throughput, but it spends more
time to reach the utilization of the second connection as compared to the
scenario with only MPTCP running. Another possible benefit regarding to
MPTCP working alone is that the combination of both protocols allows us to

Chapter 3. Test Bed Evaluation 35

support communications working in TCP and UDP mode (MPTCP could only
work in TCP mode).

- Far HA

In this case we consider a RTT to the HA of 150ms, approximating the situation
where we can have a nearby Server MPTCP and a far HA.

Following figure shows the obtained measures for each value of added delays
in this scenario.

Fig. 3.22 Throughput measures with added delays in a handover situation.

Fig.3.23 Zoom when 4G interface is disconnected and Wi-Fi interface is active.

Now we can see that results are similar to the situation when having a nearby
HA: we don’t lose the connectivity when making the handover. But unlike
previous case, is more difficult to take advantage of the second connection
when the handover occurs and this probably happens because of having the

36 Design and development of a smart car gateway

HA further away. This is the main difference between having a nearby or a far
HA.

We can also see that the fluctuations in the average throughput caused by the
MIPv6 tunnelling in the HA are present in most of the cases, probably more
pronounced by the fact that the round-trip delay between the MR and the HA is
higher due to the location of the HA.

Anyway, this situation has also a better performance than the case of NEMO
running alone in terms of throughput (NEMO loses the connectivity in the
moment of the handover) but not good enough compared to the case of
MPTCP, since we can see that it’s harder to reach the full utilization of the
second connection.

3.2.4. Results analysis

Previous benchmark gives us the basic information in order to analyze what will
be happen if a handover occurs.

Based on the added delays, the behaviour of each mode (only NEMO, only
MPTCP or the combination of both protocols) and the results obtained, we will
try to determine the spent time to take benefit of the second connection after the
handover, with the aim to decide if it could be made or not.

The case of MPTCP working alone is the easiest one. The time spent to take
benefit of the second connection tends to zero because we are using a make-
before-break approach and the main benefit that we could take into account is
how much data consumption would be saved by switching between 4G and Wi-
Fi. Finally, it is important to mention that this solution works only with
applications that make use of TCP.

In the NEMO case, we should know the time to take profit of the second
connection when a handover is made, in addition to how much data
consumption would be saved. Taking into account all the possible values of the
delays and based on the results obtained in section 3.2.1, the following table
shows the spent time to reach an optimal utilization of Wi-Fi connection when a
handover from 4G to Wi-Fi is made using NEMO.

Table 3.5. Time to reach an optimal utilization of Wi-Fi connection after
handover (NEMO)

RTT Time

30 ms 14,8 s

60 ms 18,6 s

90 ms 20,2 s

120 ms 23,1 s

150 ms 24,8 s

Chapter 3. Test Bed Evaluation 37

Now we could assume that, for the case of NEMO working alone, the time spent
to achieve a good performance of the second connection can fluctuate between
14,8 seconds and 24,8 seconds depending on the RTT with the HA. In order to
determine the optimal moment to make the handover, we can consider this time
as the needed one to take benefit of the network switch.

As seen in Figure 3.7, the handover time can fluctuate between 141ms and
1,83s, but this cannot guarantee the optimal performance of the second
connection. For that reason, we should consider this new approximation as the
best way to predict the optimal moment to make the handover.

Finally, considering the combined mode with NEMO and MPTCP working
together, it has been done the same approximation. Next figure shows the
needed time to take advantage of the Wi-Fi connection by each different value
of RTT. Both cases are shown: with a nearby or a far HA.

Table 3.6. Time to reach an optimal utilization of Wi-Fi connection after
handover (Combination of both protocols)

We can observe that the combination of NEMO with MPTCP gives to the first
one a better performance in terms of throughput and spends less time to take
benefit of the Wi-Fi connection. Approximately the time is reduced about a 40%,
making faster the handover process.

Afterwards, we can approximate the value for total handover time to harness
the second connection between 10,3s and 14,2s (minimum and maximum value
for both location possibilities). We can observe that combining NEMO and
MPTCP could be the best option to face real situations in mobile environments.

3.2.5. Conclusions

Now, we should decide which combination could be the best option in the
transmission by focusing on the performance metrics presented above.

In throughput terms, we have seen that MPTCP could reach higher values of
bandwidth utilization than NEMO. This in principally caused by the fact that
MPTCP could add TCP subflows and maximizes efficiency and, in the other
hand, NEMO has an increase on its packet size due to its larger IP header. But

RTT Time (Nearby HA) Time (Far HA)

30 ms 10,3 s 10,6 s

60 ms 11,1 s 11,5 s

90 ms 12,4 s 12,8 s

120 ms 12,9 s 13,4 s

150 ms 13,8 s 14,2 s

38 Design and development of a smart car gateway

MPTCP is not suited for short transfers because the increase of the congestion
window is slower than normal TCP flows, taking more time to reach the
maximum throughput. In addition, MPTCP can only work with TCP applications
unlike NEMO, which can work with TCP and UDP.

Regarding on the affectation of the delays, MPTCP is more affected than
NEMO because of the presence of 2 RTT’s on its signalling messages. NEMO
has only 1 RTT used in the Binding Update and Binding Acknowledgement
messages and is not affected as much as MPTCP.

Finally, in terms related to handover process, NEMO has a total handover time
more variable than MPTCP, getting even to lose the connectivity when
switching between connections. This variability is due to the CoA’s configuration
time, component that affects as most the total handover time. But with the
implementation of functionalities like MCoA this behaviour could be improved.

Combining NEMO and MPTCP could allow us to reach higher values of
throughput and to get more reliability in our gateway instead of using only
NEMO. Otherwise, it implies that the transmission will be more affected by the
location of the HA and the Server MPTCP and the related delays to each one. It
is also important to mention that probably the combination would not have
sense if NEMO includes MCoA mechanism in its implementation.

Chapter 4. Handover Optimization 39

CHAPTER 4. HANDOVER OPTIMIZATION

4.1. Open data for connectivity improvement

Following the lines established in section 1.2, we can use open data APIs in
order to get information that allows us to decide when to make a profitable
handover between wireless technologies.

We start by assuming that mobile technologies as 3G or 4G will be available
while driving the car. In order to reduce data consumption, when Wi-Fi
connectivity is available thanks to Wi-Fi free hotspots, probably the best option
was to make the handover and connect to these networks.

As we can see in the results of the experiments done in both, NEMO and
MPTCP, the average time to detect a node that changes its access network and
activate the mechanisms to allow it to continue connected, is between 141
milliseconds and 1,29 seconds. Taking these values into account, handovers
that not imply a minimum time of 1,29ms inside the access network coverage
area should be avoided.

In addition, it must be remembered that after this time the second connection is
not fully exploited because of the effect of the delays. We should consider this
time when we can take advantage of the second connection after the handover.
Based on all the obtained values in the previous chapter considering all the
possible situations, this time fluctuate between 141 milliseconds and 14,2
seconds.

After that, we can consider that in the worst case, if the time inside the access
network coverage area exceeds the threshold of 14,2 seconds, the gateway will
reach an optimal throughput for the transmission. But we don’t know how long
will last the connectivity to the access network.

Using open data sources, we can know how much time we will have Wi-Fi
connectivity. Thereby, using information like the location of Wi-Fi hotspots and
the traffic status, we should be able to know when we will have an access point
and how much time we will spend in its coverage area. Thus, with the
combination of external data sources, we will be able to define a strategy in
order to decide in which cases is optimal to make the handover.

The decision should also take into account the parameters that we have shown
that has impact on protocol performance, like the delays to the HA or the
MPTCP server.

Thus, the smart car gateway will embody a decision algorithm to be able to
determine the situations within the car route where making a handover is a
good option.

Next figure shows a high level vision of this decision algorithm.

40 Design and development of a smart car gateway

Fig. 4.1 High Level Flow Diagram

The next section shows a deep description of the different steps to be done in
each stage.

4.2. Flow diagram description

The decision algorithm (see Fig. 4.2) takes into account all the possible
situations regarding to the active protocols: with only NEMO, with only MPTCP
and with both protocols working together. The requirement is that one of both
protocols will be active in the system. If not, the algorithm will end.

The algorithm follows by checking the open data origins loaded in the smart car
gateway. As mentioned in previous sections, data sources can be preloaded in
the system or retrieved from an available API. In that case, we should know if
there will be Wi-Fi hotspots in our route and how the traffic conditions will be.

Chapter 4. Handover Optimization 41

Fig. 4.2 Detailed flow diagram for all the possible situations

42 Design and development of a smart car gateway

The handover decision will take place when the car arrives to a Wi-Fi coverage
area inside the route and one of the two supported protocols is active in the
system.

The system will now check if MPTCP is active. This is an important check-up in
order to determine the best way to calculate the delays. If MPTCP is running,
we can ping the host that has the content (server MPTCP) to know the real
RTT_MPTCP in one of the available subflows without losing the connectivity. It
is assumed that for a specific host, the ping result will be the same
independently of the location inside the Wi-Fi municipal network.

If we only had available NEMO, it won’t be possible to obtain a real value of
RTT to the HA because we will lose the connectivity when making the ping. In
this case, we assume that the value of RTT_HA will be the same regardless of
the Wi-Fi access point in which we are connected. In order to obtain this value,
we will take the time to complete a register to the HA with the BU/BA signalling
messages (see Fig. 3.2) using the Wi-Fi network.

If this is the first time that the gateway connects to a Wi-Fi network, we must
consider the worst case for the RTT_HA (150ms as seen in previous sections)
because its value is unknown. For future occasions, the system can recover a
recent value of RTT_HA stored in previous handovers.

Returning to the situation in which we have available MPTCP, the system will
ping the MPTCP server to know the real RTT and will store its value for future
iterations.

Finally, once the gateway knows the RTT by one of the possibilities mentioned
above, it will be able to calculate the needed time to take profit of the Wi-Fi
connection according to the working case: only NEMO, only MPTCP or both
(section 3.2.4). This time is Tmin_wifi and would be estimated using the values
obtained in chapter 3.

Afterward, the gateway should get some information about driving conditions in
each stage of the route. By the help of external information as traffic conditions,
combined with the car speed in each sector, the system will be able to
determine the time that the car would stay in each Wi-Fi coverage area. This
time is Tcov_wifi.

Having determined its Tcov_wifi and Tmin_wifi, in that case (Tcov_wifi > Tmin_wifi)
the system will follow to the next step, but if not, the handover will be discarded.

Once the system checks if the car would stay the optimal time inside a Wi-Fi
coverage area, i.e. Tcov_wifi > Tmin_wifi, the final step is to know if a minimum of
information can be downloaded (or uploaded). The reason of this checking is to
know if the reduction of access velocity will be compensated by a minimal data
transfer.

The gateway should measure the time to download X megabytes of information
(Tdw_mb) in order to know if this minimum information can be downloaded while

Chapter 4. Handover Optimization 43

staying in the coverage area. If the answer is yes, i.e. Tcov_wifi > Tdw_mb, the
system will complete the decision flow and the handover will be made. Finally,
the gateway stores the obtained value of RTT_HA for future occasions.

The next table summarizes all the variables and parameters considered in the
algorithm.

Table 4.1. Variables and parameters employed in the decision algorithm

Tmin_wifi Time to take benefit of Wi-Fi connection.

Tcov_wifi Time inside the Wi-Fi coverage area.

Tdw_mb Time to download X megabytes of information.

X Minimum quantity of bytes to justify the handover.

RTT_MPTCP Last stored RTT value to the server MPTCP.

RTT_HA Last stored RTT value to the HA.

MPTCP_AC Determine if MPTCP is active.

NEMO_AC Determine if NEMO is active.

Next section shows a random route example where the handover decisions are
based on this algorithm.

4.3. Application in a random route

In order to get an example that illustrates this feature, we apply the decision
algorithm in a random route between two points to determine the handovers
between networks technologies (3G/4G and Wi-Fi) during the driving time. It is
assumed that both protocols (NEMO and MPTCP) are active.

Next figure shows the chosen route to apply our decision algorithm. It is
comprised between Carrer Provençals 39 and Avinguda Diagonal 621, both in
the city of Barcelona.

Fig. 4.3 Chosen route to apply handover strategy.

44 Design and development of a smart car gateway

Here the route with Wi-Fi hotspots placed around the path. As we seen before,
this is the first check-up by the algorithm in order to determine if we will find Wi-
Fi coverage areas.

Fig. 4.4 Wi-Fi hotspots (Open data).

We can observe that there are many Wi-Fi hotspots around the chosen route
and all of them can be suitable in order to support the connection of our smart
car gateway. The decision algorithm passes to the next step.

Regarding to 3G/4G coverage we will see that in the same area covered by the
route we will not have any kind of coverage problem. We can see it in the heat
map shown in figure 4.5.

Fig. 4.5 3G/4G Coverage level along the route

From there, the system will check if the relation of the speed, the coverage
radius of the hotspots and the time that the car will need to connect the network
would fit the conditions set in the decision algorithm.

For doing that, it has to be known the average time to connect to a Wi-Fi
hotspot, the typical coverage radius of an 802.11 antenna and the mean of
driving time across some established sections in the route. The Wi-Fi access
points placed by the Barcelona City Council allow for theoretical coverage within
a range of 100 to 150 metres in outdoors spaces, as we can check in service

Chapter 4. Handover Optimization 45

user manual [16]. For the calculations we will assume the minimum value of 100
metres for the maximum coverage for the antennas.

Regarding to the average time to connect the Wi-Fi network and take
advantage of it, first of all the system should obtain the RTT value to the HA. In
this example, we consider that MPTCP interface is active and we finally obtain
that the real value of the delay is about 150ms.

Afterwards, based on RTT measures (section 3.2.4) we would consider the time
of 14,2 seconds, the worst case obtained in tests, as the time to get ready to
connect to the new access point and reach an optimum throughput to better
exploit the new connection in the worst case of RTT (see table 3.6). For that
reason we will only make the thresholds in route’s stages where we can have
this minimum time (Tmin_wifi) in order to connect to the Wi-Fi access point.

Table 4.2. Parameters to take into account in the handover’s decision

Wi-Fi hotspots coverage – To calculate Tcov_wifi 100 metres

Mean time to get ready to connect Wi-Fi hotspots and get
an optimal throughput

14,2 seconds

Minimum time inside coverage area to make the handover
(rounded) – Tmin_wifi

14 seconds

Time to download X bytes of information (X = 0) – Tdw_mb 0 seconds

Although minimum expected time inside a Wi-Fi coverage area to make the
handover is 14 seconds (Tmin_wifi), we will take into account that we should stay
more time inside Wi-Fi zone in order to reach an optimal utilization of the
connection.

With all these requirements, the gateway can now divide the entire route into
different stages and decide if it’s a good handover situation or not, taking into
account the average speed and the spent time to cross each one (Tcov_wifi).
The first step is to select the Wi-Fi hotspots that are at a maximum distance of
100 metres from the route. Figure below shows the selected access points.

Fig. 4.6 Wi-Fi hotspots at up to 100 metres from the route

46 Design and development of a smart car gateway

The following step is to identify and characterize each stage on the route, as
presented below.

Fig. 4.7 Route Stages (green squares mark them)

Table 4.3. Detail of the route’s stages

The route has a total of 11 km driven in 37 minutes, divided in 6 stages as
described in the table shown above. Stages 1, 2, 4 and 5 are initially potential to
be steps where we can make the handover and change to Wi-Fi network.

Fig. 4.8 Stages 1, 2 (left) and 4,5 (right).

We can see that over the distance of these stages there are many hotspots that
can allow the connectivity with the public Wi-Fi network without interruption
(blue circles around the hotspots simulates its coverage area). But in stages 2,
4 and 5 there are shadow zones of 200 metres, 100 metres and 300 metres
respectively. In these cases we will make the handover back when crossing

Stage Start End
Distance

(m)
Time
(min)

Avg Speed
(km/h)

1 Starting Point Bac de Roda - Ramon Turró 1.400 5 16,80

2 Bac de Roda - Ramon Turró Pujades - Llacuna 900 6 9,00

3 Pujades - Llacuna Marina - Gran Via 2.450 8 18,38

4 Marina - Gran Via Roger Llúria - Aragó 1.520 5 18,24

5 Roger Llúria - Aragó Diagonal - Villarroel 2.150 6 21,50

6 Diagonal - Villarroel End Point 2.580 7 22,11

Chapter 4. Handover Optimization 47

them because the next hotspots in the route allows more time of Wi-Fi
connection.

Finally and after all the steps in the decision algorithm, the gateway decides to
activate Wi-Fi connection instead of maintaining 3G/4G in each route stage. In
this example, it is considered that the minimum of information to be downloaded
is 0 bytes (i.e. X = 0 bytes and Tdw_mb = 0 seconds).

The final decisions made by the algorithm are the following.

Table 4.4. Active connections on each stage

4.4. Supported applications

Initially, the decision algorithm presented before is designed without thinking the
requirements of the applications that could be running when handover decision
is taken. In this section, the requirements of several typical multimedia services,
as for example audio or video streaming, are shown in order to potentially
include them in the handover decision.

Next table shows an overview of different services and its optimal conditions to
work [24] [25] [26]. Note that all the listed services are based on TCP (Skype
could also work with UDP).

Table 4.5. Optimal Conditions in some types of multimedia services

As we seen in previous section 3.2.2, we can assume that using MPTCP the
bandwidth utilization for public Wi-Fi is about 71% of the theoretical maximum

Stage
Distance

(m)
Time
(min)

Connection

1 1.400 5 Wi-Fi

2 900 6 Wi-Fi & 4G

3 2.450 8 4G

4 1.520 5 Wi-Fi & 4G

5 2.150 6 Wi-Fi & 4G

6 2.580 7 4G

Service Type Provider Quality Minimum Bandwidth

Audio Streaming Spotify 160 Kbps 384 Kbps

Audio Calling Skype - 30 Kbps

Video Calling Skype Min. quality 128 Kbps

Video Streaming Youtube SD 240p 300 Kbps

Video Streaming Youtube HD 720p 2 Mbps

Video Streaming Netflix HD 720p 5 Mbps

48 Design and development of a smart car gateway

and for 4G is about 89%. Therefore we can take by reference the values of
181,7 Kbps for public Wi-Fi and 35,6 Mbps for 4G connectivity.

Following these values, public Wi-Fi, will be only able to support audio and
video callings with a minimum of quality. For the other cases we cannot
guarantee an optimal user experience.

The idea is to allow the user to configure which technology will be used and in
which services. For example, the driver could choose to only use audio/video
callings when Wi-Fi is available or to use 4G in all the services to guarantee a
high quality in all of them, but assuming an increase of data consumption. Only
in the first case, the gateway will activate the decision flow defined in the
algorithm.

Chapter 5. Conclusions 49

CHAPTER 5. CONCLUSIONS

This thesis proposes the main lines to take benefit of multihoming capacity from
MPTCP and NEMO protocols, and also introduces the use of open data in order
to achieve a better performance in the smart car gateway.

In this context, it has been made a demonstrator that tries to reproduce the
conditions of an urban environment with 3G/4G and Wi-Fi coverage in order to
study the protocols.

First of all, in terms of throughput, we obtain that MPTCP has better results than
NEMO. MPTCP could reach higher values of throughput due to its ability to add
TCP subflows, but it spends more time to reach the maximum throughput than
NEMO because of its slower congestion window.

Regarding to the delays, MPTCP is more affected due to the 2 RTT’s in its
signalling messages. NEMO has only 1 RTT used in the BU and BA messages
and is not affected as much as MPTCP.

If we analyze the total time for the handover, NEMO has more variability than
MPTCP because of the CoA’s configuration time, getting even to lose the
connectivity when switching between access points. But if NEMO implements
functionalities like MCoA, this behaviour could be improved avoiding the
disconnection in the handover process.

Combining both protocols could allow the system to reach higher values of
throughput and more reliability. But it implies that the transmission will be more
affected by the location of the HA and the server MPTCP and the related delays
to each one. But if we consider the implementation of MCoA in NEMO, as
mentioned before, probably this combination would not make sense.

Finally, we have seen that the developed decision algorithm could allow the
gateway to decide the best moment for the handover, taking into account all the
acquired knowledge about the protocols behaviour and including external
information to enhance the decision process. This will allow the system to
consider the handovers only when we can reduce data consumption in
situations when Wi-Fi network is available and the gateway can take benefit of
the connection without a drastic losing of quality in content downloading.

5.1. Future work

After all, there are some aspects that are not taken into account and probably
could define the future lines to be considered in order to extend the project.

The following list tries to explain some of these future considerations.

- The handover decision algorithm takes into account a constant speed of
the car. This could be improved by taking into account the real speed of

50 Design and development of a smart car gateway

the car using external API’s (from Google, for example) or a GPS
system. Also this information could be used to estimate the speed in
each route stage before leaving home.

- In order to improve the user experience, we can also develop new
features in the decision algorithm of the gateway. For example, imagine
the case where the user wants to download a specific content while
driving to its workplace. It is possible to include a system that allows the
gateway to calculate the optimal route (taking into account information
about real time traffic status or the presence of Wi-Fi hotspots) and to
predict the specific coordinates where to make the handover before
leaving home. Thanks to this feature, it could be possible to manage in a
smarter way the content downloading and the data consumption.

- The possibility to implement the gateway in an embedded device with
real radio interfaces. For example, in a Raspberry PI board with both
protocols enabled in order to include the decision algorithm and test it in
real driving situations. This option has been explored with no success
because a kernel implementation that supports the mobility protocols has
not been found. This has been the main reason that has prevented the
development of the smart car gateway in a real device.

ANNEXES

TITLE: Design and development of a smart car gateway

MASTER DEGREE: Master of Science in Telecommunication Engineering
& Management

AUTHOR: Adrià López Molina

DIRECTOR: Rafael Vidal Ferré

DATE: February 22th 2015

52 Design and development of a smart car gateway

ANNEX I. MOBILITY SOLUTIONS CONFIGURATION

I.1 Multipath TCP

I.1.2 MPTCP test bed

In order to test Multipath TCP implementation, there are different ways to build
a test bed scenario. Finally, the option chosen from the list shown in “Software
Requirements” section is the one referred to Vagrant [27] in order to get a guest
running MPTCP.

This software tool allows us to set up a development environment in order to
test the protocol. It provides an easy to configure and portable work
environments built on top of VirtualBox (and some other virtualization software).

It runs a virtual machine based on Ubuntu 14.04.1 LTS (Trusty Tahr 64-bit)
operating system with the MPTCP kernel implementation (3.14.0-89-mptcp).
The built test bed using vagrant is the following:

Fig. I.1 Set up machines in the test bed.

Both physical machines are running Vagrant and using MPTCP. Each one has
assigned 1 core of an Intel Core i5 processor at 2,4GHz, RAM memory of
1024Mb and 3 network interfaces: a wired Ethernet connection (eth1), an
802.11g wi-fi connection (eth2) and a 3G connection (eth3) using an iPhone 5S
running iOS 8 in one of the machines (server) and a Nokia Lumia 735 in the
other machine (client).

It’s important to mention some features related to the network connections that
will affect the performance of MPTCP. For example, the maximum bandwidth in
each network type (*tested with network tools) and the symmetry of the link (in
this case, 3G has an asymmetric link):

- Wired Ethernet Connection: 100Mbps
- 802.11g Wi-fi Connection: 54 Mbps
- Vodafone 3G Connection*: about 12 Mbps (DL) and 3 Mbps (UL)

For example, we can observe that Wi-fi has a yield of about 30% lower than
Ethernet. Fact that will affect MPTCP while managing subflows.

CLIENT SERVER

Annex I. Mobility Solutions Configuration 53

Fig. I.2 Network schema with the three network interfaces.

Vagrant shares network drivers with the host machine and lets us to configure
and maintain many interfaces as we need. Two steps are necessary in order to
include and configure a network interface in Vagrant: edit Vagrant’s
configuration file called “Vagrantfile” that includes VM’s boot parameters and
configure routing tables once VM runs Linux OS.

When all the previous steps are correctly done, we can start using Vagrant’s
machines to develop our benchmark. Finally, the map of the IP addresses in the
test bed environment is the following.

CLIENT – Network interfaces

- Ethernet connection (eth1):
 IP: 192.168.2.103
 Mask: 255.255.255.0
 Gateway: 192.168.2.1

- Wi-fi connection (eth2) – 802.11g:

 IP: 192.168.1.103
 Mask: 255.255.255.0
 Gateway: 192.168.1.1

- 3G connection (eth3) – Nokia Lumia 735:
 IP: 172.20.10.3
 Mask: 255.255.255.240
 Gateway: 172.20.10.1

SERVER – Network interfaces

- Ethernet connection (eth1):
 IP: 192.168.2.101
 Mask: 255.255.255.0
 Gateway: 192.168.2.1

- Wi-fi connection (eth2) – 802.11g:

 IP: 192.168.1.101
 Mask: 255.255.255.0

54 Design and development of a smart car gateway

 Gateway: 192.168.1.1

- 3G connection (eth3) – iPhone 5S:
 IP: 172.20.10.2
 Mask: 255.255.255.240
 Gateway: 172.20.10.1

The next step in the set up of the test bed environment is the routing
configuration on each host. There are a few steps to follow in order to get ready
the scenario.

1. Configure routing rules.

CLIENT

Fig. I.3 Configuring routing tables on the client.

SERVER

Annex I. Mobility Solutions Configuration 55

Fig. I.4 Configuring routing tables on the server.

The aim is to configure routing rules so that packets with source-IP
192.168.1.XXX will get routed over eth2, packets with source-IP
192.168.2.XX will get routed over eth1 and those packets with source-IP
172.20.10.XX will get routed over eth3.

2. Once routing tables are configured, we should run some commands in
order to ensure that they’re correctly established.

CLIENT

 Command: ip rule show

Fig. I.5 Ip rule show on the client.

 Command: ip route

56 Design and development of a smart car gateway

Fig. I.6 Ip route on the client.

 Command: ip route show table X (1, 2 and 3)

Fig. I.7 Ip route show table 1 on the client.

Fig. I.8 Ip route show table 2 on the client.

Fig. I.9 Ip route show table 3 on the client.

SERVER

 Command: ip rule show

Fig. I.10 Ip rule show on the server.

 Command: ip route

Annex I. Mobility Solutions Configuration 57

Fig. I.11 Ip route on the server.

 Command: ip route show table X (1, 2 and 3)

Fig. I.12 Ip route show table 1 on the server.

Fig. I.13 Ip route show table 2 on the server.

Fig. I.14 Ip route show table 3 on the server.

3. Finally, we can ensure that we’re using MPTCP implementation on both

machines using the following command (curl command [28]).

curl www.multipath-tcp.org

And getting the following response:

On the Server

On the Client

Fig. I.15 MPTCP environment correctly configured in Server and Client

After all this steps, the environment is properly configured and we can start to
test MPTCP protocol.

I.1.3 Test 1 – MPTCP subflows

The first test done is to ensure that MPTCP subflows are working when we
make a request from an MPTCP capable host to another one.

58 Design and development of a smart car gateway

We can start from our client machine and the iperf command request to an
MPTCP capable server like www.multipath-tcp.org. Once the iperf command is
sent from the client machine, we can observer that one MPTCP subflow is
created in order to establish the connection, as shown below.

1. Sending the iperf request: iperf –c multipath-tcp.org

Fig. I.16 Iperf command from client to MPTCP project’s server

2. Observing the created MPTCP subflow: cat /proc/net/mptcp

Fig. I.17 Created MPTCP subflow

On the same way, we also can observe created MPTCP subflows when we sent
packets between both machines on our environment, from client to server. In
this case, there are two created subflows. Also we can be view a little more
detail of the MPTCP connection using the command netstat –m (after installing
net-tools [29], that allows us to analyse MPTCP traffic with the netstat
command).

Fig. I.18 Created MPTCP subflows in our Client-Server environment

Fig. I.19 Created MPTCP subflows using netstat-m

I.1.4 Test 2 – Server-Client file transfer

The main objective of this second test is to point out that MPTCP protocol is
able to change interfaces on the fly when it’s running.

For example, imagine a case in which an interface comes down for any reason.
In theory, MPTCP protocol can switch the interface with other available ones
and this is precisely the function that this test would check.

http://www.multipath-tcp.org/

Annex I. Mobility Solutions Configuration 59

The first thing is to explain the scenario in which the test was performed. It is
based on a client-server architecture, like the shown in figure 1.1. The actions to
be performed and the tools used in the test are detailed below.

1. The first step is to run netserver (server command of netperf [30]) in the
client side. The server will send traffic with netperf command and the
client has to be configured as the one who receive those packets.

Fig. I.20 Run netserver command in client side

2. The following action is to execute netperf command in the server side in

order to send traffic to the client. But previously, we need a tool that
monitors the received packet flows in each interface on the client side.
The chosen tool is bwm-ng [31], that allows getting all the traffic received
in the client in real-time.

Fig. I.21 Run bwm-ng command in client side and netperf in server side

Once bwm-ng is running, it’s time to run netperf command. For the test,
we will send traffic from server to client (simulating, for example, a
download) during 30 seconds and with a buffer size of 10M. The
executed command is the following.

netperf –t omni –H 192.168.1.103 –l 30 –T 1/1 –c –C -- -m 10M –V

 -t omni: sends a single data-stream

 -H 192.168.1.103: destination client’s IP address

 -l 30: duration of the test

 -T 1/1: pin applications on CPU1

 -c –C: CPU-usage statistics (at the end)

 -m 10M: size of send-buffer

 -V: zero-copy send and receive

SERVER CLIENT

> netserver

SERVER CLIENT

> bwm-ng > netperf

60 Design and development of a smart car gateway

3. At this point, we are able to view that all the 3 interfaces configured in the

client are receiving data from the server.

Fig. I.22 Traffic received by client side on its 3 interfaces (eth1, eth2, eth3)

4. During the transmission, if we stop an interface (by doing “ifconfig ethX

down” in the client) we can see that MPTCP protocol is able to switch the
traffic transmission to the other working interfaces in the client side.

Fig. I.23 Eth3 (3G interface) down.

Fig. I.24 Eth2 (Wi-fi interface) and Eth3 (3G interface) down.

If we made the same test but with a transmission from a non-capable MPTCP
host, we can observe that the transmission is only between the interfaces
configured in the same IP-address space. For example, if we execute the
netperf command detailed in step 2, the transmission is only between eth2 on
the server (192.168.1.101) and eth2 on the client (192.168.1.103). The other
network interfaces do not take part in the download.

Although we can observe that the transmission is stopped (“errno 60: no
response received”) when we shut down the working interface eth2 (active in
the transmission) in the client.

Annex I. Mobility Solutions Configuration 61

I.1.4 Test 3 – MPTCP connection properties

The third test performed has the aim of retrieve some relevant network
properties of the MPTCP transmission such as bandwidth, throughput and RTT.

The scenario is still being the same as the previous test (client-server
architecture) and some other tools are used in order to get all the network
parameters in every analysed case:

- Iperf [21]: software to send and receive traffic in the client-server
architecture.

- Tcpdump [32]: software to capture traffic sent in the transmission.
- Tcptrace [33]: software to characterize and generate statistics of the

traffic.
- Xplot [34]: software to generate graphs of the recorded traffic data.

The followed steps to make this test with the tools described previously are
detailed below.

1. First of all, execute the iperf’s server command in the client. It will be the
destination of the transmission (assuming the same “download scenario”
from the previous test).

Fig. I.25 Run iperf command (as a server) in client side

The full iperf command is the following:

Iperf –p 8888 -s

With it, we can start the transmission from the server side (start the
download) to a specific port (8888) in the client.

2. To start the download from the server, the following iperf command is
used:

iperf -f m -t 30 -i 1 -p 8888 -c 192.168.1.103

 -f m: bw numbers format (Mbit/s)

 -t 30: duration of the test

 -i 1: bw reports print every 1 second

SERVER CLIENT

> iperf

62 Design and development of a smart car gateway

 -p 8888: specifying destination port (8888)

 -c 192.168.1.103: destination client’s IP address

In order to get results regarding on the duration of the transmission and
the evolution of the download with MPTCP protocol activated, the test
are done during 15 sec., 30 sec., 60 sec., 90 sec. and 120 sec. It only
needs to change the “-t 30” option in the iperf command.

3. In parallel with step 2, it will be necessary to record all the transmission
data in a file, in order to analyse it after the tests.

To do this, the software used is tcpdump. It allows us to capture the
traffic sent by the iperf command and store it in a dump file (“.dmp”
format). The command to execute it is:

tcpdump -i any -w file.dmp

With this, we can keep all the data received in all the interfaces (“-i any”
option) in the file “file.dmp”.

4. Once the transmission between server and client is finished, and we
have all the data saved in the dump file defined in tcpdump command,
it’s time to analyse the main network parameters.

The tcptrace software helps us to do it. It will be the responsible for
adding the detailed trace packets recovered from all interfaces in the
previous steps and generating summaries of connection and plot files.

The executed command shows like this:

tcptrace -xtraffic" -B -R -T" file.dmp

And it is able to generate plot files from the dump file with all the stored
data and regarding on the bandwidth (-B option), the RTT (-R option) and
the throughput (-T option). The plot files generated are:

 traffic_bytes.xpl: throughput over time

 traffic_data.xpl: bandwidth over time

 traffic_rtt.xpl: RTT over time

5. Finally, once the plot files are generated, the xplot software allows us to
print the graphs showing the mentioned network parameters.

xplot (traffic_bytes.xpl || traffic_rtt.xpl || traffic_data.xpl)

As mentioned in the second step, this test was done with different transmission
times. Then the resulting graphs are shown for each case (15s, 30s, 60s, 90s,
120s).

Annex I. Mobility Solutions Configuration 63

- Transmission time: 15 seconds

 Command: iperf -f m -t 15 -i 1 -p 8888 -c 192.168.1.103

Throughput

Fig. I.26 Throughput graph for 15s transmission

Bandwidth

Fig. I.27 Bandwidth graph (slope) for 15s transmission

64 Design and development of a smart car gateway

RTT

Fig. I.28 RTT graph for 15s transmission

- Transmission time: 30 seconds

 Command: iperf -f m -t 30 -i 1 -p 8888 -c 192.168.1.103

Throughput

Fig. I.29 Throughput graph for 30s transmission

Annex I. Mobility Solutions Configuration 65

Bandwidth

Fig. I.30 Bandwidth graph (slope) for 30s transmission

RTT

Fig. I.31 RTT graph for 30s transmission

- Transmission time: 60 seconds

 Command: iperf -f m -t 60 -i 1 -p 8888 -c 192.168.1.103

66 Design and development of a smart car gateway

Throughput

Fig. I.32 Throughput graph for 60s transmission

Bandwidth

Fig. I.33 Bandwidth graph (slope) for 60s transmission

Annex I. Mobility Solutions Configuration 67

RTT

Fig. I.34 RTT graph for 60s transmission

- Transmission time: 90 seconds

 Command: iperf -f m -t 90 -i 1 -p 8888 -c 192.168.1.103

Throughput

Fig. I.35 Throughput graph for 90s transmission

68 Design and development of a smart car gateway

Bandwidth

Fig. I.36 Bandwidth graph (slope) for 90s transmission

RTT

Fig. I.37 RTT graph for 90s transmission

- Transmission time: 120 seconds

 Command: iperf -f m -t 120 -i 1 -p 8888 -c 192.168.1.103

Annex I. Mobility Solutions Configuration 69

Throughput

Fig. I.38 Throughput graph for 120s transmission

Bandwidth

Fig. I.39 Bandwidth graph (slope) for 120s transmission

70 Design and development of a smart car gateway

RTT

Fig. I.40 RTT graph for 120s transmission

Analysing the graphs we can see that for more duration of the transmission
between client and server the throughput and the bandwidth increases.

With the throughput we can see that for higher transmission times, it slows
down in the middle of the transmission but as the time increases the slope of
the curve exponentially increases too.

For the case of the bandwidth and smaller transmission times, we can observe
a perfect linear slope in the relation between received bytes and spent time. But
as time increases, the slope change its shape and exponentially increases too.

Regarding on the RTT we can see that this parameter remains constant in all
the transmission times. Although we observe some abnormal fluctuations, as for
example in the case of 90 seconds’ transmission. This is due to anomalous
effects in the test bed environment. In the graphs, three different lines are
shown: the solid one shows the maximum RTT, the dashed one the average
RTT and the dotted one the minimum RTT.

I.2 Mobile IP

I.2.1 MIPv6 test bed – Installation and configuration

For the implementation of UMIP (MIPv6 and NEMO for Linux [35]) it has been
used an Ubuntu Linux distribution based on a 3.8.2 patched kernel.

The first step is to compile the appropriated kernel in order to get MIPv6 running
by rebuilding kernel modules and activating those that are necessary to enable

Annex I. Mobility Solutions Configuration 71

the mobility features. The following options must be turned on in the kernel
configuration menu.

Fig. I.41 Enabling mobility options in the kernel

With this, the new kernel could be installed by doing the following make [36]
commands.

Fig. I.42 Installing the patched kernel

Once the kernel is installed and running on the Linux distribution, the last step
to get UMIP is to download the source code and compile it with the next
commands.

General setup
--> Prompt for development and/or incomplete code/drivers

[CONFIG_EXPERIMENTAL]
--> System V IPC [CONFIG_SYSVIPC]

Networking support [CONFIG_NET]
--> Networking options
 --> Transformation user configuration interface

[CONFIG_XFRM_USER]
 --> Transformation sub policy support [CONFIG_XFRM_SUB_POLICY]
 --> Transformation migrate database [CONFIG_XFRM_MIGRATE]

 --> PF_KEY sockets [CONFIG_NET_KEY]
 --> PF_KEY MIGRATE [CONFIG_NET_KEY_MIGRATE]
 --> TCP/IP networking [CONFIG_INET]

 --> The IPv6 protocol [CONFIG_IPV6]
 --> IPv6: AH transformation [CONFIG_INET6_AH]
 --> IPv6: ESP transformation [CONFIG_INET6_ESP]

 --> IPv6: IPComp transformation [CONFIG_INET6_IPCOMP]
 --> IPv6: Mobility [CONFIG_IPV6_MIP6]
 --> IPv6: IPsec transport mode

[CONFIG_INET6_XFRM_MODE_TRANSPORT]
 --> IPv6: IPsec tunnel mode [CONFIG_INET6_XFRM_MODE_TUNNEL]
 --> IPv6: MIPv6 route optimization mode

[CONFIG_INET6_XFRM_MODE_ROUTEOPTIMIZATION]
 --> IPv6: IP-in-IPv6 tunnel (RFC2473) [CONFIG_IPV6_TUNNEL]
 --> IPv6: Multiple Routing Tables

[CONFIG_IPV6_MULTIPLE_TABLES]

 --> IPv6: source address based routing
[CONFIG_IPV6_SUBTREES]

File systems
--> Pseudo filesystems
 --> /proc file system support [CONFIG_PROC_FS]

make
make modules_install

make install
make headers_install

72 Design and development of a smart car gateway

Fig. I.43 Downloading the source code from UMIP repository

Fig. I.44 Compiling and installing UMIP

The option “--enable-vt” enables a virtual terminal in order to virtualize the
Binding Cache table or the Binding Update list in the Home Agent (HA) or the
Mobile Node (MN).

With all the steps detailed above, UMIP is correctly installed in our Linux
distribution. Now, the next step is to configure it in our scenario with one
machine acting as the Home Agent (HA) and another one acting as a Mobile
Node (MN).

Fig. I.45 MIPv6 Test Bed setup

$ cd /usr/src/
$ git clone git://git.umip.org/umip.git
$ cd umip/

$ autoreconf -i
$ CPPFLAGS='-isystem /usr/src/linux/usr/include/'

./configure --enable-vt
$ make
make install

Annex I. Mobility Solutions Configuration 73

Both HA and MN are based on the same Linux distribution mounted in two
different physical machines and with the following setup:

- HA:
 Connected to the Internet by eth1 interface.
 The interface eth0 is the one connected to the home link of the

MN.
 The address configured on eth0 is 2001:db8:ffff:0::1000/64.

- MN:

 The Home Address (HoA) of the MN is 2001:db8:ffff:0::1/64
(configured on interface eth0).

Regarding to this specifications, the configuration files for each node are
detailed below (mip6d.conf file in both machines).

Home Agent

Fig. I.46 UMIP Home Agent configuration file

UMIP configuration file for a MIPv6 Home Agent

NodeConfig HA;

Set DebugLevel to 0 if you do not want debug messages

DebugLevel 10;

Replace eth0 with the interface connected to the home link

Interface "eth0";

Binding information

BindingAclPolicy 2001:db8:ffff:0::1 allow;
DefaultBindingAclPolicy deny;

Enable IPsec static keying
UseMnHaIPsec enabled;
KeyMngMobCapability disabled;

IPsec Security Policies information
IPsecPolicySet {

 HomeAgentAddress 2001:db8:ffff:0::1000;
 HomeAddress 2001:db8:ffff:0::1/64;

 # All MH packets (BU/BA/BERR)
 IPsecPolicy Mh UseESP 11 12;
 # All tunneled packets (HoTI/HoT, payload)

 IPsecPolicy TunnelPayload UseESP 13 14;
 # All ICMP packets (MPS/MPA, ICMPv6)
 IPsecPolicy ICMP UseESP 15 16;

}

74 Design and development of a smart car gateway

Mobile Node

Fig. I.47 UMIP Mobile Node configuration file

The IPsetPolicySet configured in both scripts (HA & MN) uses the below IPsec
SAs (setkey.conf in both machines).

UMIP configuration file for a MIPv6 Mobile Node
NodeConfig MN;

Set DebugLevel to 0 if you do not want debug messages
DebugLevel 10;

Enable the optimistic handovers
OptimisticHandoff enabled;

Disable RO with other MNs (it is not compatible
with IPsec Tunnel Payload)

DoRouteOptimizationMN disabled;

The Binding Lifetime (in sec.)

MnMaxHaBindingLife 60;

List here the interfaces that you will use

on your mobile node. The available one with
the smallest preference number will be used.
Interface "eth0" {

 MnIfPreference 1;
}
Interface "wlan0" {

 MnIfPreference 2;
}

Replace eth0 with one of your interface used on
your mobile node

MnHomeLink "eth0" {

 HomeAgentAddress 2001:db8:ffff:0::1000;
 HomeAddress 2001:db8:ffff:0::1/64;
}

Enable IPsec static keying
UseMnHaIPsec enabled;

KeyMngMobCapability disabled;

IPsec Security Policies information

IPsecPolicySet {
 HomeAgentAddress 2001:db8:ffff:0::1000;
 HomeAddress 2001:db8:ffff:0::1/64;

 # All MH packets (BU/BA/BERR)

 IPsecPolicy Mh UseESP 11 12;

 # All tunneled packets (HoTI/HoT, payload)
 IPsecPolicy TunnelPayload UseESP 13 14;
 # All ICMP packets (MPS/MPA, ICMPv6)

 IPsecPolicy ICMP UseESP 15 16;
}

Annex I. Mobility Solutions Configuration 75

Fig. I.48 IPsecSAs configuration file on both machines

The Home Agent also needs to advertise the Home Link prefix in its Home Link
using Router Advertisements. For that purpose, radvd software [37] is used
with the below configuration (radvd.conf file in HA).

IPsec Security Associations

HA address: 2001:db8:ffff:0::1000;
MR HoAs: 2001:db8:ffff:0::1/64;

Flush the SAD and SPD
flush;
spdflush;

MN1 -> HA transport SA for BU
add 2001:db8:ffff:0::1 2001:db8:ffff:0::1000 esp 0x11

 -u 11
 -m transport
 -E 3des-cbc "MIP6-011--12345678901234"

 -A hmac-sha1 "MIP6-011--1234567890" ;

HA -> MN1 transport SA for BA

add 2001:db8:ffff:0::1000 2001:db8:ffff:0::1 esp 0x12
 -u 12
 -m transport

 -E 3des-cbc "MIP6-012--12345678901234"
 -A hmac-sha1 "MIP6-012--1234567890" ;

MN1 -> HA tunnel SA for any traffic
add 2001:db8:ffff:0::1 2001:db8:ffff:0::1000 esp 0x13
 -u 13

 -m tunnel
 -E 3des-cbc "MIP6-013--12345678901234"
 -A hmac-sha1 "MIP6-013--1234567890" ;

HA -> MN1 tunnel SA for any traffic
add 2001:db8:ffff:0::1000 2001:db8:ffff:0::1 esp 0x14

 -u 14
 -m tunnel
 -E 3des-cbc "MIP6-014--12345678901234"

 -A hmac-sha1 "MIP6-014--1234567890" ;

MN1 -> HA transport SA for ICMP (including MPS/MPA)

add 2001:db8:ffff:0::1 2001:db8:ffff:0::1000 esp 0x15
 -u 15
 -m transport

 -E 3des-cbc "MIP6-015--12345678901234"
 -A hmac-sha1 "MIP6-015--1234567890" ;

HA -> MN1 transport SA for ICMP (including MPS/MPA)
add 2001:db8:ffff:0::1000 2001:db8:ffff:0::1 esp 0x16
 -u 16

 -m transport

 -E 3des-cbc "MIP6-016--12345678901234"
 -A hmac-sha1 "MIP6-016--1234567890" ;

76 Design and development of a smart car gateway

Fig. I.48 Radvd software configuration file

Finally, with all these files configured in each machine, we can execute the
following scripts in order to get UMIP running in our test bed scenario (with a
HA and a MN).

In the HA (mipv6-ha.sh)

Home Agent radvd configuration file

Replace eth0 with the interface connected to the home link
interface eth0
{

 AdvSendAdvert on;
 MaxRtrAdvInterval 3;
 MinRtrAdvInterval 1;

 AdvIntervalOpt on;
 AdvHomeAgentFlag on;
 AdvHomeAgentInfo on;

 HomeAgentLifetime 1800;
 HomeAgentPreference 10;

 # Home Agent address
 prefix 2001:db8:ffff:0::1000/64

 {

 AdvRouterAddr on;
 AdvOnLink on;
 AdvAutonomous on;

 };
};

Annex I. Mobility Solutions Configuration 77

Fig. I.49 Home Agent UMIP starting script

#!/bin/sh

set -e

Make sure below as your environment

PATH=/usr/local/sbin:/usr/sbin:/sbin:${PATH}

mip6d_conf=/usr/local/etc/mip6d-ha.conf

setkey_conf=/usr/local/etc/setkey.conf
radvd_conf=/usr/local/etc/radvd.conf

case "$1" in
 start)

 # Router

 echo 1 >/proc/sys/net/ipv6/conf/all/forwarding
 # Proxy ND

 echo 1 >/proc/sys/net/ipv6/conf/all/proxy_ndp

 # set IPsec configuration

 setkey -f $setkey_conf

 # invoke mip6d

 mip6d -c $mip6d_conf

 # For low performance systems, you can add sleep here

 # to make sure mip6d has started
 #

 # RD
 radvd -C $radvd_conf

 echo "Starting MIPv6 HA."
 ;;
 stop)

 killall radvd
 killall mip6d

 # XXX: Deleting IPsec SAs can be here if you want.
 #

 # XXX: Disabling router and/or Proxy ND can be here if you
want.
 #

 echo "Stopping MIPv6 HA."

 ;;

 *)
 echo "Usage: ${0##*/} {start|stop}"
 exit 1

 ;;
esac

exit 0

78 Design and development of a smart car gateway

In the MN (mipv6-mn.sh)

Fig. I.50 Mobile Node UMIP starting script

#!/bin/sh
set -e

Make sure below as your environment

PATH=${PATH:+$PATH:}/usr/local/sbin:/usr/sbin:/sbin
mip6d_conf=/usr/local/etc/mip6d-mn.conf

setkey_conf=/usr/local/etc/setkey.conf
#device used by mip6d.
dev=eth0

case "$1" in
 start)

 # disable to send RS from kernel.
 #echo 0 > /proc/sys/net/ipv6/conf/all/router_solicitations
 #echo 0 > /proc/sys/net/ipv6/conf/default/router_solicitations

 #echo 0 >
/proc/sys/net/ipv6/conf/all/router_solicitation_interval
 #echo 0 >

/proc/sys/net/ipv6/conf/default/router_solicitation_interval

 # set IPsec configuration

 setkey -f $setkey_conf

 # bring up the interface which MN will use.

 ifconfig $DEV up

 # invoke mip6d

 mip6d -c $mip6d_conf
 echo "Starting MIPv6 MN."
 ;;

 stop)
 killall mip6d

 ifconfig $DEV down

 # XXX: Deleting IPsec SAs can be here if you want.

 #

 # XXX: enable to send RS from kernel here if you want.

 #

 echo "Stopping MIPv6 MN."

 ;;

 *)

 echo "Usage: ${0##*/} {start|stop}"
 exit 1
 ;;

esac

exit 0

Annex I. Mobility Solutions Configuration 79

I.2.2 MIPv6 test bed – Checking connectivity

The first thing done after booting the protocol on both machines, is to test if the
MN is reachable from the HA when it is in the Home Link, for example with
ping6 [38].

After this, the next step is to try to move the MN from the Home Link to a foreign
Network. In that case it has been used a mobile phone in its network sharing
mode, acting as an AP for the machine configured as MN. Also with that, the
MN is still reachable because it was registered to the HA.

We can check that the HA is ready to serve by calling “pl” command in its
Virtual Terminal and getting a home prefix valid lifetime with positive value.

Fig. I.51 Checking if HA is ready to serve

This registration can be checked in the Binding Update List on the MN and in
the Binding Cache on the HA. It can be done accessing to the Virtual Terminal
previously configured on UMIP in the installation stage.

- Checking Binding Cache on the HA:

Fig. I.52 Binding Cache on the HA

telnet localhost 7777
mip6d> verbose yes
yes

mip6d> bc
hoa 2001:db8:ffff:0::1 status registered

 coa 2001:db8:ffff:f300:feed:beef:feed:beef flags AH--

 local 2001:db8:ffff:0::1000
 lifetime 965 / 1000 seq 54192 unreach 0 mpa - / 0 retry 0

telnet localhost 7777

mip6d> verbose yes
yes
mip6d> pl

eth0 2001:db8:ffff:0::1000/64
valid 467897 / 467900 preferred 42800 flags OAR
mip6d>

80 Design and development of a smart car gateway

- Checking Binding Update List on the MN:

Fig. I.53 Binding Update List on the MN

In both validations (“bc” command on the HA and “bul” command on the MN)
we can observe that the CoA (Care-of Address:
2001:db8:ffff:f300:feed:beef:feed:beef) which is bound to the Home Address
2001:db8:ffff:0::1 is registered to the Correspondent Node (in that case, the HA)
whose address is 2001:db8:ffff:0::1000.

I.2.3 Adding NEMO Basic Support

Once we have the MIPv6 test bed running there are some modifications to be
done in order to turn the HA into a NEMO HA and the MN into a Mobile Router
(MR).

telnet localhost 7777
mip6d> verbose yes

yes
mip6d> bul
== BUL_ENTRY ==

Home address 2001:db8:ffff:0::1
Care-of address 2001:db8:ffff:f300:feed:beef:feed:beef
CN address 2001:db8:ffff:0::1000

 lifetime = 8, delay = 7000
 flags: IP6_MH_BU_HOME IP6_MH_BU_ACK
 ack ready

 dev eth0 last_coa 2001:db8:ffff:f300:feed:beef:feed:beef

 lifetime 4 / 8 seq 71508 resend 0 delay 4(after 1s) expires 3
 mps 2482411 / 2482469

Annex I. Mobility Solutions Configuration 81

Fig. I.54 NEMO Test Bed setup

As shown in figure 1.54, the mobile network is connected to the eth1 interface
of the MR, and also the MR advertises a prefix (called Mobile Network Prefix,
MNP) in his mobile network. In the test bed, the MNP is 2001:db8:ffff:ff01::/64
and the MR also configures the address 2001:db8:ffff:ff01::1 on its ingress
interface (eth1).

The MNP used by the MR must be routable towards the HA, and for that
purpose the address space 2001:db8:ffff:ff00::/56 dedicated to a set of MNP is
assigned to the HA. This prefix also must be advertised by the HA in the routing
infrastructure.

The small modifications to be done in both machines HA and MN are the
detailed below.

NEMO Home Agent

- Modify the mip6d running script detailed in MIPv6 test bed configuration
by adding the following lines (marked as blue).

82 Design and development of a smart car gateway

Fig. I.55 NEMO HA Configuration file

- Modify the radvd.conf file configured in the MIPv6 test bed configuration
by adding the following lines (marked as blue).

UMIP configuration file for a NEMO Home Agent

NodeConfig HA;

Set DebugLevel to 0 if you do not want debug messages

DebugLevel 10;

Replace eth0 with the interface connected to the home link

Interface "eth0";

Accept registrations from Mobile Routers
HaAcceptMobRtr enabled;
HaServedPrefix 2001:db8:ffff:0::/64;

Binding information
BindingAclPolicy 2001:db8:ffff:0::1 (2001:db8:ffff:ff01::/64) allow;
DefaultBindingAclPolicy deny;

Enable IPsec static keying
UseMnHaIPsec enabled;

KeyMngMobCapability disabled;

IPsec Security Policies information

IPsecPolicySet {
 HomeAgentAddress 2001:db8:ffff:0::1000;
 HomeAddress 2001:db8:ffff:0::1/64;

 # All MH packets (BU/BA/BERR)
 IPsecPolicy Mh UseESP 11 12;

 # All tunneled packets (HoTI/HoT, payload)
 IPsecPolicy TunnelPayload UseESP 13 14;
 # All ICMP packets (MPS/MPA, ICMPv6)

 IPsecPolicy ICMP UseESP 15 16;
}

Annex I. Mobility Solutions Configuration 83

Fig. I.56 NEMO HA radvd.conf file

NEMO Mobile Router

- Modify the mip6d running script detailed in MIPv6 test bed configuration
by adding the following lines (marked as blue).

NEMO Home Agent radvd configuration file
Replace eth0 with the interface connected to the home link
interface eth0

{
 AdvSendAdvert on;
 MaxRtrAdvInterval 3;

 MinRtrAdvInterval 1;
 AdvIntervalOpt on;
 AdvHomeAgentFlag on;

 AdvHomeAgentInfo on;
 HomeAgentLifetime 1800;
 HomeAgentPreference 10;

 AdvMobRtrSupportFlag on;

 # Home Agent address
 prefix 2001:db8:ffff:0::1000/64
 {

 AdvRouterAddr on;
 AdvOnLink on;
 AdvAutonomous on;

 };
};

84 Design and development of a smart car gateway

Fig. I.57 NEMO MR Configuration file

- Create a radvd.conf file (not created in MIPv6 test bed configuration) in

order to let the MR to advertise its MNP in the mobile network using
Router Advertisements (RA).

UMIP configuration file for a Mobile Router

NodeConfig MN;

Set DebugLevel to 0 if you do not want debug messages

DebugLevel 10;

Enable the optimistic handovers

OptimisticHandoff enabled;

Disable RO with other MNs (it is not compatible

with IPsec Tunnel Payload)
DoRouteOptimizationMN disabled;

The Binding Lifetime (in sec.)
MnMaxHaBindingLife 60;

Use NEMO Explicit Mode
MobRtrUseExplicitMode enabled;

List here the interfaces that you will use
on your mobile node. The available one with
the smallest preference number will be used.

Interface "eth0" {
 MnIfPreference 1;
}

Interface "wlan0" {
 MnIfPreference 2;
}

Replace eth0 with one of your interface used on
your mobile node

MnHomeLink "eth0" {
 IsMobRtr enabled;
 HomeAgentAddress 2001:db8:ffff:0::1000;
 HomeAddress 2001:db8:ffff:0::1/64 (2001:db8:ffff:ff01::/64);
}

Enable IPsec static keying
UseMnHaIPsec enabled;
KeyMngMobCapability disabled;

IPsec Security Policies information
IPsecPolicySet {

 HomeAgentAddress 2001:db8:ffff:0::1000;
 HomeAddress 2001:db8:ffff:0::1/64;

 # All MH packets (BU/BA/BERR)

 IPsecPolicy Mh UseESP 11 12;
 # All tunneled packets (HoTI/HoT, payload)

 IPsecPolicy TunnelPayload UseESP 13 14;
 # All ICMP packets (MPS/MPA, ICMPv6)
 IPsecPolicy ICMP UseESP 15 16;

}

Annex I. Mobility Solutions Configuration 85

Fig. I.58 MR radvd software configuration file

After doing these modifications in the HA and the MR configuration files, the
correct configuration of NEMO can be checked as in the previous point 1.2.2.
Connectivity tests are the same as in MIPv6 test bed scenario.

Mobile Router radvd configuration file

Replace eth1 with your ingress interface name
interface eth1
{

 AdvSendAdvert on;
 MaxRtrAdvInterval 3;
 MinRtrAdvInterval 1;

 AdvIntervalOpt on;
 IgnoreIfMissing on;

 # Mobile Router address on the ingress interface
 prefix 2001:db8:ffff:ff01::1/64
 {

 AdvRouterAddr on;

 AdvOnLink on;
 AdvAutonomous on;

 AdvPreferredLifetime 60;
 AdvValidLifetime 120;
 AdvLinkMTU 1280;

 };
};

86 Design and development of a smart car gateway

ANNEX II. OPEN DATA AND OPERATING SYSTEMS

II.1 Open data examples

II.1.1 Overview

Another important feature that the smart car gateway will give to the user is the
access to some relevant information related to:

 Roads

 Routes

 Traffic

 Current City Points of Interest

For example, the user can be in touch with real-time information of traffic status
and alternative routes if a traffic jam is happening. Or also can be informed of
where to park the car in the city (public parking).

The main objective is to give to the user all the possible information in order to
help him and optimize his routes.

Following this line, there are some public organizations offering open data. One
of them is OpenDataBCN (http://opendata.bcn.cat/opendata/en), an open data
platform powered by the Barcelona City Council. This site allow us to download
and use the following information that can be oriented to the driver’s service:

- Traffic status in Real-Time
- Traffic incidents
- Routes
- Parking in the City
- Public Transport
- Equipment and services in the City

Also in Barcelona, we can find additional traffic information like, for example,
traffic cameras (http://www.bcn.cat/transit/en/cameres.html) that will allow the
user to view the traffic status and possible traffic jams in real-time.

http://opendata.bcn.cat/opendata/en
http://www.bcn.cat/transit/en/cameres.html

Annex II. Open Data and Operating Systems 87

Fig. II.1 Traffic camera locations and example of one of them

The information mentioned above is also given in another open data website
from the Catalan Government (http://dadesobertes.gencat.cat/), but in this case
in all the Catalan territory. Also in this website, the information related to speed
radars in roads and all the road maps of Catalonia can be found. In resume, the
available information in this site is:

- Roads’ Maps (in order to present information on them).
- Traffic Cameras in entire Catalonian roads.
- Information about traffic speed radars.
- Traffic incidents in real-time.

Another important information to give to the user is the related with gas stations
and fuel prices. It can be find in another open data organism, Datos.Gob
(http://datos.gob.es/), powered by the Spanish Government.

Fig. II.2 Gas Stations and Fuel Price Map

http://dadesobertes.gencat.cat/
http://datos.gob.es/

88 Design and development of a smart car gateway

This data can allow the driver to refuel in the best gas station based on the
distance to it and the fuel price.

In summary, all of this kind of information can be presented to the user as an
additional functionality of the smart car gateway.

II.1.2 Open data – Spanish territory

The Spanish Government from its own open data initiative, Datos Gob, gives
the possibility to get free information about the country, population and other
many aspects.

In our case and thinking in the smart car gateway, we can use information like:

- Roads’ Maps (in order to represent information on them).
- Gas Stations and Fuel Price
- Information about traffic

Gas Stations and Fuel Price

For example and regarding the information about gas stations and fuel price in
each one, we can represent the data as shown below.

Fig. II.3 Gas Stations

Annex II. Open Data and Operating Systems 89

Fig. II.4 Fuel Price (Diesel)

In this case we can offer the driver the knowledge about the presence of a gas
station in all the roads and the price of fuel on each one based on car’s fuel
type.

Roads’ Map

The given information about roads in the Spanish territory is classified regarding
on road type (primary and secondary). The next picture shows the entire road
network in Spain.

90 Design and development of a smart car gateway

Fig. II.5 Road Network in Spain

And also this information can be combined with the previous one related to gas
stations and fuel price in each one of them. The following map shows a case
where a driver can decide which gas station is better regarding on fuel price.

Fig. II.6 Roads and Fuel Price information

Annex II. Open Data and Operating Systems 91

II.1.3 Open data – Catalonian territory

As mentioned previously, the Catalan Government offer an open data website
with some interesting information that can be included in the smart car gateway.
Resuming, the information taken in this website is:

- Roads’ Maps (in order to represent information on them).
- Traffic Cameras in entire Catalonian roads.
- Information about traffic speed radars.
- Traffic incidents in real-time (traffic status).

Following an example for each case will be shown.

Roads’ Map

The information is offered in Shapefile mode. This kind of format allows using
the data in many GIS software for its editing, modelling and styling, and also
with the possibility to join other datasets in order to show the information in map
view.

The following image shows the roads’ map Shapefile loaded in a GIS Software
like Quantum GIS.

Fig. II.7 Roads’ Map Shapefile

92 Design and development of a smart car gateway

In this layer we can print information about traffic congestion or routes in a
better way that will help the user to view the information more clear.

Traffic Cameras

Also it will be possible to show to the driver real-time camera captures of the
roads. As the following image shows, this open data website offers us this kind
of information.

Fig. II.8 Traffic cameras real-time information

This information can also allow us to get the real-time status of the traffic in
order to be used by our gateway to finally choose the best route the driver can
get to the destination.

Traffic Speed Radars

Another open data source that Catalan Government offers is the location of
fixed traffic speed radars in the roads.

Annex II. Open Data and Operating Systems 93

Fig. II.9 Fixed Speed Radars in all the Catalonian territory

Fig. II.10 Roads and Speed Radars

In the picture above we can see both data sources combined, traffic speed
radars and road. A feature that we can give to the user can be the possibility to
notice when crossing in a road where speed radar is placed.

94 Design and development of a smart car gateway

Traffic Status

Regarding to the available traffic information, we can find a WMS server where
to download data about roads and its status.

For example, and shown in the picture below, this service allows us to represent
traffic flows and incidents in all the Catalan roads.

Fig. II.11 Traffic status and incidents in Catalan roads

This information can help us to give to the user all the traffic information in real-
time and help him to choose the best route to the destination. We’ll be able to
decide which route is better in order to avoid any problem in our drive.

II.1.4 Open data – Barcelona City territory

In Barcelona City Council Open Data catalogue we can find similar information
about traffic (status, cameras, incidents, etc.) like we found in Catalonian
Government Open Data website.

But in this case some specific information about the city, like public parking
location (fig. II.12), can be useful when the driver comes to the city.

Annex II. Open Data and Operating Systems 95

Fig. II.12 Public parking location in Barcelona City area

II.2 Automotive Grade Linux (AGL) Demonstrator

Automotive Grade Linux (AGL) is a collaborative open source project
developing common, Linux-based software stack for the connected car. It isn’t a
protocol itself, it just gives the framework to develop smart car functionalities.

The concept of AGL is to provide a technology platform developers can use to
jump-start their development work. It’s not a production system. To be a
production-ready system, AGL will need to be adopted to target hardware
platforms and outfitted with a custom user experience.

By the moment, with AGL we can obtain the platform where to place our
development, for example implementing features based on MPCTP and Mobile
IPv6 protocols (AGL doesn’t give this kind of protocols implementation).

AGL is based on a Fedora Linux distribution. In the project’s official website
(http://automotive.linuxfoundation.org/) we can find an implementation of the
stack where to start the development. The test done with AGL consists in just
run the virtual machine offered by the project (VMWare virtual machine). Then,
some pictures of the virtual machine’s implementation are shown.

http://automotive.linuxfoundation.org/

96 Design and development of a smart car gateway

Fig. II.13 AGL Demonstrator screens: Car status and Home.

Below, some features given by the framework:

- Car Status
- Web browser
- Music player
- Video player
- Telephone
- Maps (Navigation)

Annex II. Open Data and Operating Systems 97

Fig. II.14 AGL Demonstrator screens: Navigator and Phone.

Fig. II.15 AGL Demonstrator screens: Music and Video Players.

98 Design and development of a smart car gateway

REFERENCES

[1] European Commission, “eCall: Time saved = lives saved,” Digital Single
Market (Digital Economy & Society), Jan. 2016. [Online]. Available:
https://ec.europa.eu/digital-single-market/ecall-time-saved-lives-saved

[2] European Telecommunications Standards Institute (ETSI), “MirrorLink co-
operation agreement between Car Connectivity Consortium and ETSI”. [Online].
Available: https://ec.europa.eu/digital-single-market/ecall-time-saved-lives-
saved

[3] Opel OnStar, “Compact Connectivity Star: New Astra with Opel OnStar and
IntelliLink,” [Online]. Available:
http://media.opel.es/media/intl/en/opel/news.detail.html/content/Pages/news/intl/
en/2015/opel/08-20-connectivity-onstar.html

[4] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses,” RFC 6824, Internet
Engineering Task Force, Jan. 2013. [Online]. Available:
http://tools.ietf.org/rfc/rfc6824

[5] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” RFC 6182, Internet Engineering
Task Force, Mar. 2011. [Online]. Available: http://tools.ietf.org/rfc/rfc6182

[6] C. Perkins, Tellabs Inc., D. Johnson, Rice University, J. Arkko, Ericsson,
“Mobility Support in IPv6,” RFC6275, Jul. 2011. [Online]. Available:
http://tools.ietf.org/html/rfc6275

[7] V. Devarapalli, Nokia, R. Wakikawa, Keio University, A. Petrescu, Motorola,
P. Thubert, Cisco Systems, “Network Mobility (NEMO) Basic Support Protocol,”
RFC3963, Jan. 2005. [Online]. Available: https://tools.ietf.org/html/rfc3963

[8] European Telecommunications Standards Institute (ETSI), “Intelligent
Transport Systems”. [Online]. Available: http://www.etsi.org/technologies-
clusters/technologies/intelligent-transport

[9] Ajuntament de Barcelona, “Wifi hotspots,” OpenDataBCN, Sep. 2015.
[Online]. Available: http://opendata.bcn.cat/opendata/en/catalog/WIFI

https://ec.europa.eu/digital-single-market/ecall-time-saved-lives-saved
https://ec.europa.eu/digital-single-market/ecall-time-saved-lives-saved
https://ec.europa.eu/digital-single-market/ecall-time-saved-lives-saved
http://media.opel.es/media/intl/en/opel/news.detail.html/content/Pages/news/intl/en/2015/opel/08-20-connectivity-onstar.html
http://media.opel.es/media/intl/en/opel/news.detail.html/content/Pages/news/intl/en/2015/opel/08-20-connectivity-onstar.html
http://tools.ietf.org/rfc/rfc6824
http://tools.ietf.org/rfc/rfc6182
http://tools.ietf.org/html/rfc6275
https://tools.ietf.org/html/rfc3963
http://www.etsi.org/technologies-clusters/technologies/intelligent-transport
http://www.etsi.org/technologies-clusters/technologies/intelligent-transport
http://opendata.bcn.cat/opendata/en/catalog/WIFI

References 99

[10] Generalitat de Catalunya, “Dades recollides per l’aplicació Cobertura
mòbil,” Dades Obertes Gencat, Jun. 2015. [Online]. Available:
http://dadesobertes.gencat.cat/ca/cercador/detall-cataleg/?id=7710

[11] Wikipedia, “Mobile phone signal, ASU,”. [Online]. Available:
https://en.wikipedia.org/wiki/Mobile_phone_signal#ASU

[12] Wikipedia, “Web Map Service,”. [Online]. Available:
https://en.wikipedia.org/wiki/Web_Map_Service

[13] C. Ng, T. Ernst, E.Paik, and M. Bagnulo, “Analysis of Multihoming in
Network Mobility Support,” RFC 4980, Internet
Engineering Task Force, Oct. 2007. [Online]. Available:
https://tools.ietf.org/html/rfc4980

[14] “Boosting mobility performance with Multi-Path TCP”. [Online]. Available:
http://e-
archivo.uc3m.es/bitstream/handle/10016/10314/boosting_valera_FUTURE_201
0_ps.pdf

[15] “TC Man Page”. [Online]. Available: http://linux.die.net/man/8/tc

[16] Ajuntament de Barcelona, “Wifi hotspots - Service User Manual,”
OpenDataBCN, Sep. 2015. [Online]. Available:
http://www.bcn.cat/barcelonawifi/docs/en/manual.pdf

[17] “Ping Man Page”. [Online]. Available: http://linux.die.net/man/8/ping

[18] iOS App, “Fing – Network Scanner”, iTunes Store, [Online]. Available:
https://itunes.apple.com/us/app/fing-network-scanner/id430921107?mt=8

[19] “TC/Netem Man Page”. [Online]. Available:
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

[20] “Ifconfig Man Page”. [Online]. Available: http://linux.die.net/man/8/ifconfig

[21] “Iperf – The TCP/UDP Bandwidth Measurement Tool”. Project website:
https://iperf.fr/
[22] S.Barré, C. Pasch, and O. Bonaventure, “Multipath TCP: From Theory to

http://dadesobertes.gencat.cat/ca/cercador/detall-cataleg/?id=7710
https://en.wikipedia.org/wiki/Mobile_phone_signal#ASU
https://en.wikipedia.org/wiki/Web_Map_Service
https://tools.ietf.org/html/rfc4980
http://e-archivo.uc3m.es/bitstream/handle/10016/10314/boosting_valera_FUTURE_2010_ps.pdf
http://e-archivo.uc3m.es/bitstream/handle/10016/10314/boosting_valera_FUTURE_2010_ps.pdf
http://e-archivo.uc3m.es/bitstream/handle/10016/10314/boosting_valera_FUTURE_2010_ps.pdf
http://linux.die.net/man/8/tc
http://www.bcn.cat/barcelonawifi/docs/en/manual.pdf
http://linux.die.net/man/8/ping
https://itunes.apple.com/us/app/fing-network-scanner/id430921107?mt=8
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://linux.die.net/man/8/ifconfig
https://iperf.fr/

100 Design and development of a smart car gateway

Practice,” ICTEAM, Université catholique de Louvain, May. 2011.

[23] N. Williams, P. Abeysekera, N. Dyer, H. Vu, Greenville Armitage, “Multipath
TCP in Vehicular to Infrastructure Communications,” [Online]. Available:
http://caia.swin.edu.au/reports/140828A/CAIA-TR-140828A.pdf

[24] “Live encoder settings, bit rates and resolutions”. [Online]. Available:
https://support.google.com/youtube/answer/2853702?hl=en-GB

[25] “How much bandwidth does Skype need?”. [Online]. Available:
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-
need

[26] “Netflix-Internet Connection Speed Recommendations”. [Online]. Available:
https://help.netflix.com/en/node/306

[27] “Vagrant – A tool for building complete development environments”. Official
Documentation website: https://docs.vagrantup.com/v2/

[28] “Curl Man Page”. Available: http://curl.haxx.se/docs/manpage.html

[29] “Net-Tools: Linux Networking Base Tools”. Project website:
http://sourceforge.net/projects/net-tools/

[30] “Netperf Benchmarking Tool”. Project website:
http://www.netperf.org/netperf/

[31] “Bwm-ng: Bandwidth Monitor NG”. Project website:
http://www.gropp.org/?id=projects&sub=bwm-ng

[32] “Tcpdump Man Page”. Available: http://www.tcpdump.org/tcpdump_man.html

[33] “Tcptrace”. Official Homepage: http://www.tcptrace.org/index.html

[34] “Xplot Man Page”. Available:
http://manpages.ubuntu.com/manpages/gutsy/man1/xplot.1.html

http://caia.swin.edu.au/reports/140828A/CAIA-TR-140828A.pdf
https://support.google.com/youtube/answer/2853702?hl=en-GB
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need
https://help.netflix.com/en/node/306
https://docs.vagrantup.com/v2/
http://curl.haxx.se/docs/manpage.html
http://sourceforge.net/projects/net-tools/
http://www.netperf.org/netperf/
http://www.gropp.org/?id=projects&sub=bwm-ng
http://www.tcpdump.org/tcpdump_man.html
http://www.tcptrace.org/index.html
http://manpages.ubuntu.com/manpages/gutsy/man1/xplot.1.html

References 101

[35] UMIP – Mobile IPv6 and NEMO for Linux. [Online]. Available:
http://umip.org/

[36] “Make Man Page”. Available: http://linux.die.net/man/1/make

[37] Linux IPv6 Router Advertisement Daemon [radvd]. [Online]. Available:
http://www.litech.org/radvd/

[38] “Ping6 Man Page”. [Online]. Available: http://linux.die.net/man/8/ping6

http://umip.org/
http://linux.die.net/man/1/make
http://www.litech.org/radvd/
http://linux.die.net/man/8/ping6

