
1

SALMon: A SOA System for Monitoring Service Level

Agreements

Marc Oriol, Xavier Franch, Jordi Marco

Universitat Politècnica de Catalunya, Spain
moriol@lsi.upc.edu

franch@essi.upc.edu

jmarco@lsi.upc.edu

Abstract. In this paper we present SALMon, a tool assessing the satisfaction of

service level agreement (SLA) clauses by service-oriented systems. SALMon

itself is organized as a service-oriented system that offers two kind of services:

1) the Monitor service that measures the values in execution time of dynamic

quality attributes (like response time or availability), and 2) the Analyzer

service that detects and reports violations of SLA clauses from the values

obtained with the Monitor. The SALMon tool is highly versatile, allowing:

1) both active testing and passive monitoring as strategies, 2) different types of

technologies for the monitored/tested systems (e.g., Web Services, RESTful

services), 3) agile definition of measure instruments for new quality attributes.

The service-oriented nature of SALMon makes it scalable and easy to integrate

with other services that need its functionalities.

1. Introduction

Service Oriented Architecture (SOA) is one of the most popular architectural styles

used nowadays. The systems built under this paradigm, named Service Oriented

Systems (SOS), make use of several services in order to provide a fully-functional

software system. The technology used to deploy these services may vary in a single

SOS (e.g., Web Services, RESTful services, …), and dealing with this heterogeneity

is a challenging matter.

Services are usually provided by third-parties, and therefore, both service clients

and service providers must agree with Service Level Agreements (SLAs) specifying

the Quality of Service (QoS) that must be achieved by the given services.

Knowing the QoS of the different services is mandatory in order to detect if an

SLA is being (or going to be) violated. To retrieve QoS of SOS there are basically

two approaches: passive monitoring and active monitoring (also known as testing).

• Passive monitoring: this approach obtains the QoS information by collecting

data of the interaction between the service provider and the service client.

• Active monitoring (testing): in this approach an engine invokes the service in a

systematic manner to ultimately obtain its QoS.

Both approaches have their own strengths and weaknesses and they should be used

accordingly to the needs of the user and the capabilities of the approach.

2

By using testing, the system is able to detect a malfunction of the service before the

client and it is able to have control on the structure and frequency of the invocations.

However testing may have a significant impact on the performance of the service and

some operations could or should not be tested (e.g., operations that change the state of

the system in a manner that cannot be rollbacked). On the other hand passive

monitoring has less intrusive effects on the system, but it loses the control on the

invocations, and therefore on the QoS data that is obtained (e.g.: the QoS of a service

that is rarely used but it is critical to fulfill its SLA when it is invoked).

In this paper, we present SALMon, a monitoring and SLA violation detection tool.

SALMon combines monitoring and testing techniques to obtain the runtime QoS

information of dynamic quality attributes (i.e., attributes whose value may change

during execution, such as response time and availability). On the basis of this

information, SALMon may inform about the violation of SLA clauses. SALMon may

be considered itself a SOS that offers two kind of services, QoS monitoring and SLA

violation detection. Although our current implementation is focused on Web Services,

the architecture and interface of the tool have been developed in a technological-

independent manner. Therefore, SALMon is able to retrieve (with both monitoring

and testing approaches) the QoS of heterogeneous SOS.

The rest of the paper is structured as follows. Section 2 describes the related work

in this field. Section 3 provides a framework for the definition of metrics to measure

QoS. Section 4 is dedicated to the details of SALMon architecture. Section 5

describes how SALMon can be used. Section 6 provides some examples in which

SALMon has been used. Finally, Section 7 provides the conclusions.

2. Related Work

There exists numerous contributions in the literature that focus on obtaining real-

time QoS in Service Oriented Systems, either by monitoring or testing approaches

[1][2][3][4][5][6]. However, most of the literature considers monitoring and testing

methods as two disjoint approaches, and up to our knowledge, there is no framework

that combines both of them to retrieve the QoS in a unique system.

Most of the monitoring or testing contributions focus on a concrete kind of services

such as Web Services [6][1][2], or relies that the monitored/tested services uses a

particular technology such as BPEL engines [4] or Java-Axis engines [1].

Nevertheless, some recent contributions studies the problem in SOS to support service

monitoring [5] or service testing [3] that are not limited to Web Services.

Regarding technological dependent contributions, Zhou et al. [1] proposed an

approach to install monitors for Web Services in the execution chain of Axis2 in an

automatic manner.

In [4] Moser et al. presented VieDAME, an aspect-oriented monitoring framework

to monitor BPEL processes and ultimately perform service adaptation.

More flexible monitoring architectures are presented in [2] by Benharref et al.

which considers a multi-observer architecture where monitors could be placed in both

client and server sides to retrieve the QoS of Web Services.

Comuzzy et al. described in [5] an event-based monitoring approach of services to

assess SLAs in the business, software and infrastructure layers.

3

In [6] Bertolino et al. presented a framework to assess SLAs for Web Services

under testing approach that made use of WSDLs and SLAs for generating the tests.

In [3] Hielscher et al. introduced a framework, named PROSA, that exploits online

testing techniques in order to provide proactive adaptations for services.

3. Quality Attributes and Metrics

Based on our previous works [7], we have identified a set of dynamic quality

attributes for services from a quality model that extends the ISO/IEC 9126-1 standard

[8]. Dynamic quality attributes are those whose values may change on run-time and

therefore a monitoring mechanism is needed to assess them in a confident way. For

these attributes, some quality metrics have been defined. Table 1 presents the set of

dynamic quality attributes and quality metrics which SALMon is currently focused

on. Attributes and metrics can be classified according to two criteria:

• Quality attributes may refer to the whole service (e.g., Availability and

Server’s Response Time) or to a particular service element. For example, in

the case of Web Services, we focus on the operations of the service (e.g.,

Response Time, Execution Time and Accuracy).

• Quality metrics may be basic or derived. Basic metrics are those which must

be monitored to obtain their values (e.g., Current Response Time and

Current Availability), whereas derived metrics are those which can be

calculated from a set of basic metrics (e.g., Average Response Time, defined

as the Arithmetic mean of Response Times in a given interval; or Mean Time

to Recovery, defined as the average time that the system takes to recover

from any failure).

Table 1: Metrics defined over the dynamic quality attributes measured in SALMon.

4

4. SALMon Architecture Overview

SALMon is a SOS by itself. It consists of two main Web Services: the Analyzer

and the Monitor services. The first one is used to check the set of conditions stated in

the SLA, whereas the latter is used to retrieve the QoS of the different monitored

services.

Following the principles of SOA, SALMon can be easily integrated with other

services in order to provide higher level QoS-based frameworks, such as self-healing

SOA systems [9] or service selection systems, among others. See Section 6 for a

couple of examples.

Figure 1 shows the architecture of SALMon, that is introduced in the rest of the

section. We will skip the parts referred to the data base and to the authentication and

authorization service.

Figure 1: SALMon Architecture

4.1. The Analyzer Service

The Analyzer service is responsible for checking if the set of Service Level

Objectives (SLOs) stated in the different SLAs are fulfilled. Notice that the Analyzer

is able to manage several SOS. Each SOS might be composed of several services,

eventually supplied from different providers, and therefore with different SLAs, and

for each SLA there are several SLOs to be checked. The goal of Analyzer is to assess

these SLOs on run time and report violations if these objectives are not fulfilled.

WS-Agreement specification, the current standard to specify SLAs, does not define

the syntax or semantics to express SLOs, and therefore, different WS-Agreement

compliant documents might express SLOs in completely different ways. For such a

reason, and in order to avoid mismatches, the set of conditions to be checked in

SALMon are stated through the usage of the Analyzer WSDL interface, particularly,

with the method SetCondition().

5

We consider an SLO as a condition composed of the evaluated metric, a relational

operator and a value for the comparison (i.e. “Current Response Time < 100ms”).

To check on run-time if these conditions are fulfilled, Analyzer makes use and

manages several monitors. Each monitor is responsible for a particular SOA System

and they retrieve the QoS needed to check the conditions.

The conceptual model in Figure 2 summarizes all the concepts and relationships

stated above.

Figure 2: Concepts and relationships implied in the Analyzer service

Since Analyzer does not interact with the monitored technologies, it is a

technologically-independent tool enabled to define conditions for any kind of service

(e.g., Web Services, RESTful services).

4.2. The Monitor Service

The Monitor service is responsible to retrieve the values of the quality metrics of

the different services in a single SOS.

A monitor can be used by the Analyzer or independently by the user (either human

or an external component). In the latter case, the user is able to monitor the QoS of a

SOS without being interested on checking the fulfillment of the SLOs.

4.2.1 Retrieving Quality Metrics

The monitor manages several measure instruments (see Figure 1). A Measure

Instrument is a component that implements the logic needed in order to obtain the

value of a concrete basic quality metric (e.g., Current Response Time, Current

Availability, Accuracy…) of a service or operation.

Derived quality metrics are calculated from the set of basic quality metrics

retrieved from the measure instruments using an aggregator function in a defined time

interval (maximums, minimums, averages…).

Since measure instruments are the core components that actually retrieve the

values of the basic metrics, these components are technologically dependent on the

kind of service they are monitoring. In this sense, the Monitor service stays without

the technological details and just creates the different measure instruments to obtain

the QoS.

6

These decisions provide high extensibility to the monitor. Adding new kind of

services or basic quality metrics can be achieved simply by implementing the suitable

measure instrument.

Measure instruments need to have knowledge regarding the usage of the service to

compute the metric. This is reduced to have access to the messages sent between

client and provider on real time. To do so, we make use of the Man-in-the-middle

approach for monitoring [10]. This approach is based on putting an agent between the

client and the service’s communication, enabling the agent to notify to the measure

instruments about the messages exchanged between both parties.

SALMon implements the Man-in-the-middle approach by the usage of a proxy.

The location of the proxy is important in order to obtain an accurate value of the

metrics that are related to time. If the proxy is located at the client side, SALMon is

able to obtain the response time (configuration 2 in Figure 3), whereas if the proxy is

located at the server side, SALMon is able to obtain the execution time (configuration

3 in Figure 3). Configuration 4 obtains a time which value is between both metrics,

and configuration 1 supposes that both service clients and services are installed in the

same system.

Figure 3: Configurations of monitor allocations as presented in [9]

4.2.2 Passive Monitoring and Testing Approaches

Both passive monitoring and testing approaches have their own advantages and

disadvantages. Providing a framework with both capabilities can take advantage of

both techniques to assess the QoS. To do so, the monitor has a component, named

Tester, responsible of invoking the services (see Figure 1 and Figure 4). Once a user

sets a condition to be checked, she also specifies if the condition should be checked

through passive monitoring or testing.

Since the tester interacts with the monitored services, it is also a technological

dependant component. Currently we have testers for Web Services (WSTester) and

for operations of Web Services (OpTester). The first ones just ask for the Web

7

Service (particularly for its WSDL) in order to test metrics that are related to the

whole Web Service (Availability and Server Response Time). The second one is used

in order to invoke operations of the Web Service to obtain metrics related to the

operations.

The information needed to perform the test depends on the kind of service or

service element we are interested on. For WS testers, only the URL and the time

interval between measures is needed. For WS-Operation testers, we also need a SOAP

request (which may include the user and the password in the header if authentication

is required) and a pattern to identify a valid SOAP response.

In our current Tester component, we are considering Stateless Web Services, so we

do not undertake the issue of workflow-based mechanism to invoke them.

 These invocations are performed through the usage of the proxy, providing

therefore both passive monitoring and testing mechanisms.

Figure 4 presents the class diagram that includes the concepts presented above.

Figure 4: Data Model of SALMon

8

5. Using SALMon

Both Analyzer and Monitor services offer a set of methods defined in their

respective WSDLs, the services should be used as indicated in the workflows

presented in Figure 5 and Figure 6.

Create SOA System Set Service Set Operation

Set Condition

1..* 1..*

1..*

1..*

Analyzer WSDL

CreateSOASystem(String name): IdentifiedResult
SetService(int soaID, ServiceInformation service): IdentifiedResult
SetOperation(int soaID, int serviceID, OperationInformation service): IdentifiedResult
SetCondition(int soaID, int wsID, Condition c, AssessmentApproach ap): IdentifiedResult
SetCondition(int soaID, int wsID, int opID, Condition c, AssessmentApproach ap): IdentifiedResult

Figure 5: Analyzer Workflow and WSDL

Monitor WSDL

CreateSOASystem(String name): IdentifiedResult
SetService(int soaID, ServiceInformation service): IdentifiedResult
SetOperation(int soaID, int serviceID, OperationInformation service): IdentifiedResult
SetServiceProperty(int soaID, int wsID, Metric m, AssessmentApproach ap): IdentifiedResult
SetServiceProperty(int soaID, int wsID, int opID, Metric m, AssesmentApproach ap): IdentifiedResult

Figure 6: Monitor Workflow and WSDL

A user may either use Analyzer or Monitor services accordingly to his or her

interests. In this section, we explain briefly just the Analyzer service workflow since

the Monitor service workflow is quite similar.

9

The user first registers the SOA System into Analyzer service. Analyzer then

assigns this SOS to a concrete available Monitor and returns an identifier for that

SOS.

 For each SOS, the user may set some services using the setService method. This

method has a parameter named ServiceInformation with information of the service the

user is interested to monitor (i.e.: name, description, URL,…). In case of Web

Services, there is a subclass WebServiceInformation with specific Web Service

concepts (such as WSDL).

For the operations of the Service the user should call setOperation, which in the

same way, has a parameter named OperationInformation.

Finally the user can set the conditions. As stated above, a condition can be given

for an operation of the service or to the whole service (depending on the kind of

metric). Also, a parameter indicates if we want to perform monitoring or the testing

approach.

6. SALMon as a SOS: Two Scenarios of Use

Since SALMon is a SOS, both Analyzer and Monitor services have been used in

other systems as external services to support QoS-based frameworks. Particularly

SALMon has been used in a framework for ranking services named WeSSQoS and an

ongoing framework to support self-healing SOS named MAESoS.

6.1 WeSSQoS

WeSSQoS [11] is a framework which ranks Web Services accordingly to the

user’s non-functional requirements and the QoS of the different Services that belongs

to the same domain.

WeSSQoS has been implemented under the SOA principles and therefore is able

to obtain the data and QoS of services from different sources, named repositories.

These repositories must have a WSDL interface with a common operation to extract

the QoS data. To this effect, WeSSQoS is able to combine the given information

through the QoS Selector Service, and once the data is collected, it invokes the QoS

Selection Model, which is the service that performs the actual ranking.

In this framework, SALMon is used as a repository to obtain real-time dynamic

quality attributes of the services. To do so, WeSSQoS makes use of the Monitor

service under the testing approach (see Figure 7).

10

Figure 7: WessQoS Architecture integrated with SALMon

6.2. MAESoS

MAESoS [12] is an ongoing framework which integrates into a unique model the

components of the following modeling languages:

• i*: to determine the goals of the user and their decomposition to actual

services

• Variability Models: to express the variability points of services to support

the adaption.

• Quality Models: used to define a hierarchical set of quality Attributes and

Metrics grouped in categories.

MAESoS is used to support self-healing SOS. It’s also implemented as an SOA

and among other components it has a Decision Maker service which is responsible for

dynamic rebinding for the recovery of the system in case of a service malfunction.

Decision Maker makes use of the Analyzer Service to check for SLA violations, when

a violation is detected it is notified to the Decision Maker of the affected SOS. The

Analyzer can be used in both passive and active approaches in order to achieve

reactive and proactive adaptations respectively.

11

Figure 8: Partial MAESoS Architecture integrated with SALMon

7. Conclusions

In the context of SOS, retrieving the QoS of the different services is mandatory in

order to detect the accomplishment of the different Service Level Objectives stated in

SLAs. We have presented SALMon, a SOS itself which is able to retrieve QoS to

ultimately check the conditions stated in these SLAs. The main advantages of

SALMon are:

• It supports both active and passive monitoring. Providing both assessment

techniques in a unique framework offers to the final user the benefits of each

approach (which might be selected accordingly to his/her needs).

• It is designed to support any kind of service technology. To do so, SALMon

provides a technological independent interface and has an infrastructure

where the only components that are technologically dependent are those

which directly interact with the monitored services (i.e.: measures

instruments and tester engines) whereas the whole framework remains in an

upper technologically independent layer. Nevertheless, our first

implementation has been realized for web services but we plan to implement

monitoring of multiple types of services in the same monitor with different

kinds of Measure Instruments and tester engines.

• It is open for integration into other systems. The service-oriented nature of

SALMon makes it scalable and easy to integrate with other systems, as we

have shown in two currently running systems. Integration with other two

systems is currently under scheduling.

• It is open for extension with respect to measures. Since Measure Instruments

are responsible to obtain a concrete basic quality metric, extending the tool

12

with new kinds of basic quality metrics is achieved by implementing just the

suitable Measure Instrument.

Acknowledgements

This work has been supported by the research project ADICT, TIN2007-64753,

MCyT, Spain. Marc Oriol has a FPI grant bound to the project TIN2007-64753. We

also would like to thank the work done by, and discussions made with, other members

of the group, remarkably David Ameller, Lidia López and Marc Rodríguez.

References

[1] C. Zhou, L. T. Chia and B. S. Lee, "QoS measurement issues with DAML-QoS

ontology" in Proc. IEEE International Conference on e-Business Engineering

(ICEBE’05), 2005.

[2] A. Benharref, R. Dssouli, M. A. Serhani and R. Glitho, "Efficient traces collection

mechanisms for passive testing of Web Services", Information and Software

Technology, vol. 51, pp. 362-374, 2009.

[3] J. Hielscher, R. Kazhamiakin, A. Metzger and M. Pistore, "A framework for

proactive self-adaptation of service-based applications based on online testing" in

1st International Conference of the Future of the Internet of Services

(ServiceWave 2008), 2008.

[4] O. Moser, F. Rosenberg, S. Dustdar, "Non-intrusive monitoring and service

adaptation for WS-BPEL", Proceeding of the 17th international conference on

World Wide Web (WWW 2008),2008.

[5] Comuzzi M, Kotsokalis C., Spanoudakis G., Yahyapour R.: Establishing and

Monitoring SLAs in complex Service Based Systems, IEEE 7th International

Conference on Web Services (ICWS ’09), 2009.

[6] A. Bertolino, P. Inverardi, P. Pelliccione and M. Tivoli, "Automatic synthesis of

behavior protocols for composable web-services," in ESEC/FSE 2009, 2009.

[7] M. Oriol, X. Franch, J. Marco, D. Ameller. “Monitoring Adaptable SOA-Systems

using SALMon”. Mona+ Workshop in ServiceWave conference, 2008

[8] ISO, International Organization for Standarization. ISO/IEC Standard 9126:

Software Engineering – Product Quality, part 1. 2001.

[9] C. Dabrowski, K. Mills.“Understanding self-healing in service-discovery

systems”. Proceedings of the first workshop on Self-healing systems, 2002.

[10] P. Brittenham “Understanding the WS-I Test Tools”. Downloaded from www-

128.ibm.com/developerworks/webservices/library/ws-wsitest/. 2003.

[11] O. Cabrera, M. Oriol, J. Marco, X. Franch, O. Fragoso, R. Santaolaya.

“WeSSQoS: Un Sistema SOA para la Selección de Servicios Web según su

Calidad”, JSWEB’09, 2009.

[12] B. Burgstaller et al. “Monitoring and Adaptation of Service-oriented Systems

with Goal and Variability Models”. Research Report LSI-09-8-R, Universitat

Politècnica de Catalunya, 2008.

