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 Abstract- Predicting protein-ligand binding affinities constitutes a key computational method in the early stages of the drug discovery process. Molecular docking programs attempt to predict them by using mathematical approximations, namely, scoring functions. In the last years, several scoring functions have been developed, encompassing different terms, from electrostatic forces to protein-ligand interaction fingerprints and beyond. However, it has been noticed that usually each individual scoring function cannot be generalized and its predictive power is arguable. The aim of this study is to improve the binding affinity prediction by finding potential models to combine ten different scoring functions, exploiting machine learning techniques. Keywords: Protein-ligand binding, Scoring Functions, Drug discovery, Machine learning. 
 

I. INTRODUCTION 
      
The amount of proteins and molecules with 

publicly-accessible 3D structures is rapidly 
growing [1].  As a consequence, structure-based 
drug design (SBDD) is becoming increasingly 
popular to discover new potential drugs. In this 
process, the protein-ligand binding plays a 
fundamental role. For a protein of interest, putative 
ligand drug candidates are discovered or designed 
in order to bind the target protein and modulate its 
activity. The strength of these docked molecules is 
referred as binding affinity [2]. In vitro 
determination of binding affinity is highly 
expensive and time consuming. In order to address 
this issue, in silico molecular docking techniques 
have emerged, using scoring functions (SFs) to 
estimate the binding affinity of each protein-ligand 
complex [3]. In general, the SFs can be broadly 
classified into four categories: 1) force-field based, 
2) knowledge-based, 3) descriptor-based and 4) 
empirical scoring functions [4]. 

 
    Despite the efforts in develop SFs, underlying 

different principles, to accurately predict the 
binding free energy, it has been shown in different 
studies [5, 6, 7] their limitations and lack of 
generalization. Nevertheless, it also has been  
 
 

 
noticed that it is unlikely that a set of SFs will be in 
error at the same time for a protein-ligand system. 
Based on this idea, exhaustive studies have been 
realized to create a most robust scoring function by 
using the best combination of a set of individual 
SFs in different fashions. Some attempts were 
performed in previous works [4, 7], to create 
consensus SFs based on conventional approaches 
such as rank-based, percent-based, range-based and 
vote-based strategies. However, their results are 
based on a strong assumption which entails that all 
the individual SFs contribute equally [6]. In other 
studies, the authors proposed protocols to rescue 
poor docking results from different SFs by 
combining conventional approaches such as rank-
based with a classifier in order to only discriminate 
good and bad binders for some target proteins with 
a set of ligands, without predicting the binding free 
energy [8, 9]. To the best of our knowledge, no 
study has fully investigated and assessed the 
combination of different SFs by using machine 
learning approaches to better predict the protein-
ligand binding affinity, leaving room for 
improvements.  

   
  The purpose of this study is to explore and 

assess the combination of ten different SFs 
belonging to the four categories: force-field based 
(PELE, MM-Gbsa, rDock), knowledge-based 
(XScore-HMScore, DSX, Autodock VINA), 
descriptor-based (NNScore and RFScore) and 
empirical (Glide XP, Glide SP, X-Score) by 
employing several statistical and machine learning 
techniques from the perspective of description, 
regression and intelligibility. To this end, we look 
forward to discover sets of SFs and models that 
might be relevant for improving the protein-ligand 
binding affinity prediction. 

 
II. DATA AND METHODS 

 
A. Protein-ligand complex dataset 
In the work by Cheng et al. [10], they built a core 

set based on the 2007 PDBbind benchmark that 
circumscribes a diverse set of high-quality protein 
families. From this core set, we used 64 different 



                                                                                                                                  

 

proteins, each of which binds to three different 
ligands to form a set of 191 unique protein-ligand 
complexes. By using stratified sampling, we 
created two disjointed sets for training, with 70% 
of the complexes, and validation, with the 
remainder 30%. For both sets, we calculated ten 
different SFs for each protein-ligand complex, so 
that each system was described by a 10-
dimensional vector. We evaluated the performance 
of the SFs in both sets through the Pearson 
Correlation metric, obtaining similar results. Fig. 1 
shows the evaluation in the validation set. 

 

   
 
Fig. 1. Pearson Correlation of the 10 SFs in the validation set. 
B. Machine Learning Techniques 
Combining SFs can result in a highly correlated 

dataset. To tackle this aspect, we attempted to 
discover the set of most significant SFs to predict 
the free binding energy by applying four feature 
selection techniques: correlation analysis to remove 
highly correlated variables; generalized linear 
models with convex penalty functions as LASSO 
and Elastic Net, which perform embedded feature 
selection; and Recursive Feature Elimination (RFE) 
with resampling.  Table I shows the correspondent 
SFs selected by each method. 

TABLE I 
SFS SELECTED APPLYING DIFFERENT FEATURE SELECTION 

METHODS 
METHOD SCORING FUNCTIONS SELECTED 
None All 
Uncorrelated 
Variables 

Autodock VINA, RFScore, NNScore, 
DSX, PELE, MM-Gbsa, rDock 

LASSO RFScore, PELE, NNScore 
Elastic Net RFScore, PELE, NNScore,  XScore-

HMScore 
RFE with 
Resampling  

RFScore, NNScore, PELE, DSX, 
rDock 

 
With the resultant sets, we exploited the rationale 

that each SF brings something distinctive for each 
protein-ligand complex, in order to develop models 
based on the ensemble methodology such as 
AdaBoost, Gradient Boosting and Extra tree 
regressors. The main idea behind this methodology 
is to weight several individual models and combine 

them to obtain a new model that outperforms every 
one of them.  We also performed other well-known 
machine learning techniques such as Support 
Vector Machine (SVM) and K-Nearest Neighbor 
(K-NN) regressors for comparison purposes. From 
the intelligibility perspective, we made an effort to 
obtain models easy to interpret by using a 
Generalized Additive Model (GAM) fitted with 
splines. An important aspect of this model is that it 
permits to visualize the relationship between the 
univariate terms of the GAM and the dependent 
variable, allowing to better understand the behavior 
of different scoring functions with respect to 
experimental binding affinity.  

 
III. RESULTS AND DISCUSSION 

 
In the context of regression and prediction, the 

performance of each model implemented with 
different selection methods is shown in Fig.2. 

 
 

 
 

Fig. 2.  Performance evaluation of the regressor models with 
different SFs selected according to the method used (see Table I).  
The performance metric is the Pearson Correlation. 

   The combination of different SFs has a 
substantial impact on the performance of the 
regressor models implemented and is an important 
step in order to improve the overall binding 
affinity. In the best scenario, all the models 
outperform the results of the individual SFs, from 
which K-NN and GAM stood out, obtaining a 
notable 0.84 and 0.82 Pearson correlation 
coefficients, respectively.  

   From the interpretability aspect, the smooth 
splines elements of the GAM with the SFs selected 
by the Elastic Net method are presented in Fig. 3. 

 
 



                                                                                                                                  

 

Fig. 3. GAM predicted smooth splines of the Experimental 
binding affinity as a function of the scoring functions: XScore-
HMScore, RFScore, PELE, NNScore. The degrees of freedom 
are in the parenthesis on the y-axis. The gray areas represent the 
95% confidence intervals of the smooth splines. The thick marks 
in the x-axis indicate the distribution of the observations. 

 
IV. CONCLUSIONS AND FUTURE WORK 

 
Heretofore, we have not only achieved promising 

results in the prediction of the binding free energy, 
but also we have obtained a clearer understanding 
on the behavior of the different SFs in individual 
and embedded manners. To further assess the 
predictive power and generalization of the 
developed models, we will test them using a core 
set based on the 2013 PDBbind benchmark. 
Furthermore, we attempt to add protein-ligand 
descriptors for uncovering additional patterns that 
might be crucial for the improvement of the 
protein-ligand binding affinity.  
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