

Figure 1 Landscape of algorithms, strategies and techniques

The OmpSs Reductions Model and how to deal with Scatter-
Updates

Jan Ciesko1, Sergi Mateo1, Xavier Teruel1,2, Vicenç Beltran1,
Xavier Martorell1,2, Rosa M. Badia1,2 and Jesús Labarta1,2

1Barcelona Supercomputing Center
2Universitat Politècnica de Catalunya

{jan.ciesko, sergi.mateo, xavier.teruel, vicenc.beltran,
xavier.martorell, rosa.m.badia, jesus.labarta}@bsc.es

 Abstract – Scatter-updates represent a reoccurring algorithmic pattern in many scientific applications. Their scalable execution on modern systems is difficult due to performance limitations introduced by their irregular memory access pattern that prohibits an efficient use of the memory subsystem. Further performance degradation is caused by techniques that are required in order to eliminate potential data races and come at the cost of overhead. Taking a closer look at algorithmic properties, access patterns and common support techniques reveals that a one-size-fits-all solution does not exist and solutions are needed that can adapt to individual properties of the algorithm while maintaining programming transparency. In this work we propose a solution framework that supports a broad set of techniques, provides the required access pattern analytics to allow dynamic decision making and shows what language extensions are needed to maintain programming transparency. A reference implementation in OmpSs, a task-based parallel programming model, shows programmability and scalability of this solution.

I. INTRODUCTION

The widening gap between processor and

memory speeds periodically brings up the
discussion on how to improve scalability of
algorithms that hit the memory wall exceptionally
fast due to their scattered memory updates. At the
core of the problem are high memory access
latencies that become dominant as a result from the
caching and bandwidth inefficiencies of these
algorithms and the overheads introduced by
techniques that ensure correctness by eliminating
the possibility of data races. Among these
techniques, only a single generally applicable
solution exists, namely access synchronization.
Synchronization uses software and hardware
assisted techniques to implement atomicity of the
update operation (read-modify-write) with
overheads that differ between processor
architectures. Synchronization constructs are
typically members of either the language or
runtime specification of a programming model and
therefore easy to use but unfortunately do not

address the issue of poor locality of these
algorithms.

A special case occurs when the iterative scatter-

update implements a function that is associative,
communicative and has no control dependency
between iteration loops (algebraic monoid). These
algorithms are called reductions and allow a whole
set of additional techniques to improve
performance and scalability. Main implications of
these properties are two-fold: firstly, the order of
memory accesses does not matter anymore which
allows concurrent executions without maintaining a
constant execution order (of tasks, loop iterations
or particular instructions) and the existence of the
neutral element allows the use of scratch data to
temporarily store intermediate results. This led to
the development of different support techniques [1]
that fall into two strategies. Access redirection is a
strategy where accesses are redirected to a scratch

Figure 2 Reduction kernel with proposed clauses to support
alternative memory layouts with inspectors and executors

Figure 4 Lulesh reduction kernel scalability on the Xeon E5 processor
with different support techniques showing the expected performance
when properly exploiting access locality of tasks with AMLs and
selective privatization

storage while leaving the iteration space untouched.
The scratch memory is typically a thread-private
copy of the original data (replication) or any data
structure that fulfills a similar goal. Ordering is
another strategy that avoids redirection and
reorders iterations by specific criteria instead.
Which of these is used and how they are configured
depends on algorithmic properties that require both
compiler support and runtime analysis. As of today,
none of these techniques other than replication
made its way into popular parallel programming
models.

In this work we present the OmpSs Reductions
Model (OmpSs-RM) which implements a
framework to support redirection techniques with
alternative memory layouts (OmpSs-AML) such as
binning or software caching as well as ordering
techniques that require alternative iteration spaces
(OmpSs-AIS) such as LocalWrite in near future. In
particular we show what new language constructs
are needed, how the inspector-executor model can
be integrated into the runtime as well as how
scientific applications can benefit from these
techniques. Figure 1 shows a landscape of
algorithms, strategies, techniques and their support
in OmpSs.

II. SUPPORT IN OMPSS

The OmpSs-AML implementation builds on top

of the existing functionality of reduction scope
definition, pre-allocation, allocation on demand and
lazy initialization. In order to support AMLs, we
require three additional information from the
developer.

Firstly, the developer is required to express the
intention to use an AML. This step is necessary in
order to preserve consistency as with AMLs, the
scratch memory is not necessarily a replica of the
original data anymore. For this purpose, we prose
the extension of the reduction clause by the
additional parameter MODE, where mode is an
identifier of a vendor provided privatization
technique.

Further, in order to support AMLs that require an
inspector-executor, we propose the addition of the
invariant (target) clause. The invariant clause
defined over a target specifies that the access
pattern of the target as well as the calling order
within the scope of a reduction are invariant. This
step is important to guarantee that the inspector-
executor is always applied to the matching function
and that optimization results obtained during the
inspection phase are still valid for subsequent
function calls or task instances.

Lastly we propose the addition of the loopstep
pragma. This pragma defines the scope of an

optimization frame and is used to differentiate
between inspection and execution phases. Figure 2
shows high-level code that uses selective
privatization and an AML to implement an array-
type reduction.

Figure 3 shows an intermediate code prototype
where an instance-invariant identifier (frameID) is
created to identify an optimization frame and that is
subsequently passed to all participating task. By
doing so, all tasks sharing one identifier are
associated to one optimization frame. Once a task
instance is created, the frame identifier is used to
generate a new unique identifier for that particular
task instance (frameInstanceID). In OmpSs and for
the context of reductions, the frame identifier is
computed as XOR between the reduction target
address and value of the reducer function pointer.

The instance frame identifier for each particular
task is created again as an XOR between frame
identifier and a task creation counter. In case of

Figure 3 Intermediate code prototype showing the main
loop body, task code and runtime APIs

nesting, new identifiers are created for each nest.
Currently, optimization frames across nesting
levels are not supported.

III. CASE STUDY

Our work on OmpSs AML and the inspector-

executor model was largely motivated by Lulesh, a
seismic simulation code that contains irregular
array-type reductions. Inspecting its memory
access pattern revealed a linear access pattern with
very small overlaps for boundary iterations. The
inspector used in this case records histograms over
addresses, over distances between memory
accesses and over the rate of distance changes. This
information is evaluated once the optimization
frame is completed. For the case of Lulesh and
AML with selective privatization, the evaluation
produces an ownership table that is used in the
executor phase to determine whether an update
operation accesses task local data or not. Since
most accesses in Lulesh are local, the original data
can be updated without the need of synchronization
nor redirection. Figure 4 shows scalability of a
Lulesh reduction kernel implemented with different
techniques. We expect that inspector-executor

enabled AMLs will be close to a version that is free
of any additional overheads but contains data races
(RACE). Further evaluation is pending.

IV. CONCLUSION AND FUTURE WORK

We are currently evaluating OmpSs AMLs and

inspectors-executors to derive further knowledge
about overheads of the inspection phase, its
usability in other applications and architectures as
well as the integration of alternative iteration
spaces (AIS) into OmpSs. This work aims to
influence the OpenMP specification to support this
type of algorithms in the future.

ACKNOWLEDGMENT

I would like to thank all my coauthors for their

invaluable insights and their patience when
exposed to my ideas during countless meetings.

REFERENCES

[1] H. Yu and L. Rauchwerger, Adaptive Reduction Parallelization,14th ACM Intl. Conf. on Supercomputing, 2000

