
 

 

Figure 1 Landscape of algorithms, strategies and techniques 
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 Abstract – Scatter-updates represent a reoccurring algorithmic pattern in many scientific applications. Their scalable execution on modern systems is difficult due to performance limitations introduced by their irregular memory access pattern that prohibits an efficient use of the memory subsystem. Further performance degradation is caused by techniques that are required in order to eliminate potential data races and come at the cost of overhead. Taking a closer look at algorithmic properties, access patterns and common support techniques reveals that a one-size-fits-all solution does not exist and solutions are needed that can adapt to individual properties of the algorithm while maintaining programming transparency. In this work we propose a solution framework that supports a broad set of techniques, provides the required access pattern analytics to allow dynamic decision making and shows what language extensions are needed to maintain programming transparency. A reference implementation in OmpSs, a task-based parallel  programming model, shows programmability and scalability of this solution. 
 

I. INTRODUCTION 
 
The widening gap between processor and 

memory speeds periodically brings up the 
discussion on how to improve scalability of 
algorithms that hit the memory wall exceptionally 
fast due to their scattered memory updates. At the 
core of the problem are high memory access 
latencies that become dominant as a result from the 
caching and bandwidth inefficiencies of these 
algorithms and the overheads introduced by 
techniques that ensure correctness by eliminating 
the possibility of data races. Among these 
techniques, only a single generally applicable 
solution exists, namely access synchronization. 
Synchronization uses software and hardware 
assisted techniques to implement atomicity of the 
update operation (read-modify-write) with 
overheads that differ between processor 
architectures. Synchronization constructs are 
typically members of either the language or 
runtime specification of a programming model and 
therefore easy to use but unfortunately do not 

address the issue of poor locality of these 
algorithms.  

 
 
A special case occurs when the iterative scatter-

update implements a function that is associative, 
communicative and has no control dependency 
between iteration loops (algebraic monoid). These 
algorithms are called reductions and allow a whole 
set of additional techniques to improve 
performance and scalability. Main implications of 
these properties are two-fold: firstly, the order of 
memory accesses does not matter anymore which 
allows concurrent executions without maintaining a 
constant execution order (of tasks, loop iterations 
or particular instructions) and the existence of the 
neutral element allows the use of scratch data to 
temporarily store intermediate results. This led to 
the development of different support techniques [1] 
that fall into two strategies. Access redirection is a 
strategy where accesses are redirected to a scratch 

Figure 2 Reduction kernel with proposed clauses to support 
alternative memory layouts with inspectors and executors 



 
 

 

Figure 4 Lulesh reduction kernel scalability on the Xeon E5 processor 
with different support techniques showing the expected performance 
when properly exploiting access locality of tasks with AMLs and 
selective privatization 

storage while leaving the iteration space untouched. 
The scratch memory is typically a thread-private 
copy of the original data (replication) or any data 
structure that fulfills a similar goal. Ordering is 
another strategy that avoids redirection and 
reorders iterations by specific criteria instead. 
Which of these is used and how they are configured 
depends on algorithmic properties that require both 
compiler support and runtime analysis. As of today, 
none of these techniques other than replication 
made its way into popular parallel programming 
models. 

In this work we present the OmpSs Reductions 
Model (OmpSs-RM) which implements a 
framework to support redirection techniques with 
alternative memory layouts (OmpSs-AML) such as 
binning or software caching as well as ordering 
techniques that require alternative iteration spaces 
(OmpSs-AIS) such as LocalWrite in near future. In 
particular we show what new language constructs 
are needed, how the inspector-executor model can 
be integrated into the runtime as well as how 
scientific applications can benefit from these 
techniques. Figure 1 shows a landscape of 
algorithms, strategies, techniques and their support 
in OmpSs.  

 
II. SUPPORT IN OMPSS 

 
The OmpSs-AML implementation builds on top 

of the existing functionality of reduction scope 
definition, pre-allocation, allocation on demand and 
lazy initialization. In order to support AMLs, we 
require three additional information from the 
developer.  

Firstly, the developer is required to express the 
intention to use an AML. This step is necessary in 
order to preserve consistency as with AMLs, the 
scratch memory is not necessarily a replica of the 
original data anymore. For this purpose, we prose 
the extension of the reduction clause by the 
additional parameter MODE, where mode is an 
identifier of a vendor provided privatization 
technique. 

Further, in order to support AMLs that require an 
inspector-executor, we propose the addition of the 
invariant (target) clause. The invariant clause 
defined over a target specifies that the access 
pattern of the target as well as the calling order 
within the scope of a reduction are invariant. This 
step is important to guarantee that the inspector- 
executor is always applied to the matching function 
and that optimization results obtained during the 
inspection phase are still valid for subsequent 
function calls or task instances.   

 

 
 

Lastly we propose the addition of the loopstep 
pragma. This pragma defines the scope of an  
 
 
optimization frame and is used to differentiate 
between inspection and execution phases. Figure 2 
shows high-level code that uses selective 
privatization and an AML to implement an array-
type reduction.  

Figure 3 shows an intermediate code prototype 
where an instance-invariant identifier (frameID) is 
created to identify an optimization frame and that is 
subsequently passed to all participating task. By 
doing so, all tasks sharing one identifier are 
associated to one optimization frame. Once a task 
instance is created, the frame identifier is used to 
generate a new unique identifier for that particular 
task instance (frameInstanceID). In OmpSs and for 
the context of reductions, the frame identifier is 
computed as XOR between the reduction target 
address and value of the reducer function pointer. 

The instance frame identifier for each particular 
task is created again as an XOR between frame 
identifier and a task creation counter. In case of 

Figure 3 Intermediate code prototype showing the main 
loop body, task code and runtime APIs 



 
 

 

nesting, new identifiers are created for each nest. 
Currently, optimization frames across nesting 
levels are not supported. 

 
III. CASE STUDY 

 
Our work on OmpSs AML and the inspector-

executor model was largely motivated by Lulesh, a 
seismic simulation code that contains irregular 
array-type reductions. Inspecting its memory 
access pattern revealed a linear access pattern with 
very small overlaps for boundary iterations. The 
inspector used in this case records histograms over 
addresses, over distances between memory 
accesses and over the rate of distance changes. This 
information is evaluated once the optimization 
frame is completed. For the case of Lulesh and 
AML with selective privatization, the evaluation 
produces an ownership table that is used in the 
executor phase to determine whether an update 
operation accesses task local data or not. Since 
most accesses in Lulesh are local, the original data 
can be updated without the need of synchronization 
nor redirection. Figure 4 shows scalability of a 
Lulesh reduction kernel implemented with different 
techniques. We expect that inspector-executor 

enabled AMLs will be close to a version that is free 
of any additional overheads but contains data races 
(RACE). Further evaluation is pending. 

 
IV. CONCLUSION AND FUTURE WORK 

 
We are currently evaluating OmpSs AMLs and 

inspectors-executors to derive further knowledge 
about overheads of the inspection phase, its 
usability in other applications and architectures as 
well as the integration of alternative iteration 
spaces (AIS) into OmpSs. This work aims to 
influence the OpenMP specification to support this 
type of algorithms in the future. 
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