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For a batch sedimentation test of a suspension formed by & particle categories, the settling velocity of a particle belonging
o a category i, i=1,2,....k, at a given lime ¢ and a given height x, from the bottom of the column, is a function of the ter-
minal settling velocity of each category and of the concentration distribution by categories at (xJ). The mathematical
maodel for this system is represented by & hyperbolic partial differential vquations with the given mitial conditions and the
appropriate boundary conditions. The model allows a realistic description of the process and numecrical simulalions, using
the donor-cell finite differences method, which are in good agreement with some previously published experimental data
about hidisperse suspensions, when Lockerr and Al-HaBBOOBY or SELIM et al. relative [uid-particle velocily expres-

s10ns were used.

Introduction

Many phenomena in nature and many separation techni-
ques in industry are governed by the sedimentation
process, and suspensions found usually show a distribu-
tion of particles by sizes and even by densities. Models
capable of describing mixtures setthing are needed to as-
sess industrial operations and to understand natural
processes involving sedimentation.

Sedimentation of polydisperse suspensions results
in a particle stratification due to different relative settling
velocities, Considering a  suspension formed by &
categories of particles, the sedimentation process will
classify suspension in & vertical zones, where the top
zone will contain smallest particles only, and the bottom
zone will contain particles of all categories. Usual
models predict zone interfaces settling velocities by con-
sidering that the bottom zone contains all initial biggest
particles and the initial concentration for the other
categories, and by proceeding sequentially from the bot-
tom 1o the top.

During sedimentation, the surrounding fluid is dis-
placed upwards by the seitling particles and in
polydisperse  suspensions the displaced fluid could
transpott smallest particles upwards. In this situation the
smallest particles concentration in the bottom zone will
be less than the initial concentration, and will increase in

the upper zones where its settling velocity will decrease
under the caleulated velocity using the consideration of
constancy in smallest particles concentration in the bot-
LOTN AOTE.

As a dynamical system, the proposed method in
this work 1s the calculation of the interfaces velocities by
solutions approximation of the & paitial differential
equations system obtained by applying the continuity
equation to the & particle calegones.

Monodisperse Suspensions

The terminal setiling velocity, w, of a single particle in
an infinite fluid medium, for low Reynolds numbers, is
given by Stokes law. A more general expression for ter-
minal settling velocities calculation, at any [Tuid flow
regime, is given by
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Table | Some functional forms for the relation between sedimentation velocity and the terminal

SUSPENSIon
Reference Correlathon Application
FiC Re) Egs.
RICHARDSON and ZAKT (1954) [1] (1=} ) DeRe<OT me e de
r
02<Re<l n= (M-urdime":'m
L
1<Re<200 n= ¢¢A+1Hdi]R= i
[
00 < Re = 500 o= 4ape M
BATCHELOE (1972) [6] 1-6.55C {n Call03
Re<<0]
Barves and MERAHI (1973) [3] 13 5 Re=0.01
ivic @) Ce0.01
GARSIDE and AL-DIBGUNL (1977 [2] R ) Sl Rl
o ’ =17
BUsCALL et al. (1982) [5] N b 10 Re<<0.01
(1= g (Lo =058
k=54
AL-NaaFa and SELIM {1997) [4] 655 (11} C=0.37
-0 ) Recciiv
Because of the possible significance of the bed wall "
effect in laboratory experiments, the terminal velocity E =FC Re). ()

should be comected. RiCHARDSON and Faki [1]
proposed the commection

log ol [ o) = d d, (2)

where u, is the comected velocity, d is the particle
diamcter and d; is the vessel diameter. GARSIDE and Al-
INBOUNI [2] recommend the equation of FRANCIS,

w [1-0475(d/ d)

w | 1-@id) |- (3)

for Re<0.2, and the linear relation, given by Eq.(4), for
3
0.2<Re<]0,

w ! ug=1+235(d/d). (4)

Egq.(4) gives results that are very similar to those
predicted by Eq.(2)[2].

When a suspension ol particles of equal sizes and
densities sediments in a finite fluid medium, there is a
decrease mn its velocity due to the displaced fluid and
due to the interaction among them. The relation between
the settling velocity u of a particle in the suspension and
its velocily w, can be expressed as a function of C, the
volumetric concentration of particles, and its Reynolds
number,

Table I shows some functional forms for this relation.

BARNEA and MIZRAHI [3] noted that fitted curves
of measured data of wu, vs. Re, for some C values, tend
to flatten for low values of Reynolds, and do so for low
C values at any Re. The model of BATCHELOR |6], based
on a theoretical study of pairwise mterparticle interac-
tions, integrates previous theoretical and empirical infor-
mation in this range of appiwation. AL-Naapa and
SELIM model [4] extends that model to higher values of
Cat low Re.

For non colloidal suspensions, the correlation of
RICHARDSON and ZaKi [1], Eg.(6). is the most exten-
sively used, both in fluidization and sedimentation.
GARSIDE and AL-DIBOUNI [2] realised that Richardson-
Zaki comrelation was not in good agreement with ex-
perimental data for low values of C(less than 0.1}, that it
underestimates the mutual influence of particles at high
voidage € and so gives values of u that are oo high.
They proposed the Eq.(9), that gives higher values of n
for low Re (Re = 0, n— 5.1). It is important o note
here that progressive refinements in correlations tend to
give values of n tending to increase and approach
Batchelor values for low values of € and Re, but there is
not a general and unified correlation for any sitation.
The Richardson-Zaki general expression, given by
HC. Re)=¢", and used by GARSIDE and AL-DIBOUNI,
will be assumed as the more 1ealistic for non eallaidal

sefiling velocity in a monodisperse
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The upward fluid velocity wp at a given height of a
column of constant section A, where a suspension is set-
tling with a concentration C and velocity u, is given by

C
u|:=—u?, (12)

and the relative particle fluid velocity wgis given by

1

U = U= U = e (13)

The evolution of a suspension in a column of height
L and constant section, with an imtal uniform con-
centration Cp, will be represented by the continuity
equation, aking the following assumptions:

I. The particle distribution in a wansversal section
of the column at height x is uniform.

2. Physical properties of each particle remain con-
stant during settling {no phenomena of aggrega-
tion or fragmentation are present).

3. Settling velocity for each particle depends on itz
physical properties and the local suspension con-
centration.

to consider

4. Particles are large enough not

wansport by diffusion.

The model is given by

===t (14)

with the boundary conditions

C=Glas, o
@xn=0 x
@ =0, x

0,
0, (13)
L

where ¢ =uC is the flux density. Using the dimension-
less variables % =x / L and = wyt/ L, the model can be
expressed in the dimensionless form

ac aAc-0"
TR=T IR

o A (18)
C=GColx. B, T=n0.
olx, H=0, X=0,
o(x,H=0, T=L

Polydisperse Suspensions

Let us consider now a suspension formed by particles
that can be classified in k categories. Each category can
be characterized by its representative particle density p;
and its representative diameter &, 1 <i<k. For each
category, its terminal settling velocity ug; and its dimen-
sionless parameter r; of the general Richardson-Zaki ex-
pression can be calculated.

Applying the continuity equation for each category,
at a given height of the column, k hyperbolic partial dif-
ferential equations are obtained,
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where i is the settling velocity of particles of i category.
The boundary conditions are

G=Cxlx. 0, t=0, i=12 .k
@ik N=0, x=0 i=12 ..k {18)
pix, N=0, x=L, i=L2 ...k

The upward fluid velocity, at a height x of the
column where the particle concentration of category i is
C.l=i<k is

k k
1 —1
=13 uGi=- TG

=1 i=1

(19}

The settling velocity w4 for the | category at a given
height of the column will be the addition of the fluid
velocity wr (Eq.(19)) and the relatve flud particle
velocity wyF - Many researchers have worked on expres-
sions for wye calculation. Table 2 summarizes some of
these expressions.

There are two basic ways to express the sedimenta-
tion velocity for cach category: 1) extrapolating the
methodelogical way used for niwnodisperse suspensions,
and 2) considering a change in fluid density due o the
suspension. LOCKETT and AL-HAROOBY's model [7)
and the improvement due o MIrza and RICHARDSON
[8] . where the change in the exponent in Fg.(21) is a
correction for betier fit experimental data, are in the first
catepory of models.
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Table 2 Expressions for the caloulation of the relative fluid particle velovity uyr for the { category ina suspension formed by &

categorics
Reference - Eqs. Applicati on
LOCKETT and AL-HABBOOBY (19733 (7] m=1
by (20)
MIRZA and RICHARDSON (19797 [§] n—0. R
Hpt 21
MASLIYAH (1979 [9] PP sugp n =2 22) S f oC
PPy B - =1 11
SEim et al (1983) [10] Pl gen i A=l i-l
p i .
I . =
lp.\'m;p]i': k
-3 C,
-||=J
PATW ARDHAN and TTEN (19853 [11] PP L - i
LS (24 d
PPy ! £t _[d.-:c.r ]
] E
k
¥ E'fdj
=1 _
ﬂ‘E='rk4[{!—E.} l"l —I]
¥

MASLIYAH [9] introduced Eq.(22) and explained,
with it, some experimental phenomena observed by pre-
vious authors. SELIM et al. [10] miroduced the concept
of change in suspension density for each particle
category due to categories of smaller sizes. PaT-
waRrDHAN and TiEN [11] improved the Masliyah model
introducing the concept of the apparent porosity of
suspension defined as a function of the representative
diameter o of each category.

It is common to express sedimentation data as inter-
faces velocities versus voidage in the suspension, and
expressing these velocities from the model considering
that the suspension has been segregated in k zones, con-
taining different categories depending of each position in
the column. The upper zone contains particles of the
smallest size and the lower zone contains particles of all
categories. Considering that all initial particles of the k
calegory are in the zone k, considering that the con-
centrations in this zone are the initial concentration for
the other categories, and proceeding in this manner from
level k to level 1, authors, using different correlations of
Table 2., calculate the interfaces velocites ([4], [8], [9]
(10, [11], (12))

AL-NaaFA and SELIM [12] calculated the interfaces
settling velocities for suspensions of two or three
categories and they found that the SELIM et al. model
[10] represents the experimental data accurately as com-
pared to other models. They found that m values were
better calculated by using Garside and Al-Dibouny cor-
relaton.

The consideration of maintenance of inital con
centration in lower zones for smallest particles is very
risky, taking into account that sedimentation velocity fur
some particles can be negative, moving upwards as has
been noted by some researches [9]. For instance, using
Eg.(20) for a two species suspension (k=2), and con-
sidering that wp) > o2, 2 becomes negative if the fol-
lowing condition is accomplished, at a given height v of
the column,

1=l {:I
e

b2

<{l-0Cy-C
o 11— C2)

(23)

where C) and C; are the particles concentration of each
category al (x,1).

This consideration leads to the need to solve or ap-
proximate Eg.(I7) in order to take into account the
dynamic evolution of suspension.

Method of Approximation

The donor-cell discretisation method, and finite differen-
ces, will be used in the present work in order 1o ap-
proximate solutions of Egs(I7) and [[8). This s
characterised by [13],



u Y
L}

Particles A

‘ ’E\TK Parlicles B

219

Particles C
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Fig.1 Evolution of particle concentration in a widisperse suspension in water. Numerical approximation of Egs.(17) and (18)
with: Coa=Con=Coc=0.1, upa=1.100-10" m/s, uyp=0.75upa, upc=0.5, uga, d=0.04, pa = pp = p =1070 kg/m’, v = 7.73-10°"
m’fs, n values calculated by Eq.(6)

ﬁi‘.{m + Af) - C-l(.x.a‘j] -
@y + AxS20) = il = AxS2S) _0
_ e -

(26)

g+ A/ 20 = wix + A/ 21+ AV 2)Gilx + A2,

Gix + Axl), wix+Ax/2.0 >0,

Cix+ .{Lx,fl:}={ Cond, wix +Ax/2,0 < 0.

Thas 15 a first order method, it 15 conservative and it

leg 1 AL
is stable if 4

=1

Approximating solutions of Eq.(16), the evolution
surface of C vs. ¥ and T is obtained. The intersection of
this surface with the horizontal plan Cﬁ.ﬁ= Cy is the
sedimentation curve obtained by the suspension/clear
liquid interface evolution.

Egs.(17) with (18) can be expressed in a dimen-
sionless forrmn by using the dimensionless varables
% =x/L and = ugt/L, where W = max(upy, W0z, ..., Wok),
with any equation of Table 2. Solutions approximation
gives k evolution surfaces and k intersecting curves cor-
responding to the k interfaces. Fig. 1 shows the surfaces
obtained in a case study where suspension was formed
by three categories.

In order o test the ability of the model, Egs. (17)
and (/8), and the donor-cel method, Eq.(26), and to
compare results obtained by using different expressions
for slip velocity calculation, Egs.(20), {22) and (23), or

different methods for n; calculation, Egs.(6) and (9),
numerical simulations were camed out by using
measured parameters of MIRZA and RICHARDSON [8]
and AL-NaaFA and SELIM [12] about bidisperse suspen-
sions, and results were compared with their published
experimental data.

Results and Discussion

In all the suspensions studied, n calculated values using
Garside and Al Dibouni correlation (9) provide better
results than that obtained from Richardson Zaki correla-
tion (6). Wall effect correction using Eg.{2) provides bet-
ter results than Eq.(4), and in the case of Fig.2 data, the
use of (9) and (4) provides practically the same results as
i(6) and (2). The best combination has been found with
Egs.(2) and (9) for calculations of corrected terminal set-
tling velocities and comesponding n values.

In all simulations camried out, lower interface
velocities have been lower than those obtained by
Mirza and RICHARDSON [8] or AL-NaaFA and SELIM
[12] using Egs.(20), (22) or (23).

Varying the concentration of big partcles (Fig.2,
Mirza and RICHARDSOM experiments) or varying the
concentration of small particles (Fig.3, AL-NaarA and
SELIM experiments), velocities obluined by numencal
simulation are in good agreement with experimental data
in both cases. In Fig2, velocities calculated from
Egs.(20), (22) or (23) present a maximum deviation of
1.6%. Ir Fig.3, daa calculated from Egs.(20) and (23)
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Fig.3 Comparison of Eq.(17) prediction with experimental
data of [12], its Fig.3, by using Egs.(2), (9) and: —— Eq.(20);
-~ —-Eg23); - -~ -~ Eq.(23); di=0.27410" m, dh=
0.081-10™ m, p;=2880 kg/m®, p2=2500 kg/m3, p3=1113
kg/m®, vi=1.563-10°° m¥s, de=0.03175 m, Cor=0.2201,
Cia=0.1069-0.2. (V: lower interface, A: upper interface)

are practically the same, and Fg.(22) fails in experimen-
tal data prediction,

Numerical simulation predicts higher interface
velocities for Mirza and RICHARDSON experiments,
when small particles concentration increases over 8%,
increasing deviation as concentration is increased. This
deviation has not been observed for simulations carried
out with suspensions corresponding to AL-NAAFA and
SELIM data, where small particles are faster and smaller
than those used in [8), due w differences i fluid vis-
cosity and density. It may be due to the evolution of
small particles in compression zone where small par-
ticles can be entrapped, depending on the relative par-
ticles size concentrations,

Conclusions

The donor cell finite differences method can be
used to approximate the continuity equation applied 1o
the polydisperse suspension sedimentation problem, and
predicted interfaces velocities are in good agreement
with previously published experimental data in a wide
range of relative concentrations. Predictions are more ac-
curate when dimensionless parameter n is calculated by
Garside and Al-Dibouni correlation and when relative
particle fluid velocity is calculated by using expressions
due to SELIM et al, [10] or LockerT and AL-HABBOOBY
[7], in the range of tested parameters for bidisperse
SUSPENSIons.
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Fig.2 Comparison of Eq.(17) prediction with experimental
data of [8], its Fig.2, by using Egs.(2), (9) and: —— Eq.(20); -
--- Eg(22);----- Eq.(23); dy= 0462107 m, da=0.115-10"
m, p1=p2=2958.6 kg/m’, 909.2 kg/m®, vi=1.78.10" m¥s,
de=0.028 m, Cpy=0.201 - 0.3802, Coo=0.0679. (V: lower
interface, A: upper interface)

SYMBOLS

C Particles concentration by volume

Ch Initial particles concentration

d Particles diameter

d, Diameter of the sedimentation vessel

e Parameter in Eq.(1)

I Parameter in Eq.(])

k Number of particles categories in a
polydisperse suspension

L Height of the sedimentation column

n Dimensionless parameter i the general
Richardson-Zaki expression

P Parameter in Eq.(10). Equals the close packed
bed concentration

Re Reynolds number

t Time

T Dimensionless time

[ Settling velocity of particles

U Fluid velocity

g Slip velocity. Relative velocity between
particles and fluid

I, Terminal settling velocity of particles in a
finite fluid medium

[ Maximum terminal settling velocity among
particles in a polydisperse suspension

i Terminal settling velocity of particles in an
infinite fluid medium

x Distance from the top of the column

x Dimensionless length



Greek letters

£ Suspension voidage

P Flux density of particles

v Kinematic viscosity of fluid

p Density of panticles

[ Density of fluid

Pausp Density of a suspension

Subscripts

i Comresponding to the ith particles category,
i<isk
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