MODELING PEOPLE FLOW AT AMB, USING AIRPORT DESIGN PROGRAMS
Resum

L’objectiu d’aquest treball és l’estudi dels fluxos de passatgers dins de la xarxa de metro pública de TMB, a Barcelona. Posant especial interès amb les estacions amb més afluència, en el nostre cas, l’estació de Plaça Catalunya. S’estudiarà les interaccions dels fluxos de passatgers amb els trens del metro, les andanes, els túNELS d’intercanvi entre andanes i les entrades i sortides de les estacions.

L’estudi es basarà sempre en una simulació utilitzant el programa MassMotion i les dades i mapes obtinguts de les estacions.

Dins l’estudi el principal indicador seran els LOS (Level of Service).

Un cop haguem fet l’estudi, obtindrem conclusions variades, on veurem que hi ha coses que s’han dissenyat bé i d’altres que haurien de millorar. Encara que la conclusió principal serà la idoneïtat de la utilització d’aquests programes per a dissenyar terminals i estacions de passatgers, i la importància d’un bon LOS dins de les terminals.

Finalment annexarem els plànols utilitzats, els arxius i simulacions obtinguts. També annexarem com a curiositat, el programa (javascript + html) que vam fer com a possible solució en cas de no trobar un programa de simulació com MassMotion.
Overview

The aim of this work is the study of the people flow at the public underground System (TMB) of Barcelona. We'll have special interest in the busiest stations, in our case, the station of Plaça Catalonia. We will study the interactions of passenger flows with subway trains, platforms, tunnels to the platforms and the entrances and exits of the stations.

The study will always be based on a simulation, using the program MassMotion and real data and real maps obtained from the stations.

In the study the main indicator will be the LOS (Level of Service).

Once we've done the study, we'll have the conclusions, where we'll see that there are things that are well designed and others ones that should be improved. Although the main conclusion is the appropriateness of using these programs to design terminals and passenger stations, and the importance of a good LOS within the terminals.

Finally at the Annex we are going to attach the planes used and the simulations obtained. Also as a curiosity, we'll attach the program (html + JavaScript) we did as a possible solution if we do not find a program to simulation as MassMotion.
ÍNDICE

INTRODUCCIÓ... 1

CAPÍTOL 1. LEVEL OF SERVICE ... 2
 1 Què es un Level Of Service (LOS)?... 2
 1.1 Historia dels LOS... 2
 1.2 Us del LOS en el disseny de terminals de passatgers................. 4
 1.3 Us del LOS en terminals de passatgers ja existents............. 5
 1.4 L’experiència dels passatgers i el LOS 6

CAPÍTOL 2. PROGRAMES DE SIMULACIÓ .. 7
 2 Necessitats d’aplicar els programes de simulació................................. 7
 2.1 Necessitat d’aplicar l’estudi a TMB.. 7
 2.2 Programes existents... 8
 2.2.1 AnyLogic.. 8
 2.2.2 VH.. 9
 2.2.3 CAST Terminal... 10
 2.2.4 Oasys MassMotion ... 10

CAPÍTOL 3. APLICACIÓ DE MASSMOTION 8.0 11
 3 Perquè hem escollit MassMotion v8.0?... 11
 3.1 Com funciona MassMotion?... 11
 3.1.1 Mapeig.. 11
 3.1.2 Conversió a SolidWorks.. 12
 3.1.3 Creació d’un projecte MassMotion..................................... 13
 3.1.3.1 Familiarització amb el programa................................. 13
 3.1.3.2 Importació dels elements 3D 15
 3.1.3.3 Implementació dels torns i portes.............................. 16
 3.1.3.4 Implementació dels portals.. 17
 3.1.3.5 Assignació de rols durant la simulació.......................... 17
 3.1.3.6 Simulació i resultats.. 18

CAPÍTOL 4. CASOS D’ESTUDI .. 19
 4 Casos d’estudi.. 19
 4.1 Estació de Plaça Catalunya... 19
 4.1.1 Cas normalitzat... 20
 4.1.2 Cas extrem.. 23
 4.1.3 Evacuació.. 25
 4.1.4 Evacuació de 300 agents.. 26
 4.1.4.1 Evacuació de 600 agents..................................... 26
 4.1.4.2 Evacuació de 1200 agents.................................. 27
 4.1.4.3 Evacuació de 3000 agents.................................. 28
 4.1.5 Portes del metro segmentades.. 28
 4.1.5.1 IN-OUT-IN-OUT-IN-OUT-IN-OUT.......................... 29
 4.1.5.2 IN-IN-IN-OUT-IN-OUT.................................... 30
 4.1.6 Torns d’entrada i sortida avarits... 30
 4.1.6.1 33% fora de servei.. 31
 4.1.7 Torns d’entrada i sortida en múltiples direccions................... 31
 4.1.7.1 Torns en múltiples direccions.................................. 31

CAPÍTOL 5. CONCLUSIONS .. 33

CAPÍTOL 6. BIBLIOGRAFIA... 35
CAPÍTOL 7. ANNEX .. 36

CAPÍTOL 8. ANNEX 2: PROGRAMA PROPI... 38
INTRODUCCIÓ

L’objectiu d’aquest treball és la recerca i optimització dels espais utilitzats per a la comunicació entre andanes, amb programes especialitzats en el càlcul i anàlisis de fluxos de passatgers.

Específicament, ens centrem en l’estudi de l’estació de Plaça Catalunya.

Aquesta estació, és idònia ja que té dos requeriments que creiem essencials: És una de les estacions més concorregudes de la xarxa pública de metro i a més a més compta amb dos intercanviadors molt importants i dissenyats fa més de 30 anys.

A continuació procedirem a l’explicació de les parts del treball:

Al primer capítol parlarem dels Level Of Service, d’on venen, com estan definits tant qualitativament com quantitativament i com afecten als passatgers finals.

Al segon capítol introduiríem els programes d’anàlisi de fluxos de passatgers, explicarem les necessitats d’aplicar aquests programes a la xarxa actual de metro i per últim veurem casos d’èxit on aquests programes han sigut útils per a altres xarxes de transport.

Al tercer capítol ens centrem en la solució que hem trobat, aplicar MassMotion, per a l’estudi i anàlisi dels fluxos de transport, i adaptar-lo a les necessitats que busquem. Explicarem també el programari al detall com funciona internament i quines solucions proposa.

Al quart capítol aplicarem el programa a les estacions de Plaça Catalunya, que prèviament hem analitzat i passat a un format compatible amb Autocad. També comentarem els paràmetres inicials que hem escollit per a l’experiment.

Per finalitzar, tindrem les conclusions i la bibliografia. Els annexes aniran a continuació de la bibliografia.
CAPÍTOL 1. LEVEL OF SERVICE

1 Què es un Level Of Service (LOS)?

Per definició, un LOS (Level Of Service) ha de ser uns terme quantitatiu i qualitatiu que s’ha de definir en qualsevol terminal de passatgers, per a definir un nivell de servei proporcionat als nostres passatgers.

Els LOS (Level Of Service), en el context de planificació de terminals de passatgers es un terme genèric que descriu, tant quantitativament com qualitativament, el servei donat als passatgers en diversos punts dins de la terminal de passatgers. Normalment relaciona el grau de congestió o saturació experimentada per als passatgers o els serveis de gestió de maletes dels mateixos passatgers. També pot arribar a ser una mesura de la quantitat de temps d’espera o llargada i duració de cues per a accedir a uns serveis determinats per part dels passatgers.

1.1 Història dels LOS

El concepte de LOS, aplicat a disseny de terminals de passatgers va ser originalment aplicat per primera vegada a l’any 1970 per part d’aeroports de Canadà (TC) perquè van veure la necessitat de millorar les definicions de capacitat a les terminals de passatgers, ja que eren inadequades en una indústria en creixement exponencial des de els anys 50.

Aeroports de Canadà van fer una primera aproximació dels LOS amb els principis ja aplicats a la enginyeria de trànsit, també van utilitzar els treballs fets per John Fruin1 uns anys abans a les terminals de bus i tren de Nova York i New Jersey. Ambdues utilitzen aproximacions en una escala de 6 nivells (A-F), des de excel·lent (A) fins a fallada general del sistema (F).

Els primers estudis fets per Aeroports de Canadà van definir els LOS per a totes les petites terminals l’any 1976, amb petits comentaris i correccions en els mateixos estudis. Aquests estudis van definir el principi dels Sistemes d’avaluació dels Aeroports Canadencs (CASE – Canadian Airports Systems Evaluation). Amb el sistema CASE, Aeroports de Canadà va ser capaç de calcular els passatgers previstos d’arribada i sortides de les terminals, també van calcular els temps d’utilització dels serveis dins de les terminals i les densitats de passatgers en superfícies acotades.

Una terminal de passatgers és una sèrie de servidors, zones d’espera, connectors i corredors; segons els estàndards d’Aeroports de Canadà. Aquests

1 John Fruin: Pare dels LOS, doctor en enginyeria física i escriptor del llibre Pedestrian Planning and design (1971). El llibre preceptor de la planificació de passatgers. ref.[1]
mateixos estàndards van ser adoptats per la IATA2 més endavant i van ignorar des de el principi els passatgers de llarga durada.

Els estàndards definits van ser els següents:

A. **Excel·lent LOS**: Condicions de fluxos de passatgers lliures de congestions, sense endarreriments, rutes directes i un nivell de confort excel·lent.

B. **Elevat (High) LOS**: Condicions de fluxos de passatgers estables i un nivell de confort elevat.

C. **Bo (Good) LOS**: Condicions de fluxos de passatgers estables, amb endarreriments acceptables i un bon nivell de confort.

D. **Adequat (Adequate) LOS**: Condicions de fluxos de passatgers inestables, endarreriments per als passatgers i condicions de tipus C en períodes curts de temps.

E. **Inacceptable (Unacceptable) LOS**: Condicions de fluxos inestables, subsistemes de la terminal de passatgers no adequats que generen limitacions de capacitats a la terminal i un confort inadequat.

F. **Fallida del sistema (System Breakdown)**: Congestions, endarreriments inacceptables i confort inacceptable.

Tant la IATA com tots els gestors aeroportuaris, recomanen com a mínim un nivell C de LOS, que implica un bon servei a un cost raonable.

També estipula que un nivell A de LOS es un nivell que no té un màxim, ja que no es pot arribar a un màxim de confort sense limitar els passatgers. La demanda de les terminals de passatgers son dinàmiques i varien en base de les arribades dels mètodes de transport.

La demanda i els LOS estan relacionats intrínsecament, ja que la capacitat és la mesura de la saturació possible de processar per part de la terminal.

Els LOS de la IATA van ser establerts en un principi segons uns rangs de superfícies per 15 minuts de temps. Tal i com podem veure a la Taula 1.1, es veuen els estàndards de superfície de la IATA per persona per períodes de fins a 15 minuts (m2 / passatger / 15 minuts).

També cal esmentar que els estàndards inicials d’Aeroports de Canadà, van ser ràpidament adaptats per la IATA (simplificant-los majoritàriament) i finalment, els estàndards de la IATA van ser utilitzats de forma genèrica per tots els estudis de LOS.

2 IATA: International Aviaton and Travel Agency. Agencia encarregada de establir protocols entre agencies de viatges, aerolínies i gestors aeroportuaris amb l’objectiu final de millorar el servei per als usuaris finals.
La gran majoria de projectes no son espais a dissenyar des de zero, és a dir, normalment son projectes que impliquen modificacions o expansions a instal·lacions ja existents. Això implica que el disseny de instal·lacions per a tenir un LOS acceptable es molt més fàcil en instal·lacions noves que en instal·lacions ja existents. En el nostre cas, evidentment, serà molt més complicat ja que a més a més afegim el factor “sota-terra” que implica costos molt més elevats i problemes operacionals evidents per a fer les millores.

Com em explicat anteriorment, el nivell desitjat es aquell que permet un servei acceptable a un cost baix, normalment el nivell C. Aleshores per a fer un disseny pràctic d’una terminal, l'objectiu es preveure els punts màxims d'utilització d'infraestructures i estableix temps d'espera acceptables per part dels servidors.

Un dels problemes associats a l'hora d'adoptar les especificacions de IATA referents a els LOS son que les empreses que utilitzen les terminals de passatgers poden trobar o no adequades les distribucions més òptimes, per exemple, una distribució de tipus C on qualitativament podem dir que per als passatgers puguin experimentar endarreriments acceptables amb un confort raonable no genera desacords amb ningú. Però si obligues a les companyies que operen a la teva terminal a tenir un màxim de metres a les cues de la terminal, evidentment, generarà desacord entre les mateixes encara que l'objectiu final sigui un servei millor per al usuari final.

En l’etapa de dissenyar una terminal de passatgers, tant aeroportuària com d’autobusos per exemple, s’han de tenir molt en compte que el que dissenyem en un principi, molt probablement serà la configuració que hi haurà fins d’aquí molts anys (exactament fins a la següent inversió de capital). Un LOS adequat permet un “trade-off” entre una alta utilització amb una mínima inversió, mentre intentem tenir la millor qualitat del servei i una flexibilitat adequada.
Per últim esmentar que estudis recents publicats al ACRP Project 03-05, han estudiat els patrons de comportament dels usuaris a les cues. De les conclusions podem observar que fan referència a un punt en concret, la definició de quan passem de LOS C a LOS D. Segons aquest estudi, es determina que quan una cua supera sobrepassa l’espai designat per a la mateixa, automàticament passem a un LOS D.

Per exemple, podem veure a la Figura 1, un LOS F, ja que es pot entendre perfectament que el sistema ha fallat i la qualitat del servei es inaccetable. En aquesta imatge podem veure tant la part quantitativa (excés de cua i fora de l’espai dissenyat per a la mateixa) com la part qualitativa (el passatger està experimentant una vaga, l’opinió serà negativa).

![Fig. 1 Aeroport de Frankfurt durant la vaga de Lufthansa de l’any 2013](image)

Fig. 1 Aeroport de Frankfurt durant la vaga de Lufthansa de l’any 2013

1.3 Ús del LOS en terminals de passatgers ja existents

Si parlem de terminals ja dissenyades prèviament, hi ha tres tipus de informació que necessitem:

- Superfícies de la terminal i ratis de servei per part dels servidors existents a la terminal.

- Nombre de passatgers en els processos i les possibles operacions que es duguin a terme a la terminal.

- El temps que necessitem per a que la densitat de passatgers superi la àrea específica de cada LOS per passatger. Aquest nombre és el més
dificil d'estimar i moltes vegades requereix de simulacions, com les que procedirem a fer més endavant. Si es volen simulacions molt acurades, necessitarem informació molt fidedigna a la realitat.

Cal esmentar que en el cas específic que estudiarem en aquest TFG, no se’ns ha proporcionat ningú tipus d’informació numèrica per raons de seguretat nacional. Per tant, la gran majoria de dades que apareixeran al treball i a les simulacions són estimacions o dades obtingudes empíricament i que no tenen un mostreig suficient per dir que son una aproximació veraç de la realitat.

Dit això, per exemple, si haguéssim tingut els medis per a fer un mostreig ideal, hauríem fet molt probablement el que van fer els Aeroports de Canadà en el seu estudi CASE. On van adjudicar a cada passatger una identificació i diversos “check-points” dins de la terminal, per a veure on es movia cada passatger. Per exemple en van posar dins dels lavabos, a les zones d’espera i a les zones de seguretat, per a calcular el temps que hi passaven i per on hi passaven. Tot amb l’objectiu final sempre d’obtenir informació molt específica d’una terminal.

Per tant, si tenim informació veraç dels tres punts anteriors, podem simular amb total confiança de que no ens equivocarem de molt.

1.4 L’experiència dels passatgers i el LOS

Un dels punts més importants a comentar dins de la part qualitativa dels LOS, es l’experiència que rep el usuari final, el passatger.

Hi ha tres factors principals a esmentar que afecten directament als LOS:

- Distància que ha de recórrer un passatger i la dificultat que pot tenir en recórrer la distància: Sempre s’ha d’intentar que les distàncies siguin les mínimes, per exemple es diu que si el passatger ha de caminar més de 300 metres s’ha d’habilitar algun medi mecànic.

- L’opinió del passatger sobre la terminal i els seus serveis: Aquest punt conté tant punts tangibles (temperatura, neteja, etc..) com intangibles (servei ofert per part del personal, soroll, etc), per tant es treballa sempre millorar els espais públics amb més facilitats i amb rètols que ajudin a la fàcil comprensió, a més a més d’un disseny amè amb el públic.

- El temps associat amb el moviment dins la terminal: Per exemple, des de el 11-S, les mesures de seguretat han augmentat, i per tant el temps que passem dins d’una terminal. S’ha de treballar per a que el passatger estigui el mínim temps possible dins de la terminal.
2 Necessitats d’aplicar els programes de simulació

Primer de tot, hem d’esmentar que aquests programes poden ser aplicats a diferents àmbits de la vida quotidiana. Tant es pot implementar a terminals aeroportuàries com a estacions de qualsevol tipus o fins i tot a llocs amb grans concurrències en instants puntuals com estadis d’esports.

Les utilitats dels programes poden ser quasi infinites, encara que es poden catalogar en els següents casos:

- Estudi d’utilització de superfícies per part dels passatgers, amb el objectiu de evitar congestions a la vida real
- Estudi de patrons de comportament de passatgers
- Estudi de seguretat de les superfícies, sobretot aquelles que poden tenir algun indici de perillositat en cas d’evacuació per exemple
- Estudi i millora dels serveis que s’ofereixen als passatgers, preveient la demanda podem preparar una oferta adequada i així evitar problemes
- Estudi de les instal·lacions per a determinar un LOS (level of service)
- Optimització de les infraestructures existents
- Provar noves estratègies aeroportuàries de forma virtual per a evitar problemes a la vida real

2.1 Necessitat d’aplicar l’estudi a TMB

Primer de tot, cal esmentar que TMB a les noves estacions de la línia de metro L9 i L10, ja està aplicant aquestes implementacions de software a les estacions. Sobretot son simulacions encarades a la seguretat en cas d’emergència de les mateixes.

Però la problemàtica sorgeix quant el 87% de les estacions de la xarxa metropolitana de metro, tenen més de dues dècades i evidentment, no s’hí ha aplicat cap tipus de anàlisis per a la seva construcció.

En el cas especific de Plaça Catalunya, estació que opera des de el 1924 (gairebé 100 anys) i amb quasi 13 milions de passatgers anuals, es pot apreciar fàcilment quan un mateix hi viatja, que les estacions estan construïdes des de fa molt i que la organització dels passadissos no és la més òptima.

Per finalitzar també caldria esmentar que grans ciutats com Toronto, Berlin o Londres, cada cop amb més freqüència, estan aplicant aquest programes de optimització a les serves xarxes de transport públic per a fer-les més segures i eficients.
Fig. 2 Plànol de l’estació de Sants L5, ambdues direccions

2.2 Programes existents

En aquest apartat parlarem dels programes més importants ja existents en el mercat i les solucions que ofereixen.

2.2.1 AnyLogic

Basat en un model de simulació propi d’AnyLogic, obtenen simulacions a partir de models matemàtics discrets, basats en la trajectòria i els rols dels passatgers, ja que poden interactuar amb l’espai de la terminal i amb altres agents presents a les terminals, com serveis, controls i emergències.

En el cas de l’aeroport de Frankfurt, es van arribar a implementar dins del propi model fins a 26 punts de verificació de seguretat, 8 punts de control de passi d’abordatge, 15 punts de control de frontera, 90 escales i ascensors, 266 portes i fins i tot un túnel dins de la terminal.

Les simulacions (Fig 3), tal i com podem veure, s’executen automàticament 300 vegades al dia i es generen diàriament fins a 15GB d’informació. En el cas de Frankfurt, s’ha arribat a fer càlculs mensuals amb més de 5,5 milions de passatgers.

Es una solució molt encarada a enginyeria, es un dels programes menys visuals i amb una user-experience més negativa, però l’obtenció de dades es molt senzilla i permet exportar dades matricials amb .xml.
2.2.2 VHK

Basat també en un model de simulació propi, està especialitzat en l’estudi d’embussos en terminals. Aquesta solució està molt enfocada a la millora de les zones comercials de les terminals per a augmentar els rendiments de les mateixes. En el cas de VHK, han implementat un carretó per a la zona comercial de la terminal 1 de Schiphol per a la millora dels fluxos, especialment amb els carretons de llarga amplada dins de la terminal, tal i com s’explica a la ref. [7].

La solució a la que van arribar a VHK, va ser la d’implementar uns carretons de mides reduïdes (tal i com podem veure a la Fig 4) que a més a més incorporaven un transmissor per a la triangulació dels passatgers dins de la terminal, per tal d’obtenir informació dels mateixos i optimitzar els fluxos.
2.2.3 CAST Terminal

CAST Terminal, un programa dissenyat conjuntament entre Eurocontrol i el Airport Research Center. És un emulador del terminal de l'aeroport amb funcionalitat de multi-agent; és a dir, que permet definir rols dins de la terminal per a poder fer estudis més elaborats amb milers de passatgers.

Permet simulacions tridimensionals combinades amb el comportament dels fluxos de passatgers. També proporciona models escalables i realistes de terminals d'aeroports i altres instal·lacions per habilitar el suport de decisions, la planificació, el disseny, l'anàlisi i l'optimització de la capacitat de la infraestructura de terminals i processos operatius.

2.2.4 Oasys MassMotion

Un altre programari molt potent en 3D (com es pot veure a la Fig 5), dissenyat amb totes les funcionalitats però amb la diferència de ser un software especialment pensat per a la fàcil utilització per part dels usuaris del mateix, té una user-experience molt positiva. Encara que el “business-model” que segueixen es molt diferent a CAST, busquen petits i mitjans usuaris, no grans corporacions, encara que tenen el potencial adequat.

També està basat en multi-agent i com a exemple podem parlar de l'estació Union de Toronto, on gràcies a MassMotion, es van fer estudis d'hores pic per a casos d'emergència amb més de 30.000 passatgers en hora punta.
CAPÍTOL 3. APLICACIÓ DE MASSMOTION 8.0

3 Perquè hem escollit MassMotion v8.0?

Em escollit MassMotion v8.0 per una raó principal de pes.

És l’únic programa de simulació i modelatge de fluxos en passatgers que ha accedit a deixar-nos una llicència per a operar amb el mateix. A part de que té una interfície que no necessita una familiarització molt elevada amb el programa i els resultats obtinguts són molt professionals.

3.1 Com funciona MassMotion?

A continuació farem una explicació pas a pas del programa MassMotion, per a poder veure com em obtingut els resultats.

3.1.1 Mapeig

Primer de tot, per a poder obtenir uns resultats de certes superfícies hem d’obtenir els mapes de les terminals o estacions que volem estudiar.

En el nostre cas inicial, tal i com podem veure al Annex 1, vam “mapear” inicialment l’estació de Catalunya i posteriorment l’estació de Sants (també a l’Annex 1) utilitzant el programa Autocad\(^3\). Més tard, vam veure que no ens donaria temps de fer un estudi complet d’estació de Sants, així que ens hem centrat principalment amb Plaça Catalunya.

Per a prendre mesures dins de les estacions, vam demanar autorització del metro de Barcelona a TMB. Molt amablement em van denegar l’autorització, a canvi em van passar plànols de l’any 92 (post-olimpíades). A partir d’aquí he anat treballant i afegint modificacions, per exemple en cas de l’estació de Plaça Catalunya tota la part que formava part de l’avinguda de la Llum, ha estat clausurada en els últims 25 anys.

També cal esmentar que els plànols que em va adjuntar TMB (adjunto els plànols a l’Annex 1) eren només de les estacions i no dels corredors, les distàncies i les connexions no hi formen part dels plànols.

S’ha tingut que fer mesures ràpidament amb un metre làser com el de la Fig. 6. M’ha ajudat molt el metre làser, ja que es pot prendre mesures ràpidament amb un error aproximad del + 5% segons el fabricant, en el nostre cas Fluke 441D.

\(^3\) AutoCAD és un programa de disseny assistit per ordinador (CAD - «Computer Aided Design» en anglès) per a dibuix en 2D i 3D. Actualment és desenvolupat i comercialitzat per l’empresa Autodesk.
3.1.2 Conversió a SolidWorks

Un cop ja tenim uns mapes en Autocad fídels a la realitat, li hem de donar volum. Podríem continuar utilitzant Autocad per a donar-li volum, però per facilitat pròpia meva (a la universitat només se’ns ensenyà a utilitzar Solidworks) donem volum amb Solidworks.

Adjunto al Annex 1 també, els mapes amb volum de les estacions.

MassMotion, tal com podem veure a la Fig. 7, només ens demana que dibuixem les superfícies per on farem les simulacions.

![Estació de Catalunya amb volum](image)

Fig. 6 Fluke 441D – Metre làser

Fig. 7 Estació de Catalunya (L1-superior i L3-inferior) amb volum
També crec interessant esmentar, encara que ho comentaré més endavant, que els rectangles que veiem a l’estació de la L3 de Plaça Catalunya són trens des d’on farem les nostres simulacions.

3.1.3 Creació d’un projecte MassMotion

A continuació explicarem de forma bastant visual com creem un projecte amb MassMotion des de el principi fins al moment d’executar la simulació.

3.1.3.1 Familiarització amb el programa

A continuació, un cop hem obert el programa podem veure les següents opcions (a la Fig. 8) a la cantonada dreta-superior:

- **Nou projecte (New):** L’opció que utilitzarem.
- **Obrir projecte anterior (Open).**
- **Guardar (Save).**
- **Tancar (Close).**
- **Mesclar (Merge):** Per a mesclar projectes separats.
- **Importar (Import):** Aquesta opció juntament amb la d’exportar, permeten interactuar amb altres programes com Autocad o SolidWorks.
- **Exportar (Export).**

![Fig. 8 Inici del programa MassMotion](image_url)
També podem observar que a la cantonada de la dreta-superior tenim unes eines de visualització i edició de volums. Molt semblant a SolidWorks tota la interfície.

A continuació, canviem de pestanya superior i passem a Scene (Escena), on podrem veure el següent menú de generació d’elements per a la simulació, on hi ha els més importants:

- **Barrera (Barrier):** Per a generar elements que impedeixen el pas dels agents durant la simulació.
- **Superfície (Floor):** Es una de les eines claus del programa, si no definim les superfícies com a superfícies, els agents durant les simulacions no sabran per on anar al seu destí.
- **Connector (Link):** Una eina més de les essencials al programa, ja que permet fer connectors entre superfícies (molt útils per a fer les portes del metro o els torns d’entrada-sortida del metro).
- **Portals (Portal):** L’eina que permet la generació d’agents (origen) dins de les simulacions, i alhora l’eina que permet la eliminació d’agents (destí dels mateixos) dins de les simulacions.
- Hi ha més eines addicionals com rampes, escales, escales mecàniques i fins i tot servidors com handling o ticketing.

Tal i com podem veure a la Fig. 9, tenim aquests elements esmentats anteriorment en una simulació simple, on li hem dit al programa que porti els agents del Portal 1 (dreta) al Portal 2 (esquerra). El programa s’encarrega de buscar el camí més adient per als agents.

![Fig. 9](image)

Fig. 9 En verd els portals, en groc el connector, en blau fort l’obstacle i en blau fluix les dues superfícies de 50mx50m.
3.1.3.2 Importació dels elements 3D

Un cop ja hem vist com funciona a grans trets el programa, procedim a preparar la simulació. Primer de tot importem els elements de SolidWorks a MassMotion amb l’opció esmentada al punt 3.1.3.1 d’importar sòlids. El resultat que ens queda, es el que podem veure a la Fig. 10.

![Fig. 10 Importació dels sòlids.](image1)

Un punt molt important a recalcar en aquest pas es que no ens hem d’oblidar en convertir els sòlids en superfícies (floors) per a poder executar la simulació, tal i com podem veure a la Fig. 11.

![Fig. 11 Conversió dels sòlids a superfícies de MassMotion.](image2)
3.1.3.3 Implementació dels torns i portes

Ara que ja tenim tots els sòlids a MassMotion, hem de començar a fer els detalls que converteixen el mapa en una estació.

Per tant el primer que fem es crear els torns presents a l’estació, en el nostre estudi per exemple a l’estació de Catalunya, només posem torns a l’entrada de la L3 de Plaça Catalunya. Tal i com podem veure a la Fig. 12, posarem 9 torns en aquesta entrada i l’hi posarem ratis d’entrada i sortida que hem calculat manualment a l’estació.

El rati d’entrada aproximat és de 15 passatgers/ minut/ torn i el rati de sortida dels torns és de 27 passatgers/ minut/ torn. Evidentment el programa ens permet configurar aquestes variables al nostre projecte.

Fig. 12 En groc els torns de l’estació de Catalunya

Utilitzem el mateix comandament de connectors per a generar les portes dels nostres trens.

Actualment, la gran majoria de la flota de metro de TMB compta amb els trens de la sèrie 5000. Que compten amb 8 portes per cada vagó, tal i com podem veure a la Fig. 13. En la nostra simulació, com no podem ampliar les portes (ja que són individuals), hem decidit doblar les portes (8 per banda) per així poder tenir una simulació més real.

Aquest punt, es una de les possibles millores que es podrien aplicar al programa de simulació MassMotion en un futur.

Fig. 13 Plànol d’alçat i planta d’un tren sèrie 5000 de TMB
3.1.3.4 Implementació dels portals

La següent tasca, es la generació dels agents durant la nostra simulació. Per a començar, trobo interessant explicar que el programa ens permet fer diferents distribucions matemàtiques per a la generació d’agents.

Per exemple, si volem fer una simulació per a testejar fins quan el LOS és acceptable, haurem d’agafar una distribució exponencial. Si el que volem fer es una simulació veraç, haurem d’agafar una distribució normal o aleatòria.

En el punt 3.1.3.5 explicaré també que el programa permet la creació d’agents per arribades de vehicles, així podem fer simulacions més precisas si hi ha vehicles de per mig a la simulació.

3.1.3.5 Assignació de rols durant la simulació

Un dels punts més importants abans de simular amb MassMotion v8 és el punt en què s’assignen rols a la simulació. El programa ens presenta a la pestanya de Activities els següents rols o funcions (tal i com podem veure a la Fig. 15).

![Fig. 15 Pestanya dins del programa MassMotion (Activities)](image)

Aleshores podem fer 5 accions possibles amb els agents durant la simulació:

- **Camí (Journey):** Amb aquesta funció els nostres agents aniran de punt a punt, es a dir, d’un portal a un altre per el camí més òptim.
- **Circulacions (Circulate):** Igual que camí però en comptes d’eliminar el agent quan arriba al destí, torna al origen per on ha vingut o per un camí més òptim.
- **Vehicle (Vehicle):** Permet fer trens, avions o autobusos virtuals per a fer que els agents es generin tots de cop dins d’un espai i així testejar per exemple si la infraestructura permet l’arribada de vehicles de qualsevol tipus a la vegada.
- **Evacuació (Evacuate):** Permet fer simulacions d’evacuació amb funcions simples, com per exemple quan un agent entri a un tren, que faci saltar l’alarma de l’estació.
- **Període (Timetable):** Permet fer arribades programades d’agents, per exemple d’avions.
3.1.3.6 Simulació i resultats

La penúltima de les tasques que hem de fer, és relativament simple.

Primer de tot, el programa disposa d’un botó que permet validar el mapa complet amb totes les característiques addicionals que hem volgut afegir, sobretot fa una revisió de que tot els mapes estiguin en el mateix plànol i de que els agents que es van a generar puguin arribar als seus destins.

Després, un cop comprovat que tot està bé, comencem la simulació. Tal i com podem veure a la Fig. 16, el programa comença a generar agents i aquets busquen la solució de forma individual als problemes que tenen per arribar al seu destí des de el seu origen.

Fig. 16 Simulació en procés de MassMotion.

Tal i com es pot apreciar a la Fig. 16, el programa va simulant i va informant dels resultats dels seus càlculs. Informa del nombre d’agents en aquell minut en tot el mapa, els que ha generat en aquell minut i els segons que està trigant en calcular els resultats.

Els resultats, poden ser de dos tipus:
- **Gràfiques**: On podrem observar el nombre d’agents amb el LOS que tenen per percentatge, el nombre d’agents amb LOS inferiors a C, etc..
- **Mapes**: Podrem veure els recorreguts més comuns, veure on els LOS són més baixos i així poder millorar, etc..

Els LOS son definits per el propi usuari, nosaltres hem utilitzat el estàndard de la IATA, esmentat en el punt 1.1.
CAPÍTOL 4. CASOS D’ESTUDI

4 Casos d’estudi

La simulació que durem a terme, durarà 30 minuts. Aproximadament tindrem entre 15 i 20 arribades de trens a la mateixa estació i arribarem a simular fins a 2000 passatgers en el moment pic.

A continuació, procedirem a esmentar els casos que estudiarem durant les simulacions a Plaça Catalunya:

- **Cas normalitzat:** Serà el cas estàndard a ambdues estacions, ja que tindrem arribades de trens uniformes amb intervals que poden variar dels 3 als 6 minuts de forma aleatòria. Utilitzarem dades estadístiques d’usuaris d’un dia normal a cada estació i veurem els resultats. Esperem tenir un LOS-C.

- **Cas extrem:** Provarem fins quan l’estació pot permetre més viatgers, fins a tenir un LOS de tipus F.

- **Evacuació:** Farem uns “stress-test” a les estacions per a veure fins a quants passatgers podrien fer una evacuació segura. Afegirem a l’evacuació un factor d’ignorància, on els nostres agents al principi no actuaran tots de cop, ho faran de forma esglaonada, com si sentissin les alarmes però no sabessin que passa els primers instants.

- **Portes del metro:** Un altre cas interessant a estudiar, serà aquell on veurem la interacció en la eficiència i el LOS de l’estació si per exemple canviem les portes del metro, i en comptes de ser de entrada i sortida a la vegada, deixarem portes exclusives per accedir al metro i portes exclusives de sortida.

- **Torns avariat:** Un clàssic per a qualsevol usuari de la xarxa metropolitana de metro, veurem la interacció entre la satisfacció dels passatgers i les averies als torns. Farem també un altre “stress-test” per a veure fins quant es acceptable tenir averies als torns.

- **Torns de múltiples direccions:** Actualment a les estacions els torns son de sentit únic, veurem si es més eficient tenir torns d’un sol sentit o amb més d’un sentit.

4.1 Estació de Plaça Catalunya

A continuació, amb tots els passos previs, procedirem a l’estudi dels casos esmentats anteriorment al punt 4 a l’estació de Plaça Catalunya.
4.1.1 Cas normalitzat

Aquest cas, serà aquell normalitzat per a un dia laboral.

Actualment l’estació de Catalunya diàriament té fins a 82.000 viatgers en dies punta (Nadal) i 30.000 viatgers en dies laborals normals, de temporada baixa. Una mitjana d’entre 130 i 150 viatgers per tren, pugen i baixen a Plaça Catalunya.

Com la nostra simulació es de 30 minuts, arribem a tenir un pic de 600 usuaris a l’estació a la vegada.

A continuació veurem la Fig. 17 on podrem veure els LOS amb el nombre d’agents presents a l’estació en cert instants de temps.

![Agent Density Graph](image)

Fig. 17 Densitat d’agents a Plaça Catalunya, en certs instants de temps per certs LOS. Les fletxes indiquen arribades de trens a les andanes.

Com podem veure a la Fig. 17, hem sobrepassat el LOS C (paràmetre desitjat) en certs instants, aproximadament calculem que fins a 1 de cada 4 agents a la simulació arriba a LOS D-E-F.

Però si estudiem més gràfiques (Fig. 18 i Fig.19) deduirem el següent:
Els agents no es distribueixen homogèniament per l’andana (com a la realitat). Tal i com podem veure a la Fig 18 i 19.

En realitat, quan arriba el tren (tal com podem veure a la Fig. 17 en fletxes de color blau a la part superior) la gent que està esperant aborda el tren, i aleshores desapareixen tots els LOS de tipus D-E-F. El cas més clar es a l’instant 00:14:30.

Fig. 18 Gradient de LOS en el mapa de l’estació de Pl. Catalunya

Fig. 18 Ampliació del gradient de LOS en l’andana de la L3. Es pot apreciar perfectament l’acumulació d’agents als exteriors dels primers vagons

Per a finalitzar, cal presentar un parell de gràfiques més per a ajudar a entendre quina pot ser la solució ideal per a obtenir un LOS de nivell C a l’estació de Plaça Catalunya.
Com podem veure a la Fig. 19, la gran majoria dels agents no han esperat més d’entre 3 i 5 minuts de mitjana. Per tant deduïm que les esperes no son unes altres, que esperar a que vingui el metro. També comentar que a la Fig. 20, tal i com em dit en les línies superiors a aquesta, encara es veu més marcat que la influència de les arribades dels metros a la nostra simulació. La Fig. 20 ens mostra la distribució d’agents i la seva velocitat en vers a un instant determinat.

Fig. 19 Nombre d’agents a la simulació i el acumulat d’espera durant la simulació
Fig. 20 Nombre d’agents, en un cert instant i la seva velocitat

Per a finalitzar, la solució proposada es informar als usuaris que es distribueixin de forma homogènia per les andanes. Actualment aquestes solucions ja s’apliquen a certes estacions de Barcelona, un cas molt conegut es l’estació de Provença de FGC.

L’estació es tant estreta i curta que es necessita repartir els usuaris per l’estació, i així eviten LOS nefastos mentre els usuaris esperen a abordar el tren.

En quant als passadissos que connecten les estacions de diferents línies, podem deduir que no hi ha problema de saturació ni de LOS. El pitjor LOS observat en els passadissos es un de nivell B (**Fig. 18** de color blau fluix).

4.1.2 Cas extrem

Aquest cas, serà aquell que tindríem per exemple un dia de Nadal. On segons dades de TMB el trànsit de passatgers augmenta fins a 3 vegades a un dia normal (entre uns 82.000 i 90.000 viatgers diaris només a Pl. Catalunya). També ens van comentar des de TMB, que en dies com aquests augmenta la freqüència de trens, per tant hem augmentat la freqüència i el temps que s’espera el tren a l’estació nosaltres també.

Hem passat d’una mitjana d’un tren cada 5 minuts a un tren cada 3 minuts i mig, i els trens ara s’aturen a l’estació 15 segons més.

En aquest cas (15 minuts de simulació) arribem a tenir fins a 1.000 agents a l’estació. Tal com veiem a la **Fig. 21**, el cas empijora dràsticament però l’aument de freqüència de pas dels trens ajuda a no empijorar de forma radical.

Fig. 21 Densitat d’agents a Plaça Catalunya per certs LOS per cert temps.
Igual que en el apartat 4.1.1, podem deduir que en els moments que certs agents experimenten un LOS de tipus D-E-F es degut al temps d'espera a l'andana. En el moment que arriba el tren, desapareixen aquests LOS de categoria baixa.

També es interesant esmentar, que en el moment que augmentem gairebé per tres el nombre d'agents a la simulació de Plaça Catalunya passa el següent, comencem a tenir problemes de congestió als passadissos de transbord entre estacions i als torns de sortida. Ja que tenen un pas regulat i no poden sortir tots els agents a la vegada, com a la vida real. Tot això es pot apreciar clarament a les Fig. 22 i 23.

Fig. 22 Ampliació del gradient de LOS en el mapa de l’estació de Pl. Catalunya

Fig. 23 Ampliació del gradient de LOS a la sortida de la L3 de Pl. Catalunya
La solució que proposem per a evitar els LOS de categories D-E-F es idèntica a la de l’apartat 4.1.1, però aquest cop afegim dues solucions adicionals als dos nous problemes que hem detectat:

- Obrir els torns de sortida de l’estació, per a evitar possibles colapses i així millorar els LOS.
- Regular o separat els fluxos de pas als tunnels d’enllaç entre les línies L1 i L3. Al separat els fluxos de passatgers, podem evitar problemes, ja que hem detectat que la gran majoria d’embussos es provoquen perquè hi ha agents que volen anar a l’andana de la cantonada contraria.

4.1.3 Evacuació

En aquest cas excepcional, veiem quant temps triguem en evacuar tots els agents de la nostra estació.

L’estudi el farem amb un nombre d’usuaris limitat, i anirem experimentant fins a quants són necessaris per a no complir amb la normativa. L’actual normativa d’evacuació d’infraestructures públiques soterrades recomana una ràpida evacuació, que ha d’oscil·lar entre 0 i 4 minuts com a màxim la gran majoria del personal.

Per aquest cas en específic, haurem de col·locar nous punts de generació d’agents (portals) repartits per tota l’estació, ja que el programa no ens permet simular en condicions normals i activar una alarma d’evacuació.

El programa el que fa es generar agents repartits per tota l’estació

A la nostra dreta, veiem la Fig. 24 on es pot veure clarament, les rutes que han seguit els nostres agents per a l’evacuació.

Els agents no corren i no entren en pànic, i sempre busquen i troben la ruta més òptima per a sortir per les sortides que hem facilitat anteriorment.

També cal esmentar, ja que es veu a la Fig. 24 que els torns de sortida i entrada han sigut inhabilitats, per tant, permeten l’entrada i sortida sense cap tipus de restricció. En resum, els torns son oberts.

Fig. 24 Camí seguit per els agents durant l’evacuació
4.1.4 Evacuació de 300 agents

A continuació, a la gràfica present en la Fig. 25 podem veure els temps d’evacuació de tots els agents dins de l’estació.

![Gràfica de temps d’evacuació de 300 agents](image)

Fig. 25 Al eix y el nombre d’agents i al eix x el nombre de temps que han trigat en abandonar l’estació.

Per tant, podem dir que amb 300 passatgers, complim amb la normativa de fins a 4 minuts.

4.1.4.1 Evacuació de 600 agents

A continuació, a la gràfica present en la Fig. 26 podem veure els temps d’evacuació de tots els agents dins de l’estació. Cada cop anirem fem increments x2 fins arribar al límit.
Per tant, podem dir que amb 600 passatgers, també complim amb la normativa de fins a 4 minuts.

4.1.4.2 Evacuació de 1200 agents

A continuació, a la gràfica present en la Fig. 27 podem veure els temps d’evacuació de tots el agents dins de l’estació. Aquest cop amb 1200 agents.

Per tant, podem dir que amb 1200 passatgers, seguim complint la normativa.
4.1.4.3 Evacuación de 3000 agentes

A continuación, a la gráfica present en la Fig. 28 podemos ver los tiempos de evacuación de todos los agentes en la estación. A esta vez probaremos con 3000 personas en la estación.

![Fig. 28](image)

Fig. 28 Al eje y el número de agentes y al eje x el número de minutos que han consumido abandonar la estación.

En este caso, ya veo que hay más de 200 agentes que siguen en la estación después de los 4 minutos. Por lo tanto, podemos decir que el límite de pasajeros para una evacuación segura es de 3000.

4.1.5 Portes del metro segmentadas

A continuación en este caso procederemos a segmentar las entradas y salidas del metro, utilizando las mismas variables que en el caso normal (4.1.1).

El objetivo es probar si segmentando las puertas del metro, las dejamos entrar en unos y las dejamos salir en otros, mejora o no la eficiencia y la experiencia de nuestros pasajeros.
4.1.5.1 IN-OUT-IN-OUT-IN-OUT-IN-OUT-IN-OUT

Per a poder comprovar el model In-out-in-out-in-out-in-out, el que hem fet ha sigut canviar els accessos dels metros, tal i com es pot veure a la imatge present a la Fig. 29.

![Fig. 29](image)

Fig. 29 Esquema de les portes, segmentades per entrada i sortida

Aleshores, els resultats que obtenim son els següents que es mostren a la Fig. 30. Sensiblement millors que els que podíem veure anteriorment. Donem per demostrat que aquesta configuració permet evitar LOS de nivell F (vermell fort) als nostres trens.

![Fig. 30](image)

Fig. 30 Comparativa del cas estàndard (dreta) i cas In-out-in-out-in-out-in-out (esquerra)
4.1.5.2 IN-IN-IN-IN-OUT-OUT-OUT

A continuació, a la Fig. 31, podem observar el nou cas d’estudi.

Per a fer-se l’idea, en aquest cas, les quatre primeres portes permeten l’entrada al tren i les quatre següents permeten la sortida del tren.

![Fig. 31 Comparativa del cas estàndard (dreta) i el cas in-in-in-in-out-out-out-out (esquerra)](image)

Un cop veiem la comparativa, podem deduir fàcilment que la solució de portes IN-IN-IN-IN-OUT-OUT-OUT, és molt millor opció. Es pot veure clarament, una millora dels nivells de LOS E i F en aquest nou model de distribució de portes.

4.1.6 Torns d’entrada i sortida avariations

Continuarem el nostre estudi amb MassMotion amb el següent cas. Estudiarem la interacció que tenen els torns de les estacions del metro amb els LOS associats a les mateixes.

Farem un estudi comparatiu, entre el cas estàndard i el cas on el 33% dels torns, funcionen malament, generant embussos.

Evidentment per al nostre estudi, utilitzarem les dades i la simulació aplicada en l’apartar 4.1.1. El cas estàndard. També cal esmentar que en aquest cas, només estudiarem les entrades i sortides de les estacions, les andanes i els trens no ens afecten en el nostre estudi particular.
4.1.6.1 33% fora de servei

Com es pot veure a la Fig. 32, la comparativa ens mostra que quan aplicuem el model a una fallada del 33% dels torns, podem arribar a tenir un LOS de nivell D. Per tant, podem afirmar que un bon manteniment i funcionament dels torns a les estacions, afecta directament amb el LOS dels usuaris de la mateixa.

![Fig. 32 Comparativa del cas estàndard (dreta) i el cas amb el 33% dels torns avariats (esquerra)](image)

4.1.7 Torns d’entrada i sortida en múltiples direccions

Al últim punt que analitzarem de l’estació de Plaça Catalunya, voldrem comprovar la interacció dels agents amb els torns amb més profunditat.

En especial, en aquest punt voldrem comprobar si és més eficient posar els torns de forma organitzada i tenir-los separats en direccions; el cas actual de Plaça Catalunya o tenir-los mesclats, és a dir, que permetin fluxos d’entrada i sortida a la vegada. Farem la comparativa i comentarem els resultats.

4.1.7.1 Torns en múltiples direccions

Com es pot veure a la Fig. 33, la comparativa ens mostra que quan aplicuem el model amb torns en múltiples direccions, podem arribar a tenir un LOS de nivell C.

Per tant, podem afirmar que limitar la direcció dels torns millora els LOS, però és acceptable tenir un LOS de nivell C, per tant tampoc es imprescindible segons la IATA.
Fig. 33 Comparativa del cas estàndard (torns en direccions fixades) (dreta) i el cas on els torns tenen múltiples direccions (esquerra)
CAPÍTOL 5. CONCLUSIONS

Per a començar a les conclusions, creiem que la primera de les conclusions es la mateixa importància i idoneïtat d’aquests tipus de simulacions a la hora de dissenyar terminals de passatgers.

Aquestes simulacions proporcionen tres punts molt importants e interconnectats entre ells de forma intrínseca:

- Seguretat
- Eficiència
- Comoditat

La seguretat ve proporcionada perquè les simulacions permeten veure els casos més extrems que poden arribar a experimentar les nostres instal·lacions, permeten fer protocols d’emergència segurs i també permeten veure quins son els límits de seguretat en quant a mobilitat de passatgers.

L’eficiència, va directament relacionada amb la seguretat i la comoditat. Ja que hem pogut demostrar en els punts anteriors del nostre treball, que aquestes simulacions permeten millorar qualsevol qualsevol terminal ja existent i millorar-ne l’eficiència de qualsevol punt de la terminal, per exemple en el nostre cas amb les portes dels trens, on canviant la configuració d’entrada i sortida de les mateixes, baixem els LOS a nivells més acceptables, per tant més comoditat per als passatgers i millorem la seguretat al disminuir les aglomeracions de fluxos.

I per últim, la comoditat dels nostres passatgers es l’últim punt important que podem millorar a les nostres instal·lacions. Ja que no podem oblidar que les nostres instal·lacions tenen milions de clients anualment i sempre s’ha de millorar l’experiència dels nostres usuaris, per a seguir sent una terminal de passatgers puntera.

Per a finalitzar les conclusions, entrarem una mica més en detall en les conclusions obtingudes amb els resultats de MassMotion aplicats a l’estació de Plaça Catalunya. Les conclusions son les següents:

- Hem pogut demostrar que l’estació de Plaça Catalunya en condicions normals, gaudeix la gran majoria del temps d’un LOS de nivell C. Un nivell recomanat però en cap cas perfecte, ja que ens els moments d’arribada dels trens poden arribar a tenir pics de nivell E.
 Cal dir que el resultat, es millor del que esperàvem ja que l’estació va ser construïda fa més de 50 anys.

- També hem pogut demostrar que l’estació quan està gairebé col·lapsada en dies com Nadal, s’arriba a un LOS de nivell D-E en molts moments, però era d’esperar ja que es un cas extrem.

- Un altre resultat positiu de les simulacions es el resultat de les evacuacions, ja que hem demostrat que fins a uns 3000 usuaris poden ser
evacuats de forma ordenada i gairebé seguir complint una evacuació de 4 minuts de tota l’estació.

- Un altre punt interessant que hem pogut obtenir de les simulacions es la millora de l’eficiència en la situació i limitació de la direcció d’entrada de les portes dels vagons del metro.

- Per a finalitzar, les conclusions referents als torns de l’estació, hem pogut demostrar com afecta uns torns avariats a l’estació i com afecta tenir els torns en múltiples direccions. La configuració actual dels torns es la òptima.
CAPÍTOL 6. BIBLIOGRAFIA

CAPÍTOL 7. ANNEX

DATA 2016
Nom Oriol E. T.
Format Autocad
Universitat UPC
ESCALA 1:1333
Plànol 1

ESTACIÓ DE PL. CATALUNYA
BARCELONA
Fig. 34 Vídeo amb un resum visual 3D de la simulació (Vimeo)

https://vimeo.com/180811220
CAPÍTOL 8. ANNEX 2: PROGRAMA PROPI

Per a finalitzar, procediré a la presentació d’un programa que vaig escriure a partir d’una investigació de la universitat de Dresden sobre trànsit i mobilitat urbana. (http://www.mtreiber.de/index.html)

L’objectiu d’aquest programa va ser la preparació d’una versió molt bàsica d’un programa de simulació de fluxos de passatgers, en cas de que tal i com esmentaré a la presentació no hagués pogut obtenir una llicència d’un programa.

El programa és molt bàsic i es basa en el esquema que trobem a la fig. 35, on el programa s’executa des de qualsevol navegador actual i tota la matemàtica es basa en javascripts.

![Diagrama de Capítol 8 Annex 2 Programa Propi](image_url)

Fig. 35 Estructura del programa

El programa s’executa amb javascripts que tenen totes les funcions matemàtiques (posicionament dels agents, posicionament del camí, algoritme d’aturada, obstacles, etc...).

Tots aquest javascripts han tingut que ser re-inventats ja que estaven pensats per a reproduir vehicles i les seves trajectòries i velocitats.

Després un script CSS i un HTML ajunten els javascripts i els “plotejen” a la web.
El resultat es pot apreciar a la Fig. 36 i Fig. 37 (mapa complet), encara que em falta desenvolupar l’obtenció de dades dels agents en gràfiques.

Fig. 36 Web amb la simulació, a dalt es pot apreciar que les dades poden variar en vers al que volem simular. També hi ha un mapa de les velocitats, on depenen de les velocitats dels agents varia el color.
Fig. 37 Mapa complet de la simulació de l’estació de Plaça Catalunya.
Adjunto el programa al següent link:

https://www.dropbox.com/s/vfth7fc4oyyijao/SIMULADOR%20TFG%20ORIOL%20ESTEBAN.zip?dl=0