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ABSTRACT
Modern microprocessors are increasingly power-constrained
as a result of slowed supply voltage scaling (end of Dennard
scaling) in conjunction with the transistor density scaling
(Moore’s Law). Existing many-core power management tech-
niques such as chip-wide/per-core DVFS, and core and cache
adaptation are quite e↵ective in isolation at moderate to high
power budgets. However, for future many-core chip, the ex-
isting techniques do not scale well to large core counts, small
time slices and stringent power budgets. We need a new solu-
tion that combines di↵erent adaptation and reconfiguration
techniques.

In this paper, we present Chrysso, an integrated, scalable
and low-overhead power management framework. Chrysso
consists of a three-step process: leveraging simple analytical
performance and power models, pruning the search space
early using local Pareto front generation, followed by global
utility-based power allocation. This ensures scalable and
e↵ective dynamic adaptation of many-core processors at
short time scales along multiple axes, including core, cache
and per-core DVFS adaptations. By integrating multiple
power management techniques into a common methodology,
Chrysso provides significant performance improvements over
isolated mechanisms within a given power budget without
power-gating cores. On a 64-core system, Chrysso improves
system throughput by 1.6⇥ and 1.9⇥ over core-gating at
stringent power envelops for multi-program (SPEC) and
multi-threaded (PARSEC) workloads, respectively.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Adaptable architectures

General Terms
Design, Performance, Experimentation

Keywords
Many-core processor, analytical modeling, power manage-
ment, microarchitecture reconfiguration

1. INTRODUCTION
Modern microprocessors are quite power-constrained as

a result of prominent trends in chip technology. Moore’s
Law [32] refers to the doubling of transistors on chip every
18 months, and has been a fundamental driver of computing.
Unfortunately, because of the end of Dennard scaling [9]
(slowed supply voltage scaling), we may become so power-
constrained that we will no longer be able to power on all
transistors at the same time—a problem referred to as dark
silicon [13]. Moreover, run-time factors such as thermal
emergencies [7] and power capping [16] further constrain the
available chip power. Hence, an intelligent solution is needed
to selectively power on transistors to maximize performance
within a given power budget at any given time.

A number of mechanisms exist to manage power, includ-
ing (DVFS) [21], core adaptation [3, 17, 35], and cache
adaptation [1, 39]. Although these mechanisms are quite
e↵ective at managing power in isolation at high to mod-
erate power budgets, systems had to revert to core-gating
under constrained conditions [26, 27]. The stringent power
requirements for future many-core systems therefore require
an integrated, scalable and low-overhead approach that can
select the best combination of power savings methods for
each core tailored to each application phase, at small time
scales. This includes dynamically re-allocating the power
budget between cores (e.g., a compute-bound core should be
allowed to ‘steal’ power from a memory-bound core), and,
for multi-threaded applications, taking into account which
threads are performance-critical to avoid wasting energy
by speeding up non-critical threads. While many of these
problems have been studied in isolation, combining all these
requirements is essential yet quickly leads to an explosion in
complexity of the power management algorithms.
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Figure 1: Adaptive many-core architecture with

Chrysso, featuring per-core PMU and a GPM.

In this paper, we propose Chrysso1, an integrated many-
core power management methodology to quickly adapt the
processor to workload characteristics and run-time condi-
tions. Chrysso leverages analytical performance models and
table-based power models to explore the complex optimiza-
tion space comprising core, cache and per-core DVFS adap-
tations. Chrysso can operate at small time slices (10ms)
while simultaneously scaling to large core counts (multiple
tens of cores). Chrysso exploits both inter-workload vari-
ability as well as intra-workload phase behavior to optimize
power-performance trade-o↵ over time under varying work-
load conditions.

Overall, we make the following contributions in this paper:

• We propose a novel two-tier local/global optimization
algorithm, combining local prediction and Pareto front
selection with a global utility-based power distribution,
to quickly search the adaptation space and partition
the available power budget among cores.

• We integrate the concept of thread criticality into the
power allocation to avoid wasting energy by speeding
up non-critical threads.

• We evaluate Chrysso on a many-core processor and
show that our integrated approach achieves optimized
performance while meeting stringent power constraints.
Chrysso’s low complexity enables adaptation at fine
granularity.

On a 64-core system, Chrysso outperforms DVFS, core-
gating, core and cache adaptation in isolation by a significant
margin over a broad range of power envelops without power-
gating any cores. Chrysso improves system throughput by
1.6⇥ and 1.9⇥ on average over core-gating for multi-program
and multi-threaded workloads, respectively. Chrysso incurs
little execution time overhead—less than 1%, while requiring
limited hardware overhead—roughly 3KB per core to assist
adaptation decisions. This makes it scalable both in time
(small time scales) and space (large core counts).

2. CHRYSSO
We propose Chrysso in the context of a many-core pro-

cessor, as shown in Figure 1. Each core has a number of
configuration knobs that together define distinct operating
points, each with a di↵erent power-performance trade-o↵. A
per-core power/performance monitoring unit (PMU) keeps
track of core activity and controls the core configuration in re-
sponse to requests made by the global power manager (GPM).

1Chrysso is a spider genus whose color is variable. By analogy,
Chrysso adapts the many-core processor configuration to variable
workload and run-time conditions.
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Figure 2: Event flow in Chrysso.

This GPM combines information from all cores, and performs
the global power/performance optimization. By being knowl-
edgeable about di↵erences in per-core behavior, the available
power budget can be dynamically distributed across cores.
Figure 2 depicts the Chrysso event flow. Time is divided

into fixed-sized time slices, typically few milliseconds. During
each time slice, per-core PMU tracks the activity statistics
using the hardware counters. At the end of a time slice, the
PMU uses analytical performance models along with table-
based power models to predict/project the performance and
power of all possible core reconfigurations (48 configurations
in our setup). Each core then sends a list of Pareto-optimal
configurations to the GPM, which globally optimizes the
many-core configuration within the given power budget. Fi-
nally, the GPM instructs each core to reconfigure itself based
on the configuration that was decided upon. Using a 10ms
time slice, we find that the Chrysso event flow has low over-
head (less than 1%).

2.1 Chrysso Optimization Algorithm
The aim of Chrysso’s optimization algorithm is to find a

combination of per-core configuration settings that maximizes
performance within the imposed chip-wide power budget.
The search space is multi-dimensional with local minima
that is not trivially navigated. However, by combining per-
core Pareto frontier generation with a utility-based power
budget allocation, Chrysso can quickly navigate this search
space and converge to a (near-)optimal configuration at small
time slice. Chrysso’s scalability and adaptivity depends on
three key features: local Pareto front generation, utility-based
optimization and critical-thread awareness.

Per-core prediction and Pareto front generation
Chrysso first predicts performance and power for all possible
configuration tuples (w, c, f) for each core, with w denotes
the resized core micro-architecture, c the number of cache-
ways enabled, and f the core frequency-voltage setting. This
is done by the PMUs for the respective cores using the projec-
tion models which we discuss in detail in Section 2.2. Once
per-core PMU has computed the projected performance and
power values for each possible configuration, it discards all
non Pareto-optimal configurations. This significantly reduces
the number of configurations that have to be taken into ac-
count in the global optimization round: out of 48 per-core
configurations, typically only 6–12 are Pareto-optimal, de-
pending on the workload characteristics. These configuration
points are then sent to the GPM for global optimization.

Utility-based optimization
The global optimization algorithm uses the current many-core
configuration as a starting point. As long as the projected
power consumption of the current core configuration exceeds
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Figure 3: Chrysso algorithm: Pareto front selection

followed by utility-based optimization.

the power budget, cores are successively selected to reduce
the micro-architectural configuration. All settings occur only
along each core’s Pareto frontier—by using Pareto-optimal
points only, we have already linearized the per-core selection
process without loss in optimality.
At each iteration, the core that is selected to perform a

step-down (move to a lower-power configuration) is the one
that will provide the highest utility—this is the core that can
achieve the highest reduction in power consumption while
loosing least amount of performance along the core’s Pareto
frontier. To speed up the algorithm and to reduce the chance
of ending up in local minima, cores can also be selected to
step-down by multiple steps at once. The algorithm works
by constructing a list of down-steps, between 1 and K steps
along the Pareto frontier for each core. It then sorts these
steps by utility. The first step-down in this list is applied to
the current configuration, after which the algorithm performs
the next iteration with another step-down as long as the
predicted power consumption exceeds the available power
budget. Once the power limit has been reached, or if the
initial configuration falls below the power limit, the step-up
phase of the algorithm starts in which cores can be stepped
up. This allows Chrysso to take up any spare power budget
that was made available by the last step-down phase, if any.

Figure 3 illustrates this process: for two cores #0 and #1,
it shows the various configurations with the Pareto-optimal
design points shown as black dots. Down-steps are selected
based on utility, i.e., by the largest reduction in power for the
least reduction in performance: Chrysso selects down-steps
1, 2, 3 and 4 for cores #0, #1, #1, and #0, respectively.

Critical thread awareness
The utility-based global optimization strategy as just de-
scribed allows for giving a larger share of the total power
budget to cores/threads that benefit more than others. In
a multi-program workload environment this helps overall
system performance by giving a relatively larger power bud-
get to compute-intensive applications over memory-intensive
applications. For multi-threaded workloads, not all threads
have equal impact on system performance (application run-
time): speeding up threads that are on the critical path of
the application improves run-time while allocating power to
speed up non-critical threads is ine�cient—unless they are
slowed down too much at which point they become critical.

Chrysso leverages the notion of thread criticality proposed
in [10] to compute thread criticality and allocate power ac-
cordingly. The criticality value quantifies how much time
a thread is performing useful work (active/running) and
how many threads are concurrently waiting within a given
time slice. Intuitively, a thread that is active while other
threads are waiting due to synchronization is more critical

Knob Parameter Values

Core (w)

Width 1 2 3 4
ROB size 16 32 64 128
RS entries 4 8 16 32
LQ entries 6 12 24 48
SQ entries 4 8 16 32

Cache (c)
L2 cache ways 4 8 12 16
Capacity (KB) 128 256 384 512

DVFS (f)
Frequency (GHz) 0.8 1.0 1.2 —
Vdd (V) 0.7 0.75 0.8 —

Table 1: Configuration knobs and corresponding ar-

chitectural parameters and values.

and therefore receives a larger criticality value. We make
Chrysso critical-thread aware by identifying the thread with
the largest criticality value and we prevent the core running
this thread from entering the step-down phase. Instead, dur-
ing the step-up phase it gets allocated a higher power budget
whenever possible. This way we achieve a more balanced
execution, and hence reduce overall run-time. Note that we
recompute the criticality for all threads in each time slice,
and we thus dynamically determine the most critical thread
and repartition the power budget accordingly. Computing
thread criticality can be done in hardware with minimal
overhead (65 bits per core [10]) or using an OS kernel.

2.2 Chrysso Projection Models
Chrysso uses model-based prediction to explore the opti-

mization space at run time. This allows Chrysso to scale
much more easily to architectures with multiple configuration
knobs, while incurring little run-time overhead, in contrast
to sampling-based methods as done in prior work [3, 17,
35]. The inputs to the models are the activity statistics col-
lected using hardware counters during the current time slice.
Assuming workload behavior is at least representative for
the next time slice, this information is then used to predict
performance and power for all possible core configurations
(w, c, f) during the next time slice.

Performance modeling
Performance is projected based on the notion of a CPI stack,
which breaks down the average number of cycles executed
per instruction into individual CPI components representing
cycles ‘lost’ due to branch and memory stalls, in addition to
a base component.

CPI = CPI
core

+ CPI
mem

(1)

CPI
core

= CPI
base

+ CPI
branch

(2)

CPI
mem

= CPI
L1 + CPI

L2 + CPI
dram

(3)

To account for the frequency changes, we use the seconds
per instruction (SPI) metric. SPI is a function of CPI and
clock frequency f :

SPI = CPI/f (4)

We use the CPI stack of the Current (C) configuration to
predict performance of other configurations by rescaling indi-
vidual CPI stack components. In the discussion to follow, we
will compute the performance of a Target (T ) configuration
tuple (wT , cT , fT ), given performance information obtained
from the previous slice which ran at the Current (C) config-
uration tuple (wC , cC , fC). As mentioned in Section 2.1, we
consider three degrees for adaptation: within the core, the
last-level cache, and through per-core DVFS (see Table 1).
We now describe in detail the performance models for each
of these adaptations.



Core knob. The core knob a↵ects the core’s execution width
and the size (quadratically with core width) of various sup-
porting structures (ROB, reservation station, load and store
queues). None of the memory-related components nor the
branch predictor are assumed to be a↵ected, so their CPI
components are kept constant. We observe in our experi-
ments that changing the core width along with the respective
bu↵ers has a saturating e↵ect on ILP. Using the relation
between processor width and ILP, the e↵ect of changing the
core knob is predicted by:

CPIT
base

= CPIC
base

· w
C

wT

(5)

Cache knob. Cache projections are based on data obtained
from auxiliary tag directories (ATDs) [36], which we use
to estimate what the cache miss rate would be for each of
the possible Target (T ) configurations. To gauge the perfor-
mance impact incurred by a change in miss rate, we assume
constant DRAM access time and memory-level parallelism.
The CPI

dram

component can therefore be assumed to scale
with the miss rate estimated by the ATDs:

CPIT
dram

= CPIC
dram

· ATD(cT )
ATD(cC)

(6)

When the current miss rate ATD(cC) is zero—for application
phases in which the working set fits in cC—we avoid a division
by zero by assuming a fixed cost per DRAM access and
estimate CPIT

dram

by multiplying the (uncontended) DRAM
latency with the number of expected LLC misses.

DVFS knob. Changing the core’s clock frequency a↵ects
the behavior of the core itself as well as that of the L1 and
L2 caches—which in our architecture are tied to the core
clock. The speed of operations taken by the core or caches,
when measured in clock cycles, will therefore not change.
In contrast, DRAM access latency will stay constant when
measured in absolute time. Thus, we can predict total core
performance as:

SPIT = (SPI
core

+ SPI
L1 + SPI

L2) ·
fC

fT

+ SPI
dram

(7)

Putting it all together. To estimate performance (in instruc-
tions per second, IPS—inverse of SPI) for a configuration of
interest, Equations 5–7 are first applied to rescale the perfor-
mance components of the current configuration to the new
configuration; subsequently, application of Equations 1–4
yields a prediction for overall core performance. To dampen
modeling errors, we perform an extra correction step by
rescaling the calculated IPS by the ratio of measured IPS
versus estimated IPS for the Current (C) configuration.

IPST

est.�scaled

= IPST · (IPSC

measured

IPSC

) (8)

Power modeling
Power consumption prediction uses a table-based approach.
For each core configuration (w, c, f), the table contains its
static power consumption P

static

, its dynamic energy con-
sumption per instruction (E

instr

), and its dynamic energy
consumption per L2 cache access (E

L2). This look-up table
is populated ‘at the factory’ through o↵-line analysis aver-
aged over a broad set of applications, and can be part of the
existing calibration and binning process of new chips.

To estimate power consumption for the next time slice, an

Figure 4: Per-knob modeling error of Chrysso’s per-

formance (left) and power (right) projection models.

estimate is needed for the dynamic instruction count and
cache access count during the next time slice. The dynamic
instruction count is estimated by multiplying the time slice
length with the projected IPS; the cache access count is
computed by scaling the dynamic instruction count with the
cache access rate of the current time slice:

IcountT = time slice · IPST

est.�scaled

(9)

L2accessT = (L2accessC/IcountC) · IcountT (10)

Computing projected power is simply done by multiplying
the projected instruction and L2 access counts with their
respective energy costs, divided by the time slice length, and
added to the static power for a given configuration T .

PT

est.

= PT

static

+
(ET

instr

· IcountT ) + (ET

L2 · L2accessT )
time slice

(11)
This estimate is subsequently corrected by rescaling it with
the ratio of measured versus estimated power for the current
configuration:

PT

est.�scaled

= PT

est.

· (PC

measured

/PC

est.

) (12)

PC

est.

is computed using Equation 11 with the table val-
ues corresponding to the Current (C) configuration, while
PC

measured

is obtained from hardware energy counters.

Accuracy versus complexity
Note that for each of these knobs, more elaborate models
can be constructed that may reduce modeling error. For in-
stance, by taking average dependency distance into account,
the saturating e↵ect of processor width on ILP extraction
could potentially be estimated. However, more complex
models would incur more overhead for both collecting the re-
quired statistics and for running the projection models—this
would compromise scalability for many-core system, while
not necessarily yielding better scheduling decisions. Figure 4
plots the modeling error (using the evaluation methodology
outlined in Section 3). While the absolute errors can be
significant, we will later compare reconfiguration decisions
based on these projections with those based on idealized
models, and show that these simple models still allow the
right scheduling decisions to be made.

Hardware support
Core-level projections rely on hardware support for collecting
CPI stacks. On out-of-order cores, hardware collection can
be complicated because of various overlap e↵ects between
miss events. Recent commercial processors such as the IBM
Power5 [30] and current generation Intel processors [20] have
support for computing memory stall components, making
most of the required information already available.

Cache projections are based on data obtained from auxil-
iary tag directories (ATDs) [36], which keep track of what
the cache miss rate would be given each configuration setting.



Since we use selective ways, only a single array of tags has
to be maintained per cache set, corresponding to the largest
possible configuration. Assuming LRU replacement policy,
an access would be a hit when the cache was configured
to be M ways i↵ its LRU position is less than M (with
0 being MRU and M � 1 being LRU in an M -way cache).
Set sampling can be employed to reduce hardware overhead
with minimal impact on accuracy. In our experiments, we
sample 32 randomly selected sets out of 512 sets in the LLC,
incurring an overhead of 2,688 bytes per core2.

For power projections, we employ simple models that pre-
dict the relative di↵erence between the current configuration
and other configurations of interest. Input to the models are
activity statistics that count the total number of instructions
and the number of LLC accesses. In addition, the current
power consumption is used as a correction factor, which can
be obtained from energy counters as available in current
generation Intel processors [37]. The power characterization
table itself could either be populated using data obtained at
design time, or be filled in with per-core specific values after
chip fabrication to take into account process variation. The
table consists of three 16-bit numbers per configuration; for
48 configurations this amounts to 288 bytes of storage.

In summary, hardware overhead required by Chrysso is
limited. Either the required information is already available
in existing systems; or can be obtained at low cost—less
than 3KB per core (ATDs, power table, and critical thread
calculation).

Complexity and scalability
The computational cost of Chrysso reconfiguration is com-
posed of two parts: projection models and global optimiza-
tion. The projection models amount to less than 1,000 oper-
ations to be implemented using fixed-point arithmetic and
run on each core’s PMU, in parallel with normal execution.
Filtering for Pareto-optimal points is done on the PMU as
well, resulting in 6–12 points in practice to be sent to the
GPM. The global optimization algorithm has complexity
O(N logN), where N is the number of cores. In our ex-
periments, we observe that in most cases less than half of
the cores need a configuration change at any point in the
execution, the adaptation is typically a minor modification
from the current configuration. This further reduces the
e↵ective complexity of the global step.

3. EXPERIMENTAL SETUP

3.1 Methodology

Performance simulator. We use a modified version of the
Sniper multi-core simulator [8], version 5.2, updated with
a cycle-level core model with modifications to support for
dynamically changing core and cache parameters. Both core
adaptation and DVFS transitions take 2µs during which no
computations can be performed—a conservative approach.
When reducing the number of cache ways, dirty lines are
written back through the simulated memory subsystem, con-
suming NoC and DRAM bandwidth.

Power consumption. McPAT version 1.0 is used to esti-
mate static and dynamic power consumption [28]. Power
savings incurred by reconfiguration are modeled by running
McPAT with the modified target parameters as per Table 1.

242-bit tags and 16-way maximum associativity.

Component Parameters

Core count 64
Core type 4-way issue OOO, 128-entry ROB
Load/Store queue 48 load entries, 32 store entries
L1-I cache 32KB, 4-way
L1-D cache 32KB, 4-way
L2 cache 512KB, 16-way, private per core
L2 prefetcher stride-based, 8 independent streams
Coherence protocol directory-based MESI, distributed tags
Network On-chip 16⇥4 mesh, 32GB/s/link
Main memory 8 controllers, 45 ns latency, 128GB/s total
Technology 22 nm, 660mm2 total area
Frequency 1.2GHz
Vdd 0.8V
TDP 120W

Table 2: Base configuration.

Running McPAT along with the performance simulation al-
lows us to emulate the behavior of hardware energy counters
at simulated time slices of 10ms.

Multi-program workloads. We construct a multi-program
workload composed of SPEC CPU2006 benchmarks. There
are 29 CPU programs in total, which along with all of their
reference inputs leads to 55 benchmarks in total. Each
of the 55 benchmarks is pinned to a core, the final nine
cores run a randomly selected benchmark. We select repre-
sentative simulation points of 750 million instructions each
using PinPoints [34]. We run the simulation for a fixed
amount of simulated time (500ms). When a benchmark com-
pletes before this time, it is restarted on the same core. We
quantify system throughput using the STP metric [14] (also
called weighted speedup [38]) which quantifies the aggregate
throughput achieved by all cores in the system.

Multi-threaded workloads. We evaluate 9 multi-threaded
benchmarks from PARSEC [5]. To make the analysis mean-
ingful, we use the simlarge input set. Benchmarks are exe-
cuted with 64 threads in our 64-core processor. Each thread
is pinned to a core. We run each benchmark to completion
and report total execution time.

3.2 Adaptive many-core architecture
The architecture on which we evaluate Chrysso is a large 64-

core processor; see Table 2 for more details. The configuration
knobs for core, cache and DVFS adaptations (Table 1) are
down-scaled versions of the base architecture. We define
the chip’s maximum thermal design power (TDP) using the
average power consumption of a full-feature chip (each core
at maximum width, maximum cache ways and highest DVFS
setting) while running the average SPEC workload, which
was 120W. Results will be shown for power budgets as a
percentage of this value.

Core configuration. The first configuration knob adapts
the core itself. The core width can be adapted, along with
the size of various structures. We maintain a quadratic rela-
tion between execution width and size of microarchitectural
bu↵ers [15]. Unused components are power-gated to reduce
both static and dynamic power consumption.

Cache configuration. For cache adaptivity, we use a flush-
ing, selective-way LLC implementation as described in [1].
By controlling which ways are on and o↵, we can power-
gate portions of the cache to reduce its capacity and lower
power usage. We use selective-ways because of their sim-
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Figure 5: Relative STP vs. power budget: compar-

ing Chrysso against alternative power managers.

ple design, as selective-sets require changes to the number
of tag bits used [39]. By using the flushing cache policy
when shrinking to a smaller number of ways, we can turn
o↵ the corresponding ways sooner, reducing the static power
consumption.

DVFS configuration. Finally, we assume the availability
of on-die voltage regulation to enable fast per-core DVFS [21,
25] with a range between 0.8GHz at 0.7V to 1.2GHz at
0.8V, which is in line with Intel Xeon Phi [23].

3.3 Alternate power management policies
We implemented two DVFS-based power management

policies. Chip-wide DVFS (DVFS-CW) runs all cores at the
same frequency. In some commercially available processors,
this is referred to as P-states [26]. Minimum-power DVFS
(DVFS-minPower) represents state-of-the-art per-core DVFS,
which iteratively reduces the DVFS of the core with the
lowest power [21]; memory-bound cores will not see much
performance loss with reduced frequency. In addition, we also
compare Chrysso against power-gating cores until the power
budget is met. Under core-gating, an equal-time scheduler
is used to time-share all 64 applications on the active cores.
We assume a time slice of 10ms, unless mentioned otherwise.

4. RESULTS AND DISCUSSION
We start our discussion with Figure 5 which plots per-

formance as a function of the available power budget as
obtained under Chrysso and for a number of alternative
power management schemes. Focusing on multi-program
results first (left graph), using DVFS alone, power consump-
tion cannot be reduced below 60%. At this setting, chip-wide
DVFS (DVFS-CW) achieves just 68% of nominal system
throughput (measured at 100% TDP) while per-core DVFS
(DVFS-minPower) increase this to 73%. Core-gating allows
any power budget to be reached, but comes at a near-linear
cost in performance as it blindly turns o↵ resources irrespec-
tive of their utility. In contrast, Chrysso can select the power
savings technique that is best suited to each application
phase. This allows it to outperform the DVFS-only tech-
niques at moderate power settings, and allows the various
techniques to be combined to reach the most stringent power
settings at an acceptable loss in performance.

Integrated optimization. The key benefit of Chrysso model-
based approach is that it easily allows di↵erent adaptation
methods to be combined and achieve higher performance
within the same power budget. Figure 6(left) confirms this
by plotting results for Chrysso in comparison to isolated
adaptation (core, cache and DVFS) for the multi-program
workload. Using adaptation techniques in isolation, power
budget can be reduced by 40% at most; on the other hand,
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Figure 6: (left) Isolated versus integrated optimiza-

tion using Chrysso for the multi-program work-

load. (right) Performance of blackscholes with critical

thread prioritization.
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Figure 7: E↵ectiveness of Chrysso compared to ora-

cle projection models.

combining all three knobs can reduce power budget by 70%.
Even at moderate power budgets Chrysso can outperform iso-
lated adaptation: at 80% of TDP Chrysso improves system
throughput by 16.8% over cache adaptation, by 17% over
core-gating, by 6.3% over chip-wide DVFS, by 4.5% over core
adaptation, and by 2% over per-core DVFS. Furthermore, at
modest power budgets, e.g. 60%, isolated adaptation (e.g.,
DVFS) incurs a performance hit of at least 5.5% compared
to combined adaptation using Chrysso.

Critical thread awareness. The impact of critical thread
awareness is illustrated in Figure 6(right). The blackscholes

workload has a relatively low baseline power consumption so
to reach even the 60% power setting (corresponding to 72W)
no resources need to be turned o↵ and hence there is no
performance impact. From 50% onwards, however, Chrysso
needs to start managing power by selecting resources to
tune down. When treating all cores equally, the application
slowdown is significant (over 20% at 50% power). In contrast,
the criticality-aware Chrysso variant is able to detect which
threads are performance-critical and increases their power
budget, while decreasing that of non-critical threads. This
has a positive e↵ect on application run-time, leading to a
slowdown of just 5% at the same 50% power setting.

Projection model accuracy. Even though Chrysso uses
very simple projection models, it is able to make the right
scheduling decisions—more complex models would improve
the relative and absolute power and performance projections,
but do not significantly change the resulting configurations
and hence have little impact on system performance. To
illustrate this we set up an experiment where per-core per-
formance and power are no longer modeled, but are taken
from a database populated with periodic measurements taken
from simulations of each workload run at all 48 configura-
tion settings. Figure 7 plots the performance of Chrysso
compared to two oracle schemes. pOracle-prev forgoes the
modeling step and uses actual performance and power data
corresponding to the previous time slice, then runs the Pareto
front selection and global scheduling based on these values.
pOracle uses actual performance and power from the trace
for the upcoming time slice, removing both projection error
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Figure 8: Chrysso configuration changes through

time at 50% power setting and a 1ms (reconfigu-

ration) time slice.
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Figure 9: Chrysso at di↵erent reconfiguration time

slice at 50% power setting.

and workload variability from the equation.
In the figure, solid lines plot STP relative to the full-feature

base configuration (left y-axis) obtained by each algorithm
for the di↵erent power budgets, while dashed lines report
the di↵erence with pOracle (right y-axis). pOracle-prev has
an error of up to 3% showing that at this time scale (10ms),
workload variability is still significant and is the cause for
some of the suboptimal configuration decisions. Chrysso
itself deviates from the oracle by up to 5%, indicating that
more elaborate projection models would only improve system
performance by another 2% at most.

Dynamic behavior. The dynamic behavior of Chrysso over
a 100ms execution interval is shown in Figure 8, at a 50%
power setting. For each configuration knob (core, frequency
and cache), the minimum, average and maximum settings
over all 64 cores are shown at each 1ms time slice, in addition
to the number of cores for which each knob was changed in
that time slice. At this power level, most cores have their
frequency reduced to the lowest setting. Core reconfiguration
is not used much since it usually has a high performance
impact and isn’t yet needed at this power setting. In contrast,
cache reconfiguration is performed often since it has the most
power impact, and is also most a↵ected by application phase
behavior.

Reconfiguration time slice. Chrysso is designed to enable
fast reconfiguration. Figure 9 explores the characteristics of
time slices between 100 µs and 10ms. The left plot displays
the distribution of actual power consumption relative to the
specified power limit in 1ms intervals. Due of workload
variability, a 10ms reconfiguration time slice is often too slow
to ensure the limit is always met. Using 1ms and 100 µs
time slice progressively reduces the number of violations.

However, when looking at relative STP (Figure 9, right),
it turns out that faster reconfiguration can be detrimental
to performance. The main reason is that, especially at this
power setting, frequent cache configuration changes result
in a large amount of invalidations and writebacks from the
L2 cache, and subsequent misses once the application needs
this data again later. This phenomenon occurs when the
reconfiguration time slice becomes shorter that the typical
time between reuse of data in the caches: whereas the ATDs
predicted that a smaller cache will not harm performance for
a given time slice, the application does exhibit reuse at longer
time scales causing the caches to be resized too aggressively.
Core and frequency reconfiguration do not have this problem,
as their reconfiguration cost is much smaller (we model both
with 2 µs penalties).

We conclude from this experiment that for e�cient execu-
tion, the reconfiguration time slice should never be shorter
than the corresponding time scales of application behavior on
a per-knob basis. At time scales of 1ms and shorter, a single
reconfiguration time slice no longer su�ces as some knobs
(core, frequency) can be re-tuned every time slice whereas
other knobs (caches) will need to be kept constant for a
number of time slices to avoid excessive switching costs.

5. RELATED WORK

Micro-architecture Adaptation. A variety of prior work
has explored how to improve power-e�ciency by adapting
microarchitecture structures. Prior works in [3, 17] adapt
the instruction window and issue logic to provide greater
power/energy e�ciency while showing a small reduction in
application performance. [19] propose the ForwardFlow core
to trade o↵ performance for power. [1, 39] evaluate shutting
down portions of the cache, either a number of ways or a
combination of ways and sets for improved energy e�ciency.
These techniques evaluate adapting micro-architectural struc-
tures to trade o↵ performance for power and energy. [12] uses
drowsy caches with front-end pipeline-gating to demonstrate
better performance-power scaling than DFS and even DVFS
in some cases. Although their work shows that one can recon-
figure the system to perform better than DVFS, they do not
perform run-time optimizations of large many-cores in power-
constrained environments. [11] use machine-learning models
(trained using profiling) to perform on-line adaptation of a
single core at a time. [29] proposed DVFS adaptation along
with cache adaptation for 4-core system. None of these pre-
vious works have evaluated integrated power management
including fine-grain adaptation of the core microarchitecture,
cache, and per-core DVFS settings for many-core processors
at stringent power budgets.

Dynamic Power Management. [21] propose a global power
controller to determine di↵erent per-core DVFS settings to
maximize chip-wide MIPS. [22] propose global DVFS with
per-core adaptation based on neural networks to reach the
power budget. On similar grounds, [6] formulate global re-
source allocation using machine learning. [35] proposes to
dynamically adjust the capabilities of an out-of-order core
at coarse-grained time slice (100ms) using sampling-based
global genetic algorithm to improve performance compared
to core-gating at moderate power budgets. RCS [18] pro-
poses SVM-based machine-learning mechanisms to obtain
the number of active cores (8/10/12) with reduced micro-
architectural size to exploit application variability at a fixed
power budget. In contrast, Chrysso uses low-overhead ana-



lytical models to provide a more scalable adaptation scheme
while exploring a broader adaptation space (including cache
and DVFS along with core adaptation).

Critical Thread Acceleration. Several prior works have
proposed techniques to identify critical threads for accel-
eration, either by running serial parts at higher clock fre-
quency [2, 31], by running serial code and synchronization
bottlenecks on a big core in a heterogeneous multi-core [24,
33] or by speeding up critical threads in barrier-synchronized
applications based on cache behavior [4]. Chrysso integrates
criticality stacks [10] to accelerate critical threads and im-
prove multi-threaded application performance under con-
strained conditions.

6. CONCLUSION
An integrated and scalable many-core power management

is clearly needed as we move towards even tighter power
budgets. Chrysso leverages its scalability and e↵ectiveness
from (i) using analytical performance models and table-based
power models for core, cache, and per-core DVFS adaptation,
(ii) a search process that identifies Pareto-optimal per-core
configurations to prune the global optimization space, and
(iii) utility-based optimization which reallocates power to
the cores/threads that benefit the most, e.g., critical threads
in multi-threaded workloads and power-hungry applications
in multi-program workloads. Chrysso outperforms isolated
power adaptation techniques by a significant margin at mod-
erate power budgets, and outperforms core-gating in system
performance by 1.6⇥ and 1.9⇥ for multi-program and multi-
threaded workloads at stringent power budgets, respectively.
Chrysso incurs limited run-time overhead (less than 1%) and
hardware overhead (roughly 3KB per core).
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