
MODELING OF CONTOURS IN WAVELET DOMAIN FOR GENERALIZED LIFTING 
IMAGE COMPRESSION 

 
Julio C. Rolón†‡, Antonio Ortega§ and Philippe Salembier† 

†Technical University of Catalonia (UPC), Dept. of Signal Theory and Communications, Spain 
‡National Polytechnic Institute (IPN), CITEDI Research Center, Mexico 

§University of Southern California (USC), Signal and Image Processing Institute, USA 
jcrolon@gps.tsc.upc.edu, antonio.ortega@sipi.usc.edu, philippe@gps.tsc.upc.edu 

 
ABSTRACT 

This paper introduces the design of context-based models of 
contours in the wavelet domain, which are used to construct 
generalized lifting (GL) mappings for image compression. The GL 
context-based mapping may significantly reduce the signal energy 
and the resulting bitrate. Here, we propose a strategy to define a 
reduced set of structured models to design the GL. The models 
capture the contour structures and are contrast-invariant. Initial 
experimental results applying the strategy on a wavelet subband 
exhibit potential gains. Iterations of the GL scheme as well as an 
adaptive entropy coding strategy may increase the coding gain. 

Index Terms— Generalized lifting, wavelets, image coding, 
contour model, pdf model. 

1. INTRODUCTION 

One of the known drawbacks of the discrete wavelet transform 
(DWT) when applied to images is its limited ability to decorrelate 
coefficients that correspond to contours. As correlation persists, 
large magnitude coefficients that usually represent contours remain 
spatially co-located. Decorrelation of these coefficients to 
minimize their energy is of particular interest in wavelet-based 
image coding [1-5,12]. 

The Generalized Lifting (GL) approach [8] is a signal 
decomposition method derived from classical lifting [9]. GL 
enables the implementation of linear and non-linear operators in 
the analysis and synthesis stages, with perfect signal 
reconstruction. It is conceptually different from classical lifting 
because the GL operator that produces the detail signal observes 
the context provided by a set of approximation signal samples; 
thus, the detail signal results from a mapping operation that may be 
highly non-linear but invertible. In [6], a GL mapping which 
minimizes the energy of wavelet detail signals for lossy image 
coding was proposed. This mapping can drastically reduce the 
signal energy, but it was obtained under the ideal but unrealistic 
assumption that accurate context-dependent pdfs are available for 
wavelet-domain data (e.g., for every possible causal context we 
have a histogram of wavelet coefficients values after that context). 
Clearly, in a coding application, this information would have to be 
sent to the receiver eliminating the gains in overall coding 
performance. In [7], one step towards the definition of a realistic 
scheme was taken by assuming that the image to encode belongs to 
an image class. The pdf of each context is estimated through 
training on the image class and is known by the decoder, which is 
assumed optimized for this image class. This allows us to maintain 

a large number of context models, but the resulting gains highly 
depend on the class itself and the similarity of the images within 
the class. If we want to be able to deal with arbitrary images, the 
goal should be to reduce the number of model parameters to 
estimate (e.g., by structuring all possible context models into 
classes that share some common parameters). This way, it will 
become possible to adaptively learn the model parameters or 
alternatively to send the model parameters to the decoder as 
overhead (this can only be done if the number of parameters to 
learn is small).  

In this paper, we present a first approximation to the use of 
models for GL design. We propose a limited set of structured 
models that reduce, through the GL mapping, the energy of 
wavelet coefficients in particular around contours. The key point 
of the strategy is to cluster contexts based on their structure in a 
contrast invariant framework. As a result, four models are 
proposed and their associated parameters can be sent to the 
receiver without severe penalty on the resulting bitrate. These 
models will allow us to approximate the ideal pdf of each context 
and still provide very significant gains in terms of energy. The 
philosophy behind the use of these context-based models is in 
some sense similar to the one used in JPEG 2000 (in wavelet 
domain) [10] or CALIC (in image domain) [11], where contexts 
are also clustered in order to improve adaptation performance. 

Next section reviews the Generalized Lifting method; Section 
3 introduces the model design and Section 4 presents the study of 
one of the models and the resulting GL mapping. The same 
strategy is used to define the remaining models. Sections 5 and 6 
describe the coding scheme and the experimental results 
respectively. The conclusions are presented in Section 7. 

2. GENERALIZED LIFTING 
The generalized lifting (GL) decomposition shown in Figure 1 and 
introduced in [8] enables the implementation of linear and non-
linear operations. The GL involves first a polyphase 
decomposition or Lazy Wavelet Transform (LWT), followed by 
generalized predict (P) and update (U) steps. 

 
Fig. 1. Generalized Lifting Scheme 

The generalized predict operator P may be viewed as a 
mapping between y[n] and y'[n] that takes into account a context 
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represented by samples from x[n–i] for ,i C� C being the set of 
sample positions that constitutes the context.  

Formally, the generalized predict operation can be written as 

� �  [ ][ ] '[ ]
i C

P
with context x n iy n y n

�
� ��� . 

Assuming discrete signals, the mapping itself is discrete. To 
get perfect reconstruction, the mapping P should be invertible, i.e., 
injective. If the number of possible values for y[n] and y'[n] is the 
same, then the mapping should be bijective. The same reasoning 
can be applied to the generalized update operation. That is, it is an 
injective mapping 

� �  '[ ][ ] '[ ]
i C

U
with context y n ix n x n

�
� ��� . 

Apart from the injectivity that is required to achieve perfect 
reconstruction, the generalized predict (P) and update (U) 
operators may be arbitrary. 

3. CONTOUR MODELING IN WAVELET DOMAIN 
Contours in wavelet domain are characterized by large amplitude 
coefficients along a certain direction, surrounded by low 
amplitude, zero, or opposite sign large coefficients. The steepness 
of contours depends both on the image contents and on the wavelet 
filter used to transform the image. 

From a generalized lifting perspective, we will select a 
specific context to predict a certain detail sample whenever the 
context elements fit a model. In order to improve image coding 
efficiency, we seek to use prediction based on mappings that 
minimize the energy in the detail signal produced by the GL 
decomposition. 

The design of the models involves: 1) definition of the 
context shape and dimension; 2) decomposition of the wavelet 
subband through the LWT (Fig. 1) in context and detail samples; 
3) observation of the characteristics of the context and the pdf of 
the detail samples; 4) identification of those contexts types 
associated to contours that would produce large coding gains. 

We use a quincunx sampling grid, with contexts defined as 
shown in Figure 2. Wavelet coefficients belonging to the 
approximation phase after the LWT � �1 2 3 4, , ,x x x x  constitute the 
context that will predict y, the detail sample. The mapping is 
defined as � �1 2 3 4  , , , 'P

with context x x x xy y��� . 

After the DWT, there are three subbands per wavelet scale. In 
this paper, we use encoding of the HL subband of the first wavelet 
scale as an example to illustrate our proposed method, but results 
can be easily extended to other subbands and scales. 

In the HL subband, edges in horizontal direction prevail, 
structures such as � � � �1 2 3 4, , , ,0, ,0x x x x A A� , with 0A�  would 
indicate the possible presence of an edge along � �1 3, ,x y x , cases 
such as the more general � �, , ,A A A A� � , or the pair � �,0, ,A A A , 
� �, , ,0A A A  may also indicate so. Observation of these types of 
context structures may lead to proper modeling and mapping. 

4. MODEL-BASED GENERALIZED LIFTING 

4.1. Model definition 

If we study the histogram of � �1 2 3 4, , ,x x x x y�  for the HL 
subband of a natural image, we would find that, for the context 
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Fig. 2. Sample positions for (a) odd and (b) even GL 
decomposition scales in a quincunx sampling grid. 

type � �,0, ,0A A , the histogram is unimodal and centered at y A� , 
indicating the presence of a horizontal edge. 

To simplify notation, in what follows we will refer to the 
central position of the histogram of y and its relation to the type of 
context as � �,0, ,0A A A�  when y A� , or � �,0, ,0 0A A �  when 

0y � . 

As the rule described by � �,0, ,0A A A�  tends to be true for 
all A values, the model is contrast invariant. In order to know if a 
particular arbitrary context � �1 2 3 4, , ,x x x x  can be approximated as 
belonging to this model, we use a mean squared error (MSE) 
criterion to determine how well it approximates a � �,0, ,0A A  
structure, i.e., we first scale it to � �1 2 3 4, , ,kx kx kx kx and then 
compare it with a prototype of the model: 

	 
 	 
 	 
 	 
2 2 2 2
1 3 2 4mse kx A kx A kx kx� � � � � �  

where A has to be given a specific value, for example A=100. The 
value of the scaling parameter k is chosen as the one which 
minimizes the mse. Of course, a threshold mseT  on the mse has to 
be defined to finally decide whether the initial context belongs to 
the � �,0, ,0A A  model or not. Note that if the context � �0,0,0,0  is 
observed, it is treated as a special case and directly assigned to the 
zero model. 

Figure 3 shows the pdf of model � �,0, ,0A A A� , that is the 
pdf of the scaled values of the detail samples ky for the contexts 
that have been assigned to this model. This pdf has been estimated 
on the HL subband of DWT scale 1 of the barbara image (Figure 
5(a)) with 100A �  and 6000mseT � . As can be seen, the ky  pdf is 
centered at 100A � . Moreover, the shape resembles an 
asymmetric Laplacian. For the time being, we will neglect the pdf 
asymmetry and assume that the pdf is simply unimodal, symmetric 
and centred at A. Under these assumptions, the best GL mapping, 
which is the mapping that minimizes the detail energy reduces to a 
linear mapping: 'y y A k� � . 

In practice, the parameter A in this last formula may be 
replaced by a different parameter, �, in order to partially take into 
account the asymmetry of the pdf while still retaining the 
simplicity of the linear mapping (in the future we plan to study 
nonlinear mappings that would take full benefit of pdf asymmetry). 
The final mapping is therefore 'y y k� � � . 

As in the case of context type 1.� �,0, ,0A A ; other interesting 
structures in HL subband which are most likely to model 
horizontal edges are: 2.� �, , ,A A A A� � , which may be seen as an 
extension of context type 1; 3. � �,0, ,A A A  and 4.� �, , ,0A A A . For 
all the four models just defined, we have observed pdfs similar to 
the one shown in Figure 3. The corresponding mappings for these 
models are therefore similar to the one defined for the first model 
possibly with different values of mseT  and of �. 

1026



-400 -300 -200 -100 0 100 200 300 400
0

1

2

3

4

5

6

7

8

9

ky

F(ky)

 
Fig. 3. Histogram of ky  for model � �,0, ,0 ,  100A A A A� � . 

In practice, of course, a given context may produce mse values 
that are below the threshold mseT  of several models. In this case, 
the context is assigned to the model which gives the lowest mse. 

4.2. Generalized lifting implementation 
The GL decomposition has been implemented using only the 
predict operator (P) of Figure 1. We focus on the detail signal y 
produced by the context � �1 2 3 4, , ,x x x x . 

The mappings derived from the four models described above 
have been implemented on a quincunx sampling grid, we have set 

100A �  initially, and have evaluated each model individually to 
optimize the threshold mseT to obtain the smallest bitrate. With the 
set of thresholds mseT  we optimize the values of A and � for each 
model and obtain , A � . The subband is encoded with these 
parameter vectors. The vector is encoded as overhead, see Fig. 4. 

As an initial experiment, we have used a Haar wavelet filter 
to implement the DWT, other filters like Le Gall 5/3 or CDF 9/7 
will be considered in the future. Two images, barbara and boat 
have been used to test the model-based strategy. They are shown 
in Figures 5 (a) and (c); Their corresponding HL wavelet subbands 
are shown in Figures 5 (b) and (d). 

5. CODING SCHEME 

The complete coding scheme is shown in Figure 4. First, we apply 
a discrete wavelet transform (DWT) to the image. Currently, we 
focus our analysis only on one of the three subbands produced by a 
decomposition of one scale of the DWT, namely HL or horizontal 
detail subband, our strategy is easily applicable to other subbands 
and DWT scales. Next, subband is quantized with a uniform scalar 
quantizer. Our purpose at this moment is to evaluate the models, 
thus, we have used 1Q � as the step size of the quantizer. We 
apply the model-based generalized lifting (GL) operation 
described in Section 4.2 to the quantized coefficients with the 
mapping described in Section 4.1. 

Finally, an arithmetic encoder serves as entropy coder. 
Parameter vectors , A � , and mseT  of the four models are sent as 
overhead. The overhead is around 0.2% of the total bitrate. The 
spatial location of the coefficients that are mapped is preserved. 

DWT Q,m nI GL AE

Models

bitstream

model
parameters

 
Fig. 4. Model-based GL encoder 

 

(a) (b) (c) (d) 
Fig. 5. Test images, (a) barbara, (c) boat, and their wavelet-

domain HL subbands (b) barbara, (d) boat 
The GL decomposition is iterated as shown in Fig. 6. Context 

and predicted sample positions are alternated according to Figure 
2. Note that mappings discussed previously are used for iteration 
GL-1 and GL-3. Indeed, the study of the same models for GL-2, 
that relies on the sampling pattern of Figure 2(b), has produced 
pdfs which were centered on 0� � . So the resulting mapping was 

' .y y�  This result is consistent with intuition as the context 
defined by Fig. 2(b) is not really appropriate to detect the presence 
of horizontal contours. Finally for each iteration GL-1 or GL-3, the 
set of parameters of the models must be optimized. 

GL-1 GL-2 GL-3

LWT
P

LWT
P

LWT
P

2,2

2,2

 
Fig. 6. Three dyadic iterations of the GL decomposition 

Figure 7 shows the effect of the mapping applied to scales 
GL-1 and GL-3. Reduction of the magnitude of at least one out of 
each two coefficients along the edge can be seen in Figure 7(b); 
which corresponds to GL-1. GL-2 works in this example as a 
bypass which only separates samples through the LWT. Figure 
7(c) shows the mapping effects of GL-3. Some additional 
coefficients along the edge have been reduced, producing longer 
runs of low-energy coefficients and eliminating in part the 
checkerboard pattern produced by GL-1 after mapping the 
subband. More iterations of the GL decomposition could 
eventually reduce to the minimum the number of coefficients with 
large magnitude along the edge. Implementation of a wavelet 
packet decomposition scheme may also improve results by 
successive decomposition of detail coefficients that are not 
mapped but are suitable of mapping after additional 
decompositions that involve downsampling. This will also be 
investigated in the future.  

6. EXPERIMENTAL RESULTS 

Experiments with the coding scheme of section 5 were 
performed with GL-1 decomposition scale, energy was measured 
in the detail subband before and after mapping. The results for the 
two test images of Figure 5 are shown in Table I. The four models 
(1 to 4) described in Section 4.1 were evaluated and are listed. The 
particular context type � �0,0,0,0  is listed as Z, and all those 
contexts that did not fit in any of the models are listed as NA. 

Table I shows the percentage of contexts assigned to each 
model measured as  

6

1
100i i i

i
Cont N N

�

� 
 , 

with iN  the number of contexts found for model i. Table I also 
reports the energy gain, measured as  
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Fig. 7. Iterations of the GL decomposition for barbara,  
(a) Quantized wavelet coefficients, (b) GL-1, (c) GL-3 
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Negative value indicates a reduction in energy. 
Table I. Contribution of the models to the GL detail subband 

barbara boat 
Model Cont (%) Egain (%) Cont (%) Egain (%) 

1 7.89 -69.96 7.07 -83.69 
2 16.43 -51.23 21.42 -35.71 
3 13.48 -23.37 10.95 7.70 
4 10.43 -14.99 9.29 -5.71 
Z 1.7 – 0.93 – 

NA 50.09 – 50.34 – 
Models 1 to 4 account for about 50% of the total of contexts 

observed in the detail subband in both cases, while condition 
� �0,0,0,0 is non-relevant for these images. Models 1).� �,0, ,0A A , 
and 2). � �, , ,A A A A� � , exhibit the largest energy reductions. The 
total reduction in energy is quite significant, around 36% (Table II). 
In the ideal case approach of [6], complete knowledge of the image 
pdf was required on the received side. Energy gains were larger 
(about 50%) but the cost of sending the pdf to the receiver made 
this approach unrealistic. We now have a complete and realistic 
scheme which achieves comparable performance in energy reduction. 

Table II. Coding and energy results for GL-1 
Bitrate (bpp) Image 

DWT GL 
Coding gain (%) (%)gainE  

barbara 4.7755 4.6859 1.91 -36.34 
boat 5.2432 5.2224 0.40 -37.50 

Table II presents coding results for HL subband of both test 
images. The detail signal produced by the mapping represents one 
half of the total coefficients of the subband; when the mapped 
coefficients are re-located at their corresponding spatial places in 
the subband, the effect shown in Figures 7(b) and 7(c) occurs. The 
energy of the detail signal is significantly reduced; however, this 
reduction is not reflected in bitrate. Entropy coding plays a crucial 
role here. DWT coefficients (Figure 7(a)) are encoded with an 
arithmetic encoder; the raster scan process finds series of highly 
correlated symbols, so each new encoded coefficient is highly 
predictable, reducing the overall bitrate. When we encode the 
mapped subband (Figure 7(b)) the series of mapped coefficients 
produce symbols that are uncorrelated; which in turn prevent the 
arithmetic encoder to achieve a large bitrate reduction. If we iterate 
the GL decomposition (Figure 7(c)), we may produce an increased 
correlation of low-energy mapped coefficients, at the expense of a 
larger overhead. The arithmetic coder is a straightforward 
approach that have enabled us obtain first coding results; however, 
the use of context-based or hierarchical entropy coders may greatly 
improve coding gain as they may take advantage of the increased 
number of zeros corresponding to the reduction in energy. Future 
research work should focus on designing an appropriate entropy 
coding strategy for the mapped signals. 

7. CONCLUSIONS 

We have introduced the use of context-based models of contours to 
implement a Generalized Lifting mapping that reduces the energy 
of the wavelet coefficients. The use of models in GL is an 
important improvement in the strategy of implementation of non-
linear mappings for generic image coding. This first approach to 
the definition of models and the implementation of the coding 
scheme forms part of an ongoing research. Coding results are 
encouraging as they show it is possible to reduce significantly the 
wavelet coefficients energy and, to a moderate extent, the overall 
bitrate of the subband. Next steps in the research would involve 
improving the modeling of the contour contexts and the resulting 
mapping, the investigation of wavelet packet decomposition 
strategies and the design of specific entropy encoding that would 
better exploit the energy reduction. 
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