VARIABLES DE DESARROLLO E INTERACCIÓN DE MODELOS URBANOS COMPARTIDOS

Roberto Lira
UBB
rlira@ubiobio.cl
Rodrigo García
UBB
Claudia Vidal
UBB
Juan Espinoza
UBB
Miguel Yáñez
UBB

Actualmente las posibilidades tecnológicas para desarrollar modelos urbanos digitales son amplias y variadas. Este trabajo plantea un esquema de características esenciales de desarrollo y aplicación, y sugiere plataformas de trabajo con algunos ejemplos elaborados en el Laboratorio de Estudios Urbanos de la Universidad del Bio-Bío. Con el fin de esclarecer la planificación de estas simulaciones urbanas y su utilización interrelacionada. Las variables identificadas son: fidelidad, magnitud, socialización, localización e información. Con ejemplos desarrollados en 3D-Studio, VRML, Blaxxun, Skethup, GoogleEarth, Second Life, Visual Basic. La definición de estas variables y plataformas permite definir condiciones específicas y posibilidades de utilización, para planificar tecnologías adecuadas de desarrollo y presentación, especialmente en contextos de bajo costo que requieren optimizar los procesos de trabajo.

Desde siempre se ha usado maquetas o modelos para representar edificios y ciudades. Es más, suponemos que los primeros edificios monumentales se representaron antes en modelos que en papel como estamos acostumbrados hoy día. Cuando los problemas de la ciudad se hicieron mayores, especialmente durante el siglo XX, se apeló al uso de modelos extensos de partes de la ciudad para estudiar sus efectos. Un ejemplo de esto fue el Environmental Simulation Lab de la Universidad de California – Berkeley donde se hizo extenso uso de modelos de ciudad combinados con cámaras periscópicas para tratar de simular la visión del ser humano dentro de la ciudad y así tratar de comprender su percepción frente a diferentes posibles soluciones de diseño urbano.
Con la llegada de los computadores y su gran velocidad de procesamiento se abrieron nuevas posibilidades. En un principio éstos se usaron para operaciones matemáticas reiterativas o de selección que requerían gran cantidad de procesos. Por supuesto, sus primeros usos fueron militares. En Chile, los primeros computadores llegaron a la Universidad de Chile y se usaron, vía tarjetas perforadas, para estudios de ingeniería o muestreos económicos. Es decir por la naturaleza de esas disciplinas, su uso se mantuvo en el ámbito de lo puramente teórico.

Sin embargo, en cuanto los tamaños y los costos de los computadores se hicieron menores, la capacidad de acceso de más gente implicó una mucho mayor posibilidad de aplicación en otros campos y, en lo que nos concierne en este documento, al estudio de fenómenos de distribución espacial.

Las primeras aplicaciones de este tipo nos tocó realizarlas a principios de los años 1980 mediante el uso de una calculadora que permitía programar en BASIC hasta unos 25 pasos. En ella emprendimos el cálculo de las coordenadas bidimensionales de puntos en perspectiva a partir de sus respectivas coordenadas -x,y,-z- en el espacio. Al introducirsele éstas últimas, punto a punto, y mediante simples operaciones usando el teorema de Pitágoras y algo de trigonometría, la calculadora entregaba las coordenadas "x" e "y" del punto en perspectiva las que se iban marcando manualmente en un papel milímetro. Si dibujábamos, por ejemplo un cubo, luego bastaba unir los vértices correspondientes para tener la figura total desde un determinado punto de vista. Naturalmente se podía cambiar este último y obtener distintas vistas. El procedimiento era complicado y laborioso y ciertamente menos poético -al menos desde el punto de vista de un arquitecto- que el dibujo con escuadra y compás al que estábamos acostumbrados. A pesar de lo complicado del sistema, veíamos entonces que se abría un mundo de posibilidades insospechadas. Desgraciadamente, el acceso a computadores e impresoras más poderosos era restringido en aquellos tiempos y predominaba un cierto carácter de "iniciado" que debían tener quienes los usaran. La llegada de los computadores personales con sus capacidades gráficas, sus pantallas de monitor y sus sistemas de almacenamiento permitió a muchos más académicos abocarse a estos temas.

Para los que trabajábamos el tema en esa época vino de inmediato el desafío de la representación tridimensional en pantalla y en tiempo real. Ello trajo consigo problemas matemáticos que ni considerábamos cuando trabajábamos la geometría de regla "I" y escuadra, como el del ocultamiento de las caras no vistas de un volumen y el ocultamiento de un cuerpo detrás de otro. Hubo que apelar a otros conocimientos matemáticos para solucionar estos problemas.

Desde ahí en adelante, las investigaciones que hacíamos en universidades periféricas quedaron sobrepasadas por la aparición de softwares comerciales, tales como Autocad 1.62 (1984) que sólo realizaba axonométricas. Desde allí, especialmente a medida que se incrementó la capacidad de proceso y almacenamiento, se desarrolló toda un área de representación tridimensional ya sea de la realidad o de mundos imaginarios, de los cuales hablaremos más adelante.

Otro tipo de software que vino a contribuir al realismo fueron los de dibujos en dos dimensiones, como el "Paintbrush" en un principio o del tipo "Photoshop" en la actualidad. Eso permitió el trabajo de las superficies con colores y texturas de una manera y velocidad a que no estábamos acostumbrados.

Finalmente, en términos de representación de la realidad aparecieron programas de mapeo -Sistemas de Información Geográfica- que combinaban algunas de las características de, por ejemplo, la capacidad de dibujo de planos que tenía el Autocad con la manipulación de bases de datos, una característica que los computadores
realizan rápida y eficientemente. Originalmente muy sencillos como el programa Atlas Desktop Mapping que permitía relacionar polígonos en un plano con una base de datos sencilla, hasta otros muy poderosos como el Arc Info y otros que agregaban capacidades de superposición de planos y de manejo de grandes capacidades de información, bases de datos relacionales, así como sofisticadas capacidades de dibujo.

En la actualidad no siempre es claro cuáles son los límites entre un tipo y otro de software pues en la búsqueda de representación de fenómenos espaciales se suele combinar diferentes capacidades dependiendo de lo que se quiera representar. Al respecto, en el Laboratorio de Estudios Urbanos hemos trabajado en varias de estas representaciones. Según nuestra experiencia analizamos a continuación algunas variables a tener en cuenta cuando se usa uno u otro modelo o simulación de la realidad urbana y de acuerdo al uso que se lo destina.

Fidelidad: Esta variable se refiere al parecido visual respecto de la realidad. Tenemos desde modelos altamente realistas según su características gráficas, a modelos absolutamente ficticios en cuanto a organizaciones y comportamientos. Los primeros se pueden elaborar a partir de nubes de puntos realizadas con scanner 3D de terreno o levantamientos fotográficos con calces métricos. Una situación intermedia son los planos digitales. El extremo ficticio esta considerado tanto por formas libres, como por comunidades virtuales que ofrecen elementos específicos de modelación (muchas veces referidos a elementos reales). Los elementos de fidelidad gráfica se refieren a las dimensiones, colores, texturas y, muy importante, “atmósfera”. Las dimensiones son lo más fácil de lograr con un programa computacional tipo Autocad pues es fácilmente medible y se representa mediante vectores. En cuanto a los colores, la experiencia demuestra que es altamente complejo pues la sensación de realidad la proporciona no el tono sino más bien la textura. Cualquier superficie, por plana que sea tiene infinidad de variaciones de tonalidad debido a reflejos, distancias, ángulos de visión, etc. Representar texturas es bastante complejo y las mejores son fotografías de la realidad aplicadas a las superficies representadas. Con respecto a la “atmósfera”, que es la simulación del efecto que tiene el aire en el desvanecimiento de los colores con la distancia, es también un factor importante en la sensación de realidad que
proporcione el modelo y es difícil de conseguir aunque muchos programas -3Dstudio, por ejemplo- lo proporcionan.

Pero la fidelidad también se puede aplicar en otros aspectos, no sólo respecto del parecido visual. Planos digitales como los de Autocad pueden ser muy fieles en cuanto al tipo de información entregada. Pero ésta es producto de una abstracción en que el observador entiende la convención por la que transforma mentalmente los datos entregados a su imagen de la realidad. En este sentido, un plano realizado a mano, especialmente a ciertos niveles de acercamiento (escala/zoom) puede ser mucho menos “fíel” que el primero debido simplemente a la profundidad o nivel de detalle que se puede llevar a aquel. En este caso, la fidelidad no tiene que ver necesariamente con el parecido visual a la realidad sino con la calidad de la información entregada. Igualmente, los sistemas de información geográfica (SIG) basan su fidelidad no sólo en la calidad o apego a la realidad de sus planos sino también en la calidad de la información de sus bases de datos.
Nivel de detalle:

La fotografía de la izquierda entrega información sobre el entorno general y para ello necesitaría una baja resolución. Sin embargo, la de la derecha, un zoom de la anterior, proporciona información detallada contenida en la anterior.

Esta variable está directamente relacionada con el tamaño de los archivos (“peso”). A mayor detalle, mayor peso. La primera tentación que tenemos es hacer nuestros modelos con el mayor detalle posible, pero la realidad es que no siempre es necesario pues depende del uso que se dé a la simulación. En general en modelos 3d que se recorren virtualmente mientras mayor es la velocidad virtual menor el nivel de detalle necesario para proporcionar una imagen de realidad. En cambio, objetos que deban ser examinados detenidamente tendrán mayor detalle, comprometiendo, eso sí, el número o magnitud de los objetos representados. Nos imaginamos, por ejemplo, una ciudad virtual en la que podamos entrar a un supermercado y comprar “realmente” artículos representados virtualmente. En ese caso el detalle del entorno puede ser más bien bajo pero el del artículo debería ser mayor. La fotografía, como representación de la realidad puede ser ejemplo de esto. Imágenes de un megapixel puede ser suficiente información en algunos ámbitos y, en cambio 8 o 10 Mp pueden ser necesarios para otros.

Localización o geo-referenciación:

Se refiere a si el modelo representado es o no parte de un sistema de coordenadas exteriores o al menos mayor, es decir, si es autónomo en cuanto a su localización o parte de un modelo mayor. Típicamente, los sistemas de información geográfica son georeferenciados. Es decir, pueden ser referidos al sistema de coordenadas terrestres y los elementos localizados en ellos tienen posiciones únicas. Las imágenes de Google Earth tienen la misma condición, claro que en este caso, el nivel de realismo gráfico es muy alto. En cambio, el realismo gráfico de los SIG es más bien convencional y abstracto, aunque la información que proporcionan puede ser muy detallada. Programas de comunidades virtuales como pueden ser Blaxxun y Second Life, por otra parte, presentan un sistema de localización diferente, no relacionada con el mundo real pero, especialmente en el último, tienen un sistema de coordenadas interno (referido a su propia planimetría) que permite ubicar, dentro del mundo virtual, los lementos con alta precisión.

Potencial de socialización del modelo:
Esta es una de las características claves de todo sistema y muchas veces ha sido la idea que ha guiado los desarrollos de sistemas. Tiene un aspecto político dado que muchas veces la aspiración ha sido poder mostrar al público o a los que toman decisiones, las alternativas de desarrollo urbano en procesos participativos. Respecto de esta variable en el extremo más realista, se espera insinuar en el usuario una percepción lo más apegada posible al mundo real de manera que tenga la posibilidad de imaginar un escenario u otro de entorno urbano y, con esa información, ser capaz de tomar decisiones o posturas frente a los problemas. En el extremo más abstracto (SIG), los modelos deben ser capaces de entregar en forma amigable información de texto o imágenes estáticas respecto de un problema en forma no lineal sino en el orden en que el usuario desee o necesite acceder a la información.
Respecto de la socialización del modelo es bueno hacer notar que existen implicancias ética de importancia, puesto que las imágenes pueden parecer reales donde no lo son y llevar a decisiones supuestamente apegadas al mundo real. Esto se puede ver desde muy antiguo en los dibujos que se hacen para la venta de edificios que se realizan desde puntos de vista imposibles o con entornos ficticios. En los modelos a que nos referimos esto se agudiza porque “parecen” más reales haciendo suponer al observador una percepción errada.

Otros aspectos interesantes, en este tema, son los referidos a la forma de acceso a los modelos. Así, los modelos pueden ser utilizados (visitados) de manera individual o colectiva, sincrónica o asincrónica y pueden ser residentes o distribuidos. Todos ellos dependen del tipo de uso que se les quiera dar así como de las capacidades de software y hardware. Las comunidades virtuales como Second Life son un ejemplo de acceso colectivo con capacidad de actuar sincrónicamente tanto con los elementos del mundo virtual como con otros “residentes”. Así mismo, allí la información puede ser relativa al mismo entorno virtual –por ejemplo juegos o competencias.

VINCULACIÓN A INFORMACIÓN ALFANUMÉRICA:

Como hemos dicho antes, ninguno de estos sistemas usa solamente de un tipo de variable. La idea de mucho de nosotros interesados en representar la ciudad ha sido en un principio tratar de acercarse a la experiencia de visitar la ciudad y muchos de los sistemas -Autocad en un principio, 3DStudio y Sketchup con posterioridad, han ido acercándose cada vez más a una representación fálica, rápida y sobretodo con un grado de realismo creciente, a esa experiencia. Sin embargo también nos dices cuenta rápidamente que el tránsito por la ciudad real entrega elementos de información mucho mayores que el simple pasar por sus calles. De manera que los modelos virtuales pronto fueron agregando otros tipos de información. Un ejemplo evidente es el de Google Earth, que pasó muy luego de una representación meramente visual del mundo a complementarla con texto y fotos que informan más acuciosamente de los lugares. En el caso de Second Life, se entrega información tanto sobre la comunidad virtual como sobre el mundo real. Esto último es el caso de más de cien universidades que imparten clases de contenidos reales, por medio de interacción entre personajes virtuales, documentos de texto, imágenes y videos. El caso más extremo en cuanto a información es el de los SIG en que el objeto principal es entregar información georeferenciada. Ésta lo es normalmente a partir de tablas de bases de datos, pero también se puede incluir otros elementos, como foto y video.

PALABRAS FINALES:

En definitiva, todos los que trabajamos en el área de representación de modelos urbanos, aspiramos a que las tecnologías de información y comunicación nos ayuden a mostrar la ciudad lo más aproximadamente a como ella es en sus diferentes aspectos, tanto de experiencia sensorial como de información. Ya se habla de una fusión de la experiencia de Second Life con Google Earth que nos permitiría desde el turismo virtual hasta el acceso a información especializada, pasando por la interacción con otros internautas en tiempo real. Al respecto, una limitante compleja es el ángulo de visión en los modelos virtuales que son mucho más estrechos que la visión humana. Esto debe aún estudiarse desde el punto de vista de la comprensión de la percepción del peatón.

El desarrollo de mundos virtuales, basados o no en la realidad, deben servir también para democratizar la ciudad, para que sus habitantes tengan una imagen de los posibles desarrollos futuros y puedan, por medio de estas mismas tecnologías expresarse virtual y realmente. Ello plantea temas éticos que deberán estudiarse.
BIBLIOGRAFÍA:

Lira, Roberto & Vidal, Claudia 2002 Evaluación de un instrumento para medir el acceso a equipamientos y servicios urbanos: el caso de Concepción.

En: VI Congreso de la Sociedad Iberoamericana de Gráfica Digital, SIGRADI Caracas 2002.”
