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Abstract16

Emission factors of formaldehyde and VOCs were determined for two waste treatment17

plants (WTP) located in the metropolitan area of Barcelona city. Formaldehyde18

emission factors were determined from the biogas engines exhausts and the process19

chimneys (after the biofilter process), and VOC emission factors were determined in the20

process chimneys. Formaldehyde and VOC were dynamically sampled using DNPH-21

coated adsorbent tubes with ozone scrubber and multi-sorbent bed tubes (Carbotrap,22

Carbopack X and Carboxen 569), respectively, using portable pump equipment.23

Formaldehyde emission factors from biogas engines were found between 0.001-0.04 g24



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s-1. Additionally, formaldehyde and VOC emission factors from process chimneys were25

found to be between 0.0002-0.003 g s-1 and 0.9±0.3 g s-1, respectively. Employing real26

emission factors, the expected concentrations derived from the WTPs in their nearby27

urban areas were calculated using The Atmospheric Pollution Model (TAPM, CSIRO),28

and impact maps were generated. On the other hand, ambient air formaldehyde and29

VOC concentrations were determined in selected locations close to the evaluated waste30

treatment facilities using both active and passive samplers, and were between 2.5±0.4-31

5.9±1.0 µg m-3 and 91±48-242±121 µg m-3, respectively. The concentrations of32

formaldehyde and VOC derived exclusively from the waste treatment plants were33

around 2% and 0.3±0.9% of the total formaldehyde and VOC concentrations found in34

ambient air, respectively.35

36
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1. Introduction40

Waste Treatment Plants (WTP) can be a source of pollution to the environment and41

affect negatively human health (Bono et al., 2010; Vilavert et al., 2014) and deteriorate42

personal well-being (Ryu et al, 2011). Formaldehyde and volatile organic compounds43

(VOC) are among the most important pollutants emitted by WTP. VOC are generated in44

WTP from biochemical reactions related to degradation processes of organic matter45

and/or volatilization of different materials treated in the plant (Gallego et al., 2012;46

Kumar et al., 2011), and are responsible in great part of the odorous nuisance derived47

from these facilities (Font et al., 2011; Gallego et al., 2009a, 2014; Vilavert et al.,48

2014). On the other hand, formaldehyde can be evaporated from products managed in49
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the plant and also be emitted by biogas combustion engines due to intermediate50

reactions, where it is formed by an incomplete reaction of the gas mixture (Heikkilä,51

2014; Nagele et al., 2013). It has to be taken into account that between 200-300 VOCs52

can be found in urban air samples (Gallego et al., 2011; Vega et al., 2011) and that53

formaldehyde is an ubiquitous irritant contaminant in ambient air (Bono et al., 2010;54

Kim et al., 2011; Salthammer, 2013). Additionally, formaldehyde has been classified as55

1B category carcinogen and 2 category mutagen by 605/2014 European Union56

Commission Regulation, amending Regulation (EC) 1272/2008, and also been57

classified as Category 1 carcinogen by IARC. This compound is emitted by WTP but58

can also be emitted to the atmosphere from incomplete combustion of fossil fuels,59

production of resins and other chemical compounds, and the use of disinfectants and60

preservatives (Bono et al., 2010; Zhang et al., 2009).61

Generally, industrial emission values are estimated, real measurements being only62

determined in a few cases. Hence, the absence of emission data restricts the real63

evaluation of the impact of specific emission sources (Yu et al., 2014). In this line, the64

present paper describes the evaluation of formaldehyde and VOC impacts (derived from65

channelled emissions) in the surroundings of two WTPs (also known as Ecoparcs in66

Spain), determining their real emission factors and calculating the impact maps that67

showed WTPs derived concentrations. This point aimed to improve the knowledge of68

the sources and distribution of pollutants originating from WTPs. Furthermore, real69

VOC and formaldehyde concentrations were monitored in WTPs surroundings. Real70

concentrations were compared to expected concentrations exclusively originated from71

WTPs. Additionally, formaldehyde concentrations were also determined in several72

locations from Barcelona city, in order to determine the typical concentrations that can73
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be found in a 3 million people metropolitan urban area affected by an important traffic74

density, several industries and a harbour with a total traffic of 47 million tons (2015).75

The simplicity, high sampling versatility, high concentration power, easy portability,76

low cost and easy storage of sorbent tubes (Gallego et al., 2009b; Ribes et al., 2007) led77

us to adopt a sorbent-based method for sampling VOCs in the process chimneys (which78

emit the air coming from the biofilters) and for ambient air samplings. Thermal79

Desorption (TD), coupled with Gas Chromatography/Mass Spectrometry (GC/MS), was80

the chosen instrumental technique. TD-GC/MS methodology was widely used in VOC81

analysis (Gallego et al., 2009a, 2012). It is a selective methodology which allows good82

chromatographic separation, identification and quantification of target analytes through83

their characteristic mass spectrum and quantification ion, respectively (Ribes et al.,84

2007). Formaldehyde emission, both from biogas engines and process chimneys, and85

immission concentrations were determined using the 2,4-dinitrophenylhydrazine86

methodology, and analysed using HPLC.87

88

2. Materials and methods89

2.1 Chemicals and materials90

Standards of VOCs with a purity 98% were obtained from Aldrich (Milwaukee, WI,91

USA), Merck (Darmstadt, Germany) and Fluka (Buchs, Switzerland). Methanol and92

toluene for gas chromatography (SupraSolv® , and acetonitrile93

for liquid chromatography (LiChrosolv®) % were obtained from94

Merck (Darmstadt, Germany). Toluene HPLC gradient grade was obtained from J.T.95

Baker (Deventer, The Netherlands). Perkin Elmer glass tubes (Pyrex, 6 mm external96

diameter, 90 mm long), unsilanized wool, and Carbotrap (20/40 mesh), Carbopack X97

(40/60 mesh) and Carboxen 569 (20/45 mesh) adsorbents were purchased from Supelco98
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(Bellefonte, PA, USA). Formaldehyde-2,4-dinitrophenylhidrazone analytical standard99

was obtained from Aldrich (Steinheim, Germany).100

2.2 Formaldehyde samplers101

Formaldehyde samplers, both active and passive, were based on the 2,4-102

dinitrophenylhydrazine (DNPH) methodology (Szulejko and Kim, 2015). For passive103

formaldehyde samples, Radiello chemiadsorbing cartridge code 165 tubes (Fondazione104

Salvatore Maugeri, Pavia, Italy) and UMEx 100 passive samplers were obtained from105

Supelco (Bellefonte, PA, USA) and SKC (Eighty Four, PA, USA), respectively. For106

active formaldehyde sampling, Supleco BPE-DNPH cartridges (54278-U) and DNPH-107

coated adsorbent tubes (226-120) with built-in ozone scrubber were obtained from108

Supelco (Bellefonte, PA, USA) and SKC (Eighty Four, PA, USA), respectively.109

2.3 Formaldehyde analytical instrumentation110

Active and passive formaldehyde samples, based on the 2,4-dinitrophenylhydrazine111

(DNPH) methodology, were treated equal, extracting formaldehyde-2,4-112

dinitrophenylhydrazone with 2-3 ml of acetonitrile, stirring occasionally during 30113

minutes. The extracts were analysed with HPLC, using a Waters 1525 binary pump, 717114

plus autosampler and a 2998 Photo Diode Array Detector at 365 nm. The isocratic115

elution was done using methanol/water at 65/35 (v/v) at 1 ml min-1. The column used116

was a Phenomenex C18, 150 mm length, 4.6 mm diameter and 5 µm particle size. The117

limit of detection was established at <0.1 µg/sample.118

2.4 VOC sampling tubes119

The multi-sorbent bed tubes were custom packed and composed of Carbotrap (activated120

graphitized black carbon, weak sorption strength, target analytes: C5-C14 (alcohols,121

aldehydes, ketones, aromatic hydrocarbons), boiling points >75ºC, 70 mg), Carbopack122

X (activated graphitized black carbon, medium sorption strength, target analytes: C3-C7123
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(light hydrocarbons, boiling points between 50-150ºC), 100 mg) and Carboxen 569124

(spherical carbon molecular sieve, high sorption strength, target analytes: C2-C8 (ultra-125

volatile hydrocarbons, boiling points between -30 and 150ºC), 90 mg). They were126

developed in an earlier study and found to be highly versatile regarding polarity and127

volatility of the target VOCs (Ribes et al., 2007). They have been successfully used for128

the determination of a wide range of VOC families in different applications (Gallego et129

al., 2009a, 2012). Moisture content in the chimney emissions during sampling were130

between 36-67%, an aspect that might complicate the collection and analysis of131

samples; however, the sorbents are highly hydrophobic and suitable for use in132

samplings of gases with high humidities (Ribes et al., 2007). Sampling tubes were133

conditioned before use at 400ºC, sealed with Swagelock end caps fitted with PTFE134

ferrules and stored at 4ºC for 1 week at most before use.135

2.5 VOC analytical instrumentation136

VOCs analysis was performed by TD-GC/MS using a Markes Unity Series 2 (Markes137

International Ltd., Lantrisant, UK) via Thermo Scientific Focus GC fitted with a138

Thermo Scientific DSQII MSD (Thermo Fisher Scientific, Austin, Texas, USA).139

The methodology is described in the literature (Ribes et al., 2007; Gallego et al., 2009a).140

Primary thermal desorption of the sampling tubes was carried out at 300ºC with a141

helium flow rate of 55 ml min-1 for 10 minutes. A double split was applied to the TD142

system (cold trap inlet and outlet splits of 11 ml min-1). The cold trap (U-T15ATA: TO-143

15/TO-17 Air Toxics trap, Markes) was maintained at -30ºC. After primary desorption,144

the cold trap was rapidly heated from -30ºC to 300ºC (secondary desorption) and145

maintained at this temperature for 10 minutes. Analytes were then injected onto the146

capillary column (DB-624, 60 m x 0.32 mm x 1.8 , inert for active compounds) via a147

148
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-1149

Helium (99.999%) carrier gas flow in the analytical column was approximately 1.8 ml150

min-1 (1.4 bar).151

The electron impact source was obtained with an electron energy of 70 eV. Mass152

spectral data were acquired over a mass range of 20-300 amu. Quantification of samples153

was conducted by the external standard method according to Ribes et al., 2007.154

Calibration curves of all evaluated VOCs were freshly prepared, clean tubes were155

spiked and they were injected onto the TD-GC/MS daily.156

2.5.1 Quality control157

Extreme precautions are required to ensure reproducible quality results. Every day the158

mass spectrometer was manually tuned at m/z=69, 131, 264 and 502 and air leaks (m/z=159

4, 18 and 28) were controlled.160

To avoid artifacts generation, both ATD trap and sampling tubes were properly161

conditioned. A trap heat was done daily before analysis at 330ºC for 20 min. After the162

trap heating, analytical blank samples, i.e. two clean multi-sorbent bed tubes, were163

analysed before the injection of the samples and standards. Precision, repeatabilities of 7164

standards reaching the EPA performance criteria (US EPA,165

1999). Method detection limits (MDL) were calculated through the analysis of 7166

replicates of the lowest concentrated standard, which presented a signal to noise factor167

between 2.5 and 10. The obtained standard deviation (SD) for the replicates168

concentrations was t value at the 99% confidence169

interval), according to the U.S. EPA (Part 136-Guidelines establishing test procedures170

for the analysis of pollutants, Appendix B). MDL were between 0.01-0.2 ng per sample.171

The linearity range of the multi-point calibration was 0.99 in for all compounds.172

2.6 Data treatment173



8

Formaldehyde and VOCs emission factors were calculated using the concentrations174

determined in the biogas engines and the process chimneys exhausts, and the emission175

flows of the mentioned exhausts. The Air Pollution Model (TAPM, CSIRO, Australia)176

was used to determine the concentrations derived from the waste treatment plants177

assuming maximum emission conditions, i.e. 3 biogas engines functioning during 24h178

365 days a year. TAPM was chosen due to the robustness of the method used to predict179

meteorology and pollutant concentration, which solves approximations to the180

fundamental fluid dynamics and scalar transport equations, while other air pollution181

models that could be used to predict hour by hour pollution concentrations generally182

employ semi-empirical/analytic approaches based on Gaussian plumes or puffs. These183

models typically use either a simple surface based meteorological file or a diagnostic184

wind field model based on available observations. TAPM consists of coupled185

meteorological prognostic with air pollution concentrations, eliminating the need to186

have site-specific meteorological observations. Instead, the model predicts the important187

flows to local-scale air pollution, such as sea breezes and terrain induced flows, against188

a background of larger-scale meteorology provided by synoptic analyses (Hurley,189

2008).190

The accuracy of TAPM was checked for two US tracer experiments (Kincaid and191

Indianapolis) used internationally for model inter-comparison studies, for several annual192

US dispersion datasets (Bowline, Lovett and Westvaco), for annual meteorology and/or193

dispersion in various regions throughout Australia (Hurley et al., 2008).194

Concentration maps derived from real ambient air concentrations were done using195

SURFER® 13 (Golden Software, Inc).196

3. Sampling locations197

3.1 Waste treatment facilities evaluated198
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WTP 1 is a mechanical-biological waste treatment (MBT) plant located in the199

metropolitan area of Barcelona, which has been operating for 14 years and has a200

processing capacity of 245,000 tons year-1 of municipal residues, composing both a201

selected organic fraction (85,000 tons year-1) and a waste fraction (160,000 tons year-1).202

WTP 2 is a MBT plant also located in the metropolitan area of Barcelona, which has203

been operating for 11 years and has a processing capacity of 287,500 tons year-1 of204

municipal residues: selected organic fraction (100,000 tons year-1), waste fraction205

(160,000 tons year-1) and light packaging (27,500 tons year-1). (Figure 1).206

In both WTP the selected organic fraction is anaerobically fermented in a methanation207

process to obtain biogas. After methanation, the remaining organic matter is composted208

through an aerobic process. The waste fraction goes through a first stage of mechanical209

pre-treatment in order to separate the organic matter from the inorganic materials, and210

recover the recyclable materials (paper, metal, glass, plastic). The separated organic211

matter from this waste fraction is then composted via an aerobic treatment, together212

with the remaining organic matter from the methanation.213

The obtained biogas from both waste treatment plants is combusted in biogas engines to214

produce electricity. Additionally, indoor emissions form the different processes215

developed in the plants are treated passing the air through a biofilter system and216

eventually emitted outdoors by two and one process chimneys in WTP 1 and WTP 2,217

respectively.218

3.2 Biogas engines sampling219

Samples were taken in the exhaust pipes of the biogas engines. Exhaust gases were220

emitted at high temperatures, between 500 and 600ºC, and formaldehyde measurement221

could subsequently be difficult (Heikkilä, 2014). A Testo 06008765 probe (700 mm222

length, maximum temperature: 1000ºC) was used to take the samples, being connected223
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to an SKC Airchek 2000 pump with a PTFE (Polytetrafluorethylene) tube to reduce the224

gas temperature to the optimum value recommended for the sampling tubes (maximum225

sampling temperature: 100ºC). Prior to start the sampling, a 5 minutes purge was226

applied to remove all air from the PTFE tube from the probe to the sampling pump.227

Formaldehyde active sampling tubes, provided with built-in ozone scrubber, were228

connected to the sampling pump with PTFE tubes ensuring a minimum dead volume.229

Samples were taken at 200 ml min-1. Once the samples were taken, tubes were re-caped,230

taken to laboratory, stored at 4ºC in a clean refrigerator and analysed within the next 3231

days. Samples were taken between July and November 2014 in both WTPs evaluated.232

3.3 Process chimneys sampling233

VOCs and formaldehyde were dynamically sampled by connecting custom packed glass234

multi-sorbent tubes and formaldehyde active sampling tubes provided with built-in235

ozone scrubber to AirChek 2000 SKC pumps, and samples were taken at 100 and 200236

ml min-1, respectively. Once the samples were collected, both for VOCs and237

formaldehyde, tubes were re-caped, carried to the laboratory, stored at 4ºC in a clean238

refrigerator and analysed within the next 3 days. Samples were taken between July and239

September 2014 in WTP 2 for both formaldehyde and VOCs, and during February 2015240

in WTP 1 for formaldehyde only.241

3.4 Immission sampling242

Ambient air immission sampling in WTP 2 surroundings was done in February 2015243

using active sampling tubes: DNPH-coated adsorbent tubes with built-in ozone scrubber244

and custom packed glass multi-sorbent tubes for formaldehyde and VOCs, respectively.245

Sampling tubes were connected to air collector pump samplers specially designed in the246

LCMA-UPC laboratory (Roca et al., 2003). The flow sampling rate was 70 ml min-1.247

Samples were taken daily during 7-10 days depending on the sampling point. (Figure 1).248
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Formaldehyde ambient air immission sampling in WTP 1 surroundings and in249

Barcelona city was done in March and April 2015, respectively, using passive DNPH-250

coated samplers. Samplers were exposed for 7 consecutive days. Two samplers were251

used for each sampling point, with a total sampling time of 14 days for each sampling252

point (Figure 1). VOCs were neither determined in WTP 1 surroundings nor in253

Barcelona city.254

255

4. Results and discussion256

4.1 Formaldehyde and VOC emission factors in Waste Treatment Plants257

Formaldehyde concentrations obtained from biogas engines exhausts and process258

chimneys of the two WTPs are presented in Tables 1 and 2, respectively. Formaldehyde259

emission factors from biogas engines were higher in WTP 2, even though the highest260

emission factor was found for engine 1 from WTP 1. During the study, it was observed261

that higher formaldehyde emissions depended mainly on the engine operational time,262

being higher when operational hours increased, as could be expected. Regular263

maintenance has been emphasized to be a very important factor in the diminishing of264

the exhaust gases emissions and a successful operation of the engine (Naegele et al.,265

2013; Volker et al., 2010). Formaldehyde emissions from engine 3 in WTP 2 were266

evaluated at the return from its scheduled maintenance, and the obtained concentrations267

were lower than the observed from the other WTP 2 engines (Table 1).268

Formaldehyde emissions from process chimneys were also higher in WTP 2 than in269

WTP 1. It must be taken into account that for WTP 2, all emissions were through one270

single chimney, with an emission flow of 420,000 m3 h-1. On the other hand, WTP 1271

emits through two chimneys of 150,000 m3 h-1 each. Even though emission factors from272

process chimneys are an order of magnitude lower than the ones from biogas engines, as273
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the emission flows are much higher, up to two orders of magnitude, the impact derived274

from these chimneys can be relevant.275

VOC concentrations found in the process chimney of WTP 2 and their emission factors276

are presented in Table 3. Terpenes (1302-4034 µg Nm-3), and among them limonene277

(840-2737 µg Nm-3), were the most concentrated compounds, followed by aromatic278

hydrocarbons (566-5305 µg Nm-3), aldehydes (311-1529 µg Nm-3), acids (145-869 µg279

Nm-3) and alcohols (191-1202 µg Nm-3). A previous study conducted in this same WTP,280

that evaluated indoor air in the organic matter pit of the facility, showed that alcohols281

(21,000-124,000 µg m-3), and among them ethanol (20,000-107,000 µg m-3), were the282

compounds that contributed in a most important way, followed by terpenoids (16,000-283

27,000 µg m-3) (Gallego et al., 2014). In another study, conducted in WTP 1, alcohols284

(38,000-185,000 µg m-3), terpenoids (1800-16,000 µg m-3), esters (2000-15,000 µg m-3)285

and acids (3600-8200 µg m-3) presented the highest concentrations indoor; with slight286

variations depending on the evaluated location inside the treatment plant (Gallego et al.,287

2012). Additionally, indoor total VOC (TVOC) concentrations were in the range of 60-288

287 mg m-3 and 4-118 mg m-3 for WTP 1 and 2, respectively. On the other hand, TVOC289

chimney emission concentrations in WTP 2 were in the range of 4-10 mg m-3 (Table 3).290

As expected, indoor WTP 2 concentrations (Gallego et al., 2014) were much higher than291

those emitted by the chimney (present study), as the air is cleaned by means of a292

biofilter before being emitted to outdoor air (Font et al., 2011), showing removal293

efficiencies by the biofilters up to 85-99% in some cases, i.e. acids, aromatic294

hydrocarbons, esters and alcohols. Similar removal efficiencies were observed in295

previous studies using different types of biofilter media such as cork (BTEX: 79%296

removal, Kown and Cho, 2009), compost (several VOC: between 40-100% removal,297

Liu et al., 2005), sewage sludge (several VOC: between 52-96% removal, Alfonsín et298
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al., 2013), and activated sludge (benzene and hexane: >70% and >50% removal, Hu and299

Wang, 2015; several VOC: between 97-99% removal, Ryu et al., 2011).300

4.2 Real formaldehyde and VOC ambient air concentrations in Waste Treatment Plants301

surroundings302

Formaldehyde ambient air concentrations in selected locations in the surroundings of303

the evaluated WTPs are shown in Table 4. Observed concentrations were higher in304

WTP 2 than in WTP 1 vicinities, yet within the expected formaldehyde concentrations305

in urban areas (Salthammer et al.,306

2013). Previous studies showed similar concentrations in WTP 2 surroundings, with307

average values between 3.3±1.0-5.5±1.4 µg m-3 (Vilavert et al., 2012, 2014). It has to be308

noted that this area is surrounded by an important number of industrial facilities apart309

from the studied WTP (Figure 1). On the other hand, WTP 1 surroundings have an310

important impact of Barcelona harbour, and its nearness to the sea might reduce the311

impact upon the inhabited area.312

VOC ambient air concentrations in WTP 2 surroundings are presented in Table 5.313

TVOC concentrations (between 91±48 and 242±121 µg m-3) are in line with typical314

values found in urban areas (Bari et al., 2015; Cometto-Muñiz and Abraham, 2015;315

Gallego et al., 2103; Geiss et al., 2011), dominated by aromatic hydrocarbons (16-27 %316

of the TVOC), and much lower than the found in highly polluted/industrialized areas317

such as Bangladesh (TVOC between 324-970 µg m-3, Do et al., 2015) Yeosu, South318

Korea (BTX between 1.1-406 µg m-3, Seo et al., 2014) and Salamanca, Mexico (BTX319

between 94-121 µg m-3, Vega et al., 2011). The value VLA/420 is commonly used to320

establish maximum concentration limits in urban outdoor air in 24-h periods for non-321

carcinogenic compounds (Gallego et al., 2011). VLA is the Spanish equivalent for Time322

Weighted Average (TWA) in working environments, and 420 is an uncertainty factor323
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that takes into account the varied physiological status of people (e.g. children, old and324

ill people), and widens the exposition to 24 hours instead of the 8 hours established in325

the TWA (Repetto and Repetto 2009). Neither of the studied compounds is found above326

these VLA/420 limits. On the other hand, international TVOC guidelines have not been327

established for outdoor air. However, Mølhave, 1991 established several criteria related328

to discomfort for indoor TVOC concentrations: comfort range (<0.2 mg m-3),329

multifactorial exposure range (0.2-3 mg m-3), discomfort range (3-25 mg m-3) and toxic330

range (>25 mg m-3). Hence, outdoor air TVOC concentrations found in WTP 2331

surroundings showed generally good air quality in respect to VOC, with average332

concentrations mostly in the indoor comfort range ( 200 µg m-3).333

However, in WTP 2 surroundings toluene to benzene (T:B) ratios were 7.9±3.5,334

indicating an important influence of industry in the evaluated locations (Figure 1). T:B335

ratios can be useful to determine possible emission sources. T:B ratios between 1.5-4.3336

are generally related to traffic and mobile sources (Miller et al., 2011; Oiamo et al.,337

2015; Schnitzhofer et al., 2008; Shaw et al., 2015). On the other hand, higher T:B ratios338

up to 10 are related to higher toluene emissions coming from industrial and point source339

emissions (Buczynska et al., 2009; Miller et al., 2011; Morgan et al., 2015).340

Additionally, toluene and tert-butyl methyl ether (TBME) correlate with themselves341

which indicates a mobile source. On the other hand, they do not correlate when their342

origin is from industrial emissions (Vega et al., 2011). In Figure 2, two different343

behaviours can be seen from all recorded samples from all sampling points. A great344

number of samples showed a correlation between toluene and TBME, indicating a345

traffic source. Nevertheless, a small number of samples, from 22 January and 11346

February, do not show correlation between the mentioned compounds, indicating347

clearly a source from industrial activities.348
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Even though TVOC concentrations were found within typical urban values and air349

quality is good in WTP 2 vicinity, there is an important influence of industry in the area,350

as it is totally surrounded by industrial parks (Figure 1).351

4.3 Formaldehyde immission concentrations in Barcelona city352

Formaldehyde ambient air concentrations in Barcelona city are shown in Table 4.353

Concentrations, ranging between 3.1±0.6 and 4.1±0.2 µg m-3, are of the same order of354

magnitude of the observed in the evaluated WTPs surroundings. The obtained values355

are in agreement with the typically found in European, American and Japanese urban356

areas (Table 6). However, the concentrations were lower than those observed in much357

more polluted/industrialized Asian cities (Table 6).358

4.4 Influence of WTP in formaldehyde and VOC ambient air concentrations359

Previous studies were focused in the evaluation of formaldehyde and/or VOC360

concentrations in the facility surroundings, and the concentrations found were361

associated with the plant through mathematical models or wind directions and distances362

to the facility (Vilavert et al., 2011, 2014; Domingo et al., 2015). In the present case,363

however the exact contributions of the studied WTPs to immission concentrations were364

calculated.365

Formaldehyde concentrations expected in WTP surroundings derived exclusively from366

the evaluated plants (taking into account the emissions from biogas engines and process367

chimneys) and calculated for the immission sampling period, are presented in Figures 3368

and 4a for WTP 1 and 2, respectively. These data was compared with the real369

formaldehyde concentrations found in these sampling points during the immission370

sampling period (Figures 5 and 6a). WTP 1 and 2 formaldehyde emissions contributed371

with an average value of 2.2±2.9% and 1.9±3.2%, respectively, to formaldehyde372

ambient air concentrations. The maximum contribution was found in point 8 in WTP 2373
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surroundings for the 18th February 2015, accounting for a 13.6%. Even though374

formaldehyde emission concentrations from biogas engines was found to be quite high375

in some cases (i.e., 0.5±0.2 to 29±6 mg Nm-3, Table 1), as emission flows are relatively376

low (in the range of 5000 m3 h-1), their derived concentrations in the surroundings of the377

WTP are limited. On the other hand, process chimneys present much higher emission378

flows (in the range of 150,000-420,000 m3 h-1), however, their emission concentrations379

were much lower, between 6±1 and 21±10 µg m-3.380

In the same way, Figures 4b and 6b present expected TVOC concentrations in WTP 2381

surroundings (derived from TVOC chimney emissions) for the immission sampling382

period, and the contribution of this facility to real immission TVOC concentrations383

during the same period. In this case, WTP 2 TVOC emissions contributed with384

0.3±0.9% to ambient air concentrations. Although WTP 2 contribution to ambient air is385

quite low, odorous impacts caused by VOC concentrations can be relevant for the386

compounds that present low odour thresholds, such as several aldehydes (acetaldehyde,387

benzaldehyde, nonanal, octanal, propanal) or the compounds that are emitted at higher388

concentrations, such as terpenes (DL-limonene, p- -pinene) (Table 3).389

390

5. Conclusions391

Formaldehyde (biogas engines and process chimneys) and a wide range of VOC392

(process chimneys) emission factors were determined for two WTPs (MBT plants) in393

the metropolitan area of Barcelona, Spain. To our knowledge, this is the first time that394

the contribution of these emissions to real formaldehyde and VOC ambient air395

concentrations in the surroundings of these facilities has been evaluated in Spain. This396

contribution was determined to be around 2%, depending on meteorological conditions.397

As the potential impact of WTPs in urban areas arises important societal concerns, the398
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influence of these facilities upon ambient air quality has to be estimated in the most399

reliable way, and the determination of real emission factors is a solid mean for that400

assessment. Additionally, the emission factors provided in the present paper could be401

useful for the investigation of impacts from similar facilities (already settled or under402

project) in Spain, or comparable plants where analogous waste compositions are treated403

in other countries.404

,405

within the typical values found in European, American and Japanese urban areas.406

the407

present circumstances (derived from the diverse supply needs and mobility of 7 billion408

humans) of formaldehyde concentrations in worldwide ambient air. Hence,409

formaldehyde emissions to ambient air should be reduced as much as possible, and in410

the case of WTPs, it is mandatory to focus upon the importance of regular maintenance411

and engine adjustment of the biogas motors.412

Finally, in future studies, diffusive emissions of pollutants from the facilities should413

also be considered so as to clarify WTP impacts related to VOC and odours, upon their414

surroundings.415
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Table1. Formaldehyde emission concentrations and calculated emission factors for the different biogas engines evaluated.

1Gas temperature at the sampling point
2Calculated for an emission flow of 4669.2 m3 h-1

3Calculated for an emission flow of 5000 m3 h-1

Waste Treatment Plant 1 Waste treatment Plant 2
Engine 1 2 3 5 1 2 3 4
Date 21/7/14 13/11/14 13/11/14 13/11/14 22/7-8/10/14 15/7-3/9/14 8/10/14 21/7/14
Gas temperature (ºC)1 554 540 560 600 534-545 519-550 535 555
Number of samples 3 6 4 6 6 6 4 4
Formaldehyde (mg Nm-3) 29 ± 6 0.5 ± 0.2 0.7 ± 0.1 1.3 ± 0.2 15 ± 9 22 ± 12 3.5 ± 0.6 18 ± 11
Emission factor (g s-1) 0.042 0.0012 0.0012 0.0022 0.023 0.033 0.013 0.033






Table 2. Formaldehyde emission concentrations and calculated emission factors for the different chimneys evaluated.

1Gas temperature at the sampling point
2Calculated for an emission flow of 150,000 m3 h-1

3Calculated for an emission flow of 420,000 m3 h-1

Waste Treatment Plant 1 Waste Treatment Plant 2
Chimney 1 2 1
Date 10-12/2/15 10-12/2/15 15/7/14-8/9/14
Gas temperature (ºC)1 11-14 11-14 26-29
Number of samples 3 3 18
Formaldehyde (µg Nm-3) 6 ± 2 6 ± 1 21 ± 10
Emission factor (g s-1) 0.00022 0.00022 0.0033






Table 3. Range, a Nm-3) and emission factor (mg s-1)
found in the process chimney of Waste Treatment Plant 2 (n=12, 21/7/2014, 22/7/2014, 3/9/2014 and
8/9/2014). Concentrations with grey shading exceed the odour threshold of the compound.

Compound Range
( g Nm-3)

Average ±
SD

( g Nm-3)

Emission
factor1

(mg s-1)

Odour
Threshold2

( g m-3)
Alkanes
cyclohexane 5-88 34±28 4.0±3.3 35,600
n-decane 10-97 44±31 5.1±3.6 11,300
n-hexane 0.7-5 3±2 0.3±0.2 107,000
Total alkanes 28-190 81±58 9.4±6.8
Aromatic hydrocarbons
1,2,3-trimethylbenzene 4-24 14±6 1.6±0.7 -3

1,2,4-trimethylbenzene 10-109 53±36 6.1±4.2 140
1,3,5-trimethylbenzene 8-40 21±11 2.5±1.3 10,700
1-methylnaphthalene 0.1-1 0.2±0.1 0.02±0.01 -
2-methylnaphthalene 0.1-1 0.3±0.2 0.04±0.03 4
benzene 0.4-10 3±3 0.4±0.4 1,500
ethylbenzene 40-648 193±225 23±26 400
m+p-xylene 133-1239 480±424 56±50 770
m+p-ethyltoluene 24-132 69±36 8.1±4.2 42
naphthalene 0.2-2 1±1 0.1±0.1 7
n-propylbenzene 8-33 18±8 2.1±1.0 14,400
o-ethyltoluene 9-49 25±13 2.9±1.5 370
o-xylene 55-458 164±148 19±17 770
phenol 3-28 9±7 1.1±0.8 39
styrene 6-40 18±14 2.1±1.6 12
toluene 92-2,635 817±928 95±108 3,800
Total Aromatic hydrocarbons 566-5,305 1,885±1,798 220±210
Alcohols
1-butanol 5-32 17±7 2.0±0.9 480
1-propanol 9-75 32±23 3.8±1.7 2,000
ethanol 114-1,078 347±329 41±38 2,000
ethylhexanol 2-28 12±11 1.4±1.3 400
isopropanol 6-50 21±16 2.5±1.8 8,000
Total Alcohols 191-1,202 429±344 50±40
Ketones
acetone 11-146 57±51 6.7±6.0 8,600
biacetyl 1-19 9±6 1.1±0.7 5.2
cyclohexanone 25-177 71±57 8.3±6.6 880
methylethylketone 3-101 45±30 5.3±3.5 5,700
methylisobutylketone 5-72 24±23 2.8±2.7 140
Total Ketones 70-301 206±68 24.1±7.9
Halocarbons
1,1,1-trichloroethane 0.1-3 1±1 0.1±0.1 5,300
carbon tetrachloride 1-6 3±1 0.4±0.2 1,260,000
chloroform 1-6 3±1 0.3±0.2 500
dichloromethane 3-62 22±22 2.6±2.6 4,100
p-dichlorobenzene 1-9 4±2 0.5±0.3 730
tetrachloroethylene 4-225 68±74 8.0±8.7 8,300






1Emission factor calculated for an emission flow of 420,000 m3 h-1

trichloroethylene 2-6 3±1 0.4±0.1 3,900
Total Halocarbons 24-301 105±94 12.2±11.0
Aldehydes
2-butenal 3-14 8±3 0.9±0.3 420
acetaldehyde 47-1,389 400±447 47±52 2.7
benzaldehyde 3-23 10±7 1.1±0.8 10
decanal 6-31 14±8 1.6±0.9 51
hexanal 2-21 7±6 0.8±0.7 25
heptanal 4-40 14±12 1.6±1.4 61
nonanal 9-43 22±11 2.5±1.3 20
octanal 74-439 173±135 20±16 10
pentanal 1-21 7±6 0.8±0.7 30
propanal 0.4-15 5±5 0.6±0.6 3.6
Total Aldehydes 311-1,529 659±369 77±43
Esters
butyl acetate 1-14 3±4 0.3±0.5 7,700
ethyl acetate 0.3-26 10±9 1.1±1.0 4,600
methyl acetate 0.04-0.3 0.1±0.1 0.01±0.01 22,000
Total Esters 1-27 12±10 1.5±1.1
Acids
acetic acid 145-869 436±246 54±29 90
Total Acids 145-869 436±246 54±29
Terpenes
camphor 2-5 3±1 0.4±0.1 52
D-limonene 840-2,737 1,480±609 173±71 1,700
p-cymene 203-580 372±137 43±16 200

-pinene 132-456 255±107 30±13 230
-pinene 87-317 184±73 21±9 8,900

Total Terpenoids 1,302-4,034 2,294±852 268±99
Ethers
tert-butyl ethyl ether 3-18 9±5 1.0±0.5 -
tert-butyl methyl ether 0.03-0.2 0.1±0.1 0.01±0.01 -
Total Ethers 3-18 9±5 1.0±0.5
Organonitrogenates
acetonitrile 1-85 19±26 2.2±3.1 285,000
benzothiazole 14-84 33±22 3.9±2.6 442
cyclohexane isocyanato 29-102 48±24 5.6±2.8 -
Total Organonitrogenates 51-167 101±38 11.7±4.4
Others
1,3-butadiene 2-14 7±4 0.8±0.5 220
2-butoxyethanol 1-202 51±65 6.0±7.5 37,000
carbon disulfide 0.1-3 1±1 0.1±0.1 110
tetrahydrofuran 1-44 10±13 1.2±1.5 90,000
Total Others 5-255 69±79 8.0±9.2
Total VOC Concentrations
(mg m-3) 4-10 6±2

Total emission factor (g s-1) 0.9±0.3



2Source: Compilations of odour threshold values in air and water L.J.van Gemert (TNO Nutrition
and Food Research Institute). Boelens Aroma Chemicals Information Service (BACIS). The
Netherlands Odor Thresholds for Chemicals with Established Occupational Health
Standards American Industrial Hygiene Association. USA ( Reference Guide to Odor

EPA/600/R-92/047 (2009); Ruth, 1986 bag
-127, Japan Ministry of Environment (2003).

3Value not determined



Table 4. Formaldehyde immission concentrations in the evaluated waste treatment plant surroundings and in Barcelona city.

*Passive samplers (7 days+7 days)
Ecoparc perimeter 1; Ecoparc perimeter next to biogas engines 2; El Prat 3; 4; BCN 5
La Llagosta 6; Montcada i Reixac 7; Ripollet Pinetons 8; Ripollet Can Mas 9; Cerdanyola 10
BCN-ETSEIB 11; BCN-Ronda Litoral 12; BCN-Fra Juniper 13; BCN-Balmes 14

Waste Treatment Plant 1 surroundings
Sampling Point 1 2 3 4 5
Dates 17-31/3/15 17-31/3/15 17-31/3/15 17-31/3/15 17-31/3/15
Environmental T (ºC) 13-14 13-14 13-14 13-14 13-14
Number of samples* 2 2 2 2 2
Formaldehyde (µg m-3) 2.8 ± 0.3 6.0 ± 0.2 2.5 ± 0.4 2.7 ± 0.3 2.5 ± 0.7

Waste Treatment Plant 2 surroundings
Sampling Point 6 7 8 9 10
Dates 9-23/2/15 9-23/2/15 9-23/2/15 9-23/2/15 9-23/2/15
Environmental T (ºC) 7-11 6-11 6-11 6-11 7-11
Number of samples 8 9 9 9 10
Formaldehyde (µg Nm-3) 5.9 ± 1.0 3.9 ± 2.0 5.1 ± 1.4 6.0 ± 1.3 2.9 ± 0.7

Barcelona city
Sampling Point 11 12 13 14
Dates 13-27/4/15 13-27/4/15 13-27/4/15 15-29/4/15
Environmental T (ºC) 15-16 16-17 16-17 15-17
Number of samples* 2 2 2 2
Formaldehyde (µg m-3) 3.1 ± 0.6 4.1 ± 0.2 3.5 ± 0.5 3.6 ± 0.6






Table 5. A Nm-3) found in the different sampling points surrounding Waste Treatment Plant 2.

Sampling point
6

(µg Nm-3)
7

(µg Nm-3)
8

(µg Nm-3)
9

(µg Nm-3)
10

(µg Nm-3)
VLA/4201

(µg m-3)
Number of samples n=7 n=8 n=9 n=9 n=8
Dates 20-1/6-2/2015 20-1/6-2/2015 20-1/11-2/2015 20-1/11-2/2015 20-1/6-2/2015
Alkanes
cyclohexane 2.6±1.5 2.0±1.5 1.6±1.8 1.9±1.8 0.5±0.3 1667
n-decane 1.3±0.7 1.3±1.1 1.2±0.8 1.3±0.5 0.3±0.2 -
n-hexane 1.3±0.6 0.8±0.5 0.9±0.9 1.1±0.8 0.4±0.3 171
Total alkanes 5.2±2.5 4.2±2.9 3.7±3.4 4.2±2.8 1.1±0.6
Aromatic hydrocarbons
1,2,3-trimethylbenzene 0.9±0.7 0.4±0.3 0.5±0.3 0.5±0.3 0.2±0.1 238
1,2,4-trimethylbenzene 2.6±1.6 1.9±1.0 1.9±0.9 2.0±0.8 0.7±0.3 238
1,3,5-trimethylbenzene 0.6±0.4 0.4±0.3 0.5±0.2 0.5±0.2 0.2±0.1 238
1-methylnaphthalene 0.07±0.04 0.05±0.04 0.05±0.04 0.09±0.04 0.04±0.03 -
2-methylnaphthalene 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0.1 -
benzene 3.0±1.4 2.3±1.2 2.1±1.0 2.5±1.0 1.3±0.9 52

ethylbenzene 4.9±3.2 3.6±2.1 3.0±1.8 3.2±1.4 0.9±0.5 1050
m+p-xylene 17±12 11.3±6.4 10.4±6.7 10.7±5.2 3.1±1.7 526
m+p-ethyltoluene 2.1±1.2 1.6±0.8 1.7±0.9 1.8±0.6 0.7±0.3 -
naphthalene 0.4±0.2 0.3±0.2 0.3±0.2 0.4±0.2 0.3±0.2 126
n-propylbenzene 0.4±0.2 0.3±0.1 0.3±0.2 0.3±0.1 0.1±0.1 -
o-ethyltoluene 0.5±0.3 0.4±0.2 0.4±0.2 0.4±0.2 0.2±0.1 -
o-xylene 4.3±2.5 3.0±1.6 2.8±1.5 2.9±1.2 1.1±0.5 526
styrene 2.5±1.5 1.9±1.4 1.4±1.0 1.8±1.1 0.4±0.2 205
toluene 27±19 19±12 20±14 21±12 5.3±3.1 457
Total Aromatic hydrocarbons 66±42 46±26 46±28 48±21 14.6±7.4
Alcohols
1-butanol 7.6±4.3 4.3±2.0 1.3±0.8 1.7±1.0 0.6±0.6 145
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1-propanol 2.1±0.9 1.4±0.9 1.3±1.3 1.1±0.9 0.3±0.2 1191
ethanol 5.6±3.1 4.1±2.2 7.2±5.9 6.8±5.9 38±37 45483

ethylhexanol 1.0±0.4 0.4±0.2 0.4±0.2 5.9±4.0 0.1±0.1 -
isopropanol 15.3±8.0 9.5±6.6 10.0±6.9 8.4±3.6 2.9±2.3 1191
Total Alcohols 32±14 20±10 20±14 23.9±8.2 42±39
Ketones
acetone 24±14 17.1±9.4 14.3±8.8 18.5±8.6 6.6±4.6 2881
biacetyl 0.3±0.4 0.2±0.3 0.2±0.2 0.3±0.3 0.03±0.02 -
cyclohexanone 2.1±1.4 1.6±1.0 1.4±0.8 2.8±1.6 0.4±0.2 98
methylethylketone 8.0±4.3 6.0±4.5 4.9±3.5 5.9±2.5 1.2±0.7 1429
methylisobutylketone 1.4±0.8 1.1±0.6 0.9±0.7 0.9±0.7 0.2±0.1 198
Total Ketones 36±20 26±14 22±13 29±12 8.3±5.2
Halocarbons
1,1,1-trichloroethane 0.03±0.01 0.03±0.02 0.04±0.02 0.04±0.02 0.02±0.01 1321
carbon tetrachloride 1.0±0.3 1.0±0.4 1.0±0.5 1.1±0.7 0.6±0.5 76
chloroform 0.8±0.5 0.5±0.3 0.4±0.3 0.5±0.2 0.3±0.1 24
dichloromethane 4.6±4.6 3.4±4.6 4.0±3.3 3.1±1.7 0.7±0.5 421
p-dichlorobenzene 0.02±0.01 0.01±0.01 0.01±0.01 0.02±0.01 0.01±0.01 291
tetrachloroethylene 2.8±1.4 3.1±1.7 4.6±2.2 4.3±3.9 0.7±0.4 410
trichloroethylene 0.6±0.4 0.6±0.5 7.3±13.8 1.2±1.8 0.2±0.1 131
Total Halocarbons 9.8±5.9 8.6±6.0 17±16 10.2±5.2 2.3±1.1
Aldehydes
acetaldehyde 1.1±0.6 1.1±0.3 1.3±0.6 1.3±0.7 4.2±2.4 1103

benzaldehyde 2.4±1.3 1.7±0.9 2.2±1.0 2.0±0.8 0.7±0.3 -
hexanal 2.0±0.9 1.1±0.5 2.0±0.9 1.5±0.7 0.4±0.3 -
heptanal 0.6±0.1 0.3±0.1 2.8±1.1 0.7±0.3 0.2±0.1 -
nonanal 2.4±1.4 1.8±1.0 2.8±2.0 2.4±2.0 0.7±0.6 -
octanal 1.5±0.8 0.6±0.4 2.6±1.4 1.4±0.8 0.4±0.2 -
pentanal 0.4±0.2 0.2±0.1 0.6±0.4 0.3±0.2 0.1±0.1 426



propanal 0.4±0.2 0.4±0.2 0.5±0.3 0.4±0.2 0.3±0.2 110
Total Aldehydes 10.8±4.8 7.1±3.2 14.9±5.9 10.0±4.9 6.8±2.7
Esters
butyl acetate 7.9±5.0 7.7±4.5 7.6±6.5 6.9±3.6 1.2±1.2 1724
ethyl acetate 24±16 22±17 27±23 26±18 2.4±2.0 3476
methyl acetate 1.9±0.9 1.9±1.2 2.0±1.3 2.0±0.8 0.5±0.3 1467
Total Esters 34±21 31±21 37±29 35±21 3.7±2.7
Terpenoids
D-limonene 3.4±1.5 2.5±2.0 1.6±1.3 2.3±1.4 0.5±0.3 262
p-cymene 0.6±0.3 0.6±0.4 0.4±0.4 0.9±0.7 0.2±0.1 -

-pinene 2.7±1.5 2.3±1.6 2.2±1.7 2.8±1.9 0.9±0.6 269
-pinene 0.4±0.2 0.3±0.2 0.2±0.2 0.4±0.2 0.1±0.1 269

Total Terpenoids 7.1±3.5 5.6±4.1 4.5±3.1 6.4±3.9 1.7±0.9
Ethers
tert-butyl ethyl ether 2.0±1.0 1.4±0.7 1.6±0.8 1.7±0.6 0.7±0.3 50
tert-butyl methyl ether 0.3±0.3 0.2±0.2 0.6±1.2 0.3±0.3 0.04±0.03 437
Total Ethers 2.3±1.2 1.6±0.8 2.2±1.8 1.9±0.8 0.6±0.4
Organonitrogenates
acetonitrile 0.2±0.1 0.1±0.1 0.1±0.1 0.2±0.2 0.1±0.1 162
benzothiazole 3.2±1.6 4.1±2.2 0.4±0.7 9.2±5.0 0.4±0.7 -
cyclohexane isocyanato 2.1±0.8 2.0±1.1 1.4±0.7 1.2±0.4 0.4±0.4 -
cyclohexane isothiocyanato 0.2±0.1 0.2±0.1 0.06±0.03 0.08±0.04 0.015±0.003 -
Total Organonitrogenates 5.6±2.5 6.4±3.0 2.0±1.2 10.6±5.0 0.9±0.9
Glycols
1-methoxy-2-propanol 8.6±4.2 3.2±2.2 2.4±1.9 2.6±1.5 0.5±0.5 893
2-butoxyethanol 7.3±2.0 4.4±1.9 4.5±2.0 4.9±2.6 3.5±1.8 233
Total Glycols 15.9±6.1 7.6±3.4 6.9±3.2 7.5±3.1 3.9±1.6
Others
1,3-butadiene 1.1±0.7 0.8±0.4 0.8±0.5 0.8±0.4 0.7±0.3 11



Sampling point: La Llagosta 6; Montcada i Reixac 7; Ripollet Pinetons 8; Ripollet Can Mas 9; Cerdanyola 10
1VLA: Valor Límite Ambiental-Exposición Diaria: the Spanish correspondence for threshold Limit Value-Time Weighted Average (TLV-TWA).
420 is an uncertainty factor that takes into account the varied physiological status of people (Repetto and Repetto, 2009)
2European Directive 2008/50/EC
3As VLA-EC: Valor Límite Ambiental-Exposición de corta duración (maximum of 15 minutes during the daily exposure).

carbon disulfide 0.2±0.1 0.2±0.1 0.3±0.2 0.4±0.2 0.1±0.1 36
tetrahydrofuran 0.5±0.3 0.4±0.2 0.3±0.2 0.3±0.2 0.3±0.2 357
Total Others 1.8±1.0 1.4±0.7 1.4±0.7 1.5±0.6 1.0±0.5
rf. toluene 15.5±8.7 10.6±5.7 10.8±5.5 11.8±5.0 3.8±1.8
Total VOC concentrations
(µg m-3) 242±121 177±94 188±113 200±74 91±48



Table 6. Formaldehyde concentrations (µg m-3) in worldwide urban areas.

Location Formaldehyde
(µg m-3) Citation

WTP 1 surroundings (Spain) 2.5±0.4 - 6.0±0.2 Present study
WTP 2 surroundings (Spain) 2.9±0.7 - 6.0±1.3 Present study
Barcelona (Spain) 3.1±0.6 - 4.1±0.2 Present study
Torino (Italy) 1.6±0.7 Bono et al., 2010
Rome (Italy) 2.8±1.1 Santarsiero and Fuselli, 2008
Hagfors (Sweden) 3.7 Gustafson et al., 2007
Zajecar (Serbia) 5.1
European cities 2.6 (0.3 - 7.3) Geiss et al., 2011
European urban areas 0.4±0.2 - 4.9±1.4 Bruinen de Bruin et al. 2008
USA urban areas 6.4 Liu et al., 2006
Japanese cities 1.7 - 4.3 Uchiyama et al., 2015
Saõ Paulo (Brazil) 1.4 - 8.0 Coelho et al., 2010
Beijing (China) 15.4 Liu et al., 2014
Hong Kong (China) 2.0 - 15.4 Cheng et al., 2014
Kaohsiung (Taiwan, ROC) 7.3 - 39.4 Wang et al., 2010
Yeosu (South Korea) n.d. - 31 Seo et al., 2014
Gwangyang (South Korea) 2 - 29 Seo et al., 2014
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Figure 1. Sampling locations. Blue polygons indicate industrial areas.

Figure 2. Correlation between toluene and tert-buthyl methyl ether (TBME)
concentrations in WTP 2 surroundings.

Figure 3. Calculated average formaldehyde concentrations (µg m-3) derived from
emissions from WTP 1 during the immission sampling periods: a) WTP 1 surroundings:
17-31/03/2015 and b) Barcelona city: 13-29/4/2015.

Figure 4. Calculated average formaldehyde and VOC concentrations (µg m-3) derived
from emissions from WTP 2 during the immission sampling period (9-23/2/2015). a)
Formaldedhyde and b) VOCs.

Figure 5. Experimental average formaldehyde concentrations (µg m-3) in WTP 1
surroundings vs. calculated concentrations derived from the WTP during immission
sampling (WTP 1 surroundings, points 1-5, 17-31/3/2015; Barcelona city, points 11-14,
13-29/4/2015).

Figure 6. Experimental average a) formaldehyde and b) TVOC concentrations (µg m-3)
in WTP 2 surroundings vs. calculated concentrations derived from the WTP during
immission sampling (9-23/2/2015).
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