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Abstract

The inverse finite element method (IFEM) for degenerate solid shells is in-

troduced. IFEM allows determining the undeformed shape of a body (in this

case, a shell-like body) such that it attains a desired shape after large elastic

deformations. The model is based on the degenerate solid approach, which

enables the use of the standard constitutive laws of Solid Mechanics. First,

IFEM is applied to three popular benchmarks for validation purposes. Then,

the capabilities of IFEM for inverse design are demonstrated by means of its

application to the design of a microvalve.
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1. Introduction

The Inverse Finite Element Method (IFEM) is the Finite Element Method

(FEM) applied to the problem of determining the undeformed configuration

of a body when the deformed configuration as well as the actuating loads are

known. This kind of problem –also known as the Inverse Design problem– of-

ten arises in the design of compliant structures or mechanisms suffering large

elastic displacements and/or rotations, for instance: a gasket that deforms

to the desired shape under given loads [1]; a rubber seal that closes a given

channel under a given pressure [2]; a turbine blade that attains an optimal

shape at a certain angular speed [3]; an S-clutch whose shoes exactly engage

the friction surface of a given drum at a given angular speed [4, 5]; a device

that folds an intraocular lens in such a way that facilitates its implantation

into the eye [6], among other interesting applications developed in the papers

mentioned.

Outside the field of inverse design, Lu and Zhou [7, 8] proposed an appli-

cation of IFEM to the prevention of aneurysms, taking the in vivo image of

an aneurysm as the known deformed configuration under a known pressure.

All these inverse problems could be solved using systematized “trial-and-

error” methods from Optimization Theory, considering any measure of the

closeness to the desired deformed configuration as the cost function to be

minimized. At each iteration of the optimization problem, a nonlinear (di-

rect) equilibrium equation has to be solved to determine the cost function. In

contrast, IFEM solves only one nonlinear equilibrium equation to determine

the desired deformed configuration, which is approximately as computation-

ally expensive as only one iteration of an optimization problem. This was
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illustrated by Albanesi et al. [4, 5], who used IFEM to design a compliant

gripper, which had been originally designed by Lan and Cheng [9] by solving

an optimization problem.

In our previous papers, IFEM was introduced for 3D solids [3] and 3D

beams [4, 5]. The current paper is a step towards the completion of our

IFEM library by introducing shell elements.

Zhou and Lu [8] introduced IFEM for shells using the stress-resultant ap-

proach proposed by Simo et al. [10]. Models based in this approach need spe-

cialized constitutive equations for the accross-the-thickness membrane and

shear stress resultants and stress couple, as described in the pioneering work

of Simo and Fox [11].

In the present paper, the degenerate solid approach to shells, originally

proposed by Ahmad et al. [12] and extended to nonlinear geometrical analysis

by Ramm [13], is preferred. This approach is characterized by defining the

stress itself (rather than the stress resultants) using the same constitutive

equations as those of Solid Mechanics. This attribute of the degenerate solid

shells was the reason for our choice. Then, as an original contribution, we

introduce IFEM to the context of degenerate solid shells.

The low-order displacement-based shell finite elements predict spurious

shear stresses and, as result, exhibit artificially high stiffness. This is the

well-known “shear locking” defect [14], which can be circumvented by using

the appropriate mixed finite elements. In the present paper, recourse is made

to the formulation known as Mixed Interpolation of Tensorial Components

(MITC), originally proposed by Dvorkin and Bathe [15] for bi-linear 4-node

quadrangles and extended by Bucalem and Bathe [16] to bi-quadratic 9-
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node and bi-cubic 16-node quadrangles. Using MITC, the components of the

strain tensor are interpolated independently of the displacements, in order

to preclude shear locking.

First, we solve three popular problems for linear-elastic shells with large

deflections and rotations [17], using these benchmarks for the purpose of

validating the presented IFEM. Finally, the capability of IFEM for inverse

design is shown by the design of a compliant microvalve to close a given

channel when the pressure drop attains a prescribed value, giving a more

efficient alternative to that originally proposed by Seidemann et al. [18].

2. Formulation of the degenerate solid shell finite element

The aim of this section is to give a brief summary of the formulation of

FEM for degenerate solid shells, which is already classical in the “direct”

FEM. Specifically, we describe the so-called “basic shell” model [19, 20],

which is based on the Mindlin-Reissner kinematic hypothesis: those straight

fibers that are normal to the midsurface of the shell when it is undeformed

remain straight and unstretched during deformation. The “basic shell” model

is well-suited for thin to moderately thick shells, offering the best compromise

between simplicity and applicability in FEM for shells.

As a corollary, we arrive at a system of discrete nonlinear equations gov-

erning the equilibrium of geometrically nonlinear degenerate solid shells in

“direct” FEM, to be taken as the starting point for the development of IFEM

for degerate solid shells in the next section.
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2.1. Kinematic hypotheses for shells

Let B0 represent the solid shell body shown in Fig. 1. The geometry of

the shell is defined by its midsurface S0 and the thickness of the shell at each

point of the midsurface. Let {ξ1, ξ2, ξ3} be a system of natural coordinates,

such that ξ1 and ξ2 vary through the midsurface S0 and ξ3 varies across the

thickness of the shell, with −1 ≤ ξi ≤ 1 and ξ3 = 0 at the midsurface. Then,

the position of any point X ∈ B0 can be expressed as a function of the

natural coordinates as follows:

X(ξ1, ξ2, ξ3) = X̄(ξ1, ξ2) + ξ3
H

2
T (ξ1, ξ2), (1)

where X̄ ∈ S0, T is the unit vector known as the material director, and

H = H(ξ1, ξ2) is the thickness of the undeformed shell.
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Figure 1: Geometric representation of the undeformed and deformed configurations of a

shell.

Let B be the deformed configuration of the shell, with midsurface S. After

deformation, the point X ∈ B0 occupies the position x ∈ B:

x(ξ1, ξ2, ξ3) = x̄(ξ1, ξ2) + ξ3
h

2
t(ξ1, ξ2), (2)
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where x̄ ∈ S, t is the unit vector known as the spatial director, and h =

h(ξ1, ξ2) is the thickness of the undeformed shell.

In the present paper, we adopt the “basic shell” model [19, 20], based

on the Mindlin-Reissner plate theory, according to which t is not necessarily

normal to S if T is normal to S0 (and viceversa), as an effect of the shear

deformation. Further, as a consequence of the Mindlin-Reissner assumption,

the strain normal to the midsurface is null [20], so that the thickness of the

shell remains constant during deformation, i.e., h = H.

Inside a generic finite element with nodes i = 1, 2, . . . , N , the positions

x ∈ B and X ∈ B0 are isoparametrically interpolated from their respective

nodal values, as follows:

X(ξ1, ξ2, ξ3) = ϕi(ξ1, ξ2)

[
X̄i +

ξ3

2
h(ξ1, ξ2)Ti

]
= Φ(ξ1, ξ2, ξ3)Q, (3)

x(ξ1, ξ2, ξ3) = ϕi(ξ1, ξ2)

[
x̄i +

ξ3

2
h(ξ1, ξ2)ti

]
= Φ(ξ1, ξ2, ξ3)q, (4)

with

Φ =
[
ϕ1I3×3

ξ3
2 hϕ1I3×3 · · · ϕNI3×3

ξ3
2 hϕNI3×3

]
, (5)

Q =



X̄1

T1

...

X̄N

TN


, q =



x̄1

t1
...

x̄N

tN


, (6)

where (X̄i,Ti) defines the position of node i in the finite element mesh repre-

senting B0 (known for FEM, unknown for IFEM), (x̄i, ti) defines the position

of node i in the mesh representing B (unknown for FEM, known for IFEM),

6



and ϕi = ϕi(ξ1, ξ2) is the 2-D shape function associated to node i; I3×3 is the

3× 3 identity matrix.

The deformation of the shell can be measured using the Green-Lagrange

strain tensor, which can be expressed as

E =
1

2
(gα · gβ −Gα ·Gβ)︸ ︷︷ ︸

Ecov
αβ

Gα ⊗Gβ, (7)

where Ecov
αβ are the so-called covariant components of E, gα = ∂x/∂ξα and

Gα = ∂X/∂ξα are the spatial and convective basis vectors, respectively, and

Gα is a vector of the base reciprocal to {Gα}, so that Gα ·Gβ = δαβ .

Using FEM, the covariant strain components Ecov
αβ take the form

Ecov
αβ =

1

2

(
qTAαβq −QTAαβQ

)
, (8)

where Aαβ is the 6N × 6N -symmetric matrix defined by

Aαβ =
1

2

(
∂ΦT

∂ξα

∂Φ

∂ξβ
+
∂ΦT

∂ξβ

∂Φ

∂ξα

)
. (9)

2.2. The cure for shear locking

The stiffness of low-order finite elements increases spuriously as the thick-

ness/in-plane dimension of the element decreases. This is the well-known

“shear locking” problem, which affects even cubic order elements.

One of the simpler cures for “shear locking” is the use of the “assumed-

strain” technique. In particular, we use the MITC formulation, originally

proposed by Dvorkin and Bathe [15].

Using MITC, each covariant strain field Ecov
αβ (that defined by Eq. (8)) is

replaced by an “assumed” field Ẽcov
αβ . Inside each MITC finite element, the

7



assumed field Ẽcov
αβ is defined so as to coincide with Ecov

αβ at a series of “tying”

points:

Ẽcov
αβ (ξI1 , ξ

I
2 , ξ

I
3) ≡ Ecov

αβ (ξI1 , ξ
I
2 , ξ

I
3) I = 1, 2, . . . , nαβ, (10)

where (ξI1 , ξ
I
2 , ξ

I
2) are the natural coordinates of the tying point I.

With quadrangular MITCn elements (where n stands for the number of

nodes of the element, e.g., MITC4 [15], MITC9, MITC16 [16]), the assumed

strain can be defined as

Ẽcov
αβ (ξ1, ξ2, ξ3) =

nαβ∑
K=1

ϕ̃Iαβ(ξ1, ξ2, ξ3)Eαβ(ξI1 , ξ
I
2 , ξ

I
3), (11)

where ϕ̃Iαβ is the Lagrange polynomial associated to the tying point I, such

that ϕ̃Iαβ(ξJ1 , ξ
J
2 , ξ

J
2 ) = δIJ at any tying point J associated to the covariant

strain Eαβ.

Algorithmically, the use of MITCn elements amounts to replacing the

matrix Aαβ, Eq. (9), by

Ãαβ(ξ1, ξ2, ξ3) =

nαβ∑
I=1

ϕ̃Iαβ(ξ1, ξ2, ξ3)Aαβ(ξI1 , ξ
I
2 , ξ

I
3), (12)

in the definition of Ecov
αβ , Eq. (8).

From now on, “direct” strains will be replaced with “assumed” strains,

and the superimposed tilde that identifies the assumed ones will be obviated

in order to simplify the notation.

2.3. Constitutive equations in shells

One of the characteristic features of the degenerate solid shell elements

is the use of the constitutive laws for continuum solids. So, for an elastic
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solid, the constitutive law can be written as a function relating E with its

work-conjugate stress, the second Piola-second Piola-Kirchhoff stress tensor

S, i.e.,

S = S(E). (13)

Further, the “basic shell” model assumes that the stress in the direction

normal to the midsurface (that of G3) is zero [19]. Then, it is convenient to

refer the constitutive law to a Cartesian frame {e1, e2, e3} attached to each

point X ∈ B0, such that a Cartesian plane, say {e1, e2}, is always tangent

to the shell, or more precisely, to the surface ξ3 = constant. At this point,

we need to refer E to this Cartesian frame:

E = θαi θ
β
jEαβ︸ ︷︷ ︸
Eij

ei ⊗ ej, (14)

with

θαi = Gα · ei. (15)

Using Voigt notation, the local-Cartesian and the covariant components of

E are related by

Ě = ΘĚcov, (16)
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with

Ě =
[
E11 E22 E33 2E12 2E23 2E13

]T
, (17)

Ěcov =
[
Ecov

11 Ecov
22 Ecov

33 2Ecov
12 2Ecov

23 2Ecov
13

]T
, (18)

Θ =



θ1
1θ

1
1 θ2

1θ
2
1 θ3

1θ
3
1 θ1

1θ
2
1 θ2

1θ
3
1 θ3

1θ
1
1

θ1
2θ

1
2 θ2

2θ
2
2 θ3

2θ
3
2 θ1

2θ
2
2 θ2

2θ
3
2 θ3

2θ
1
2

θ1
3θ

1
3 θ2

3θ
2
3 θ2

3θ
2
3 θ1

1θ
2
3 θ2

3θ
3
3 θ3

3θ
1
1

2θ1
1θ

1
2 2θ2

1θ
2
2 2θ3

1θ
3
2 θ2

1θ
1
2 + θ1

1θ
2
2 θ3

1θ
2
2 + θ2

1θ
3
2 θ3

1θ
1
2 + θ1

1θ
3
2

2θ1
2θ

1
3 2θ2

2θ
2
3 2θ3

2θ
3
3 θ2

2θ
1
3 + θ1

2θ
2
3 θ3

2θ
2
3 + θ2

2θ
3
3 θ3

2θ
1
3 + θ1

2θ
3
3

2θ1
1θ

1
3 2θ2

1θ
2
3 2θ3

1θ
3
3 θ2

1θ
1
3 + θ1

1θ
2
3 θ3

1θ
2
3 + θ2

1θ
3
3 θ3

1θ
1
3 + θ1

1θ
3
3


. (19)

2.4. The principle of virtual work in degenerate solid shells

When a shell-like body is modeled using the degenerate solid shell FEM,

the equilibrium of the body is governed by the principle of virtual work

(PVW) given in the standard form for 3D solids. Using the Lagrangian for-

mulation for large deformation problems together with the Green-Lagrange

strain E as a measure of the deformation, the PVW for general solids takes

the form ∫
B0
S : δE dV =Wext(δu), (20)

for all kinematically admissible displacement variations δu, δE is the Green-

Lagrange strain induced by δu, S is the second Piola-Kirchhoff stress tensor

(work-conjugate to E), and Wext is the work of the external forces (surface

tractions and body forces) on the whole body under a displacement δu.

In the “direct” FEM, where X and x are interpolated according to Eqs.

(3) and (4) and X is known, the displacement variation can be written as

δu = δx = Φδq, (21)
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with

δq =



δx̄1

δt1
...

δx̄N

δtN


, (22)

where δx̄i and δti denote admissible variations of x̄ and t at node i.

Under a variation δq, the covariant strain components given by Eq. (8)

undergo the following variation (written in Voigt notation):

δĚcov = B(q)δq (23)

with

B(q) =



qTA11

qTA22

qTA33

2qTA12

2qTA23

2qTA13


. (24)

Then, using Eq. (16), the variation of the local-Cartesian components of E

is

δĚ = ΘBδq, (25)

where B ≡ B(q).
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2.5. External forces and couples

The (external) virtual work produced by the displacement δu or, equiv-

alently, the nodal variations δq, is

Wext = F ext · δq, (26)

introducing F ext as the vector of external forces and couples lumped at the

nodes.

2.6. Elimination of the drilling degree of freedom

Following a common practice in the formulation of MITCn elements, we

choose to eliminate the drilling degree of freedom, that associated to the

rotation of the shell around the director. But differing from the classical

papers on MITCn, where an additive scheme is used to update the director,

recourse is made to the multiplicative scheme proposed by Simo et al.[11],

which avoids singularities for large rotations and guarantees the inextensi-

bility of the director. Using such a scheme, the variation of t at node i is

expressed as

δti = λ̃iδt
∗
i (no summation over i), (27)

where δt∗i is a vector in the plane {i, j} of the fixed global Cartesian frame

{i, j,k}, and λ̃i is the 2×3 matrix made of the first two rows of the orthogonal

matrix λi from the transformation

ti = λik. (28)

Eq. (27) shows that only two degrees of freedom are needed to update the

nodal director, this way eliminating the drilling degree of freedom, making
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the current formulation have five degrees of freedom per node. Consequently,

δq is replaced by

δq =



I3×3 03×2 · · · 03×3 03×2

03×3 λ̃1 · · · 03×3 03×2

...
...

. . .
...

...

03×3 03×2 · · · I3×3 03×2

03×3 03×2 · · · 03×3 λ̃N


︸ ︷︷ ︸

Λ



δx̄1

δt∗1
...

δx̄N

δt∗N


︸ ︷︷ ︸
δq∗

, (29)

where 0i×j denotes the i× j zero matrix.

2.7. Discrete equilibrium equations for the degenerate solid shell FEM

By replacing δq by δq∗, taking into account that δq∗ is arbitrary, and

introducing the strain and stress measures in local Cartesian coordinates,

the PVW gives rise to the discrete, nonlinear system of algebraic equations

that governs the equilibrium of the degenerate solid shell FEM:

R∗ = F int∗ − F ext∗ = 0, (30)

where

F ext∗ = ΛTF ext, (31)

F int∗ = ΛT

∫
B0
BTΘT Š dV︸ ︷︷ ︸
F int

, (32)

where the vector F int of nodal internal forces and couples is introduced, with

Š denoting the vector made of the components Sij of the stress tensor S

with respect to the local-Cartesian frame {ei} ordered according to Voigt
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notation:

Š =
[
S11 S22 S33 S12 S23 S13

]T
. (33)

3. Inverse finite element analysis

In inverse finite element analysis, the loaded configuration B as well as

the external loads responsible for deforming the shell from B0 to B are as-

sumed to be known. In our previous papers [3, 4], we chose to formulate the

equilibrium equation over the known configuration B, using Eulerian stress

and strain measures. In the present paper, we adopt a different approach,

assuming that both FEM and IFEM have the same governing equations, that

given by the discrete equilibrium equation, Eq. (30), differing only in the fact

that the knowns and unknowns are interchanged. Let us explicitly state how

the terms involved in the governing equation, Eq. (30), depend on q and/or

Q. Considering F int∗, we have

F int∗(Q, q) = ΛT (q)

∫
B0(Q)

BT (q)ΘT (Q)Š(Q, q) dV (Q)

= ΛT (q)

∫
B(q)

BT (q)ΘT (Q)Š(Q, q) [J(Q, q)]−1 dv(q), (34)

where the last equality was obtained by a simple change of the integration

domain, with J the Jacobian determinant of the transformation from B0 to

B, given by

J =
dv

dV
=

(g1 × g2) · g3

(G1 ×G2) ·G3

. (35)

In the FEM, F int∗ depends on the unknown q via Λ, B and Š, while in the

IFEM, it depends on the unknown Q via Θ, J , and Š.
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Concerning the external loads, they generally depend on both the de-

formed and undeformed configurations:

F ext∗(Q, q) = ΛT (q)F ext(Q, q). (36)

In the case of a pressure load, that is, a configuration-dependent load, F ext∗ is

constant for IFEM. In contrast, for a dead load, F ext∗ is a nonlinear function

of Q.

3.1. Solution of the nonlinear equilibrium equation in IFEM

Let us rewrite the equilibrium equations (30) as

R∗(Q) = F int∗(Q, q)− F ext∗(Q, q). (37)

When specifically applied to the IFEM, the system of equations (37) have q

as known and Q as unknown. This is a nonlinear system that will be solved

using the Newton-Raphson scheme: once Q(k) (that is Q at iteration k) is

known, Q is updated by solving the following linear equation for ∆Q∗:

R∗(Q(k+1)) = R∗(Q(k)) +K∗(Q(k))∆Q∗ = 0, (38)

where K∗ is the tangent stiffness matrix

K∗ =
∂R

∂Q∗
, (39)

and

∆Q∗ =



∆X̄1

∆T ∗1
...

∆X̄N

∆T ∗N


(40)
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After solving the linear system (38), the position of the node i at the unde-

formed midsurface is straightforwardly updated:

X̄
(k+1)
i = X̄

(k)
i +∆X̄i. (41)

3.1.1. Update of the material director vector

The iterative update of the nodal material director Ti requires a special

treatment for two reasons: first, to preserve its unit length, and second, to

transform the 2D-solution ∆T ∗i . We proceed here in a way identical to that

proposed by Simo et al. [10] for the “direct” shell FEM.

Given the initial guess T
(0)
i , we compute the rotation matrix

χ
(0)
i = (k · T (0)

i )I3×3 +
̂
k × T (0)

i +
(k × T (0)

i )⊗ (k × T (0)
i )

1 + k · T (0)
i

, (42)

where v̂ is the skew-symmetric matrix whose axial vector is v. Usually,

T
(0)
i ≡ ti is adopted as the initial guess. In this case, χ

(0)
i ≡ λi is the

orthogonal matrix of Eq. (28).

Then, once the director T (k) and the rotation matrix χ
(k)
i are known for

a given iteration k, Ti and χi are successively updated according to the next

steps:

1. Update of the director:

T
(k+1)
i = cos ‖∆Ti‖T (k)

i +
sin ‖∆Ti‖
‖∆Ti‖

∆Ti, (43)

with

∆Ti =
[
χ̃

(k)
i

]T
∆T ∗i , (44)

where χ̃
(k)
i is the 2× 3 matrix made of the first two rows of χ

(k)
i .
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2. Update of the rotation matrix:

χ
(k+1)
i = ∆χiχ

(k)
i , (45)

with

∆χi = cos ‖∆Ti‖I3×3 +
sin ‖∆Ti‖
‖∆Ti‖

̂
T

(k)
i ×∆Ti

+
1− cos ‖∆Ti‖
‖∆Ti‖2

(T
(k)
i ×∆Ti)⊗ (T

(k)
i ×∆Ti). (46)

3.2. Computation of the tangent stiffness matrix

The tangent matrix K∗ is made of contributions from the internal and

external forces:

K∗ =
∂F int∗

∂Q∗
+
∂F ext∗

∂Q∗
= K int∗ +Kext∗. (47)

The termKext∗ appears only if the external loads depend on the initial config-

uration, like dead loads. In any case, it will not receive further consideration

here.

The contribution of the internal forces given by Eq. (34) can be expressed

as

K int∗ = ΛT
(
Kmat +Kgeo

) dQ

dQ∗
, (48)

with

Kmat =

∫
B
BTΘT Č

∂Ě

∂Q
J−1 dv, (49)

Kgeo =

∫
B
BT ∂(ΘTv)

∂Q

∣∣∣∣
v=Š

J−1 dv −
∫
B
BTΘT ŠJ−2 dJ

dQ
dv. (50)
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3.2.1. Computation of Kmat

Two matrices remain undefined in Eq. (49) for Kmat. The first one is

Č =
∂Š

∂Ě
, (51)

which is the matrix (in Voigt notation) containing the tangent moduli Cijkl =

∂Sij/∂Ekl referred to the local-Cartesian base {ei}, which are given by the

material properties.

The second one is ∂Ě/∂Q that, given Ě by Eq. (16), is defined as

∂Ě

∂Q
=

∂

∂Q

(
ΘĚcov

)
=
∂(Θv)

∂Q

∣∣∣∣
v=Ěcov

+Θ
dĚcov

dQ
. (52)

The first term in the r.h.s. of Eq. (52) is the matrix whose ij entry is[
∂(Θv)

∂Q

]
ij

=
∂Θik

∂Qj

vk. (53)

Now, it remains to compute ∂Θik/∂Qj. Given Θ by Eq. (19), its derivative

with respect to Qj is completely determined by the knowledge of

dθαi
dQj

= ei ·
dGα

dQj

. (54)

Since Gα ·Gβ = δαβ , we have

∂Gα
i

∂Qj

= −Gα
k

∂Gβk

∂Qj

Gβ
i , (55)

where it remains to determine ∂Gβk/∂Qj. Taking into account that Gβ =

(∂Φ/∂ξβ)Q when X is interpolated according to Eq. (3), ∂Gβk/∂Qj is the

kj entry of the matrix

∂Gβ

∂Q
=
∂Φ

∂ξβ
. (56)
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Regarding the second term in the r.h.s. of Eq. (52), it remains to compute

the matrix ∂Ecov/∂Q. Given the covariant strain components Ecov
αβ by Eq.

(8), we have

∂Ěcov

∂Q
= −B0, (57)

with B0 ≡ B(Q) defined by Eq. (24).

Finally, Kmat takes the form

Kmat =

∫
B
BTΘT Č

∂(Θv)

∂Q

∣∣∣∣
Ěcov

J−1 dv −
∫
B
BTΘT ČΘB0J−1 dv. (58)

3.2.2. Computation of Kgeo

Regarding the first term of Kgeo, Eq. (50), it only remains to determine[
∂(ΘTv)

∂Q

]
ij

=
∂Θki

∂Qj

vk, (59)

where ∂Θki/∂Qj can be expressed in terms of ∂θαi /∂Qj, Eq. (54).

Regarding the second term of Eq. (50), we need to compute ∂J/∂Qj.

Invoking Eq. (35), we have

∂J

∂Qj

= − J

(G1 ×G2) ·G3

×

εpqr

(
∂G1q

∂Qj

G2rG3p +G1q

∂G2r

∂Qj

G3p +G1qG2r

∂G3p

∂Qj

)
, (60)

where εpqr is the Levi-Civita or permutation symbol, and ∂Gαi/∂Qj is defined

by Eq. (56).
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3.2.3. Computation of ∂Q/∂Q∗

Once Kmat and Kgeo are completely determined, the complete determi-

nation of the tangent stiffness matrix K int∗, Eq. (48), requires computing

∂Q

∂Q∗
=



I3×3 03×2 · · · 03×3 03×2

03×3 ∂T1/∂∆T
∗
1 · · · 03×3 03×2

...
...

. . .
...

...

03×3 03×2 · · · I3×3 03×2

03×3 03×2 · · · 03×3 ∂TN/∂∆T
∗
N


(61)

where we need to determine ∂Ti/∂∆T
∗
i by taking into account the update

procedure described in Section 3.1.1. By differentiating the updated Ti given

by Eq. (43) with respect to the nodal increment ∆T ∗i , we obtain

∂T
(k+1)
i

∂∆T ∗i
=
∂T

(k+1)
i

∂∆Ti

∂∆Ti
∂∆T ∗i

=

[
− cos ‖∆Ti‖
‖∆Ti‖

T
(k)
i ⊗∆Ti+(

cos ‖∆Ti‖
‖∆Ti‖2

− sin ‖∆Ti‖
‖∆Ti‖3

)
∆Ti ⊗∆Ti+

sin ‖∆Ti‖
‖∆Ti‖

I3×3

] [
χ̃

(k)
i

]T
. (62)

4. Applications

In this section, three benchmarks are solved, to illustrate how IFEM works

in the context of shell analysis. These three problems are based on popular

benchmarks for the geometrically non-linear analysis of shells using (direct)

FEM [17], serving by the way as a validation of the presented IFEM model.

Next, IFEM will be applied to the design of a compliant microvalve. This

real-life application is exemplary of the strength of IFEM for the design of

compliant structures to attain a given shape after large elastic deformations.
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4.1. Bending of a cantilever

Let us consider the cantilever shown in Fig. 2, with length L = 10, width

w = 1, and thickness h = 0.1. When unloaded, it lies in the xy-plane. Then,

it is deformed by a lifting load uniformly distributed along the end, whose

resultant is the force P = 4 in the z-direction. The plate is made of a Saint

Venant-Kirchhoff (linear-elastic) material, with Young modulus E = 1.2×106

and Poisson ratio ν = 0.

This problem, a popular benchmark for (direct) FEM applied to shells

under large elastic deformations (see [17] and the references therein), serves

the purpose of validating the current IFEM.

First, the problem is solved using the direct FEM. To this end, the un-

deformed domain is represented by a mesh of 8 × 1 MITC4 finite elements,

obtaining the solution shown in Fig. 2a. This solution is in very good agree-

ment with that of Sze et al. [17], who used the reduced-integration elements

known as S4R from the commercial code ABAQUS.

Second, the FEM-computed position xi and director ti at all the nodes

of the mesh for FEM are assumed to define the mesh for the IFEM, made

once again of MITC4 elements. The deforming load (with resultant P in the

z-direction) now is distributed along the free end of the mesh for the IFEM.

The solution of the IFEM problem is depicted in Fig. 2b.

The accuracy of IFEM is determined by its ability to recover the given

undeformed plane cantilever as the solution, and can be measured in terms

of

error(Xi) = ‖XFEM
i −X IFEM

i ‖, (63)

error(Ti) = ‖T FEM
i − T IFEM

i ‖, (64)

21



z

w =1

L =10

y

P

x

z

x

Solution of FEMº Domain of IFEM

y

P

Displ.
magnitude

Displ. magnitude

a) FEM problem b) IFEM problem

Domain of FEM (given)
Solution of IFEM

Figure 2: Cantilever under large elastic deformation: a) FEM problem with the deformed

configuration as solution, b) IFEM problem with the undeformed configuration as solution.

where (∗)FEM
i refers to the variable (∗) at the node i of the mesh used by

FEM, which is known, and (∗)IFEM
i refers to the variable (∗) at the node i

computed as solution of the IFEM.

-6a) Error in position (´10 ) b) Error in director -6 (´10 )x

y

x

y

Figure 3: Cantilever under large elastic deformation: accuracy of IFEM.

Fig. 3 proves the remarkabe accuracy of the IFEM in the current ap-
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plication: the maximal error(Xi) is 1.83 × 10−6 and occurs at the nodes

along the loaded end where the displacement magnitude is 7.47; the maxi-

mal error(Ti) is 2.26×10−7 and takes place at the same nodes. Let us remark

that both errors depend on the convergence criterion for the solution of the

nonlinear equilibrium Eq. (37): in this case, the FEM problem of obtaining

the deformed configuration as well as the IFEM problem of recovering the

undeformed configuration were solved until ‖R∗‖ < 10−6.

Another outstanding quality of the IFEM, already observed in several

applications developed in our previous papers [3, 4, 6], is the fast convergence

to the solution of the nonlinear equilibrium Eq. (37).

Actually, when Sze et al. [17] solved the same (direct) problem, they needed

to use 78 iterations along 15 load increments, whereas the current IFEM

problem was solved using only 14 iterations along 2 load steps.

4.2. A slit annular plate under a lifting force

The second benchmark consists of a slit annular plate, with inner radius

r = 6, outer radius R = 10, and thickness h = 0.03 clamped at one side of

the slit and deformed by a lifting force uniformly distributed along the other

side of the slit, with resultant P = 3.2 and direction given by the z-axis (see

Fig. 4). When unloaded, the plate lies in the xy-plane.

The plate is made of a Saint Venant-Kirchhoff (linear-elastic) material, with

Young modulus E = 21× 106 and Poisson ratio ν = 0.

This is also a popular benchmark for geometrically non-linear shells, as

in the survey of Sze et al. [17].

First, the problem is solved using the FEM with the plate represented by

a mesh of 10× 80 MITC4 finite elements. The results are shown in Fig. 4a,
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and are very close to those obtained by Sze et al. [17] using S4R elements

from ABAQUS.

Then, the FEM-computed deformed mesh is adopted as the mesh for the

IFEM, as shown in Fig. 4b. The load that caused the deformation (that

whose resultant is P and whose direction is the z-axis) is distributed along

the free end of the mesh for the IFEM.

The IFEM solution is shown in Fig. 4b. The accuracy of the IFEM is

highlighted in Fig. 5: the maximal error(Xi)= 9.27× 10−6 is negligible com-

pared to the maximal displacement magnitude (19.33), while the maximal

error(Ti)= 0.85× 10−6 is negligible compared to unity. Both errors have the

same order of magnitude as the tolerance for the Newton-Raphson solution

of Eq. (37), adopted as ‖R∗‖ < 10−6 in this case.

Concerning the performance of the solver of the nonlinear equilibrium

equation, when Sze et al. [17] solved the current FEM problem, 347 iterations

along 67 load increments were required. Here, the IFEM problem was solved

using only 15 iterations along 2 load steps.

4.3. Cylinder under pulling-out forces

The third benchmark consists of the pulling-out of a shell that, before

loading, is a cylinder with radius R = 4.953, length L = 10.35, and thickness

h = 0.094, as shown in Fig. 6a. The cylinder has open ends and is pulled

out by two opposite radial forces of magnitude P = 2× 105 concentrated at

diametrically opposed points. This shell is made of a Saint Venant-Kirchhoff

(linear-elastic) material, with Young modulus E = 10.5 × 106 and Poisson

ratio ν = 0.3125.

First, the problem is solved using the FEM. Taking advantage of the
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Figure 4: Slit annular plate under large elastic deformation: a) FEM problem with de-

formed configuration as solution; b) IFEM problem solved to recover the given undeformed

configuration.

x

y

-6a) Error in position (´10 )

x

y

b) Error in director -6 (´10 )

Figure 5: Slit annular plate under large elastic deformation: accuracy of IFEM.

symmetry of the shell with respect to the planes xz and yz, only one-fourth

of the cylinder is modeled, using 36 (tangential)×48 (axial) MITC4 elements.

The FEM solution is shown in Fig. 4a, and is very close to that obtained by
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Sze et al. [17] using S4R elements from ABAQUS.

O

z

L/ 2L/ 2
P

P

x

y

Domain of 
FEM (given)

Solution of FEM
     º Domain of IFEM

Displ. 
magnitude

Displ. 
magnitude

Solution
of IFEM

a) FEM problem b) IFEM problem

R

Figure 6: Pulled-out cylinder.

-6a) Error in position (´10 ) b) Error in director -6 (´10 )

Figure 7: Pulled-out cylinder: accuracy of IFEM.

Second, the FEM-computed deformed mesh is adopted as the mesh for the

IFEM, as shown in Fig. 6b. The pulling-out forces have the same magnitude

and direction and are applied at the same nodes as those for the FEM.
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The IFEM solution is shown in Fig. 6b. As shown in Fig. 7, the IFEM

is able to recover the given undeformed mesh with high accuracy.

In this case, the nonlinear equilibrium Eq. (37) was solved until ‖R∗‖ < 10−6,

requiring 14 iterations along 2 load steps.

4.4. Design of a passive microvalve

Now, let us apply the IFEM to a real-life inverse design problem: the

design of a passive microvalve whose task is identical to that of the microvalve

proposed by Seidemann et al. [18], depicted in Fig. 8. Integrated into a

microchannel with thickness 360µm and width 200µm, the valve must close

the channel when the pressure drop attains a prescribed value ∆p, and bypass

a specified flow when the pressure drop vanishes.

Anchor

Valve
Spring

Flow
direction x

y

z

200 mm

360 mm

Figure 8: Compliant passive valve to seal a microchannel proposed by Seidemann et al.

[18].

Note that the valve in Fig. 8, as originally designed by Seidemann et al.

[18], cannot remain centered during deformation because its flexible spring

is non-symmetric with respect to the direction of the resultant of the applied

pressure. Without information about the pressure drop and the sealing gap,
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it is not possible to assess how critical this defect is in the design of Seidemann

et al. [18]. However, Albanesi et al. [6] directly avoided such a defect by

replacing the unique non-symmetric spring of the original valve by two springs

arranged symmetrically with respect to the axis, as shown in Fig. 9b. This

symmetric mechanism, where the springs are compliant beams, is the starting

point for the current proposal, shown in Fig. 9b, where the springs behave

as shells.

The valve itself is considerably stiffer than the springs, so it is modeled

as a rigid body. Further, given the symmetry of the problem, only one spring

is modeled, using a mesh of 32850 MITC4 shell elements, each one having

sides of approximately 2 µm. A detail of this fine mesh is shown in Fig. 9c.

Edge clamped
to the anchor

Edge clamped
to the valve

Modelled 
flexible
spring

Rigid valve
Dp

x
y

100 mm

Flow
direction

Anchor

x
y

z

c) Detail of the finite 
element mesh

a) Albanesi et al.'s model b) Current model

Channel

Figure 9: Configuration of a compliant passive valve when closed under a given pressure

drop ∆p: a) Albanesi et al.’s model [6], where the springs are made of compliant beams;

b) current proposal, where the springs are shells; c) detail of the current finite element

mesh.
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The pressure drop ∆p determining the closure of the valve was not spec-

ified by Seidemann et al. [18]. Let us assume ∆p = 1 kPa, which defines the

current microvalve as a low-pressure one [21]. The resultant of ∆p is a force

P = 360µ actuating along the axis of the channel (y-axis in Fig. 9).

Like those of Seidemann et al. [18] and Albanesi et al.[6], the current

valve is made of the monomer SU8, which is assumed to be a linear-elastic

material with Young modulus E = 3.2 GPa [22], shear modulus G = 1.2 GPa

[22], and yield strength from 60 to 73 MPa [23].

There is an additional design requirement that can not be a priori im-

posed on the IFEM since it involves the valve in its open (i.e., undeformed)

condition: a certain sealing gap is needed, depending on the prescribed flow

to by-pass. In order to control such a gap for the given geometry of the de-

formed midsurface, load, and displacement boundary conditions, the thick-

ness of the spring has to be varied. In this case, in order to attain a gap

similar to that of the valve of Albanesi et al. [6], the thickness of the spring

is set to h = 2µm, constant.

The Newton-Raphson solution of the nonlinear equilibrium equation re-

quired only one load step and four iterations to attain the convergence crite-

rion ‖R∗(Q(4))‖ < 10−5‖R∗(Q(0))‖, with Q(0) the initial guess with entries

X̄
(0)
i = x̄i, T

(0)
i = ti, where x̄i and ti are the nodal position and director at

the node i of the mesh of the given deformed midsurface.

Fig. 10a shows the undeformed configuration computed by IFEM. Note

that the maximal displacement takes place at the side where the spring is

clamped to the valve, so this is the displacement of the rigid valve itself. The

magnitude of such displacement is 24.4% of the total height of the spring,
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which largely justifies the use of the nonlinear theory of large displacements.

Deformed
configuration
(given)

Undeformed
configuration
(solution)

a) Displacement along the axis b) Maximal von-Mises stress

Displ. [mm]
Stress [MPa]

Figure 10: IFEM solution for the compliant passive valve: a) Displacement of the mid-

surface in the direction of the axis of the channel; b) Maximal von Mises stress across the

thickness the shell.

In order to see that the undeformed configuration in Fig. 10a actually

constitutes the manufacturing shape of the valve, the feasibility of the IFEM

solution has to be evaluated in terms of topological and mechanical tests, as

detailed by Albanesi et al. [6]. Concerning the topology, the IFEM may lead

to a useless solution containing inter-penetrating elements. As can be seen

in Fig. 10, the current solution is free of such defects.

On the other hand, the mechanical tests concern:

1. Validity of the hypothesis of elasticity : assuming the von Mises yield

criterion to hold, this is confirmed by Fig. 10b, which shows that the

maximal von Mises stress developed throughout the spring, all across its

thickness, is considerably lower than the yield strength of SU8 (higher

than 60 MPa [23]).
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2. Uniqueness of the solution, which is lost when an unstable equilibrium

state (or critical point) is met during deformation. In the current case,

critical points are not passed through the deformation, which is evident

to an experienced designer and can be formally confirmed by using the

spectrum test [24].

Having succeeded at all these tests, the IFEM-computed undeformed con-

figuration shown in Fig. 10 represents in fact the manufacturing shape of the

springs of the valve, such that this valve exactly closes the channel under the

given pressure drop.

5. Conclusions

This paper introduced the inverse finite element method (IFEM) for de-

generate solid shells. The IFEM is particularly well suited for the inverse

design of compliant mechanisms (in this case, shell-like mechanisms) whose

task is to attain a desired shape after large elastic deformations. As a good

example of an application of the IFEM, the design of a passive valve was

undertaken in this paper. Such a design can also be achieved using an opti-

mization technique, where an FEM problem is solved at each iteration. Here,

it was achieved by solving only one IFEM problem.

Further, in the light of the current applications, we observe once again

(see our previous papers on 3D solids [3] and beams [4, 5, 6]) that the solution

of the nonlinear equilibrium equation when the undeformed configuration is

unknown (the case of the IFEM) takes considerably fewer iterations than the

solution of the same equation when the deformed configuration is unknown

(the case of the FEM).
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Last but not least, since degenerate solid-shell FEM –unlike the stress-

resultant shell FEM– makes use of the governing equations from Solid Me-

chanics, it makes possible to reuse the standard material libraries.
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[18] V. Seidemann, S. Bütefisch, and S. Büttgenbach. Fabrication and in-

vestigation of in-plane compliant SU8 structures for MEMS and their

application to micro valves and micro grippers. Sensors and Actuators

A, 97–98:457–461, 2002.

34



[19] M. L. Bucalem and K.-J. Bathe. The Mechanics of Solids and Structures.

Hierarchical Modeling and the Finite Element Solution. Computational

Fluid and Solid Mechanics. Springer-Verlag, 2011.

[20] D. Chapelle and K.-J. Bathe. The Finite Element Analysis of Shells.

Fundamentals. Computational Fluid and Solid Mechanics. Springer-

Verlag, second edition, 2011.

[21] A. Pandolfi and M. Ortiz. Improved design of low-pressure fluidic mi-

crovalves. J. Micromech. Microeng., 17:1487–1493, 2007.

[22] JAHM Sofware, Inc. Material Property Database MPDB v7.41, 2012.

[23] MicroChem Corp. SU-8 permanent photoresists. Table of properties,

2012.

[24] E. L. Allgower and K. Georg. Introduction to numerical continuation

methods. Society for Industrial and Applied Mathematics (SIAM), 2003.

35


