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 INTRODUCTION 

Single Instruction Multiple Data (SIMD) accelerators form an integral part of 

modern microprocessors. These can be found in processors from different computing 

domains like general purpose processors [Intel Software Developer´s Manual; 

Diefendorff et al. 2000; Lee 1996], Digital Signal Processors [D´Arcy et al. 1999], 

gaming consoles [Kahle et al. 2005; Sporny et al. 2002] as well as embedded 

architectures [Baron 2005]. SIMD accelerators are tailored to exploit data level 

parallelism from modern multimedia, scientific and throughput computing 

applications. Since these accelerators perform the same operation on multiple pieces 

of data, they just require duplicated functional units and a very simple control 

mechanism. Due to this simplicity, SIMD accelerators grow in size with each new 

generation. For example, Intel´s MMX [Intel Software Developer´s Manual] had a 

vector length of 64-bits, which was increased to 128-bits in SSE extensions [Intel 

Software Developer´s Manual]. Intel´s recent SIMD extension AVX [Intel Software 

Developer´s Manual] and Intel´s Xeon Phi [Intel Xeon Phi Coprocessor] supports 256-

bit and 512-bit vector operations respectively.   

Code generation for SIMD accelerators has always been challenging. In the early 

days, programmers used to target these accelerators mainly using in-line assembly or 

specialized library calls. Then, automatic generation of SIMD instructions (auto-

vectorization) was introduced in compilers [Naishlos 2004; Bik et al. 2002], which 

borrowed their methodology from vector compilers. These compilers target loops for 

generating code for SIMD accelerators. S. Larsen [Larsen et al. 2000] introduced 

Superword Level Parallelism (SLP) in which they target basic blocks instead of whole 

loops for vectorization. These static approaches to vectorization are effective for 

traditional applications where memory is referenced through explicit array accesses, 

whereas modern applications make extensive use of pointers. The inability of 

compilers to do accurate interprocedural pointer disambiguation and interprocedural 

array dependence analysis limits the vectorization opportunities in the current and 

future applications [Maleki et al. 2011]. 

In this paper, we propose to have dynamic vectorization as a complementary 

optimization to the compiler based static vectorization.  It is important to note that 

we do not propose to eliminate static vectorization altogether because there are 

several complex and time consuming transformations which are not straightforward 

to apply at runtime and are too costly like loop distribution, loop interchange, loop 

peeling, memory layout change, algorithm substitution etc. However, static 

vectorization alone fails to capture significant vectorization opportunities due to 

conservative memory disambiguation analysis. To handle these cases we propose to 

have a speculative dynamic vectorizer which can speculatively reorder ambiguous 

memory references, without any need for accurate interprocedural pointer 

disambiguation and interprocedural array dependence analysis, to uncover 

vectorization opportunities. Moreover, in the absence of loops, the scope of 

vectorization for static vectorization is a single basic block. We propose to vectorize 

bigger code regions which include multiple basic blocks and can be created at 

runtime following the biased direction of branches. 

Furthermore, we propose a speculative dynamic vectorization algorithm which 

can be implemented in the software layer of a HW/SW co-designed processor1. The 

proposed algorithm speculatively reorders and vectorizes memory operations. The 

speculative reordering of memory instructions avoids the need of accurate 

 
1 Section 2 provides background about HW/SW Co-designed Processors. 



  
                                                                                                                                         

 

  

interprocedural pointer disambiguation and interprocedural array dependence 

analysis. During execution, the hardware checks for any memory dependence 

violations caused by speculative vectorization. If any violation is detected, the 

hardware rolls back to a previously saved check-point and executes a non-speculative 

version of the code. The hardware support required for speculative execution is 

already provided by co-designed processors like Transmeta Crusoe [Dehnert et al. 

2003], BOA [Sathaye et al. 1999] etc. Therefore, no additional hardware support is 

needed from speculative vectorization point of view. This hardware support is also 

one of the reasons for choosing HW/SW co-designed processors over dynamic binary 

optimizers in our proposals. 

Moreover, in the absence of static compiler vectorization, our algorithm can work 

as a standalone vectorizer also. Therefore, the legacy code that was not compiled for 

any SIMD accelerator can be vectorized using the proposed algorithm. The co-

designed nature of the processor makes the vectorization portable. As a result, the 

algorithm can be modified to transparently target a different SIMD accelerator. It is 

important to note that the proposed algorithm does not require any compiler or 

operating system support/modification. The main contributions of this paper can be 

summarized as: 

(1) Proposes a complementary dynamic vectorization technique that does not 

require interprocedural pointer disambiguation and interprocedural array 

dependence analysis. 

(2) Proposes to increase the vectorization scope utilizing the dynamically discovered 

control flow: biased branch directions and dynamic loop trip counts. 

(3) A runtime speculative vectorization algorithm :  

o that is equally good in vectorizing array and pointer based applications. 

o that is able to vectorize legacy code. 

(4) Experimental evaluation of the proposed algorithm and it’s comparison with 

GCC and ICC vectorizers.  

(5) A study of different components of dynamic instruction stream to gain more 

insights about effectiveness of vectorization and limiting factors. 

(6) A study to understand the importance of speculation in the runtime 

vectorization and its robustness. 

The rest of the paper is organized as follows: Section 2 provides a background on 

HW/SW co-designed processors. Section 3 briefly provides the motivation for the 

work presented in this paper. Section 4 describes the proposed algorithm with an 

example. Section 5 explains the speculation and recovery mechanism. Evaluation of 

the algorithm using Test Suite for Vectorizing Compilers (TSVC), SPECFP2006, 

Physicsbench and UTDSP applications is presented in Section 6. Section 7 presents 

the related work and Section 8 concludes. 

 BACKGROUND OF HW/SW CO-DESIGNED PROCESSORS 

A HW/SW co-designed processors is a hybrid architecture that leverages hardware 

/software co-design to couple a software layer to the microarchitectural design of a 

processor. The software layer resides between the hardware and the operating 

system. This software layer allows host and guest ISAs to be completely different by 

translating the guest ISA instructions to the host ISA dynamically. We define the 

host ISA as the ISA that is implemented in the hardware, whereas, guest ISA is the 

one for which applications are compiled. The basic idea behind these processors is to 

have a simple host ISA to reduce power consumption and complexity. This kind of 



                                                                                                                             
 

 
  

processors [Ebcioğlu et al. 1997; Sathaye et al. 1999; Dehnert et al. 2003] have 

enticed researchers for more than a decade. Moreover, there is a renewed interest in 

them in both industry and academia [Intel’s HW/SW co-designed processor project; 

Lupon et al. 2014; Branković et al 2014; Branković et al 2013; Wang et al. 2013; 

Pavlou et al 2012; Neelakantam et al 2010].  

These processors are specifically designed to achieve energy efficiency, design 

simplicity, and performance improvement. In order to achieve design simplicity, they 

keep the hardware simple and implement a relatively simple ISA. The simple 

hardware design also helps in achieving energy efficiency. Transmeta reports 

significant reduction in power dissipation for their HW/SW co-designed processor 

Crusoe compared to Intel Pentium III for a software DVD player [Klaiber 2000]. 

Their data shows that Pentium III heats up to a temperature of 105º C whereas 

Crusoe´s maximum temperature goes only up to 48º C running the same software 

DVD player. Furthermore, to achieve the performance goal, HW/SW co-designed 

processors employ dynamic binary optimizations.  

In general, HW/SW co-designed processors implement a proprietary ISA in order 

to achieve design simplicity and power efficiency. Therefore, they need to apply 

binary translation to map the guest ISA on to the host ISA. The binary translation 

can be implemented in either hardware or software. Modern processors 

implementing CISC ISA, like x86, implement binary translation in hardware [Smith 

et al. 2005]. The hardware binary translator translates CISC instructions to RISC 

like instructions dynamically to simplify the execution pipeline implementation. 

However, the hardware implementation leads to significant hardware complexity and 

power consumption. HW/SW co-designed processors, on the other hand, implements 

dynamic binary translation in software which leads to power efficiency. 

Figure 1a shows the hardware/software interface in a conventional RISC 

processor where the software stack directly interacts with the hardware. 

Conventional CISC processors implement a RISC like ISA in hardware. As shown in 

Figure 1b, they employ a hardware dynamic binary translator to translate CISC 

instructions to the internal ISA instructions. The binary translation in HW/SW co-

designed processors is performed by a software layer as shows Figure 1c. We call this 

software layer as Translation Optimization Layer (TOL) in this paper. 

Performing the dynamic binary translation/optimization in software layer 

provides several benefits over the hardware implementation. For example, the 

software implementation significantly reduces hardware complexity and power 

consumption. Furthermore, it allows to upgrade a processor in the field by 

introducing new optimizations in the software layer. On the contrary, if TOL is 

implemented in hardware, adding new optimizations in the existing processor is not 

feasible. Additionally, software implementation of TOL significantly reduces 

hardware validation and verification cost and time. 

In HW/SW co-designed processors, TOL resides in a ROM and is the first 

program to start execution when system boots up. Since TOL acts as an insulation 

Operating 
System

Execution Hardware

Libraries

Application Programs

ISA

Operating 
System

Translation Optimization 
Layer (Hardware)

Libraries

Application Programs

Execution Hardware

ISA

Internal
ISA

Operating 
System

Translation Optimization 
Layer (Software)

Libraries

Application Programs

Execution Hardware

Guest ISA

Host ISA

a) Conventional RISC processor.            b)    Conventional CISC processor.             c)     HW/SW co-designed processor. 

Figure 1 HW/SW interface in processors. 



  
                                                                                                                                         

 

  

layer between the conventional software stack and the hardware, the host ISA can be 

changed arbitrarily without having to make changes in the conventional software 

stack. The only modification needed in this case would be to have a new version of 

TOL that translates guest ISA code to the new hardware. Since the execution of TOL 

itself requires some processor time, it might affect the overall performance. However, 

in addition to binary translation, TOL is also responsible for optimizing the 

translated binary to boost the performance and compensate for its own execution 

overhead. 

 Binary Translation/Optimization  

As said before translating guest ISA code to host ISA is the prime responsibility of 

TOL. The translation is done dynamically and generally, in multiple phases. Usually, 

in the first phase, an interpreter decodes and executes guest ISA instructions 

sequentially. In the rest of the phases, the guest code in translated into host ISA code 

and stored in the code cache, after applying several dynamic optimizations, for faster 

execution. The number of translation phases and optimizations in each phase are 

implementation dependent. 
Figure 2 shows a typical two stage translation/optimizations flow in a TOL. It 

starts by interpreting guest ISA instruction stream sequentially. While interpreting, 

TOL also profiles the guest code to collect information about most frequently 

executed code and biased branch directions. The execution frequency guides TOL to 

decide which guest code basic blocks to translate. When a basic block has been 

executed more than a predetermined number of times, TOL invokes the translator. 

The translator takes the guest ISA basic blocks as input, translates them to host ISA 
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Figure 2 Typical two stage TOL control flow. 



                                                                                                                             
 

 
  

code and saves the translated code into the code cache for fast native execution. 

Instead of translating and optimizing each basic block in isolation, the translator 

uses biased branch direction information, collected during interpretation, to create 

bigger optimization regions, called superblocks. A superblock, generally, consists of 

multiple basic blocks following the biased direction of branches. Therefore, 

superblocks increase the scope of optimizations to multiple basic blocks and allow 

more aggressive optimizations. Superblocks have a single entry point that is the first 

instruction of the first basic block included in the superblock. However, depending on 

the implementation they might have multiple or a single exit point, making them a 

single-entry multiple-exit or single-entry single-exit structure. 

Initially, the control is transferred back to TOL after executing a superblock 

from the code cache. Then, TOL searches the next instructions to be executed. If the 

next instruction is not already translated, it has to be interpreted. However, if it is 

already translated, TOL patches the last branch of the first superblock (the one that 

transferred the control back to TOL) to the beginning of the second superblock. This 

process is called chaining [Dehnert et al. 2003] or linking [Bala et al. 2000]. Chaining 

enables the control to be transferred directly from one superblock to the other 

without having to come back to TOL. This reduces TOL overhead of looking up a 

translation in the code cache. 

The example binary translation/optimization mechanism that we just saw has 

two stages: interpretation and one translation phase. However, there are systems 

with more translation stages, with each translation stage applying progressively 

more complex optimizations. Moreover, there are some systems that skip 

interpretation stage and directly go to translation like IA-32 EL [Baraz et al. 2003] 

and DynamoRIO [Bruening et al. 2003]. The different interpretation/translation 

stages provide a tradeoff between startup and steady state performance. For 

example, applying aggressive optimizations is costly in terms of overhead; however, 

they generate a highly optimized code that runs faster than un-optimized code. 

Hence, a system that starts with aggressive optimizations, skipping interpretation 

and simple translation, would have unacceptably poor startup performance and 

excellent steady state performance. However, the overall performance of such a 

system would depend on how much of the startup delay or translation/optimization 

overhead could be offset by the optimized code execution. They might end up having 

poor overall performance if the translation/optimization overhead in not compensated 

by the optimized code execution. Therefore, most systems start with interpretation or 

lightweight translations to improve startup performance, whereas aggressive 

optimizations are applied only to hot code that dictates the steady state performance. 

 Salient features of HW/SW Co-designed Processors  

HW/SW co-designed processors provide certain features that set them apart from 

traditional hardware only processors. These features include: 

Hardware Simplicity: These processors employ simple hardware to cut down the 

complexity. To simplify the hardware they implement a simple RISC ISA. 

Furthermore, TOL is implemented as a software layer whereas, the hardware 

implementation of TOL in conventional CISC processors contributes significantly to 

the hardware complexity. 

Power Consumption: Having a simple hardware allows HW/SW co-designed 

processors to keep power consumption within limits. The simple RISC ISA allows to 

have a simple front-end and avoid power hungry components.  



  
                                                                                                                                         

 

  

Flexibility: The software implementation of TOL makes it relatively simple to 

upgrade a processors by introducing new features in the software layer, in the field. 

On the other hand, due to the hardware implementation, the conventional CISC 

processors cannot introduce new features in TOL or fix a bug once the processor is 

rolled out. 

Multiple Guest ISA Support: HW/SW co-designed processors also provide an 

excellent opportunity to run multiple guest ISA on a single host ISA. In this case, 

TOL needs to support multiple front-ends where each front-end corresponds to a 

different guest ISA. Once a front-end has done guest ISA to intermediate 

representation translation, the common back-end can be used to generate the host 

ISA code. This feature allows the codes compiled for different architectures to be 

executed on the same hardware. This is going to be especially important in the future 

architectures as one would like be able to run any application on any computing 

device. 

Binary Compatibility: TOL also allows HW/SW co-designed processors to maintain 

forward and backward binary compatibility without any additional hardware 

complexity. TOL can translate binaries targeted for old architectures to run them on 

a latest one and vice-versa. 

 MOTIVATION 

Traditional compile time loop vectorization is effective for applications involving 

explicit array accesses since memory dependence analysis are relatively easy. 

Significant performance gains have been reported using compiler vectorization in the 

past [Bik et al. 2002; Larsen et al. 2000]. However, one of the major obstacles in 

vectorization at compile time is memory disambiguation and dependence testing. J. 

Holewinski [Holewinski et al. 2012] showed that static vectorization fails to extract 

significant vectorization opportunities especially in pointer-based applications. 

Furthermore, S. Maleki [Maleki et al. 2011] showed that the modern compilers, 

including Intel ICC, IBM XLC, and GNU GCC, are limited in vectorizing modern 

applications. Extensive use of pointers and pointer arithmetic in these applications 

complicate memory disambiguation and dependence testing.  

Compilers need to do accurate interprocedural pointer disambiguation and 

interprocedural array dependence analysis to guarantee the correctness of vectorized 

code. However, S. Maleki [Maleki et al. 2011] showed that they lack this ability and 

hence, loose significant vectorization opportunities. We propose a speculative 

dynamic vectorization technique that relies on the fact that a pair of memory 

accesses rarely alias until and unless aliasing is obvious [Guo et al. 2006]. By 

speculatively assuming that two memory reference will never alias, unless aliasing is 

obvious, we avoid the need of accurate interprocedural pointer disambiguation and 

interprocedural array dependence analysis. As a result, the speculative vectorization 

catches the vectorization opportunities missed by the compilers.  

Figure 3a shows a function with a loop that performs pointer arithmetic. The 

function takes in two pointers as parameters. Since the function can be called from a 

number of places in the entire program, the inter-procedural analysis of compiler 

needs to check whether the two pointers can alias or not. If the compiler cannot prove 

that the two pointers always reference different memory locations, it will 

conservatively assume dependence between them to ensure correctness.  
As stated before, another approach to vectorization, SLP [Larsen et al. 2000], 

performs vectorization at lower intermediate representation level. SLP vectorizes at 



                                                                                                                             
 

 
  

basic block level instead of loop level. Therefore, SLP may vectorize portions of a loop 

if the whole loop is not vectorizable, whereas traditional loop vectorizers vectorize 

either whole loop or nothing. SLP starts by identifying adjacent memory accesses and 

then follows their def-use and use-def chains. Figure 3b shows low level intermediate 

representation for the loop of Figure 3a after unrolling it once. In this case, even 

though I0 and I6 are adjacent memory references, they cannot be packed by SLP 

since I4 and I6 may alias. Similarly, I4 and I10 access consecutive memory locations. 

However, they also cannot be vectorized because I6 might alias with them. Thus, 

memory dependences affect both traditional loop vectorizers as well as SLP. 

void example(double *a, double *b) 

{ 

    int i; 

    for (i = 0; i < NUM_ITR; i++) 

        a[i] += b[i] * CONST; 

} 
a) An example loop with pointers. 

 

loop:  I0 ld_64  v2, M [r2 + r1 * 8] 

  I1 mulsd  v3, v2, v1 

  I2 ld_64  v4, M [r3 + r1 * 8] 

  I3 addsd  v5, v4, v3 

  I4 st_64  v5, M [r3 + r1 * 8] 

  I5 add  r4, r1, 1 

  I6 ld_64  v6, M [r2 + r4 * 8] 

  I7 mulsd  v7, v6, v1 

  I8 ld_64  v8, M [r3 + r4 * 8] 

  I9 addsd  xmm0, v8, v7 

  I10 st_64  xmm0, M [r3 + r4 * 8] 

  I11 add  r1, r4, 1 

  I12 cmp   r1, r0 

  I13 jne  loop 

 
b) Unrolled lower level representation. 

 

  V0 Pack   v1, v1, v1 

loop:  V1 ld_128_spec  v2, M [r2 + r1 * 8] 

  V2 mulpd   v3, v2, v1 

  V3 ld_128  v4, M [r3 + r1 * 8] 

  V4 addpd   v5, v4, v3 

  V5 st_128_spec v5, M [r3 + r1 * 8] 

  V6 add   r1, r1, 2 

  V7 cmp   r1, r0 

  V8 jne   loop 

V9 Unpack  xmm0, v5 

 
c) Speculatively vectorized version. 

 

Figure 3 An example loop with pointer arithmetic. 

 

 



  
                                                                                                                                         

 

  

One possible solution that compilers may provide is to generate two versions of 

the loop: one without vectorization and another vectorized with a runtime test to 

check for aliasing. However, this solution is not optimal because:  

(1) runtime test has to be executed every time before executing the loop, thus 

resulting in a performance loss. Moreover, as the number of arrays to be checked 

for aliasing increases the number of checks to be performed also increases.  

(2) Having multiple versions of the loop increases the static code footprint of the 

application, which results in higher instruction cache size requirements. 

Another way of vectorizing the example loop is through “__restrict” keyword. It 

can be used to indicate that a symbol is not aliased in the current scope. If the 

programmer knows that the two pointers to the function will not alias in any case, 

this information can be passed to the compiler using the “__restrict” keyword. Once 

the compiler is sure that the two pointers always access non-overlapping memory 

locations, it can vectorize the loop. However, this solution requires source code 

modification which is not always possible e.g. unavailability of the source code or any 

other reason. In contrast, the proposed mechanism does not require any source code 

modification. 

HW/SW Co-designed processors provide an excellent opportunity to handle these 

cases: instead of generating multiple versions, a single speculatively vectorized 

version can be generated by the software layer and the hardware can be tailored to 

execute the vectorized code efficiently and safely. The proposed algorithm 

speculatively reorders memory operations to expose vectorization opportunities. For 

example, in the code of Figure 3b, our algorithm speculatively assumes that I4 and I6 

will never alias and reorders them to pack I0 and I6 together, as shown in Figure 3c. 

Moreover, due to the speculative reordering, V1 is converted to a speculative load and 

V5 to a speculative store. If during the execution it turns out that V1 and V5 access 

overlapping memory locations, the hardware will detect this condition and will take 

corrective measures. In this example, by vectorizing speculatively, we are able to 

vectorize the whole loop, whereas loop vectorization and SLP could not find 

vectorization opportunities. 

Therefore, having two complementary vectorizing schemes helps to get the best 

of both the worlds. First, static vectorization applies more complex and time 

consuming loop transformations, even though vectorizes conservatively. Later at 

runtime, a dynamic vectorizer catches the opportunities missed by static 

vectorization and speculatively vectorizes ambiguous memory references and their 

dependent operations. 

 VECTORIZATION ALGORITHM 

This section provides the details of the proposed speculative dynamic vectorization 

scheme. Before explaining the vectorization algorithm itself, first we explain binary 

translation/optimization steps of the modelled HW/SW co-designed processor. It helps 

us understand the context in which vectorization is done.  

The software layer of our co-designed processor is called Translation 

Optimization Layer (TOL). TOL operates in three translation modes for generating 

host code from the guest x86 code: Interpretation Mode (IM), Basic Block Translation 

Mode (BBM) and Superblock Translation Mode (SBM). SBM is the most aggressive 

translation/optimization mode and majority (more than 90%) of the dynamic 

application code is executed in this mode. Vectorization is done only in SBM, after 

applying several standard optimizations.  



                                                                                                                             
 

 
  

 
 Pre-Vectorization Steps 

Before starting with vectorization we create a superblock, apply standard 

optimizations on the superblock and generate a Data Dependence Graph (DDG). 

Each of these steps is explained below:  

4.1.1 Superblock Creation 

TOL starts by interpreting guest x86 instruction stream in IM. When a basic block is 

executed more than a predetermined number of times, TOL switches to BBM. In this 

mode, the whole basic block is translated and stored in the code cache and the rest of 

the executions of this basic block are done from the code cache. Moreover, profiling 

information is gathered for all the basic blocks in BBM using software counters. This 

information consists of execution and edge counters. The execution counters provide 

the execution frequency of basic blocks while the edge counters monitor the biased 

branch directions. Once the execution of a basic block exceeds another predetermined 

threshold, TOL creates a bigger optimization region, called superblock, using the 

branch profiling information collected during BBM. 

In Superblock translation and optimization mode (SBM), TOL generates a new 

superblock starting from the triggering basic block. A superblock generally includes 

multiple basic blocks following the biased direction of branches. A superblock ends at 

one of the following conditions: 

(1) The last basic block included in the superblock ends with an indirect branch, 

call, or return instruction. 

(2) The last basic block included in the superblock ends with an unbiased branch or 

the probability of reaching the last basic block from the beginning of the 

superblock falls below a predetermined threshold. 

(3) The number of instructions in the superblock exceeds a predetermined 

threshold. 

(4) The number of basic blocks included in the superblock exceeds a predetermined 

threshold. 

Moreover, the branches inside the superblocks are converted to “asserts” so that 

a superblock can be treated as a single-entry, single-exit sequence of instructions. 

This gives the freedom to reorder and optimize instructions across multiple basic 

blocks. “Asserts” are similar to branches in the sense that both checks a condition. 

Branches determine the next instruction to be executed based on the condition; 

however, asserts have no such effect. If the condition is true, assert does nothing. 

However, if the condition evaluates to false, the assert “fails” and the execution is 

restarted from a previously saved checkpoint in IM. Furthermore, if the number of 

assert failures in a superblock exceeds a predetermined limit, the superblock is 

recreated without converting branches to “asserts”. As a result, this time the 

superblock has to be treated as a single-entry multiple-exit sequence of instructions. 

Having multiple exits in a superblock also reduces available optimization 

opportunities because the instructions across different exit paths cannot be reordered 

as freely as before. 

Furthermore, while creating a superblock, if a loop is detected, it is unrolled. 

Currently, we unroll loops consisting of only a single basic block, as they are the ones 

which provide maximum benefit [Muchnick 1997]. To detect and unroll the loops 

without control flow the following steps are followed. 



  
                                                                                                                                         

 

  

(1) The target address of the first branch instruction in the superblock is compared 

against the address of the first instruction of the superblock. In case of a loop, 

the addresses match. 

(2) The execution and edge counters are used to determine the loop trip count.  

(3) Loop unroll factor is determined based upon the data types in the loop, SIMD 

accelerator width, and the loop trip count determined in the last step. For 

example, if a loop contains only single-precision floating-point data types, then 

for a 128-bit wide SIMD accelerator the loop is unrolled 4 times if the loop trip 

count is more than or equals to 4. 

Moreover, the unrolled version of the loop is followed by the original loop 

(without unrolling). During execution, a runtime check is performed to determine 

whether to execute the unrolled version or the original loop. If the number of 

iterations left for execution are less than the loop unroll factor, then the original loop 

is executed instead of the unrolled loop.  

4.1.2 Pre-optimizations 

The optimizer applies several transformations on the superblock. First of all, x86 

code is translated to an intermediate representation. Then the resulting code is 

transformed into a Static Single Assignment format. This transformation removes 

anti & output dependences and significantly reduces the complexity of subsequent 

optimizations. Second, a forward pass applies a set of conventional single pass 

optimizations: constant folding, constant propagation, copy propagation, and common 

subexpression elimination. Third, a backward pass applies dead code elimination.  

After the basic optimizations, the Data Dependence Graph (DDG) is prepared. 

To create DDG, the input and output registers of the instructions are inspected and 

the corresponding dependences are added. During DDG creation, we perform memory 

disambiguation analysis. If the analysis cannot prove that a pair of memory 

operations will never/always alias, it is marked as “may alias”. In case of reordering, 

the original memory instructions are converted to speculative memory operations. 

Apart from this, Redundant Load Elimination and Store Forwarding are also applied 

during DDG phase so that redundant memory operations are removed before 

vectorization. The DDG is then passed as input to the vectorizer. After vectorization, 

an instruction scheduler that uses a conventional list scheduling algorithm schedules 

the vectorized code. Afterwards, the determined schedule is used by the register 

allocator that implements linear scan register allocation algorithm. Finally, the 

optimized code is translated to the host instructions and is stored in the code cache.  

 
 The Vectorizer 

This section explains the vectorization algorithm with pseudo-code and using a 

practical example. The pseudo-code for the vectorizer is listed in Algorithm 1. The 

vectorizer packs together a number of independent scalar instructions that perform 

the same operation, and replaces them with one vector instruction. The number of 

scalar instructions packed depends on two factors: 

 data-types of scalar instructions 

 host vector length  

For example, for a host vector length of 128-bit, four 32-bit single-precision 

floating-point instructions can be packed together in a single vector instruction. 

Therefore, vectorization reduces dynamic instruction count and improves 



                                                                                                                             
 

 
  

performance. Before describing the algorithm itself, we define a set of conditions that 

a pair of instructions must satisfy to be included in the same pack: 

 The instructions must perform the same operation. 

 The instructions must be independent. 

 The instructions must not be in another pack. 

 If the instructions are load/store, they must be accessing consecutive memory 

locations. 

Vectorization starts by marking all the instructions which are candidates for 

vectorization. Moreover, we mark First Load and First Store instructions. First 

Load/Store instructions are those for which there are no other loads/stores from/to 

adjacently previous memory locations. For example, if there is a 64-bit load 

instruction IL that loads from a memory location [M] and there is no 64-bit load 

instruction that loads from address [M – 8], we call IL First Load. 

Vectorization begins by packing consecutive stores, starting from a First Store. 

The decision of starting with stores instead of loads is based on the observation that 

a given kind of operation always has the same number of predecessors, e.g. all the 

additions always have two predecessors, whereas the number of successors may vary 

depending on how many instructions consume the result. Consequently, following a 

bottom-up approach results in a more structured tree traversal than a top-down 

approach. 

Once a pack of stores is created, their predecessors are packed (Pack_pred_succ 

rountine), before packing other stores, if they satisfy the packing conditions. 

Moreover, if the last store in the pack has a next adjacent store, it is marked as First 

Store so that a new pack can start from it.  

Once all the stores are packed and their predecessor/successors chains have been 

followed, we check for remaining load instructions that satisfy the packing conditions 

and pack them in the same way as stores. Pack_ldst routine provides the 

functionality for packing loads and stores. 

Vectorization starting from adjacent loads/stores has an obvious limitation: if a 

superblock does not have any consecutive loads/stores, nothing can be vectorized. To 

tackle this problem, after packing all loads/stores and their predecessors/successors, 

we check if still there are some arithmetic instructions that can be packed together. 

If yes, we vectorize them and follow their predecessor/successor trees (Pack_Arith). 

This allows to partially vectorize loops with interleaved memory accesses. 

While traversing the predecessor/successor chains, if we find out that the 

predecessors of a pack cannot be vectorized, a Pack instruction is generated. This 

Pack instruction collects the results of all the predecessors into a single vector 

register and feeds the current pack. Similarly, if all the successors of a pack cannot 

be vectorized, an Unpack instruction is generated. This Unpack instruction 

distributes the result of the pack to the scalar successor instructions. 

Traverse_pred_succ routine provides this functionality. For example, in the case of 

loops with interleaved memory access, when we reach several load instructions while 

traversing the tree, we find out that they cannot be packed since they are not 

consecutive. Therefore, we leave them in scalar form and assemble their results 

using a Pack instruction. 

Moreover, Pack instructions are needed if a pack contains an instruction whose 

input is live-in of the superblock. Similarly, Unpack instructions are needed to put 

the results from a pack to the architectural registers that are live-outs of the 

superblock. 



  
                                                                                                                                         

 

  

ALGORITHM 1A. TOP LEVEL VECTORIZATION FUNCTION 

 

Vectorize (SB): 

        Set_packable(SB,Available_for_pack, First_St,First_Ld) 

        Pack_ldst(SB, Available_for_pack, First_St, packs) 

        Pack_ldst(SB, Available_for_pack, First_Ld, packs) 

        Set_Arith(SB, Available_for_pack, Arith) 

        Pack_Arith(SB, Available_for_pack, Arith, packs) 

ALGORITHM 1B. LOAD-STORE VECTORIZATION 

 

Pack_ldst(SB, Available_for_pack, First_LdSt, packs): 

        for inst in First_LdSt: 

            vec_length = get_vector_length(inst) 

            P = [inst] 

            for i in range(1, vec_length): 

                if inst has next_ldst: 

                   if inst_can_pack(P,next_ldst, Available_for_pack): 

                        P.extend(next_ldst) 

                        inst = inst.next_ldst  

                    else: 

                        break 

 

            if len(P) == vec_length: 

                packs.extend(P) 

                Make_unavilable(P, Available_for_pack) 

                First_LdSt.extend(inst.next_ldst) 

                Traverse_pred_succ (SB, Available_for_pack, packs)  

ALGORITHM 1C. VECTORIZE ARITHMETIC OPERATIONS 

 

Pack_Arith(SB, Available_for_pack, Arith, packs): 

        for inst in Arith: 

            if inst in Available_for_pack: 

                vec_length = get_vector_length(inst) 

                P = [inst] 

                for inst1 in Arith[pos(inst):len(Arith)]: 

                    if inst_can_pack(P, inst1, Available_for_pack): 

                        P.extend(inst1) 

                        if len(P) == vec_length: 

                            packs.extend(P) 

                            Make_unavilable(P, Available_for_pack) 

                            Traverse_pred_succ (SB, Available_for_pack, packs) 

                            break  

ALGORITHM 1D. TRAVERSE PREDECESSORS/SUCCESSORS  

Traverse_pred_succ(SB, Available_for_pack, packs): 

        need_Pack = Pack_pred_succ(SB, Available_for_pack, packs[latest].preds, packs) 

        if need_Pack: 

            generate_Pack_inst 

        need_Unpack = Pack_pred_succ(SB, Available_for_pack, packs[latest].succs, packs) 

        if need_Unpack: 

            generate_Unpack_inst  



                                                                                                                             
 

 
  

ALGORITHM 1D. VECTORIZE PREDECESSORS/SUCCESSORS 

 

Pack_pred_succ(SB, Available_for_pack, pred_succ, packs): 

        for inst in pred_succ: 

            if inst in Available_for_pack: 

                vec_length = get_vector_length(inst) 

                P = [inst] 

                for i in range(1, vec_length): 

                    for inst1 in pred_succ[i]: 

                       if inst_can_pack(P, inst1, Available_for_pack): 

                            P.extend(inst1) 

                            break                      

                if len(P) == vec_length: 

                    packs.extend(P) 

                    Make_unavilable(P, Available_for_pack) 

                    Traverse_pred_succ (SB, Available_for_pack, packs) 

         if All_pred_succ_packed(pred_succ): 

 return NO 

         else 

 return YES 
 

 
 Avoiding Cyclic Dependences  

One of the important points that should be taken care of during vectorization is that, 

after creation of a pack, two instructions that were earlier independent may become 

dependent. If we pack these instructions in a new pack, there will be a cyclic 

dependence in the DDG. Figure 4 shows an example of this scenario. Figure 4a shows 

the unvectorized code. We start vectorization by packing two consecutive and 

independent store instructions (I4 and I8). Then following the predecessor chains we 

pack I3 and I7 also. After this step I9 becomes dependent on I1 as shown in Figure 

4b, however these two instructions were independent in the original scalar code of 

Figure 4a. Therefore, we cannot select them to be packed together because it would 

produce a cyclic dependence. 

One way to solve the problem of inadvertently packing dependent instructions 

together is to address it during instruction scheduling and undo one of the packs 

involved in the cyclic dependence. However, it is not an optimal solution since 

dependence violation may have gotten propagated while traversing 

predecessor/successor chains. Therefore, we decided to update the DDG every time 

we create a new pack. As a result, cyclic dependences never appear in the DDG. This 

also allows us to check for alternative packing possibilities whereas, if we remove 

cyclic dependence during instruction scheduling, we cannot pack instructions of 

dissolved packs with other instructions. 

 Static vs Dynamic Vectorization  

Loops are the basic program structures that the vectorizers target for extracting 

parallelism through vectorization. Several loop transformations are sometimes 

needed to make a loop vectorizable. The transformation like loop distribution, loop 

interchange, loop peeling, node splitting, memory layout change, algorithm 

substitution, etc are generally applied to make a loop vectorizable. These time 

consuming transformations are better suited at compile time than at runtime and 

therefore, these are not included in the proposed speculative dynamic vectorizer. 



  
                                                                                                                                         

 

  

However, compile time vectorization suffers from several limitation like: 1) limited 

vectorization opportunities due to compilers inability to do accurate interprocedural 

pointer disambiguation and interprocedural array dependence analysis, 2) scope of 

vectorization is limited to basic blocks if the loops cannot be unrolled e.g. due to 

complex control flow, and 3) legacy code cannot be vectorized. 

The proposed speculative dynamic vectorization gets rid of all these limitations. 

1) The proposed algorithm avoids the need for accurate interprocedural pointer 

disambiguation and interprocedural array dependence analysis by speculatively 

assuming that ambiguous memory reference are independent, unless dependence is 

obvious, 2) Since the scope of vectorization for the proposed algorithm is a 

superblock, it crosses the basic block boundaries to vectorize instructions from 

multiple basic blocks along the most frequently executed paths, and 3) Since the 

dynamic vectorization is applied at runtime on the program binary and not at the 

source code level, the legacy code can also be vectorized.  

Moreover, dynamic vectorization provides some additional benefits. For example, 

for the loops where the number of iterations are not known statically, it is difficult to 

decide the unroll factor at compile time. The availability of dynamic application 

behavior, at runtime, allows to detect the loop unroll factor dynamically. Unrolling 

the loops correspondingly helps dynamic vectorizer to extract significant 

vectorization opportunities. 
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a) DDG for unvectorized code. 
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b) DDG after vectorizing I4-I8 and I3-I7. 

Figure 4. Additional dependence after vectorization. 



                                                                                                                             
 

 
  

 

Figure 5 Example for vectorization of the code of Figure 3b. a). Shows the DDG for the loop which is 

unrolled once. We don´t show loop control code for the sake of simplicity. Since two iterations are 

completely independent we have two completely separated trees. Two arrows coming in to I1 and I7 

represents live-in and arrow going out of I9 represents live-out of the superblock. Also, speculatively, we 

assume there is no dependence between the memory instructions until and unless its obvious b) Shows the 

state of DDG after vectorizing consecutive stores, also, the new store instruction is speculative one. c) 

Then, we follow the predecessor chains and pack addsd instructions. Since I9 writes to an architectural 

register, we need to unpack the results and write to the architectural register. d) Packs two mulsd 

instructions and since one of the inputs to both of these instructions is a live-in, a Pack instruction is also 

generated to pack the inputs. e) and f) pack remaining load instructions and f) Shows the final state. 

 

 Working through an Example  

Figure 5a shows the DDG for the example code of Figure 3b. Since the loop is 

unrolled once and there is no loop carried dependences, assumed speculatively, the 

two trees are completely independent of each other. For the sake of simplicity, we do 
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not show loop control code in this figure. Also, the pairs of ambiguous memory 

reference instructions like I4 and I6 are considered independent speculatively. As our 

algorithm begins with consecutive stores, the stores I4 and I10 are packed together 

as shown in Figure 5b. Moreover, the new store instruction is speculative one and I6 

is also converted to speculative load. Following the predecessor tree, we see that I3 

and I9 satisfy the packing conditions and vectorize them. Notice here that I9 writes 

to a live-out architectural register. As a result, we have to generate an Unpack 

instruction to write the result to the live-out register. This is shown in Figure 5c. 

Traversing up the tree, we vectorize multiplication instructions I1 and I7. One of 

the inputs of the multiplication instructions is a live-in to the superblock. Hence, we 

generate a Pack instruction to put the live-in values in a vector register as shown in 

Figure 5d. As explained earlier, before packing the other predecessors of additions (I3 

and I9), we traverse the tree up for the predecessors of I1 and I7. We discover that 

the loads I0 and I6 are independent and consecutive, thus, they are packed next. 

Also, the new vector load instruction is speculative since I6 was speculative, Figure 

5e. Finally, Figure 5f shows the second inputs of additions (I3 and I9): the two load 

instructions (I2 and I8) are also vectorized. Pack and Unpack instructions generated 

to read and write architectural registers in this example can be moved outside the 

loop as loop invariant code during instruction scheduling, as shown in Figure 3c. This 

way, we are able to vectorize the whole loop. 

 SPECULATION AND RECOVERY 

Memory speculation is a key optimization to achieve performance in HW/SW co-

designed systems. Considering two ambiguous memory references independent of 

each other provides more freedom in instruction scheduling and boosts performance. 

For example, Transmeta Crusoe [Dehnert et al. 2003] reports that, on average, 

suppressing memory reordering causes 10% and 33% performance loss in operating 

system boots and user applications respectively. Since, memory operations play an 

important role in vectorization, by freely reordering them consecutive memory 

references can be packed together. This not only helps in utilizing memory 

bandwidth but also in vectorization of their dependent arithmetic operations. 

Furthermore, it is important to note that HW/SW co-designed processors like 

Transmeta Crusoe, BOA etc provide hardware support for speculation and recovery 

even though they do not have any dynamic vectorization scheme. Therefore, we 

assume this hardware support to be present in our baseline architecture. Hence, from 

the vectorization point of view, we do not need to add any new hardware support for 

speculation and recovery. This section briefly explains how the speculation and 

recovery mechanism works in the modelled HW/SW co-designed processor.  

A combination of software and hardware mechanisms is used to detect 

speculation failure and subsequent recovery. As described earlier, if a pair of memory 

references cannot be proved never/always aliasing; it is marked as “may alias”. TOL 

labels each load/store instruction with a sequence number in the original program 

order. If a pair of load-store or store-store instructions that may alias is reordered, 

the original load/store instructions are converted to “speculative load/store” 

instructions. 

The hardware has two sets of architectural registers: a working set and a 

shadow copy. Before starting the execution of speculative code, a copy of the working 

set is saved into the shadow registers (saving a checkpoint). During the execution, 

only the working copy of the registers is updated. In the case of speculation failure, 



                                                                                                                             
 

 
  

the register state is restored by copying the contents of shadow registers to the 

working copy. Restoring the memory state is a little more complicated since it is not 

practical to have two copies of the whole memory state. To track the changes in the 

memory state a store buffer is used. During the normal execution, store instructions 

write to the store buffer instead of directly writing to the memory. In the case of 

speculation failure, the contents of the store buffer are discarded, whereas they are 

forwarded to the memory if the speculated code executes successfully.  

To detect a speculation failure, the hardware maintains a table to record address 

and size of all the memory locations accessed by “speculative load/store” instructions 

in the current superblock. Moreover, the sequence number of “speculative load/store” 

instructions is also recorded in the table. During the execution, if the hardware 

detects: 

 that a speculative memory instruction with higher sequence number has 

been executed before another speculative memory instruction with lower 

sequence number and 

 they access overlapping memory locations, 

an exception is raised. In this case, the contents of the store buffer are flushed; 

register values from the shadow registers are copied to the working set; (this has the 

effect of restoring the earlier saved checkpoint) and the execution is restarted in 

Interpretation Mode. On the other hand, in case of successful execution of speculated 

code, values in the store buffer are forwarded to the memory and the contents of the 

shadow registers are discarded. 

Figure 6 shows an example of speculation failure detection mechanism. Figure 

6a shows the original code sequence with two memory references where the relation 

between the memory addresses is unknown. The two instructions are labeled in the 

program order. Figure 6b shows the reordered code sequence. The instructions 

maintain their sequence number. However, they are converted to speculative 

instructions to inform the hardware to check them for speculation failure.  Figure 6c 

shows the hardware table state just before executing the speculative load instruction. 

The program counter points to the current instruction and the table has entry for the 

executed speculated store instruction. At this point, since the instruction with a 

higher sequence number (2) has been executed before the instruction with a smaller 

sequence number (1), if the address of the current speculated load instruction 

overlaps with the address of the speculated store instruction, the hardware will 

generate an exception and will go to the recovery mode.  

 Seq Num                         Seq Num    

1        ld_64     v1, M[x]  2    st_64_s     v2, M[y] 

2     st_64     v2, M[y]  1    ld_64_s     v1, M[x] 

a) Original Code Sequence               b)    Reordered Code Sequence 

 

PC -->   1    ld_64_s     v1, M[x] 

Seq Num Address Size 

2 y 8 

   

c)  Hardware Table State 

Figure 6 Speculation Failure Detection Example. 

 



  
                                                                                                                                         

 

  

If the rate of speculation failure exceeds a predetermined limit in a particular 

superblock, it is recreated without reordering ambiguous memory references. With 

this speculation and recovery support available in the baseline architecture, 

speculatively vectorized code can be executed correctly without any additional 

hardware support. 

 PERFORMANCE EVALUATION 

 Experimental Framework 

To evaluate the proposals, we use DARCO [Pavlou et al. 2011], which is an 

infrastructure for evaluating HW/SW co-designed virtual machines. DARCO executes 

guest x86 binary on a PowerPC-like RISC host architecture. Since DARCO emulates 

floating point code in software, we extended the infrastructure to add floating point 

scalar and vector operations. The proposed algorithm was implemented in TOL to 

support vectorization.  

In our experiments, we assume that the host architecture supports a vector 

width of 128-bits. Moreover, we consider only floating point operations for 

vectorization (because most SIMD optimizations tend to focus on them) and no 

integer operation is vectorized. For this reason, we show only floating point 

instructions in the results presented in this section. 

For the speculation and recovery, as discussed in Section 5, the hardware 

maintains a table where it stores the sequence number, address and size of 

speculative load/store instructions. We implement this table with 1K entries. 

Optimal duration/position to take a checkpoint is a different research problem and is 

out of the scope of this paper. For simplicity we take checkpoint at the beginning of 

every superblock. We implement the store buffer with 1K entries. Moreover, to avoid 

overflow of the store buffer we restrict the number of load/store instructions to 1K in 

a superblock. Since we take checkpoint in the beginning of every superblock and a 

superblock cannot have more than 1K load/store, the store buffer can never overflow. 

 Benchmarks  

To measure the success of the proposals we use a wide variety of benchmarks. First 

of all, we use TSVC (Test Suite for Vectorizing Compiler) [Maleki et al. 2011] 

benchmark suite to measure the effectiveness of speculative dynamic vectorization in 

vectorizing synthetic loops that Intel ICC failed to vectorize due to conservative 

memory disambiguation analysis. Secondly, a set of applications from SPECFP2006 

[Standard Performance Evaluation Corporation] and Physicsbench [Yeh et al. 2007] 

benchmarks suites is used to measure the efficacy of our proposals in the real world 

applications. Furthermore, to measure the success of the proposed algorithm in 

vectorizing pointer based applications we use kernels from UTDSP benchmark suite 

[UTDSP Benchmarks]. UTDSP benchmark suite contains array and pointer based 

version of several signal processing kernels. Both versions provide identical 

functionality, the only difference being the use of arrays or pointers to traverse the 

data structures. SPECFP2006 benchmarks operate on double-precision, whereas 

Physicsbench and UTDSP operate on single-precision floating point values. 

All the benchmarks are executed till completion. SPECFP2006 benchmarks are 

executed using the “train” input to keep the execution time manageable. We compare 

our results with both GNU GCC and Intel ICC compilers. The compiler versions and 

optimizations are listed in Table I.  

 



                                                                                                                             
 

 
  

Table I. Percentage of Dynamic Instructions eliminated by GCC, TOL and GCC+TOL vectorizations. 

 GCC ICC 

Version 4.5.3 12.1.4 

Baseline Optimization -O3 -ffast-math -fomit-frame-pointer -O3 

Vectorization -mfpmath=sse   -msse3 -xSSE3 

Disable vectorization -fno-tree-vectorize -no-vec 

 Test Suite for Vectorizing Compilers 

The Test Suite for Vectorizing Compilers (TSVC) benchmark suite was developed by 

[Callahan et al. 1988] to assess the vectorization capabilities of compilers. The suite 

was originally written in Fortran. S. Maleki et al. [Maleki et al. 2011] translated it to 

C and also added additional loops to gauge the issues not addressed by the original 

suite. In our experiments we use the latter version.  

To measure TOL vectorizer´s ability to catch the vectorization opportunities 

missed by static vectorization, we first find the loops that ICC could not vectorize. 

Then we feed these loops to TOL and check the vectorization results. ICC 

vectorization report details that 48 of the loops are not vectorized due to “existence 

of vector dependence”. After passing through the TOL vectorization phase the 

vectorization status of these loops is as follows: 

(1) Completely Vectorized loops: TOL vectorizer is able to completely vectorize 

14 out of 48 ICC unvectorized loops. The loops that are completely vectorized by 

TOL are: s1113, s151, s162, s211, s1213, s1221, s241, s1244, s2251, s252, s261, 

s421, s422 and s424. 
(2) Partially Vectorized Loops: 9 out of the remaining 34 loops are partially 

vectorized by the TOL vectorizer. These are the loops that are not completely 

vectorized however, more than 80% of the operations are vectorized. The main 

reason for not vectorizing the rest of the operations is noncontiguous memory 

accesses. TOL does not support indexed memory access nor gather-scatter, thus 

could not vectorize these memory accesses. The loops that fall under this 

category are: s212, s221, s222, s242, s243, s244, s281, s323 and s4114. 
(3) Unvectorized loops: The rest of the loops are either partially vectorized (less 

than 80% of the operations) or not vectorized at all by the TOL vectorizer. The 

main reasons for not vectorizing these loops are: 1) Presence of control flow 

inside the innermost loop 2) Reductions, and 3) Irregular memory access 

patterns. The current version of TOL does not support any of these patterns. 

As these results show, the speculative dynamic vectorization of TOL is able to 

completely vectorize around 30% of the loops that the static ICC vectorizer could not 

vectorize due to conservative memory disambiguation analysis. A further 18% of 

loops are partially vectorized. In total, 48% of loops are either completely or partially 

(more than 80% of the operations) vectorized by TOL vectorizer whereas Intel ICC 

vectorizer could not find any vectorization opportunities in these loops. 

The next sections evaluate TOL vectorization using SPECFP2006, Physicsbench 

and UTDSP applications. 

 FP Dynamic Instruction Elimination 

This section presents the percentage of dynamic instructions eliminated by 1) static 

compiler vectorization, 2) dynamic TOL vectorization and 3) static+dynamic  

vectorizations, first for SPECFP2006 and Physicsbench benchmarks suites and then 

for UTDSP Kernels. We present the results first using GCC as static vectorizer and



  
                                                                                                                                         

 

  

then switching to ICC for static vectorization. Dynamic vectorization results show 

TOL´s effectiveness in vectorizing legacy code, since input binary is not vectorized for 

any SIMD accelerator. For static + dynamic vectorization case, the input binary to 

dynamic vectorizer (TOL) is already vectorized by the static vectorizer (GCC or ICC). 

The results of this case show the vectorization opportunities missed by GCC and ICC 

but captured by TOL. 

6.4.1 Benchmarks 

For SPECFP2006, on average, the combined GCC+TOL approach eliminates 

approximately twice the number of dynamic instructions than only the static GCC 

vectorization as shows in Figure 7. GCC+TOL vectorization outperforms GCC for all 

the SPECFP2006 benchmarks except for 436.cactusADM and 459.GemsFDTD. GCC 

completely vectorizes these benchmarks and hence TOL does not get any further 

vectorization opportunities. Therefore, instruction elimination is same for GCC and 

GCC+TOL. It is also important to note that on average, dynamic TOL vectorization 

itself slightly outperforms static GCC vectorization.  Moreover, the only benchmarks 

where GCC outperforms TOL are again 436.cactusADM and 459.GemsFDTD. The 

effectiveness of TOL vectorization, to some extent, depends on the quality of the 

input binary. For example, for 436.cactusADM the input binary to TOL contains GCC 

unrolled version of the hottest loop. This GCC unrolled loop is split into multiple 

superblocks due to TOL´s restriction on the maximum number of instructions in a 

single superblock. Therefore, TOL vectorizer could not vectorize it as good as GCC. 

For 459.GemsFDTD, GCC generates significant spill-fill code in the frequently 

executed loops. This spill-fill code affects TOL´s ability to vectorize this benchmark. 

GCC could not vectorize Physicsbench mainly due to the presence of complex 

control flow in the most frequently executed loops.  TOL also is unable to unroll these 

loops; however, it extracts significant vectorization opportunities through superblock 

vectorization. Since GCC fails to vectorize anything, GCC+TOL and TOL 

vectorizations both eliminate 20% of the dynamic instruction stream. 

As Figure 8 shows, for SPECFP2006 ICC+TOL vectorization outperforms the 

static ICC vectorization by eliminating 1.3x more instructions. Just like GCC+TOL 

vectorization, ICC+TOL always performs better or at least as good as ICC only 

vectorization. The benefit of ICC+TOL vectorization is especially evident in 

459.GemsFDTD where the combined static + dynamic vectorization scheme 
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Figure 7 Percentage of Dynamic FP Instructions eliminated by GCC, TOL and GCC+TOL vectorizations. 



                                                                                                                             
 

 
  

Figure 8 Percentage of Dynamic FP Instructions eliminated by ICC, TOL and ICC+TOL vectorizations. 

eliminates twice the instructions compared to the static ICC approach. Moreover, 

there are benchmarks like 433.milc, 444.namd and 453.povray where ICC does not 

vectorize at all whereas, TOL and ICC+TOL vectorizations are able to find 

vectorization opportunities. On the other hand, 470.lbm suffers an instruction 

increase after vectorization. It is important to note that TOL vectorization is able to 

achieve dynamic instruction reduction for 470.lbm when it is compiled with GCC. 

However, for ICC compiled (unvectorized) version TOL vectorization also suffers 

instruction increment. As stated before, the quality of the TOL vectorization depends 

on the input binary. For example, the binary for a loop without any control flow may 

contain one or more basic blocks. If it has only one basic block, TOL can unroll and 

vectorize it however, for more than one basic blocks TOL will not unroll it. 

Similarly, for Physicsbench ICC+TOL vectorization outperforms ICC only 

vectorization by 1.35x. For all the benchmarks in the Physicsbench TOL and ICC 

vectorizations perform equally well however, ICC+TOL catches additional 

vectorization opportunities at runtime. 

 
Table II. Percentage of Dynamic Instructions eliminated by different vectorizations schemes. 

Benchmark Type GCC TOL (GCC in) GCC + TOL ICC TOL (ICC in) ICC + TOL 

FFT 
Array 43.28% 52.70% 43.28% 53.50% 49.98% 53.50% 

Pointer 0.00% 49.87% 49.87% 0.00% 49.98% 49.98% 

FIR 
Array 0.00% 0.00% 0.00% 7.96% 0.00% 7.96% 

Pointer -0.08% 0.00% -0.08% 0.00% 0.00% 0.00% 

IIR 
Array 0.00% 32.52% 32.52% 0.00% 31.39% 31.39% 

Pointer 0.00% 0.00% 0.00% 0.00% -3.84% -3.84% 

LATNRM 
Array 23.48% 7.38% 20.44% 21.75% 17.68% 29.21% 

Pointer 19.43% 17.85% 27.76% 19.80% 20.36% 30.77% 

LMSFIR 
Array 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Pointer 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

MULT 
Array 64.72% 17.62% 64.72% 70.63% 17.60% 70.63% 

Pointer 0.00% 17.62% 17.62% 40.73% 17.60% 40.73% 

Avg 
Array 21.91% 18.37% 26.83% 25.64% 19.44% 32.11% 

Pointer 3.23% 14.22% 15.86% 10.09% 14.02% 19.60% 
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6.4.2 Kernels 

Table II shows the vectorization results for UTDSP kernels.  As the table shows GCC 

vectorizes the array based version of FFT, LATNRM and Matrix Multiplication 

(MULT) but for the pointer based version it is able to vectorize only LATNRM. On 

the contrary, TOL is equally effective in vectorization of array and pointer based 

versions for all the kernels except for IIR. Pointer based version of IIR contains 

control flow inside the innermost loop and hence TOL fails to vectorize it. 

Furthermore, once again the combination of static and dynamic vectorization, 

GCC+TOL, provides the best solution. 

For the array based version, TOL vectorizer outperforms GCC in vectorizing IIR. 

GCC is unable to resolve loop carried dependences, whereas speculative vectorization 

helps TOL to provide an instruction reduction of 32%. On the other hand, GCC 

surpasses TOL vectorization for LATNRM and Matrix Multiplication (MULT). In the 

current version of TOL vectorizer, reductions are not vectorized. Both LATNRM and 

MULT employ reductions, which TOL fails to vectorize. Moreover, MULT has non-

unit stride memory accesses, since only one dimension of the matrix (either row or 

column) can be accessed in unit-stride manner. Compilers apply optimizations like 

“memory layout change”, “data coping” etc to convert non-unit stride accesses to unit-

stride. However, these optimizations are not directly applicable at runtime. This adds 

to the loss of vectorization opportunities for TOL vectorizer.  

The vectorization results with ICC vectorization are similar to those of GCC 

except for the pointer based version of the MULT kernel. ICC is able to vectorize it 

but still does not do as good job as for the array based version. Also the combination 

of static + dynamic vectorizers outperforms individual static and dynamic 

vectorization for both array and pointer based code. 

None of the vectorization schemes is able to extract benefit for FIR and LMSFIR, 

mainly because of the presence of control flow inside the innermost loop. Moreover, in 

these benchmarks, the number of independent instructions in the basic blocks (and 

even in superblocks) is not enough to enable vectorization. It is also interesting to 

note that TOL eliminates 53% of instructions from array version of FFT, whereas 

GCC+TOL eliminate only 43% (as does GCC alone). This is because the input to TOL 

is completely vectorized by GCC and TOL does not find any vectorization 

opportunities, therefore the instruction reductions stays at 43% in GCC+TOL case. 

 Dynamic FP Instruction Stream Distribution  

Figure 9 and 10 present dynamic FP instruction stream distribution for 

SPECFP2006 and Physicsbench respectively for no vectorization, GCC vectorization, 

TOL vectorization, GCC+TOL vectorization and ICC+TOL cases. The results shown 

are normalized to no vectorization case. The dynamic FP instruction stream includes: 

Scalar and Vector instructions, Pack/Unpack instructions (as described in Section 

4.2), unvectorizable instructions, and Merge instructions (the instructions needed to 

merge correct values in live-out architectural registers even without vectorization). 

For GCC vectorization, the majority of the dynamic instruction stream is 

composed of scalar instructions. However, for TOL, GCC+TOL and ICC+TOL 

vectorizations the percentage of scalar instructions falls to 41%, 36% and 31% for 

SPECFP2006 and 57%, 50% and 52% for Physicsbench respectively. Furthermore, 

even though scalar instructions form much smaller (41%, 36% and 31%) part of the 

vectorized dynamic instruction stream in SPECFP2006 than Physicsbench (57%, 50% 

and 52%), the overall dynamic instruction stream for both benchmarks suites is 

reduced by the similar amount, almost 20%, by TOL, GCC+TOL and ICC+TOL 



                                                                                                                             
 

 
  

vectorizations. The reason lies in the fact that SPECFP2006 benchmarks operate on 

64-bit double-precision floating-point variables whereas, Physicsbench benchmarks 

are composed of 32-bit single-precision floating-point variables. As a result, for a 

vector length of 128-bits, a single vector instruction in Physicsbench replaces four 

scalar instructions whereas, in SPECFP2006 a vector instruction replaces only two 

scalar instruction. Therefore, SPECFP2006 needs more vector instructions to replace 

the same number of scalar instructions than Physicsbench. The fact is also evident in 

Figure 9 and 10 where the vector instructions form 26%, 30% and 35% of the 

vectorized instruction stream in SPECFP2006 and only 12% in Physicsbench for 

TOL, GCC+TOL and ICC+TOL vectorizations. 

In addition, Pack and Unpack instructions also form a moderate fraction of the 

vectorized dynamic instructions stream. For TOL, GCC+TOL and ICC+TOL 

vectorizations, they constitute 13%, 8% and 7% of vectorized dynamic instruction 

stream for SPECFP2006 and 5% for Physicsbench. Pack/Unpack instructions are 

needed when the data needs to be reshuffled before it could be consumed by the 

following vector instructions, for example in complex pointwise vector multiplication. 

It is important to keep the number of Pack/Unpack instructions to a minimum, 

especially in wider vector units (256 bits and more), to avoid compromising the gains 

of vectorization. The problem of keeping Pack/Unpack instructions to a minimum is 
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Figure 9 Dynamic FP instruction stream distribution for SPECFP2006: no vectorization, GCC, TOL, 

GCC+TOL and ICC+TOL vectorization normalized to no vectorization. 

Figure 10 Dynamic FP instruction stream distribution for Physicsbench: no vectorization, GCC, TOL, 

GCC+TOL and ICC+TOL vectorization normalized to no vectorization. 



  
                                                                                                                                         

 

  

orthogonal to the problem targeted in this paper and is discussed in detail in our 

other work [Kumar et al. 2013]. 

 Importance of Memory Speculation  

To understand the contribution and importance of memory speculation in dynamic 

vectorization we disabled the memory speculation while enabling TOL vectorization. 

Figure 11 shows the dynamic instruction eliminated for SPECFP2006 and 

Physicsbench respectively with and without memory speculation for TOL only 

vectorization. As the figure shows, disabling memory speculation results in severely 

limiting vectorization opportunities. With memory speculation TOL is able to reduce 

the dynamic instruction count by 12% and 18% for SPECFP2006 and Physicsbench 

respectively however, without memory speculation the dynamic instruction reduction 

is only 2% and 4% for these two benchmark suites. These results are worse than the 

static GCC vectorization as well. 
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void example() 

{ 

    int i; 

    double a[NUM_ELEM],b[NUM_ELEM],c[NUM_ELEM]; 

    // read arrays a and b 

    for (i = 0; i < NUM_ELEM; i++) 

        c[i] = a[i] + b[i]; 

} 

a) Source code for a simple addition loop. 

loop:  I0 ld_64  v2, M [r2 + r1 * 8] 

  I1 ld_64  v3, M [r3 + r1 * 8] 

  I2 addsd  v4, v2, v3 

  I3 st_64  v4, M [r4 + r1 * 8] 

  I4 addi  r1, r1, -1 

  I5 cmp   r1, r0 

  I6 jne  loop 

 
b) Assembly code for the same addition loop. 

Figure 12 An example addition loop at source and assembly code level. 

 

 

Figure 11 Percentage of Dynamic FP Instructions eliminated by TOL vectorizations with and without 

speculation. 



                                                                                                                             
 

 
  

 

  

The reason for having reduced vectorization opportunities without memory 

speculation lies in the fact that memory disambiguation is even more difficult at 

binary level than at the source code level. For example, in the source code of Figure 

12a compiler can easily vectorize the loop since it adds two distinct arrays and saves 

the results in the third one. This information can be easily deduced at the source code 

level. On the other hand, in the binary code of Figure 12b, two registers r2 and r3 

hold the base addresses of two input arrays a and b. The relation between the 

addresses held by these two registers is unknown. Therefore, it is not 

straightforward to determine whether the two registers hold the base addresses of 

two completely non-overlapping arrays or not. Hence, in the absence of memory 

speculation, the runtime vectorizer assumes that the arrays may overlap and does 

not vectorize the loop. This behavior drastically reduces runtime vectorizer’s ability 

to extract vectorization opportunities. Therefore, memory speculation is not only a 

luxury but also a necessity for runtime vectorization. 

Figure 13 and 14 shows the dynamic instruction distribution for SPECFP2006 

and Physicsbench respectively with (TOL_spec) and without (TOL_no_sepc) memory 

speculation for TOL only vectorization. As the figures show, without memory 
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Figure 13 Dynamic FP instruction stream distribution for SPECFP2006: no vectorization, TOL with 

memory speculation (TOL_spec) and TOL without memory speculation (TOL_no_spec) vectorization 

normalized to no vectorization. 

Figure 14 Dynamic FP instruction stream distribution for Physicsbench: no vectorization, TOL with 

memory speculation (TOL_spec) and TOL without memory speculation (TOL_no_spec) vectorization 

normalized to no vectorization. 

 



  
                                                                                                                                         

 

  

 

speculation the vectorization coverage, the number of scalar instructions vectorized, 

drops drastically. The scalar instructions constitute only 40% (SPECFP2006) and 

57% (Physicsbench) of the dynamic vectorized instruction stream with memory 

speculation enabled however, this number rises to 72% for both the benchmark suites 

when we disable memory speculation. These results show that the TOL vectorizer 

could not find much independent scalar instructions for vectorization in the absence 

of memory speculation. Therefore, a significant fraction of code is left unvectorized.  

 Robustness of Memory Speculation 

One of the main factors in the success of the proposed dynamic vectorization scheme 

is the memory speculation.  However, it might backfire if there are lots of speculation 

failures. A speculation failure results in executing un-optimized (and without TOL 

vectorization) version of the code and if the rate of speculation failure exceeds a 

predetermined threshold, recreating the superblock without speculation. Figure 15 

shows the percentage of superblocks recreated due to memory speculation failure. As 

the figure shows, on average only 0.5% of superblocks are recreated in SPECFP2006 

0%

1%

2%

3%

4%

5%

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

SPECFP2006 Physicsbench Avg

Pe
rc

en
ta

ge
 o

f 
re

cr
ea

te
d

 s
u

p
er

b
lo

ck
s

Recreated Superblocks

90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

SPECFP2006 Physicsbench Avg

D
yn

am
ic

 S
u

p
er

b
lo

ck
s

Dynamic superblock distribution

Superblocks with Speculation Superblocks without Speculation

Figure 15 Percentage of static superblocks recreated due to memory speculation failure. 

Figure 16 Dynamic superblocks executed with and without memory speculation. 



                                                                                                                             
 

 
  

while in Physicsbench none of the superblocks had to be recreated. This shows that 

the rate of memory speculation failure is minimal.  

The numbers shown in Figure 15 are for static superblock recreation. However, 

if one of the most frequently executed superblock is recreated without memory 

speculation, a significant amount of dynamic code might be executed without 

speculation. Figure 16 shows the percentage of dynamic superblocks executed with 

and without memory speculation. As the figure shows more than 99% of the dynamic 

code is executed with memory speculation. It reflects the fact that the number of 

speculation failures, and hence the overhead associated with it, is negligible. 

The reason for not having noticeable speculation failures is the observation 

made by [Guo et al. 2006] that a pair of memory references rarely alias until and 

unless the aliasing is obvious.  

 Vectorization Overhead 

Vectorization overhead is the fraction of dynamic instruction stream that corresponds 

to the vectorization of superblocks by TOL. A high vectorization overhead might 

offset the benefits of the vectorization. We calculate the vectorization overhead as: 

=
𝑇𝑜𝑡𝑎𝑙 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑤𝑖𝑡ℎ 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 −  𝑇𝑜𝑡𝑎𝑙 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

  

Our experimental results show that, on average, the vectorization overhead is 

less than 0.5% of the dynamic instruction stream, for all the benchmark suites. 

Hence, the dynamic vectorization overhead is negligible compared to its benefits. 

There are two main factors that make the vectorization overhead to be negligible: 

First, since vectorization is performed at superblock level, the “superblock 

overhead” is the only overhead component that would increase. Moreover, the 

superblock creation overhead accounts for less than 10% of the overall overhead. 

Therefore, an increase in this component has minimal effect on the overall overhead. 

Secondly, since vectorization reduces the total number of instructions in a 

superblock, the optimizations following the Vectorization pass, namely instruction 

scheduling, register allocation, and host code generation, now have to optimize lesser 

instructions. Therefore, the overhead of these optimization steps also reduces. As a 

result, total increase in the overall overhead is insignificant.  

 
Table III. Processor Microarchitectural Parameters. 

Parameter Value 

L1 I-cache 
64KB, 4-way set associative, 64-

byte line, 1 cycle hit, LRU 

L1 D-cache 
64KB, 4-way set associative, 64-

byte line, 1 cycle hit, LRU 

Unified L2 cache 
512KB, 8-way set associative, 64-

byte line, 6 cycle hit, LRU 

Scalar Functional Units (latency) 
2 simple int(1), 2 int mul/div (3/10) 

2 simple FP(2), 2 FP mul/div (4/20) 

Vector Functional Units (latency) 
1 simple int(1), 1 int mul/div (3/10) 

1 simple FP(2), 1 FP mul/div (4/20) 

Registers 128-Integer, 128-Vector, 32-FP 

Main memory Lat 128 Cycles 

 

 



  
                                                                                                                                         

 

  

 

 

 Performance 

For the performance analysis, we model a simple in-order processor, in congruence 

with the simple hardware design philosophy of the co-designed processors, with issue 

width of two. Microarchitectural parameters for the modeled processor are given in 

Table III. For the performance analysis both the floating point and integer code. 

Figure 17 shows the performance of the vectorized code using the different 

vectorization schemes relative to the unvectorized code, for SPECFP2006 and 

Physicsbench. The performance results in the figure conform to the results of Figure 

7 for dynamic instruction elimination. For SPECFP2006, GCC+TOL vectorization 

provides twice the performance benefit than GCC alone (10% compares to 5% of GCC 

alone). Also, TOL vectorization alone provides better performance than GCC alone. It 

is interesting to note that for 410.bwaves and 433.milc GCC vectorized code gets a 

slowdown even though Figure 7 shows dynamic FP instruction elimination. The 

slowdown comes because of the integer code. GCC adds more integer code than it 
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Figure 17 Execution speed for GCC, TOL and GCC + TOL vectorized code relative to unvectorized code. 

Higher is better. 

Figure 18 Execution speed for ICC, TOL and ICC + TOL vectorized code relative to unvectorized code. 

Higher is better. 



                                                                                                                             
 

 
  

vectorizes, hence suffers a slowdown. Moreover, for these benchmarks GCC+TOL 

provides worse performance than TOL alone because GCC+TOL vectorizes GCC 

vectorized input with extra integer code whereas TOL vectorizes unvectorized code. 

As GCC fails to vectorize anything in Physicsbench it does not show any 

performance improvements. However, similar to the results of Figure 7, GCC+TOL 

and TOL vectorizations provide similar performance benefits for Physicsbench. 

An interesting thing to note is that in Figure 7 GCC+TOL vectorization, on 

average, eliminates approximately 20% of the dynamic instruction stream for both 

SPECFP2006 and Physicsbench. However, SPECFP2006 gets more speed up than 

Physicsbench as shown in Figure 17. This is because percentage of floating point code 

is more in SPECFP2006 than in Physicsbench as shown in Figure 19. 

Figure 18 shows the performance results for ICC, TOL and ICC+TOL 

vectorization schemes. For SPECFP2006, ICC+TOL slightly outperforms ICC only 

vectorization as was the case for dynamic instruction reduction in Figure 8. The 

important point to notice in this figure is that TOL only vectorization outperforms 

both ICC and ICC+TOL vectorizations. This is due to the fact that ICC generates a 

number of checks in form of integer code to ensure the correctness of vectorized code. 

This additional integer code influences the overall performance of the application. 

Since TOL only vectorization does not add this code, it is able to achieve more 

performance over ICC vectorized code. Furthermore, since input binary for ICC+TOL 

already includes the additional integer code, ICC+TOL performance is lower than 

TOL only performance. 

On the similar lines, TOL only vectorization outperforms both ICC and 

ICC+TOL for Physicsbench as well even though ICC+TOL have better instruction 

reduction as shown in Figure 8. The reason for this behavior is same as for the 

SPECFP2006 case. 

Table IV shows the speedup for UTDSP kernels. These results also conform to 

the results of Table II. For the pointer based version of the kernels GCC loses 

significant performance compared to the array based version. However, performance 

is not affected a lot for TOL vectorizer. Furthermore, the combination of static and 

dynamic vectorizations, GCC+TOL, is able to extract maximum performance out of 
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the kernels. For the ICC vectorization also the results conform to the dynamic 

instruction reduction results of Table II for the majority of kernels.  

 

Table IV Execution speed for code vectorized by different vectorization schemes relative to unvectorized code. 
Higher is better. 

Benchmark Type GCC TOL (GCC in) GCC + TOL ICC TOL (ICC in) ICC + TOL 

FFT 
Array 1.26 1.50 1.26 1.06 1.15 1.04 

Pointer 1.00 1.50 1.50 1.00 1.14 1.14 

FIR 
Array 1.00 1.00 1.00 1.74 1.04 1.72 

Pointer 1.05 1.00 1.05 1.00 0.98 0.98 

IIR 
Array 1.00 1.29 1.29 1.00 1.14 1.14 

Pointer 1.00 1.00 1.00 1.00 0.98 0.98 

LATNRM 
Array 1.39 1.03 1.33 1.37 1.04 1.33 

Pointer 1.31 1.13 1.39 1.32 1.04 1.31 

LMSFIR 
Array 1.00 1.00 1.00 1.00 0.99 0.99 

Pointer 1.03 1.00 1.03 1.00 0.98 0.98 

MULT 
Array 2.33 1.07 2.33 2.14 1.10 2.11 

Pointer 1.17 1.23 1.16 1.55 1.11 1.53 

Avg 
Array 1.33 1.15 1.37 1.39 1.08 1.39 

Pointer 1.09 1.14 1.19 1.15 1.04 1.15 

 
 REALTED WORK 

Speculative Dynamic Vectorization is not a much extended topic in literature. There 

have only been a few proposals like Speculative Dynamic Vectorization [Pajuelo et al. 

2002] and Dynamic Vectorization in Trace Processors [Vajapeyam et al. 1999]. None 

of them is in the context of HW/SW co-designed processors. 

Pajuelo [Pajuelo et al. 2002] proposed to speculatively vectorize the dynamic 

instruction stream in the hardware for superscalar architectures. Their scheme 

prefetches data into the vector registers and speculatively manipulates it through 

arithmetic instructions. Moreover, scalar instructions that are converted into vectors 

are not eliminated but are converted into ‘check’ operations to validate whether the 

operands used by the corresponding vector instruction were correct or not. Several 

hardware structures are added to support speculative dynamic vectorization, which 

is not a power efficient solution, especially in out-of-order superscalar processors 

where power consumption is already a big issue. They report, more than half of the 

speculative work is unless due to mispredictions, whereas the rate of speculation 

failure is negligible in our case. S. Vajapeyam [Vajapeyam et al. 1999] builds a large 

logical instruction window and converts repetitive dynamic instructions from 

different iterations of a loop into vector form. The whole loop is vectorized if all 

iterations of the loop have the same control flow.  

HW/SW Co-designed processors like Transmeta Crusoe [Dehnert et al. 2003], 

BOA [Sathaye et al. 1999], etc. apply several dynamic optimizations at runtime and 

evaluate their contribution in improving overall performance. Also, software dynamic 

binary optimizers like Dynamo [Bala et al. 2000], IA-32 [Baraz et al. 2003], and 

hardware dynamic binary optimizers like replay [Patel et al. 2001] and PARROT 

[Rosner et al. 2004] report performance improvements by applying on the fly 

optimizations. However, none of these systems have proposed vectorization at 

runtime. Y. Almog [Almog et al. 2004] briefly point out that one of the optimizations 



                                                                                                                             
 

 
  

applied in their system is SIMDification. Unfortunately, details of their vectorization 

scheme are not provided in the paper. 

Traditionally, compiler vectorization targets loops for vector code generation. 

The vectorizer, first of all, strip-mines the loop iteration space by vector length. Then 

a vectorized version of the loop is generated along with some pre- and post-

vectorization steps. This kind of loop vectorization operates at source code level and 

either whole loop is vectorized or nothing. S. Kral et al. [Kral et al. 2003] used FFTW, 

an automatic performance tuning system, to auto-vectorize FFT kernels and showed 

that the auto-vectorization can provide comparable performance to hand vectorized 

code. In contrast to traditional loop vectorization, SLP [Larson et al. 2000] vectorizes 

at low intermediate code level. This technique transforms loop level parallelism into 

superword level parallelism by unrolling the loop. Moreover, fractions of a loop can be 

vectorized if the whole loop is not vectorizable. J. Shin et al. [Shin et al. 2005] 

extended SLP in the presence of control flow. The basic idea behind their technique is 

to execute both if and else parts of an “if statement” in vector form and then choose 

the correct result based on the outcome of the control instruction. 

Liquid SIMD [Clark et al. 2007] decouples the SIMD accelerator implementation 

from the instruction set of the processor by compiler support and a hardware based 

dynamic translator. Similarly, Vapor SIMD [Nuzman et al. 2011] provides a just-in-

time compilation solution for targeting different SIMD architectures. Thus, both 

solutions eliminate the problem of binary compatibility and software migration. 

However, both need compiler changes and recompilation. J. Li [Li et al. 2006] propose 

a runtime algorithm for mapping guest vector registers to host vector registers when 

guest ISA vector registers support more data types than host ISA vector registers. 

There has also been vectorization work in Java [El-Shobaky et al. 2009] [Nie et 

al. 2010]. S. El-Shobaky et al. [El-Shobaky et al. 2009] implement their vectorization 

technique in Jikes RVM to vectorize Java code. Their algorithm comprises of 

unrolling the loops, finding isomorphic instructions and replacing them with their 

vector counterpart. J. Nie et al. [Nie et al. 2010] present two vectorization approaches 

for Jitrino. The first approach is a library-based programming approach. For this one 

they define a generic set of Java vectorization interface with Java class library. The 

vectorized library functions can be used for vector code generation. The second 

approach is automatic vectorization in a Java virtual machine that does not require 

programmer assistance. They implement a loop-based vectorization with two phases. 

The first phase analyses and collects necessary information about the loop and the 

second phase transforms and vectorizes the loops. But none of these approaches use 

any kind of speculation to get additional vectorization opportunities as does our 

approach.  

Previous work has also investigated improving the vectorization capabilities of 

compilers by making the underlying SIMD accelerator more flexible. V. Govindaraju 

et al. [Govindaraju et al. 2013] use a Coarse-grained Reconfigurable Architecture 

(CGRA) called DySER [Govindaraju et al. 2011] instead of a conventional SIMD 

accelerator. DySER consists of a configurable datapath, flexible I/O and a control 

mapping mechanism. These features make it possible to configure the accelerator in 

different ways according to the application requirements. The compiler is also 

modified accordingly to utilize these features. The flexible accelerator allows the 

compiler to vectorize additional loops that may include reduction/inductions 

variables, control dependences, strided data accesses, loop carried dependences etc. 

However, accurate interprocedural pointer disambiguation and interprocedural array 

dependence analysis are still needed to ensure the correctness of the vectorized code 



  
                                                                                                                                         

 

  

and the ordering of the memory accesses. Our proposal relaxes this requirement by 

vectorizing speculatively. Moreover, our proposals are complementary to DySER 

proposal. Speculative vectorization can find additional vectorization opportunities for 

flexible accelerators. Furthermore, the previous work [Boettcher et al. 2014] also 

proposed how the effectiveness of conventional SIMD accelerators can be improved. 

All these proposals can benefit from our speculative dynamic vectorization 

mechanism. 

In our proposal, the speculation and recovery mechanism is implemented in 

hardware. However L. Rauchwerger et al. [Rauchwerger et al. 1995] implement it in 

software for speculative loop parallelization. The hardware implementation of 

speculation and recovery mechanism provide the benefits of having lower 

performance overhead. For the software speculation, compiler needs to generate two 

versions of the speculatively optimized code: one with and the other without 

speculation. Moreover, runtime checks also need to be put in the code to check for 

speculation failures. Executing these runtime checks affects performance. Moreover, 

in case of speculation failure we need a mechanism to recover from it by flushing the 

speculatively executed state, restoring the last correct state and then branching to 

non-speculative code. Doing all this work in software needs executing addition code 

that means further compromising the performance. The hardware solution, on the 

other hand, is more elegant in supporting speculation and recovering from failures. 

 CONCLUSIONS 

This paper proposed to assist the static compiler vectorization with a complementary 

dynamic vectorization. Static vectorization applies complex and time consuming loop 

transformations at compile time to vectorize a loop. Subsequently at runtime, 

dynamic vectorization extracts vectorization opportunities missed by static vectorizer 

due to conservative memory disambiguation analysis and limited vectorization scope. 

The combination of both the schemes is needed to overcome their individual 

shortcoming. For example, static vectorization is conservative and needs accurate 

interprocedural pointer disambiguation and interprocedural array dependence 

analysis that compilers fail to provide however, it can apply complex and time 

consuming transformations. On the other hand, dynamic vectorization can vectorize 

aggressively and speculatively but cannot apply complex loop transformation to keep 

the vectorization overhead low. Furthermore, the paper proposed a vectorization 

algorithm that speculatively reorders ambiguous memory references to facilitate 

vectorization. The hardware, using the existing speculation and recovery support, 

checks for any memory dependence violation and takes corrective action in that case.  

Our experimental results show that the combined static and dynamic 

vectorization improves the performance twice compared to static GCC vectorization 

alone for SPECFP2006. Furthermore, we show that the proposed dynamic 

vectorization performs as good for pointer based applications as for the array based 

ones. However, GCC vectorization loses significant opportunities when source code 

uses pointers. Furthermore, the speculative dynamic vectorization is able to vectorize 

48% of the loops that ICC could not vectorize in TSVC benchmark suite. Moreover, 

the overhead of runtime vectorization is only 0.5%. We also showed the importance of 

memory speculation in runtime vectorization. 
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