UNDER THE CITY: MIOCENE RODENTS FROM CORE SAMPLES OF
THE SUBSOIL OF BARCELONA

BAJO LA CIUDAD: ROEDORES MIOCENOS DE MUESTRAS DE
SONDEOS DEL SUBSUELO DE BARCELONA

Isaac Casanovas-Vilar¹, David Parcerisa², David Gómez-Gras³ and Desiré Gámez⁴,⁵

¹Institut Català de Paleontologia (ICP). Mòdul ICP, Campus de la UAB, 08193
Cerdanyola del Vallès (Barcelona). isaac.casanovas@icp.cat

²Departament d’Enginyeria Minera i Recursos Naturals, Universitat Politécnica de Catalunya. Av/
Bases de Manresa, 61-73, 08242 Manresa (Barcelona). dparcerisa@emrn.upc.edu

³Departament de Geologia, Universitat Autònoma de Barcelona. Campus de la UAB,
08193 Cerdanyola del Vallès (Barcelona). david.gomez@uab.cat

⁴Institut Geomodels - Departament d’Enginyeria del Terreny, Cartogràfica i Geofísica, Universitat Politécnica de
Catalunya. Edifici 2, Campus Nord, C/ Jordi Girona 1-3. 08034 Barcelona (Barcelona). desire.gamez@live.com

⁵ExxonMobil Upstream Research Company, Houston, Texas (USA).

ABSTRACT

Ongoing civil engineering works in the city of Barcelona have allowed getting new data on the stratigraphy of the Pla de
Barcelona minor graben. The tectonic evolution of this small basin is divided in a Palaeogene compression phase and a
Neogene extensional one. Even though sedimentation already occurred during the compression stage, the bulk of sediments
was deposited during the extensional one. The study of several geological cores has shown that the earliest layers
deposited during this extensional phase correspond to alluvial fan sediments that were provisionally referred to the early
Miocene (Mi-1a unit). The study of the rodent remains recovered from these samples allows refining the dating and assign
an age of 17 to 14.5 Ma to this lithostratigraphic unit.

Keywords: Rodentia, Gliridae, Cricetodontidae, micromammals, biostratigraphy, early Miocene, Aragonian, Pla de Bar-
celona minor graben.

RESUMEN

Las obras de ingeniería civil actualmente en curso en la ciudad de Barcelona han permitido obtener nuevos datos refe-
rentes a la estratigrafía del graben menor del Pla de Barcelona. La evolución tectónica de esta pequeña cuenca se divide
en una fase de compresión paleógena y una de extensión neógena. Aunque la sedimentación ya se inició durante la etapa
compresiva, el grueso de los sedimentos fue depositado durante la etapa extensiva. El estudio de numerosos sondeos
géologicos ha mostrado que las capas más antiguas depositadas durante esta fase extensional corresponden a sedimentos
de abanico aluvial que fueron datados de manera provisional como Mioceno Inferior (unidad Mi-1a). El estudio de los
restos de roedores recuperados en dichas muestras permite precisar esta datación y asignar una edad de 17 a 14.5 Ma a
esta unidad litoestratigráfica.

Palabras clave: Rodentia, Gliridae, Cricetodontidae, micromamiferos, bioestratigrafia, Mioceno inferior, Aragoniense,
graben menor del Pla de Barcelona.

1. INTRODUCTION

The Neogene rift in the Catalan Coastal Ranges, locat-
ed in the NE of the Iberian Peninsula, corresponds to
a system of grabens along the north-western margin of
the Valencia Trough (Roca et al., 1999). These grabens
are defined by longitudinal, near vertical basement faults
which are parallel to the coastline. The evolution of the
Catalan Coastal Ranges during the Cenozoic is divided
into two phases: a Palaeogene compression stage and a
Neogene extension (Fontboté et al., 1990; Roca, 1996;
Roca et al., 1999; Cabrera et al., 2004). During the Palae-
egene compressive stresses related to the Alpine orogeny
resulted in the inversion of the main faults that bounded
the former Mesozoic basins (including the Valls-Penedès
and Barcelona faults) (Gaspar Escribano et al., 2004). The
extensional phase began during the Oligocene and was related to the opening of the Valencia Trough. Whereas large parts of the Catalan Coastal Ranges were uplifted, the extensional activation of the Barcelona and Vallès-Penedès faults resulted in the development of subsiding half-grabens in the Catalan margin which were filled by Oligocene and Neogene sediments (Roca et al., 1999; Cabrera et al., 2004).

The Barcelona half-graben is up to 60 km long and 16 km wide and its NW margin is defined by a major listric fault, the Barcelona fault. The trace of the Barcelona fault follows the coastline but is situated a few kilometres offshore, so this half-graben is entirely covered by the sea. The Plain of Barcelona minor graben is a transition zone between the Barcelona half-graben (to the SE) and the Garraf-Montnegre horst (to the NW; see Fig. 1B). This minor graben is affected by different faults that delimit minor basins (Sarría, Vall d’Hebrón, Barcelona city) and highs (Els Turons, Montjuïc) (Llopis, 1942; Gómez-Gras et al., 2001, Parcerisa et al., 2008). The Barcelona city depression is the largest of these basins and is filled by sedimentary successions up to 300 m thick (Gómez-Gras et al., 2001). Unfortunately, the city of Barcelona covers great part of this depression and the few outcrops are defined by Quaternary sediments related to the evolution of the Llobregat Delta. Accordingly, major civil engineering works provide a unique opportunity to study the geology and stratigraphy of this unit. Thanks to such works several geological cores have been extracted and studied, providing details on the stratigraphy of the Barcelona Plain minor graben (Parcerisa et al., 2008).

The basement of the basin is defined by Palaeozoic and Mesozoic (Triassic, Buntsandstein) rocks which are overlain by red or ochre breccias, sands and mudstones (units Mi-1a for the red lithologies and Mi-1b for the ochre ones; after Parcerisa et al., 2008). These deposits are interpreted as alluvial fan facies and, even though fossils were not found, they are provisionally assigned to the Early Miocene by comparison with similar facies from the Valles-Penedès Basin. Brown to ochre and whitish sands and silts which have delivered some fossil foraminifera lay conformably over this unit (unit Mi-2 of Parcerisa et al., 2008). According to the fossil content this unit can be correlated to the Middle Miocene, Langhian (zones N9-N10 of Blow, 1969). Disconformably above the Miocene units we find Middle Pliocene marine sediments. Finally, continental Quaternary sediments separated from the others by an erosive contact, cover all the succession (Parcerisa et al., 2008).

A few cores including some mudstones that belong to the Mi-1a unit (SRB-1, IN-1, FON) were washed in order to recover some fossil micromammals that may refine the dating of these layers (see Fig. 1C). The results were mostly negative, but one core (IN-1) provided a very scarce sample of rodent teeth including three complete cheek teeth, two molar fragments and one fragment of a rodent incisor. The rodent sample comes from three different layers: PAR1, PAR2 and PAR3. Here we describe this material and we also provide further data on the age of this unit.

2. MATERIAL AND METHODS

The material described in this paper is housed at the Institut Catala de Paleontologia in Sabadell, Barcelona (abbreviated with the acronym IPS preceding the collection number). The classification of rodents follows McKenna and Bell (1997) as modified in Casanovas-Vilar (2007). Dental nomenclature and measurements follow Daams (1981) for the Gliridae and Mein and Freudenthal (1971) and Daams and Freudenthal, (1988) for the Cricetodontidae. Estimated measurements (due to minor damage or distortion) are given within parentheses. The measurements were taken using a ‘Leica MZ16’ stereomicroscope with a ‘Leica IC 3D’ digital camera. Specimens were drawn using a light camera mounted on a ‘Leica MZ6’ stereomicroscope.

3. SYSTEMATIC PALAEOONTOLOGY

Order Rodentia Bowdich 1821

Rodentia indet.

Material: one fragment of left lower incisor from PAR2.

Description: The fragment corresponds to the tip of the incisor. The wear facet is very short and straight. The
enamel of the anterior side of the incisor does not show any kind of ornamentation or grooves.

Family Gliridae Muirhead 1819
Genus Muscardinus Kaup 1829
Muscardinus sp.

Material: one left P4 from PAR1 (Fig. 2A).

Measurements (length x breadth): 0.60 x 0.73 mm

Description: The tooth is rounded, slightly wider than long. The crown is low and the wear surface completely flat. There are four transverse ridges (anteroloph, protoloph, metaloph and posteroloph) perpendicular to the antero-posterior axis of the tooth that merge into a short endoloph. All these ridges end in a tiny cusp in their labial side. The protoloph and the metaloph join into a short ridge before merging the endoloph. There is a small platform in the anterior edge of the tooth, just in front of the anteroloph.

Remarks: The low crown, flat wear surface and the orientation of the main ridges clearly allow ascribing the material to Muscardinus. The specimen fits within the size and morphological range of M. thaleri, M. sansaniensis and M. hispanicus. The oldest record of this dormouse genus in the Iberian Peninsula is MN4 in the Vallès-Penedès Basin (Els Cassots; Agustí and Llenas, 1993) and MN5 in the Calatayud-Daroca Basin (Daams, 1985).

Family Cricetodontidae Schaub 1925
Genus Democricetodon Fahlsbusch 1964
Democricetodon sp.

Material: one right m2 from PAR3 (Fig. 2B) and one right m3 from PAR1 (Fig. 2C).

Measurements (length x breadth): m2: 1.30 x 1.02 mm; m3: 1.07 x (0.90) mm

Description: The m2 does not have an anterrosinusid though a vestigial lingual anterolophid is present. The protosinusid is closed by the labial anterolophid which is quite low but joins the base of the protoconid. The metaconid joins the anterolophid by means of a very short metaolphid. The sinusid is wide, transverse and closed by a low cingulid. The mesolophid is lacking. The mesosinusid is open. The entoconid joins the longitudinal ridge just in front of the hypoconid. The posterolophid is long and becomes progressively lower until reaching the posterior wall of the entoconid thus closing the posterosisinusid.

The m3 is triangular. Part of the wall of the protoconid is broken. The anterior valleys are highly reduced and are closed by the two arms of the anterolophid. The metaconid joins the anterolophid by means of a very short metaolphid. The sinusid is transverse. This valley is wide and so large that it forces the longitudinal ridge to bend. The sinusid is closed by a low cingulid. The entoconid is highly reduced and becomes part of a continuous ridge that departs from the hypocone and joins the posterior wall of the metaconid, thus closing all the lingual valleys. The hypolophid is long and placed very anteriorly.

Remarks: The m2 and m3 show a similar morphology and width. This would indicate that both elements belong to the same species. On the basis of its size and morphology we assign the material to Democricetodon. The wider valleys, different shape of the m3 and slightly larger size clearly preclude the ascription of these molars to the other cricetodontid genus present in the samples: Megacricetodon. The molars fit within the size range of several small-sized Democricetodon species, including D. franconicus and D. hispanicus (see Freudenthal and Daams, 1988; Van der Meulen et al., 2003). These species almost invariably have mesolophids which tend to be long. On the contrary, this ridge is missing in our material. The genus Democricetodon first occurs in Western Europe by the latest Early Miocene (MN4; Agustí et al., 2001).

Genus Megacricetodon Fahlsbusch, 1964
Megacricetodon sp.

Material: one fragment of a right m1 from PAR3 (Fig. 2D).

Measurements (length x breadth): - x (0.92) mm

Description: The posterior end of the molar is broken and the anteroconid is also damaged. The preserved part of the anteroconid shows that this cusp is subdivided into two lobes. The anterolophid joins the anteroconid in its
middle part. Two long though low anterolophids depart from each cusp of the anteroconid and close the anterior valleys. The sinusid is transverse and closed by a low cingulid. There is a short mesolophid that is placed quite anteriorly. The end of this ridge bends lingually and joins the base of the metacone. The mesosinusid is open.

Remarks: The m1 is clearly more elongated than the same molar in Democricetodon. Furthermore the central valleys are narrower than in that genus allowing the ascription of the material to Megacricetodon. Because of its size this molar must belong to a small-sized Megacricetodon species, such as M. minor (see Daams and Freudenthal, 1988). The genus Megacricetodon first appears in Western Europe at the same time as Democricetodon (MN4, Early Miocene; Agustí et al., 2003).

Cricetodontidae indet.

Material: fragment of a left M1 or M2 from PAR2.

Measurements (length x breadth): - x (1.31) mm

Description: Only the posterior part of the molar can be described. The posteroloph is long and joins the base of the metacone thus closing the posterosinus.

Remarks: According to its width this molar does not seem to fit with the cricetodontid material from PAR1 and PAR3 and would indicate the presence of a third cricetodontid species in PAR2.

4. BIOSTRATIGRAPHICAL IMPLICATIONS

The rodent fauna recovered from the core IN-1 does not provide many details on the age of the Mi-1a unit. The cricetodontid genera Democricetodon and Megacricetodon first appear in Western Europe by the latest Early Miocene (MN4; see Källin, 1997, Daams et al., 1999 or Agustí et al., 2003) and by the same time the dormice of the genus Muscardinus are also recorded for the first time. Accordingly we can rule out ages older than MN4. Nevertheless, all these genera have very long stratigraphical ranges, Megacricetodon and Democricetodon going extinct by the Late Vallesian (Agustí and Moya-Solá, 1990) and Muscardinus being represented nowadays by the hazel dormouse M. avellanarius.

Nevertheless, it is possible to constrain the age of Mi-1a when the age of the following unit (Mi-2) is taken into account. The foraminifera recovered from the whitish sands and silts of Mi-2 indicate an N9-N10 age (Parcerisa et al., 2008) according to the zones of Blow (1969). These zones were formerly included in the Serravallian, but recent reviews (see Ogg et al., 2008) place them within the Langhian. The lower boundary of the N9 zone is close to 14.5 Ma (after Ogg et al., 2008). Taking this into account and considering that the base of MN4 in Western Europe is said to be around 17-16.6 Ma (according to Agustí et al., 2001) the age of the studied materials must range from 17 to 14.5 Ma, that is Late Burdigalian.

5. CONCLUSIONS

On the basis of the limited rodent sample from core IN-1 and the constraint provided by the Langhian (N9-N10 zones) age of the silts of the Mi-2 unit is possible to constrain the age of the Mi-1a unit between 17 to 14.5 Ma, that is Early Miocene as previously hypothesized by Parcerisa et al. (2008). The sedimentary infilling of the Barcelona city depression within the Barcelona Plain minor graben therefore started during the Early Miocene (Burdigalian). The sedimentation is known to have started earlier, by the Chattian (Late Oligocene), in other areas of the Barcelona Plain minor graben located close to the NE margin (Turó de Montgat; Parcerisa et al., 2004). The sedimentation in that part of the basin occurred during the compressive phase, while the layers from the Mi-1a unit were deposited during the extensive phase. All the available evidence places the transition from a compressive to an extensional regime took place during the Chattian-Early Aquitanian (Parcerisa et al., 2004) but for the moment the oldest layers deposited within the extensional phase in the Barcelona Plain minor graben are dated as Late Burdigalian.

6. ACKNOWLEDGEMENTS

This paper was possible thanks to the support of the Generalitat de Catalunya (Grup de Recerca Consolidat 2009/SGR/00754 and 2005/SGR/00890 of the AGAUR). The support given by the enterprises GIS and Geotec 262 in the field works related to the construction of the line 9 of the Barcelona metro. We are indebted to Dr. M. Furió (ICP) for bringing together the authors of this paper and for encouraging us to collaborate.

7. REFERENCES

Casanovas-Vilar, I. (2007): The rodent assemblages from the Late Aragonian and the Vallesian (Middle to Late Miocene) of the Vallès-Penedès Basin (Catalonia, Spain). Tesis Doctoral, Universitat Autònoma de Barcelona, 286 pp.
Daams, R., Van der Meulen, A.J., Alvarez Sierra, M.A., Peláez-Campo-
manes, P., Pedro Calvo, J., Alonso Zarza, M. A. and Krijgsman, W.
(1999): Stratigraphy and sedimentology of the Aragonian (Early to
Middle Miocene) in its type area (North-Central Spain). *Newsletters
on Stratigraphy*, 37, 3, 103-139.
Fahlbusch, V. (1964): Die Cricetiden (Mamm.) der Oberen Süßwasser-
Molasse Bayerns. *Bayerische Akademie der Wissenschaften, Math-
ematisch-naturwissenschaftliche Klasse, Abhandlungen, Neue Folge*,
118, 1-136.
Fondi, J.M., Guimerà, J., Roca, E., Sábat, F., Santanach, P., Fernán-
dez-Ortigosa, F. (1999): The Cenozoic geodynamic evolution of the
Valencia Trough (Western Mediterranean). *Revista de la Sociedad
Geológica de España*, 3, 3-4, 249-259.
Freudenthal, M. and Daams, R. (1988): Cricetidae (Rodentia) from the
type-Aragonian, the genera Democricetodon, Fahlbuschia, Pseudo-
faulibuschia and Renzmys. *Scripta Geologica*, Special Issue 1, 133-
252.
Gaspar-Escribano, J.M., García-Castellanos, D., Roca, E. and Clotet,
S. (2004): Cenozoic vertical motions of the Catalan Coastal Ranges
(NE Spain): The role of tectonics, isostasy, and surface transport.
*Tectonics*, 23, TC1004.
Gómez-Gras, D., Parcerisa, D. Calvet, F., Porta, J., Solé de Porta, N.
and Civis, J. (2001): Stratigraphy and petrology of the Miocene Montjuïc
delta (Barcelona, Spain). *Acta Geologica Hispanica*, 20, 3-4, 199-
207.
of Switzerland reconsidered – A local biozonation of MN2 – MN5.
*Mémoires et Travaux de l’École Pratique des Hautes Études*, 21,
515-535.
Kap, F. (1829): Skizzierte Entwicklungs-Geschichte und naturliches Sys-
Llopis, N. (1942): Tectomorfolologia del Macizo del Tíndaro y valle infe-
McKenna, M.C. and Bell, S.K. (1997): *Classification of Mammals Above
Cricetidae (Mammalia, Rodentia) du Tertiaire de l’Europe. *Scripta
Geologica*, 2, 1-37.
Parcerisa, D., Gómez-Gras, D., Roca, E., Madurell, J. and Agustí, J.
(2004): The Upper Oligocene of Montgat (Catalan Coastal Ranges,
Spain): new age constraints to western Mediterranean Basin opening.
*Geologica Acta*, 5, 1, 3-17.
Parcerisa, D., Gómez, D., Gómez-Gras, D., Usera, J., Simó, J.A. and
Carrera, J. (2008): Estratigrafía y petrología del subsuelo precuata-
nario del sector SW de la Depresión de Barcelona (Caderas Costeras
Catalanas, NE de Iberia). *Revista de la Sociedad Geológica de España*,
21, 3-4, 93-109.
Roca, E. (1996): La evolución geodinámica de la Cuenca Catalano-Bal-
car y áreas adyacentes desde el Mesozoico hasta la actualidad. *Acta
Geologica Hispanica*, 29, 3-25.
Roca, E., Sans, M., Cabrera, L. and Marzo, M. (1999): Oligocene to Mid-
dle Miocene evolution of the central Catalan margin (northwestern
Van der Meulen, A.J., Pélaez-Campomar, P. and Daams, R. (2003): Re-
vision of the medium-sized Cricetidae from the Miocene of the Daro-
cu-Villafeliche area in the Calatayud-Teruel basin (Zaragoza, Spain).
*Coloquios de Paleontología*, Volumen Extraordinario I, 385-441.