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ABSTRACT 

The term Weak Stability Boundary (WSB) is related to a region of stable motion around the second primary of a circular 
restricted three-body problem (CR3BP). Previous work on this subject has shown that, at a given energy level, the 
boundaries of such region are provided by the stable manifolds of  central objects of the L1 and L2 libration points, i.e., the 
two planar Lyapunov orbits (PLOs). This offers a natural dynamical channel between the Earth's vicinity and the Sun-Earth 
libration points L1 and L2. Furthermore, it has been shown (and successfully employed to design low-energy spacecraft 
lunar transfers) that the Sun-Earth L2 central unstable manifolds can be linked, through an heteroclinic connection, to the 
central stable manifolds of the L2 point in the Earth-Moon three-body problem. The aim of the present study is to clarify the 
relationship between the low-energy Earth-to-Moon transfers (LETs) and the dynamics of the phase space points that 
populate the WSB region around the Earth. The present work develops through an extensive and systematic exploration of 
the trajectories connecting planar Lyapunov orbits corresponding to all the possible combinations of two libration points in 
the Sun-Earth and Earth-Moon CR3BPs, kinematically coupled. The results of such exploration give us a deeper and more 
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complete understanding of the dynamics and properties of such connections and constitute the basis for the next stage of the 
investigation, that is the study of the structure of the WSB around the Earth, its dynamical relationship first with the Sun-
Earth libration points L1 and L2 and then with the Earth-Moon ones, in the bicircular four-body model. This investigation is 
part of a research work that will be the subject of a subsequent, more extended publication.     

KEYWORDS – three-body problem, four-body problem, libration points, periodic orbits, invariant manifolds, numerical 
integration. 

1. INTRODUCTION 

The LETs consist in connecting trajectories belonging to 
the invariant manifolds of the central objects around the 
collinear libration points L1 and L2 of the Sun-Earth and 
Earth-Moon CR3BPs in such a way as to almost 
naturally reach the Moon’s vicinity from a low-Earth 
orbit. The mechanism that explains the LETs was first 
presented in [5]. Fig. 1 illustrates the idea for the planar 
case in the Sun-Earth barycentric synodical reference 
frame: a branch of a stable manifold of a planar 
Lyapunov orbit around LSE

2 (i.e., the Sun-Earth L2 point)  

drives the spacecraft away from the Earth, then the 
unstable manifold of the same PLO redirects it to a 
region where also the stable manifold of a PLO of the 
LEM

2 (i.e., the Earth-Moon L2 point) point flows. There, 
the intersection in configuration space (trough a 
conveniently set Poincaré section) is sought. The 
difference in velocity between the two intersecting 
trajectories (which may be equal to zero if there is a 
heteroclinic connection) constitutes the cost of the 
transfer. The dynamical characteristics of the two 
CR3BPs and their kinematical relationship are such that 
low-cost (and even zero cost) connections of the type 
LEM

2 -LSE
2 can easily be found. 

The concept of WSB was first introduced by [6] in 
connection with the rescue of the lunar spacecraft Hiten. 
As shown by [5], the rescue was possible due to the 
combined gravitational influences of the Earth, the 
Moon, and the Sun. Although the WSB region has not an 
analytic definition, there is an algorithmic one (see [1] 
and [4]) which distinguishes between stable and unstable 
points according to the dynamical evolution of initial 
two-body orbits around the second primary when the first 
primary is introduced: its gravitational influence may be 
such that the third body cannot complete one (or more) 
full revolution around the second primary without 
changing the sign of its total mechanical two-body 
energy or without first performing a full revolution 
around the first primary. When this is the case, the given 

initial condition is said to be unstable. More on the WSB 
regions in the Sun-Earth-Moon system can be found in 
[3] and [8], also in connection with the design of Earth-
to-Moon trajectories. 

 

Fig. 1. A low-energy transfer from the Earth to the Moon                  
through the L2 Lagrange points of the SE and EM 
systems as seen in the SE synodical barycentric reference 
frame (a) and its construction based on patching invariant 
manifolds of the SE and EM CR3BPs (b) ([5]). 

The aim of the present study is to unify the concepts of 
LET and WSB, or equivalently to show that the WSB 
points that reach the Moon’s vicinity are driven by the 
stable and unstable invariant manifolds of the two 
CR3BPs and are responsible for performing the 
heteroclinic connections between libration point orbits 
that constitute the framework of the low-energy transfers 
from the Earth to the Moon.   

The present study starts with the study of all the LEM
i -

LSE
j (i,j=1,2) connections between the Earth-Moon and 

the Sun-Earth systems: it consists in a full, systematic 
exploration of such transfers in the framework of a two-
coupled CR3BPs, aiming at identifying the conditions 
under which zero-cost and low-cost connections are 
possible (Section 2). As a whole, these explorations form 
what we call the LSE

i-LEM
j connections. This will be 

followed by the characterization of the WSB regions of 
the Earth and the Moon in the framework of the CR3BP 
and their relationship with the invariant manifolds of the 
PLOs around L1 and L2 will be outlined (Section 3). 
Section 4 connects the two issues by following the 
motion of the unstable points of the Earth’s WSB at a 
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given energy level through capture at LSE
1 or LSE

2 and 
until the Moon and its libration points are approached. 
This is accomplished from within the Bicircular Four-
Body Problem (B4BP), in which the gravitational 
influence of all three primaries (i.e., Sun, Earth and 
Moon) is simultaneously taken into account. Section 5 
concludes and illustrates the current stage and future 
developments of the present work.  

2. LSE
i-LEM

j CONNECTIONS 

Following [5], the connections are computed in the 
framework of the coupled CR3BP in which the Sun-
Earth (SE) and the Earth-Moon (EM) three-body 
problems are kinematically linked in inertial space 
through their orbital initial phases αSE

0 and αEM
0, 

respectively. Two are the critical parameters, i.e., the 
choice of the Poincaré section (PS) and the value of the 
initial (t=0) relative orbital phase α0 = αEM

0 - αSE
0 

between the two CR3BPs. The PSs adopted in this study 
are two-dimensional planes of the type x = xp, where xp is 
an appropriately chosen value of the x coordinate in the 
SE CRTBP frame of reference, and the two dimensions 
of the plane are along y and yv . All computations 

concerning quantities pertaining to the SE problem are 
made in such reference frame, whereas those pertaining 
to the EM problem are carried out in the EM CR3BP 
frame of reference and then transformed into the other. 
The intersections of the manifolds with the given PS are 
approximated numerically by means of some iterative 
procedure like the bisection or Newton methods. As a 
result, each manifold generates one (closed) curve on the 
PS. If the two curves intersect (and under normal 
conditions this occurs in two points) a connection in 
configuration space (xy) is said to exist between the two 
given LPOs, i.e., it is possible to compute two pairs of 
trajectories that perform the connection through the two 
given intersection points. In velocity space, the vy 
components of the connecting trajectories are equal by 
construction, whereas in general SEEM v v xx ≠ . Their 

difference defines the cost vΔ of the given connection. 

Note that EM
xv and SE

xv are computed in the frame of 
reference of each CR3BP from the remaining 
components of the corresponding state vector, from the 
value of the Jacobi constant J and exploiting the 
definition of the latter, i.e.: 

Jy
rr

yxvx −−−++
−

++±= &)1(2)1(2

21

22 μμμμ    (1) 

µ is the mass ratio of the given RTBP (SE or EM), r1 and 
r2 are the distances of the third body from the first and 
the second primary, respectively.  Of the two VΔ ’s 
found, the lower is selected.    

2.1 Simulations 

Starting from a database of initial conditions for 70 
planar Lyapunov orbits in the SE CR3BP and 70 planar 
Lyapunov orbits in the EM CR3BP around each of the 
two collinear Lagrange points L1 and L2, all the possible 
pairs of such orbits, one for each system, have been 
formed and the invariant manifold transfers of the kind 
described above have been sought for each such 
combination. The range of energy levels covered 
(expressed in terms of Jacobi constant values) is [3.10, 
3.20] for the Earth-Moon system and [3.00058,3.00090] 
for the Sun-Earth system. 72 values of the initial relative 
orbital phase α0 (i.e., oo 3600 0 ≤≤ α at steps o50=Δα ) 
between the two CR3BP problems have been considered. 
Six PS positions have been considered at x = xp (p=1,6)  
on the x-axis of the SE CR3BP frame of reference, 
placed between the Earth and the given SE PLO.  The 
numerical integration has been performed with a Runge-
Kutta 7-8 method. The time required to accomplish a full 
transfer from a given SE PLO to a given EM PLO has 
been approximated with the difference between the time 
of flight on each trajectory and the time required to wind 
off/on the corresponding periodic orbit (until a small 
distance to the orbit is reached). We present examples of 
individual connections for each LSE

i-LEM
j combination 

and global results for each type. Figs. 2, 3, 4 and 5 
illustrate cases of low- or zero-cost connections: in 
particular, the connection in the SE RTBP reference 
frame with the PLOs and their manifolds, the Jacobi 
constant values in the two problems, the time of flight 
and initial relative orbital phase are given. Then the view 
of the intersection of the two manifolds on the PS is 
provided. Figs. 6, 7, 8 and 9 are colour maps 
(respectively in 3D on the left and 2D on the right) of the 
cost required to transfer between specified energy levels 
(indicated respectively on the x- and y-axes of the plots 
for the SE and EM systems). The darkest areas represent 
the lowest-cost connections. 
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Fig. 2. Example of a low-cost connection of the type LSE
2 - LEM

2. From 
top to bottom: view of the LPOs, their manifolds and the connecting 
trajectory in configuration space (SE synodical barycentric), the 
intersection on the Poincaré section, the intersections on the PS when 
the initial relative orbital phase between the two systems is made to 
vary, the intersections on the PS when the x-coordinate  of the PS is 
made to vary. 

 

 

Fig. 3. Example of a low-cost connection of the type LSE
1 - LEM

2. From 
top to bottom: view of the LPOs, their manifolds and the connecting 
trajectory in configuration space (SE synodical barycentric), the 
intersection on the Poincaré section, the intersections on the PS when 
the initial relative orbital phase between the two systems is made to 
vary, the intersections on the PS when the x-coordinate  of the PS is 
made to vary. 
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Fig. 4. Example of a connection of the type LSE
1 - LEM

1: 
view of the LPOs, their manifolds and the connecting 
trajectory in configuration space (SE synodical 
barycentric) (top) and the intersection on the Poincaré 
section (bottom). 

 

Inspection of Figs. 6 and 7 shows that the combinations 
LSE

2 - LEM
2 and LSE

1 - LEM
2 provide heteroclinic 

connections (i.e, zero-cost transfers) over a large range of 
energy values. In the remaining two cases, i.e., LSE

2 - 
LEM

1 and LSE
1 - LEM

1 (Figs. 8 and 9) this is no longer true. 
To obtain a connection between the manifolds of those 
Lyapunov orbits, a minimum ΔV at the Poincaré section 
of at least 250 m/s is required. Our investigations suggest 
that the reason for this resides in the much higher 
velocities that characterize the Earth-Moon invariant 
manifolds associated to periodic orbits around the 
libration point LEM

1 after transformation into the Sun-
Earth barycentric synodical reference frame, with respect 
to the values found for the invariant manifolds associated 
to LEM

2 : the latter, not only intersect the Sun-Earth 
invariant manifolds in configuration coordinates, but also 
in velocity space, thus producing a wide number of  
heteroclinic connections. 
 

     

 

Fig. 5. Example of a connection of the type LSE
2 - LEM

1: 
view of the LPOs, their manifolds and the connecting 
trajectory in configuration space (SE synodical 
barycentric) (top) and the intersection on the Poincaré 
section (bottom). 

3. WSB REGIONS AROUND THE EARTH 
AND THE MOON 

3.1 Osculating Keplerian orbits around the 
second primary 

    Let us consider a CR3BP composed by two primaries 
P1 and P2 of masses m1 and m2, respectively. Consider 
initial conditions corresponding to osculating Keplerian 
orbits around P2 at t=0 in a sidereal (i.e., inertial) 
reference frame centered on P2 and such that the lines of 
absides l(θ) of such ellipses form angles θ with the 
positive x-axis of the synodical barycentric frame of 
reference.  
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Fig. 6.  3D (top) and 2D (bottom) color maps of 
minimum VΔ  for connections of type LSE

2 - LEM
2 as a 

function of the Jacobi constant of the two systems. 

 

 

Fig. 7. 3D (top) and 2D (bottom) color maps of minimum 
VΔ for connections of type LSE

1 - LEM
2 as a function of 

the Jacobi constant of the two systems. 

  

 

Fig. 8. 3D (top) and 2D (bottom) color maps of minimum 
VΔ  for connections of type LSE

2 - LEM
1 as a function 

ofthe Jacobi constant of the two systems. 

 

 

Fig. 9. 3D (top) and 2D (bottom) color maps of minimum 
VΔ  for connections of type LSE

1 - LEM
1 as a function of 

the Jacobi constant of the two systems. 
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Be r2 the pericenter distance, assumed to be the starting 
point of the motion.  If a, e and Ek respectively denote the 
semi-major axis, the eccentricity and the total Keplerian 
energy of such an osculating ellipse, then well-known 
two-body formulas state that 

                             e) = a (1 - 2r                                   (2)                                                         

                               
akE

2
μ

−=                                     (3) 

Under such circumstances, the initial sidereal velocity v, 
which is perpendicular to the position at the pericenter r2, 
can have two opposite directions, thus producing either 
osculating retrograde orbits (in the following indicated as 
endowed with positive velocity), or osculating direct 
orbits (with negative velocity). Introducing the first 
primary, and transforming (rotation of angle θ and shift 
of origin from the second primary to the barycentre of the 
system) the given motion in the synodical barycentric 
reference frame of the resulting CR3BP, provides the 
following set of initial conditions: 

θθ

θμθ

cos)2(                       ,sin2

,sin)2(            ,1cos2
rvyry

vrxrx

−==

−=+−=

&

&
                      (4) 

for positive velocity, and 

θθ

θμθ

cos)2(                       ,sin2

,sin)2(            ,1cos2
vryry

vrxrx

+−==

+=+−=

&

&

       
              (5) 

for negative velocity. 

The expressions of the Jacobi constant J  for the two 
cases are obtained by introducing Eqs. 4 and 5 into the 
definition 

                                                
.22)1(

2

2

1

)1(222 yx
rr

yxJ && −−−++
−

++= μμμμ

           
(6) 

Recalling that v depends on pericenter distance and 
eccentricity, i.e., 

               
,

2

)1(1

2

22
r

e
ar
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⎟
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⎜
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one obtains:  

,2)1(2)1(         

1cos222
2

)1(2

2

)1(
2)1(cos2

re

rrr
e

rJ

+±−

+
+−

−
+

−
+−=±

μμ

θ

μμ
μθ                (8) 

where + or - precede the last term for positive and 
negative initial sidereal velocity, respectively. Note that 

±J  is a function of e, r2 and θ. In particular, when ±J  is 
fixed and e and θ are given, Eq. (8) must  be solved 
numerically for r2. In the present study, the bisection 
method has been adopted in order to approximate the 
smallest (i.e., closest to the primary) positive real root. 

3.2 Stable and unstable motions 

According to the algorithmic definition given in [1], the 
motion of the third body P3 around P2 is said to be stable 
if, after leaving l(θ), P3 makes one full revolution about 
P2 without having first revolved around P1, and its orbit 
has negative Keplerian energy relative to P2 on return at 
l(θ). Whenever such condition is violated, the 
corresponding initial condition is said to be unstable. 
This includes trajectories which collide with either 
primary. In this study the stability criterion has also been 
applied with more than one revolution and even non 
integer as well as negative values of nR revolutions 
around P2. nR can be viewed as a parameter of the 
problem and its values determine the instantaneous 
border of the stable region (i.e., the set of points in phase 
space of the CR3BP which represent initial conditions 
that satisfy the stability definition). In other words, the 
border of the stable region evolves with time, or better 
with nR.  

The analysis of the structure of a WSB region and the 
study of the dynamics of its points can be carried out in 
two alternative ways: 

• Mode 1: fixing ee =  and varying J: a grid of 
points is set up in phase space by varying the 
distance r2 from P2, and the angle θ within a 
two-dimensional grid; from each (r2, θ) pair and 
for a given choice of the direction of the initial 
velocity vector in sidereal coordinates (v>0 or 
v<0) the remaining relevant quantities are 
computed: the J of the trajectory (Eq. 8) and its 
initial conditions (Eqs. 4 or 5) in the CR3BP 
frame of reference. 
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• Mode 2: fixing JJ =  and varying e: a grid of 
points is set up in phase space by varying the 
eccentricity e and the angle θ within a two-
dimensional grid; from each (e, θ) pair and for a 
given choice of the direction of the initial 
velocity vector in sidereal coordinates (v>0 or 
v<0), the remaining relevant quantities are 
computed: the distance r2 from the second 
primary (solution of Eq. 8) and the initial 
conditions (Eqs. 4 or 5) in the CR3BP frame of 
reference. Note that the solution of Eq. 8 in r2 
may not exist in the interval between the 
minimum allowed distance r2min from the second 
primary (i.e., typically its surface radius) and the 
maximum r2max set by the size of the problem 
(typically r2max << 1). In this investigation, the 
search has been limited to the smallest real 
solution of Eq. 8, found by bisection.   

 SE, v>0 SE, v<0 
θ [0o, 360o[ [0o, 360o[ 
Δθ 1o 1o 
 E [0.0, 1.0[ [0.0, 1.0[ 
Δe 0.005 0.005 
No. of  pairs 72000 72000 
[r2min, r2max] [5 ·10−5, 0.8] [5 ·10−5, 0.8] 
No. of  points 49768  71830 

 

Table 1. Grid of initial conditions for mode 2 ( JJ = ) 
for the SE CR3BP with SEJ = 3.000583. When not 

specified, units are meant as CR3BP normalized. The 
initial set of (θ,e) pairs (line three) produces, when the 
solution of the fifth-order equation in r2 falls in the range 
[r2min, r2max], a set of points (last line) that constitute the 
fundamental database of initial conditions for WSB 
computations. 

 
Sim. type nU (%) nS (%) nT 
 0≤nR≤0.5 0.5≤nR≤1.0 1.0≤nR≤1.5 nR= 1.5  
SE, v>0 54.0 36.0 9.0 1.0 49768 
SE, v<0 0.2 6.0 4.7 89.1 71830 
 

Table 2. Percentage of unstable points (nU) for increasing 
number of revolutions around the second primary 
(columns 2 to 4), percentage of points which are still 
stable (nS) after nR = 1.5 revolutions, total initial number 
of points (nT). Each row corresponds to a specific 
simulation type, i.e., each of the two opposite directions 
of the initial sidereal velocity, for constant J=  SEJ  = 
3.000583. 

 

Fig. 10. Points which become unstable between 1.0 and 
1.5 revolutions around P2 for SEJ = 3.000583 and for the 
two opposite signs of the initial sidereal velocity vector: 
x- and y-coordinates of the position in the synodical 
frame of reference with origin at P2 (i.e., the Earth). 
 
3.3 The Sun-Earth and the Earth-Moon systems 

Results concerning mode 1 can be found in [4] and [8] 
for the Earth-Moon CR3BP and will not be presented 
again here. We shall rather deal with simulations of mode 
2 because these allow to investigate trajectories that 
correspond to fixed values of the Jacobi constant in the 
two systems, as in the low-energy transfers. 

Mode 2 simulations have been performed according to 
the parameters defined in Table 1. The unstable points of 
the WSB regions around the Earth have been computed 
up to nR = 1.5 revolutions around the second primary and 
the stability/instability criterion has been applied every 
0.5 revolutions (ΔnR =0.5). Table 2 gives, for each of the 
two directions of the initial sidereal velocity, the number 
nU (in %) of unstable points as nR increases, and the final 
number nS of stable points left over at nR = 1.5. In the 
following, we shall consider the border of the weak 
stability boundary region between nR =1.0 and nR =1.5 
and the corresponding stable and unstable points (column 
4 and 5 of Table 2). Fig. 10 shows the location of the 
unstable points in configuration space in the interval 
between 1.0 and 1.5 revolutions around the Earth. 

3.4 Earth WSB: capture around L1 and L2 

The unstable points can be subdivided according to the 
resulting motion. To this purpose, and with the final aim 
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of studying the points which get close to the collinear 
libration points L1 and L2, a capture criterion has been 
defined. It identifies the unstable points that approach L1 
or L2 and stay in their vicinity for an appreciable time. 
The criterion here adopted consists in defining for each 
Li (i=1,2) two circles (of radii rB1i and rB2i, i=1,2) 
centered on the second primary and three straight lines 
orthogonal to the x-axis (at x coordinates xai, xbi, and xci, 
respectively), and two time parameters, namely tmax and 
τ: the former is the maximum allowed time interval for a 
capture to begin, the latter is the minimum capture 
duration. The capture region is the area enclosed by the 
two circles and the straight line through xa and xb. The 
capture criterion rejects all trajectories which for 

max0 tt ≤≤  do any of the following: 

• enter and exit the region enclosed by the two 
circles, coming from P2; 

• cross the x=xci line in the direction of increasing 
distance from P2;      

• exit the larger of the two circles; 
• collide with one of the primaries. 

On the contrary, points which spend a time 
τ≥Δt inside the capture region and start such stay at 

max0 tt ≤≤ , are said to be captured in the vicinity of 

the given Li. Fig.11 defines the capture geometry in the 
SE system. The capture criterion also discriminates 
among points which enter one or both capture regions 
without performing capture and identifies which region is 
visited first. In brief, seven types of unstable points can 
be distinguished: rejected points, captured points around 
L1, captured points around L2, points visiting the capture 
region ar ound L1 only, points visiting the capture region 
of L2 only, points visiting first the region around L1 and 
then the region around L2, points visiting first the region 
around L2 and then the region around L1. Fig. 12 shows 
some trajectories that get temporarily captured around L1 
and L2. 

With the aim of relating the invariant manifolds with the 
set of unstable points, Fig. 13 shows the points of the 
stable and unstable manifolds of  LSE

1 and LSE
2 which 

satisfy the orthogonality condition between the position 
vector and the velocity vector relative to the second 
primary (the Earth), in the and the points belonging to the 
WSB region of the Earth that become unstable between 
1.0 and 1.5 revolutions around the Earth. 

 

Fig. 11. Geometry of the capture regions around L1 and 
L2 for the Sun-Earth (left) and the Earth-Moon (right) 
systems. Also shown are the two planar Lyapunov orbits 
of the given energy. 
 

The agreement between the two sets of points is good, 
thus suggesting that a dynamical relationship between 
them does exist.

  
4. WSB TRAJECTORIES IN THE BICIRCULAR 

FOUR-BODY PROBLEM 

The initial conditions corresponding to unstable points of 

the SE CR3BP with J = SEJ = 3.000583  and  1.0 ≤ nR ≤ 

1.5 that perform capture around LSE
1 or LSE

2 are 
integrated in the B4BP. Here, a second capture criterion 
is applied to check for subsequent capture around LEM

1 or 
LEM

2 (geometrically defined), with the aim at connecting 
the libration points of the two systems. This “second” 
capture at LEM

j is said to occur when the third body stays 
more than 0.5 days in the region enclosed by two circles 
centered on the Moon and the circle centered on the 
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corresponding libration point and radius equal to its 
distance from the Moon (See Fig. 11 b). 

 

 

Fig. 12. Some trajectories belonging to the unstable 
subset of points of the WSB region around the Earth that 
get captured around LSE

1 (left) and LSE
2 (right), according 

to the criterion defined in the text. Also shown are the 
corresponding planar Lyapunov orbits and their stable 
manifolds. 

Our current simulations show that several trajectories 
which are initially captured around LSE

1 or LSE
2 pass 

through the second capture regions around LEM
1 or LEM

2 
(Fig. 14), satisfying the capture criterion, but none of 
them gets into orbit around the Moon nor seems to be 
driven by stable manifolds associated to LEM

1 or LEM
2. 

This may be due to the need for varying the fundamental 
parameter linking the two systems, i.e., the initial relative 
orbital phase: the computation to which Fig. 13 refers has 
been made by assuming α0 = 0. 

 

Fig. 13. Sun-Earth system: points (blue crosses) of the 
stable and unstable manifolds of the Lyapunov orbits 
around LSE

1 and LSE
2 with JSE=3.000583

 
which satisfy the 

orthogonality condition, and WSB points (red dots) that 
become unstable after 1.0 and before 1.5 revolutions 
around the Earth and have the same energy as the 
manifolds. The left plot shows the complete picture, 
whereas the right plot is an enlarged view of the region 
around the Earth.

  
5. CONCLUSIONS 

In this paper we have investigated the connection 
between the unstable points of the WSB regions with the 
low-energy transfers from the Earth to the Moon. The 
first part of the study consisted in an exploration of all 
the possible low-energy LSE

i-LEM
j connections between 

the Sun-Earth and the Earth-Moon CR3BPs. Such study 
is in course of refinement by considering the same 
transfers in the B4BP: a database containing the 
dynamical substitutes of the Lyapunov orbits and their 
invariant manifolds have been prepared and the 
exploration of the connections is being carried out.  
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Fig. 14. Examples of trajectories that depart from the 
vicinity of the Earth, get captured around LSE

1 or LSE
2 and 

finally transit through the region of capture around LEM
1 

(left) or LEM
2 (right). The red circles indicate the 

beginning of the capture, the blue asterisks the end of the 
numerical integration. 

The investigation concerning the relationship between 
the WSB regions of the Earth and the Moon needs to be 
refined as far as the variation of the initial relative orbital 
phase between the Sun-Earth and the Earth-Moon 
systems is concerned. Besides, more simulations with 
different values of the Jacobi constant in the Sun-Earth 
CR3BP will help verifying the hypothesis that the low-
energy transfers from the Earth to the Moon are made by 
the points that leave the WSB region of the Earth and 
that perform the sequence of the two captures. 

The computations performed in the CR3BP are based on 
the use of a Runge-Kutta 7-8 numerical integrator and 
the equations of motion are regularized in the vicinity of 
the primaries by means of the Levi-Civita method (see 
[9] and [2]). The simulations in the B4BP use a Taylor 
numerical integrator, instead, which is known to be more 
accurate when close approaches occur. Nevertheless, 
regularization will need to be implemented and this will 
be done either by considering some global regularization 

method or a strategy involving the Levi-Civita method 
and the reduction from four to three bodies during close 
encounters.  
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